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Abstract  
 

The presence of huge volumes of unstructured data in the form of pdf documents poses a 

challenge to the organizations trying to extract valuable information from it. In this thesis, we 

try to solve this problem as per the requirement of DNB by building an automatic information 

extraction system to get only the key information in which the company is interested in from 

the pdf documents. This is achieved by comparing the performance of named entity recognition 

models for automatic text extraction, built using Bi-directional Long Short Term Memory (Bi-

LSTM) with a Conditional Random Field (CRF) in combination with three variations of word 

vectorization techniques. The word vectorisation techniques compared in this thesis include 

randomly generated word embeddings by the Keras embedding layer, pre-trained static word 

embeddings focusing on 100-dimensional GloVe embeddings and, finally, deep-contextual 

ELMo word embeddings. Comparison of these models helps us identify the advantages and 

disadvantages of using different word embeddings by analysing their effect on NER 

performance. This study was performed on a DNB provided data set. The comparative study 

showed that the NER systems built using Bi-LSTM-CRF with GloVe embeddings gave the 

best results with a micro F1 score of 0.868 and a macro-F1 score of 0.872 on unseen data, in 

comparison to a Bi-LSTM-CRF based NER using Keras embedding layer and ELMo 

embeddings which gave micro F1 scores of 0.858 and 0.796 and macro F1 scores of 0.848 and 

0.776 respectively. The result is in contrary to our assumption that NER using deep 

contextualised word embeddings show better performance when compared to NER using other 

word embeddings. We proposed that this contradicting performance is due to the high 

dimensionality, and we analysed it by using a lower-dimensional word embedding. It was 

found that using 50-dimensional GloVe embeddings instead of 100-dimensional GloVe 

embeddings resulted in an improvement of the overall micro and macro F1 score from 0.87 to 

0.88. Additionally, optimising the best model, which was the Bi-LSTM-CRF using 100-

dimensional GloVe embeddings, by tuning in a small hyperparameter search space did not 

result in any improvement from the present micro F1 score of 0.87 and macro F1 score of 0.87. 
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Chapter 1    Introduction 
 

 

1.1 Background 
In a study conducted by the International Data Corporation (IDC) to measure the amount of 

digital data between 2005 to 2020, it was predicted that unstructured data, e.g., text files, e-

mails, presentations etc. would account for 95% of the global data with an estimated increase 

of 65% per year. IBM also conducted a similar study, and it was found that 2500,000 Terabytes 

of data are produced daily [1, 2]. Additionally, IDC's market survey between 2009 and 2020 

suggests that the rate at which digital data is growing is not proportionally compensated by 

staffing and investment to manage it [2, 3].  

   

Advancement in the field of information and communication technology has also led to the 

generation of more data, in the form of data created and shared. This trend in the growth of 

data associated with digitalization has triggered development in the field of automated 

information extraction systems for deriving value from large scale unstructured data.  

   

Digital data is divided into three categories, namely structured, unstructured, and semi-

structured data. Firstly, structured data also referred to as quantitative data, has an organized 

structure and clearly defined data types. They have a predefined format and can be stored and 

queried in a relational database, thus making them easy to export, searchable by data type, and 

easy to organize. Relational databases, electronic spreadsheets, etc., are a few examples of 

structured data. Secondly, unstructured data, otherwise known as qualitative data, as they 

mostly contain factual information that is not measurable, refers to text-heavy data with 

multiple data types like dates, names, numbers, and images, thus making them ambiguous and 

difficult to search. They do not have a rigid structure and cannot be stored in tables. 

PowerPoint, word documents, email, PDF, etc., are a few of the examples in this category. 

Finally, we have semi-structured data, which is not as disordered as unstructured data, but do 

not have a rigid and pre-defined standard like the structured data. It can have information from 

multiple data sources. An example of semi-structured data is JSON documents, where the data 
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does not have fixed fields associated with it and cannot be stored in a table without 

transforming it to a structured form [4-6].  

   

This thesis focusses on unstructured data and therefore this will be further discussed to 

understand them in terms of the volumes in which they are generated and their ability to give 

rise to useful information through data analytics.  

   

Unstructured data can take different forms. It can be human-generated in the form of text files 

like emails, presentations, excel files or as data generated in social media like the MP3, digital 

photos, audio recordings, video files and so on. Unstructured data can also be machine-

generated like satellite imagery, sensor data, traffic, temperature, etc [4]. Thus, it can be said 

that unstructured data occur in large volumes and are complex due to this diversity in the 

sources and formats [1].  

   

Studies [1, 6, 7] show that unstructured data play a significant role in gaining a deep insight 

into many factors that influence an organisation's functioning and growth like business trends, 

competition in the field, etc. It also enables an organisation to improve productivity by 

gathering and analysing customer trends and interests [6]. The presence of huge volumes of 

offline data in the form of applications, letters, papers, documents, certificates, surveys, 

agreements, etc. should also be considered while analysing the sources of unstructured data. 

These large volumes of complex unstructured data make the process of information extraction 

quite challenging. Historically, vital information from such documents have been extracted by 

manual intervention. But this process is highly time-consuming, labour-intensive, and 

inefficient. Inefficiency can be due to the fact that manual interventions are subject to human 

errors and subjectivity in making decisions. Irrespective of the amount manual labour invested 

in assessing unstructured data, it becomes difficult to catch up when the volumes increase 

swiftly, hence it cannot be considered as a feasible solution for information extraction [8]. This 

is where the ability to extract keywords from documents and classify them into predefined 

categories would serve highly beneficial. This process of information extraction is referred to 

as Named Entity Recognition (NER) in the data science world and will be further discussed 

in Sec. 3.1 [9].  
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For this thesis, we are dealing with unstructured data in the banking sector. A brief 

understanding of its presence in the financial industry will help us recognize the relevance of 

implementing an automated information extraction system specific to the field. Huge volumes 

of data related to customers, business, processes, and employee engagement are generated in 

the financial sector. These are in the form of banking transactions, payment orders, account 

statements, online forms, chatbot logs, loan documents, emails, text messages, audio/video 

communications etc. The exploding rate of growth of data comes with its challenges 

concerning storage and management, but it holds opportunities for growth in the 

sector. Performing analytics on this data may give us insight into the banking business, 

customer retention, customer behaviour, decision making, managing 

risk, maintaining customer relationships, and performance management process of a bank. It 

can also make the bank capable of offering a superior banking experience based on the analysis 

conducted. This helps in making banks equipped for competing with their counterparts and in 

offering what they promise efficiently [7, 10].  

   

In general, the process of information extraction comes with many pros and cons and some of 

them has already been discussed in detail in the above sections. The positive impact of 

automating information extraction process with regards to time and cost can be seen through 

an example of JP Morgan chase & co, which is one of the largest banks in the 

USA. They deployed a program called Contract Intelligence (COiN) for automating the 

process of document review based on unsupervised machine learning. This task was previously 

performed by lawyers and spent about 360,000 man hours each year on that task. In a [11] case 

study conducted on COiN, it was found that about 13% of the effort spent by the lawyers were 

saved in the process. The program can review 12,000 credit agreements a year. The 

360,000 man hours spent on the process a year was cut down by reducing the time spent on 

extracting information from a single credit agreement to a few seconds through this 

implementation. The amount of money spent by the company on employing people for 

performing the task was also reduced. In addition to its positive impact on cost and time, 

automation of the process has proved to achieve higher accuracy in document review in 

comparison with the possible manual errors that could occur as the decisions were not 

prejudiced or influenced by emotions or efficiency of the person [11]. 

 

However, there are some drawbacks associated with automating information extraction. 

Extracting key information from the full data could be valuable in terms of insights but the 
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extracted information might be sensitive, and hence it would risk the privacy of the individual 

or business involved. This led to the development of privacy preserving data mining (PPDM) 

which is a subfield of data mining which considers sensitive information where steps are taken 

to safeguard the misuse of this information [12]. It should also be noted that though automating 

NER removes prejudiced human decisions, it can accidentally extract wrong values and 

misclassify them. For example: consider an automated information extraction system which 

acts as a downstream task for another application that stores the address of a person privately 

and displays the name of a person in a way it is visible to the public. Automation error could 

lead to the wrong classification of a person's address in the name column, thus making it 

publicly visible and endangering the privacy of a person. Additionally, merging data sources 

to create a single source for building an automatic NER comes with legal risks associated with 

it, in terms of data sharing and manipulation. 

 

 

1.2 Problem statement 

1.2.1 What is the problem we are trying to solve?  

This thesis is being done as a prototype for a solution at the DNB IT emerging technologies 

team. DNB ASA is one of Norway’s largest financial services group. The DNB IT emerging 

technologies team strives to develop novel solutions to technologically enhance the banking 

system. Following a request from an internal team, the IT emerging technologies were 

interested in developing a system for extracting key elements from unstructured textual 

documents published in the Oslo stock exchange website. These are letters sent to shareholders 

for attending general meetings organized by the company selling the shares. The key elements 

of interest for them are company name, meeting date, meeting address and company deadline. 

The details about the data set are further explained in the Sec. 2.1. In this process, DNB acts as 

an intermediary between the company and the shareholders.  The focus of this thesis is to build 

an automatic information extraction system based on Named Entity Recognition (NER), to 

reduce the time and effort spent on it, using different deep learning methods. 

    

1.2.2 Why is solving this problem relevant?     

Based on the discussions I have had with DNB, there exist huge volumes of unstructured data 

in the form of PDF’s, emails, forms, etc. which are stored in the cloud and this data can 

be used by the bank for its functional development. For this thesis, unstructured data in the 
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form of pdf documents are used. These documents are processed and converted into structured 

forms for performing information extraction. Moreover, the data extracted by the NER 

tasks can be used as an input to other downstream tasks in a value chain. One such pipeline is 

where the information extracted would be sent to the shareholders who have subscribed to this 

service at DNB. Presently this is achieved manually with the help of an analyst who is 

continuously sifting through the meeting documents published by the Oslo stock exchange, 

looking for relevant and useful information from them.  

 

Larger scope of NER at DNB include:   

1. Extracting relevant information or keywords from business agreements between DNB and 

other third parties, for example, mortgage applications making the process smoother and faster 

in effect.   

2.  Identifying threats to the bank’s IT systems by processing documents and emails. This can 

be done by extracting certain types of words from the email messages and then classifying 

them as a threat or not.  

3. Processing and categorising transactions in areas like private banking and wealth 

management.   

    

The presence of large volumes of unstructured data in both the banking industry and outside 

as discussed in the background section extends the relevance of this thesis to broader fields of 

application, for example, first-level filtering of candidates based on their resumes by extracting 

only the entities of interest like name, education, years of experience, etc. without spending 

hours and reading thousands of resumes.   
 

1.2.3 How are we trying to solve the problem? 

We aim to solve the problem by achieving two major goals and also by reaching a conclusion 

concerning a hypothesis put forward based on previous research in the field.  

 

Through this study we aim to achieve two major goals:   

1. Comparative study of deep learning models based on their performance in Named Entity 

Recognition task (NER) in extracting entities specific to DNB documents. The deep learning 

models are based on Bidirectional Long Short-Term Memory (Bi-LSTM) with Conditional 

Random Fields (CRF) in combination with different word vectorization techniques. 
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2. Build an automatic NER system with good performance that works well with these specific 

documents through hyperparameter tuning. 

 

As a subgoal, due to the lack of annotated data for the shareholder’s general meeting invite 

documents for training the models, we manually create the data set in this thesis (see Sec. 2.3).  
 

Hypothesis statement:   

1. Using a deep contextualized word embeddings would result in better performance of NER 

system [13].  
 

1.2.4 Why did we choose this method for solving the problem?    

Training of large neural networks has become quite popular recently with an increasing amount 

of data, and the availability of cheap storage and computational power. The research focuses 

on building NER using Bi-LSTM with CRF. Based on the information collected on the 

previous researches done in the field [14-17] among various deep learning approaches used to 

solve the information extraction problem, methods using Bi-LSTM with a top-level CRF model 

have been shown to achieve the good results. Therefore, using this architecture as the base 

model for building a NER model for information extraction in this paper.  

 

 

1.3 Related work 
Named Entity Recognition using deep learning for information extraction is an area of 

extensive research and therefore the number of research papers published in this topic is vast. 

This section should not be considered as an exhaustive overview of all the papers in the field, 

but a summary of research performed in the field based on a few selected papers. More related 

works are discussed in Chapter 4 to explore the scope for future work. 

 

In a paper by Ismail et al. [18], NER is performed on data in the Arabic language using deep 

learning approaches. They propose an approach based on deep learning to reduce the 

dependency on external resources and hand-made feature engineering. A Bi-LSTM-CRF was 

used in combination with character representation of words and pre-trained word embeddings. 

Fast Text [19] is used as the pre-trained word embedding here. Arabic being rich in 

morphological forms make the vocabulary sizes larger and out of vocabulary rate relatively 
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higher. It also highlights that for languages like English without morphological richness, the 

use of character representation is not mandatory to get the best results. But few other researches 

such as [11, 12, 14, 15] showed that using character embeddings along with word embeddings 

results in an improvement in the model performance on CoNLL 2003 data set [20].  Peters et 

al. [13] proposed that deep contextualized word embeddings from language model known as 

Embedding from Language Model (ELMo) resulted in improvement in performance of a NER 

model based on Bi-LSTM-CRF using random embeddings on CoNLL 2003 data set. 

 

In a study by Huang et al. [17] it was proposed that Bi-LSTM-CRF is robust and its 

performance is less dependent on the type of word embedding used. It uses Bi-LSTM to capture 

the contextual information and a CRF top layer is used to compare the sentence-level tag 

information before making the final predictions regarding the label. On the other hand, in a 

study by Hovy et al. [14] various word embeddings with Bi-LSTM NER in combination with 

character embeddings were compared on CoNLL 2003 data set and it was found that 100-

dimensional GloVe embeddings resulted in the best performance in comparison to other pre-

trained word embeddings used. 

 

Zhai et al. [21] proposed the concept of using pre-trained word embeddings trained on domain 

specific corpus. A model called EBC-CRF with domain specific pre-trained word embeddings 

was proposed and it was found to improve the performance of chemical NER on BioSematics 

patent corpus and Reaxys gold set [22]. EBC-CRF is a combination of Bi-LSTM-CNN-CRF 

with ELMo contextual word embeddings and pre-trained word  embeddings. In our study, we 

compare the performance of Bi-LSTM-CRF based NER when they are coupled with different 

types of word vectorisation techniques. A study by Zhu et al. [23] showed that using clinical 

pre-trained ELMo word embeddings improved the performance of Bi-LSTM-CRF NER on 

2020 i2b2/VA data set [24]. 

 

 

1.4 Structure of the thesis 
The thesis begins with the Chapter 1 introduction section, which holds information about why 

the thesis is relevant , what is the problem we are trying to solve through this study and how 

are we trying to solve it with the help of a goals and hypothesis. It also explains why we choose 

the methods we used and briefly discusses previous work done by researchers in the field. 
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Chapter 1 is followed by the materials section in Chapter 2. It contains information about the 

data set on which the methods are applied which includes the process of building the data set 

starting from the information extraction from PDF documents to converting it to suitable form 

that can be given as input to the Bi-LSTM-CRF model. Chapter 3, methods section, discusses 

the steps followed to perform the experiments. It also includes the theory behind different 

components used in the methods section for performing the comparative study of the NER 

models using deep learning methods based on Bi-LSTM in combination with CRF. It also 

includes a brief introduction into the concept of Named Entity Recognition, followed by the 

theory behind different word vectorisation techniques and the tagging scheme used for 

preparing the data set as described in Chapter 2. In Chapter 4, the results of the deep learning 

models are reported, along with the results of the data preparation step. The best results of the 

models are also tabulated and discussed along with results from previous researches for 

comparison. The results of the experiments are and findings based on the hypothesis are 

summarised as a conclusion in Chapter 5. 
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Chapter 2 Materials 
 

 

This section gives an overview of the data set used in the thesis along with tagging scheme 

used to understand the dataset better. It also discusses the steps taken to manually build the 

data set and the theory behind various components involved. 

 

 

2.1 About the data set 
To date, annotated data for this specific task does not exist. Hence we are building the 

evaluation corpus manually. The process of building the data set is explained in Sec. 2.3. The 

PDF documents used in this study are notices sent out by companies inviting their shareholders 

to participate in the general meeting. The Oslo stock exchange publishes these meeting invites, 

and DNB regularly stores these in the AWS cloud storage. Due to time constraints we selected 

only a few documents out of the total available for the thesis since the data set was created 

manually, as described in Sec. 2.3. It was found through experiments that while training the 

model with this limited set of documents, the model gave a good generalisation of behaviour 

and was able to learn features and make accurate predictions on unseen data. The general 

meetings are organised annually between the company and the shareholders. In this process, 

DNB acts as an intermediary for helping the exchange of information between them. The 

complete data set contains 133 documents, with a total of 747 sentences. After manual 

annotation, which involves the process of reading through the text to identify key words and 

assign them to corresponding class labels, the data set contained a total of 31721 words. The 

process of manual annotation is explained in detail in Sec. 2.3.5.  

 

The words or group of words that we are interested in extracting from the text are referred to 

as named entities. In the data set each word was assigned with a tag corresponding to the Inside 

outside beginning (IOB2) tagging scheme [25, 26] along with the class label (see Sec. 2.2). 

Figure 2.1 shows the distribution of entities belonging to each type of tag except the "O" tag, 

and it shows that the majority of entities belong to tag 25 - company name. Figure 2.2  shows 

that out of a total of 31721 words 4691 words are named entities.  
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Figure 2.1:Distribution of tags in the data set without including the "O" tag [2.2]. 

 
Figure 2.2: Comparison of the distribution of the types of words in the data set. 

The four classes or tags that DNB is interested in are : 

 

1. Company name: The name of the company selling shares. 

2. Meeting address: Address of the venue of the meeting 

3. Meeting date: The date of the meeting in day (numeric) month (words) year (numeric) 

format. 
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4. Company deadline: The last date to send the notice of attendance back to the company. 

The notice of attendance is a declaration stating that the shareholder will attend the 

meeting on the date mentioned in the letter. In case the shareholder is unable to 

participate in the meeting, the proxy must be sent back to the company within the 

deadline.  

 

Figure 2.3 shows few rows from the data set created. In the tag column, the numeric part of the 

tag corresponds to the following class labels, as listed below. These numeric labels were 

automatically generated by the tool, discussed in Sec. 2.3.3 which was used for annotating the 

dataset, the numeric part and the name of the tag are used together throughout the thesis. 

a) 25- company name  

b) 26- meeting date  

c) 27- meeting address  

d) 28- company deadline  

 

Figure 2.3: Few rows from the dataset 

The data set consists of five columns and 31721 rows. The column token holds the words in 

the documents with one word per row, file_names contains information about the document to 

which the word belongs, id contains a unique identifier associated with each sentence, tag 

represents the class label of the word labelled manually following the IOB2 tagging scheme 

[12], Sentence # corresponds to the sentence number, each sentence in all the documents in the 

data set is labelled as a series of sentences. For example, if the whole data set contains two 

documents, with document 1 containing three sentences and document 2 containing two 
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sentences. The sentence numbering will be as follows: all words in document 1 sentence1 

would be labelled "Sentence1", all words in document 1 sentence2 will be labelled "Sentence2", 

all words in sentence1 of document 2 will be labelled "Sentence4" and so on. 

 

 

2.2 Tagging scheme 
The main aim of a sequence labelling task is to extract words and to correctly label them into 

classes or tags. IOB is a standard tagging format used to perform chunking tasks in 

computational linguistics introduced by Ramshaw and Markus in 1995 [27]. Chunking is the 

process of dividing a sentence into an ordered set of chunks, where each chunk corresponds to 

word groups. Ambiguity regarding the start and end of a chunk led to the rise of the tagging 

scheme. A chunk can also be referred to as an entity. An entity or a chunk could be a word or 

group of words that belong to a class; for example, in the sentence "Alice and John Doe love 

to program in python", the word "Alice" is a named entity composed of a single word while 

the word "John Doe" also constitutes a named entity but is composed of two words. Both these 

entities belong to the class "name of a person". If the sentence is processed by a named entity 

recogniser interested in the classes "name of a person" denoted by "PER" and "programming 

language" denoted by "PROG" the word "Alice" belonging to the class "name of a person" gets 

classified as "PER", while the words "John" and "Doe" representing a single entity composed 

of two words also belonging to the class "name of a person" also gets classified as "PER" but 

with separate "PER" label corresponding to each word "John" and "Doe". The term "python" 

belongs to the class "programming language" and is a single word making up an entity; hence 

gets classified as "PROG".   

 

The IOB tagging scheme makes it possible to mark boundaries of a named entity. The I-prefix 

with a tag means the word is inside the named entity, a word with an O tag means that the word 

does not belong to the named entity, B represents the word is at the beginning of an entity. 

There exist two IOB tagging schemes, namely, IOB1 [27] and IOB2 [25, 26]. In the IOB2 

tagging scheme, all entities begin with “B-tag”, be it a chunk of a single word or multiple 

words. A named entity composed of multiple words like “John Doe” starts with a "B-tag” 

followed by one or more "I-tag" depending on the remaining number of words in that single 

chunk, while a named entity composed of a single word like “Alice” is assigned only the “B-

tag” (see Table 2.1). In the IOB1 tagging scheme, as shown in Table 2.2, “B-tag” is only 
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assigned to the first word in a named entity composed of a single word or more than one word 

if that named entity is not the first instance belonging to that class [26] in the sentence. If the 

entity is the first instance belonging to a class, independent of the number of words in it, it is 

assigned an “I-tag” instead. The first word will be assigned with the "B-tag” followed by the 

"I-tag” for the next instance belonging to the same class. Similar to IOB2 rest of the words that 

are not named entities are assigned "O-tag”.  In  Table 2.2, “Alice” is assigned “I-tag” as it is 

the first instance belonging to the class “PER”, while “John” is the second instance belonging 

to that class. IOB2 tagging scheme is used in this study, as the python package, doccano 

transformer [28] used for processing the manually annotated dataset converts it to CoNLL 2003 

format, which follows the IOB2 tagging scheme (see Sec. 3.2). 

 

Table 2.1: Example of the IOB2 tagging scheme where PER- name of a person, PROG - 
programming language. 

 
 

Table 2.2: Example of IOB1 tagging scheme where PER- name of a person, PROG - 
programming language. 

 
 

 

2.3 Process of creating data set from PDF documents 

2.3.1 Portable document format (PDF) documents 

PDF, which stands for Portable document format, is a universally compatible file format based 

on PostScript format developed by Adobe Systems. It makes it possible to view documents in 

an electronic format independent of the system's specification. This specification includes 

software, operating system and hardware. Initially, it was developed as a system to share 

documents without losing the structure and layout, and this makes editing and information 

extraction from them difficult. The PDF format allows multiple types of data like text, images, 

videos, hyperlinks, etc making them flexible. They can also enforce different security levels 

for accessing the document, such as prohibiting editing or printing making them a secure file 

TOKEN Alice and John Doe love to program in python 
TAG B-PER O B-PER I-PER O O O O B-PROG 

 

TOKEN Alice and John Doe love to program in python 
TAG I-PER O B-PER I-PER O O O O I-PROG 
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format.  The flexibility factor makes PDF files diverse, thus complicating working with them 

[29]. 

 

There exist three types of PDFs, namely, "True" or digitally created PDF, "Image-only" or 

scanned PDF and searchable PDF. Digitally created PDFs contains text and images, which gets 

created within applications like Microsoft Word, Microsoft Excel etc. or using the print 

function which routes the print demand to a virtual printer, consequently generating a PDF file. 

PDF files thus generated are editable in terms of changing the size, moving and deleting. There 

exist text that is searchable, and that is directly created using the applications mentioned above. 

Scanned PDF has content locked as an image. These are created by scanning a hard copy using 

a scanner or directly taking a picture of a document using a camera. The content could be text 

but is not searchable and cannot be copied as it has the text layer missing. On the other hand, 

searchable PDFs have OCR software (see Sec. 2.3.2) working in a scanned PDF background. 

Thus making it possible to search and copy the text and characters in the PDF [29]. 

 

2.3.2 Optical Character Recognition (OCR) 

OCR is a text recognition technology that converts documents with text in searchable and non-

searchable formats to machine readable forms, making it possible for the computer to perform 

searching and editing. The relevance of OCR arises due to the fact that being digitally 

accessible does not mean the data is machine-readable. This data conversion process involves 

identifying and converting different forms of characters like handwritten, typed, and printed 

text to digital format. The whole process can be divided into two major steps: text extraction 

from an image followed by text recognition. We can further break this down into a series of 

steps starting with dividing a page into blocks of texts or images followed by dividing a line in 

the text into words and then to characters and then finally, identifying the characters using a 

pattern matching algorithm. We can access OCR in many ways, like an  OCR software that 

could be installed in a mobile device or a computer system, as a service in the cloud, as a system 

integrated into a scanning device, as a command line OCR engine, using a python wrapper for 

OCR. To improve the performance of the OCR system, we pre-process the scanned documents. 

De-skew is a typical operation performed as part of pre-processing to correct the document's 

alignment so that the lines in the document are perfectly horizontal and vertical.  
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In this study, we used a script for performing OCR with the help of a python package named 

Python-tesseract version 0.3.6 [30]. Python-tesseract is a wrapper for the Google Tesseract 

OCR engine. Google Tesseract OCR is an open-source OCR engine developed by Hewlett-

Packard in 1980 and sponsored by Google since 2006. It can recognise more than 100 

languages. It uses an LSTM in the background for line and character recognition [31]. The 

workflow of the script is as follows. First, the folder containing the documents as PDFs are fed 

as input to the python script, these documents are then transformed to images for each page, 

then de-skew is used to remove any skewing in the image, followed by image processing to 

identify the blocks in the text and finally run each block of text through a tesseract to get the 

text. The output is stored in javascript object notation line format (jsonl), where each line 

contains a json object. Figure 2.4 represents a single json object from the jsonl file generated 

as the output of OCR. The json object represents a single block of text which consists of three 

key-value pairs. Key "text" represents the text in a single block, "meta" contains the metadata 

related to the block of text, which holds information about the x and y coordinate of the block 

based on its alignment of the block in the page, the height and width of the block as well as the 

page number corresponding to the page number in the file to which the text belongs. The 

filename from which the block of text is extracted is included in the key "file_name". Page 

segmentation mode ("psm") = 6 denotes that we consider each block as a single block of text 

during the processing. There exist multiple configurations for page segmentation mode 

supported by tesseract based on the value assigned to psm [32]. 

 

 
Figure 2.4:Example of a single json object from the jsonl file created by OCR 

 

 

2.3.3 Annotation tool 

Doccano [33] is a text annotation tool that is available for free. It aids in manually creating 

labelled data set for various natural language processing tasks like text classification, sequence 

labelling and sequence to sequence learning. Text classification involves the process of 
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classifying text into predefined classes based on the content of the text e.g. in sentiment analysis 

the text could be classified as a positive, negative or a neutral text based on the sentiment. 

Another example would be topic labelling where the text can be classified based on a major 

topic like "Science" focus such as, if the text is about a scientific theory. Similarly, for spam 

detection where the text could be classified as spam or not spam depending on certain criteria 

about the content of the text. Sequence labelling task deals with assigning a label to each 

element in a sequence like named entity recognition while sequence to sequence task is a 

process of converting a sequence of words in one domain or language to a set of sequence in 

another domain or language, e.g. language translations. [33]. The jsonl file obtained from the 

OCR is fed as input to doccano. The output from doccano for annotation created for a sequence 

labelling task in json format is shown in Figure 2.5. The json output contains information about 

the annotations created in the text. The "annotation" key holds information on the label 

assigned to the word and with the start offset, which denotes the index at which a labelled word 

starts and end offset denoting the index at which the labelled word ends. 

 

 
Figure 2.5: Example of annotated output from doccano in jsonl format 

 

2.3.4 Processing the annotated data     

Doccano transformer, an open source tool available from GitHub [28], helps in converting the 

data in json format into a format based on our requirement. It has two format options CoNLL 

2003 and spacy. We are using the CoNLL 2003 format in this study. The CoNLL 2003 format 

converts the data into IOB2 format. The output of the doccano transformer contains a tag 

associated with each word. This output is in the form of a generator object which can be 

converted to a list of dictionaries. These dictionaries contain "data" as a key that holds the text 

in each line along with the tags in IOB2 format. The value corresponding to "data" is processed 

to remove the unwanted spaces and symbols in it and convert it to a data frame with four 

columns, namely token, tag, sentence number, filename etc. 
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2.3.5 Process flow 

 
Figure 2.6: Process flow chart showing the steps involved in converting PDF documents to a 

format suitable for training, where jsonl -  java script object notation lines format, csv - 
comma separated file format, PDF - portable document format, OCR - Optical Character 

Recognition 

Figure 2.6 shows the process flow followed in extracting text from PDF documents and 

creating data sets to build and evaluate an automatic NER model. The PDF documents were 

processed using Google Tesseract OCR, which aided the process of extracting text from the 

PDFs. The output of OCR in jsonl file format, as shown in Figure 2.4, was fed as input to an 

open-source text annotation tool, doccano [33], for manually annotating the text thus, enabling 

the creation of the gold standard data set for the named entity recognition task. Gold standard 

data set refers to the data set containing the ground truth word-label mappings; here, the gold 

data set is one that is manually created. The annotation tool was set up using a docker container 

as per the git hub page's instructions. A new project was created after logging into doccano for 

sequence labelling tasks. The labels of our choice were defined as shown in Figure 2.7, the 

output of OCR as jsonl file was imported, and the process of annotating the data was initiated, 

as shown in Figure 2.8. At the end of the annotation, the output was exported as a javascript 

object notation (JSON) file. This output from doccano contains an additional field called 

"annotation" that includes the label and other information about the text that is labelled like 

the start index and end index of the entity and the information from the OCR output. This output 
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was further processed to convert it to a format suitable for feeding as input to the NER model. 

This stage takes into account the tagging scheme (see Sec. 2.2). The processed data was then 

used to build an automatic NER system using the deep learning models as described in Chapter 

3. The software versions and the code used for OCR and transforming the doccano output to a 

CSV file suitable for feeding as input to models is encapsulated in tables (Table 2.3 and Table 

2.4). The repository also contains the folder containing the documents that were processed by 

OCR, output of OCR, output of doccano and the final data set. 

 

Table 2.3: Filename and githash of the file containing the code to transform jsonl 
downloaded from doccano to a format suitable to be used as NER dataset available from 
https://github.com/meerajsph/Master_thesis, this also includes the ocr code used and the 

prerequisites to run the ocr code 

File Githash 
convertjsonfromdoccano_to_trainingdata.ipynb 515e5ab 

 ocr_and_doccano 
 

c118c72 
  

Table 2.4: Name and version of software used for transforming the output of doccano to a 
format suitable to be used as input data for NER 

Software Version 

Doccano transformer 1.0.1 

 python 3.6 
 

 

 
Figure 2.7:Creating labels in doccano 

 

https://github.com/meerajsph/Master_thesis/commit/515e5ab9e5b470ea3675424dfa61838611707233
https://github.com/meerajsph/Master_thesis/commit/c118c72ee9123866cfebdf78b51f8e2fe84da3a7
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Figure 2.8:Example of the process of text annotation in doccano 
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Chapter 3 Methods 
 

 

In this section, we describe the methodology used for solving the problem of automatic 

information extraction from unstructured data in the form of pdf documents at DNB. The 

methodology begins with an introduction to the solution to the problem, which is by Named 

entity recognition (NER) [34]. The section is further divided into data pre-processing, building 

the model, training, evaluating, and comparing the performance of automatic NER systems 

built using deep learning models based on Bi-directional Long Short Term Memory 

Conditional Random Field (Bi-LSTM-CRF) architecture when coupled with different word 

vectorisation techniques [35]. Additionally, this includes the process of optimising the 

hyperparameters of the best performing model found by the comparative study to build an 

efficient NER system that works well with DNB data. The theory behind the various 

components used in the model architecture, including the word vectorisation techniques, 

optimisers, activation function, loss used to train the model and the different layers involved, 

are also discussed.  

 

 

3.1 Named Entity Recognition(NER) 
The problem of information extraction from unstructured data can be solved by using Named 

Entity Recognition (NER) [34]. The term “named entity” was first coined in 1996 at the 6th 

Message Understanding Conference (MUC6) [34] organised by Navel Research and 

Development group (NRaD), RDT&E division of Naval Ocean systems Centre (NOSC). The 

NOSC started MUC to assess and help develop research in the field of automated analysis of 

textual data in military messages. These conferences are not like the traditional ones but are 

organised to help promote research and development in the field of information extraction by 

making the participants carry out practical experiments before attending them. The participants 

were given sample messages and were directed to build a system for information extraction. 

The instructions regarding the type of information to be extracted was also shared with them 

beforehand. The efficiency of the systems built by them was evaluated by running a set of test 

messages and comparing the output with the answer key corresponding to those messages. 

These answer keys serve as the golden standard or expected result of information extraction. 

While defining the main goals for the conference named entity recognition was introduced as 
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a “short-term subtask”. The main goal was to find practical, domain-independent information 

extraction systems from those developed by the participants, which succeeds to perform with 

high accuracy. These technologies were evaluated based on their ability to identity name, 

organisation and location from a text. This identification subtask was referred to as “named 

entity recognition” by the committee [34]. However, the first reference of NER was earlier in 

1991 when Lisa F. Rau described an algorithm for extracting company names from financial 

news. It was suggested that identifying these names could help solve the problem of the 

presence of unknown words and can be used for topic analysis, information extraction, 

database generation and database querying etc [36]. 

 

A NER task aims to extract important words or expression from a given text. There exist several 

definitions for a named entity in various research papers. These definitions are ambiguous and 

unclear. In a paper by  Marrero et al. [2], the authors highlight how the term named entity is 

described in different researches. It highlights the fact that there exists a disagreement about 

what a named entity is. Analysing these definitions allows them to categorise a named entity 

based on four criteria: if the word is a proper noun, a unique identifier, has a rigid designator, 

and is based on purpose or domain. 

 

Proper noun refers to a name specific to a person, place or thing, e.g. New York. This concept 

was put forward by Petasis and colleagues in 2002 [37], but it was found to be insufficient to 

define an named entity due to absence of inflexions and lexical meaning in addition to the fact 

that a proper noun should begin with capital letter. Kripke [38] introduced the concept of rigid 

designator in the theory of names. It refers to the philosophy that the same word is used for an 

object in all context in which it exists, e.g. he suggested that the name “Richard Nixon” is a 

rigid designator for the U.S president. But this concept has been quite controversial because 

the president of U.S.A keeps on changing and Richard Nixon would not refer to the president 

at all times. A unique identifier is a unique label that refers to the entity, e.g. the term “1 million 

$” for this to be a named entity this has to be a unique identifier independent of the context in 

which it is placed. But it was found that it varies with context as it could be American dollars 

or Mexican pesos depending on the context. Purpose or domain of application refers to area or 

field of study to which the entity belongs, e.g. the word “water” belongs to the domain 

“Chemistry”. In contrast “Batman” could belong to the domain “movies” as well as 

“costumes”. This criterion, based on the four factors, was used to analyse the annotated corpora 

or guidelines presented by various NER conferences or publications such as the Seventh 
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Message understanding Conference (MUC-7) [39], Sekine’s Hierarchy [40], Computational 

Natural Language Learning (CoNLL) [20], Automatic Content Extraction (ACE) [41], GENIA 

[42] etc. But it was found that the entities listed by these conferences or publications did not 

satisfy the proposed four categories. This “ambiguity” in the definition of NER also has 

consequences in the way different NER tools function. There exist differences in the type of 

information that is considered as a named entity in different tools. Although there are common 

categories like the name of a person, organisation, and location, several other entities are 

exclusive to the tool [2].  

 

NER is a subfield of Natural Language Processing (NLP), serving as a down stream task for 

various NLP applications [43], such as Information Retrieval [44], Machine Translation [45], 

Summarisation [46] or Question Answering [47]. Natural language processing refers the 

process of giving the computer the ability to understand natural or human language while NER 

can be defined as a process of extracting important information from textual data sources and 

classify the information into predefined classes.  

 

There exist studies which suggest that the problem of NER is solved based on the precision 

and recall scores obtained for certain experiments for performing information retrieval. In  a 

study by Marrero et al. [2], the experimental validity was analysed. Experimental validity refers 

to how well an experiment fulfils the requirement. This evaluation was done based on four 

types of experimental validity namely  content validity, external validity, convergent validity 

and conclusion validity and it was found that the experiments did not meet the validity criteria. 

Additionally, each forum's tools and evaluation metrics for evaluating the results of the 

experiments are distinct, thus comparing the metrics generated by them cannot be considered 

a valid comparison. NER problem has been considered to be solved based on their performance 

in selected domains like news. But these results are not transferable to other fields which trigger 

the need for the development of NER in other domains. The unavailability of annotated data 

sets for training the NER model could be considered as a major reason for this drawback. 

Therefore, it cannot be said that NER is a solved task  [2, 48, 49]. 
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3.2 Pre-processing the data 
This section describes the steps involved in preparing the dataset collected as described in Sec. 

2.1 and transforming them to forms suitable for feeding to a deep learning model for 

performing NER. The actual data preparation step includes the process of converting the words 

to vectors known as word vectorisation [35] (see Sec.  3.3.6). But, the word vectorisation step 

occurs during the process of building the model as discussed in Sec. 3.3. Thus, this section 

includes the pre-processing steps involved to make the data suitable for the word vectorisation 

technique, which is the first step in building a deep learning model for NER. 

 

3.2.1 Splitting the data set into training data, for building the model and test data, for 

validating the model 

 

 
Figure 3.1:Process of splitting the data set 

 

Data in comma-separated values (CSV) file format with three primary columns: token, tag, and 

sentence number, as explained in Sec. 2.1 was used as the input. This data was then grouped 

based on the sentence number, consequently transforming each input into a list of words 

belonging to a sentence, forming a list of individual lists corresponding to each sentence as 

well as a list of lists consisting of tags or labels corresponding to the words. The words and 

tags are grouped sentence-wise to preserve the context of the words while feeding them as 

input to the deep learning model. This data was then divided into features and target represented 

by X and y, where X contains the list of lists of words and y contains list of lists of tags. We 

convert all words in X to lowercase to make the word representation precise, else a word in 

uppercase letter and lowercase would be considered as two different words and would be 
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handled differently. The data set was then divided into three parts as training data, validation 

data and testing data (see Figure 3.1). The purpose of dividing the data into three parts was to 

avoid information leak while validating the model, and hence Scikit-learn train test split was 

used for the purpose. The whole pre-processed data set was split into 90 percent training data 

and 10 percent test data. The randomness of the split was fixed by setting the random state to 

a value of 42. The training data used for training the model was further split into training and 

validation data by k-fold cross validation, as explained in Sec. 3.4.4. The model was evaluated 

on the validation data to find the number of epochs at which the model gave the best 

performance. The whole training data was then fitted on the best model, training it for the e 

number of epochs, where e represents the epoch number at which the model gave the best 

results. Finally, predictions were made on the test data, and the F1-score was calculated on the 

test data. Additionally, while using ELMo embeddings, the model required data sets in sizes 

divisible by the batch size. Hence we sliced the data set to be in this size range. 

 

3.2.2 Tokenising and padding  

 Neural networks need input in the form of multi-dimensional vectors composed of numbers, 

since they cannot work directly with words. This was hence achieved by a process known as 

word vectorisation, which is explained in (see Sec.  3.3.6). The majority of word vectorisation 

techniques used in this study requires words to be converted to unique integers before 

transforming them to vectors except for word vectorisation using Embeddings from Language 

Models (ELMo) [13]. The experiments were performed in Google colab [50] using TensorFlow 

and Keras API. TensorFlow is an open-source software and is one of the most popular libraries 

used for building deep learning models [51]. While Keras is a high-level API which is 

developed to interact more easily with TensorFlow. The packages used and their versions are 

reported in Sec.  3.4 along with the GitHub link to the full code used.  

https://colab.research.google.com/notebooks/intro.ipynb
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Figure 3.2: Example of the process of tokenising and padding sentences for a specified 
maximum length of 10, word index represents the dictionary created by Keras tokeniser 

creating an index corresponding to each unique word in the data set 

 

Tokenisation is performed by TensorFlow Keras which comes with the functionality to convert 

unique words to integers by using TensorFlow Keras tokeniser [51]. This tokeniser was trained 

on the training data to avoid information leakage between the training and the test data. The 

tokeniser object created a dictionary representing each unique word as a key and the index as 

their value. The words which occur most frequently were assigned the lower indices. The index 

number starts from one to the total number of unique words in the training data. An index value 

of one is reserved for a word that is outside the vocabulary of training data. This tokeniser 

object trained on the training data is then used for converting the test data to integers. If the test 

data contains words that are outside the training data's vocabulary, the words are replaced by 

the "OOV" token which stands for Out of Vocabulary and are assigned an index of one, which 

is reserved for “OOV” by Keras tokeniser. This enables us to maintain the sentence length 

without skipping the words outside the training data set's vocabulary.  

 

Tokenisation is followed by padding. Each sample, represented by a list of integers after 

tokenisation, must also be of the same length before feeding it to the deep learning model. 

Hence all sentences were made to have a specified maximum length. This specified maximum 

length was decided based on the length of the majority of the sentences in the corpus. A 

specified  maximum length of 100 words was selected for the study based on the sentence 

length distribution in the data set as shown in Figure 3.3 as most sentences have length below 

100 words, a value of 100 was also chosen to reduce the loss of words or entities from the data 

 notice of general meeting on 27 
April 2020. 
 
 

Text 

notice : 1, of : 2, general : 3, meeting : 4, on : 5, 27 : 6, april 
: 7, 2020 : 8, will : 9, be : 10, held : 11, at : 12, the : 13, thon 
: 14, hotel : 15, oslo : 16, 12 : 17, november : 18 
 
 

Word 
index 

tokenising [1,2,3,4,5,6,7,8] 
 
 padding [1,2,3,4,5,6,7,8, 0, 0] 
 
 

Case 1: Sentence shorter than 
the specified maximum of 10 
length 

notice of general meeting on 12 November 
2020 will be held at the Thon Hotel Oslo. 
 
 

Case 2: Sentence longer than the 
specified maximum length of 10 

[1,2,3,4,5,6,17,18, 8, 9, 10] 
 
 

[1,2,3,4,5,6,17,18, 8, 9, 10, 11, 12, 13, 14, 15, 16] 
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set. Padding is a process of making all sentences to the same length by adding a pad word or 

index corresponding to the pad word at the end or beginning of the shorter sentences to make 

it to the specified length [52]. During padding, the pad word is assigned an index of zero by 

Keras. The location of pad word can be specified in the function call. For sentences longer than 

the specified length it was cut to this specified maximum length. Both these can be achieved 

by using Keras built-in method known as “pad sequences”. An example of both these steps 

during two possible situations are depicted in Figure 3.2 for a better understanding.   

 
Figure 3.3: Distribution of sentence length in the corpus, where the count plot illustrates the 

number of words versus the number of sentences. 

 

The tag words which are categorical variables that classify each word to a label or tag from the 

unique set of tags. These tags are also tokenised and padded, the tags are tokenised by mapping 

each unique tag to a dictionary of integers starting from one to the number of unique tags in 

the training data. Tags are padded with "O", which stands for a word that is outside the named 

entity and are assigned the tag index corresponding to "O" tag (Sec. 2.2). The tags associated 

with “OOV” words are also assigned the "O" tag and the corresponding tag index. The integer 

corresponding to the tags are converted to a binary matrix similar to one-hot encoding with the 

help of Keras in-built categorical function. The process involved is known as categorical 

encoding. There exist two types of encoding of categorical variables namely, label-encoding 

and one-hot encoding. Label encoding involves the process of converting categorical variables 

to integers based on alphabetic order of the tags. One-hot encoding on the other hand, creates 

features corresponding to a categorical variable based on the unique number of categorical 
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variables. One-hot encoding results in a vector composed of only zeroes and ones 

corresponding to a tag, where one denotes that the word corresponds to the tag at that location 

where one is present and rest of the places are assigned zero. The dimension of the vector 

depends of  largest value in the tag dictionary mapping tags to integers. Keras categorical 

function creates a binary matrix of dimension equal to the largest index value in the tag 

dictionary +1. For example, if there are four tags and a word in  the sentence belongs to the 

second tag, the tag index dictionary will be of the form dictionary [“class1” :1, “class2” :2, 

“class3” :3, ”class4” :4] then the Keras categorical function maps tag “class2” to [0, 0, 1, 0, 

0]. One-hot encoding is preferred to use when the categorical features do not have an order and 

when the number of categories are not so large [53]. 

 

 

3.3 Building the model 
This section discusses the model architecture. The model architecture can be broken down into 

three modules: the input layer, which takes the sequence of words as input, the embedding 

layer, composed of the word vectorisation techniques, the hidden layer which includes the deep 

learning model followed by an output layer, which in this study is a conditional random field 

layer. To understand the architecture used for building the NER models, each model 

component and techniques used during the process are described in the section below. 

 

Theory behind the model components 

3.3.1 Activations functions  

Deep learning is a subfield of machine learning where neural networks are used to build the 

deep learning model [54]. The term deep neural network refers to a network composed of many 

layers where each layer is composed of multiple nodes known as neurons (see Figure 3.4)[55]. 

As the number of layer increase, the deeper the network. These nodes have an activation 

function also referred to as transfer functions which are used to decide if a neuron gets activated 

and how much it gets activated based on the net input. The net input is the weighted sum of 

input and bias fed to a node given by the Eq. (3.1). 



 28 

 
Figure 3.4: Single neuron representation with two inputs, where x1, x2 are input values and 
w1, w2 are weight vectors associated with it, b is the bias , y is the output value, 𝛷(𝑧) is the 

activation function, z is the net input 

 

 𝑧 =  𝑾1𝒙1 + 𝑾𝟐𝒙𝟐 + 𝒃 

 

                                  (3.1) 

 Where:  

𝑧          : Net input 

𝒙1, 𝒙2   : input values 

𝑾1, 𝑾2:  weight vectors associated with each input 

𝒃 : bias  

 

 

 

 

 If an activation functions is not present in a neural network each neuron will only perform 

linear transformation on input and will make the network simple but incapable of learning non-

linear features from the data. There exist linear and non-linear activation functions but selecting 

an activation function depends on the problem we are trying to solve using a neural network as 

well as type of layer and the expected output from the particular layer [56]. 

 

 

Sigmoid activation function 

The sigmoid activation function, also known as logistic activation function is a non-linear 

activation function that is employed in binary classification problems. Based on the value of 

input fed to the node with the activation function it shrinks the net input to values between 0 

and 1 (see Figure 3.5). This value represents the probability of belonging to the first class in a 

two class classification task [56]. It transforms input values less than 0 to values between 0 and 

0.5 and those greater than 0 to values between 0.5 and 1, where a net input of 0 gets transformed 

to a value of 0.5. The sigmoid activation is given by the equation Eq. (3.2).  
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Φ(𝑧) : represents the sigmoid activation function 

 z      : represents the net input 

 
Figure 3.5: Sigmoid activation function 

 

Hyperbolic tangent (tanh) activation function 

A hyperbolic tangent (see Figure 3.6) is also an s-shaped  activation function similar to a 

sigmoid used in deep learning that transforms the input values to values between -1 and 1. It 

transforms input values less than 0 to values between  0 and -1 and values greater than 0 to 

values between 0 and +1. Tanh function became preferred in comparison to a sigmoid 

activation function in deep neural networks based on their better performance in terms of 

number of epochs needed to minimise the loss and improve the accuracy [57, 58]. Tanh 

activation function is represented by Eq. (3.3). 

Where Φ(𝑧) : represents the hyperbolic tangent activation function 

  z                  : represents the net input 

 

 Φ(𝑧) =  1
1+𝑒−𝑧                                                    

(3.2) 

 
Φ(𝑧) =  

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧  

 

                                      

(3.3) 
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Figure 3.6: Hyperbolic tangent activation function 

 

Softmax activation function 

Softmax is a generalisation of the sigmoid activation function which produces output as a 

probability distribution. The primary difference between a sigmoid and a softmax activation 

function is that sigmoid is used for binary classification problems while a softmax is used for 

multi-class classification [56]. The output of a softmax consists of a k-dimensional vector, 

where k is the number of labels. Each word in a sentence would have a corresponding k-

dimensional vector. This vector represents the probability of a word to belong to a label. The 

sum of values in the vector representation would be one. Based on the index corresponding to 

the location where the maximum value occurs in the vector, a tag gets predicted. The softmax 

activation function for a net input is computed using the equation Eq. (3.4). 

 

 

Where    z        : net input to the softmax function 

               𝑧𝑖            :  𝑖𝑡ℎ element of the input vector 

              𝛷(𝑧𝑖)  : softmax activation function  

            k          : number of classes or labels 

 

Rectified Linear Unit (ReLU) activation function 

 
Φ(𝑧𝑖) =  

𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗=1

 

 

                                   (3.4)                                     
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There exist several activation functions, and some, such as the sigmoid and tanh should not be 

used at the hidden layer because of the vanishing gradient problem [59]. In a neural network, 

a model is trained by forward propagation and backward propagation. During backward 

propagation, the derivative of the activation function at each node becomes relevant as weights 

are updated at a node based on the gradient of the loss with respect to the weight. The gradient 

of the loss with respect to the weight is calculated by the chain rule, which involved 

multiplication of the derivative of the activation functions. Since the derivative of sigmoid and 

tanh can be really small for large positive and negative inputs it can lead to a really small value 

of gradient leading to extremely small update of weight and thus resulting in a scenario where 

the weights are no longer getting updated. This makes the model incapable of learning and 

making correct predictions. 

 

In this study we are using ReLU [60] as the activation function in the hidden layer. It sets the 

negative values in the output to zero and positive values remains the same (see Eq. (3.5)). It 

also has a derivative value of 1 for all positive values of input (see Figure 3.7) and zero 

otherwise. ReLU is not used in the output layer as they can lead to dead neurons in the output 

leading to no gradients at that particular output [61, 62] thus making the output meaningless. 

Though ReLU creates dead neurons in hidden layer as well, they produce higher value of 

gradients for positive inputs in comparison to the previous activation functions such as sigmoid 

and tanh thus making them less prone to vanishing gradient problems for positive values of 

input and models tend to converge faster with ReLU [63]. Therefore, ReLU is most commonly 

used in the hidden layers of a deep neural network. 

 Φ(𝑧) =  𝑚𝑎𝑥 (0, 𝑧) 

 

                                     (3.5) 

Where 

 

Φ(𝑧) : represents the ReLU activation function 

z        : represents net input 
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3.3.2 Recurrent Neural network (RNN) 

In a NER task, we consider the data to be sequential. A sequence in mathematical terms is a 

collection of objects or terms where the order in which they occur is important [64]. Figure 3.8 

shows the process of how sequential data is handled, where the input data representing a single 

sample or sentence is considered as a sequence of words like <x1, x2, x3, etc.>. Each value x1, 

x2 etc. corresponds to the words occurring in the sample and the 1, 2, 3, etc denotes the position 

of the word in the sentence [55]. This position of words also relate to the time step, which 

denotes the point in time when that particular input is fed to the model. First the first word is 

fed to the model at time step = 1 followed by the second word at time step = 2. Since only one 

word is fed to the model at a time, the concept of time step is used to explain the process. 

 

Figure 3.7: ReLU activation function 
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Figure 3.8: Sequential data given as input to an RNN 

There exist different variations of sequence modelling tasks depending on the relationship 

between the input and the output as shown in figures (Figure 3.9, Figure 3.10, Figure 3.11, 

Figure 3.12)  below. Many-to-one sequence modelling (Figure 3.12) is used in applications 

like text summarisation, sentiment analysis etc., where one output value is predicted by the 

model based on a sequence of inputs. One-to-many (Figure 3.9) sequence modelling involves 

sequence prediction based on a single input to produce an output sequence composed of a 

collection of elements, e.g. image captioning where the input to the model is a single image, 

and it generates a sequence of words as the caption. Many-to-many a sequence modelling task 

where a sequence of words is given as input to the model and a sequence with the same length 

as the input is generated. It could be synchronised or delayed. An example of a synchronised 

many-to-many model (Figure 3.10) is named entity recognition where for each word in a 

sentence labels are generated. In contrast, an example of a delayed many-to-many model 

(Figure 3.11) is language translation, where the whole sentence has to be processed by the 

model before translating them. 
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For this study, we consider the many-to-many sequence modelling task implemented using an 

RNN [65] for performing NER. The reason for selecting RNN for sequential modelling is 

because it takes into account the order in a sequence and captures the past information, this 

order is denoted in terms of timesteps. The sequence is represented by a single sentence. A 

single word is fed as input to the model at a particular time step. The next word is fed to the 

model at the next timestep, after the first word. A multi-layer perceptron, on the other hand,  

does not consider the order in which the words occur in a sequence, and they assume that every 

word is independent of each other. Therefore in situations where either input data or output 

Figure 3.10: Many-to-many 
synchronised sequence modelling 

Figure 3.9: One-to-many sequence 
modelling 

Figure 3.11: Many-to-many delayed sequence modelling 

Figure 3.12: Many-to-one sequence 
modelling 
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data is a sequence, we consider it as a sequence modelling task. Additionally, in a sequence 

modelling task if a sequence of words represents the input to the model, a single word is fed to 

the model at a time.  

 

The RNN architecture comprises three major layers: an input layer, a hidden layer, and an 

output layer (see Figure 3.14, Figure 3.15). The input layer takes as input a sequence of words. 

In an RNN, the hidden layer consists of a recurrent edge, showing that it gets input from the 

input layer at the current time step and the hidden state from the earlier time step [55], as shown 

in Figure 3.14. The hidden state from previous timestep is obtained by applying the activation 

function at the hidden layer to the input from the previous timestep. The hidden state from the 

previous time step thus contains information about words that occurred in the previous time 

steps, making it possible to capture past information. The output layer returns a sequence as 

the output. The same architecture is repeated for each word or each timestep in the sequence. 

RNN can be a single layer RNN  (Figure 3.14) and multilayer RNN (Figure 3.13), depending 

on the number of hidden layers. The process of information flow is similar in both except for 

an additional step due to the presence of additional hidden layers in case of a multilayer RNN.  

 

In a single layer RNN at time step = 1 the weights of the hidden layer is randomly initialised. 

The hidden layer receives input from the current time step as well as the hidden state from the 

previous time step. On the other hand, in case of a multilayer RNN in addition to initialising 

the hidden state at the time step = 1 with random numbers or zeroes and receiving input at the 

current time step as well as the hidden state from the previous time step the output from the 

first hidden layer is forwarded to the next hidden layer. The second hidden layer receives the 

output from the first hidden layer unit at that time step as well as the hidden state from the 

previous time step. It should be noted that during this process of information flow from the 

first time step to the last time step RNN suffers from the problem of information loss, due to 

which the hidden state received by the hidden layer at the last time step fails to contain all the 

information from the first time steps. This problem of information loss occurs due to a 

phenomenon known as the vanishing gradient problem [59] which makes it difficult for RNN 

to handle long-term dependencies. This is explained in detail below in the challenges faced by 

RNN part. 
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In a NER system, the input layer corresponds to the input features, which is the input sentence 

consisting of a sequence of words. The sentence is a collection of tokens or words, and the 

output of output layer is a sequence of tags corresponding to each word. Figure 3.15 shows the 

unfolded architecture of a single layer RNN used for NER where each word corresponds to the 

input at a time step t to the input layer. These input features which are in the form of a text can 

be converted to numbers by the methods described in Sec. 3.3.6. These input features are then 

classified as company name, meeting address, meeting date, company deadline with the 

corresponding tagging scheme at the end of the output layer. The output layer can be a softmax 

classifier (see Sec. 3.3.1) [56, 66] for predicting the probability distribution over the labels at 

a time step, for example, if there exist four classes. The output at each time step would be a 4-

dimensional vector with values between 0 and 1. The sum of the values in the 4-dimensional 

vector will be one. Each value as a 4-dimensional vector corresponds to the probability to 

belong to a class. Suppose the value at the third place in the vector is the highest among the 

four. It can be inferred that the input word belongs to class three. 

 

Figure 3.14:Compact architecture 
of single layer RNN 

Figure 3.13: Compact architecture of 
multilayer RNN with the output from the 

first hidden layer is forwarded to the 
next hidden layer and the hidden layer at 

the next timestep 
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Figure 3.15: Unfolded Single-layer RNN architecture, where org: name of an organisation, B-

tag, O-tag according to IOB2 tagging scheme, x1, x2, x3, x4 are the inputs at each time step 
and y1, y2, y3, y4 are the corresponding outputs, Wxh: weigh matrix between input and hidden 
layer, Whh: weight matrix between the hidden layers, Who: weight matrix between hidden and 

output layer. 
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In an RNN the flow of information occurs by forward propagation from input layer to output 

layer through the hidden layer  similar to a feed forward neural network. It gets input from the 

input layer at the current time step. In addition, it has a recurrent edge which feeds the hidden 

state from the previous time step to the hidden layer at the present time step. This process is 

repeated for each time step. The net input to the hidden layer is given by the equation:  

Where 𝑾𝒙𝒉 : the weight vector between the input layer and the hidden layer 

𝒙(𝒕)     : input vector at time step t 

𝑾𝒉𝒉    : weight matrix at the recurrent edge 

𝒉(𝒕−𝟏) : output of hidden state from the previous time step 

𝒃𝒉       : bias vector corresponding to the nodes in the hidden layer 

𝒛𝒉
(𝒕): net input to hidden layer at time step t 

This net input is passed through the activation function in the hidden layer to get the hidden 

state at that time step. The activation function is usually a hyperbolic tangent (tanh) or sigmoid 

function (see Sec 3.3.1) [56, 67] .  

 

The output of hidden layer or hidden state at a time step is given by:  

The output at time step t is given by : 

 

Where 𝑾𝒉𝒐 : weight matrix between the hidden layer and output layer. 

             𝒉(𝒕)    : output of hidden state at the time step = t, representing the current time 

             𝒃𝒐       : bias vector corresponding to the output units. 

             𝒚(𝒕)    : output vector at time step = t 

            𝜙𝑦     : Activation function at the output layer 

            𝜙ℎ     : Activation function at the hidden layer 

 

 

  

𝒛𝒉
(𝒕) =  𝑾𝒙𝒉𝒙(𝒕) + 𝑾𝒉𝒉𝒉(𝒕−𝟏) + 𝒃𝒉 

 

 

               

            (3.6) 

 𝒉(𝒕) =  𝜙ℎ(𝒛𝒉
(𝒕)) 

 

 

                      (3.7) 

 𝒚(𝒕) =  𝜙𝑦(𝑾𝒉𝒐𝒉(𝒕) + 𝒃𝒐) 

 

 

                   (3.8)             
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Based on the output values predicted by the model, the loss gets calculated by taking the 

difference between the true value and predicted value. The total loss is the sum of losses across 

all the time steps. The total loss is given by the equation  : 

Where L   : total loss across all time steps or words in a sequence forming the sentence 

           n    : number of words or time steps in a sequence 

            𝐿(𝒕) : Loss at time step t 

The weights are updated in an RNN through the process of optimisation of loss through 

gradient descent algorithm by backpropagation through time (BPTT) [68]. Gradients are the 

rate at which the loss function changes with respect to weight, this process of calculating them 

is referred to as backpropagation. BPTT refers to backpropagation through time steps. The 

trainable parameters in a RNN are the weight matrices  𝑾𝒙𝒉, 𝑾𝒉𝒉,, 𝑾𝒉𝒐,. 

The gradient of total loss is computed for each weight matrix.  

 𝑑𝐿
𝑑𝑾𝒙𝒉

=  ∑
𝑑𝐿(𝒕)

𝑑𝑾𝒙𝒉

𝑡=𝑛

𝑡=1
 

                                    (3.10) 

 𝑑𝐿
𝑑𝑾𝒉𝒉

=  ∑
𝑑𝐿(𝒕)

𝑑𝑾𝒉𝒉

𝑡=𝑛

𝑡=1
 

                                    (3.11) 

 𝑑𝐿
𝑑𝑾𝒉𝒐

=  ∑
𝑑𝐿(𝒕)

𝑑𝑾𝒉𝒐

𝑡=𝑛

𝑡=1
 

                                    (3.12) 

n    : number of words or time steps in a sequence 

The gradient of loss with respect to the weight matrix between the hidden layers are given by: 

Where t : represents the present time step in a sequence of words 

           k : can take values between 1 to the present time step t 
𝑑𝒉(𝒕)

𝑑𝒉(𝒌)
 is calculated by multiplying adjacent time steps. So the gradient at a time step is 

dependent on the output of the hidden layer in the previous time step. As the number of time 

steps before the time step in focus increases, RNN finds it difficult to take into account the 

effect of those nodes as the derivatives of activation functions at those nodes becomes 

 
𝐿 = (∑ 𝐿(𝒕)

𝑡=𝑛

𝑡=1

) 

 

 

                      (3.9)       

 

 𝑑𝐿(𝒕)

𝑑𝑾𝒉𝒉
  =  

𝑑𝐿(𝒕)

𝒅𝒚(𝒕)
×  

𝒅𝒚(𝒕)

𝒅𝒉(𝒕)
 ×  (∑ 𝑑𝒉(𝒕)

𝑑𝒉(𝒌)
× 

𝑑𝒉(𝒌)

𝑑𝑾𝒉𝒉

𝑡
𝑘=1 )                  (3.13) 

 
The gradient of loss with respect to the weight matrix between the hidden layer and  

outputlayer is given by: 

  
𝑑𝐿(𝒕)

𝑑𝑾𝒉𝒐
  =  

𝑑𝐿(𝒕)

𝒅𝒚(𝒕)
  × 

𝒅𝒚(𝒕)

𝒅𝑾𝒉𝒐
                   (3.14) 
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negligibly small leading to a small weight update. This dependency leads to the problem of 

vanishing or exploding gradient problem as described below. 

 

Major challenge faced by the RNN are : 

1. Vanishing or exploding gradient problem : The problem of vanishing gradient was first 

found and explored in 1991 by Sepp Hochreiter in his study “Fundamental Deep 

learning Problem”. He found that the back-propagated error signals either shrink or 

grow rapidly making the weight updates become negligibly small or extremely large, 

preventing the model from reaching the global minima of loss leading to the vanishing 

and exploding gradient problem [59]. The type activation function in the hidden layer 

could lead to vanishing or exploding gradient problem. For example ,if the sigmoid 

function is the activation function used in the hidden layer the output will have values 

between 0 and 1. Derivatives of the sigmoid activation function have small values 

between 0 and 0.25. Multiplication of small values will result in a smaller value, thus 

making the weight update negligible, preventing the model from reaching the global 

minima, leading to the vanishing gradient problem. On the other hand if the activation 

function selected has a derivative greater than 1. It will lead to an exploding gradient 

problem as the weight update is large thus preventing the model from reaching the 

global minima. 

2. Captures information only from one direction: Since the hidden layer at each time step 

gets the input from the input layer at that time step and the hidden state from the 

previous time step, the past context is only captured. This suggests that when predicting 

the output for a specific time step the full context in which the word appears is not taken 

into consideration. 

Long Short Term Memory (LSTM) 

RNN fails to learn long-term dependencies as per the study conducted  by Paul J Werbos [68] 

and suffers from vanishing and exploding gradient problem, as mentioned in Sec. 3.3.2. These 

challenges can be solved using an LSTM, which is a variation of a RNN, designed in 1997 by 

Sepp Hochreiter and Jürgen Schmidhuber. The basic architecture of RNN and LSTM is the 

same with an input layer, hidden layer and an output layer.  However, the only difference is in 



 41 

the operations that occur inside the hidden layer. The building block of LSTM is a memory 

cell that replaces the hidden layer concept in an RNN. 

 

 Figure 3.16 represents the memory cell of an LSTM. The memory cell comprises of various 

components: the input gate, input node, forget gate and the output gate. There also exist 

different operators like element-wise multiplication and element-wise addition. It is essential 

to understand the concept of cell state and hidden state to understand the working of LSTM 

better. The hidden state 𝒉(𝒕) is the output from the memory cell at a point in time t, and the cell 

state 𝑪(𝒕) is the internal state which is the long term memory. Both these values are computed 

through a series of operation that takes place inside the memory cell. At a point in time ‘t’, the 

memory cell is fed with input 𝒙(𝒕) at that time step, the hidden state from the previous time step 

𝒉(𝒕−𝟏), and cell state from previous time step 𝑪(𝒕−𝟏).  

 
Figure 3.16: Architecture of LSTM memory cell 
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The hidden state representing the output from the previous time step 𝒉(𝒕−𝟏) along with the input 

from the present time step 𝒙(𝒕) is fed to a forget gate which controls the process of forwarding 

the cell state from the previous time step 𝑪(𝒕−𝟏). The forget gate has a sigmoid activation 

function that helps shrink the input fed to it to values between 0 and 1. The output of the forget 

gate along with the cell state from the previous time step is fed to an element-wise 

multiplication operator that controls the cell state's flow from the previous time step, 𝑪(𝒕−𝟏). If 

the value from the forget gate is  0, it neglects the cell state signal, and if it is one, it will allow 

the signal to pass through. The current time step's cell state is also controlled by the signal 

coming from the input node and the input gate. The input gate has a sigmoid activation function 

while the input node has a hyperbolic tangent activation function. The input node computes the 

input, while the input gate controls the amount of input to be forwarded to the cell state 𝑪(𝒕). 

Both these signals from the input node and the input gate are fed to an element-wise 

multiplication operator, enabling the input gate to tune the amount of input signal to pass 

through. 

 

A element-wise sum of previous cell state 𝑪(𝒕−𝟏) forwarded after the element-wise 

multiplication with the output of forget gate and the signal forwarded after the element-wise 

multiplication of output of the input gate and input node is forwarded as the current time step's 

cell state 𝑪(𝒕). This signal is split into two copies where one copy flows as the cell state at the 

time step "t", while the other copy is fed through a hyperbolic tangent to shrink the values 

between -1 and 1 for the process of computing the hidden state at the time step "t". 𝒉(𝒕)which 

is the output at that particular time step is calculated by combining the previous step's output, 

which is the processed cell state, with the output from the output gate. The output gate has a 

sigmoid activation function, and this controls the flow of the cell state to the hidden state based 

on its value. If the value is 0, it prevents the processed cell state from passing while if the value 

is one, it allows the processed cell state to pass completely. 𝑪(𝒕) and 𝒉(𝒕)is then forwarded to 

the next time step [68]. 

 

Bi-directional Long Short Term Memory (Bi-LSTM) 

We saw earlier that LSTM [68], a variation of an RNN manages to overcome the vanishing 

gradient problem faced by the RNN. Simultaneously, a Bi-directional LSTM is a modified 

version of LSTM that manages to overcome the challenge of capturing only prior information, 
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by taking into account the information from both directions [69] . The hidden layer comprises 

two LSTMs in parallel, one operating in the original order of sequence and the other in the 

reverse order of sequence.  

 

A forward LSTM, represented by the dashed yellow bounding box in Figure 3.17 has 

information flow in the forward direction, representing the positive time direction or the orginal 

order of sequence. Consider a task of sequence labelling where a sentence composed of a 

sequence of tokens is fed as input to the neural network model. The forward LSTM is similar 

to the basic LSTM  which captures the past information at each time step where the hidden 

layer at each time step receives as input the hidden state from the previous time step and the 

input at present step. 

 
Figure 3.17: Architecture of Bi-LSTM 

 

The other LSTM bounded by the green dashed box represents the backward LSTM, where the 

information flow begins from the end of the sentence, in the negative time direction or reverse 

order of sequence and the process takes place in the same manner as the forward LSTM. At 

each time step, the output of the hidden states of the forward LSTM and backward LSTMs are 
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concatenated to form the final output vector. The final output vector for each word is composed 

of scores known as emission scores corresponding to each label and the label with the highest 

score is selected as the predicted label for that particular word. To build a NER model we need 

use a classifier at the end of the Bi-LSTM layer. This could be a Softmax classifier [66] or a 

CRF classifier [70]. A SoftMax classifier is implemented using a Time distributed dense layer 

with Softmax activation function which can be used at the output layer to predict the word's 

label (see Sec. 3.3.1) [17]. 

 

3.3.3 Conditional Random Fields (CRF) 

The output tags predicted by using a Bi-LSTM do not take into account the tagging constraints. 

Tagging constraints refers to the set of rules associated with the tagging scheme. Few possible 

constraints associated with the IOB2 tagging scheme are [71] : 

• In a named entity composed of multiple words, the first word should begin with B-

prefix tag and should not begin with I-prefix tag or O tag. 

• If the tags are B-label1, I-label2, I-label3 etc. label1, label2 and label 3 must be 

members of the same named entity. 

• A word with O tag cannot be followed by I tag. 

• In case of a named entity composed of multiple words, B tag should always be followed 

by I tag. 

According to the IOB2 [25] tagging scheme B represents the beginning of a named entity, I 

represents the word that belongs to the inside part of the entity and O represents something 

which is not an entity or is outside an  entity. A Bi-LSTM sequence labelling model does not 

consider the fact the first word in a sentence should begin with B-tag or B-prefix tag should 

always be followed by an I-tag (see Sec. 2.2). CRF manages to overcome this drawback and 

takes into account these constraints, thus ensuring that the predicted sequence of labels are 

valid [72, 73]. To predict the final label of the sequence of words the output vector of a Bi-

LSTM is fed to a CRF layer. A CRF takes into account the neighbouring tag information before 

predicting the current tag [73]. The output of Bi-LSTM layer is in the form of vectors 

representing score for each label for a word. This score vector known as emission score is fed 

to the CRF layer where the sequence of tags with the highest prediction score is selected as the 

final prediction. If we have a sequence of observations, in a CRF we take into account the joint 

distribution of the labels with respect to the sequence of input tokens .In sequence labelling 

tasks, knowing the previous word would help in identifying the next word. In other words, 
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certain words are more likely to be followed by certain other words. CRF calculates the 

likelihood of all possible sequences and selects the sequence with the maximum likelihood. 

For example let x1, x2, x3 denote the sequence of words in a sentences and y1, y2, y3 denote the 

tags. In a CRF we calculate the P(y1, y2, y3|x1, x2, x3) the sequence which gives the maximum 

probability is chosen as the final label. Each sentence is a collection of tokens and our aim is 

to find the most likely path. CRF creates a bunch of combination of paths and creates a 

transition score matrix for each path. This best path is decided based on the total score 

calculated using the transition score and emission score. 

 

CRF is a conditional probability distribution model which assumes that the output random 

variables constitute Markov Random Fields. A conditional probability distribution model 

assumes that the input sequence and the output sequence are random variables. The model  

finds the optimal path of a sequence by computing the conditional probability of a sequence of 

words with respect to the sequence of tags . The path that gives the maximum probability is 

selected and fixed as the prediction. It uses the Viterbi algorithm, a dynamic programming 

algorithm, to find the optimum path [72, 73]. 

 

The process of finding the best sequence of labels for a input sequence is as follows, the output 

vectors produced by Bi-LSTM layer represents the emission score. Each word will have a 

vector representing the emission score for each tag, if B-PER, I-PER, B-LOC, I-LOC and O  

are the tags associated with a NER task . Then each word will have a five-dimensional vector 

with each value in the vector representing the emission score corresponding to the tag. The 

transition score is obtained from the transition matrix. It refers to the score associated with 

transforming from one label to the other including the start point and end point. This matrix is 

created by randomly initialising each score in the matrix and this value is automatically updated 

during the training process. 

 

Consider an input sentence X = [𝑥1, 𝑥2, 𝑥3, 𝑥4,..] and sequence of labels Y = [y1,y2,y3,y4,…]. E 

represent the emission score matrix of dimension  k × n , where k is the number of labels, n is 

the number of words in an input sentence. 𝐸𝑖𝑗 corresponds to the emission score of the  𝑗𝑡ℎ tag 

for the 𝑖𝑡ℎ word in the sentence. 

T is the transition score matrix where 𝑇𝑖𝑗 represents the transition score for transitioning from 

𝑖𝑡ℎ tag to the 𝑗𝑡ℎ  tag. T is a square matrix of size k + 2 where the additional two tags are for 
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the start point and end point. Transition scores are computed also for transitioning from start 

tag and end tag to the other tags. 

The total score 𝑠(𝑋, 𝑦) is calculated as: 

 

A softmax for all the tag sequences gives a probability for a sequence of labels y for an input 

sequence X : 

                                                                                    

During the process of training the log probability of correct tag sequence is maximised: 

𝑙𝑜𝑔(𝑃(𝑦|𝑋)) = 𝑠(𝑋|𝑦) − 𝑙𝑜𝑔 ( ∑ 𝑒𝑠(𝑋,𝑦)

𝑦∈𝑌𝑥

) 

                      = 𝑠(𝑋|𝑦) − 𝑙𝑜𝑔(∑ 𝑠(𝑋, 𝑦𝑦∈𝑌𝑥 )                                                                    (3.17)                                                                       

Where 𝑌𝑥 : all possible path of tags corresponding to a input sequence, also includes the one’s 

that do does satisfy IOB2 tagging constraints. 

And thus by comparing each value we find the sequence of labels that gives the best total score 

for a sequence of inputs [16]: 

𝑦𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑠(𝑋, 𝑦)                                                                                                (3.18) 

 

3.3.4 CRF Loss 

Loss function refers to a function used to evaluate an algorithm's efficiency in performing a 

particular task by calculating the difference between the predicted values for output and the 

actual values. The CRF loss function includes the real path score and total score of all possible 

paths. Real path refers to the actual path with the correct sequence of labels. Path score is 

calculated by taking the cumulative sum of emission score and transition score for the path. 

Score of the real path will be the highest among all paths possible. Suppose there are five labels 

B-PER, I-PER, B-LOC, I-LOC and O and each sentence has four words. There are several paths 

possible like 𝑃𝑎𝑡ℎ1, 𝑃𝑎𝑡ℎ2, 𝑃𝑎𝑡ℎ3, … 𝑃𝑎𝑡ℎ𝑛: 

• 𝑃𝑎𝑡ℎ1  =  START, B-PER, B-PER, B-LOC, END 

• 𝑃𝑎𝑡ℎ2   = START, O, O, B-PER, O, END 

 𝑠(𝑋, 𝑦) =  ∑ 𝑇𝑦𝑖,𝑦𝑖+1
𝑛
𝑖=0 + ∑ 𝐸𝑖,𝑗

𝑛
𝑖=1                       (3.15) 

 

 𝑃(𝑦|𝑋) = 𝑒𝑠(𝑋,𝑦)

∑ 𝑒𝑠(𝑋,𝑦)𝑦∈𝑌𝑥
                                                                                                                             (3.16) 
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If Path2 is the real path then out of all possible paths Path2 will have the highest score. 

Total path score is calculated by summing the score of all possible paths .  

𝑃𝑎𝑡ℎ𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑎𝑡ℎ1 + 𝑃𝑎𝑡ℎ2 + 𝑃𝑎𝑡ℎ3 + ⋯ + 𝑃𝑎𝑡ℎ𝑛                                    (3.19) 

Loss =  (𝐴𝑐𝑡𝑢𝑎𝑙 𝑝𝑎𝑡ℎ)
𝑃𝑎𝑡ℎ𝑡𝑜𝑡𝑎𝑙

                                                                                                    (3.20) 

While training a model, we aim to optimise the model's parameters, thus making them efficient. 

This optimisation could be minimising or maximising the value. During the training of  a Bi-

LSTM-CRF, we aim to minimise the loss by increasing the proportion of real path score among 

the total score of all possible paths [71].  

 

3.3.5 Optimiser 

Optimisation, in general, refers to the process of minimising or maximising a parameter. In this 

study, we aim to optimise the neural network by minimising the cost function, dependent on 

the prediction error. The terms loss function and cost function are used interchangeably but 

they have slight difference. Cost function refers to the average prediction error for the entire 

training data. The optimisation process is performed by the optimisers, activated during the 

learning process while training a model. Optimisers use gradient descent algorithm where the 

error is calculated based on the gradient of the loss function, and the error is reduced by making 

the model move in the opposite direction of the gradient to reach the minimum or optimum 

value of loss function by updating the weight. Each weight update by backpropagation is 

referred to an iteration. 

 

The optimiser used in this study is Root Mean Square propagation (RMSprop) [74] which is 

an adaptive learning algorithm which performs optimisation by mini-batch stochastic gradient 

descent (see Sec. 3.4.2). An RMSprop adaptively adjusts the learning rate in a way that it does 

not become negligibly small and thus preventing weight updates from happening leading to the 

vanishing gradient problem [74]. Additionally, since the gradients are different for each mini-

batch within an epoch, using the same learning rate may not be the most efficient approach. 

Hence the new learning rate is calculated at the end of each mini-batch with the help of a 

parameter known as exponential weighted average of  squares of gradient of loss with respect 

to weight (Sdw) and exponential weighted average of squares of gradient of loss with respect 

to bias (Sdb).  
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During the calculation of Sdw and Sdb, 𝛽 parameter is used to restrict the square of gradient of 

loss with respect to weight and square of gradient of loss with respect to bias from becoming 

exponentially large. Sdw and Sdb at the current mini-batch is calculated by the formula:                                         

 

Where  𝑆𝑑𝑤(𝑡)        : square of gradient of loss with respect new updated weight at the current 

iteration 

            𝑆𝑑𝑏(𝑡)         : square of gradient of loss with respect to new updated bias at the current 

iteration 

             𝑆𝑑𝑤(𝑡 − 1) : square of gradient of loss for the old weight at the previous iteration 

 

           𝑆𝑑𝑏(𝑡 − 1)  : square of gradient of loss for the old bias at the previous iteration 

          
𝑑𝐿

𝑑𝑤𝑡
            : gradient of loss with respect weight at current iteration 

         𝑑𝐿
𝑑𝑏𝑡

             : gradient of loss with respect to bias at current iteration 

           

The computation of new learning rate during mini-batch gradient descent in a RMS prop 

optimiser is given by : 

𝜂′𝑤 =  𝜂𝑤

√𝑆𝑑𝑤(𝑡)+ℰ
                                                                                                                (3.23) 

Where  𝜂′w : new learning rate for weight update at current iteration 

 𝜂 w : previous learning rate for weight during previous iteration 

 

𝜂′𝑏 =  𝜂𝑏

√𝑆𝑑𝑏(𝑡)+ℰ
                                                                                                                (3.24) 

Where  𝜂′b : new learning rate for bias update at current iteration 

 𝜂 b : previous learning rate for bias during previous iteration 

            𝜀  ∶ A very small positive value introduced to prevent the denominator from becoming 

0 

 

Formula for updating the weight and bias: 

 
𝑆𝑑𝑤(𝑡) =  𝛽 ∗ 𝑆𝑑𝑤(𝑡 − 1) + (1 − 𝛽) (

𝑑𝐿
𝑑𝑤𝑡

2

) 
                        (3.21) 

 
 

𝑆𝑑𝑏(𝑡) =  𝛽 ∗ 𝑆𝑑𝑏(𝑡 − 1) + (1 − 𝛽) (
𝑑𝐿
𝑑𝑏𝑡

2

) 

     

 

                       (3.22) 
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Where  

          bt     : new bias or updated bias at current iteration 

          bt-1 : old bias value or previous bias at previous iteration 

          wt    : new weight or updated weight at current iteration 

          wt-1 : previous weight or old weight at previous iteration 

           𝐿     : Loss calculated at the end of current iteration  

      
𝑑𝐿

𝑑𝑤𝑡−1
 : gradient of loss with respect weight at previous iteration 

     𝑑𝐿
𝑑𝑏𝑡−1

  : gradient of loss with respect to bias at the previous iteration 

 

Since the gradient is divided by square root of the average of gradients the optimiser has the 

name root mean square propagation. The beta value restricts the Mean square from becoming 

exponentially big and thus preventing the new learning rate from becoming negligibly small. 

This makes it possible to compute learning rates that lead to optimal changes in the weights 

thus enabling the model to reach the global minimum. There exist an RMSprop version with 

momentum [75]. By default the momentum of RMSprop is 0.0 and Hinton suggested 𝛽 value 

to be set as 0.9 and a good default initial learning rate (𝜂) to be 0.001 while using a RMS prop 

optimiser. 

 

3.3.6 Word vectorisation 

In a NER task a sequence of words representing a sentence is fed as input to the neural network. 

The complete input to the network comprises of multiple such sentences. NLP tasks using deep 

learning algorithms can only work with numeric vectors and not characters or words. Textual 

representation of data does not provide information about the relationship between the words. 

Hence, these words have to be converted to vectors, a numerical representation of the words in 

multi-dimensional space known as word embeddings. Representing them in vector format 

makes it possible to perform arithmetic operations and thus get relationship between words. It 

                           𝑤𝑡 = 𝑤𝑡−1 − 𝜂′𝑤 ∗
𝑑𝐿

𝑑𝑤𝑡−1
 

 

                    (3.25) 

 
                           𝑏𝑡 = 𝑏𝑡−1 − 𝜂′𝑏 ∗

𝑑𝐿
𝑑𝑏𝑡−1

 

 

                   (3.26) 
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also makes it possible to group words based on their orientation in the multi-dimensional space. 

Hence, during the stage of pre-processing textual data before feeding it to the deep learning 

network, the words are converted to vectors of real numbers by a technique known as word 

vectorisation [35]. Pre-processing of the data for making it suitable for performing word 

vectorisation includes tokenising and padding as explained in detail in Sec. 3.2. There exist 

several ways to convert words to input features or vectors. In this thesis, we are focusing on 

three major techniques listed below: 

1. Word vectorisation by embedding layer. 

2. Word vectorisation by pre-trained word embeddings. 

3. Word vectorisation by contextual word embeddings. 

 

Word vectorisation by Embedding Layer 

One-hot encoding is one of the naive ways for performing the task of converting words to input 

features. In one-hot encoding, the sequence of words are converted to unique indices of the 

words in the data set (see Sec. 3.2.2) , and then each word is converted to a vector of only 

zeroes and ones. The vector generated for each word is sparse, because of many zeroes and is 

high dimensional. The dimension of each word vector corresponds to the unique number of 

words in the data set, leading to an increase in the word vector dimension as the vocabulary 

increases. Thus, the models trained using one-hot encoding suffer from the "curse of 

dimensionality". This led to the development of an approach of using the embedding layer for 

generating a dense, finite-dimensional vector representing input features. The dimension of the 

vector generated is a parameter that can be specified based on our preference. During 

instantiation, the initial vectors are randomly instantiated, and these are adjusted during the 

training of the model by the process of backpropagation [68]. This representation of words can 

have a dimension smaller than the number of unique words in the data set [55]. The Figure 

3.18 depicts an illustration of generating vectors corresponding to each word. As discussed in 

the preprocessing part in Sec. 3.2.2, during the process of tokeninsing the words are converted 

to unique indices. 
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Figure 3.18: Training Keras tokeniser on the training data, followed by word vectorisation 
by Keras embedding layer, where 0 index is reserved for pad words and 1 index for “OOV”: 

out of vocabulary words 

There exist “N+2” token indices as in Figure 3.18, where N represents the number of unique 

words in the data set. The two additional indices 0 and 1 are reserved for the word used for 

padding the sequence and the other for the unknown words or words which are outside the 

vocabulary set of the training data. Each row in the trainable weight matrix corresponds to the 

vector associated with each word at the unique index. The resulting weight matrix of the 

embedding layer is of dimension (N+2 × output dimension). The output dimension is the pre-

defined dimension for the output vector which could be defined while building the model. The 

embedding layer can be implemented using TensorFlow Keras. Figure 3.19 shows the code 

used to create a model and add an embedding layer and Figure 3.20 represents the model 

architecture of Bi-LSTM-CRF NER using Keras embedding layer for word vectorization. 
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Figure 3.19: Embedding layer definition for random initialisation of embeddings by Keras 

embedding layer 

 

 

 

Figure 3.20: Architecture of Bi-LSTM-CRF using word vectorisation by Keras embedding 
layer 

 

Word vectorisation by pre-trained word embeddings 
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When the size of the training data set is small. The process of learning embeddings from the 

data becomes challenging. This is challenging due to two significant reasons [76]: 

1. Sparse training data:  Most real-world data sets have many rare words. This triggers 

the need for a data set that is rich in vocabulary to make the training result in an 

embedding vector that is representative of the word. 

2. The number of trainable parameters: Training a model from scratch is a time-

consuming process because of the enormous number of trainable parameters. 

  

To handle these challenges, we use pre-trained word embeddings. Pre-trained word 

embeddings use the concept of transfer learning. It is a mechanism in machine learning where 

the output or learned parameters from one task are used as input in another task, thus 

transferring the results from one experiment to another. In pre-trained word embeddings, the 

parameter getting transferred are word vectors, also referred to as word embeddings. Instead 

of initialising the word vectors by random a vector and then training them to create embeddings 

for words in a data set, we use these pre-trained embeddings. The data set on which these 

embeddings are trained is large, thus making it possible to effectively capture the syntactic and 

semantic meaning of a word and this information is saved as weights and can be used in other 

tasks [76]. The Keras embedding layer makes it possible to initialise the weights of the 

embedding layer with the weight matrix from the pre-trained model during the process of 

building the NER system.  

 

 
Figure 3.21: Embedding layer definition using pre-trained GloVe word embeddings 
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In this study, we are focusing on pre-trained GloVe embeddings [77]. In 2014, as per the 

research results conducted by researchers of Stanford [77] GloVe outperforms all other models 

on multiple data sets. Hence they are best suited for subtasks of NLP tasks like named entity 

recognition. Figure 3.21 shows the model definition and model architecture of a Bi-LSTM-

CRF NER using word vectorisation by pre-trained GloVe embeddings is similar to Figure 3.20 

[77]. 

 

GloVe is a word vectorisation algorithm developed by researchers at Stanford. Four GloVe 

pre-trained models are available for download from [77] and can be used in the Keras 

embedding layer. The variation is in the dimension of the word vectors. They come as 50, 100, 

200, 300-dimensional vectors trained on Wikipedia 2014 data and English Giga word fifth 

edition newswire text data with 6 billion tokens and 400,000-word vocabulary. In this study, 

we are using the 100-dimensional word embeddings version. These are pre-trained word 

embeddings encapsulating the vector representation of words that are learned by unsupervised 

learning. GloVe embeddings are generated by training on the non-zero entries of  a global 

word-to-word co-occurrence matrix. This matrix holds information about relationship between 

words, how often a pair of words occur together in a context. This is calculated on the basis of 

the how relevant a word is to another word. This matrix is then factorised to obtain a low 

dimensional representation. The semantic relationship between the words are measured by 

calculating a metric representing the probability of two words occurring together [77]. 

 

Table 3.1 below illustrates the co-occurrence matrix for obtaining the semantic relationship 

between words for the sentence: "notice of general meeting sent to shareholders". The co-

occurrence matrix can be considered as a count matrix which holds the number of times a pair 

of words appear together in the context. The size of the context window can be pre-defined . 

In this example a context window of one is chosen which takes into account one word on the 

left and right of the word in focus. 
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Table 3.1: The co-occurrence matrix for the sentence " notice of general meeting send to 
shareholders" with a window size of 1 

 
 

From the co-occurrence matrix we calculate the probability of a pair of words e.g. the word 

“meeting” to find which word is most relevant to the word “meeting” : 

 

𝒫 ("𝑚𝑒𝑒𝑡𝑖𝑛𝑔"
"𝑔𝑒𝑛𝑒𝑟𝑎𝑙"

) =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 “𝑚𝑒𝑒𝑡𝑖𝑛𝑔” 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 "𝑔𝑒𝑛𝑒𝑟𝑎𝑙" 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 “𝑚𝑒𝑒𝑡𝑖𝑛𝑔” 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

  

 

P :probability of pair of words occurring together in the example sentence. 

(3.27) 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 “𝑚𝑒𝑒𝑡𝑖𝑛𝑔” 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 "general" 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 =  1.           (3.28) 

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 “𝑚𝑒𝑒𝑡𝑖𝑛𝑔” 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 =  1.  (3.29) 

𝒫 ("𝑚𝑒𝑒𝑡𝑖𝑛𝑔"
"𝑔𝑒𝑛𝑒𝑟𝑎𝑙"

) = 1
1

= 1                                                                                                                                            (3.30) 

𝒫 ("𝑚𝑒𝑒𝑡𝑖𝑛𝑔"
"𝑠𝑒𝑛𝑡"

)  = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 “𝑚𝑒𝑒𝑡𝑖𝑛𝑔” 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 "𝑠𝑒𝑛𝑡" 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 “𝑚𝑒𝑒𝑡𝑖𝑛𝑔” 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

  (3.31) 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 “𝑚𝑒𝑒𝑡𝑖𝑛𝑔” 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 "𝑠𝑒𝑛𝑡" 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 =  1.  (3.32) 

𝒫 ("𝑚𝑒𝑒𝑡𝑖𝑛𝑔"
"𝑠𝑒𝑛𝑡"

) = 1
1

= 1                                                                                                                                 (3.33) 

 

To find which word is more relevant to the word in focus , here “meeting” among the words 

“sent” and “general”, we take the ratio of (3.30 and (3.33. If the ratio is > 1 it means the top 

word is more relevant than bottom word. If the ratio is close to 1, it means both words are 

relevant to the word in focus [76]. In the above example both the words “general” and “sent” 
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are equally important to the word “meeting”. This concept of computing probabilities from the 

co-occurrence matrix is the main idea behind the algorithm used for generating GloVe 

embeddings. This algorithm is trained on non-zero values of co-occurrence matrix thus making 

the training much faster as the number of non-zero matrix values are much smaller in 

comparison with the total number of words in the corpus. The objective of the learning 

algorithm is to learn the word vectors in a way that their dot product of the word vectors is 

equal to the logarithm of the word’s probability of co-occurrence [77] .  

 

In addition, GloVe embeddings considers both local as well as global statistics in terms of local 

context window and global matrix factorisation. Local context window in terms of the window 

size which decides the number of words to be considered on either side of the word in focus. 

Global statistics due to the fact that GloVe embeddings take into account the whole data corpus 

which includes multiple sentences in the case of NER task.  

 

Word vectorisation by contextual word embeddings. 

NER performed using pre-trained word embeddings does not consider the words' contextual 

information; instead, it focuses on the lexical representation. This leads to low performance of 

NER tasks performed using pre-trained embeddings when unfamiliar words out of the 

vocabulary appear in the data set. This led to contextual word embeddings [13], derived by 

using unsupervised language models to predict a word's representation in each context. These 

succeed in addressing the challenges of using pre-trained word embeddings listed below [13] : 

1. To make the model capable of learning the syntactical and semantical characteristics of 

words. Syntactical characteristics take into account the grammatical structure of the 

words.  

2. Model the word polysemy, which is associated with the existence of multiple meanings 

for a single word. 

 

In [78], the authors conducted experiments to compare NER models' performance using 

contextual word embeddings, and it was concluded that the Embeddings from Language 

Models (ELMo) embeddings gives stable results when working with words which are outside 

the vocabulary of the training data set. Hence in this thesis, we experiment with ELMo 

embeddings as an example for contextual embeddings for performing a comparative study of 

different word embeddings in performing NER tasks. 
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 ELMo is Natural Language Processing (NLP) framework developed by AllenNLP [13]. The 

Figure 3.22 shows the ELMo architecture for generating word embeddings. 

 

 
Figure 3.22: ELMo architecture 

 

The ELMo architecture includes two layers of Bi-directional LSTM (Bi-LSTM) coupled with 

character-level Convolutional Neural Network (CNN), hence the name Embeddings from 

Language Models (see Figure 3.22). Unlike the traditional pre-trained embeddings, ELMo 

embeddings are dynamic and depend on the context in which the word occurs. These word 

representations are character-based with the help of a CNN, thus making the model capable of 

learning the word's morphology and generating valid representations for words outside the 

vocabulary. 

 

Each layer of Bi-LSTM generates intermediate word vectors. The intermediate word vectors 

are generated by combining the word vector from the forward pass of the language model and 

the language model's backwards pass. The word vector generated during the forward pass of 

the model has information about the words before the word in focus, and the intermediate 

vector generated by the backward pass has information about the word itself and the words 

after it. Both these intermediate vectors aids in capturing the context in which a word appears. 

These intermediate vectors for the word are combined with the word representation from the 

Character-CNN to get the final representation which is fed as input to a NER model. 
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There are two possibilities to use an ELMo model for generating word embedding. We can 

either use a pre-trained ELMo model or train the ELMo model from scratch. This thesis uses 

the transfer learning approach of using the pre-trained ELMo model trained on 1 billion word 

benchmark using the model described in [13] - This can be downloaded from the TensorFlow 

hub. 

 

 
Figure 3.23:Loading pre-trained ELMo model from TensorFlow hub using python 

 

 
Figure 3.24: Lambda layer definition using ELMo embeddings 

 

The Figure 3.23 shows the piece of code used to load the pre-trained ELMo model from 

TensorFlow hub. By setting trainable = True, it makes it possible to finetune some parameters, 

four trainable scalar weights for integrating the layers as described in the paper [13]. Figure 

3.24 shows the piece of code in python used to build the model with ELMo embeddings. Figure 

3.25 shows the architecture of Bi-LSTM-CRF with word vectorisation by ELMo embeddings.  



 59 

 

 
Figure 3.25: Architecture of Bi-LSTM-CRF with ELMo embeddings 

 

3.3.7 Common model architecture 

The deep learning models used for the comparative study of NER with different word 

vectorisation techniques consist of an input layer, embedding layer or lambda layer, hidden 

layers and an output layer (see Figure 3.17). The embedding layer varies depending on the type 

of word vectorisation used. In case of contextual word embeddings a lambda layer is used 

instead. A group of sentences are given as input to the model. Each sentence consists of 100 

words as discussed in Sec. 3.2. Each word in a sentence is transformed to a vector (see Sec. 

3.3.6) by the embedding layer or the lambda layer. The embedding corresponding to the words 

in the input sequence are then fed to the hidden layers, where they are processed. The processed 

output of the hidden layers are then fed to output layer which results in the prediction of label 

corresponding to each word in the input sentence.  
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Input Layer : Input layer takes as input a tuple containing the input dimension. The number 

of units in input layer thus corresponds to the dimension of the input data in this case 100 is 

the selected dimension or maximum length of sentences in the input data. 

 

Embedding layer : The word vectorisation methods discussed in Sec. 3.3.6 is implemented in 

this layer. Based on the type of vectorisation technique used there comes variations in the 

definition of the embedding layer. The embedding layer makes it possible to learn the word 

vectors corresponding to a word by being part of a deep learning model. It also makes it 

possible to load pre-trained word embeddings. The embedding layer in general converts the 

words present in the data set to vector representation  the dimension of the output vector is 

given as the input to the embedding layer. The actual orientation of the word vectors in the 

multi-dimensional space is learned during training the model. The embedding layer takes a 2D 

tensor in the form (input dimension, input length) as input. The output of embedding layer is a 

3D tensor of dimension (input dimension × input length × output dimension). Corresponding 

to each word a vector of specified dimension gets generated during the process.  

 

It takes six parameters : 

1. Input dimension: Denotes the vocabulary size  which includes the total number of 

unique words + two where two denotes the word used for padding and for word outside 

the vocabulary or unknown words. 

2. Output dimension : Dimension of the embeddings. 

3. Input length :  Specified maximum length selected for padding, to transform all 

sequences to the same length. 

4. Mask zero : This should be set as True or False depending on the problem.  It is set to 

True as suggested by Keras TensorFlow documentation to notify the model that the 

input value contains padding and should be ignored from processing [79]. 

5. Weights : this attribute can be initialised with a weight matrix, this is used to load the 

pre-trained weight generated by pre-trained word embeddings such as GloVe 

embeddings 

6. Trainable : This attribute takes Boolean values as input. It is used with pre-trained 

word embeddings where if this attribute is set to false the model remembers the weight 

matrix fed from the pre-trained model. If trainable is set to True the model gets 
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initialised with the pre-trained weights and during the training this weight changes. On 

the other hand, the attribute trainable is set to “False” to avoid forgetting the 

embeddings learned from the pre-trained model.  

 

Lambda Layer: This is used instead of the embedding layer during word vectorisation by 

contextual word embeddings (see Sec.  3.3.6). The custom operations we are interested in 

performing are not supported by other Keras layers and that is where the Keras lambda layer 

makes it possible to do an operation on an input tensor and combine it to other layers of the 

model. Keras lambda layer is used load the pre-trained ELMo model from TensorFlow hub 

and generate word embeddings corresponding to the words in the input sequence and integrate 

with the Keras model. The Keras Lambda layer transforms each word in the sentence to a word 

feature of 1024 dimension, which is the default dimension of output vectors generated by  pre-

trained ELMo model [80]. 

 

Hidden Layer : Bi-LSTM layer and time distributed dense layer is implemented as the hidden 

layers in the model. 

              

              Bi-LSTM Layer : It takes four parameters as input: 

1. Units : the number of neurons in the Bi-LSTM layer, it denotes the dimension of 

output from that layer from the Bi-LSTM. 

2. Return sequences :  If return sequence is True, it will return the full sequence of 

output ,otherwise it if the return sequence is False, it will return only the last 

output from the sequence of outputs. 

3. Recurrent dropout : Fraction of the units to drop for the linear transformation of 

the recurrent state. It lies between 0 and 1. 

4. Kernel initialiser : Neural network need to be initialised with some weights at 

the beginning. A kernel initialiser defines how to set the initialise weights it has 

an attribute “seed” to produce the same random tensor . For this study we chose 

glorot uniform class initialised which draws samples from a uniform distribution 

between -limit and +limit where limit = sqrt(6/number of input units in the weight 

tensor + number of output units in the weight tensor) to fix the randomness in 
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initialising weight we fixed the seed of glorot uniform distribution to a value of 

66 [81].   

              

Time distributed dense layer: A fully connected dense layer refers to a layer where each     

neuron in the input is connected to every neuron in the dense layer [82]. A time distributed 

dense layer is a variant of a fully connected dense layer with a difference being the same fully 

connected dense layer is applied to the output of every time step from the previous layer. For 

each output of every time step of the previous layer is connected to every neuron in the dense 

layer. This type of layer is used for sequence labelling task which makes it possible to apply 

the same dense layer to each time step of an LSTM .  It takes as input the number of nodes in 

the dense layer and the activation function. A time distributed dense layer with ReLU activation 

function (see Sec.  3.3.1)  is used in this study. The reason for using ReLU activation function 

in the hidden layer is due to the fact that it does not activate all the neurons at the same time 

thus making the process computationally effectively . This also prevents the Vanishing or 

exploding gradient problem [59, 68]. 

 

Output layer: The CRF layer described in Sec. 3.3.3 is used as the output layer in the model. 

It takes as input number of tags. 

 

 

3.4 Training, evaluation and comparison of results 
This section explains the steps involved in performing the experiments on the data set and 

reproducing the results. The metrics and cross-validation technique used for evaluating the 

model performance are also explained along with the software used for setting up the 

environment for running the experiments.   

 

3.4.1 Software used  

The experiments were done on Google Colab [50] because of the availability of a larger RAM 

size of 12GB and a hosted runtime with GPU and TPU availability. Python deep learning 

libraries TensorFlow, and Keras API [79] were used for building the models. The versions of 

the packages used and the git hub link and git hash associated with the final code used for the 

experiment are encapsulated in tables (Table 3.3 and Table 3.3). 
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Table 3.2: Versions of packages used in the experiments, where *Keras: word vectorisation 
by Keras embedding layer, *GloVe: word vectorisation by GloVe embeddings, *ELMo: word 

vectorisation by ELMo embeddings 

Software Version 
Bi-LSTM-CRF (*Keras, *GloVe) Bi-LSTM-CRF (*ELMo) 

python 3.7.10 3.7.10 

pandas 1.1.5 1.1.5 
Keras 2.2.4 2.2.4 

Keras-contrib 2.0.8 2.0.8 
Seqeval 1.2.2 1.2.2 

Keras application 1.0.8 1.0.8 
Keras pre-processing 1.0.9 1.0.9 

NumPy 1.19.5 1.16.3 
TensorFlow estimator 1.14.0 1.15.0 

TensorFlow 1.14.0 1.15.1 
scikit-learn 0.22.2.post1 0.22.2.post1 

ELMo embeddings [83] - V2 
 

Table 3.3: Versions of files used for this thesis is available in the GitHub repository: 
https://github.com/meerajsph/Master_thesis.git 

Filename Git hash 
Data_analysis.ipynb 61a4d00 

 Bi-LSTM-CRF-NER-Keras.ipynb 847867b 
 
 

Bi-LSTM-CRF-NER-GloVe100.ipynb e4fd4fe 
 

 
Bi-LSTM-CRF-NER-ELMo.ipynb da94b22 

 Hyperparameter_tuning_Bi-LSTM-CRF-NER-GloVe100.ipynb 4bf72c8 
 Bi-LSTM-CRF-NER-GloVe50.ipynb d9f73d7 
  

 

3.4.2 Data handling by Mini batch gradient descent 

Gradient descent [68] is an optimisation algorithm used by the neural models for learning 

iteratively (Sec. 3.3.5). Sample refer to a single row in a data set which is denoted by a sentence. 

The whole data set is composed of multiple samples, and each sample is composed of a list of 

tokens, representing the word and list of tags, representing the labels corresponding to each 

word. A batch, on the other hand, is composed of multiple samples. Depending on the number 

of samples in a batch the learning algorithm can be divided into three types. Firstly, if the 

number of samples in a batch is equal to the number of samples in the entire training data, it is 

known as batch gradient descent. Secondly, if the number of samples in a batch is one, then it 

is known as stochastic gradient descent, and finally, if the number of samples in a batch is 

greater than one and less than the number of samples in the training data, it is known as mini-

https://github.com/meerajsph/Master_thesis/commit/61a4d00c36ea340a24134fe402766948705c4e9f
https://github.com/meerajsph/Master_thesis/commit/847867bc2f4907729ec539caf3422ddea68d1db3
https://github.com/meerajsph/Master_thesis/commit/e4fd4fee27de8a0c4eb469fabcd560302105657a
https://github.com/meerajsph/Master_thesis/commit/da94b224231e805edd779d692b839ba9ac636a72
https://github.com/meerajsph/Master_thesis/commit/4bf72c8a80e927a7fbb538b5d33fd06bc21b0a72
https://github.com/meerajsph/Master_thesis/commit/d9f73d7ede115a8d1f5198663cbfcf7239b285c8


 64 

batch gradient descent. In this study we have selected a batch size of 32 and hence it is mini-

batch gradient descent. The error is calculated at the end of a single batch. Epochs refer to the 

number of times you train the model on the entire training data. A single epoch refers to looping 

over the whole training data. Iterations refer to the number of times weight update occurs by 

back propagation within an epoch. The number of samples in a batch and the number of epochs 

are hyperparameters that can be adjusted to improve the model performance and make them 

optimal. Figure 3.26 shows mini-batch gradient descent for a single epoch where each green 

arrow down the curve denote an iteration by each batch within the single epoch. For an epoch 

the weight update occurs at the end of each batch. Weight gets updated for a batch within the 

epoch during backpropagation by  (3.34.  

 
𝑤𝑡 = 𝑤𝑡−1 − 𝜂′ ∗

𝑑𝐿
𝑑𝑤𝑡−1

 
                                      (3.34) 

 
𝑤ℎ𝑒𝑟𝑒  𝑤𝑡      ∶ New weight  updated by backpropagation at current iteration 

              𝑤𝑡−1  ∶  Old weight or previous weight at pervious iteration 

             𝐿         ∶ Loss calculated during forward pass for the current iteration 

             𝜂′         ∶ new learning rate, computed by the optimiser in use 

 

Learning rate decides the step size taken to reach the global minima during each weight update, 

represented by a single green arrow in the figure. Step size is represented by length of the green 

arrow. 

 

Consider an example of model with 100 training samples with a batch size of 10 samples 

training for 5 epochs. It means the entire data set has been divided into 10 batches, and the 

training happens 5 times. During each epoch the entire training data gets trained, since we have 

a batch size of 10, it divides the whole training data into 10 batches. So during the first epoch, 

the model is trained with 10 samples for 10 times, taking each batch at a time and this is 

repeated for rest of the four epochs. Forward propagation for calculating the loss and backward 

propagation for updating the weight occurs at the end of each batch of 10 samples within an 

epoch. The weight update at the end of each batch within an epoch is added to update the final 

weight at end of each epoch [84]. 
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Figure 3.26: Mini batch gradient descent for weight update, where a green arrow represents 
the weight update during an iteration for a single mini batch and the red dot represents the 

Global minima which is the point where the loss is minimum 

 

 

3.4.3 Evaluation Metrics 

There exist various evaluation metrics for measuring the performance of NER systems in terms 

of its ability to perform classification tasks. In a survey conducted on the NER systems between 

1991 and 2006  the evaluation metrics used by various forums, namely MUC, IREX, CoNLL 

and ACE conferences for evaluating the performance of NER during that period was reported 

[85]. The process of evaluating the NER systems by the forums were based on their ability to 

extract and label words. This was achieved by comparing the system's output to a human-

created standard dataset with the correct tag corresponding to each word. It was highlighted 

that there exist variations in evaluation criteria in terms that some evaluation forums conducted 

evaluation based on partial matching, while others followed a strict matching system. In the 

strict mode of evaluation, an evaluation is considered correct only if the NER system manages 

to correctly find the entity boundaries and the class type to which it belongs. On the other hand, 

in partial matching, the evaluation is considered correct if a major part of the entity is correctly 

found and labelled as the correct class, in other words in partial matching identification of 

entity boundaries is not important.  

 

In this study precision, recall, F1 score and accuracy are used for evaluating the model 

performance and strict mode evaluation criteria is used which is similar to the evaluation 

 

Loss 

weight 

Global 
minima 
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criteria used in the CoNLL 2003 shared task [20]. Before explaining each evaluation metric it 

is important to understand the terms related to them. In a classification task, these terms are 

defined on a class level, which means taking a single class at a time. 

 

True positive (tp): A prediction of a class for a named entity is said to be a true positive if the 

predicted class is same as the actual class. 

True negative (tn): A prediction of a class for a named entity is said to be a true negative if 

they are correctly identified as a negative prediction or not belonging to the class when they 

actually do not belong to the class in focus. 

False positive (fp): A prediction of a class for a named entity is said to be a false positive if 

they wrongly classified to belong to the class in focus when they are actually not members of 

that particular class. 

 False negative (fn): A prediction of a class for a named entity is said to be a false negative if 

a named entity actually belonging to the class in focus is wrongly classified as not belonging 

to the class. 

Table 3.4: Evaluation metrics with their formula and definition 

Metrics Formula Definition 

 

Precision 

 
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

Precision of classifying named entities to belong to a class 

refers to the ratio of the number of entities correctly 

identified to belong to a class out of the total number of 

entities found to belong to a class by the NER system. 

 

Recall 

 
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

Recall also known as Sensitivity, refers to the ratio of 

number of entities correctly found by the NER system out 

of the total number of entities in the data set. 

 

F1-score 

 

2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 

F1-score  is a metric used to summarise the performance 

of a model based on the precision and recall. This is done 

by calculating the harmonic mean. Hence the value of F1- 

score will always be between the precision and recall. 

 

Accuracy 

 
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛 + 𝑡𝑛
 

Accuracy measures the  percentage of correct predictions 

out of the total predictions made. 

 

Precision and recall are two metrics which are equally important in evaluating the performance 

of a model. A model can have higher precision and lower recall or vice versa, this triggers the 

need for a single metric to measure the performance. The trade-off between precision and recall 

is found by calculating the F1 score. Precision, recall, F1 score and accuracy have values 
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between 0 to 1, with zero being the worst and one being the best possible score for a model. 

Precision, recall and F1 score are computed separately for each class and are combined by 

taking the average to find their overall value while accuracy is computed by taking into account 

all true positives, true negatives, false positives and false negatives. Accuracy is commonly 

used as a metric for evaluation but when there exist imbalance in the distribution of samples 

belonging to the classes, which means there exist variations in the number of samples 

belonging to each class, the results might be misleading. Consider the example of a four class 

problem with class distribution [class A: 70 samples, class B: 10 samples, class C: 10 samples, 

class D: 10 samples] ,the accuracy of the classifier would be 0.7 by just predicting everything 

as belonging to class A. But this type of evaluation fails to measure the actual ability of the 

model to perform a classification task.  

 

In a multi-class classification task, where there exist more than two classes. The overall 

performance of the system is computed by taking the average of the score associated with 

individual classes as micro-average, macro-average and weighted average (see Figure 3.27). 

Micro-average scores are calculated by  taking true positives, true negative and false positives 

of individual classes and combining them to find the overall score for. Macro average is 

computed by taking the average scores of the individual class metrics. Macro average assigns 

equal weights to the evaluated metric value for each class, for weighted average we weigh the 

metric of each class based on the number of entities of each class [86]. Micro-average gives 

equal importance to each sample prediction, while macro-average gives equal importance to 

all classes, be it majority or minority. For this study micro average F1-score was chosen as the 

evaluation metric for the comparison of different models. 
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Figure 3.27: Formula for variants of averaging class-wise F1 scores for computing the 

overall F1 score of a model 

This study uses a publically available python package known as seqeval [87] for generating 

the classification report. A classification report is used to measure of the ability of a model to 

perform classification. It holds information about the class-wise as well as micro, macro and 

weighted averaged precision, recall and F1 score. Figure 3.28 shows an example of a 

classification report generated by using seqeval. In the classification report, the IOB2 tags 

combine individual tokens to form a single entity. If a token with tag "B-geo" is followed by 

another token with tag "I-geo", they are considered a single entity in the final classification 

report. The scores are calculated based on the strict matching evaluation criteria , that is a 

prediction is considered as true positive only if the entire entity, consisting of multiple chunks 

are predicted correctly e.g. even though the first word in the entity is classified correctly as “B-

geo”, rest of the two are wrongly classified, the prediction of that entity is considered wrong 

and therefore the true positives for geo is recorded as 0 [88] . 
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Figure 3.28: Strict matching classification report generated by seqeval 

 

3.4.4 k-fold cross-validation 

Cross-validation is a method of evaluating a model's performance on a smaller data set by the 

process of resampling. k-fold cross-validation is a variation of cross-validation where the entire 

training data is divided into k folds. During training, a single fold is considered as validation 

data, and the model is trained on the rest of the data. An advantage of this method is that the 

model gets exposed to variations in the data set. The model's performance might be different 

for each fold, due to the variations in the distribution of the data. Evaluating the model on 

different sets of data each time and then taking the average of the model performance helps get 

a more robust understanding of the model performance.  

The steps involved are : 

1. Randomly shuffle the whole data set 

2. Divide the data set into k groups 

3. Train the model on (k-1) parts of the data and evaluate the model on a single group. 

4. The above step is repeated k times. 

5. Evaluate the model performance by analysing the performance of the model for each 

fold 

There is no formal rule for selecting a value of k, but a value between 5 to 10 is usually used. 

A value of k is selected in way that makes each train validation split large enough to generalise 

the data and a value that reduces the bias and variance in the evaluation scores [89]. Bias refers 
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to the systematic difference between true value and the predicted value. Variance refers to the 

difference in scores when the model in trained on a different data set.  

 

 

3.5 Experiments 
This section includes the empirical experiments conducted to report observations to solve our 

problem and to show if our hypothesis is valid or not. 

 

3.5.1 Experiments done to compare the performance of Bi-LSTM-CRF models when 

combined with different word vectorisation techniques 

The performance of different word vectorisation techniques were compared by feeding the 

word embeddings generated by each technique (see Sec 3.3.6) to a simple single layer  Bi-

LSTM-CRF model (see Sec 3.3.7) based on the overall performance as well as class-wise 

performance in the NER task. The comparative study was conducted on the same manually 

created data set (see Sec. 2.3). Architecture similar to [17] was chosen as a Bi-LSTM-CRF 

model has shown to achieve good performance in a majority of NLP task in comparison to a 

Bi-LSTM softmax classifier as per previous researches [66, 70]. A simple architecture was 

chosen to make sure that the performance of the model was not impacted by the complexity of 

the model. This, we believe, would help understanding the variations in the model's 

performance when we use a different word embedding.  

 

Table 3.5: Hyperparameters used for building the models for comparative study of the word 
vectorisation techniques 

Hyper parameters Bi-LSTM-CRF 
model with 

Keras 
embedding layer 

Bi-LSTM-CRF 
model with GloVe 

embeddings 

Bi-LSTM-CRF 
model with ELMo 

embeddings  
Input dimension 100 100 100 

Output dimension 100 100 1024 
Number of units in Bi-LSTM 

layer 
50 50 50 

Recurrent dropout 0.1 0.1 0.1 
Number of units in time 
distributed dense layer 

50 50 50 

Optimizer RMSprop RMSprop RMSprop 

Loss crf.loss_function crf.loss_function 
 

crf.loss_function 
  



 71 

The model consist of an input layer, an embedding layer, two hidden layers, a Bi-LSTM layer 

and a time distributed dense layer and finally a CRF output layer as described in (see Sec 3.3.7). 

The hyperparameters used for building the models are encapsulated in Table 3.5. The data 

given as input is pre-processed following the steps described in Sec 3.2. We specify the input 

dimension  equal to the unique number of words in the training data + two and input length = 

100. A single layer bidirectional LSTM with 50 neurons was used, as per previous researches 

[90] [17] it was found that the model performance is not dependent on the number of units in 

the hidden layer hence we have initialised the number of units in Bi-LSTM layer randomly to 

50 to keep the architecture simple. Since aim of this study to compare the effect of different 

word vectorisation methods on a simple and common Bi-LSTM-CRF model the parameters 

where randomly chosen and fixed for the experiments and hyperparameter tuning was not 

performed. 

 

Output embedding dimension of 100 was chosen for embeddings generated by the embedding 

layer and the GloVe embeddings, while ELMo language model produces embeddings of 

dimension 1024 by default and this was left unchanged. The embedding dimension were 

chosen as 100 for keras embedding to match with the embedding dimension of GloVe 

embeddings, since ELMo embeddings have 1024 by default and is not available in 100, it was 

used. The data given as input is pre-processed following the steps described in Sec 3.2. We 

then trained the models in mini-batches of size  32 for 10 to 50 epochs with a step size of 10 

between them. The CRF Loss function was used to measure how efficiently the model 

performs, and this was optimised using the "RMSprop" optimiser (see Sec 3.3.5, 3.3.4).  

 

Since there exist randomness in the results obtained during each run, we used the random seed 

to fix this. By investigating further it was found that the randomness was because of the 

stochastic nature of deep learning, during the training process, where each node is initialised 

with random weights as well as due to the randomness in optimisation. Randomness also occurs 

due to the random nature of the drop-out layer. The dropout layer drops out a specified 

percentage of nodes during each run and the nodes getting dropped keep on varying. 

Additionally Keras  gets its source of randomness from the NumPy random number generator 

while TensorFlow gets the randomness from its own random number generator. Connecting to 

the runtime in Google Collab can also be a contributing factor to the randomness. To handle 

the randomness, we set the random seed for python, NumPy random number generator, 

TensorFlow random number generator, set the seed of Keras initialiser. Additionally, we forced 
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TensorFlow to use a single thread for execution, as multiple threads are also sources of non-

reproducible results. It could also be due to the third party library used for building the CRF 

layer. Hence, we averaged the model results for each epoch for five runs to get more reliable 

results similar to the approaches taken by previous research in the field [18, 70, 72, 91]. The 

mean and standard deviation of the distribution of F1 score for five runs across the epochs is 

reported. Also, we used k fold cross-validation with four folds for evaluating the model 

performance on each run to introduce the model to variation in the data set. It should be noted 

that in classification problem with unbalanced data set stratified k-fold is usually used. In 

stratified k fold during the splitting of training and test data, the data set gets split in a way that 

the distribution of all tags are uniform in the test and training data. But in sequential data where 

each sample is composed of a sequence of words and sequence of targets the split happens at 

sentence level and not at the word level, e.g. sentence1, sentence5, sentence6 becomes training 

data while sentence2, sentence3 becomes test data. But the imbalance is in terms of number of 

elements belonging to each tag. Intuitively , since this is a sequence modelling task with a set 

of sequences of words stratified k-fold was not used.  If it was a single word classification task 

without the sequence it would have been possible to do a stratified k-fold. 

 

We then report the performance of Bi-LSTM-CRF with the three different word embeddings 

by training each model for 10, 20, 30, 40, 50 epochs. The class-wise prediction performance 

using each word vectorisation technique is also reported. The epoch number at which the 

models gave high micro-F1 score was chosen. The model was trained on the entire training 

data at this setting and was evaluated on the test data. The model's performance on test data 

was reported along with the results obtained by other Bi-LSTM-CRF NER models as per 

previous researches. Owing to the stochastic nature of deep learning models, the evaluation on 

test data was also repeated five times and the average and standard deviation was reported 

without making any other changes in the model definition or the data set. 

 

3.5.2 Experiments done to build an efficient automatic Named Entity Recogniser 

The best performing model was then selected based on their performance with the validation 

data. Also, for building an efficient NER system we tuned two hyper parameters of the best 

performing model on a small search space (see Table 3.6) due to the time constraints. Optimiser 

waa chosen as a hyperparameters based on the study performed by Reimers et al. [90] on NER 

performance on CoNLL 2003 data set [20], where the impact of optimisers on the performance 



 73 

of NER model using Bi-LSTM-CRF was found to be high. Recurrent dropout was chosen as a 

hyper parameter based on previous researches that suggested that [92, 93], recurrent dropout 

resulted in improved model performance. 

 

Table 3.6: Hyperparameter search space used for tuning the best model found from the 
comparative study 

Hyperparameter Search space Final value selected 
Optimiser adam [94], Nadam [95], RMSprop adam 

Recurrent dropout 0.1, 0.2, 0.3  0.3 
 

Training was performed for each combination of hyperparameter following the same steps as 

the previous experiments keeping all other hyperparameters same as Table 3.5. The 

hyperparameter combination for which the model gave highest performance score on the 

training data, was fixed and was evaluated on the test data and the scores were reported. 
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Chapter 4 Results and discussion 
 

 

This chapter reports the results obtained by conducting the experiments explained in the 

methods section. These results are also discussed and analysed further in this section. We also 

compare the results obtained through this study with previous researches in the field and 

analyse how they deviate from those expectations. The theory behind the models used as well 

as word vectorisation techniques used are discussed in Chapter 3. 

 

 

4.1 Performance comparison of NER with different word vectorization 

techniques 
In order to expose the models to variations in data, the models were trained using 4-fold cross-

validation, and the scores were calculated by taking an average of micro-F1 scores for each 

fold. Micro-average F1 score was used as the metric for evaluating and comparing the overall 

model performances as it gives equal importance to each sample prediction. Table 4.1 reports 

the overall micro average F1 score of performing NER with the standard deviation 

corresponding to the five repetitions of the experiments for the three models for epochs ranging 

from 10 to 50. It could be observed that the Bi-LSTM-CRF model with 100-dimensional GloVe 

embeddings gave the best micro-F1 score of 0.869 when trained for 50 epochs. Hence this 

model trained for 50 epochs was selected for further optimization and creation of an efficient 

NER system in Sec. 4.2. The best scores for each model composed of Bi-LSTM-CRF and 

corresponding word vectorization technique when trained for 10 to 50 epochs have been 

highlighted in bold in Table 4.1 for reference. 

 

Table 4.1: Overall micro F1 scores with the standard deviation of three models for epochs 
ranging from 10 to 50 evaluated using 4-fold cross-validation repeated five times. The values 
in bold correspond to the best performance score of each model trained for that many epochs 

Model 

 

Epochs Micro-F1 score 

Bi-LSTM-CRF (Keras embedding 

layer) 

10 0.774±0.0076 

20 0.845±0.0023 
30 0.841±0.0026 
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 40 0.846±0.0009 
50 0.834±0.0034 

 
Bi-LSTM-CRF (GloVe embedding) 

 

10 0.808±0.0027 

20 0.861±0.0007 
30 0.856±0.0012 
40 0.847±0.0026 
50 0.869±0.0010 

 
Bi-LSTM-CRF (ELMo embedding) 

 

10 0.846±0.0093 

20 0.844±.0056 
30 0.842±0.0088 
40 0.831±0.0064 
50 0.836±0.0067 

 

 
Figure 4.1: Comparison of class-wise and overall micro and macro average F1 score of best 

performing models on training data with the corresponding epoch number 

 

The class-wise performance of the models was also recorded along with the overall 

performance score for epochs ranging from 10 to 50 to understand the effect of different word 

vectorization techniques used for NER. Figure 4.1 shows the results of class-wise and overall 

F1 scores of the best models in performing NER with the training data. Micro-averaging was 

initially chosen as the metric for averaging the individual F1 scores of the classes and 

computing the overall score. This was done to avoid misleading performance scores evaluation 
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by taking the simple average of performance scores of each class, also known as macro-

averaging. This could be inaccurate in situations where the majority class have a lower 

performance in comparison with the minority class. Macro-averaging gives equal importance 

to each class, be it majority or minority, which would then lead to a higher overall F1 score, 

but in reality, the model is performing bad with a majority of samples. Analysing the class-

wise F1 score shows that the majority classes, company name (25), meeting date (26), and 

company deadline (28), have higher F1 score in comparison with the minority class, meeting 

address (27) (see Figure 4.2),  hence preventing the chance of inaccurate performance score 

while using macro-averaging. Since both these scores seem to be interesting to analyse. Further 

in the analysis of results, we will be using both the micro-average and macro-average scores 

as the evaluation metrics as suggested by Yang et al. [96]. 

 

Bi-LSTM-CRF model with GloVe embeddings gave the highest overall micro-F1 score of 

0.869 and an overall macro-F1 score of 0.861 out of the three models used for the comparative 

study. This result is a deviation from the expectation that using deep contextualised word 

embeddings like ELMo would lead to better model performance. But it is interesting to note 

that Bi-LSTM-CRF with ELMo needed fewer epochs to converge and achieve good results of 

overall micro F1 score of 0.846  and macro F1 score of 0.835 in comparison to the other models 

which took 50 epochs for Bi-LSTM-CRF with GloVe embeddings to achieve an overall micro 

F1 score 0.869 and overall macro F1 score of 0.861 and 40 epochs for Bi-LSTM-CRF with 

Keras embedding layer to achieve an overall micro-F1 score of 0.846 and macro F1 score of 

0.828. The results demonstrate that Bi-LSTM-CRF models with GloVe embeddings also gave 

better or almost equal class-wise F1 scores in comparison to Bi-LSTM-CRF models 

performing NER using Keras embedding and ELMo embeddings for word vectorisation for 

three out of four classes with 0.851 versus 0.847, 0.83 for company name (25), 0.927 versus 

0.914, 0.825 for company deadline (28) 0.779 versus 0.695, 0.785 for meeting address (26). 

Additionally, it could be observed that the Bi-LSTM-CRF model with ELMo embeddings gave 

the next best class-wise F1 score for meeting date (26) with an F1 score of 0.9 and meeting 

address (28) with an F1 score of 0.785. The lowered performance in classifying samples 

belonging to the classes company name (25), company deadline (28) in comparison to the other 

models might be the reason for an overall low score for the Bi-LSTM-CRF model with ELMo 

embeddings. ELMo being a contextualised word embedding, the existence of two different 

labels meeting date (26) and company deadline (28), which are in the same format but different 

labels, might be a reason for the confusion in the context based models resulting in a low F1 
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score of 0.825 for company deadline (28) in comparison to meeting date (26) with an F1 score 

of 0.90. Analysing the overall macro and micro F1 score of Bi-LSTM-CRF with ELMo 

embeddings shows that the ELMo model has a better performance score than Bi-LSTM-CRF 

with Keras embedding layer in terms of macro-average F1 score with scores of 0.835 for ELMo 

and 0.828 for Bi-LSTM-CRF Keras embedding layer, while they have equal micro F1 scores 

of 0.846. 

 

The lowered performance of the model using ELMo embeddings may also be due to the high 

dimensional word embeddings, with a dimension of 1024, which is the default output 

embedding dimension of using the pre-trained ELMo model. This high dimensionality might 

give rise to the problem of “Curse of Dimensionality” [35, 97]. An increase in the 

dimensionality of the model leads to more features, thus triggering the need for more data to 

capture all possible combinations of features. In our case, though output dimensionality is 

increased, the number of training samples remains the same, which might be the reason for low 

F1 scores for NER using Bi-LSTM-CRF and ELMo embeddings. The lower dimensionality of 

100 of the output embedding could also be a reason for the improved performance of Bi-LSTM-

CRF with GloVe embeddings. In addition, through analysis of the data set, it was found that 

out of 1413 unique words in the training data, 619 words had embeddings in the GloVe 

embedding matrix. In order to analyse the curse of dimensionality, we perform a secondary 

experiment with GloVe embeddings of smaller dimensions with the same model and same data 

set to observe the effect on results. 

 

The whole data set was divided into training and test data in a 90:10 ratio as part of pre-

processing. The initial data set had 747 sentences, with each sentence having 100 words. After 

the test train split, the training data was composed of 672 sentences and the test data was 

composed of 65 sentences. The resulting training data set had 1413 unique words, and the test 

data set had 707 unique words. In order to understand the class-wise performance better, it is 

important to include the tag distribution in the training and test data set. This is included in  

Figure 4.2 and Figure 4.3. It is also important to note that the performance on the training data 

was evaluated by using 4-fold cross-validation, and this was repeated five times. So the 

distribution of classes in each fold might be different from the distribution of classes in the 

whole training data. 



 78 

 
Figure 4.2: Distribution of tags in the training data without including the ”O” tag 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4.1 shows that best models in the three cases which gave the highest  scores for the 

classes company deadline (28) and meeting date (26) and least performance in predicting 

entities belonging to the class meeting address (27). The low performance in predicting entities 

belonging to the tag meeting address (27) might be because of the low number of samples in 

the training data belonging to that class or tag. Intuitively it proves the point that since there 

exist a lower number of samples belonging to that category which can be called a minority, the 

model is not well exposed to the category and hence performs badly in predicting samples 

belonging to it. On the other hand, the tag categories for which the models performed the best, 

company deadline (28) and meeting date (26), deviates from the theory used in explaining the 

reason for the bad performance in predicting the tag meeting address (27). If that was the case, 

the model should have shown the best performance in predicting entities belonging to the tag 
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company name (25), followed by meeting date (26) and company deadline (28). Another 

hypothesis which we could infer from the good results could be the fact that the model has 

good performance in predicting categories that have entries in an alphanumeric pattern like “13 

November 2021”. Both company deadline (28) and meeting date (26) have entities in this 

format. Overall it could be observed that the best model Bi-LSTM-CRF with GloVe 

embeddings training for 50 epochs managed to give the best F1-score for the NER task as well 

as in predicting the classes except for the minority class without performing any 

hyperparameter tuning and using a simple base model. It managed to improve the performance 

of using a simple Keras embedding layer with an overall micro F1 score of 0.846 by 0.023 to 

0.869,  and the overall macro F1 score was improved from 0.828 to 0.861. This also 

outperformed the best performing Bi-LSTM-CRF NER using ELMo embeddings by 0.02 in 

terms of overall micro F1 score and 0.03 for macro F1 score on the training data (see Figure 

4.1).  

Table 4.2: Overall micro and macro F1-score with standard deviation for the best 
performing models on the test data for experiments repeated five times 

 
Table 4.2 presents the performance of the best models found by cross-validation on the training 

data (see Table 4.1) when applied to the unseen test data. It could be observed that Bi-LSTM-

CRF with GloVe embeddings, when trained for 50 epochs which gave the best overall micro 

F1 score of 0.869 and a macro-F1 score of 0.861 on the validation data, managed to achieve an 

overall micro F1 score of 0.868  and macro F1 score of 0.872 on the test data (Table 4.2). 

 

It could be observed that the test score in terms of both micro and macro average is slightly 

higher than validation score in Bi-LSTM-CRF with Keras embedding layer with micro F1 

score of 0.848 and macro F1 score 0.858 in comparison with overall micro F1 score of 0.846 

and macro F1 score of 0.828 on the validation data. This could be because of the test train split 

chosen for the study, where 90% of the data was taken as the training data, and 10% of the data 

was chosen as the test data. This 10% of data chosen as the test data might be favourable to the 

Model 

 

Epochs Overall micro F1-score Overall macro-F1 score 
Bi-LSTM-CRF (Keras 

embedding layer) 

 

 

40 0.858±0.004 0.848±0.004 

Bi-LSTM-CRF (GloVe 

embedding) 

 

50 0.868±0.009 0.872±0.013 

Bi-LSTM-CRF (ELMo 

embedding) 

 

10 0.796±0.008 0.776±0.008 
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model and easy to predict, leading to better results in comparison to the large number of training 

data that has more variance involved. Repeating the experiments with another ratio of test train 

split could be interesting to explore in the future.  

 
Figure 4.4: Comparison of evaluation metrics based on the scores for the best performing 

models for that many epochs on the training data evaluated by four-fold cross-validation and 
experiments repeated five times 

 

Figure 4.4 shows the performance scores of the best performing models when trained for 

epochs ranging from 10 to 50 on the training data. The scores are reported in two main metrics 

accuracy and F1 score. The models gave the highest score for the metric accuracy. Accuracy 

gives highest importance to true positives and true negatives in comparison to false negatives 

and false positives. So, the inability of a system to classify members correctly to a class is not 

given importance. F1 score, on the other hand, gives more importance to false negatives and 

false positives. Hence F1 score was considered as a more accurate measure. There exist three 

variants of averaging F1 scores of individual classes, and they show slight variations (see Sec. 

3.4.3). The weighted average F1-scores reported a higher value in most cases, but this might 

also be misleading as this overall F1 score calculation biased to the number of samples 

belonging to a class. The higher value for this metric might be because of a better F1 score for 

the samples belonging to the majority class, the class to which a higher number of samples 

belong and hence were weighted more than the others leading to a high overall weighted F1 
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score. On the other hand, the macro-F1 score gave the lowest score. This metric is strict and 

gives equal importance to all classes, as it computes the overall F1 score by simply taking the 

average of F1 scores of individual classes, thus giving equal importance to every class, be it a 

minority or majority. Micro-averaging, on the other hand, gives equal importance to the 

prediction of each sample, and therefore false negatives are also taken into account. As 

discussed earlier, both micro-averaging and macro-averaging of F1 scores seems interesting 

and will be used simultaneously. 

 

In the above section, we compared the three models and discussed the differences in results. In 

this section, we will discuss the results and observation of individual models and try to 

understand their performances which will help in understanding their differences and 

advantages, which can be interesting for future work.  

 

 

Word vectorization by Keras embedding layer 
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Figure 4.5: Class-wise and overall micro and macro F1 score for Bi-LSTM-CRF with Keras 

embedding layer on training data for epochs ranging from 10 to 50. 

 
Figure 4.6: Class-wise and overall micro and macro average scores of performance on test 

data for the best performing model using Keras embedding layer (40 epochs) 
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Figure 4.5 shows the class-wise and overall F1 score of performing NER using Bi-LSTM-CRF 

and Keras embedding layer when trained for epochs ranging from 10 to 50. Overall, the model 

gave the highest micro-F1 score of 0.846±0.0009 and macro F1 score of 0.828±0.0009  the 

training data when trained for 40 epochs, using 4-fold cross-validation, repeated five times. 

The classification score for the classes meeting date (26) and company deadline (28) were the 

highest with F1 scores 0.9 and 0.86 in comparison to other classes, while the class meeting 

address (27) seems to be the most challenging one to classify with an F1-score of 0.76.  

 

Figure 4.6 presents the overall and class-wise score for training the model for 40 epochs on 

training data and evaluating on unseen test data. Overall the model gave a micro-F1 score of 

0.86±0.004 and macro F1 score of 0.85±0.004. In terms of evaluating the model performance 

based on its ability to classify samples belonging to a class, the model reported the highest F1 

score in classifying samples or named entities belonging to the class meeting date (26). It has 

a recall value of 0.93, meaning that the model correctly classified 93% of the named entities 

belonging to the class meeting date (26). On the other hand, the model gave the worst F1 score 

of 0.76 for the class meeting address (27), which is similar to the model's performance with the 

training data. The reason for difficulties in classifying entities belonging to the class meeting 

address (26) might be the low number of samples in training data belonging to that particular 

class (see Figure 4.2). 

 

 

Word vectorisation with 100-dimensional GloVe embeddings 

 



 84 

 
Figure 4.7: Class-wise and overall F1 score for Bi-LSTM-CRF (100-dimensional GloVe 

embeddings) for epochs ranging from 10 to 50. 

 
Figure 4.8: Class-wise and overall score of performance on test data for the best performing 

model using 100-dimensional GloVe embeddings (50 epochs) 
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Figure 4.7 illustrates the class-wise and overall performance of the Bi-LSTM-CRF NER model 

with 100-dimensional GloVe embeddings trained for epochs ranging from 10 to 50 in terms of 

F1 score. The model managed to achieve the best overall micro F1 score of 0.869±0.0010 and 

overall macro F1 score of 0.861±0.001  (see Figure 4.7) on training data when trained using 4-

fold cross-validation repeated for five times for 50 epochs. It could also be observed that the 

best model achieved the best class-wise F1 score in classifying named entities belonging to the 

tag company deadline (28). It is interesting to note that not just the overall performance but the 

model also shows a good class-wise F1 score when trained for 50 epochs. As observed earlier, 

the model finds it challenging to classify named entities belonging to the class meeting address 

(27), which accounts for the lowest number of samples in the training data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8 shows the class-wise and overall performance of the best performing model on the 

test data in terms of precision, recall and F1 score. The best performing model was selected 

based on the performance score on the validation data set. The model, when trained for 50 

epochs and evaluated on the test data, gave an overall micro and macro F1 score of 0.87 with 

an overall micro-average and macro-average precision and recall of 0.86, 0.88. The metrics 

show that the model managed to achieve a high micro and macro recall in comparison to the 

micro and macro precision, meaning the model managed to achieve a large number correct 

predictions or true positives out of the total ground truth, which includes the true positives and 

false negatives (see Figure 4.9). F1 score is used as a measure to find the balance between 

recall and precision as both these metrics are important for the good performance of a model. 

Higher the F1 score for a class, better the performance of the model for that class. In terms of 

class-wise performance on the test data, the model managed to give the highest F1 score in 

s  tn fp tp fn 

Figure 4.9: Figure showing high recall and low precision, where tn: true negatives, fn: false 
negatives, tp: true positives, fp: false positives. The solid circle represents the ground truth 

and th edotted line cirrcle represents the prediction  
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classifying named entities belonging to the class company deadline (28). This behaviour is 

similar to what was observed in the training data suggesting there is a good generalisation. 

 

Word vectorization by ELMo embeddings 

 
Figure 4.10: Class-wise and overall F1 score for Bi-LSTM-CRF (ELMo embeddings) for 

epochs ranging from 10 to 50 

 
Figure 4.11: Class-wise and overall performance score in macro and micro average on test 

data for the best performing model using ELMo embeddings (10 epochs) 
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Figure 4.10 and Figure 4.11 shows the class-wise and overall performance scores of NER using 

Bi-LSTM-CRF with ELMo embeddings on training and test data in terms of precision, recall 

and F1-score. The overall F1 score used is the micro-F1 score for the ELMo model. The high 

performance score of NER using ELMo embeddings for minority classes in most cases (30, 40 

and 50 epochs) in comparison to the majority classes on the training data triggers to take into 

account the micro F1 score for evaluating the overall model performance and finding the 

number of epochs at which the model gave the best performance.  Figure 4.10 shows the results 

on the training data evaluated by 4-fold cross-validation and taking the average of repeating 

the 4-fold cross-validation five times. It could be observed that the model gave the best overall 

micro F1-score of 0.846 when trained for ten epochs with a standard deviation of 0.0093 for 

the five repeats (see Table 4.2). The model gave the best class-wise F1-score for the class 

meeting date (26), with an F1-score of 0.85 and the class meeting address (27) was the most 

challenging to classify with the lowest F1-score of 0.79.  

 

On the test data, the Bi-LSTM-CRF NER model using ELMo embeddings gave an overall 

micro F1 score of 0.796 when trained for ten epochs with a standard deviation of 0.008 and an 

overall macro F1 score of 0.776 with a standard deviation of 0.008 by repeating the testing five 

times (see Table 4.2), and the model managed to classify named entities belonging to the class 

meeting date (26) with the highest F1 score of 0.85. It is interesting to note that though both 

meeting date (26) and company deadline (28) has a similar format, “13 November 2021”, the 

model managed the classify named entities belonging to the class meeting date (26) with high 

F1 score while those belonging to the class company deadline (28) was classified with a low 

F1 score of 0.66. This might be due to the confusion created in contextual embeddings due to 

the existence of similar embeddings with two different labels, which is similar to the behaviour 

seen on the training data. 

 
4.2 Results of experiments done to build an efficient automatic Named Entity 

Recogniser 
The Bi-LSTM-CRF model with 100-dimensional GloVe embeddings trained for 50 epochs, 

which was found to be the best model, was further tuned using the hyperparameter space in 

Table 3.6. The figures Figure 4.12, Figure 4.13 shows the comparison of the performance of 

the best model with the tuned model on the training data and the test data with the untuned 

model with 100-dimensional Glove embeddings. Figure 4.12 shows that hyperparameter 
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tuning did not result in a huge improvement in model performance score with an overall micro-

average F1 score of 0.875 vs 0.868 and macro-average F1 score of 0.86 vs 0.861 was obtained 

when the model was trained for 50 epochs using adam optimiser and a recurrent dropout of 0.3 

on training data. A micro-average F1 score of 0.87 vs 0.87 and a macro-average F1 score of 

0.868 vs 0.87 was observed on the test data. Lack of improvement in performance may be due 

to the smaller search space used for hyperparameter tuning.  

 

 
Figure 4.12: Comparison of overall and class-wise performance scores of the Bi-LSTM-CRF 
model with 100-dimensional GloVe embeddings and the tuned model on the training data 

 

 

 

0.851 0.886

0.779

0.927
0.868 0.861

0.864 0.903

0.753

0.921 0.875 0.86

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

company name
(25)

meeting date
(26)

meeting
address (27)

company
deadline(28)

overall micro-
average

overall macro-
average

sc
or

e

Number of epochs

f1 score-100 f1 score-100-tuned



 89 

 
Figure 4.13: Comparison of overall and class-wise performance scores of the Bi-LSTM-CRF 
model with 100-dimensional GloVe embeddings and the tuned model on the test data 

 
 

Summary of results 

Evaluating the performance of the best models found on the unseen test data, we can see that 

for models with word vectorisation by Keras embedding layer, and GloVe embeddings gave 

high recall, meaning that the models managed to make more correct predictions, in the form of 

true positives out of the total ground truth. In order to find the balance between recall and 

precision for evaluating the models, we use the F1 score as the measure. Comparing the overall 

F1-scores of the models on the unseen test data also shows that the models managed to achieve 

the best F1-score with a Bi-LSTM-CRF model with 100-dimensional GloVe embeddings, as 

shown in Table 4.2, this is in line with the results on the 2020 i2b2/VA data set [23, 98]. It 

should be noted that during the process of training and evaluating the models, we faced 

challenges in reproducing the results of experiments due to the stochastic nature of deep 

learning models. The artificial neural network operates on randomness, from random 

initialization of weights to random shuffling of the data while training [99]. This leads to 

variation in results and performance of the model when the model is trained and evaluated each 

time on the same data. Also, tuning the best model on a small hyperparameter search space did 

not result in improvement in model performance. 
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Secondary Experiment 

As proposed earlier the curse of dimensionality due to the high dimensionality of the output 

vector produced by ELMo embedding may be the reason for the result contradicting the 

hypothesis that contextual word embeddings would result in the best model.  Hence it looks 

interesting to analyse the effects of using embeddings of different dimensions on the same data 

set and base model and observe the variations in results. This was thus performed by comparing 

the model performance of using GloVe embeddings in 50 and 100 dimensions. It was observed 

that training a Bi-LSTM-CRF NER with 50-dimensional GloVe embeddings resulted in an 

overall average micro-F1 score of 0.8653±0.0013 on the training data using 4-fold cross-

validation repeated five times and 0.876±0.004 on test data for five repeats. It was also 

observed to achieve an overall macro F1 score of 0.85 on the training data and 0.88 on the test 

data. 

 

 
Figure 4.14: Class-wise and overall F1 scores of Bi-LSTM-CRF model using GloVe 
embeddings of 50 dimensions and 100 dimensions on training data 
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Figure 4.15:Class-wise and overall F1 scores of Bi-LSTM-CRF model using GloVe 
embeddings of 50 dimensions and 100 dimensions on test data 

 

Figure 4.14 and Figure 4.15 show the overall F1 scores calculated using micro-averaging and 

macro-averaging and class-wise F1 scores of the Bi-LSTM-CRF NER model using GloVe 

embeddings of dimensions 50 and 100. As per the concept of the curse of dimensionality, 

increase in number of features or dimension triggers the need for a bigger data set for better 

model performance. We analysed this by testing with a lower dimensional GloVe embedding, 

with a dimension of 50. This model was also trained for epochs ranging from 10 to 50 using 4-

fold cross-validation and was repeated for five times. It was found to have the highest overall 

macro-average and micro-average F1 score of 0.88 when trained for 50 epochs and tested on 

the test data. This is slightly better than the overall micro and macro F1 score on the test data 

using 100-dimensional GloVe embeddings of 0.87. Additionally, the class-wise F1 score using 

50-dimensional GloVe embeddings also shows a slight improvement for the majority of the 

classes with scores increasing from 0.84 to 0.86 for company name (25), 0.9 to 0.91 for meeting 

date (26), 0.81 to 0.83 for meeting address (27) except for (28) which gave a F1 score of 0.91 

in comparison to 0.92 using the 100-dimensional GloVe embeddings. 
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Chapter 5 Conclusions 
 

 

In this thesis we compared different NER models based on Bi-LSTM-CRF with various word 

vectorization techniques like using Keras embedding layer, pre-trained GloVe embeddings and 

embeddings by the Elmo model. All models were compared on the same data set, and the base 

model used for all the models which is composed of Bi-LSTM-CRF was fixed to have the same 

configuration for comparing all three models. In addition, the output word embedding 

dimension used for comparison was set to 100 for Keras embedding layer and GloVe 

embeddings, while ELMo embeddings by default have an output dimension of 1024 which was 

kept unchanged. The effect of different word vectorization was analysed through the study. 

Thus, we managed to solve the problem of the presence of huge volumes of unstructured data 

at DNB by building an efficient NER system based on Bi-LSTM-CRF coupled with the best 

word vectorization technique. It was found that the Bi-LSTM-CRF NER model when coupled 

with 100-dimensional GloVe embeddings gave the best performance. This was contrary to our 

hypothesis that contextual word embeddings would result in the best performing model. We 

proposed high dimensionality to be the underlying factor for the contradicting result and this 

was tested using a lower dimensional GloVe embedding which led to an improvement in 

performance. Hyperparameter tuning performed on the selected small search space did not lead 

to improvement in the model performance and it would be interesting to include more 

hyperparameters and increase the search space to tune the model in the future and push the 

performance scores further. It should be noted that the results of the study vary from the 

expected results based on previous researches conducted on various data sets like CoNLL 2003, 

2010 i2b2/VA, Reaxys gold set and BioSemantics patent corpus. This could be due to the 

variation in the model architecture and the data set used. Hence an efficient NER found to 

perform well on the DNB data set might not be the most efficient one for other data sets. We 

can thus conclude that the models are dependent on the variations in the data set used. There 

do not exist one single best model that works best for all the data sets. In other words, there is 

no free lunch (NFL). 
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Future Work 

The stochastic nature of deep learning models suggests that there exists variance in the 

performance score of the model, when the same model is trained on the same data set each time 

different performance score are obtained. The variance and standard deviation of the models 

were found to be a low value which we assume could be because of the low number of 

repetition of experiments performed for the study as well due to steps taken to handle 

randomness. The number of repeats were taken to be five for the thesis due to time and resource 

constraints. Randomness is introduced in deep learning models to introduce flexibility. It would 

be interesting to perform the experiments in the future without taking the steps to handle 

randomness and recording the distribution of scores for 30 to 100 repeats. In case of high 

variance, it would be interesting to explore the approach of using ensemble learning to reduce 

variance and make the model more robust [100]. Ensemble learning uses the concept of 

majority voting to make predictions. Members refer to the number of models in an ensemble. 

The steps to be followed are as follows: 

    

1. Define the maximum number of members to be trained for ensemble learning; take 20, 

for instance. 

2. Train one member on the training data and make predictions for the test data and record 

the performance score of the model. 

3. In the next step, train the second member and make predictions using prediction from 

step 2 and step 3 using majority voting, compute the final prediction for a two-member 

ensemble, evaluate the performance score of the ensemble.  

4. Repeat step three for twenty members 

5. Plot the performance score against the number of members in an ensemble. 

6. Based on the plot, we can find a point at which the score no longer increases. The 

number of members corresponding to this point is chosen for the final ensemble model. 

Let five be the number of members, after which there is no improvement in the score. 

7. Using the five-member ensemble, make the predictions, evaluate the performance 

score, repeat this for 30 times and find the variance between the scores, it would be 

observed that the variance between the scores is hugely reduced. 

 

There exist numerous studies in the field of Named entity recognition using Bi-LSTM-CRF 

models as discussed in Sec. 1.3. Analysing the improvement in performance score of NER 

using a Bi-LSTM-CRF model due to the difference in architecture and additional features used 
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puts forward scope for future development, which would be interesting to explore. It could be 

observed that using character embeddings along with word embeddings results in an 

improvement in the model performance because of the improvement in the model’s ability to 

capture morphological information related to words and hence this would be interesting to 

explore in the future [11, 12, 14, 15]. Study by Huang et al. [17] also reports that the 

performance of a Bi-LSTM-CRF NER with spelling features along with the word embeddings 

improved the model performance score. Previous research for clinical NER using clinical pre-

trained ELMo word embeddings have also shown improvement in the performance of Bi-

LSTM-CRF using general ELMo embeddings [23]. This could be an area that could be further 

explored by training an ELMo model from scratch, thus generating embeddings that are related 

to our data set instead of an ELMo model trained on a general data set. 
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