803 research outputs found

    Design and Control Modeling of Novel Electro-magnets Driven Spherical Motion Generators

    Get PDF

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio

    Manipulability in trajectory tracking for constrained redundant manipulators via sequential quadratic programming

    Get PDF
    Trajectory tracking methods for constrained redundant manipulators are presented in this thesis, where the end-effector of a redundant serial manipulator has to track a desired trajectory while some points on its kinematic chain satisfy one or more constraints. In addition, two manipulability indexes are taken into account in order to optimize the trajectory. The first index is defined in terms of the geometric Jacobian of the manipulator in the constrained configuration. The second index is based on the constrained Jacobian, which maps velocities from joint space to task space, taking into account the holonomic constraints. Three methods for solving the trajectory tracking problem are discussed. The first two, kinematic control (KC) and quadratic programming (QP), are widely discussed in literature. The third, sequential quadratic programming (SQP), is a new approach, unlike KC or QP, has as advantages (despite some shortcomings) not explicitly depend on pseudoinverse Jacobian, derivative from the desired trajectory and linearization of indexes or constraints. A discussion of these three methods is presented in terms of tracking error, constraint violation, singularity distance, among others through experiments performed on a Baxter collaborative robot.Métodos de rastreamento de trajetória para manipuladores redundantes restritos são apresentados nesta tese, onde o efetuador de um manipulador serial redundante tem que rastrear uma trajetória desejada enquanto alguns pontos em sua cadeia cinemática satisfazem uma ou mais restrições. Além disso, dois índices de manipulabilidade são levados em consideração a fim de otimizar a trajetória para evitar singularidades. O primeiro índice é definido em função do jacobiano geométrico do manipulador na configuração restrita. O segundo índice é baseado no Jacobiano restrito, o qual mapeia velocidades no espaço das juntas para a espaço da tarefa, levando em conta as restrições holonômicas. Três métodos para resolver o problema de rastreamento de trajetória são discutidos. Os dois primeiros, controle cinemático e programação quadrática (QP), são amplamente discutidos na literatura. O terceiro, programação quadrática sequencial (SQP), é uma nova abordagem, diferentemente do controle cinemático ou QP, tem como vantagens (apesar de algumas deficiências) não depender explicitamente da pseudo-inversa de jacobianos, derivadas da trajetória desejada e linearização de índices ou restrições. Uma discussão desses três métodos é apresentada em termos de erro de rastreamento, violação da restrição, distância de singularidades, entre outros através de experimentos realizados em um robô colaborativo Baxter

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Biomimetic Manipulator Control Design for Bimanual Tasks in the Natural Environment

    Get PDF
    As robots become more prolific in the human environment, it is important that safe operational procedures are introduced at the same time; typical robot control methods are often very stiff to maintain good positional tracking, but this makes contact (purposeful or accidental) with the robot dangerous. In addition, if robots are to work cooperatively with humans, natural interaction between agents will make tasks easier to perform with less effort and learning time. Stability of the robot is particularly important in this situation, especially as outside forces are likely to affect the manipulator when in a close working environment; for example, a user leaning on the arm, or task-related disturbance at the end-effector. Recent research has discovered the mechanisms of how humans adapt the applied force and impedance during tasks. Studies have been performed to apply this adaptation to robots, with promising results showing an improvement in tracking and effort reduction over other adaptive methods. The basic algorithm is straightforward to implement, and allows the robot to be compliant most of the time and only stiff when required by the task. This allows the robot to work in an environment close to humans, but also suggests that it could create a natural work interaction with a human. In addition, no force sensor is needed, which means the algorithm can be implemented on almost any robot. This work develops a stable control method for bimanual robot tasks, which could also be applied to robot-human interactive tasks. A dynamic model of the Baxter robot is created and verified, which is then used for controller simulations. The biomimetic control algorithm forms the basis of the controller, which is developed into a hybrid control system to improve both task-space and joint-space control when the manipulator is disturbed in the natural environment. Fuzzy systems are implemented to remove the need for repetitive and time consuming parameter tuning, and also allows the controller to actively improve performance during the task. Experimental simulations are performed, and demonstrate how the hybrid task/joint-space controller performs better than either of the component parts under the same conditions. The fuzzy tuning method is then applied to the hybrid controller, which is shown to slightly improve performance as well as automating the gain tuning process. In summary, a novel biomimetic hybrid controller is presented, with a fuzzy mechanism to avoid the gain tuning process, finalised with a demonstration of task-suitability in a bimanual-type situation.EPSR
    • …
    corecore