
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322391505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


14 

An Improved Adaptive Kinematics Jacobian 
Trajectory Tracking of a Serial Robot Passing 

Through Singular Configurations  

Ali T. Hasan1, Hayder M.A.A. Al-Assadi2 and Ahmad Azlan Mat Isa2 
1Mechanical & Manufacturing Engineering Department, Faculty of Engineering, 

University Putra Malaysia 43400 UPM Serdang, Selangor 
 2Faculty of Mechanical Engineering, University Technology MARA Shah Alam, 40450 

Malaysia 

1. Introduction 

In real time applications, the trajectory which has to be followed and the task that has to be 
performed during motion planning of multi-axis non-linear mechanical systems, such as 
robot manipulators are of great importance. Due to the non-linear transformation between 
the task space and the joint space coordinates, singularities and uncertainties in the arm 
configuration occur, the unplanned occurrence of such problems drive the end-effector out 
of the desired path which may cause collision of the robot arm with objects located in its 
work cell (Köker, 2005; Antonelli et al., 2003).  
Depending on different tasks operation requirements and circumstances, motion control 
algorithms can be developed either at the kinematics level or at the dynamic level (Graca & 
Gu, 1993; Karilk & Aydin, 2000). To develop a dynamic control algorithm, torque limits of 
the joint actuators are to be handled, two typical approaches were introduced which are the 
Computed-torque and Resolved-acceleration approach, both approaches are based on the 
inverse dynamic model of the robot system (Asada & Soltin,1986; Sopng & Vinyasagar,1998; 
Faiz & Agrawal ,2000). A problem with these algorithms is the remarkable computational 
load required to handle the dynamics of a full-sized manipulator, which is seldom 
affordable by current industrial control units. In addition, implementation of torque-based 
control laws requires replacement of the low-level joint servos typically available in 
industrial robots with custom control loops.  
Aimed at overcoming the above drawbacks, a different approach to path tracking based on 
the kinematics control was proposed. In detail, kinematics control consists in an inverse 
kinematics transformation which sends to the joint servos the reference values 
corresponding to an assigned end-effector trajectory; as a first advantage, this allows simple 
interfacing with the standard control architecture of industrial robots. In the framework of 
kinematics-based methods for path tracking, the counterpart of the physically meaning joint 
torque limits is played by acceleration constraints and the use of full dynamic models can be 
avoided; this typically leads to computationally light algorithms that allow real-time 
implementation on standard numerical hardware even for robot arms of many Degrees of 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

288 

Freedom (DOF). A further advantage of kinematics control methods is the possibility of 
exploiting the presence of redundant (DOF) (Antonelli et al., 2003). 
A considerable research effort has been devoted to solve the Inverse Kinematics problem in 
past years (Yang, 1969; Duffy & Rooney, 1975; Albala & Angeles, 1979; Tsai & Morgan, 1985; 
Daniel & Raul, 2003). Even though, Closed-form analytical solutions can only be found for 
manipulators having simple geometric structures (Antonelli et al., 2003; Karilk & Aydin, 
2000). A number of algorithmic techniques mainly based on inversion of the mapping 
established between the joint space and the task space of the manipulator’s Jacobian matrix 
have been proposed for those structures that cannot be solved in closed form.  
The Resolved Motion Rate-Control technique was the first work in this field (Whitney,1969), 
in this technique the pseudoinverse of the Jacobian matrix is used to obtain the joint 
velocities corresponding to a given end-effector velocity, a major drawback of this method 
was the singularity problem. The use of a damped least-squares inverse of the Jacobian 
matrix has been later proposed in lieu of the pseudoinverse to overcome the problem of 
kinematics singularities (Nakamura & Hanafusa, 1986; Wampler, 1986).  
Since in the above algorithmic methods the joint angles are obtained by numerical 
integration of the joint velocities, these and other related techniques suffer from errors due 
to both long-term numerical integration drift and incorrect initial joint angles.  
To alleviate the difficulty, algorithms based on the feedback error correction are introduced 
(Balestrino et al., 1984; Wampler & Leifer, 1988). However, it is assumed that the exact 
model of manipulator Jacobian matrix of the mapping from joint coordinate to Cartesian 
coordinate is exactly known. It is also not sure to what extent the uncertainty could be 
allowed. Therefore, most research on robot control has assumed that the exact kinematics 
and Jacobian matrix of the manipulator from joint space to Cartesian space are known. This 
assumption leads to several open problems in the development of robot control laws today 
(Antonelli et al., 2003). 
A new direction making control systems able to attribute more intelligence and high degrees 
of autonomy was proposed. With proper development, intelligent control systems may have 
great potential for solving today’s and tomorrow’s more complex control problems. The 
common objective associated with an intelligent control system can be identified to reduce 
accurate crisp model dependence and increase intelligent abilities of the control system. 
Owing to this motivation, there have been increasing research interest of ANNs and a 
number of realistic control approaches have been proposed and justified for their feasible 
applications to robotic systems (D’Souza et al., 2001; Ogawa et al., 2005; Köker, 2005; Hasan 
et al., 2006; Al-Assadi et al., 2007). Artificial neural network (ANN) uses data sets to obtain 
the models of systems in fields such as robotics, factory automation and autonomous 
vehicles. Their ability to learn by example makes artificial neural networks very flexible and 
powerful. Therefore, neural networks have been intensively used for solving regression and 
classification problems in many fields. In short, neural networks are nonlinear processes that 
perform learning and classification. Recently neural networks have been used in many areas 
that require computational techniques such as pattern recognition, optical character 
recognition, outcome prediction and problem classification. The current focuses in learning 
research lies on increasingly more sophisticated algorithms for the off-line analysis of finite 
data sets, without severe constraints on the computational complexity of the algorithms 
(Bingual et al., 2005).  

www.intechopen.com



An Improved Adaptive Kinematics Jacobian Trajectory Tracking  
of a Serial Robot Passing Through Singular Configurations   

 

289 

Kuroe and colleges (Kuroe et al., 1994) have proposed a learning method of a neural 
network such that the network represents the relations of both the positions and velocities 
from the Cartesian coordinate to the joint space coordinate. They’ve derived a learning 
algorithm for arbitrary connected recurrent networks by introducing adjoint neural 
networks for the original neural networks (Network inversion method). On-line training has 
been performed for a 2 DOF robot. 
It was essentially an on-line learning process (Graca & Gu, 1993) have developed a Fuzzy 
Learning Control algorithm. Based on the robotic differential motion procedure, the 
Jacobian inverse has treated as a fuzzy matrix and has learned through the fuzzy regression 
process. It was significant that the fuzzy learning control algorithm neither requires an exact 
kinematics model of a robotic manipulator, nor a fuzzy inference engine as is typically done 
in conventional fuzzy control. Despite the fact that unlike most learning control algorithms, 
multiple trials are not necessary for the robot to “learn” the desired trajectory. A major 
drawback was that it only remembers the most recent data points introduced, the 
researchers have recommended neural networks so that it would remember the trajectories 
as it traversed them.  
Studying the trajectory tracking of a serial manipulator by using ANNs has two problems, 
one of these is the selection of the appropriate type of network and the other is the 
generating of suitable training data set (Funahashi, 1998; Hasan et al, 2007). Researchers 
have applied different methods for gathering training data, while some of them have used 
the kinematics equations (Karilk & Aydin, 2000; Bingual et al., 2005), others have used the 
network inversion method (Kuroe et al., 1994); Köker, 2005), while the cubic trajectory 
planning was also used (Köker et al., 2004), a simulation program has also been used for this 
purpose (Driscoll, 2000). However, there are always kinematics uncertainties presence in the 
real world such as ill-defined linkage parameters, links flexibility and backlashes in gear 
train. 
The proposed solution of the kinematics Jacobian in this approach, involves the 
determination of the end-effectors coordinates and their rate of change as a function of given 
positions and speed of the axes of motion, although this is very difficult in practice (Hornic, 
1991), training data were recorded experimentally from sensors fixed on each joint and the 
Euler (RPY) representation was used to represent the orientation (as was recommended by 
Karilk and Aydin (Karilk & Aydin, 2000), as they have used the robot model to get the 
training data and used the homogeneous transformation matrix representation to represent  
the orientation). On the other hand, two different network’s configurations were trained and 
compared to examine the effect of the orientation on the Inverse Kinematics solution of 
serial robots. Finally, the obtained results from the testing phase of the best network were 
verified experimentally using a six DOF serial robot manipulator. 

2. Kinematics of serial robots 

For serial robot manipulators, the Cartesian space coordinates x  of a robot manipulator is 
related to the joint coordinates q  by:  

 ( )x f q=  (1) 

where ( )f ⋅ is a non-linear differential function. 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

290 

If the Cartesian coordinates x  were given, joint coordinates q can be obtained as: 

 1( )q f x−=  (2) 

If a Cartesian linear velocity is denoted by V , the joint velocity vector q
•

 has the following 

relation: 

 V J q
•

=  (3) 

Where  J  is the Jacobian matrix. 

If V , is a desired Cartesian velocity which represents the linear velocity of the desired 
trajectory to be followed. Then, the joint velocity vector q

•

 can be resolved by: 

 1q J V
•

−=  (4) 

In differential motion control, the desired trajectory is subdivided into sampling points 
separated by a time interval tΔ  between two terminal points of the path. Assuming that at 
time it  the joint positions take on the value ( )iq t , the required q at time ( )it t+ Δ is 
conventionally updated by using: 

 ( ) ( )i iq t t q t q t
•

+ Δ = + Δ  (5) 

Substituting Eqs. (2) and (4) into (5) yields: 

 1 1( ) ( )( )i iq t t f x t J V t− −+ Δ = + Δ  (6) 

Equation (6) is a kinematics control law used to update the joint position q  and is evaluated 

on each sampling interval. The resulting ( )iq t t+ Δ  is then sent to the individual joint motor 

servo-controllers, each of which will independently drive the motor so that the robotic 
manipulator can be maneuvered to follow the desired trajectory (Graca & Gu, 1993). 
Using ANN to solve relation (2), researchers applied two approaches. In (Ogawa et al., 2005; 
Hasan et al., 2006; Köker et al.,2004) only the Cartesian coordinates has been inverted, 
mapping from the joint space to the Cartesian space is uniquely decided when the end 
effector’s position is calculated using direct kinematics, as shown in figure 1(a). However, 
the transformation from the Cartesian to the joint space is not uniquely decided in the 
inverse kinematics as shown in figure 1(b). 
When coupling of the position and orientation e.g., (Köker,2005; Karilk & Aydin, 2000) 
Denavit and Hartenberg (Denavit & Hertenberg, 1955) proposed a matrix method of 
systematically establishing a coordinate system to each link of an articulated chain as shown 
in figure 2 to describe both translational and rotational relationships between adjacent links 
(Fu et al., 1987; Köker, 2005).  
In this method each of the manipulator links is modelled, this modelling describes the “A” 
homogeneous transformation matrix, which uses four link parameters. The forward 
kinematics solution can be obtained as: 

www.intechopen.com



An Improved Adaptive Kinematics Jacobian Trajectory Tracking  
of a Serial Robot Passing Through Singular Configurations   

 

291 

 6 1 2 3 4 5 6

|

. . . . . |

0 0 0 1|

x x x x

y y y y

END EFFECTOR

z z z z

Rotation Position
n s a p

matrix vector
n s a p

A T A A A A A A
n s a p

Perspective
Scaling

transformation

−

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = = − − − − − − − − =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥⎣ ⎦

 (7) 

 

Fig. 1. a) Joint angles and end-effector’s coordinates (forward kinematics). 
            b) Combination of all possible joint angles (Inverse Kinematics). 

Where: 
:n  Normal vector of the hand. Assuming a parallel-jaw hand, it is orthogonal to the 

fingers of the robot arm. 
:a  Sliding vector of the hand. It is pointing in the direction of the finger motion as the 

gripper opens and closes. 
:a  Approach vector of the hand. It is pointing in the direction normal to the palm of the

hand (i.e., normal to the tool mounting plate of the arm). 
:p  Position vector of the hand. It points from the origin of the base coordinate system to

the origin of the hand coordinate system, which is usually located at the center point
of the fully closed fingers.  

The orientation of the hand is described according to the RPY rotation as: 

 ( , , ) ( , ). ( , ). ( , )x y z w z w y w xRPY Rot Z Rot Y Rot Xϕ ϕ ϕ ϕ ϕ ϕ=  (8) 

After 6T  matrix is solved: 

 2( , )z y xATAN n nϕ =  (9) 

 2( , cos sin )y z x z y zATAN n n nϕ ϕ ϕ= − +  (10) 

 2( sin cos , cos sin )x x z y z y z x zATAN a a o oϕ ϕ ϕ ϕ ϕ= − −  (11) 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

292 

 
Fig. 2. Schematic diagram for a general 6 DOF serial robot showing the wrist mechanism 

These equations describe the orientation according to the RPY representation (Karilk & 
Aydin, 2000). To find the IK solution, however, joints angels are found according to the 
manipulator’s end position, described with respect to the world coordinate system. 
IK solution can be shown as a function: 

 1 2 3 4 5 6( , , , , , ) ( , , , , , )x y zIK X Y Z ϕ ϕ ϕ θ θ θ θ θ θ=  (12) 

Traditional methods for solving the IK problem are inadequate if the structure of the robot is 
complex, besides; these methods suffer from the fact that the solution does not give a clear 
indication on how to select an appropriate solution from the several possible solutions for a 
particular arm configuration, users often needs to rely on their intuition to choose the right 
answer (Fu et al., 1987; Hasan et al., 2006). 
On the other hand, solving Eq. (4) for the joint velocities (Inverting the Jacobian matrix), 
results in the singularity problem. The manipulator singularity resolution problem has 
attracted many research interests, and various approaches have been proposed to tackle the 
problem. Techniques of coping with kinematics singularities can be divided into four 
groups: avoiding singular configurations, robust inverses, a normal form approach and 
extended Jacobian techniques.  
The first approach to cope with singularities is to keep a current configuration far away 
from singular configurations. Unfortunately, it causes severe restrictions on the 
configuration space as well as the workspace because the singular configurations split the 
configuration space into separate components. To avoid ill conditioning of the Jacobian 
matrix, robust inverses are used. Instead inverting the original Jacobian matrix at 
singularity, a disturbed well-conditioned Jacobian matrix is inverted. The main drawback 
using this approach is that robust inverse methods increase errors in following a desired 
path. 

 

www.intechopen.com



An Improved Adaptive Kinematics Jacobian Trajectory Tracking  
of a Serial Robot Passing Through Singular Configurations   

 

293 

The normal form technique, with the use of diffeomorphisms in joint and task spaces, 
expresses original kinematics around singularity in the simplest normal form. Then, a piece 
of the path to follow corresponding to the singular configuration mapped into the task space 
is moved from the task to the joint space and trajectory planning is performed there. Far 
away from singularities the basic Newton algorithm is used to generate a trajectory. Finally, 
trajectory pieces are joined. 
For most singularities the normal form approach enables to detect their types. It provides for 
a smooth passing through singular configurations. The main disadvantage of the normal 
form approach is a significant computational load in deriving the diffeomorphisms.  
Finally, The extended Jacobian technique, supplements original kinematics with auxiliary 
functions. Then, extended Jacobian is formulated to be well conditioned. 
For nonredundant manipulators with square Jacobian matrices the extended Jacobian forms 
a non-square matrix and its generalized (Moore-Penrose) inversion is computationally 
expensive (Dulęba & Sasiadek, 2000). 
Therefore, to analyze the singular conditions of a manipulator and develop effective 
algorithms to resolve the inverse kinematics problem at or in the vicinity of singularities are 
of great importance. 

3. Artificial neural networks 

The possibility of developing a machine that would “think” has intrigued human beings 
since ancient times, Machinery can outperform humans physically. Similarly, computers can 
outperform mental functions in limited areas, notably in the speed of mathematical 
calculations. For example, the fastest computers developed are able to perform roughly 10 
billion calculations per second. But making more powerful computers will probably not be 
the way to create a machine capable of thinking. Computer programs operate according to 
set procedures, or logic steps, called algorithms. In addition, most computers do serial 
processing such as operations of recognition and computations are performed one at a time. 
The brain works in a manner called parallel processing, performing a number of operations 
simultaneously. To achieve simulated parallel processing, artificial neural networks (ANNs) 
are collections of small individual interconnected processing units. Information is passed 
between these units along interconnections. An incoming connection has two values 
associated with it, an input value and a weight. The output of the unit is a function of the 
summed value. ANNs while implemented on computers are not programmed to perform 
specific tasks. Instead, they are trained with respect to data sets until they learn the patterns 
presented to them. Once they are trained, new patterns may be presented to them for 
prediction or classification (Kalogirou, 2001). 
The elementary nerve cell called a neuron, which is the fundamental building block of the 
biological neural network. Its schematic diagram is shown in Figure 3.  
A typical cell has three major regions: the cell body, which is also called the soma, the axon, 
and the dendrites. Dendrites form a dendritic tree, which is a very fine bush of thin fibbers 
around the neuron's body. Dendrites receive information from neurons through axons-Long 
fibbers that serve as transmission lines. An axon is a long cylindrical connection that carries 
impulses from the neuron. The end part of an axon splits into a fine arborization. Each 
branch of it terminates in a small end bulb almost touching the dendrites of neighbouring 
neurons. The axon-dendrite contact organ is called a synapse. The synapse is where the 
neuron introduces its signal to the neighbouring neuron (Zurada, 1992; Hasan et al., 2006), 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

294 

to stimulate some important aspects of the real biological neuron. An ANN is a group of 
interconnected artificial neurons usually referred to as “node” interacting with one another 
in a concerted manner; Figure 4 illustrates how information is processed through a single 
node. The node receives weighted activation of other nodes through its incoming 
connections. First, these are added up (summation). The result is then passed through an 
activation function and the outcome is the activation of the node. The activation function 
can be a threshold function that passes information only if the combined activity level 
reaches a certain value, or it could be a continues function of the combined input, the most 
common to use is a sigmoid function for this purpose. For each of the outgoing connections, 
this activation value is multiplied by the specific weight and transferred to the next node 
(Kalogirou, 2001; Hasan, 2006). 

Fig. 3. Schematic diagram for the biological neuron  

An artificial neural network consists of many nods joined together usually organized in 
groups called ‘layers’, a typical network consists of a sequence of layers with full or random 
connections between successive layers as Figure 5 shows. There are typically two layers 
with connection to the outside world; an input buffer where data is presented to the 
network, and an output buffer which holds the response of the network to a given input 
pattern, layers distinct from the input and output buffers called ‘hidden layer’, in principle 
there could be more than one hidden layer, In such a system, excitation is applied to the 
input layer of the network.  
Following some suitable operation, it results in a desired output. Knowledge is usually 
stored as a set of connecting weights (presumably corresponding to synapse efficiency in 
biological neural system) (Santosh et al., 1993). A neural network is a massively parallel-
distributed processor that has a natural propensity for storing experiential knowledge and 
making it available for use. It resembles the human brain in two respects; the knowledge is 
acquired by the network through a learning process, and interneuron connection strengths 
known as synaptic weights are used to store the knowledge (Haykin, 1994). 
Training is the process of modifying the connection weights in some orderly fashion using a 
suitable learning method. The network uses a learning mode, in which an input is presented 
to the network along with the desired output and the weights are adjusted so that the 
network attempts to produce the desired output. Weights after training contain meaningful 
information whereas before training they are random and have no meaning (Kalogirou, 
2001).  

 

www.intechopen.com



An Improved Adaptive Kinematics Jacobian Trajectory Tracking  
of a Serial Robot Passing Through Singular Configurations   

 

295 

 
Fig. 4. Information processing in the neural unit 

Fig. 5. Schematic diagram of a multilayer feedforward neural network 

Two different types of learning can be distinguished: supervised and unsupervised learning, 
in supervised learning it is assumed that at each instant of time when the input is applied, 
the desired response d of the system is provided by the teacher. This is illustrated in Figure 
6-a. The distance ρ  [d,o] between the actual and the desired response serves as an error 
measure and is used to correct network parameters externally. Since adjustable weights are 
assumed, the teacher may implement a reward-and-punishment scheme to adopt the 
network's weight. For instance, in learning classifications of input patterns or situations with 
known responses, the error can be used to modify weights so that the error decreases. This 
mode of learning is very pervasive.  

 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

296 

Also, it is used in many situations of learning. A set of input and output patterns called a 
training set is required for this learning mode. Figure 6-b shows the block diagram of 
unsupervised learning. In unsupervised learning, the desired response is not known; thus, 
explicit error information cannot be used to improve network’s behaviour. Since no 
information is available as to correctness or incorrectness of responses, learning must 
somehow be accomplished based on observations of responses to inputs that we have mar-
ginal or no knowledge about (Zurada, 1992). 
The fundamental idea underlying the design of a network is that the information entering 
the input layer is mapped as an internal representation in the units of the hidden layer(s) 
and the outputs are generated by this internal representation rather than by the input vector. 
Given that there are enough hidden neurons, input vectors can always be encoded in a form 
so that the appropriate output vector can be generated from any input vector (Santosh et al., 
1993). 

 
Fig. 6. Basic learning modes 

As it can be seen in figure 5, the output of the units in layer A (Input Layer) are multiplied 
by appropriate weights Wij and these are fed as inputs to the hidden layer. Hence if Oi are 
the output of units in layer A, then the total input to the hidden layer, i.e., layer B is: 

 B i ij
i

Sum O W=∑  (13) 

And the output Oj of a unit in layer B is: 

 ( )j BO f sum=  (14) 

Where f is the non-linear activation function, it is a common practice to choose the sigmoid 
function given by:  

 
1

( )
1 jj O

f O
e
−=

+
 (15) 

as the nonlinear activation function. However, any input-output function that possesses a 
bounded derivative can be used in place of the sigmoid function. If there is a fixed, finite set 

 

www.intechopen.com



An Improved Adaptive Kinematics Jacobian Trajectory Tracking  
of a Serial Robot Passing Through Singular Configurations   

 

297 

of input-output pairs, the total error in the performance of the network with a particular set 
of weights can be computed by comparing the actual and the desired output vectors for 
each presentation of an input vector. The error at any output unit eK in the layer C can be 
calculated by:  

 K K Ke d O= −  (16) 

Where dK is the desired output for that unit in layer C and OK is the actual output produced 
by the network .the total error E at the output can be calculated by:  

 21
( )

2 K K
K

E d O= −∑  (17) 

Learning comprises changing weights so as to minimize the error function and to minimize 
E by the gradient descent method. It is necessary to compute the partial derivative of E with 
respect to each weight in the network. Equations (13) and (14) describe the forward pass 
through the network where units in each layer have there states determined by the inputs 
they received from units of lower layer. The backward pass through the network that 
involves “back propagation “ of weight error derivatives from the output layer back to the 
input layer is more complicated. For the sigmoid activation function given in equation (15), 
the so-called delta-rule for iterative convergence towards a solution maybe stated in general 
as:  

 JK K JW OηδΔ =  (18) 

Where η  is the learning rate parameter, and the error Kδ  at an output layer unit K is given 

by:  

 (1 )( )K K K K KO O d Oδ = − −  (19) 

And the error Jδ  at a hidden layer unit is given by:  

 (1 )J J J K JK
K

O O Wδ δ= − ∑  (20) 

Using the generalize delta rule to adjust weights leading to the hidden units is back 
propagating the error-adjustment, which allows for adjustment of weights leading to the 
hidden layer neurons in addition to the usual adjustments to the weights leading to the 
output layer neurons. A back propagation network trains with two step procedures as it is 
shown in figure 7, the activity from the input pattern flows forward through the network 
and the error signal flows backwards to adjust the weights using the following equations:  

 IJ IJ J IW W Oηδ= +  (21) 

 JK JK K JW W Oηδ= +  (22)  

Until for each input vector the output vector produced by the network is the same as (or 
sufficiently close to) the desired output vector (Santosh et al., 1993).  

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

298 

ANNs while implemented on computers are not programmed to perform specific tasks. 
Instead, they are trained with respect to data sets until they learn the patterns presented to 
them. Once they are trained, new patterns may be presented to them for prediction or 
classification (Kalogirou, 2001).  

4. Experiment design 

Trajectory planning was performed for every 1-second interval using cubic trajectory 
planning method to generate the angular position and velocity for each joint, and then these 
generated data were fed to the robot’s controller to generate the corresponding Cartesian 
position, orientation and linear velocity of the end-effector, which were recorded 
experimentally from sensors fixed on the robot joints.  
In trajectory planning of a manipulator, it is interested in getting the robot from an initial 
position to a target position with free of obstacles path. Cubic trajectory planning method 
has been used in order to find a function for each joint between the initial position, θ0, and 
final position, θf of each joint. 
It is necessary to have at least four-limit value on the θ(t) function that belongs to each joint, 
where θ(t) denotes the angular position at time t.  
Two limit values of the function are the initial and final position of the joint, where: 

 0(0)θ θ=  (23) 

 ( )f ftθ θ=  (24) 

Additional two limit values, the angular velocity will be zero at the beginning and the target 
position of the joint, where: 

 (0) 0θ
•

=  (25) 

 ( ) 0ftθ
•

=  (26) 

Based on the constrains of typical joint trajectory listed above, a third order polynomial 
function can be used to satisfy these four conditions; since a cubic polynomial has four 
coefficients.  
These conditions can determine the cubic path, where a cubic trajectory equation can be 
written as: 

 2 3
0 1 2 3( )t a a t a t a tθ = + + +  (27) 

The angular velocity and acceleration can be found by differentiation, as follows: 

 2
1 2 3( ) 2 3t a a t a tθ

•

= + +  (28) 

 2 3( ) 2 6t a a tθ
••

= +  (29) 

Substituting the constrain conditions in the above equations results in four equations with 
four unknowns: 

www.intechopen.com



An Improved Adaptive Kinematics Jacobian Trajectory Tracking  
of a Serial Robot Passing Through Singular Configurations   

 

299 

00 ,aθ =  
2 3

0 1 2 3 ,f f f fa a t a t a tθ = + + +  

00 ,a=  
2

1 2 30 2 3f fa a t a t= + +  

(30) 

The coefficients are found by solving the above equations. 

0 0 ,a θ=  

1 0,a =  

2 02

3
( ),f

f

a
t

θ θ= −  

3 03

2
( )f

f

a
t

θ θ−
= −  

(31) 

Angular position and velocity can be calculated by substituting the coefficients driven in Eq. 
(31) into the cubic trajectory Equations (27) and (28) respectively (Köker et al.,2004), which 
yield: 

 2 3
0 0 02 3

3 2
( ) ( ) ( ) ,i i if i if i

f f

t t t
t t

θ θ θ θ θ θ= + − − −  (32) 

2
0 02 3

6 6
( ) ( ) ( )i if i if i

f f

t t t
t t

θ θ θ θ θ
•

= − − −  

1,2,...........,i n=     Where n  is the joint number 
(33) 

Joint angles generated ranged from amongst all the possible joint angles that do not exceed 
the physical limits of each joint; Table 1 shows the range of angles for each joint used in this 
study. 
 

 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 
Range of 

angles 
0 160−c c  0 60−c c  00 150− c  00 150− c  0 120−c c  0 160−c c  

Table 1. The range of angles for each joint used  

Trajectory used for the training process has meant to be random trajectory rather than a 
common trajectory performed by the robot in order to cover as most space as possible of the 
robot’s working cell. The interval of 1 second was used between a trajectory segment and 
another where the final position for one segment is going to be the initial position for the 
next segment and so on for every joint of the six joints of the robot. 
After generating the joint angles and their corresponding angular velocities, these data are 
fed to the robot controller, which is provided with a sensor system that can detect the 
angular position and velocity on one hand and the Cartesian position, orientation and the 
linear velocity of the end-effector on the other hand; which are recorded to be used for the 
networks’ training and testing process later. 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

300 

5. ANN implementation 

To avoid modeling kinematics and the determination of the inverse of the Jacobian matrix, 
the ANN technique has been used.   
Two different configurations of supervised feed-forward ANNs were designed using           
C programming language, each of which consists of input, output, and one hidden layer. 
Every neuron in each network was fully connected with each other. Sigmoid transfer 
function was chosen to be the activation function, and the generalized backpropagation 
GDR algorithm was used in the training process. 
Off-line training was implemented, every input and output values are usually scaled 
individually such that overall variance in the data set is maximized, this is necessary as it 
leads to faster learning, all the vectors were scaled to reflect continuous values ranges      
from  -1 to 1. 
FANUC M-710i robot was used in this study, which is a serial robot manipulator consisting 
of axes and arms driven by servomotors. The place at which arm is connected is a joint, or 
an axis. This type of robot has three main axes; the basic configuration of the robot depends 
on whether each main axis functions as a linear axis or rotation axis. The wrist axes are used 
to move an end effecter (tool) mounted on the wrist flange. The wrist itself can be wagged 
about one wrist axis and the end effecter rotated about the other wrist axis, this highly non-
linear structure makes this robot very useful in typical industrial applications such as the 
material handling, assembly of parts and painting. 

5.1 Training stage 
In order to overcome the uncertainties in arm configuration and singularities that result 
from applying the robot system model, and to make sure that for a certain trajectory the 
angular position and velocity of each joint will be the same as desired when planning the 
trajectory for the robot; the ANN technique has been utilized where learning is only based 
on observation of the input–output relationship. 
In back-propagation networks, the number of hidden neurons determines how well a 
problem can be learned. If too many are used, the network will tend to try to memorize the 
problem and thus not generalize well later; if too few are used, the network will generalize 
well but may not have enough power to learn the patterns well. Obtaining the correct 
number of hidden neurons is a matter of trial and error. 

5.1.1 Networks’ topologies 
In this chapter, two different configurations were used in the training process to determine 
which configuration is better to be used corresponding to Eq. (2) previously discussed in 
section 2. 

5.1.1.1 First Configuration (4 – 12 Network Configuration) 

As can be seen in Figure 7, the input layer consists of 4 neurons the first three of them 
represent the Cartesian position of the X, Y and Z positions along the world coordinate 
system of the robot while the fourth neuron represents the linear velocity of the end-effector. 
The output layer consists of 12 neurons; the first 6 of them represent the angular position of 
the robot joints while the last 6 of them represent the angular velocity of each joint 
respectively. Number of neurons in the hidden layer was set to 77 with a constant learning 
factor of 0.9 by trail and error. 

www.intechopen.com



An Improved Adaptive Kinematics Jacobian Trajectory Tracking  
of a Serial Robot Passing Through Singular Configurations   

 

301 

 

Fig. 7. The Topology of the First Network (4 –12 Network Configuration) 

5.1.1.2 Second Configuration (7 – 12 Network Configuration) 

In this configuration, the input layer has 7 neurons; the first three of them represent the X, Y 
and Z coordinates of the robot along the world coordinates system, the next three represent 
the orientation of the tool mounted on the last joint of the robot according to the RPY (Roll, 
Pitch, Yaw) representation, while the last neuron represents the linear velocity of the end-
effector; as can be seen in figure 8. 
Same as the first configuration, the output layer consists of 12 neurons; the first 6 of them 
represent the angular position of the robot joints while the last 6 of them represent the 
angular velocity of each joint respectively. 
Number of neurons in the hidden layer was set to 55 with a constant learning factor of 0.9 
by trail and error.  

5.1.2 Networks’ performance 
The success of the ANN approach is measured according to the training error (the difference 
between the desired and actual system outputs). In the Generalized Delta learning Rule 
GDR the system is modified following each iteration, which leads to the learning curves a 
sample of which is shown in Figure 9 of each network configuration compared to the other 
(the rest of the curves have a similar behavior), as this curve shows; error is reduced in 
subsequent trials. 
Table 2, shows the error percentages of each of the six joints compared for each other in both 
network configurations after the training has finished after 150 000 iteration. 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

302 

 

Fig. 8. The Topology of the Second Network (7 –12 Network Configuration) 

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Iteration X 1000

E
rr

o
r 

%

7 - 12 Network Configuration

4 - 12 Network Configuration

 

Fig. 9. The learning curve for the angular position of Joint 1 as a sample 

www.intechopen.com



An Improved Adaptive Kinematics Jacobian Trajectory Tracking  
of a Serial Robot Passing Through Singular Configurations   

 

303 

Network Configuration   
4 - 12 7 - 12 

θ 
Joint 1 ω 

7.898% 
8.67% 

2.27% 
1.8% 

θ 
Joint 2 ω 

12.432% 
39.75% 

0.907% 
2.183% 

θ 
Joint 3 ω 

2.607% 
5.03% 

1.033% 
1.775% 

θ 
Joint 4 ω 

9.82% 
10.4% 

2.015% 
2.342% 

θ 
Joint 5 ω 

8.47% 
19.94% 

4.435% 
1.558% 

θ 
Joint 6 ω 

10.86% 
5.735% 

1.143% 
1.528% 

Table 2. Training error percentages of each of the six joints compared for each other in both 
network configurations 

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400

Time ( Sec. )

A
n

g
u

la
r 

P
o

si
ti

o
n

 (
 D

e
g

. )

Desired

7 - 12 Network Configuration

4 - 12 Network Configuration

 

Fig. 10. The response of both network configurations compared to each other during 
training (The angular position of the firs joint as an example) 

As a result for the training stage, 7-12 network configuration has shown a better response 
than the 4-12 network configuration, in terms of precision and iteration (as can be seen 
through Table 2). Therefore, it has been chosen to apply the testing data. 
To drive the robot to follow a desired path, it will be necessary to divide this path into small 
segments, and to move the robot through all intermediate points. To accomplish this task, at 
each intermediate location, the robot’s trajectory equations are solved, a set of joint variables 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

304 

is calculated, and the controller is directed to drive the robot to the next segment. When all 
segments are completed, the robot will be at the end point as desired. Figure 10 shows a 
sample of angular position and velocity for each joint during training (other joints have a 
similar behavior). 

5.2 Testing phase 
New data that has never been introduced to the network before have been fed to the trained 
network in order to test its ability to make prediction and generalization to any set of data 
later overcoming the singularity and uncertainty in the arm configuration resulting from 
applying the robot model.  
Testing data were meant to pass nearby and through the singular configurations (Fourth 
and Fifth joints), these configurations have been determined by setting the determinant of 
the Jacobian matrix to zero.  
Table 3 shows the percentages of error for the testing data set for each joint. 
In order to verify the testing results, experiment has been performed to make sure that the 
output is the same or sufficiently close to the desired trajectory, and to show the combined 
effect of error, Figures 11 to 16 show the tracking of the Cartesian paths for the X, Y, and Z 
coordinates with the Roll, Pitch and Yaw orientation angles respectively.  
The locus of which robot is passing through singular configurations are also shown.  The 
error percentages in the experimental data are shown in Table 4.  
 

 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 
Angular Position 
Angular Velocity 

0.06% 
3.79% 

0.029% 
4.285% 

0.039% 
3.745% 

5.865% 
3.085% 

5.065% 
4.97% 

1.495% 
2.1% 

Table 3. Error percentages for the testing data set for each joint 
 

Cartesian Position Orientation 
Px Py Pz Roll Pitch Yaw 

5.645% 1.09% 3.93% 5.95% 9.24% 5.338% 

Table 4. Error percentages in the experimental data 

6. Conclusions 

In this approach, ANN technique has been used. The Jacobian inverse is now learned 
through training the network based only on observation of the input–output relationship 
unlike most other control schemes, which depends on the robot system model 
The proposed technique does not require any prior knowledge of the kinematics model of 
the system being controlled, the basic idea of this concept is the use of the ANN to learn the 
characteristics of the robot system rather than to specify explicit robot system model. 
Two different ANN configurations were used in this study. Training results have shown a 
better response (in terms of precision and iteration) for the configuration where the orientation 
of the tool is considered as an input to the network, which makes it useful in applications 
where a relatively accurate, minimally complex, and cheaper configuration is required. 
As a conclusion, this study shows that ANNs are applicable to the Kinematics Jacobian 
solution of serial robots. Since one of the most important issues in using ANNs is the 
selection of the appropriate type of network, for future research, we suggest that different 

www.intechopen.com



An Improved Adaptive Kinematics Jacobian Trajectory Tracking  
of a Serial Robot Passing Through Singular Configurations   

 

305 

types of networks (different topology, different activation function, different learning mode) 
to be used in order to get, if possible, more accurate trajectory tracking.  
 

 

Fig. 11. Experimental trajectory tracking for the predicted X coordinate 
 

 

Fig. 12. Experimental trajectory tracking for the predicted Y coordinate 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

306 

 

Fig. 13. Experimental trajectory tracking for the predicted Z coordinate 
 

 

Fig. 14. Experimental trajectory tracking for the Roll orientation angle 

www.intechopen.com



An Improved Adaptive Kinematics Jacobian Trajectory Tracking  
of a Serial Robot Passing Through Singular Configurations   

 

307 

 

Fig. 15. Experimental trajectory tracking for the Pitch orientation angle 
 

 

Fig. 16. Experimental trajectory tracking for the Yaw orientation angle 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

308 

7. References 

Al-Assadi, H.M.A.A.; Hamouda, A.M.S.; Ismail, N. and Aris, I. (2007) .An adaptive learning 
algorithm for controlling a two-degree-of-freedom serial ball-and-socket actuator. 
Proceedings of the I MECH E Part I Journal of Systems & Control Engineering, 
Vol.221, No. 7, pp.1001-1006. 

Albala, H. & Angeles, J. (1979). Numerical solution to the input–output displacement 
equation of the general 7R spatial mechanism. Proceedings of the Fifth world congress 

on theory of machines and mechanisms, pp 8–11. 
Antonelli, G.; Chiaverini, S. and Fusco, G. (2003) .A new on-line algorithm for inverse 

kinematics of robot manipulators ensuring path-tracking capability under joint 
limits. IEEE Transaction on Robotics and Automation, Vol.19, No.1, pp. 162-167. 

Asada, H.  & Soltin, J-J. E., Robot analysis and control. John Wiley and Sons Inc., New York. 
1986. 

Balestrino, A., De Maria, G. and Sciavicco, L., Robust control of robotic manipulators. 
International Proceedings of the 9th IFAC World Congr. Budapest, Hungary .1984; 
6:80-85. 

Bingual, Z., Ertunc, H.M. and Oysu, C., Comparison of Inverse Kinematics Solutions Using 
Neural Network for 6R Robot Manipulator with Offset. 2005 ICSC congress on 
Computational Intelligence. 

Daniel, M. and Raul, G., Hierarchical Kinematics analysis of robots. Mech Mach Theory. 
2003; 33: 497–518. 

Denavit, J., and Hertenberg, R.S.A. Kinematics Notation for lower Pair Mechanism Based on 
Matrices. Applied mechanics 1955; 77: 215-221. 

Driscoll, J.A., Comparison of neural network architectures for the modeling of robot inverse 
kinematics. Proceedings of the IEEE, south astcon. 2000:44-51. 

D'Souza, A., Vijayakumar, S., and Schaal, S. (2001) ‘Learning Inverse Kinematics’. 
Proceedings of the 2001 IEEE/ RSJ International Conference on Intelligent Robots and 

Systems Maui, Haw- USA, pp.298-303. 
Duffy, J. and Rooney, J., A foundation for a unified theory of analysis of spatial mechanism. 

Eng Ind. 1975; 97(4): 1159–64. 
Dulęba, I., and Sasiadek, J.Z. (2000) ‘Modified Jacobian method of transversal passing 

through singularities of nonredundant manipulators’. Proceedings of the American 

Control Conference Chicago, Illinois June, pp.2839-2843. 
Faiz, N. and Agrawal, S. K., Trajectory planning of robots with dynamics and inequalities. In 

Proc. IEEE Int. Conf. Robotics and Automation, San Francisco, CA.2000: 3977–3983. 
Fu, K.S., Gonzalez, R.C. and Lee, C.S.G. Robotics Control, Vision, and Intelligence. McGraw-

Hill book Co. Singapore, international edition. 1987. 
Funahashi, K.I., On the approximate realization of continuous mapping by neural networks. 

Neural Networks.1998; 2(3): 183-192. 
Graca, R.A. and Gu, Y., A fuzzy learning algorithm for kinematics control of a robotic 

system. Proceeding of the 32nd conference on decision and control. San Antonio, 
Texas. December 1993:1274-1279. 

www.intechopen.com



An Improved Adaptive Kinematics Jacobian Trajectory Tracking  
of a Serial Robot Passing Through Singular Configurations   

 

309 

Hasan, A.T., Hamouda, A.M.S., Ismail, N., and Al-Assadi, H.M.A.A. (2006) ‘An adaptive-
learning algorithm to solve the inverse kinematics problem of a 6 D.O.F serial robot 
manipulator’. Int. J. Advances in Engineering Software, Vol.37, pp. 432-438. 

Hasan, A.T., Hamouda, A.M.S., Ismail, N., and Al-Assadi, H.M.A.A., A new adaptive 
learning algorithm for robot manipulator control. Proceeding of the I Mech E, Part 
I: Journal of System and Control Engineering .2007; 221(4): 663-672. 

Haykin S. Neural Networks. A Comprehensive Foundation. New York: Macmillan, 1994. 
Hornik, K., Approximation capabilities of multi-layer feed forward networks. IEEE Trans. 

Neural Networks. 1991; 4(2): 251-257.  
Karilk, B., Aydin, S., An improved approach to the solution of inverse kinematics problems 

for robot manipulators. Journal of Engineering applications of artificial intelligence. 
2000; 13: 159-164. 

Köker, R. (2005) ‘Reliability-based approach to the inverse kinematics solution of robots 
using Elman’s networks’. Int. J. Engineering Applications of Artificial Inttelegence, 
Vol.18, pp. 685-693. 

Köker, R., Öz, C., Çakar.T. and Ekiz, H., A study of neural network based inverse kinematics 
solution for a three-joint robot. Robotics and Autonomous Systems. 2004; 49: 227–
234. 

Kuroe, Y., Nakai, Y. and Mori, T., A new Neural Network Learning on Inverse Kinematics of 
Robot Manipulators. International Conference on Neural Networks, IEEE world 
congress on computational Intelligence. 1994; 5: 2819-2824. 

Nakamura, Y. and Hanafusa, H., Inverse kinematic solutions with singularity robustness for 
robot manipulator control. Journal of Dynamic Systems Measurements 
Control.1986; 108: 163–171. 

Ogawa, T., Matsuura, H., and Kanada, H. (2005) ‘A Solution of Inverse Kinematics of Robot 
Arm Using Network Inversion’. Proceedings of the International Conference on 

Computational Intelligence for Modelling, Control and Automation. 

Santosh, A. Devendra P. Garg. Training back propagation and CMAC neural networks for 
control of a SCARA robot. Engineering Applications of Artificial Intelligence. 
Vol.6.No.2. pp.105-115. 1993. 

Sopng, M.W., and Vinyasagar, M., Robot Dynamics and control. John Wiley and Sons Inc., 
New York. 1998. 

Soteris, A.Kalogirou. Artificial Neural Networks In Renewable Energy Systems 
Applications: a review. Renewable and Sustainable Energy Reviews. Vol. 5:pp.373-
401. 2001. 

Tsai, L.W. and Morgan, A., Solving the Kinematics of the most general six and five degree of 
freedom manipulators by continuation methods. Mech Transm Autom Des 1985; 
107:189–200. 

Wampler, C. W. and Leifer, L. J., Applications of damped least-squares methods to resolved-
rate and resolved-acceleration control of manipulators, Journal of Dynamic Systems 
Measurements Control.1988; 110: 31–38. 

Wampler, C. W., Manipulator inverse kinematic solutions based on vector formulations and 
damped least-squares methods. IEEE Transaction Syst., Man, Cybernetics. 1986; 16: 
93–101. 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

310 

Whitney. E., Resolved motion rate control of manipulators and human prostheses, IEEE 

Transaction Man–Mach. Systems.1969; 10:47–53. 
Yang, A.T., Displacement analysis of spatial five-link mechanism using (3×3) matrices with 

dual-number element. Eng Ind. 1969; 9(1): 152–7. 
Zurda, M. J. (1992). Introduction to Artificial Neural System Network. West Publishing 
                 Companies, ISBN 0-314-93397-3, St. Paul, MN, USA. 

www.intechopen.com



Advanced Strategies for Robot Manipulators

Edited by S. Ehsan Shafiei

ISBN 978-953-307-099-5

Hard cover, 428 pages

Publisher Sciyo

Published online 12, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and

are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are

designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional

control methods cannot be efficient, and advanced control strategies with considering special constraints are

needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm

until now, there are still many novel aspects which have to be explored.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ali Taqi Hasan, Hayder M.A.A.Al-Assadi and Ahmed Azlan Mat Isa (2010). An Improved Adaptive Kinematics

Jacobian Trajectory Tracking of a Serial Robot Passing Through Singular Configurations, Advanced Strategies

for Robot Manipulators, S. Ehsan Shafiei (Ed.), ISBN: 978-953-307-099-5, InTech, Available from:

http://www.intechopen.com/books/advanced-strategies-for-robot-manipulators/an-improved-adaptive-

kinematics-jacobian-trajectory-tracking-of-a-serial-robot-passing-through-singu



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


