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Abstract

Biomimetic Manipulator Control Design for Bimanual Tasks in the Natural

Environment

by Alexander McKenzie Chalmers Smith

As robots become more prolific in the human environment, it is important that safe op-

erational procedures are introduced at the same time; typical robot control methods are

often very stiff to maintain good positional tracking, but this makes contact (purposeful

or accidental) with the robot dangerous. In addition, if robots are to work cooperatively

with humans, natural interaction between agents will make tasks easier to perform with

less effort and learning time. Stability of the robot is particularly important in this

situation, especially as outside forces are likely to affect the manipulator when in a close

working environment; for example, a user leaning on the arm, or task-related disturbance

at the end-effector.

Recent research has discovered the mechanisms of how humans adapt the applied force

and impedance during tasks. Studies have been performed to apply this adaptation to

robots, with promising results showing an improvement in tracking and effort reduction

over other adaptive methods. The basic algorithm is straightforward to implement,

and allows the robot to be compliant most of the time and only stiff when required by

the task. This allows the robot to work in an environment close to humans, but also

suggests that it could create a natural work interaction with a human. In addition, no

force sensor is needed, which means the algorithm can be implemented on almost any

robot.

This work develops a stable control method for bimanual robot tasks, which could also

be applied to robot-human interactive tasks. A dynamic model of the Baxter robot is

created and verified, which is then used for controller simulations. The biomimetic con-

trol algorithm forms the basis of the controller, which is developed into a hybrid control

system to improve both task-space and joint-space control when the manipulator is dis-

turbed in the natural environment. Fuzzy systems are implemented to remove the need

for repetitive and time consuming parameter tuning, and also allows the controller to

actively improve performance during the task. Experimental simulations are performed,

and demonstrate how the hybrid task/joint-space controller performs better than either

of the component parts under the same conditions. The fuzzy tuning method is then ap-

plied to the hybrid controller, which is shown to slightly improve performance as well as

automating the gain tuning process. In summary, a novel biomimetic hybrid controller

is presented, with a fuzzy mechanism to avoid the gain tuning process, finalised with a

demonstration of task-suitability in a bimanual-type situation.
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Chapter 1

Introduction

In the past, most research within robot control has been focused on accurate, repeatable

and stiff movement; this can be attributed to most robots being used within industry,

moving in free space to improve quality assurance and reduce manufacturing costs [2].

Tasks such as welding, spray painting and pick and place operations generally do not

place any uncertain dynamics upon the robot, as well as having a set path or several set

paths to work along. This allows simple control methods, e.g. PID control [3], to reach

accurate joint positions, and removes the need for computationally expensive inverse

kinematics.

However, as the field has expanded, modern robots will interact with fragile objects,

other machines and humans [4] [5]. In addition, manipulators can be highly redundant

[6] or under-actuated [7], creating new avenues of robot control problems. Interaction

with the environment, such as objects or humans, requires feedback to allow the robot

to maintain its objective while compensating for obstacles [8]. Further, the likely future

proliferation of robots within our natural environment (particularly working with the

elderly) [9] requires manipulator design to follow that of a human - it is much easier

to design a machine to fit our world rather than change our whole environment to

accommodate the robot. Hence, having a robot that can use two arms gives the ability

to perform a much wider range of tasks than if it only had the use of one arm, such

as lifting heavy objects, carrying delicate items or carrying out two tasks at once. In

addition, with certain tool tasks – such as drilling or carving – the force required to

perform the action can be spread across two manipulators, reducing the need for very

strong, heavy and costly motors to be included in the manipulator design.

The natural environment -as opposed to the structured environment of a factory setting-

is full of unpredictable disturbances which cannot be modelled before placing the robot

1
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inside that environment. There are two ways to deal with this: using sensors to cre-

ate predictive models of the environment, allowing the robot to change behaviour to

compensate [10, 11], or design the control algorithm to be robust against disturbance

[12–15], which can use a number of techniques for observing disturbance levels and com-

pensating for them. Predictive models tend to be used in the mobile robot setting,

where disturbance or obstacles come in the form of static objects or humans walking

around, whereas the robust control methods are used for task-specific control such as

pick-and-place operations.

More recently, research into impedance control has been focused on adaptation, i.e.

online adjustment of stiffness and damping of the manipulator [16]. This is largely due

to research which reveals the fact that the human central nervous system (CNS) adapts

impedance to achieve various tasks [17–21]. Burdet et al. [22] demonstrated that humans

are able to learn to stabilise unstable dynamics using energy-efficient, selective control of

impedance geometry. The CNS is able change the magnitude and geometry of endpoint

stiffness through selective activation of agonist and antagonist muscles, to maintain

stability and minimise energy expenditure. These properties, if implemented in a robot

system, would not only improve manipulator performance but could also improve the

“natural feel” of interaction in scenarios where humans and robots are working together.

At the beginning of this study, the “hummingbird problem” was proposed: the theoret-

ical problem for a robot to hold a delicate, vibrating object. A gentle grasp must be

maintained so as to not cause damage, yet stiff enough so that the vibration does not

break the grip. This grip must be maintained while moving the object through a tra-

jectory and subjected to environmental disturbances, such as being bumped by humans

working in close proximity. This problem is also related to sloshing control, where the

object being moved contains a liquid which imparts dynamic forces at the end-effector

[23, 24], and can be also be imagined as the difficult problem of carrying a tray of drinks

through a crowded room. These tasks could be achieved by most humans with practice,

which becomes the motivation for developing the control methods in this study using

the human model of compliant control.

The first contribution of this thesis is the development of a hybrid control scheme,

combining both joint-space and task-space control for improved rejection of internal and

environmental disturbances. After developing the biomimetic controller in Chapter 3, it

was noted that joint-space control appears to produce good tracking in the joint space,

but small steady-state errors produce a divergent error in the task-space. Mapping

of the biomimetic controller to the task-space is trivial, which is then combined via

a weighting mechanism to produce a hybrid-space controller. Simulated experiments,

where the manipulator is subjected to disturbances similar to what would be expected
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in the natural environment, show that the hybrid controller performs better than the

individual joint-space or task-space control without increasing control effort or becoming

unstable.

During experimental verification of the controller it was noted that manual gain tuning

was extremely time consuming, as the hybridisation meant that there was now double

the number of parameters requiring attention. This became the motivation to develop

the second contribution of this work: the implementation of fuzzy logic controllers for

online estimation of control parameters. Fuzzy logic is well suited to applications where

expert knowledge exists, and can be implemented in a Mamdani-type control using

linguistic rules. During verification of the fuzzy tuning method is was also noted that

tuning online slightly improves control performance and increases robustness to different

disturbance types.

Finally, the third contribution is the development compliant bimanual trajectory plan-

ning system, based on a master-slave approach. The aim of this was to verify the

controller is capable of carrying out tasks such as those described earlier in this chapter,

specifically the “hummingbird problem”: the initial inspiration for carrying out this re-

search. The fuzzy tuning method developed in Chapter 5 is particularly useful in this

context, as the bimanual system has four sets of gains to be tuned. The hybrid controller

described in Chapter 4 performs well in this task, being able to maintain a contact force

with the target object and remain robust to external disturbances, all without the need

for force sensors within the control loop.

In addition, a full analytical representation of the dynamics of the Baxter robot is made

publicly available. This was developed and verified for simulations of the described

controller, so that results are representative of controller performance when applied to

a real, commercially available robot. Baxter is widely used in the research community

and the analytical form of the closed dynamics could prove useful to many researchers.
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Chapter 2

Literature Review

2.1 Methods of Robot Control

2.1.1 Classical Control

The science of control theory can be traced back to the mid 19th century [25], where

centrifugal governors were used to regulate the input to steam engines to produce a

constant output. Maxwell’s work [26] began to generate interest in the subject, partic-

ularly in the study of how feedback control affects the stability of the system and how

to avoid instability due to constructive oscillation at the output. The (very) generalised

diagram of a feedback system is shown in Figure 2.1; u(t) is the reference input signal,

i.e. the ideal output of the system, y(t) is the measured output of the system, from

which the error signal e(t) = u(t) − y(t) can be calculated, when can be described at

the variation of the actual output compared to the ideal output. The controller is some

method of using this information to drive the plant dynamics such that the output y(t)

is aligned to the reference signal. This controller is the subject of most of the research

in the subject, and can be composed of many different methods; originally being formed

from rigorous mathematical models such as the Linear Quadratic Regulator [27], which

typically controls the output via minimisation of the energy of the system, to more

modern theoretical methods such as the Artificial Neural Network (ANN), which uses

a biological model to act as a sort of “black box” system, where the dynamics of the

controller are uncertain but are gradually learned over time or iteration to produce a

suitable output to the plant.

In terms of robotics, control of early manipulators was aimed at minimising trajectory

error, due to their primary application at the time in industrial manufacture [28]. Typ-

ical control methods at the time included resolved motion rate control (RMRC) [29],

5
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Figure 2.1: Generalised diagram of a simple feedback control system.

computed torque control [30], near-minimum-time control [31] and early adaptive con-

trol [32, 33]. These techniques are generally based on a classical Newtonian/Lagrangian

representation of the manipulator dynamics, from which the control method is derived.

This allows the control algorithm to be rigorously analysed for performance (particularly

stability and trajectory error) using well documented techniques, and is easily modelled

computationally so that it can be tested offline (i.e. without a physical robot), which is

safer and faster than online testing.

The RMRC method is one of the simplest methods of manipulator control. It relies on

solving the inverse kinematics of the manipulator through the inverse of the Jacobian

J(q), which relates the joint velocity to the task-space velocity

δq = J−1(q)δX, (2.1)

where δq is the joint space corrective command to the robot and δX is the positional

and orientation error in the task space. For robots where n = 6 solving Equation 2.1 is

relatively trivial, involving only a matrix inversion and multiplication; however, if n 6= 6

then J(q) is non-square, and requires the use of some other inversion method, such as

the Jacobian transpose, Moore-Penrose pseudo-inverse, damped least squares, etc. [34],

although each of these also have their own issues. The calculation of the pseudo-inverse

has become less of an issue as computational power has increased, although it is still

non-trivial enough to require a powerful modern-day computer to calculate in real time.

Additionally, RMRC suffers from instability issues when close to singularity (i.e. a robot

configuration qs where J(qs) is not of full rank) although research has shown methods

to avoid this problem [35–39].

Computed torque control, shown in Figure 2.2, relies on a dynamic model of the manip-

ulator to generate a desired torque from a reference trajectory, which is then fed to the

robot from which position and velocity feedback is used for control. The equation for
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Figure 2.2: Block diagram of the computed torque control technique.

calculation of the command torque τd is given as

τd = M(q)
(
q̈r +Kv(q̇r − q̇) +Kp(qr − q)

)
+ C(q, q̇)q̇ +G(q) (2.2)

where the M(q), C(q, q̇) and G(q) are the dynamic parameters of the manipulator (dis-

cussed further in Equation 3.1), qr, q̇r, q̈r are the position, velocity and acceleration of

the reference trajectory and q, q̇ are the position and velocity feedback of the robot. The

gains Kp and Kv can be tuned to change the stiffness and damping of the system. In

essence, the dynamic model of the robot is used to generate an ideal torque for the robot

(i.e. if the real dynamics matched the model exactly) and compared to the behaviour

of the robot in the real world. The dynamic model is seldom truly accurate (hence the

need for feedback), as other terms such as frictions and gear backlash are often present

but difficult to model accurately. By keeping Kp and Kv low it is possible to create a

sort of ”soft” control, something akin to impedance control (see Section 2.1.2) although

stability is difficult to maintain if gains are too low, or indeed too high [40]. Although it

has been shown to be effective compared to other methods [41], due to the need for an

accurate dynamic model it may not be suitable for some manipulators where dynamic

parameters are not available, or where uncertain terms such as friction are large. How-

ever, since the original manifestation various techniques have been shown to mitigate

these problems; for example, the application a fuzzy system to compensate for uncer-

tain manipulator dynamics [42–44] or gain tuning [45], or the use of neural networks for

similar improvements [46–48].

Due to it’s simplicity and history of application, Proportional-Integral-Derivative (PID)

control is a very common control method in many current robotics applications. As

far back as the 1940’s [49] research has been conducted in the tuning, stability and

application of PID control and its derivatives. The essential idea behind PID control is

the ability to control the gain of not only the base feedback, but also the integral and

the derivative of that signal. An easy example to visualise, with relation to Figure 2.3,
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Figure 2.3: Simplified block diagram of PID control architecture.

would be if the input and output of the system (u(t) and y(t) respectively) are the

velocity of the system; the velocity response of the system can be adjusted via KP ,

the position response by tuning KI and the acceleration through tuning of KD. The

careful selection of these feedback gains can be used to create a system with a very

fast response with minimal tracking error, or a slowly responding system which can

maintain stability in high disturbance environments; in terms of robotics, a well tuned

system can compensate for the arm dynamics or end-effector load without requiring an

accurate system model. However, the tuning of PID gains is mainly performed through

trial and error; additionally the tuning has to be performed online so that the response

can be observed. For example, the Ziegler-Nichols method [49] is a heuristic which

involves taking the system to near instability by increasing KP , then following a set

of steps to tune KI and KD from this point. More modern methods have developed

on this, such as the work of Åström and Hägglund [50], whose method is much less

aggressive to the system (gains are kept lower, rather than constantly increasing them

towards an instability) and also describes how high-frequency disturbances, such as

the unavoidable sensor noise, can be compensated for gracefully. As with many other

classical control techniques automatic tuning has been implemented using fuzzy logic,

in a range of applications such as DC motor or aircraft pitch control [51–54]; fuzzy logic
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lends itself particularly well to this, as the tuning heuristics can be directly implemented

in a Mamdani-type system.

2.1.2 Impedance Control

It could be argued that the work of Hogan [8] describes the control method from which

most modern manipulator impedance control systems are derived. It is described in this

section as the method set forward is a fundamental component in modern controllers.

He argued that due to the requirement of the manipulator being mechanically coupled

to an object, control of a vector such as position or force is inadequate, and that the

impedance must also be taken into account. Impedance control essentially is a method

from which the exchange of mechanical work between the manipulator and the environ-

ment is regulated. In any system energy flow is defined by the product of two variables,

an effort and a flow, for example electric power:

P (t) = V (t)I(t) (2.3)

where V is the voltage (effort) and I is the current (flow) in a given system; in a

mechanical system:

P (t) = Fv (2.4)

where F is the applied force and v is the velocity. These two types of variable, effort

and flow can be used to describe two types of system: admittances and impedances.

An admittance accepts effort and gives a flow (e.g. applying a torque to a motor gives

angular velocity) while an impedance takes a flow and yields effort (e.g. a damper

produces an opposing force to a velocity input). Hogan argued that this distinction is

fundamental in controller design. A dynamic system must consist of an admittance and

impedance. The environment can sometimes be described as an impedance – motion

in, force out – but this does not always hold true; however, it can always be described

as an admittance, force in, motion out. Therefore the manipulator should be controlled

as an impedance system. Assuming a robot that is capable of producing a joint-level

torque τ , measuring joint angle θ with a homogenous transform from base to end-effector

T (θ), a controller which relates force F to position X (i.e. stiffness) can be described.

Given a desired equilibrium position Xd the general form of relation from F to X can

be described as:

F = K(Xd −X) (2.5)

where K is the stiffness gain. The Jacobian matrix relates the differential of position to

joint velocities:

Ẋ = J(θ)θ̇ (2.6)
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Figure 2.4: Diagram of manipulandum for capturing human arm movement. The
forearm is typically fixed at the handle so no flexion or extension can occur at the
wrist. Participants are generally asked to translate the handle at (x, y) from one point
to another. Encoders placed at the joints can record the trajectories of the links, and

therefore the trajectories of the human’s shoulder and elbow.

From the standard relation of force and torque τ can be defined:

τ = JT (θ)F (2.7)

Taking Equations 2.6 and 2.7 the controller can be described in terms of a torque input

to a robot:

τ = JT (θ)K(Xd − T (θ)) (2.8)

As can be seen in Equation 2.8 the input command to the manipulator is a torque vector

τ and the output required is joint angle θ, which is a reasonable input-output requirement

for most robotic manipulators. It can also be noted that the inverse Jacobian is not

required, reducing computational complexity.

The dynamic movement of a manipulator has had some differing views in the literature.

Flash et al. [55] show that a minimum jerk model (jerk being the first differential of

acceleration) closely matches observed human planar two-joint movements, which were

carried out using a two-link manipulandum (see Figure 2.4). It was shown that the

model is not just curve fitting, but also allows past predictions to be verified: that

velocity increases with distance to maintain trajectory time [56], there exists temporal

coupling between hand curvature and speed [57]. There also exists literature which

shows that other movements to two-joint planar movements, such as handwriting and

three-dimensional movements, are also observed to maintain movement scaling with time

[58].

A different theory was put forward by Bullock et al. [59]. They developed a neural

network model which he named vector-integration-to-endpoint (VITE). With this model

arm movements emerge from continuously updated network interactions, rather than
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a predefined task trajectory. Impedance is controlled through opposing interactions,

regulating input to agonist and antagonist muscle groups. Bullock et al. were able to

show that their VITE model could outperform Hogan’s earlier work with minimum-jerk

[60] in terms of matching test data, as well as pointing out that the minimum-jerk model

erroneously predicts a symmetric velocity profile. In addition, it is noted that Hogan’s

work does not contain any representation of vector cells as in the brain, whereas the

VITE model is built upon this foundation.

The VITE system has been developed in research since its inception in 1988 [61] [62]

[63] [64]. For example, the work of Hersch and Billard [65] improved the practical

implementation of the VITE model by using two concurrent systems - one in the task

space, one in joint space. The controller in Cartesian space ensures that the manipulator

reaches the target position, while the joint space controller safeguards the robot against

hitting joint limits, which can cause instability [66]. This multi-referential controller was

inspired by works that argue that this system is essential to human control of reaching

movements [67] [68]. It must be noted that Hersch and Billard do not claim that their

controller is a biological analogue, but that it is biologically inspired.

Both models, minimum-jerk and VITE, demonstrate systems which can accurately de-

scribe human arm movement. The former is arguably easier to implement, and therefore

an attractive choice for robot control – real-time control is usually higher priority than

the level of biomimetics. The VITE model, in particular the model developed by Hersch

and Billard, sits on a better biological representation as well as producing trajectories

resistant to disturbance and avoiding dangerous joint-limit situations.

2.1.3 Biomimetic Impedance Control

More recently, research into impedance control has been focused on adaptation, that

is, constant adjustments made to the stiffness and damping of the manipulator. This

is largely due to research that shows that this is realised in the human central nervous

system (CNS) [17–21, 69]. Important work in this field was carried out by Burdet et al.

[22]. They demonstrated that humans are able to learn to stabilise unstable dynamics

using energy-efficient, selective control of impedance geometry. In other words, the

CNS can change the shape, magnitude and orientation of the impedance ellipse through

selective activation of agonist and antagonist muscles, to maintain stability and minimise

energy expenditure. Muscle co-activation allows change of endpoint impedance without

changing force. This mechanic is the core of minimising metabolic cost. This is highly

desirable in manipulator control, to have minimum energy expenditure as well as good

trajectory tracking. Mimicking this biological process of action is a strong avenue of
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research, similar to biomimetic robot designs described later, in Section 2.1.4. In [70] a

biomimetic controller is developed using these principles that adapts simultaneously the

impedance, force and trajectory. it is proposed that overall control torque w is composed

of feedforward torque u and feedback error v:

w = u+ v (2.9)

where

vk ≡ Kk
Se

k +Kk
Dė

k, ek ≡ qkr − qk (2.10)

where (·)k is the iteration or time step, (·)r denotes a reference variable. Feedforward

torque u is adapted as such:

∆uk ≡ uk+1 − uk ≡ αεk − (1− µ)uk (2.11)

where ε = ėk + Γek is the tracking error, and Γ is a positive diagonal matrix and µ

is a forgetting factor to account for muscle fatigue. The stiffness is adapted using the

equation:

∆Kk
S ≡ Kk+1

S −Kk
S ≡ β|εk| − γ (2.12)

where β, γ > 0. The damping follows a relation to the square root of the stiffness

coefficient, as described later in this section. The trajectory is also adapted, with the

following law:

∆qkr ≡ qk+1
r − qkr ≡ −δ1εk + δ2(q

k
d − qkr ) (2.13)

where δ1 and δ2 represent positive weights of the two attractor trajectories, δ1 >> δ2,

and qd represents the original desired trajectory, which qr is initially equal to. With

this controller implemented on a 1-DoF manipulator, experimental results show that

the controller is robust against high frequency perturbations through an increase in

stiffness. Low frequency errors are initially met with an increase in force to attempt

to return to the reference position. Applied force will eventually diminish, due to the

adaptation of the reference trajectory and the forgetting factor µ. The adaptation laws

described as such have since been applied in a Cartesian impedance controller and, more

recently, implemented in a haptic identification context [71] [72] [69].

Maeda et al. [73] investigated a method for human-robot cooperation. They proposed

using the minimum-jerk model (mentioned in section Section 2.1.2) in real time, adapting

a virtual compliance control. The controller was evaluated by studying the energy

transfer within interactions. Results showed a reduction in unnecessary energy transfer.

However, although showing a step towards improving human-robot interaction, this type

of controller will only work with a robot following a fixed trajectory and may not be
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suitable for uncertain tasks, such as following the movement of a human operator.

The work of Duchaine et al. [74] [75] coincides with that of Franklin, Yang, Tee and

Milner. In [75] they describe how the stiffness of the human arm is increased with

activation of agonist and antagonist muscles, while the damping is due to the viscous

properties of muscle tissue. Studies have shown [76] [77] that the damping ratio follows

a constant relation to the stiffness coefficient:

D = η
√
K (2.14)

where D and K are the damping and stiffness coefficients respectively, and η is a constant

weighting factor. Through the use of the Lyapunov theorem [78] stability frontiers are

found as well as critical impedance parameters to be used as a guideline. Experimental

results showed that the tools developed can provide accurate stability prediction, which

is useful for future development of adaptive impedance controllers.

An alternative approach is taken by Lee et al. [79] and Wang et al. [80] where Hidden

Markov Models (HMM) are used to approximate human movement intention. These

works focus on the cooperation of a robot with a human, requiring some initial input

to produce an output. Lee et al. use visual markers placed on the human to map joint

movements, which are then virtually connected to the robot in a spring-damper model.

HMM are used to estimate human intention, which is then mapped to the robot to

mimic the motion. Wang et al. use the HMM to modify the reference trajectory of

an admittance controlled arm to shake hands with a human. They are able to show

results of the robot achieving this goal. However, it is apparent that the HMM method

is limited in that it requires some human input to work, and is not suitable for both

robot-human and robot-robot interaction.

Ge et al. [81] have developed a learning impedance controller for interactions between

a manipulator and a non-passive environment, i.e. contact tool tasks such as grinding

or drilling, based on the work of Li et al. [82]. The controller is novel in that it does

not require a dynamic or inverse kinematic model. Instead, a target impedance model

is set, which is then achieved through iterative learning. In addition, the torque-based

impedance controller that is developed is capable of very “soft” impedances, i.e. small

stiffness and damping, which is not possible with a position-based impedance control.

The control system relies on measurement of the external forces acting on the manipu-

lator; however, the effect of a noisy sensor is taken into account. The controller is tested

through simulation; results show that the controller is stable with or without interac-

tion force, the former condition reducing the controller to a trajectory tracker. In the

latter condition, compliant behaviour is shown as from evident tracking error, due to
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interaction force. However, the controller is not proven with a physical robot, so true

performance in a realistic environment is uncertain.

2.1.4 Behaviour-based Control

The foundations of behaviour control were laid down by Rodney Brooks in 1985 [83],

where an outline of a novel control method was discussed and tested on an early robot

platform. Rather than sequential actions, he argued that a more flexible and robust

method is to construct the controller from multiple asynchronous modules, which can

all receive sensor data and influence the decisions of robot control. tasks can be pro-

grammed in a hierarchy, depending on the data available and presented from each mod-

ule; for example, a wandering robot may have task priorities: 1. avoid objects, 2.

explore the environment 3. map the environment 4. find a particular object, etc. From

this architecture different behaviours emerge naturally, dependent on the environmental

context of the robot and the local state.

Perception 

Modelling 

Planning 

Motor Control 

Sensors 

Actuators 

Sensors Actuators 

Sensor reasoning 

Plan environment change 

Identify objects 

Monitor changes 

Build maps 

Explore 

Calculate control 

Avoid obstacles   

Figure 2.5: Decompositions of a traditional control system approach (left) and
Brooks’ layered control system (right).

The rationale behind this different avenue of thinking came from Brooks’ realisation

that the research in Artificial Intelligence (AI), based on the classical model shown in

Figure 2.5 (left), had started to founder and reach a dead end. Although the clas-

sical approach was still relevant in industrial applications where the environment can

be carefully controlled and modelled, the linear approach was difficult to apply to a

fully unpredictable real-world environment. Brooks argues that this is due to classical

AI placing foundations on the abstract manipulation of symbols to represent the envi-

ronment, whereas “nouvelle” AI emphasises a grounding in the physical environment,

i.e. “to build a system that is intelligent it is necessary to have its representations in

the physical world . . . the world is its own best model”[84]. Biological models, such as
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ANNs, were already starting to appear not only applied to classical problems such as

feedback control [47] and inverse kinematics [85], but also to robot behaviour in the

natural environment [86, 87] with hierarchical decision making used to generate robot

behaviour.

Research has continued to look at how biological models - one of the main themes

of behaviour-based control - can be applied to the robotics field. Pfeifer et al. [88]

discuss how, in contrast to industrial robots which work in controlled environments

with little to no uncertainty, biological organisms have evolved to operate in real-world

environment which is massively uncertain. By observing and learning from the biological

systems around us, it is argued that deeper developments can be made into the world

of AI and robot design. For example, behaviour-based systems modelled using ANNs

have been used to imitate the mechanism of switching between walking and swimming

in salamanders [89] or locomotion of a climbing worm robot [90]. Increasingly robot

control design is looking at a behaviour-based approach as the application moves out

of the factory and into homes, where robots will be expected to perform a wide range

of tasks for disabled or elderly care. The human environment has many characteristics

which make these tasks particularly challenging for designers [91]: typically humans

will be present while the robot is operating, which has safety implications for both

the robot and users; our environment is designed to be easy for us to use, which may

not necessarily be easy for a robot; the environment is dynamic, and is impossible to

fully model or predict, and the robot must work in a real time frame similar that of a

human in order to interact well. One programming method which seeks to solve these

issues is Learning from Demonstration (LfD) [92–94], where some learning algorithm is

supplied with data provided by a teacher (which can be a human or even another robot)

to mimic how to move and work in the natural environment, without the need for a

complex centralised controller. The downside to this, however, is that the robot must

then have some generalisation mechanism when required to perform tasks outside of the

teaching data.

By composing a set of basic behaviours of action, the work in [95] develops a method

for coordinated motions and actions of a humanoid robot. Actions such as reach, grasp,

release etc. are built up from action primitives, which are enacted using a singularity-

robust inverse kinematics algorithm. However, it is noted that the simulation envi-

ronment is structured, and no dynamics are considered. Biological inspiration is often

explored in the behaviour-based field for dealing with the dynamics problem; for ex-

ample, semi-passive control has been used in fish swimming robots [96–98] with soft

bodies and impulse-driven actuators to simulate flesh and imitate muscles. This is often

a much more energy efficient method of movement, as in passive walkers [99–102] where

the natural dynamics of the legs provide the majority of the motion and only a small
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amount of energy must be injected into the system for continuous movement. This has

the drawback of being difficult to control in an exact manner, compared to something

like a Zero Order Hold (ZOH) control [103], where manipulation of the dynamics allows

the user to place the centre of mass of the robot in an desired position in a stable manner;

additionally, the quasi-passive approach relies on operating at the edge of stability.

Williams and Hardy [104] proposed a behaviour-based architecture of a hybrid posi-

tion/force controller for a robot manipulator. Rather than all modules having access to

the inputs and outputs of the system, as described by Brooks and shown in Figure 2.5, in

their work interfacing modules are used to perform the communication with the outside

world. This is claimed to give better performance, and is also due to commercial robots

often having closed controllers with limited interface. Essentially, two behaviours are

created from the position and force controllers, with also a motion constraint module

which inhibits unwanted motion (moving into singularity, maintains contact with a sur-

face, etc.), which are combined in a drive behaviour before commanding the actuators.

In this way the control architecture is somewhere between the classical top-down ap-

proach and Brook’s distributed doctrine. The force and position controllers themselves

are extremely simple, based on a comparison of target and real values and driving against

the direction of error. In the work four tasks are tested; for each task the behaviour-

based model is re-arranged to suit. Their results are varied, generally showing that the

tasks can be completed although with significant errors, as the controller is not able

to compensate for system time delays. Benefits of this behaviour-based approach are

given as module re-usability, and the ability to perform in uncertain environments with

different tool types.

2.1.5 Hybrid controllers

Hybrid controllers are mentioned often in the literature, normally in the form of com-

bining position and force control [105–112], which is essentially, in its simplest form,

a task-space position controller and force controller working in parallel, as described

in Figure 2.6. This technique was originally developed for robots performing assembly

tasks, after it was found that the positional sensors of the time (early 1980’s) were not

reliable enough for repeated, accurate manual dexterity [105]. Force sensors located at

the wrist of the manipulator, however, could offer a low-cost method of sensing object

interaction during an assembly task. By controlling the forces at the interaction point a

much higher accuracy could be achieved. As such, these controllers are often designed

for tasks where a constant contact force is required, such as turning a crank or following

a surface. The methods which make up the position and force controllers, shown in
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yellow and red in Figure 2.6, can be the same or different, and can be chosen from a

wide range of control techniques.

Position  

controller 

Manipulator 

dynamics 

Force  

controller 

Figure 2.6: Conceptual diagram of a hybrid position/force controller.

For example, the work of Yoshikawa et al. [107] uses a method of linearising the manipu-

lator dynamics with respect to the position and force on the object it is in contact with.

The input vectors for their controller are given as r̈p, the acceleration of the end-effector

on a constrained hypersurface, and fF , the force acting on the hypersurface. A simple

PI controller is then used for position, and proportional control for the force. Gains

were selected through trial and error for both controllers. By taking the arm dynam-

ics into consideration, an improvement was seen in the position control. At the time

(1988), they found the computational load of two concurrent controllers was very high,

and struggled to perform calculations in real time. In addition, they had to modify the

controller depending on the task.

Since then, the position/force hybrid controller has evolved somewhat, and has been used

for walking robots [113], where the force with the ground is the constraint; with a neural

network controller to determine manipulator stability [114]; with iterative learning of

the dynamics of the constraint surface [115]; with fuzzy position control and fuzzy-tuned

PI control for a rehabilitation aid [116], and for control of a quadrotor helicopter which

maintains contact with the environment [117]. Note that all tasks require contact with

the environment, as the force controller is used to maintain the contact while the position

controller follows some task trajectory. As a result of this, position/force hybrid control

has a limited set of tasks that it is applicable to.

Another application which often uses a hybrid controller is visual servoing, where a

camera is used to observe the task-space pose of the robot and the target. There are
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two base methods in visual servo control: Image Based Visual Servoing (IBVS) and

Position/Pose Based (PBVS) [118]. The IBVS method involves calculating a pose error

directly from the captured image, which is then mapped to task-space via the image

Jacobian. This is a very robust and flexible method and can be used in a model-free

environment, but involves a nonlinear mapping of velocities in the image to the velocities

in Cartesian space [119]. The use of the image Jacobian also means that singularities

may occur (making the mapping unsolvable) or local minima may be reached, giving

sub-optimal solutions. In addition, as the camera trajectory is unpredictable it is not

possible to achieve optimal time or energy control. The PBVS method, on the other

hand, constructs a 3D model of the environment, which is then used to calculate the

motion required to move the robot pose towards the target. Optimal trajectories can

be obtained through the environmental model, and is easily transferrable to the robot

as the coordinate frames are the same. However, the need for an environmental model

makes PBVS inflexible. Sensor noise or uncertainties in the model can cause instability

in the system [120], and control failure can occur if the target is lost from the field of

view.

Several works have used hybrids of PBVS and IBVS to gain the benefits of each while

compensating for the negatives. Tsai et al. [121] use two cameras for visual servoing:

one is placed with a view of the total workspace and provides a PBVS-type control,

whilst the other is mounted at the end-effector of the robot and gives a IBVS-control.

Target objects are recognised using the overhead camera and matched to object models

to provide grip-location information. The camera attached to the end effector is used

to guide the gripper to the target in the correct orientation. The two methods are

combined through a simple task-dependent switching, where the mode is switched when

a task is complete and the robot is stationary. This avoids instability caused from

both modes working concurrently. Through their hybrid method, experiments showed

that the approach performed as well as classical IBVS methods, but without the need

for multiple image features to calculate joint velocities. However, their system still

suffers from sub-optimal performance normally associated with IBVS methods, and the

switching method is rudimentary and arbitrary.

Concurrent IBVS and PBVS control is described in [122] instead of switching, which

is slow and suffers from discontinuity when features approach the image border. In

this case hybridisation is realised through a probabilistic framework and importance

functions to weight control to either method. Performance indices are calculated for

IBVS and PBVS: for the former, this is related to the distance of the joints from their

limits, and for the latter the index is proportional to the smallest distance of a image

feature to the image border. A Lyapunov function is used to prove stability of the

controller. Their results show an improved performance over the individual IBVS and
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PBVS controllers. Stability is maintained in experiments carried out with a robot, which

is one of the main concerns when presenting hybrid visual servoing solutions. However,

it is noted by the authors that their hybrid controller is still able to become stuck in

local minima solutions, which reduces the performance.

A slightly different hybrid method is demonstrated by Ye et al. [119], where data from a

IBVS scheme is translated to Cartesian and Polar based methods. The reasoning behind

this is to improve IBVS method during large rotations, which in the classic case can

cause large and unstable camera movements. The task is decomposed before operation,

with the Cartesian and polar controllers being assigned to different sections of the task.

Rotational movements are carried out using the polar form, with all other movements

carried out with the Cartesian method. Simulations are carried out with a free-flying

camera focusing on a rectangle formed of four points. They show that, by working in the

two coordinate systems depending on the required motion, convergence is much quicker

than the individual methods, and controller stability is improved during rotations. The

task decomposition, however, requires observation of the target and calculation before

execution, which would not work in a constantly changing environment.

2.2 Fuzzy Control

For a long time after the introduction of fuzzy logic set theory by Zadeh [123] it was

considered inconceivable to apply the vagueness of the technique to the field of control

engineering. Not until the work of Mamdani [124] was fuzzy logic successfully applied

to a simple dynamic plant, followed by the first industrial application in a cement kiln a

few years later [125]. In the years since it has been applied in trains, vacuum cleaners,

camera focusing, washing machines and much more. Due to the nature of fuzzy logic, it

is most successful in systems where:

• No models exist for the system, so cannot be mathematically approximated

• Expert operators are capable of expressing control of the system in linguistic de-

scriptions.

Artificial Neural Networks (ANNs) are also capable of modelling complex non-linear

systems but typically require long training time with large data sets before they are

useful; fuzzy controllers have been shown to outperform ANNs in some tasks [126].

Genetic or evolutionary algorithms (GAs) can also be implemented for similar tasks,

but suffer from poor scaling with complexity and can have a tendency to converge to

local minima. There are many examples in the literature of fuzzy control being used in
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conjunction with genetic algorithms, where the rule sets for the fuzzy control are evolved

based on data sets. One of the earliest works combining fuzzy logic control with GAs by

Thrift [127] showed that due to the discrete nature of fuzzy strategies it is possible to

use GAs to learn the fuzzy rules of a system. Similarly, the work of Park et al. [128] and

Herrera [129] shows that genetic algorithms can help to improve the performance of a

fuzzy controller through non-subjective selection of parameters such as the membership

functions.

In terms of robotics, early usage of fuzzy control was for decision making in mobile

robots [130], where three subsystems were implemented: visual sensors, motor drive and

a drive expert system for management. The use of inference from fuzzy engines was one

of the first steps towards a more “soft” artificial intelligence rather than the previously

dominating “good old fashioned artificial intelligence” (GOFAI) approach. More recently

the work of Kim et al. [131] used fuzzy logic to approximate the nonlinear dynamics of a

robot equipped with only joint position sensors. They were able to show that all signals

in the closed loop system of the robot, observer and controller are uniformly ultimately

bounded. They were able to achieve - using only position information - good tracking

performance and robustness against payload uncertainty and environmental disturbance.

There are several instances of fuzzy control being used in conjunction with Sliding Mode

Control (SMC) to eliminate chattering [132–135], mimic a feedback linearisation con-

trol law [136, 137], approximate unknown system functions of the SMC [138], estimate

unavailable states of a MIMO nonlinear system [139–142] and compensate for uncertain

dynamic time delays [143–145]. As is obvious from the literature, fuzzy logic and its

use in control is used in a variety of applications and conjointly with other well defined

control schemes.

2.3 Control and Coordination of Bimanual Manipulators

The subject of bimanual control is fairly young in the literature; most early research

involving bimanual control was aimed at rehabilitation devices, and still is [146–149].

However, bimanual robots have started to be explored in the field of manipulation. For

example, the work of Sugar and Kumar [150] describes a leader-follower type config-

uration, where the follower robot(s) maintain coordination with the leader through a

compliant position controller, similar to the one described by Hogan [8], combined with

the passive compliance inherent in spring-damper manipulators. They show that good

cooperation can be obtained through this method, with several tasks demonstrated using

multiple robots being performed well.
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Gribovskaya and Billard’s work [151] combine dynamic system movement with a Pro-

gramming by Demonstration (PbD) method to create a controller to attempt to maintain

spatial constraints, i.e. keeping the arms within a relation to each other, and temporal,

i.e. the arms must be synchronous. The results of their tests showed that the constraint

of keeping the arms within a spatial parameter severely limited the workspace of the

robot, and although it was shown that the controller could manage high frequency, low

amplitude perturbations, a large position error can make the robot react with jerky

movements.

Edsinger and Kemp [152] developed a behaviour-based control for their robot, Domo

[153]. Domo is equipped with series elastic actuators [154], which impart a passive com-

pliance to the robot. It is apparent, however, that a behaviour-based system has limi-

tations, in that the robot can only react to situations that have been pre-programmed,

and cannot generalise to uncertain tasks.

Hwang et al. [155] have developed a motion planning method for bimanual assembly

tasks. Their controller separates the assembly task into sections: approach, contact and

assembly, which apply different controllers. For example, in the approach phase the

velocities of each manipulator are proportional to the distance to target, increasing the

accuracy of the movement and reducing force on contact. The computation is distributed

across both manipulators, with a separate high level controller to ensure cooperation.

Their results show that their motion planner is capable of assembly tasks, but shows

limitations to only these types of tasks due to the behaviour-type control.

The work of Luo et al. [156] describes a method for bimanual object handling that

controls the sum of forces acting upon an object to perform smooth, fast movements.

The force applied to the object is subject to the constraints

max(Fint1(t)) < FMAX1

max(Fint2(t)) < FMAX2 (2.15)

and

min(Fint1(t)) > Fmin1(µ1) > 0

min(Fint2(t)) > Fmin2(µ2) > 0 (2.16)

where µ1 and µ2 are the friction coefficients at the points of contact. Movement of the

object is a resultant of these two internal forces Fint1 and Fint2, i.e. if Fint1 6= Fint2 a

driving force is produced. Fint1+Fint2 is the total force acting on the object, and Fint1 =

Fint2 will mean that object velocity will be zero, not necessarily that the force on the

object is zero. It is argued that is not possible to control the internal force with position
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control, and that some force feedback is required. In addition, it is suggested that in

order to consider a maximum and minimum force constraint the frequency bandwidth

of each robot’s position control loop should be adjusted depending on the dynamics of

the held object. Their simulations show that their approach was capable of modelling

the internal dynamics of the object and controlling two manipulators to move the object

while maintaining force contact.

The iCub robot has been developed at IIT as part of the EU RobotCub project, and

is now in use by more than twenty universities worldwide [157]. It is a child-size hu-

manoid robot with 53-DoF, including head/eyes/neck, torso, arms/hands and legs. The

proximal joints are tendon driven by harmonic drive motors, which allow low-level ac-

cess to stiffness and damping control of each joint for the first five joints in each arm

(see Figure 2.7). The remaining joints, including the two at the wrist, are driven with

standard gears and have low torque with no impedance control available. A 6-DoF

force/torque sensor is located in the upper arm, with which it is possible to calculate

wrenches along the full kinematic chain, using a recursive Newton-Euler algorithm [158].

However, to detect external forces correctly it is necessary to know where the contact

point is. In earlier versions of the iCub there was no way of doing this so a fixed point at

the junction between wrist and arm was defined, but the development of an electronic

skin [159], visible in Figure 2.7, allows the dynamics algorithm to correctly calculate

external disturbances if it is applied to the skin. Despite this, from personal experience

it is not straightforward to use the iCub for bimanual control experiments, or any ex-

periments requiring high torques along the length of the arm. The inverse kinematic

libraries provided by the development team incorporate minimum-jerk trajectory plan-

ners, which makes real-time control difficult. The joint limits of the arms constrict the

shared workspace, as each arm cannot reach past the midpoint of the robot. It is also

not possible to hold heavy or moving objects in the hands, as the wrist joints are very

weak due to being tendon driven, and do not have low level impedance control available.

This meant it was not possible to carry out the experiments detailed in this work using

the iCub as the manipulator platform.

Developed at the German Aerospace Centre (DLR), Justin is a humanoid robot with two

7-DoF DLR-LWR-III manipulators for the arms[160]. It has been designed specifically

for research in bimanual manipulation in human working environments. The manipu-

lators include integrated joint-level torque sensors [161], which allows implementation

of torque and impedance controllers. The arms also feature opposing hands, also in-

tegrated with force/torque sensors. For bimanual impedance control, they have used

the Intrinsically Passive Controller (IPC) [162] which was specifically designed for use

with multi-fingered robot hands. They implement the cartesian impedance using three

virtual springs (see Figure 2.8); springs Kl and Kr connect the desired H(·),d and actual
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Figure 2.7: The iCub robot with harmonic drive joints labelled. Wrist joints 6 and 7
are circled in blue. The remaining nine joints which form the arm actuate the fingers.

The electronic skin can be seen applied to the forearms.

positions H(·),a of the hands, and the third spring Kc creates the compliant coupling.

In this configuration the natural spring lengths and constants must be carefully selected

to avoid interference. With this controller structure they are able to perform different

behaviours including independent control when the coupling spring is set to zero. This

control structure is made possible through the highly advanced manipulators with joint-

level torque sensors, which give a rich data source of environmental and manipulator

dynamics.

The Baxter robot from ReThink Robotics is comprised of a bimanual pair of 7-DoF ma-

nipulators equipped with Series Elastic Actuators (SEAs)[163] and end-effector cameras.

The design is aimed at providing a low-cost industrial robot solution which can work
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Figure 2.8: Bimanual Cartesian impedance control implemented on Justin robot

with humans in a low-volume production line[164, 165]. To stimulate academic interest a

Software Development Kit (SDK) has also been released, resulting in several universities

creating experiments using the Baxter [166–168]. Through the SEAs, a block diagram

of which is seen in Figure 2.9 it is possible to perform rudimentary force sensing through

spring deformation; in the simplest sense, given a joint angle q and link angle θ, with a

known spring constant K the torque at the joint τ can be found

τ = K(q − θ). (2.17)

This allows for force control schemes to be applied, which forms one of the selling points

of Baxter; simple pick-and-place tasks can be easily programmed using a lead-by-nose

approach. The arms have wide joint limits and good length which allows the workspace of

both to overlap well in front of the robot. The software bundled with the Baxter includes

a rudimentary scheme for avoiding collisions between the arms and environmental objects

[169]. For obstacle avoidance, a torque observer records an impact when a sudden change

in torque or when torque across a joint increases beyond a threshold. To avoid collisions

with its own arms, an internal model of the robot is updated with positional information,

which is then used to trigger a collision avoidance (i.e. stop the arm) when the arms

are too close to each other. The design is also useful for research, as it provides two

manipulators with joint-level torque sensing for less than a tenth of the price of a single

comparable arm in terms of DoF and payload.

As discussed, many current approaches to bimanual cooperation involve a behaviour

based approach. This is very limiting in terms of ability, as the robot is constrained
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Figure 2.9: Block diagram of SEA actuator.
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Figure 2.10: Diagram of the Baxter robot. Joints 1, 2, 3 comprise the shoulder, 4
and 5 the elbow, and 6, 7 the wrist. The spring highlighted in red, of which two are

attached to each arm, provide part of the gravity compensation.

by the scope of the programming. The work of Luo et al.[156] shows promising results

but needs to be explored more for stability in different situations, e.g. moving objects

with internal dynamics (such as a container of liquid). Their method also requires the

use of force sensors, which are expensive and often produce a noisy output; ideally the

controller would not require force measurement. This is also a drawback in the work

with the Justin robot, which although has impressive capabilities, it is also prohibitively

expensive for most non-research applications. This problem has been negated in the

Baxter robot, through the use of SEAs, although this relies on accurate spring models.
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2.4 Concluding remarks

This chapter has examined a wide range of works related to this study.

In terms of robot control, there is a choice of following the classical or behaviour-based

approach. Classical techniques have a long history and deep research base, meaning

stability analysis is well documented for a wide range of different control structures,

which are applicable for various tasks. The behaviour-based paradigm is comparatively

new, although it also has been the subject of much research in the robotics community.

Most of the applications where a behaviour-based approach has been used are for fully

autonomous systems, where the parallel architecture means a large number of different

sensors can be used to produce a wide range of behaviours. At the low level control in a

behaviour-based system classical control algorithms such as PID control are commonly

used for actuation of different behaviours. In the context of this work, where only one

task is required, a behaviour-based architecture is not required and a classical monolithic

controller is sufficient, to avoid over-complication and obfuscation.

In terms of biomimetic control, of particular interest is the work of the Burdet, Ganesh,

Milner group; their attention to the biomimetic design of controllers, derived directly

from experimental results in neuroscience, show a promising direction for a more natural

and stable cooperation method. It is intuitive to say that the best type of control for

interacting with humans would be one that mimics human control the closest; which

then leads to the suggestion that this may also be the best method for human-robot

and robot-robot cooperation. The cooperation control suggested by Maeda et al. show

a reduction in surplus energy transfer, but it is only suitable for fixed trajectories. The

HMM method can produce human-like control but requires the input of a human, which

limits its application to tasks where an operator is involved. The biomimetic controller

developed by Ge et al. could be a good controller for the required task problem, but

at the time of writing had only been verified through basic simulations and not in a

real-world setting. The Burdet/Ganesh controller has, in comparison, been applied to

several robots to verify stability and the similarity to human impedance control.

Different hybrid control methods have been explored, the most common of which is the

position/force hybrid control. Although this is shown to attain the benefits of each

scheme while counteracting the negatives, the position/force hybrid is only applicable

to tasks where a constant force is maintained between the manipulator and the environ-

ment. This makes it unsuitable for the desired task. During investigation into visual

servoing, where hybrids controllers are often employed, it can be noted that the com-

ponents of the hybrid can be switched between (depending on context) or combined via

some weighting mechanism. Switching is slower to execute as the task must be initially
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decomposed, but it is easier to implement and more stable than concurrent hybridis-

ation. The weighting method improves stability of concurrent hybrids, by using some

indices to create a probabilistic meshing of the two control commands. In the terms of

this work, switching is not applicable as the task must be carried out smoothly and with-

out delay, especially if in the context of working with a human. Additionally, a different

type of hybridisation in visual servo control was noted; switching between different space

representations depending on the task. In the IBVS context this was between Cartesian

and polar coordinate spaces, but in the context of this work it opens the idea of working

in both task-space and joint-space, as the expected disturbances are significant in both

spaces individually.

In the literature surrounding fuzzy control there are many applications where it is used in

conjunction with other control methods to improve performance, but rarely to estimate

system parameters which would normally be set through trial and error. However, the

method of application for Mamdani-type fuzzy controllers lends itself well to this task;

expert knowledge, which is applicable in this case, can be applied through linguistic

rules to create the control structure. In comparison ANN methods, which have also

been used in this context, require a large training set to be collected and applied to

allow the network to learn ideal gains. This can also suffer from local minima problems

and requires various tuning for best performance, which is the problem in the first place.

Additionally, ANNs can require large computational power (depending on the size of the

network) which may limit real-time capability, compared to fuzzy algorithms which are

composed of only a few simple addition and multiplication operations.

Compared to other platforms such as the iCub robot (not robust enough for impedance

control experiments) or the Justin DLR (prohibitively expensive for common use), the

Baxter robot is the most suitable for performing bimanual control experiments in this

case. Good arm manoeuvrability and large workspace allows a wide range of tasks to

be carried out, and the workspace overlap means it is suitable for bimanual tasks. The

SEAs which drive the Baxter joints mean it can be controlled directly through torque

commands, as well as providing joint level torque readings which is useful for performance

analysis. In terms of bimanual control methods, a master-slave approach gives good

flexibility and applicability, compared to the behavioural-types used by Edsinger and

Kemp or Hwang, or the summing method described by Luo et al.

The following chapter describes the dynamic model of the Baxter robot and verification

of the chosen biomimetic controller in simulation, chosen based on decisions made in this

chapter. Later chapters make use of the weighting method for hybridisation of control

in different space representations, based on the review of methods that have been used

in visual servo control. Investigation into fuzzy systems provides the inspiration for
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the automatic tuning described in Chapter 5, and review of current bimanual control

methods forms the basis of the master-slave approach used in Chapter 6.



Chapter 3

Biomimetic Adaptive Controller

Development

3.1 Introduction

Modern robots are frequently expected to interact with humans and the environment

[170, 171]. This interaction, which is highly dynamic and often unknown, requires control

methodologies which maintain stability and effectiveness within the task despite heavy

disturbance. One of the first schemes proposed to control interaction with an unknown

environment is impedance control [172]. The environment is modeled as an admittance

and the manipulator as an impedance, so that interactive control is achieved through

the exchange of energy.

Adaptive control methods can be combined with impedance control to compensate for

parametric uncertainties [173–175] and improve performance. Adaptive impedance con-

trol methods such as those developed in [16, 176, 177], have improved the operational

performance of a traditional impedance controller and demonstrate the stability of such

controllers. In particular, the work in [16] shows how stability and successful perfor-

mance can be gradually acquired in tasks where the initial instability is high, such as in

tool tasks like carving or drilling [178].

Parallel studies in the biological field show that the human nervous system can adapt

the mechanical impedance (i.e. the resistance to perturbations) of the arm to improve

performance of tasks in stable and unstable environments [179, 180]. This is achieved

through co-contraction of agonist/antagonist muscle groups, described in Figure 3.1.

Motor commands are adapted by the CNS to stabilise interactions by independently

29
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Figure 3.1: How co-contraction affects muscle impedance. (a): By contracting at
the same time with different forces, the flexor and extensor muscles work together to
maintain effector torque, but with increased impedance. (b): the “v-shape” of the
adaptive law. Impedance increases irrespective of error direction, and decreases when
error is below a threshold; this mechanism ensures minimisation of metabolic cost (i.e.

control effort).

controlling arm impedance and force; suitable muscle activations are automatically se-

lected to compensate for the instability and interaction force. Concurrently metabolic

cost is minimised through a natural relaxation of muscle groups when the task is be-

ing sufficiently performed. A model for this, introduced in [181, 182], has given rise

to a novel non-linear adaptive controller that has been successfully applied to a robot

context [183]. The adaptation of impedance in this biomimetic controller follows a “v-

shaped” algorithm, demonstrated in Figure 3.1(b). Conventionally, adaptive control

designs focus on estimation of uncertain parameters under stable motion [30, 184–187];

in comparison, the biomimetic design is able to acquire stability in unstable dynamics

as well as minimise control effort, through the adaptation of force and impedance [16].

During stable interactions compliant control, receiving much interest in recent research

[112, 188–194], is also demonstrated, due to the similarity to the muscle relaxation effect

within the controller design.

3.2 Baxter Dynamics and Experimental Verification

This section aims to cover the common elements of manipulator dynamics and useful

methods. This forms a reference for the remaining chapters, describes the techniques

used regularly during system modelling and specifically details the parameters needed

to form the dynamics of the Baxter robot, used most often in this work for simulation.
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This is useful in many ways: for the design of motion control systems, analysis of

mechanical design, simulation of manipulator motion, etc. Many control algorithms,

such as computed torque control [195], predictive control [196, 197] and sliding mode

control [198–201] normally require an accurate model of the manipulator dynamics,

commonly in the form:

M(q)q̈ + C(q, q̇) +G(q) = τ + τext (3.1)

where q denotes the vector of joint angles, M(q) ∈ <n×n is the symmetric, bounded,

positive definite inertia matrix, and n is the degree of freedom (DoF) of the robot arm;

C(q, q̇)q̇ ∈ <n denotes the Coriolis and Centrifugal force; G(q) ∈ <n is the gravitational

force, τ ∈ <n is the vector of actuator torques and τext ∈ <n is the vector of torques

resulting from external forces. In this form the kinetic energy of the manipulator is

described within M(q)q̈ + C(q, q̇), and the potential energy represented in the gravity

term G(q). This can then be used to calculate either the forward dynamics (useful for

simulation), where the manipulator motion is calculated based on a vector of applied

torques, or the inverse dynamics (useful for control design) where the torques for a given

set of joint parameters can be calculated.

There are two commonly used methods for formulating the dynamics in Equation 3.1:

the Lagrange-Euler (L-E)[202] formulation and the Recursive Newton-Euler (RN-E)

method [203]. Both are equivalent, as they both describe the dynamic behaviour of the

robot motion, but are specifically useful for different purposes.

The L-E method is simple and systematic, used to calculate the kinetic and potential

energies of a rigid body system. Bajeczy [204, 205] showed that the equations of dynamic

motion for a robot manipulator are highly non-linear and dependent on the link physical

parameters and configuration (i.e. position, angular velocity and acceleration). The L-E

dynamics provide the closed form of the robot dynamics, and is therefore applicable to

the analytical computation of robot dynamics [206], which allow a designer to create

and analyse possible control strategies.

Forward and inverse dynamic calculation may be achieved with the L-E method, but this

requires computation of a large number of coefficients in the inertial and coriolis terms

from Equation 3.1, which can be computationally expensive depending on the number

of joints. This can make the L-E method unusable when real-time control is required.

Other methods, such as RN-E (described in the next section), or Lee’s Generalised

d’Alembert Equations (GAE) [207] produce faster derivations [203]. A recursive L-E

method has also been described [208] which reduces the computational weight of the

L-E formulation to a level similar to that of RN-E.
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The N-E formulation is formed by examining all the forces acting on each link of the

manipulator, which then forms a set of equations with a recursive solution [209]. A

forward recursion propagates link positions, velocities and accelerations from the base

frame to the end-effector, then a backward recursion propagates the forces and torques

from the last link back along the link structure. This was developed to be a more efficient

method than L-E, based on the principle of the manipulator being a kinematic chain;

when a force is applied to one link, the resulting forces and motion will produce a force

on the next or previous link. Due to this effect there may be repetitions of calculations

[210] which can be removed if expressed recursively. This reduction can greatly reduce

time needed to compute forward and backward dynamics, allowing them to be calculated

in real time.

3.2.1 Lagrange-Euler Formulation

The Lagrange-Euler equations of motion for a conservative system [203] are given by

L = K − P,

τ =
d

dt

(
∂L

∂q̇

)
− ∂L

∂q
(3.2)

where K and P are the total kinetic and potential energies of the system respectively,

q ∈ <n is the generalised robot coordinates, and τ is the generalised torque at the robot

joints [203]. The kinematic and potential energies are given by:
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1

2
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)
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(
0Ti r̄i

)
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which, when substituted into Equation 3.2, gives the expression:

τi =
d

dt
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∂L

∂q̇

)
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=
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T
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−
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mjgUjir̄j . (3.4)
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This can be expressed more simply in the form given in Equation 3.1, as a sum of the

inertia, Coriolis/centrifugal and gravity terms. The elements of the symmetric matrix

M(q) are given by

Mi,k =
n∑

j=max(i,k)

Tr(Ujk Jj U
T
ji) i, k = 1, 2, . . . n, (3.5)

the Coriolis/centrifugal force vector C(q, q̇)

Ci =
n∑
k=1

n∑
m=1

hikmq̇kq̇m

hikm =
n∑

j=max(i,k,m)

Tr(Ujkm Jj U
T
ji) (3.6)

and the gravity vector G(q)

Gi =

n∑
j=i

(−mjgUij r̄j) (3.7)

where g = [0, 0, −9.81, 0] is the gravity row vector. The matrix Uij is the rate of

change of points on link i relative to the base as the joint position qj changes

Uij ≡
∂T 0

i

∂qj
=

0Tj−1 Qj
j−1Ti j ≤ i

0 j > i
(3.8)

which allows derivation of the interaction effects between joints, Uijk

Uijk ≡
∂Uij
∂qk

=


0Tj−1 Qj

j−1Tk−1 Qk
k−1Ti i ≥ k ≥ j

0Tk−1 Qk
k−1Tj−1 Qj

j−1Ti i ≥ j ≥ k

0 i < j or i < k

(3.9)

where, for revolute joints,

Qj =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 . (3.10)
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The Ji matrices are independent of link position or motion, and therefore only needs to

be calculated once from the inertia tensors, link masses and link centre of mass:

Ji =


−Ixxi+Iyyi+Izzi

2 Ixyi Ixzi mix̄i

Ixyi
Ixxi−Iyyi+Izzi

2 Iyzi miȳi

Ixzi Iyzi
Ixxi+Iyyi−Izzi

2 miz̄i

mix̄i miȳi miz̄i mi

 (3.11)

This concludes the calculations required to form the L-E dynamics.

3.2.2 Recursive Newton-Euler Formulation

As mentioned in Section 3.2, the N-E formulation of manipulator dynamics is derived

from the motion of each joint within its reference frame, which are then propagated along

the kinematic chain. Part of the computational speed-up comes from only requiring the

rotation matrix R ∈ <3×3, which also has the property of iR−1i+1 = i+1Ri = iRTi+1, i.e.

invertible via the transpose. The mass m, moments of inertia I, location of the centre

of mass c, and orientation of the body are related to the motion of the load and the

forces and torques exerted on it through the Newton-Euler equations. The net force qf

and net torque qn acting on the load at the centre of mass are:

qf = f +mg = mr̈

qn = n− c× f = qIω̇ + ω × (qIω) (3.12)

where f ∈ <3×1 is the force at the end effector, g ∈ <3×1 is the gravity vector, r̈ ∈ <3×1

is the acceleration of the centre of mass of the end effector, n ∈ <3×1 the torque at the

end effector, ω ∈ <3×1 the angular velocity vector and ω̇ ∈ <3×1 angular acceleration

vector.

The dynamics calculations are then split into forwards and backwards recursions. First,

the angular velocities/accelerations and linear accelerations are calculated in the forward

recursions as in Equation 3.13. Starting from a static system, the initial conditions are
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given as ω0 = ω̇0 = [0, 0, 0]T and v̇0 = 0R1 g.

ωi = iRi−1(ωi−1 + z q̇i)

ω̇i = iRi−1 (ω̇i−1 + ωi−1 × (z q̇i) + z q̈i)

v̇i = ω̇i × p∗i + ωi × (ωi × p∗i ) + iRi−1 v̇i−1

v̂i = ω̇i × ri + ωi × (ωi × ri) + v̇i

Fi = mi v̂i

Ni = Ii ω̇i + ωi × (Ii ωi). (3.13)

The backward recursions in Equation 3.14 start at the end effector from link n, where

the initial conditions of fi and ni are set depending on the load applied on the end

effector; this can be set to zero for no load. In addition, when i = n, the rotation matrix

iRi+1 is the identity matrix.

fi = iRi+1 fi+1 + Fi

ni = iRi+1

(
ni+1 +

(
i+1Ri p

∗
i

)
× fi+1

)
+ (p∗i + ri)× Fi +Ni. (3.14)

Finally, the torque at the joints τ can be calculated

τi = nTi (iRi−1 z) (3.15)

where z = [0, 0, 1]T and p∗i = [ai, di sin (αi), di cos (αi)]
T .

3.2.3 The Baxter Robot

As the Baxter Robot, described in Section 2.3, appears to be suitable for the proposed

tasks it will be necessary to obtain a computational model for the design and evaluation

of control algorithms. This section describes the parameters required for L-E or RN-E

calculation, which are then verified experimentally using data collected from the Baxter

robot.

The Denavit-Hartenberg (D-H) parameters and link masses of the Baxter manipulator

are given in Table 3.1 and are taken from the Universal Robot Descriptor File (URDF)

[211], set by ReThink robotics. These parameters describe the configuration of the links,

and form the basis of the L-E formulation. The standard homogenous link transform
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matrices are formed from the D-H parameters as such:

i−1Ti =


cos θi − cosαi sin θi sinαi sin θi ai cos θi

sin θi cosαi cos θi − sinαi cos θi ai sin θi

0 sinαi cosαi di

0 0 0 1

 (3.16)

and the transform from the manipulator base to link i can be calculated through 0Ti =

0T1
1T2 . . .

i−1Ti.

Table 3.1: D-H parameters of the Baxter robot.

Link θ d (m) a (m) α (rad) m (kg)

1 θ1 0.2703 0.069 −π/2 5.70044
2 θ2 0 0 π/2 3.22698
3 θ3 0.3644 0.069 −π/2 4.31272
4 θ4 0 0 π/2 2.07206
5 θ5 0.3743 0.01 −π/2 2.24665
6 θ6 0 0 π/2 1.60979
7 θ7 0.2295 0 0 0.54218

The inertia tensors of each joint are given in Table 3.2, represented by the inertias

working in each axis Ixx, Iyy, Izz and cross-talk inertia between axes Ixy, Iyz, Ixz. Here

it is represented as a row vector, but is also commonly found in I3×3 symmetric matrix

form.

Table 3.2: Link inertia tensors (all units kg ·m2)

Link Ixx Iyy Izz
1 0.0470910226 0.035959884 0.0376697645
2 0.027885975 0.020787492 0.0117520941
3 0.0266173355 0.012480083 0.0284435520
4 0.0131822787 0.009268520 0.0071158268
5 0.0166774282 0.003746311 0.0167545726
6 0.0070053791 0.005527552 0.0038760715
7 0.0008162135 0.0008735012 0.0005494148

Link Ixy Iyz Ixz
1 -0.0061487003 -0.0007808689 0.0001278755
2 -0.0001882199 0.0020767576 -0.00030096397
3 -0.0039218988 -0.001083893 0.0002927063
4 -0.0001966341 0.000745949 0.0003603617
5 -0.0001865762 0.0006473235 0.0001840370
6 0.0001534806 -0.0002111503 -0.0004438478
7 0.000128440 0.0001057726 0.00018969891

The centre of mass (CoM) for each link is given in Table 3.3, which forms the homogenous

column vector r̄i = [x̄i ȳi z̄i 1]T . These are the complete parameters required for
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Table 3.3: Centre of mass (all units in m)

Link x̄ ȳ z̄

1 -0.05117 0.07908 0.00086
2 0.00269 -0.00529 0.06845
3 -0.07176 0.08149 0.00132
4 0.00159 -0.01117 0.02618
5 -0.01168 0.13111 0.0046
6 0.00697 0.006 0.06048
7 0.005137 0.0009572 -0.06682

calculation of the dynamics of Baxter, and can be used for verification of the L-E and

RN-E methods.

3.2.4 Experimental Verification

To collect reference data from the Baxter robot, a PID position controller is employed

in a double loop configuration, as shown in Figure 3.2. A reference position qr generates

the outer loop:

e = qr − q, ė =
d

dt
e

q̇r = Kpe+Kdė (3.17)

which is then used to generate the inner loop:

ε̇ = q̇r − qr, ε =

∫
ε̇ dt

τr = Kpε̇+Kiε. (3.18)

The trajectories were created in two ways: generated using sinusoidal patterns or using

Figure 3.2: Block diagram of torque control system.

a touchpad with human-controlled input, both in Cartesian space. Inverse kinematics
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Figure 3.3: Test trajectory 1, all dimensions following a sinusoidal pattern with
periods of 2.5 seconds in x and y axes, and 15 seconds in the z-axis.
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Figure 3.4: Test trajectory 2, movement only in the y-axis.

are performed using the inverse Jacobian method, that is

q̇r = J†(q)ẋr (3.19)
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Figure 3.5: Test trajectory 3, moving in the z-axis.

where ẋr is the reference Cartesian velocity and J† is the pseudo-inverse of the Jacobian

matrix. The test trajectories in Figures 3.3, 3.4 and 3.5 show the actual test trajectories

in Cartesian space X ≡ [x y z]T which are calculated from X = Λ(q), where Λ(q) is the

forward kinematics of the robot. The sinusoidal trajectory in Figure 3.3 was chosen as

the first and second derivatives (velocity and acceleration respectively) will be excited,

ensuring that all dynamics are present. The trajectories in the y (Figure 3.4) and z

(Figure 3.5) axes are designed to verify dynamics in typical pick-and-place operations,

with fast switching to excite the second derivative. The right-side manipulator of the

Baxter was driven through these three trajectories and data collected at 50Hz, including

joint positions and velocities q, q̇, Cartesian position X and the torques applied to the

motors τ . These are calculated on-board Baxter from the SEA spring deflection (and

large external springs at joint 2) summed with the gravity compensation model. The

joint accelerations q̈ were estimated through first order numerical differentiation of q̇,

which produces a noisy output. The MATLAB code used can be found in Appendix A

for reference.

3.2.5 Results

Joint positions and velocities were recorded from the Baxter moving in three different

trajectories as described above. Joint accelerations were estimated through numerical
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Figure 3.6: Baxter robot in the test position.

differentiation, i.e.

q̈i =
q̇i − q̇i−1

dt
, (3.20)

where dt = 0.02 is the sampling period of the trajectory recorder (i.e. 50 Hz) and i is

the sample number. The results from the L-E and RN-E methods are compared against

trajectories recorded from the Baxter, and analysed for accuracy in the dynamic model.

Both methods should produce similar results.

Due to the way Baxter is controlled, the recorded torques are a sum of the actuator

torques measured via internal spring deflection and two torque vectors acting on joint

2 (hysteresis and crosstalk) to compensate for the large external springs, mentioned

previously. All results shown are calculated and collected for the right-hand manipulator,

with the end effector aligned with the z-axis as in Figure 3.6. No external forces were

applied to the arm during testing.
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Figure 3.7: Comparing torque generated through L-E and RN-E methods with
torques recorded from the Baxter robot during the trajectory from Figure 3.3. The
trajectory for this sample was moving the end-effector in a circular trajectory in
the x, y planes and in a cosine pattern in the z-axis, where x = 0.6 + 0.1 sin(t),
y = −0.2 + 0.1 cos(t) and z = 0.1 + 0.1 cos(0.2t). The errors (far right) are the modeled

torques subtracted from the recorded torques.

In Figure 3.7 the arm was moving in all three planes. It is noticeable that the torques

calculated from L-E and RN-E are much noisier; this is due to the numerical differenti-

ation of the joint accelerations q̈ as described in Equation 3.20, which could be reduced

through the use of a low pass filter. However, it is clear the trajectory shapes are simi-

lar. The first joint and distal joints 5-7 show only small torque input as they are mostly

unaffected by gravity. By examining the L-E error plot in Figure 3.7, we can see the

noise dominates the largest errors but are centred around zero for all joints, i.e. no bias

errors are present on any joint. The RN-E error plot shows a similar range of error, but

it is noticeable that the error for joint 3 has some positive bias error.

In Figure 3.8 we have similar results, with an even smaller error result. In this case

the arm was moved in a way to generate higher accelerations by quickly switching the

target position in the y-axis only. This movement is mostly achieved using joint 2 at

the shoulder, noticeable in the plots. The low error result in this case confirms a good

match for the kinetic part of the dynamic model. Again, looking at the RN-E there is

an obvious positive bias error in the torques calculated for joint 3.

A slower trajectory was applied to the robot for the results in Figure 3.9, moving pri-

marily in the z-axis, which is evident by the large changes occurring in joint 4. Noise

is reduced due to minimal acceleration in the trajectory. The error results again show
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Figure 3.8: Second comparison of torque trajectories from Figure 3.4; for this sample
the end-effector is fixed in the x, z plane and is switched quickly between two positions

in the y-axis.
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Figure 3.9: Final comparison of torque trajectories from Figure 3.5 input. The end-
effector was moved up and down in the z-axis, and held constant in the x, y plane.

no bias errors, and within a good tolerance of around ±1.5 Nm which mostly can be

accounted for by noise from the acceleration trajectory derivation.

A clearer comparison of the results is shown in Table 3.4, where the average and sum

total torque errors of both methods are shown side by side. These are calculated from
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Table 3.4: Averages of calculation errors for L-E and RN-E methods.

Set

1 2 3

Joint L-E RN-E L-E RN-E L-E RN-E

|ē1| 0.0105 0.0105 0.0148 0.0149 0.0061 0.0058
|ē2| 0.1002 0.0665 0.0464 0.0931 0.0703 0.0872
|ē3| 0.0475 0.1382 0.0083 0.1355 0.0367 0.1358
|ē4| 0.0151 0.1231 0.0079 0.1210 0.0064 0.1148
|ē5| 0.0068 0.0120 0.0099 0.0145 0.0079 0.0140
|ē6| 0.0006 0.0103 0.0047 0.0136 0.0003 0.0113
|ē7| 0.0012 0.0036 0.0003 0.0055 0.0013 0.0024∑n
i=1 ēi 0.0710 0.0869 0.0527 0.1161 0.0366 0.1089

each trajectory set, i.e. set 1 in Table 3.4 corresponds to the first trajectory results in

Figure 3.7. Looking through the table, it can be seen that the average error for each joint

is comparable between the methods, apart from in joints 3-4 which have significantly

larger errors in every set. All average error values are also within reasonable limits.

3.3 Controller Design

The human-like adaptive law for tuning the feed-forward and feedback components of

the control torque τu ∈ <n×1 (i.e. applied to all joints) from [16] can be applied in either

joint or task space. It is described here in terms of continuous movement, rather than

trial-on-trial, so that tracking error and effort are continuously minimised. Let us define

τu(t) = τr(t)− τj(t)− L(t)ε(t) (3.21)

with

e = q − qr

ė = q̇ − q̇r

ε = ė+ κe, κ > 0 (3.22)

and

τj = τ +K(t)e(t) +D(t)ė(t) (3.23)

where −τ(t) is the learned feed-forward torque, and −K(t)e(t) and −D(t)ė(t) are feed-

back torque terms due to stiffness and damping, respectively, and ε is the tracking error

used frequently in manipulator control [212]. The term −Lε(t) describes a stability mar-

gin, which in the human arm is produced by the passive compliance of the muscles and
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tendons [213]. A reference torque τr compensates for manipulator dynamics, described

by:

τr = Mq̈r + Cq̇r +G (3.24)

where M , C and G are the manipulator dynamics from Equation 3.1 and q̈r, q̇r are

reference trajectory acceleration and velocity respectively. The adaptive laws introduced

in [16] for a trajectory of period T are given as:

δτ(t) ≡ τ(t)− τ(t− T ) = Qτ
(
ε(t)− γ(t)τ(t)

)
,

δK(t) ≡ K(t)−K(t− T ) = QK
(
ε(t)eT (t)− γ(t)K(t)

)
,

δD(t) ≡ D(t)−D(t− T ) = QD
(
ε(t)ėT (t)− γ(t)D(t)

)
. (3.25)

The design is changed here to decouple the forgetting factor γ(t) from the gain matrices

Q(·) to avoid high frequency oscillation which occurs when both γ and Q(·) are set to

high values. The effect of γ is to reduce the amount feedback being applied when the

tracking error is low, similar to human muscle relaxation [214], e.g. if there is no error

then γ will be maximal and subtract from the applied torques.

The adaptation is also considered in continuous time, rather than by iteration over

consecutive trials, yielding the new adaptation laws:

δτ(t) ≡ τ(t)− τ(t− δt) = Qτ ε(t)− γ(t) τ(t) ,

δK(t) ≡ K(t)−K(t− δt) = QK ε(t)eT (t)− γ(t) K(t) ,

δD(t) ≡ D(t)−D(t− δt) = QD ε(t)ėT (t)− γ(t) D(t) (3.26)

where δt is the sampling period, K(0) = 0[n×n] and D(0) = 0[n×n]. Qτ , QK , QD ∈ <n×n

are diagonal positive-definite gain matrices and determine the adaptation rate of each

part.

Another change is made to the controller from [16]; γ(t) ∈ <n×n is a diagonal matrix

previously defined as

γii(t) =
a

1 + b‖εi(t)‖2
(3.27)

which requires two tuning parameters, a and b. To simplify parameter selection, γ is

redefined in this work as

γii(t) = αji exp

(
−
ε2ji(t)

0.1α2
ji

)
, 0 < αj ≤ 1 (3.28)

which requires only one variable, αj , to describe the shape shown in Figure 3.10, but

maintaining the same functionality.
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Figure 3.10: How the magnitude of α affects the forgetting factor γ. Higher values
of α have a high gain and narrow shape, so that when tracking performance is good
the control effort is greatly reduced. When tracking performance is poor, the forgetting

factor is small and control effort is not “relaxed”.

3.3.1 Experimental Verification

To verify that the altered controller can still achieve the results of the former, a simula-

tion task with a model of the Baxter arm was designed. First, the arm is tested holding

a initial position whilst under the influence of disturbance force fields. Then a second

test is carried out with the arm moving in a minimum-jerk trajectory, under the same

divergent conditions.

Three different force fields are applied to the end-effector of the manipulator during

testing. These consist of a constant force

Fc =



0

10

0

0

0

0


N; (3.29)
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a position dependent force, relative to the initial position:

Fp(t) =



k
(
x(t)− x(0)

)
k
(
y(t)− y(0)

)
k
(
z(t)− z(0)

)
0

0

0


, k = 100 N/m; (3.30)

and a velocity dependent force field:

Fv(t) =



d ẋ(t)

d ẏ(t)

d ż(t)

0

0

0


, d = 10 Ns/m; (3.31)

The adaptive terms τ , K and D from Equation 3.21 all start from zero, i.e. the initial

feedback is minimal and only provided by the L ε(t) term. The force fields are applied

in four equal phases:

• Phase I: FD = Fc,

• Phase II: FD = Fc + Fp,

• Phase III: FD = Fc + Fp + Fv,

• Phase IV: FD = 0, i.e. no interaction force.

For the following tests, the controller parameters were chosen as such:

Qτ = diag(30 20 20 30 10 20 0.1), QK = diag(80 80 80 80 80 80 0.1), QD =

diag(20 20 20 20 20 20 0.1), L = I7×7, α = 0.5 and κ = 7. Simulations were all

set to run with a 1 kHz update rate. The initial position of the end-effector, of the left

arm, was set to X(0) = [0.522 0.778 0.161 − 180 0 178.2]T , which is a position comfort-

ably within the workspace in front of the robot, where most pick-and-place tasks are

likely to take place.

3.3.1.1 Static reference position

The first simulation consists of a zero velocity reference trajectory, i.e. Xr(t) = X(0),

lasting for ten seconds, with the force fields being applied for 2.5 seconds each. The
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purpose of this is to demonstrate how the feed-forward and feed-back terms respond

to the applied disturbance and the relaxing effect of the forgetting factor γ when no

disturbance is applied.
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Figure 3.11: Task-space error (left) and joint-space error (right) for ten second sim-
ulation with static reference position.

The results of position error in task-space and joint-space shown in Figure 3.11. Phase

changes occur at 2.5, 5 and 7.5 seconds. Looking at the period between 2.5 seconds to

7.5 we can see that the introduction of the velocity dependent force field Fv does not

affect the error, as is expected. We can also see that after 7.5 seconds, when the force

fields are switched off, that the joint-space error appears to converge to zero. However,

by comparing this to the task-space error that in the final phase there is some position

offset error even without disturbances forces, which tells us that there are some very

small joint errors occurring in this phase. The feed-forward and feedback terms from

Equation 3.21 are mapped into x, y task-space for analysis via the identities:

F = J−T τ

KC = J−T K J−1

DC = J−T D J−1 (3.32)

which are presented in Figure 3.12. Looking at the damping terms, we can see that for

the majority of the test period no feedback is added, apart from at the phase boundaries

where a small movement can be seen at the end effector. The majority of disturbance

compensation is attributed to the feed-forward force, which increases to approximately
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10 N in the y-axis to compensate for Fc defined in Equation 3.29, and then levels off

as a acceptable tracking error has been achieved, the level of which is set by tuning the

parameter α. A similar effect can be seen looking at the evolution of the stiffness matrix,
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Figure 3.12: Evolution of feed-forward force, stiffness and damping (in task-space),
static reference position.

where in the first phase an increase in elements relating to the y-axis. As phase II is

applied another small increase is seen to compensate for Fp in all three axes. No change

appears as expected in phase III, but when all disturbances are removed in phase IV we

can see that all terms converge to zero due to the effect of γ. At this point the torques

being applied to the modelled Baxter consist only of the dynamics compensation τr and
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the stability margin L ε(t), which causes the small steady-state task-space error seen in

Figure 3.11. This could be reduced even further by reducing the value of α or increasing

L, but this would remove the natural compliance from the arm which is part of the

design specifications.

3.3.1.2 Moving trajectory

The second task consists of tracking a smooth minimal-jerk trajectory along the x, y

coordinates defined as:

X(t) = X(0) +
(
X(T )−X(0)

)
(10t̄3 − 15t̄4 + 6t̄5), t̄ ≡ 2t

T

xr(t) = −X(t),

yr(t) = X(t), (3.33)

where T is the trajectory period. Joint-space angular velocity is computed using the

pseudo inverse J†(q) ≡ JT (JJT )−1 of the Jacobian, through

q̇r(t) = J†(q) [xr(t), yr(t), z(0), φ(0), ϕ(0), ψ(0)]T , (3.34)

where φ, ϕ and ψ are the roll, pitch and yaw angles respectively, from which the joint

positions and accelerations can be found through integration and derivation:

qr(t) ≡
∫ t

0
q̇r(t) dt , q̈r ≡

d

dt
(q̇r(t)) . (3.35)

The simulation is run for longer (40 seconds) so that each disturbance phase is applied

for 10 seconds.

The resulting Cartesian trajectory is shown in Figure 3.13 along with the reference

trajectory Xr, coloured depending on the phase. The initial position X(0) is located

towards the left-most end of the black trace. As can be seen from the graph, the end-

effector immediately takes on a position bias in positive z in phase I, which remains

throughout the test including phase IV when no disturbances are applied. The effect of

Fp can be seen as the trajectory approaches the point furthest away from X(0) towards

the right of the graph in phases II and III, with the most diverse trajectory being in

phase III as would be expected due to all three force fields being in effect. The task-space

and joint-space errors are compared in Figure 3.14. It is clear that there is a position

drift occurring in task-space, despite errors in joint-space appearing to be bounded,

including in phase IV where no disturbance is applied. Left unchecked this would result

in the end-effector drifting far from the reference trajectory. Examining the evolution
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Figure 3.13: Task-space trajectory of the Baxter end-effector after 40 second simula-
tion through minimum-jerk trajectory.

of feed-forward force for this run in Figure 3.15 we can see how this term in phase I

fluctuates around 10 N in the y-axis to compensate for Fc, with some compensation

coming from stiffness feedback and very little from the damping. In phases II and

III an increase in F and K is seen in both x, y axes to compensate for Fp, while the

damping remains low. In phase III, as the velocity dependent Fv is introduced we can

see that the damping term also increases to help compensate against this. Finally in

phase IV, starting at 30 seconds, we can see that all three terms drop to much lower

levels, reducing the control effort applied to the manipulator. We can also look at the

stiffness geometry by plotting the ellipse in Figure 3.16. We can see that the ellipses in

phases I-III are orientated mainly in the direction of the trajectory, and slightly more

angled in the y-axis where more disturbance is applied. As FD is removed in phase IV

(dashed) the ellipse becomes much smaller and more equally distributed in the x and y

axes to compensate only for the trajectory.
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Figure 3.14: Task-space error on the left, joint-space on the right, 40 second simula-
tion with minimum-jerk trajectory.

3.4 Concluding Remarks

This chapter describes the method for derivation of the Lagrange-Euler and recursive

Newton-Euler dynamics, followed by experimental verification using data collected from

the Baxter robot; this is the foundation for simulated experiments carried out in this

work. The biomimetic controller is then adapted from [16] and discussed. The controller

was then verified through simulated experimentation using the model discussed in the

first part of the chapter.

The results show that the derived model is a good match to the real dynamics, with low

errors in three different end-effector trajectories shown in Figures 3.7, 3.8 and 3.9. The

majority of the error can be attributed the noise caused by numerical derivation of joint

accelerations. Without this noise, a very low torque error would be achievable and show

that a close computational model of the Baxter dynamics is possible. However, the test

trajectories that were used may not fully exploit all possible dynamics. For example, the

trajectory in Figure 3.3 is sinusoidal, but only in Cartesian space, which may mean that

there is low or no excitation of mass in some joints (joint 5 in Figure 3.3 for example).

In addition, the test trajectories were all located close to the robot body, where the

gravitational forces at proximal joints is kept low. The accuracy of the dynamic model

may not be so good when the arms are at extension and close the limits of the workspace,

where the weight of the distal joints will increase the effect of gravity on the proximal
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Figure 3.15: Evolution of the terms described in Equation 3.32 over the four phases,
minimum-jerk trajectory.

joints. Therefore, more trajectories should be tested, such as those described in [215],

to fully explore the dynamics in the workspace.

To find the explicit closed form of Baxter manipulator dynamics, MATLAB’s symbolic

toolbox was utilised. In their raw state, the symbolic representations of the elements of

D(q), C(q, q̇) and G(q) have many coefficients (over half a million), so cannot be printed

here but are available online in MATLAB workspace format for analytical use. This is

a useful tool for control system design, provided in a commonly used format, so could

prove useful to many researchers.
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The results from the controller simulations show that it is able to work in continuous

time and with the change made to γ to reduce the number of control parameters, on

a 7 DoF robot both in a static pose and while moving through a trajectory. We have

also seen how the feed-forward and feedback terms of the controller only increase to

compensate for disturbance interactions when required, then are reduced automatically

when tracking error is low. This is similar to what is observed in humans with the

minimisation of metabolic cost [179].

An unwanted effect is also observed due to the control structure operating in joint-space:

despite having only small joint position errors, the Cartesian trajectory is subject to

drifting which would eventually lead to sudden instability if left unchecked. This is due

to the nature of the forgetting factor γ, which will always allow some small error to be
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present, and without which would result in a very stiff control scheme, undesirable for our

purposes. This is what leads us to the next chapter: a hybrid controller working in both

joint-space and task-space, so that the task-space drift is removed whilst maintaining

the compliant nature of the controller.



Chapter 4

Joint-space and Task-space

Hybrid Control of the Biomimetic

Controller

4.1 Introduction

As discussed in the previous chapter, the biomimetic controller shows promising perfor-

mance but also demonstrates an unwanted position drift in task-space when the con-

troller is implemented in joint space. This lead to the novel idea of a hybrid controller

working concurrently in both joint and task-space, to counteract the drift and improve

the ability of the controller. Conventionally, a manipulator controller is implemented in

either task-space or joint-space, depending on the application. There are benefits and

drawbacks to both, for example:

• A Cartesian controller is easier to visualise, as it is understandable in terms of

direction and magnitude. As humans we can estimate how long half a metre is,

and what twenty Newton of force feels like. It is more intuitive to design a task

trajectory in Cartesian space rather than in joint-space, which is nearly impossible

in most applications.

• A manipulator will normally require the control input to be in joint-space, e.g. mo-

tor torques rather than forces and wrenches. Therefore a joint-space controller will

be less computationally heavy due to not requiring calculation of the inverse kine-

matics, which may be complicated for some manipulator designs, such as under-

actuated or redundant robots where the Jacobian matrix is non-square.

55
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• As observed in the previous chapter, small errors in joint-space may result in large

task-space errors dependent on the kinematics and configuration of the manipula-

tor.

• In a joint-space controller, control gains can be tuned to suit the motors, e.g. if the

proximal joints are driven by larger, more powerful motors then more torque can be

applied than the distal motors which are likely to be smaller. However, a Cartesian

controller allows the user to tune gains dependent on the task if disturbances are

expected from a certain direction.

We consider a task here where disturbances could be applied at any point along the

arm, at the end-point, or both; this can be visualised as moving through a crowd while

holding a tray of drinks [216]. Correspondingly, we would like to combine

• joint control which can provide robustness against disturbance applied at any point

on the arm, and

• Cartesian-space control, which is particularly sensitive to perturbations at the

end-effector.

The remaining of this chapter is formed from a description of the hybrid controller with

justification, experimental verification similar to that in Chapter 3 and discussion of the

results.

4.2 Controller Design

The hybrid controller is composed of the same controller as previously, but with two

working in joint-space and task-space concurrently. A weighting matrix is employed

to balance the feedback between the two controllers. Because of the nature of the

biomimetic control, that is, the constant minimisation of control effort, the two con-

trollers can work together without providing excess feedback torque.

The task-space controller is designed in a similar manner to joint space. First, we define

the error term in Cartesian space:

ex(t) = X(t)−Xr(t)

ėx(t) = Ẋ(t)− Ẋr(t)

εx(t) = ėx(t) + κex(t). (4.1)
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Correspondingly, the task-space feed-forward and feedback terms similar to Equation 3.26

are defined as

δFx(t) = QF εx(t)− γx(t) Fx(t)

δKx(t) = QKx εx(t)eTx (t)− γx(t) Kx(t)

δDx(t) = QDx εx(t)ėTx (t)− γx(t) Dx(t) (4.2)

so that, similar to Equation 3.23, the Cartesian feedback torque is defined,

τx(t) = JT (q)(Fx(t) +Kx(t)ex(t) +Dx(t)ėx(t)), (4.3)

and the corresponding forgetting factor is defined similarly to Equation 3.28, below:

γx(t) = αx exp

(
− ε2x(t)

0.1α2
x

)
, 0 < αx ≤ 1 . (4.4)

The reference torque Equation 3.24 and stability margin L ε(t), the joint-space con-

troller of Equation 3.23 and the task-space controller of Equation 4.3 yields the hybrid

controller, and therefore the revised input torque τu

τu(t) = τr(t)− L ε(t) + τx(t) + Ωτj(t) (4.5)

where Ω ∈ <n×n is a weighting matrix, designed such that the joint torque feedback is

limited to certain joints, dependent on the required task. Assuming an accurate dynamic

model of the robot is available, the torques due to disturbance τdist are estimated as

τdist = M(q)q̈ + C(q, q̇)q̇ +G(q)− τu (4.6)

i.e. the manipulator dynamics minus the input torque. This torque vector τdist is

normalised to the maximum element, and the weighting matrix Ω can be formed:

Ωii =
τdisti

max
1≤i≤n

(τdist)
, Ωij ≡ 0 (i 6= j) (4.7)

which is then applied in Equation 4.5, so that joint-space feedback is primarily applied

to areas of the arm under the influence of large disturbance forces, and less to those

which are not; this again limits the control effort being applied unnecessarily, reducing

the overall control effort that would otherwise be applied.
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4.3 Experimental Verification

Similar to the experiment in the previous chapter, the task consists of one Baxter arm

moving in a minimum-jerk trajectory. The disturbance forces are made more complex

to demonstrate the benefits of the hybrid controller and resemble the crowded room task

mentioned in Section 4.1.

Figure 4.1: Diagram demonstrating how the simulated task disturbance Ftask, and
environmental disturbances Fenvt, are applied to the modeled Baxter arm.

We model the disturbance torque τdist as two components, to simulate both a force

acting at the end-effector, described here as Ftask, and an environmental disturbance

Fenvt applied on the arm, as shown in Figure 4.1:

Ftask ≡ [p 0 0 0 0 0]T , p = Ap sin(2πfpt) (4.8)

is applied on the endpoint, where 0 < Ap ≤ 20N is the amplitude and 100 < fp ≤ 1000

the frequency of oscillation in Hertz. In joint space, the torque applied is then

τtask = JT (q)Ftask. (4.9)

The environmental disturbance is given by

Fenvt ≡ [r 0 0 0 0 0]T , r = Ar sin(2πfrt) (4.10)

where 20N < Ar ≤ 100N is the perturbation amplitude, similar to average limits of

human push/pull strength [217], and 0.1 < fr ≤ 1 the frequency in Hertz, which provides

a slowly changing disturbance like being pushed upon. To simulate the environmental

force Fenvt being applied at a point on the arm, e.g. at the elbow, the Jacobian matrix



Chapter 5. Hybrid Control 59

J is reduced by a matrix Z, defined as

Z ≡

[
I[z×z]

0[(n−z)×z]

]
(4.11)

where z is the number of joints from the base to the contact point and can be chosen

for the simulation, e.g. if the force is applied on the elbow, similar to what is depicted

in Figure 4.1, z = 4. The torque can then be found as

τenvt = (J(q) Z)T Fenvt. (4.12)

The simulated disturbance torque τdist is then comprised of a combination of terms in

Equations 4.9 and 4.12, and again applied to the manipulator during testing in four

phases:

• Phase I: No disturbance,

• Phase II: Ftask only,

• Phase III: Fenvt only,

• Phase IV: Fenvt and Ftask.

This should demonstrate that the task-space controller will provide feedback when Ftask

is applied, joint-space control will compensate for Fenvt and both controllers will min-

imise control effort when tracking performance is reasonable. Measurement noise is

simulated through the injection of white noise into the calculation of τdist from Equa-

tion 4.6. Noise levels are bounded to levels similar to those described for the Baxter

robot in [218], and as such does not cause noticeable variation between simulation runs;

therefore no statistical analysis is required.

For evaluation purposes a performance index η was calculated from the integral of the

product of input force Fu and task-space tracking error εx:

η =

∫ tf

ts

Fu(t)TΥFu(t) + εTx (t)Ψ εx(t) dt (4.13)

where Υ,Ψ ∈ <6×6 are positive diagonal scaling matrices, and ts and tf were set to

obtain η for each phase of the simulation. A low performance index η corresponds to

low tracking error and control effort, thus indicating specifications are met.

Controller parameters were chosen similar to the previous test as:

Qτ = diag(7, 7, 7, 7, 7, 7, 0.1), QK = diag(50, 50, 50, 50, 50, 50, 0.1), QD =

diag(1, 1, 1, 1, 1, 1, 0.1); for the task-space controller, QF = diag(7, 7, 7, 7, 7, 7),
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QKx = diag(50, 50, 50, 50, 50, 50), QDx = diag(1, 1, 1, 1, 1, 1). The stability

margin was set as L = I7×7, α = 0.5 and κ = 10. Simulations were all set to run

with a 1 kHz update rate. The initial position of the end-effector, of the left arm, was

set to X(0) = [0.6, 0.2, 0.4, 90, 0, 171.9]T , with a final target position of Xr(tf ) =

[0.6, 0, 0.4, 90, 0, 171.9]T moving in a minimum-jerk trajectory as previously described

in Equation 3.33.

4.3.1 Results

The performance of the hybrid controller τu(t) = τr(t) − L ε(t) + τx(t) + Ωτj(t) was

compared against the controller in joint-space only, when τu(t) = τr(t)− L ε(t) + τj(t),

and in task-space only, where τu(t) − L ε(t) = τr(t) + τx(t). Disturbance parameters

remain the same in each case; for Ftask(t) defined in Equation 4.8, p = 20 sin(2π 50 t)

, and for Fenvt(t) from Equation 4.10 the parameters are r = 100 sin(2π 0.1042 t). The

trajectory period and travel distance were set to 4.8s and 0.2m respectively. Each

simulation phase corresponds to one completion of the trajectory.
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Figure 4.2: Comparing the cartesian trajectories of the three control schemes. The
top row shows trajectories in the x, y plane, bottom row in the y, z plane. Graphs (a)
and (b) correspond to joint-space control, (c) and (d) to task-space, (e) and (f) to the

hybrid scheme.

The trajectory path for each controller is first analysed, and shown in Figure 4.2, with

both the x, y and y, z planes shown separately for clarity. Looking at the joint space
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controller in (a) and (b), we can see that the trajectory is followed well in the x, y plane,

but deviates massively in the z-axis in phases III and IV. Comparing this to task-space

control shown in (c),(d), we can see that the position in the x, y plane is pushed to either

side in phases III and IV due to application of Fenvt but has a better performance in

the z-axis. We can also see that the task-space controller is perturbed less by Ftask

in phase II, and is able to follow the desired trajectory closer. What we can gather

from comparing these two is that the joint-space controller can compensate for Fenvt

better than task-space, but suffers from poor performance in the axis which has no

disturbance applied. By now examining the hybrid controller shown in (e) and (f), we

can see it has taken the good points of both controllers; it is more robust against the

large environmental task, similar to the joint-space, but also limits deviation in all three

axes similar to the task-space controller.
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Figure 4.3: Plot of how the weighting matrix Ω changes over the simulation period.

The elements of the weighting matrix Ω are plotted in Figure 4.3, which, when compared

in conjunction with Figure 4.1, indicates if τj is being applied as expected dependent on

the type of disturbance. From the definitions of Ftask and Fenvt it can be expected that

• in phase II the vibration at the end-effector in the x-axis will cause higher errors

(and therefore higher weights) on joints along the whole length of the arm, mostly

in joints 6, 4 and 1 which have axes perpendicular to the direction of disturbance

force,

• phase III disturbance is only applied at the elbow (joint 4), so weighting will be

higher at joints 1,2 and 3,
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• a combination of the above in phase IV where both are applied.

By examining Figure 4.3 we can see that Ω behaves as expected. The switch point

between phases is very clear. In phase I the weights for all joints oscillate, as all errors

will be at similar low values. In phase II the joints with highest weights are 4, 6 and 1

respectively, as predicted. Weights in phase III also match expectations, with highest

values assigned to joints 1, 3 and 2 respectively. Finally in phase IV Ωmax is assigned

to joints 1 and 4, with some smaller weighting assigned to joints 6, 3 and 2. Through

all three disturbance phases the weights are close to zero for joints 5 and 7, as desired

in the design.
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Figure 4.4: Comparison of joint-space, task-space and hybrid controller performance,
(a): Comparing tracking error, (b): Input torque, and therefore control effort, and (c):

performance indices, a combination of both.

The Cartesian tracking error εx in Figure 4.4(a), for all three controllers, shows how task-

space performs better when a tool-type disturbance is applied, but suffers when a large

disturbance is applied away from the end-effector; in this case, joint-space control was

able to track more effectively. When combined in the hybrid controller, tracking error

was reduced further. In the first phase, (0 < t < 4.8) little difference can be observed

in tracking error for the three controllers. In phase II task-space has the lowest error

and joint-space the highest, with the hybrid control in between, as expected due to the
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perturbation being located at the end-effector. In the next two phases (9.6 < t < 19.2)

task-space control produces the highest error, while the hybrid controller shows a much

lower tracking error than its component parts.

From Figure 4.4(b) it can be noted that there was little difference in the overall amount

of control effort being applied between the three methods. The measures of tracking

error and control effort were combined to form the performance index η for each phase,

shown in Figure 4.4(c). A clear difference could be seen in the performances of the

task-space and joint-space controllers between phases II and III, where the disturbance

type was switched from Ftask to Fenvt; task-space control was better at handling the

former, and joint-space the latter. The hybrid controller showed a slight improvement

over joint-space in phase II but exhibited an improvement over its component parts in

phases III and IV. Considering ||τu|| was similar for all three, as seen in Figure 4.4(b),

this suggests that the hybrid control was applying control in a more targeted fashion,

i.e. only applying additional feedback to the joints which require it.
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Figure 4.5: Learned feed-forward torque and stiffness. (a): Evolution of the feed-
forward torques for the first three joints. (b): Stiffness ellipses in the x and y planes,

of midpoint of phases I - II.

By examining the evolution of feed-forward torque in Figure 4.5(a) we see how in phases

III and IV large increases were made in the last two phases to compensate for the low
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frequency Fenvt disturbance, predominantly in the first joint (the rotation of which is

aligned with the x, y plane). Comparing the magnitude of feed-forward torque between

controllers it is clear that joint-space control generated much higher torques, while hybrid

control torques were much lower and less weighted towards joint 1.

Cartesian stiffness ellipses can be used to examine the geometry of feedback, and are

shown in Figure 4.5(b). In task-space and hybrid control, it can be observed how the

stiffness changed from a slight orientation in the y-direction (due to the trajectory mov-

ing along this axis) to a much larger ellipse predominantly in the x-axis: aligned with

the direction of disturbance. Joint-space control, however, produced ellipses less-aligned

with the direction of disturbance. This shows that feedback torque is being applied

inefficiently in this case.

4.4 Concluding Remarks

This chapter has discussed the design of a hybrid task/joint-space controller and its im-

plementation. A simulation experiment was carried out and results collected to demon-

strate the effectiveness.

We can see clearly from the resulting task-space trajectories in Figure 4.2 how the

hybrid controller follows a path which is somewhere in between the joint-space and task-

space controllers, with the benefits of both; that is, the joint space controller improves

robustness against the environmental disturbance force, and the task-space controller

improves trajectory tracking and robustness to end-effector disturbance.

Examination of how the weighting matrix changes in 4.3 shows that the weighting matrix

works as expected in reducing joint-space torque in joints where low disturbance is

detected. It should be noted that the weighting is necessary for stability, as preliminary

experiments showed that simple summation or averaging of the two control torques

resulted in excessive applied torque. As the weighting matrix only reduces the torque

from the joint-space controller, it can be said that the majority of control is provided

by the task-space control but with some “bootstrapping” provided in joint-space.

In addition to improved performance, we can see in Figure 4.4 that the overall input

torque, equivalent to metabolic cost, is the same or less compared to the component

controllers; this tells us that the available torque is being applied more “correctly”

to improve the overall controller performance. This is confirmed when examining the

reference geometry in Figure 4.5 where we can see that the stiffness ellipse is better

aligned with the disturbance direction than in joint-space.
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As these simulations were carried out, it was noted that setting and tuning of the

controller parameters (for example, Qτ , α, etc.) was both time consuming and tedious;

the parameter was set, the simulation run, then the output analysed for tuning. This is

what leads us to the next chapter: the automation of this trial-and-error process.





Chapter 5

Application of Fuzzy Controller

for Parameter Estimation

5.1 Introduction

Controller parameters, such as PID gains (Proportional, Integral and Derivative), are

typically tuned by the user during primary testing to get the desired performance from

the system. Tuning can be aimed at, for example, reducing tracking error, increasing

the learning rate of an adaptive algorithm or increasing the compliance of an impedance

controller. Tuning the parameters for a robotic manipulator is no easy task, as complex

dynamics and cross-talk interactions may be affected unexpectedly by small changes

of an initial gain. In addition, a robot manipulator may have interaction with the

environment, which can be impossible to predict and model.

Some research has shown how using neural networks system uncertainties can be es-

timated [219, 220] to avoid some of these problems. Fuzzy logic, however, has often

been used in aspects where human operator expertise can be transferred into a math-

ematical representation, to automate rational decision making in the face of imprecise

data [125, 221, 222]. For many years fuzzy control has been used in systems to improve

performance, as discussed in Chapter 2, and more recently applied to non-linear systems

[223] and robot manipulator control [224].

In this chapter, fuzzy control is used in a novel application to self-tune the hybrid

controller discussed in Figure 4. In particular, the adaptation gains are auto-tuned

to improve the reaction to sudden perturbations and increase the rate at which control

effort is reduced when tracking performance is good. The hybrid controller has uncertain

and complex dynamics which are problematic to apply traditional tuning methods to,

67
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and linguistic rules exist for the desired controller performance, e.g. as the user I can

decide whether the tracking error is “good” or “worse”; this is a good match for a fuzzy

system.

5.2 Preliminaries of Fuzzy Control

Before continuing with the fuzzy system design, it is important to know the fundamen-

tals. What is described here is focused on the Mamdani, rather than Sugeno [225], type

of fuzzy system, due to its being more intuitive and well suited to human input.

Figure 5.1: Simple flow diagram of fuzzy system. The input X is fuzzified through
membership functions. The output sets are generated by the inference engine based on
the fuzzy rules. Y is the ”real world”, or crisp, output which is retrieved through the

defuzzification of the output fuzzy set [1].

As shown in Figure 5.1, there are three main steps for get a crisp output from a crisp

input or inputs. First, fuzzification maps the inputs (for example, in an air conditioning

system these could be temperature and humidity) into fuzzy space through the use

of membership functions. Membership functions can take a number of shapes such as

trapezoidal, gaussian, etc. and choice is usually subjective, but commonly the triangular

shape is used for simplicity and low sensitivity [226]. If we let X be a space of points

with elements x ∈ X, a fuzzy set A in X can be described by the membership function

µA(x) [123]. This associates a grade of membership µA(xi) in the interval [0, 1] to any

point x in set A.
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Several technical definitions are required to describe the method of inference. Corre-

sponding to the descriptive connection OR, a union of two sets A and B is a fuzzy set

C

C = A ∪B; µC(x) = max
[
(µA(x), µB(x)

]
, x ∈ X. (5.1)

An intersection is used to describe the connective AND, which can be similarly described:

C = A ∩B; µC(x) = min
[
(µA(x), µB(x)

]
, x ∈ X. (5.2)

A relation between two or more fuzzy sets can be described by the Cartesian product.

Given A, a set in universe X, and B, a set in universe Y , [227] the Cartesian product

of A and B will result in a relation R

A×B = R ⊂ X × Y (5.3)

where the fuzzy relation R has a membership function

µR(x, y) = µA×B(x, y) = min
[
µA(x), µA(y)

]
. (5.4)

This is used in the Mamdani min-implication to relate an input set to an output set, i.e.

IF x isA THEN y isB. (5.5)

Through this method a series of rules can be described linguistically, for example, if

temperature is high and humidity is high then AC output is high. The rule set impli-

cates the system fuzzy output from their aggregated output. Aggregation is the process

of combining the fuzzy set output of each rule into a single fuzzy set, commonly by tak-

ing the maximum value from all rules across the output set. This results in a mapping

of the output in fuzzy space.

Several methods exist for defuzzification, but the centroid method is commonly used for

accuracy [228]. The defuzzified value (or crisp output) y∗ is given through calculation of

the centre of mass of the aggregated output fuzzy set shown in Equation 5.6, and relates

the value µ back to a real-world value (such as fan speed, for the running example).

y∗ =

∫
µB(y) y dx∫
µB(y) dx

. (5.6)
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5.3 Application to Biomimetic Controller

As discussed in the previous chapter, an apparent issue the requirement for arbitrary

learning parameters to be set by the user. This problem is addressed here through a

novel application of a fuzzy system to take the linguistic rules of a control engineer

to infer these parameters online, based on the performance criteria of tracking error

and control effort. The system gains to be inferred are set to some low value initially,

to ensure a stable simulation run. Data is collected during this initial run, which then

forms a performance baseline. The next run of the simulation then compares the current

performance to the previous, but this time tunes the gains according to the fuzzy system

using a set of linguistic rules. In this way performance is hoped to improve run-on-run,

as the fuzzy engine seeks to continuously improve upon the previous iteration. The gains

to be tuned are related to the learning rate, Q(·) and α(·), and are chosen for relation

to improving tracking error and control effort respectively. Metrics of these two criteria

are calculated online to provide inputs to the fuzzy system.

For the hybrid controller a separate fuzzy system is created for both the joint-space and

task-space components, and although they follow the same rules the output member-

ship functions are defined differently. The basis of the inputs for fuzzification are the

joint-space tracking error εj defined in Equation 3.22 and τj from Equation 3.23, and

correspondingly in task-space εx and Fu from Equations 4.1,4.3. Before fuzzification the

inputs are normalised so that the same fuzzy system can be applied regardless of input

magnitude. This is possible due to how inference is made comparing the current input

to the metrics from the previous iteration, which we will call the baseline. This baseline

is formed from an average of tracking errors ε̂j ∈ <n, ε̂x ∈ <6, input torque τ̂u ∈ <n and

input force F̂u ∈ <6 for each degree of freedom, over the total simulation time per time

step tf/δt, i.e.

ε̂ji =

∑
|εji(t)|
tf/δt

, ε̂xi =

∑
|εxi(t)|
tf/δt

, τ̂ui =

∑
|τui(t)|
tf/δt

, F̂ui =

∑
|Fui(t)|
tf/δt

(5.7)

which are then used to normalise the corresponding values from the current iteration,

as such:

ε̄ji(t) =
σ |εji(t)|
ε̂ji

, ε̄xi(t) =
σ |εxi(t)|
ε̂xi

, τ̄ui(t) =
σ |τui(t)|
τ̂ui

, F̄ui(t =
σ |Fui(t)|
F̂ui

(5.8)

where σ is set to 0.5 for our purposes. The result of this is the simplification of the input

membership functions; for example, if the current tracking error εji(t) is better (i.e.

lower) than the baseline, then ε̄ji(t) will be in the region 0→ 0.5, and correspondingly

if performance is worse than the previous iteration then the normalised input will be
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in the region 0.5 → 1 (assuming it is not more than double the baseline). Therefore,

for simplicity only three input classifications are needed: “lower”, “same” and “higher”

which are spaced equally across the input range of 0→ 1. As there is no upper bound to

the normalisation the membership functions are defined so that any crisp input greater

than 1 is assigned a membership value of 1 in the “higher” classification.

!

0 1/10 !med !med 10 x !med

7
(!

)

0

0.25
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1
Output membership functions

low
medium
high

Figure 5.2: Graph showing how output membership functions are set, where Γ can
be replaced with Qτ etc. and Γmed is the selected “medium” value.

We then select our gains to be inferred to be Qτ ≡ Qτ (ε̄j , τ̄j), QK ≡ QK(ε̄j , τ̄j), QD ≡
QD(ε̄, τ̄), α ≡ α(ε̄j , τ̄j) from Equations 3.26 and 3.28 for the joint-space controller, the

corresponding task-space gains from Equations 4.2 and 4.4. The membership functions

for these are selected based on expert knowledge of the system; an average value is

selected as a “medium” value, with “high” and “low” values set as half and double the

set value, respectively. The triangular membership functions are then set as shown in

Figure 5.2, which simplifies the process. Note that this also demonstrates the bounding

of the output gains, which will be important later when discussing stability of the system.

The rules are described using expert knowledge of the system, but are fairly general, for

example: IF control effort is too high THEN gain is set low; IF tracking error is poor

THEN gain is set high, as shown in Table 5.1 for Q(·). Note also that if the control

effort is high then the Q(·) gains are set to a medium level. The truth table for the

forgetting factor gain (Table Table 5.2) is slightly different, in that α is required to be

larger when tracking error is improving. This can also be visualised in Figure 5.3, which

also demonstrates how the rule sets differ for Q(·) gains in (a) from those commanding

α in (b).
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Figure 5.3: Gradient maps demonstrating rule surfaces. (a): adaptation gain QDx,
and (b): value of αx, based on inputs ε̄x and F̄u described in Figure 5.8. Joint-space

gains are characterised by similar surfaces.

Table 5.1: Truth table for inference of output Q(·) based on fuzzy memberships of
ε̄ji , ε̄xi , τ̄ui , F̄ui .

Input Output

R1: IF ε̄j , ε̄x < σ THEN Q(·) low

R2: IF ε̄j , ε̄x ≈ σ and τ̄u, F̄u < σ THEN Q(·) low

R3: IF and τ̄u, F̄u ≥ σ THEN Q(·) medium

R4: IF ε̄j , ε̄x > σ and τ̄u, F̄u ≤ σ THEN Q(·) high

R5: IF and τ̄u, F̄u > σ THEN Q(·) medium

Table 5.2: Truth tables for inference of output α(·) based on fuzzy memberships of
ε̄ji , ε̄xi

, τ̄ui
, F̄ui

.

Input Output

R1: IF ε̄j , ε̄x < σ and τ̄u, F̄u < σ THEN α medium
R2: IF and τ̄u, F̄u ≥ σ THEN α high
R3: IF ε̄j , ε̄x ≈ σ and τ̄u, F̄u ≤ σ THEN α medium
R4: IF and τ̄u, F̄u > σ THEN α high
R5: IF ε̄j , ε̄x > σ and τ̄u, F̄u ≤ σ THEN α low
R6: IF and τ̄u, F̄u > σ THEN α medium

5.4 Stability Analysis

Stability of the biomimetic controller described in Chapter 3 and convergence to a small

bounded set were shown in [16], with the task-space controller having a similar proof;

the small changes made (such as decoupling of Q· and γ) do not affect the same proof.

However, with the application of the fuzzy system the adaptation gain matrices Q(·) are

now time varying and must be accounted for in the stability proof.

From [16] Appendix C, the difference in energy of the system δV (k) = δVp(t) + δVc(t)

is shown to converge to zero. No change to the derivation of the first part δVp(t) is

required (apart from being in continuous time rather than iterative), so that section of
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the proof still holds, and is given as:

δVp = Vp(t)− Vp(t− T )

≤
∫ t

t−δt
−εT (σ)L(σ)ε(σ)− εT K̃(σ)e(σ)− εT (σ)D̃(σ)ė(σ)− εT (σ)τ̃(σ)

− εT (σ)KEe− εTDE ė− εT (σ)τE + εT τI dσ

≤
∫ t

t−δt
−εT (σ)L(σ)ε(σ)− εT K̃(σ)e(σ)− εT (σ)D̃(σ)ė(σ)− εT (σ)τ̃(σ) dσ. (5.9)

The present controller differs in [16] Equations (39 - 41) where Q−1(·) is replaced with

Q−1(·) (σ). The original inequality is given as:

δVc(t) =
1

2

∫ t

t−δt

{
tr
(
K̃T (σ)Q−1K K̃(σ)− K̃T (σ − δt)Q−1K K̃(σ − δt)

)
+tr

(
D̃T (σ)Q−1D D̃(σ)− D̃T (σ − δt)Q−1D D̃(σ − δt)

)
+τ̃T (σ)Q−1τ τ̃(σ)− τ̃T (σ − δt)Q−1τ τ̃(σ − δt)

}
dσ. (5.10)

Due to the time-varying nature of Q−1(·) in this work, the inequality is redefined as:

δVc(t) =
1

2

∫ t

t−δt

{
tr
(
K̃T (σ)Q−1K (σ)K̃(σ)− K̃T (σ − δt)Q−1K (σ − δt)K̃(σ − δt)

)
+tr

(
D̃T (σ)Q−1D (σ)D̃(σ)− D̃T (σ − δt)Q−1D (σ − δt)D̃(σ − δt)

)
+τ̃T (σ)Q−1τ (σ)τ̃(σ)− τ̃T (σ − δt)Q−1τ (σ − δt)τ̃(σ − δt)

}
dσ. (5.11)

Defining a new variable δQ ≡ diag [I⊗ δQK , I⊗ δQD, I⊗ δQτ ] (where⊗ is the Kronecker

product) allows us to add another term to the end of [16](44), producing

δVc(t) =− 1

2

∫ t

t−δt
δΦ̃T (σ)Q−1(σ)δΦ̃(σ) dσ −

∫ t

t−δt
γ(σ)Q−1(σ)Φ̃T (σ)Φ(σ) dσ

+

∫ t

t−δt
εT (σ)K̃(σ)e(σ) + εT (σ)D̃(σ)ė(σ) + εT (σ)τ̃(σ) dσ

+

∫ t

t−δt
Φ̃T (σ)δQ−1(σ)Φ̃(σ) dσ. (5.12)

The term inside the last integrand can be described by εQΦ̃T Φ̃ where

εQΦ̃T Φ̃ ≥ tr
(
εKK̃

T K̃ + εDD̃
T D̃ + ετ τ̃

T τ̃
)
, εQ = max (εK , εD, ετ ) (5.13)
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given that K̃TΦ−1K K̃ ≤ εKK̃
T K̃, D̃TΦ−1D D̃ ≤ εDD̃

T D̃ and τ̃TΦ−1τ τ̃ ≤ ετ τ̃
T τ̃ , where

εK,D,τ are defined as the minimum eigenvalues of Φ−1K,D,τ . This can then be added to

the condition in [16](46) which gives the inequalities

δV ≥ λL‖ε‖2 + γ̄max‖Φ̃‖2− γ′‖Φ̃‖‖Φ∗‖ ≥ λL‖ε‖2 + γ̄‖Φ̃‖2− γ′‖Φ̃‖‖Φ∗‖ ≥ 0 (5.14)

where γ′ = Q−1γ, and γ̄ = γ′ + εQ and λmin
(
L(t)

)
≤ λL > 0. Following LaSalle’s

theorem [229] the terms ‖ε‖2 and ‖Φ̃‖ will converge to an invariant set Υs ⊆ Υ in which

δV (t) = 0, and Υ is the bounding set defined by:

Υ ≡

{
(‖ε‖2, ‖Φ̃‖), (λL‖ε‖2) + α(‖Φ̃‖ − ‖Φ∗‖)

(λL‖ε‖2)α
≤ 1

}
. (5.15)

Given that Q(t) is bounded by the output of fuzzy inference as shown in Figure 5.2

and that γ is always a positive value asymptotic to zero, as shown in Figure 3.10, then

convergence will always be attainable and the value of γ will only affect convergence

speed and the size of the set.

5.5 Experimental Verification

To test the effectiveness of the fuzzy tuning of parameters the same simulation was run

as seen in the previous chapter. No other changes were made apart from the addition of

online parameter tuning the existing hybrid controller. The only parameters that needed

to be set were the medium values of the inferred gains (see Γmed in Figure 5.2), which

were taken as the set values from the previous experiment described in Section 4.3. In

the case of the parameter α, it is bounded as described in Equation 3.28 so the output

membership function is distributed equally across the range. The data collected from

that experiment was also used to form the performance baselines described in Equa-

tion 5.7. The same performance indices were calculated for the fuzzy tuned controller,

to allow for direct comparison.

5.5.1 Results

The resulting task-space trajectory in Figure 5.4 is compared to the same controller with

fixed gains. In phase II, shown in yellow, the fuzzy tuning has made a clear improvement.

Interestingly the trajectory in the y, z plane in (d) was improved the most, with only

small divergence seen in the z-axis and a smaller overshoot in the direction of movement

(y-axis). However, comparing Figure 5.4(a) and (c) a higher divergence is noted in the
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Figure 5.4: Comparison of task-space trajectories of the hybrid controller: with static
gains in (a)(b), fuzzy tuned gains in (c) and (d).

x-axis for the fuzzy tuned controller with some oscillation seen particularly in phase

III, most likely due to the adaptation gains competing to reduce the control effort and

tracking error at the same time.

Figure 5.5 shows how the tuned gains change over time in joint-space and task-space,

with clear differences between phases. For all Q(·) gains in phase I the values are much

lower than the midpoint value, with α increasing to reduce control effort. In phase II

we can see some increases made to certain joints in (a), (b), (c), and in all three axes

x, y, z in (e),(f) and (g), particularly in the x-axis aligned with disturbance. In the last

two phases when disturbance forces are greatest the Q(·) gains show large increases over

the midpoint values, while α is reduced to allow the amount of feedback to accumulate

faster, therefore hopefully compensating better against Fdist.

We can examine the tracking error and control effort more clearly in Figure 5.6. In (a)

there is clearly a reduction in error in phase II but little change in all other phases.

However, looking at the control effort in (b) we can see almost no change in phases I

and II, but significant reduction in phases III and IV. This demonstrates that online

tuning is minimising the tracking error when control effort is low, but is also able to
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Figure 5.5: Evolution of fuzzy tuned gains over simulation period, joint-space above
and task-space below. Feed-forward terms in (a),(e); stiffness in (b),(f); damping in

(c),(g) and alpha gains in (d),(h).
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reduce the amount of control effort while maintaining the same level of tracking error.

This is reflected in the resulting performance indices in (c): in phase I performance is

similar as both tracking error and control effort cannot be reduced much further, in all

other phases performance is improved in either possible way when the gains are tuned

online.
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Figure 5.7: Comparing the evolution of feed-forward force and stiffness of fixed gain
in (a) and (c), and fuzzy tuned controller in (b) and (d).

The feed-forward torques of the proximal joints are compared in Figure 5.7(a) and (b).

When gains are tuned online we can see that the torque in the first joint is increased

dramatically when Fenvt is applied in phases III and IV, and a slight reduction in joints

2,3. Some oscillation occurs as the fuzzy rules attempt to minimise the performance

criteria simultaneously. Examining the change in stiffness geometry between phases I

and II (note scaling for second phase, so that the shape in phase I can be seen) it

can be observed that stiffness is still aligned similarly between fixed gain and tuned gain

controllers, but in the tuned case the magnitude is more than twenty times smaller. From

this we can see that although feed-forward torque is increased dramatically in one joint

(in (b)), applied torque is reduced in other areas (stiffness feedback), i.e. application of

torque is being targeted in required areas more efficiently.
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5.6 Concluding Remarks

This chapter has investigated how fuzzy control techniques have been applied in the past

and what types of application are suited to fuzzy control over other techniques. The

prerequisite mathematics of a Mamdani-type fuzzy controller are given. A description of

how the fuzzy system can be applied to the hybrid biomimetic controller from Chapter 4,

with a verification of stability is shown, followed by an experimental verification of online

parameter tuning using the same experimental platform as before for direct comparison.

The new controller is analysed for performance criteria and how the online tuning affects

the gains corresponding to learning and forgetting rates.

From the results we can see that although some performance improvements are made

in terms of tracking error and control effort, by creating two sets of rules for tuning

Q(·) gains and α gains there is some interaction where one set is trying to increase gain

to reduce error, while the other is trying to minimise gain and therefore control effort.

However despite these competing affects we can see from the performance indices in

Figure 5.6 that improvements are still being made when disturbance forces are applied.

Overall, control effort was reduced by 24% and performance increased by 15% when

the controller parameters are tuned online. This is an added bonus to the original

specification, which was to avoid the time-consuming task of tuning parameters offline

from repeated simulation runs.

This concludes the description of the manipulator controller, so that in Chapter 6 it is

applied to a simulated bimanual simulated task in the face of complex disturbance forces

and analysed for suitability and performance.



Chapter 6

Application of Controller to a

Bimanual Task

6.1 Introduction

Bimanual, that is, with two manipulators, robots have become more common in the

world, as manufacturers look towards a more fully humanoid design. Well known robots

like Honda’s Asimo [230] and the KAIST HUBO [231] are being designed to fit in

with our world and work with us in everyday environments, but are mainly focused

on bipedal walking development. Others, such as the iCub and Justin described in

Section 2.3 are being developed for research in cognition and Human-Robot Interaction

(HRI) experiments. The Baxter robot, also previously described, has been designed with

two arms to improve its capabilities in the workplace, but is also useable in a research

scenario.

The problems inherent to bimanual manipulator control are various and several solu-

tions appear in the literature, described in Section 2.3. In the scope of this work a

particular bimanual task is focused on, where both hands are required to use a tool with

dynamic properties (as of a running motor), whilst under the influence of environmental

disturbance such as coming into contact with a human operator. Minimal tracking error

must be maintained to avoid dropping the tool and performing the task, but the sys-

tem must remain compliant for effective contact tooling [178, 232] and operator safety

[191, 233, 234].

The previous chapters have described the development of a controller suited to this task.

The basis of the controller, the biomimetic design, allows force and impedance of the

manipulator to adapt independently, ideal for the described task. The minimisation of

79
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control effort ensures natural compliance, but also means that impedance is minimised

in directions not aligned with that of disturbances.

This chapter describes a method of bimanual control to perform the aforementioned task,

and experimental results to confirm suitability. The developed controller is implemented

to demonstrate its effectiveness in this situation.

6.2 Object dynamics

The object, or tool, is modelled as a mass-spring-damper system, which additionally

exerts a high frequency, low amplitude disturbance force normal to the point of contact

with the hand. For simplicity but without loss of generality the object is assumed to be

a homogenous sphere, as shown in Figure 6.1.

ʹ� 

 
�� 

� � 

� � � 

�� �� 

	� 	� 

Figure 6.1: Diagram of dynamic object, showing structure of mass-spring-damper
system.

The interaction forces which result from contact with the object are described with

reference to the Cartesian positions and velocities of the central mass (Xm, Ẋm) and the
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contact points of the left (XL, ẊL) and right (XR, ẊR) end-effectors [235], as

FR = −k
(
r − (Xm −XR)

)
− d(ẊR − Ẋm)

FL = k
(
r − (XL −Xm)

)
− d(Ẋm − ẊL) (6.1)

where k, d and r are the stiffness and damping coefficients and the natural radius of the

sphere respectively. The forces FL and FR are the sum of forces arising from interaction

of the object mass m and the end-effectors against the spring-damper system distributed

equally across the surface; from Newton’s Second Law of motion we have:

−m Ẍm = FL + FR (6.2)

which, when combined with Equation 6.1, allows us to combine the terms to:

−m Ẍm = 2d Ẋm + 2k Xm − d(ẊL + ẊR)− k(XL +XR). (6.3)

A state space representation of the dynamics is now constructed for clarity and easier

modelling. The mass position and velocity become the states with the end-effector

positions and velocities as inputs, as so:

[
Ẋm

Ẍm

]
=

[
0 1
−2k
m

−2d
m

][
Xm

Ẋm

]
+

[
0 0 0 0
k
m

k
m

d
m

d
m

]
XL

XR

ẊL

ẊR

 , (6.4)

and the outputs:

[
FL

FR

]
=

[
k d

k d

][
Xm

Ẋm

]
+

[
−k 0 −d 0

0 −k 0 −d

]
XL

XR

ẊL

ẊR

+

[
k r

−k r

]
. (6.5)

In addition, a simple friction model is employed, where the force normal to the surface

Fn must keep the condition:

Fn ≥
m g

µf
(6.6)

where µf is the coefficient of friction and g is the acceleration due to gravity.

In addition to the forces resulting from contact with the object, two disturbance forces

are also presented to the manipulators as per the task described in Section 6.1; these

are the same as Fdist as described in Equation 4.8 and Equation 4.10, except that in
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the case of Ftask the direction is normal and opposite the contact surface, and Fenvt is

normal to the direction of travel, and only applied to the leading arm.

6.3 Bimanual Trajectory Design

Examining previous works, it was decided that the work of Sugar and Kumar [150]

and other similar literature [236–238] shows a promising starting point for the design of

the bimanual trajectory system. A leader-follower methodology means that a constant

distance can be maintained between the hands despite perturbations being applied to

the leading arm. With respect to the controller design here, it also means that the

complete system can remain compliant while the following arm is stiff, to compensate

for disturbance.

One manipulator is designated the leader, the other the slave; for the remaining descrip-

tions, the role of master is given to the left manipulator and slave to the right; where the

subscripts (·)L and (·)R denote any variable which corresponds to that arm. Therefore,

the trajectories of both arms can be defined

XLd
(t) =

[
xLd

(t), yLd
(t), zLd

(t), ϑLd
(0), φLd

(0), ψLd
(0)
]T

XRd
(t) =

[
xL(t) + pxd , yL(t) + pyd , zL(t) + pzd , ϑR(0), φR(0), ψR(0)

]T
ẊRd

(t) = ẊL(t) (6.7)

where XLd
(t) and XRd

(t) denote the desired Cartesian positions of the left and right

manipulator respectively, XL(t) and XR(t) the corresponding actual positions, and pd =

[pxd , pyd , pzd ] are the positional offsets between the hands, which are set so that ||pd|| ≤
2r from Equation 6.1 but also fulfilling the inequality in Equation 6.6, dependent on the

stiffness and mass of the object, assuming a coefficient of friction µc = 0.9, approximately

the same as the rubber often found on the handles of small tools [239].

6.4 Experimental Verification

To test the controller in the bimanual task described above a modelled simulation is

carried out with two Baxter manipulators, modelled to match the actual robot in terms

of relative position and orientation. The adaptive controller is applied to both left and

right unchanged from that described in Chapter 5, with initial parameters set the same

on both sides. The disturbance forces are introduced in the same order as before, with

the small difference described in Section 6.2.
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To compare performance the same simulation is run using a computed torque control

method, where the input torque is defined as

τu = M(q)
(
q̈d +K(qd − q) +D(q̇d − q̇)

)
+ C(q, q̇)q̇ +G(q), (6.8)

where K = 50 and D = 5. This is a simple compliant design, only working in joint-space

and with no adaptive control.

The desired trajectory of the leading arm, XLd
, also remains the same as previously,

with the desired trajectory of the following arm corresponding to Equation 6.7 and

pd = [0, −0.4, 0]. The parameters of the object are set to r = 0.204m, m = 0.2kg,

k = 10N/m, d = 5Ns/m.

6.4.1 Results
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Figure 6.2: Results from simulated task with computed torque control input. (a):
Euclidian distance between end-effectors, (b): normal force at left end-effector, (c):

normal force at right end-effector.

The computed torque control method is tested first, with performance shown in Fig-

ure 6.2. The controller was not able to compensate sufficiently when the disturbance

force Fenvt at t = 9.6, and becomes unstable. In the first two phases 0 < t < 9.6 we can
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see in (a) that the distance between the end-effectors is maintained poorly, fluctuating

both above and below the desired distance pd. Note that the object would be dropped if

this distance is greater than 0.408 (natural diameter of the object), which occurs around

1.7 < t < 3 and again around 6.6 < t < 7.3 before the system becomes unstable. We

can also examine the contact forces for left and right arms in Figure 6.2(a) and (b)

respectively, where the applied force must be at least Fnd
to provide enough friction

to counteract gravity. We can observe that this condition is often not fulfilled by both

arms, even when no disturbance forces are applied at 0 < t < 4.8.
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Figure 6.3: Resulting task-space trajectories showing both left and right arms; x, y
plane in (a), y, z plane in (b), and Euclidian distance between manipulators in (c).

The task-space trajectories of both manipulators are plotted together in Figure 6.3(a)

and (b), where the right arm deviates much more from the desired trajectory than the

left arm. However, we can also see that the range of deviation in both x and z planes

is approximately 0.01m. The important distance for successfully carrying the object

without dropping it is shown in Figure 6.3 i.e. the Euclidian distance between end-

effectors. The natural diameter of the object is equal to the top limit of the graph

y-axis, with the target distance shown in red. As shown, the distance between end-

effectors never becomes too large to drop the object for the entirety of the simulation

time.
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Figure 6.4: Normal forces acting on surface from left arm (a) and right (b), with
desired normal force for sufficient friction shown in red.

In addition to the distance between the end-effectors the force normal to the ball surface,

in Figure 6.4, must also be sufficient to provide enough friction to stop the object from

slipping through the grasp. For the left manipulator we can see that initially the force

is too low but quickly reaches and settles at a level where applied force is at maximum

0.35N above required, enough to hold without dropping. For the right side, the normal

force is initially too high and drops close to the dropping threshold, but settles quickly,

with a maximum of 0.91N. The maximum sum of forces acting on the object at any one

point is 6.91N.

6.5 Concluding Remarks

This chapter has shown how the controller developed in previous chapters is able to

successfully perform a bimanual task, where two manipulators are required to carry

a compliant object through a trajectory, whilst under the influence of disturbances at

the end-effector and the manipulator length. The dynamics of a compliant object are

described, along with a state space representation for use in modelling. A friction model

is also described to ascertain if contact forces are enough to realistically overcome the
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weight of the object. A simple bimanual trajectory is then designed based on a master-

slave system, with justification given.

A simulated experiment was carried out to test the capabilities of the controller de-

signed in previous chapters. Results were first collected from a computed torque control

method, which was not only unable to maintain a acceptable distance between end-

effectors or contact forces, but also became unstable when environmental disturbances

were applied. In comparison, the controller from Chapter 5 was not only able to main-

tain an acceptable distance between the hands in Figure 6.3 but also maintain stability

and sufficient but not excessive contact force in Figure 6.4 to overcome the weight of the

object.



Chapter 7

Conclusions and Future Aims

7.1 Summary of Thesis and Contributions

At the start of this work it was stated that the aim was to develop a controller based on

a biomimetic design, to carry out the theoretical “hummingbird problem”, which can

also be analogously described as having to move a vibrating tool with two arms through

a trajectory, whilst under the influence of unknown environmental disturbances.

Chapter 2 presented a review of works related to this field, including the development of

bimanual robots and biomimetic adaptive controllers, based on human muscle impedance

models. This led to the Baxter robot being chosen as the manipulator for further

experiments, and the choice of a biomimetic controller as a starting point due to the

properties of concurrent force and impedance adaptation, as well as the ability to reduce

metabolic cost similar to relaxation of muscles.

Chapter 3 gives a comprehensive description of the calculations required to perform

either L-E or RN-E inverse dynamics, and forms the first contribution of this work: a

closed-form analytical model of the Baxter manipulator, available publicly and thought

to be useful to the growing community of researchers using the Baxter robot as an

experimental platform. Modelled dynamics are compared to readings collected from the

physical robot, and show a close match, allowing simulations to be run with confidence

in manipulator behaviour. A description of the biomimetic controller is then given,

and describes some modifications to improve usability and performance. A simulated

experiment was carried out to determine suitability for the original task, which was

successful. This proves the suitability of the chosen biomimetic controller for pick-

and-place tasks under natural environment-like disturbances. In addition, the results

highlighted a drawback which led to the development of the next main contribution.
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Chapter 4 forms the main contribution of this work, due to its novelty and possible

applications in other control methods. Due to the nature of the biomimetic controller

it was possible to combine task-space and joint-space controllers into a single hybrid

via a weighting matrix, which improves overall performance when the manipulator is

subjected to forces at the end-effector and also along the length of the arm. Results

show that tracking error is improved without substantial increase in control effort. The

designed weighting matrix is shown to successfully limit joint-space feedback to only

the required joints. Implications of this are the possibility of applying the joint/task-

space hybrid technique to other controllers as well as the biomimetic control, which may

provide improved performance in other applications such as position or force control,

although the particular nature of the biomimetic controller lends itself well to this type

of hybridisation.

Chapter 5 describes another contribution of this work, that is, the novel implementation

of fuzzy control systems to tune controller parameters online. This not only removes

the need for lengthy tuning of the controller, but also shows slight improvement of

controller performance under disturbance forces. Stability analysis is performed and

deemed satisfactory. Results show that fuzzy tuning is able to reduce tracking error

without increasing overall control effort, and also reduce control effort without incre-

menting tracking error, dependent on the type of disturbance applied. It is thought that

methods similar to this could be applied to other controllers where setup includes the

requirement of parameter tuning, but only in applications where it is possible for an

expert operator to provide some sort of linguistic rule set.

finally in Chapter 6 the hybrid biomimetic controller with online parameter tuning is

applied to a simulated experiment matching the original specification. This is compared

to the same task carried out with a computed torque control method. A simple master-

slave trajectory is designed for bimanual control. For the final contribution, results show

that the controller is able to perform the task under all disturbance conditions while

maintaining safe contact forces, which is shown to be not possible using a computed

torque control method. However, it was noted during experimentation that the master-

slave approach means that the slave arm is particularly sensitive to environmental forces,

which at high levels can cause instability. More development is required to avoid this,

and investigation of using different methods for bimanual coordination using the hybrid

biomimetic controller. However, despite this the proposed approach is easy to implement

and provides a degree of full system compliance, which may be applicable for certain

tasks where high environmental disturbances can be avoided.
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7.2 Proposals for Future Work

The largest and most regrettable limitation to the research here is that it has not been

carried out in a real scenario, using a physical robot. This was due to unsuitability of

the iCub robot, which was the only available platform at the start of this work. The

Baxter robot only became available towards the end, which allowed for verification of

the dynamic model seen in Chapter 3. It has been noted since experiments were carried

out that the trajectories used for verification of the dynamics are limited to a small part

of the workspace, so the dynamic model cannot be relied on in cases when the robot

is operating outside of the tested area. Trajectories specifically designed for testing

a dynamic model are well documented [240, 241], and should be used to truly verify

the dynamic model. The controller developed in this work needs physical verification,

to ensure it is capable of dealing with actual environmental disturbances and that the

control loop is able to be computed at a good update rate. This would strengthen the

conclusions presented in this work.

It is also suggested that the fuzzy tuning method described in Chapter 5 could be

developed into an iterative tuner to improve control performance; as it relies on a baseline

calculated from a previous iteration, the baseline could be re-calculated iteratively and

iteratively attempt to improve performance. This could be an interesting avenue of

research, and could be developed into a new form of fuzzy iterative learning.





Appendix A

MATLAB codes for inverse

dynamics using the L-E and

RN-E methods

This appendix contains details of the hardware, software and codes used for simulation

studies.

A.1 Hardware and Software Versions

Table A.1: Hardware

Model custom build PC
processor 2 x Intel Xeon 2GHz, 8 cores each
RAM 16GB

Table A.2: Software

Operating system Ubuntu 14.04 LTE and Windows 7
MATLAB version R2015a
Robotics Toolbox 9.10
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A.2 Codes for Dynamic calculations in MATLAB

A.2.1 Lagrange-Euler closed-form of Baxter Manipulator

%% Form LE dynamics of Baxter arm (left arm)

% Uses symbolic method with Baxter kinematic and dynamic information to

% generate symbolic matrices representing closed form dynamics of the

% Baxter manipulator.

% Requires Peter Corke’s robotics toolbox, at least version 9.10, and the

% function roundSymbolic() to be in the local folder or path. This is very

% memory intensive due to the large number of symbolic coefficients

% generated in the matrices. To aid in this, variables are saved to a .mat

% file after generation, and then cleared from RAM.

%% Preamble

clearvars

close all

clc

%% Load model and get primary variables:

Baxter;

% Number of joints:

n = Baxter_l.n;

q = sym(’q’,[1 n]); assume(q, ’real’);

% velocity

qd = sym(’qd’,[1 n]); assume(qd, ’real’);

% Account for any offsets

for i = 1:n

q(i) = q(i) + Baxter_l.links(i).offset;

end

% All joints are revolute

a = zeros(1,n);

d = zeros(1,n);

alpha = zeros(1,n);

for i = 1:n

a(i) = Baxter_l.links(i).a;

d(i) = Baxter_l.links(i).d;

alpha(i) = Baxter_l.links(i).alpha;

end

% Inertia

I = zeros(6,n);

for i = 1:n

I(:,i) = [diag(Baxter_l.links(i).I); Baxter_l.links(i).I(1,2); Baxter_l.links(i).I(2,3); Baxter_l.links(i).I(1,3)];

end

% Mass

M = zeros(1,n);

for i = 1:n

M(i) = Baxter_l.links(i).m;

end

% Centre of Mass

CoM = ones(4,n);

for i = 1:n

CoM(1:3,i) = Baxter_l.links(i).r;

end

%% Inertia tensor (J)

J = zeros(4,4,n);

for i = 1:n

J(:,:,i) = [0.5*(-I(1,i)+I(2,i)+I(3,i)) I(4,i) I(6,i) M(i)*CoM(1,i)

I(4,i) 0.5*(I(1,i)-I(2,i)+I(3,i)) I(5,i) M(i)*CoM(2,i)

I(6,i) I(5,i) 0.5*(I(1,i)+I(2,i)-I(3,i)) M(i)*CoM(3,i)

M(i)*CoM(1,i) M(i)*CoM(2,i) M(i)*CoM(3,i) M(i)];

end
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%% Constants

Q = zeros(4,4);

Q(1,2) = -1; Q(2,1) = 1;

%% Link transforms

T01 = [cos(q(1)), -cos(alpha(1))*sin(q(1)), sin(alpha(1))*sin(q(1)), a(1)*cos(q(1));

sin(q(1)), cos(alpha(1))*cos(q(1)), -sin(alpha(1))*cos(q(1)), a(1)*sin(q(1));

0, sin(alpha(1)), cos(alpha(1)), d(1);

0, 0, 0, 1];

T12 = [cos(q(2)), -cos(alpha(2))*sin(q(2)), sin(alpha(2))*sin(q(2)), a(2)*cos(q(2));

sin(q(2)), cos(alpha(2))*cos(q(2)), -sin(alpha(2))*cos(q(2)), a(2)*sin(q(2));

0, sin(alpha(2)), cos(alpha(2)), d(2);

0, 0, 0, 1];

T23 = [cos(q(3)), -cos(alpha(3))*sin(q(3)), sin(alpha(3))*sin(q(3)), a(3)*cos(q(3));

sin(q(3)), cos(alpha(3))*cos(q(3)), -sin(alpha(3))*cos(q(3)), a(3)*sin(q(3));

0, sin(alpha(3)), cos(alpha(3)), d(3);

0, 0, 0, 1];

T34 = [cos(q(4)), -cos(alpha(4))*sin(q(4)), sin(alpha(4))*sin(q(4)), a(4)*cos(q(4));

sin(q(4)), cos(alpha(4))*cos(q(4)), -sin(alpha(4))*cos(q(4)), a(4)*sin(q(4));

0, sin(alpha(4)), cos(alpha(4)), d(4);

0, 0, 0, 1];

T45 = [cos(q(5)), -cos(alpha(5))*sin(q(5)), sin(alpha(5))*sin(q(5)), a(5)*cos(q(5));

sin(q(5)), cos(alpha(5))*cos(q(5)), -sin(alpha(5))*cos(q(5)), a(5)*sin(q(5));

0, sin(alpha(5)), cos(alpha(5)), d(5);

0, 0, 0, 1];

T56 = [cos(q(6)), -cos(alpha(6))*sin(q(6)), sin(alpha(6))*sin(q(6)), a(6)*cos(q(6));

sin(q(6)), cos(alpha(6))*cos(q(6)), -sin(alpha(6))*cos(q(6)), a(6)*sin(q(6));

0, sin(alpha(6)), cos(alpha(6)), d(6);

0, 0, 0, 1];

T67 = [cos(q(7)), -cos(alpha(7))*sin(q(7)), sin(alpha(7))*sin(q(7)), a(7)*cos(q(7));

sin(q(7)), cos(alpha(7))*cos(q(7)), -sin(alpha(7))*cos(q(7)), a(7)*sin(q(7));

0, sin(alpha(7)), cos(alpha(7)), d(7);

0, 0, 0, 1];

T00 = eye(4);

T11 = eye(4);

T22 = eye(4);

T33 = eye(4);

T44 = eye(4);

T55 = eye(4);

T66 = eye(4);

T77 = eye(4);

disp(’Starting transform simplification... ’)

tic

T02 = simplify(T01*T12);

T03 = simplify(T02*T23);

T04 = simplify(T03*T34);

T05 = simplify(T04*T45);

T06 = simplify(T05*T56);

T07 = simplify(T06*T67);

T13 = simplify(T12*T23);

T14 = simplify(T13*T34);

T15 = simplify(T14*T45);

T16 = simplify(T15*T56);

T17 = simplify(T16*T67);

T24 = simplify(T23*T34);

T25 = simplify(T24*T45);

T26 = simplify(T25*T56);

T27 = simplify(T26*T67);

T35 = simplify(T34*T45);

T36 = simplify(T35*T56);

T37 = simplify(T36*T67);

T46 = simplify(T45*T56);

T47 = simplify(T46*T67);
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T57 = simplify(T56*T67);

toc

%% U matrix

disp(’Starting U matrix calculation... ’)

tic

for i = 1:n

for j = 1:n

if j <= i

U(:,:,i,j) = eval(strcat(’T’,num2str(0),num2str(j-1))) * Q * eval(strcat(’T’,num2str(j-1),num2str(i)));

else

U(:,:,i,j) = zeros(4);

end

end

end

toc

disp(’Starting U matrix simplification... ’)

tic

U = simplify(U);

toc

%% 3D U matrices

disp(’Starting U3 matrix calculation... ’)

tic

for i = 1:n

for j = 1:n

for k = 1:n

if (i >= k) && (k >= j)

U3(:,:,i,j,k) = eval(strcat(’T’,num2str(0),num2str(j-1))) * Q * ...

eval(strcat(’T’,num2str(j-1),num2str(k-1))) * Q * eval(strcat(’T’,num2str(k-1),num2str(i)));

elseif (i >= j) && (j >= k)

U3(:,:,i,j,k) = eval(strcat(’T’,num2str(0),num2str(k-1))) * Q * ...

eval(strcat(’T’,num2str(k-1),num2str(j-1))) * Q * eval(strcat(’T’,num2str(j-1),num2str(i)));

else

U3(:,:,i,j,k) = zeros(4);

end

end

end

end

toc

disp(’Starting U3 matrix simplification... ’)

tic

U3 = simplify(U3);

toc

save(’baseSymbols.mat’, ’U’, ’U3’, ’J’, ’n’, ’qd’, ’CoM’, ’M’)

clearvars

%% D matrix (inertia)

load(’baseSymbols.mat’, ’n’, ’U’, ’J’)

disp(’Starting D matrix calculation... ’)

D = sym(’D’,[n n]);

tic

for i = 1:n

for k = 1:n

sum = 0;

for j = max(i,k):n

sum = sum + trace(U(:,:,j,k)*J(:,:,j)*U(:,:,j,i)’);

end

D(i,k) = sum;%simplify(sum);

fprintf(’Rounding row %d, column %d’, i,k)

tic

D(i,k) = roundSymbolic(D(i,k),6);

toc

end

end

fprintf(’Total time: ’)

toc

clearvars -except D

save inertiaD.mat

clearvars

disp(’Starting D matrix simplification... ’)
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tic

D = simplify(D);

toc

%% h vector (coriolis)

disp(’Starting H vector calculation... ’)

load(’baseSymbols.mat’, ’n’, ’U’, ’U3’, ’J’, ’qd’)

tic

% h3 = sym(’h3’,[n n n]);

for i = 1:n

for k = 1:n

for m_idx = 1:n

sum = 0;

for j = max([i, k, m_idx]):n

sum = sum + trace(U3(:,:,j,k,m_idx) * J(:,:,j) * U(:,:,j,i)’);

end

fprintf(’h3: i= %d, k = %d, m = %d \n’, i,k,m_idx)

h3(i,k,m_idx) = sum;

end

end

end

clearvars -except h3 n qd

h = sym(’h’,[n 1]);

for i = 1:n

sum_k = 0;

for k = 1:n

sum_m = 0;

for m_idx = 1:n

fprintf(’h: i= %d, k = %d, m = %d \n’, i,k,m_idx)

sum_m = sum_m + h3(i,k,m_idx) * qd(k) * qd(m_idx);

end

sum_k = sum_k + sum_m;

end

% fprintf(’Rounding row %d, column %d’, i,k)

% tic

% h(i,1) = roundSymbolic(sum_k,6);

h(i,1) = sum_k;

% toc

end

fprintf(’Total time: %d’, toc)

clearvars -except h

save coriolisH.mat

clearvars

disp(’Starting H vector simplification... ’)

tic

% h = simplify(h);

toc

%% c vector (gravity)

load(’baseSymbols.mat’, ’n’, ’U’, ’qd’)

g = 9.81;

g_vec = [0 0 -g 0];

disp(’Starting c vector calculation... ’)

tic

c = sym(’c’,[n 1]);

for i = 1:n

sum = 0;

for j = i:n

sum = sum + (-M(j) * g_vec * U(:,:,j,i) * CoM(:,1));

end

fprintf(’Rounding row %d’, i)

tic

c(i,1) = roundSymbolic(sum,6);

toc

end

fprintf(’Total time: ’)

toc

disp(’Starting c vector simplification... ’)

tic

c = simplify(c);

toc

clearvars -except c
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save gravityC.mat

clearvars

A.2.2 Function to round large symbolic matrices

function [ simpEle ] = roundSymbolic(mEle, deg)

% roundSymbolic Round coefficients in symbolic expression

% Takes a symbolic expression, breaks it down into coefficients and

% terms, rounds to zero if less than specified degree.

[cof, trm] = coeffs(mEle);

num = length(cof);

fprintf(’There are %d coeffs to round: \n’, num)

parfor i = 1:length(cof)

disp(i, ’ of ’, num)

cof(i) = round(cof(i)*10^deg)/10^deg;

end

simpEle = dot(cof,trm);

end

A.2.3 Lagrange-Euler Computational Form of Baxter Dynamics

Note that this code could be easily adapted for any robot defined using the Robotics

Toolbox.

function [M, C, G] = LEBaxterNumeric(q,qd,robot)

%% Form LE dynamics of robot arm

% Uses symbolic method with Baxter kinematic and dynamic information to

% generate symbolic matrices representing closed form dynamics of the

% Baxter manipulator.

%% Load model and get primary variables:

Baxter;

% Number of joints:

n = robot.n;

% Account for any offsets

for i = 1:n

q(i) = q(i) + robot.links(i).offset;

end

% All joints are revolute

a = zeros(1,n);

d = zeros(1,n);

alpha = zeros(1,n);

for i = 1:n

a(i) = robot.links(i).a;

d(i) = robot.links(i).d;

alpha(i) = robot.links(i).alpha;

end

% Inertia

I = zeros(6,n);

for i = 1:n

I(:,i) = [diag(robot.links(i).I); robot.links(i).I(1,2); ...

robot.links(i).I(2,3); robot.links(i).I(1,3)];

end

% Mass

M = zeros(1,n);

for i = 1:n

M(i) = robot.links(i).m;

end

% Centre of Mass



Appendix A. MATLAB code for inverse dynamics 97

CoM = ones(4,n);

for i = 1:n

CoM(1:3,i) = robot.links(i).r;

end

%% Inertia tensor (J)

for i = 1:n

J(:,:,i) = [0.5*(-I(1,i)+I(2,i)+I(3,i)) I(4,i) I(6,i) M(i)*CoM(1,i)

I(4,i) 0.5*(I(1,i)-I(2,i)+I(3,i)) I(5,i) M(i)*CoM(2,i)

I(6,i) I(5,i) 0.5*(I(1,i)+I(2,i)-I(3,i)) M(i)*CoM(3,i)

M(i)*CoM(1,i) M(i)*CoM(2,i) M(i)*CoM(3,i) M(i)];

end

%% Constants

Q = zeros(4,4);

Q(1,2) = -1; Q(2,1) = 1;

%% Link transforms

% %% Transforms

T01 = [cos(q(1)), -cos(alpha(1))*sin(q(1)), sin(alpha(1))*sin(q(1)), a(1)*cos(q(1));

sin(q(1)), cos(alpha(1))*cos(q(1)), -sin(alpha(1))*cos(q(1)), a(1)*sin(q(1));

0, sin(alpha(1)), cos(alpha(1)), d(1);

0, 0, 0, 1];

T12 = [cos(q(2)), -cos(alpha(2))*sin(q(2)), sin(alpha(2))*sin(q(2)), a(2)*cos(q(2));

sin(q(2)), cos(alpha(2))*cos(q(2)), -sin(alpha(2))*cos(q(2)), a(2)*sin(q(2));

0, sin(alpha(2)), cos(alpha(2)), d(2);

0, 0, 0, 1];

T23 = [cos(q(3)), -cos(alpha(3))*sin(q(3)), sin(alpha(3))*sin(q(3)), a(3)*cos(q(3));

sin(q(3)), cos(alpha(3))*cos(q(3)), -sin(alpha(3))*cos(q(3)), a(3)*sin(q(3));

0, sin(alpha(3)), cos(alpha(3)), d(3);

0, 0, 0, 1];

T34 = [cos(q(4)), -cos(alpha(4))*sin(q(4)), sin(alpha(4))*sin(q(4)), a(4)*cos(q(4));

sin(q(4)), cos(alpha(4))*cos(q(4)), -sin(alpha(4))*cos(q(4)), a(4)*sin(q(4));

0, sin(alpha(4)), cos(alpha(4)), d(4);

0, 0, 0, 1];

T45 = [cos(q(5)), -cos(alpha(5))*sin(q(5)), sin(alpha(5))*sin(q(5)), a(5)*cos(q(5));

sin(q(5)), cos(alpha(5))*cos(q(5)), -sin(alpha(5))*cos(q(5)), a(5)*sin(q(5));

0, sin(alpha(5)), cos(alpha(5)), d(5);

0, 0, 0, 1];

T56 = [cos(q(6)), -cos(alpha(6))*sin(q(6)), sin(alpha(6))*sin(q(6)), a(6)*cos(q(6));

sin(q(6)), cos(alpha(6))*cos(q(6)), -sin(alpha(6))*cos(q(6)), a(6)*sin(q(6));

0, sin(alpha(6)), cos(alpha(6)), d(6);

0, 0, 0, 1];

if n > 6

T67 = [cos(q(7)), -cos(alpha(7))*sin(q(7)), sin(alpha(7))*sin(q(7)), a(7)*cos(q(7));

sin(q(7)), cos(alpha(7))*cos(q(7)), -sin(alpha(7))*cos(q(7)), a(7)*sin(q(7));

0, sin(alpha(7)), cos(alpha(7)), d(7);

0, 0, 0, 1];

end

T00 = eye(4);

T11 = eye(4);

T22 = eye(4);

T33 = eye(4);

T44 = eye(4);

T55 = eye(4);

T66 = eye(4);

T77 = eye(4);

%% U matrix

disp(’Starting U matrix calculation... ’)

tic

for i = 1:n

for j = 1:n

if j <= i

U(:,:,i,j) = eval(strcat(’T’,num2str(0),num2str(j-1))) * Q * eval(strcat(’T’,num2str(j-1),num2str(i)));

else

U(:,:,i,j) = zeros(4);

end

end
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end

toc

disp(’Starting U matrix simplification... ’)

tic

U = simplify(U);

toc

%% 3D U matrices

disp(’Starting U3 matrix calculation... ’)

tic

for i = 1:n

for j = 1:n

for k = 1:n

if (i >= k) && (k >= j)

U3(:,:,i,j,k) = eval(strcat(’T’,num2str(0),num2str(j-1))) * Q * ...

eval(strcat(’T’,num2str(j-1),num2str(k-1))) * Q * eval(strcat(’T’,num2str(k-1),num2str(i)));

elseif (i >= j) && (j >= k)

U3(:,:,i,j,k) = eval(strcat(’T’,num2str(0),num2str(k-1))) * Q * ...

eval(strcat(’T’,num2str(k-1),num2str(j-1))) * Q * eval(strcat(’T’,num2str(j-1),num2str(i)));

else

U3(:,:,i,j,k) = zeros(4);

end

end

end

end

toc

disp(’Starting U3 matrix simplification... ’)

tic

U3 = simplify(U3);

toc

%% D matrix (inertia)

disp(’Starting D matrix calculation... ’)

D = sym(’D’,[n n]);

tic

for i = 1:n

for k = 1:n

sum = 0;

for j = max(i,k):n

sum = sum + trace(U(:,:,j,k)*J(:,:,j)*U(:,:,j,i)’);

end

D(i,k) = sum;%simplify(sum);

end

end

toc

disp(’Starting D matrix simplification... ’)

tic

% D = simplify(D);

toc

%% h vector (coriolis)

disp(’Starting H vector calculation... ’)

tic

h = sym(’h’,[n 1]);

for i = 1:n

for k = 1:n

for m_idx = 1:n

sum = 0;

for j = max([i, k, m_idx]):n

sum = sum + trace(U3(:,:,j,k,m_idx) * J(:,:,j) * U(:,:,j,i)’);

end

h3(i,k,m_idx) = sum;

end

end

end

for i = 1:n

sum_k = 0;

for k = 1:n

sum_m = 0;

for m_idx = 1:n

sum_m = sum_m + h3(i,k,m_idx) * qd(k) * qd(m_idx);

end

sum_k = sum_k + sum_m;
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end

h(i,1) = sum_k;

end

toc

disp(’Starting H vector simplification... ’)

tic

% h = simplify(h);

toc

%% c vector (gravity)

g = max(robot.gravity);

g_vec = [0 -g 0 0];

disp(’Starting c vector calculation... ’)

tic

c = sym(’c’,[n 1]);

for i = 1:n

sum = 0;

for j = i:n

sum = sum + (-m(j) * g_vec * U(:,:,j,i) * CoM(:,1));

end

c(i,1) = sum;

end

toc

disp(’Starting c vector simplification... ’)

tic

c = simplify(c);

toc

A.2.4 Function for Inverse Dynamics using Recursive Newton-Euler

method

function [ tau ] = RNE_dyn( robot, q, dq, ddq )

% RNE Perform recursive Newton-euler calculation

% Pass robot, joint position, velocity and acceleration, then perform the

% recursive Newton-Euler calculation through a forward pass (i_1++ ... i_n)

% then a backward pass (i_n-- ... i_1). Assumes no load at end effector.

%% Initialise variables

n = robot.n;

g = robot.gravity;

z = [0 0 1]’;

% omega = zeros(3,n);

% domega = zeros(3,n);

% dv = zeros(3,n);

% f = zeros(3,n+1);

% nn = zeros(3,n+1);

% m = zeros(1,n);

% r = zeros(3,n);

% I = zeros(3,3,n);

% for j = 1:n

% link(j) = robot.links(j);

% a(j) = link(j).a;

% d(j) = link(j).d;

% alpha(j) = link(j).alpha;

% m(j) = link(j).m;

% r(:,j) = link(1).r’;

% I(:,:,j) = link(j).I;

% end

% tau = zeros(n,1);

%% Calculate torque

Rb = t2r(robot.base)’;

omega = Rb*zeros(3,1);

domega = Rb*zeros(3,1);

dv = Rb*g;

% omega(:,1,1) = Rb*zeros(3,1);

% domega(:,1,1) = Rb*zeros(3,1);



Appendix A. MATLAB code for inverse dynamics 100

% dv(:,1) = Rb*g;

% display(Rb)

% display(g)

%% Forward recursion

Fm = [];

Nm = [];

for j = 1:n

% disp(’forward pass’)

link = robot.links(j);

R = t2r(link.A(q(j)))’; % transpose last

p = [link.a; link.d*sin(link.alpha); link.d*cos(link.alpha)];

r = link.r;

domega = R * (domega + z*ddq(j) + cross(omega, z*dq(j)));

omega = R * (omega + z*dq(j));

dv = cross(domega, p) + cross(omega,cross(omega, p)) + R*dv;

vhat = cross(domega,r’) + cross(omega,cross(omega,r’)) + dv;

fu = link.m * vhat;

nu = link.I*domega + cross(omega, link.I*omega);

Fm = [Fm fu];

Nm = [Nm nu];

end

%% Backward recursion

fext = zeros(6, 1); % external forces acting on the arm (optional)

f = fext(1:3); % force/moments on end of arm

nn = fext(4:6);

for j = n:-1:1

% disp(’backward pass’)

link = robot.links(j);

p = [link.a; link.d*sin(link.alpha); link.d*cos(link.alpha)];

r = link.r;

if j == n % If last link, R is identity

R = eye(3);

else

R = t2r(robot.links(j+1).A(q(j+1)));

end

nn = R*(nn + cross(R’*p, f)) + cross(p+r’,Fm(:,j)) + Nm(:,j);

f = R*f + Fm(:,j);

R = t2r(link.A(q(j)));

tau(j) = nn’*(R’*z); %+ link.G^2 * link.Jm*ddq(j) - link.friction(dq(j));

end

end%Function end
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