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Robotic technology has grown beyond the boundaries of imagination during recent decades. 
Nowadays, it’s not very surprising to see that a robot can hear, see and even talk and a servant 
robot is not a dream anymore. But now we confront newer challenges such as nano-robots, 
surgical manipulators and even robots who can make decisions which are employed for 
underwater or space missions. 

Amongst the robotic systems, robot manipulators have proven themselves to be of increasing 
importance and are widely adopted to substitute humans in repetitive and/or hazardous 
tasks. Modern manipulators have a complicated design and need to do more precise, crucial 
and critical tasks. So, the simple traditional control methods cannot be ef cient, and advanced 
control strategies with considering special constraints need to be established. In spite of the 
fact that groundbreaking researches have been carried out in this realm until now, there are 
still many novel aspects which have to be explored. 

This book consists of a set of materials that introduces various strategies related to robot 
manipulators. Although the topics provided here are not in a rational order, they can be divided 
into three major subjects such as design and modelling, control strategies and applications of robot 
manipulators. These subjects cover different approaches like dynamic modelling, redundant 
manipulators, micro-manipulator, parallel manipulator, nonlinear control, intelligent control 
and many other valuable matters that are addressed here by different authors through 19 
chapters.

I gratefully acknowledge the contributions made by each of my coauthors. They showed 
enthusiasm to contribute their knowledge that lead to creation of this book. However, this is 
not a text book for academic education, the book is addressed to graduate students as well as 
researchers in the  eld and I am sure they can bene t from its multidisciplinary chapters.

Editor

Seyed Ehsan Sha ei
Shahrood University of Technology

Iran
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The Comparative Assessment of Modelling  
and Control of Mechanical Manipulator 

M. H. Korayem, H. N. Rahimi and A. Nikoobin 
Robotic Research Lab, College of Mechanical Engineering, 

Iran University of Science and Technology 
Iran 

1. Introduction     
1.1 Overview 
In this book chapter a comparative assessment of modelling and control of mechanical 
manipulator is considered. First, kinematic and dynamic modelling of wide range of 
mechanical manipulators comprising flexible link, flexible joint and mobile manipulators are 
considered. Then, open-loop optimal control problem is formulated to control of the 
obtained system. Finally, some applications of method including motion planning and 
maximum payload determination are illustrated through the computer simulations.   

1.2 Problem statement 
Mechanical flexibilities can be classified into two categories: Link flexibility and joint 
flexibility. Link flexibility is a result of applying lightweight structure in manipulator arms 
designed to increase the productivity by fast motion and to complete a motion with small 
energy requirement. Joint flexibility arises from elastic behavior of the drive transmission 
systems such as transmission belts, gears and shafts. Mobile manipulators are combined 
systems consists of a robotic manipulator mounted on a mobile platform. Such systems are 
able to accomplish complicated tasks in large workspaces. In particular the greatest 
disadvantage of mobile robotic manipulators is that most of these systems are powered on 
board with limited capacity. Hence, incorporating light links can minimize the inertia and 
gravity effects on links and actuators and it results to decrease the energy consumption in 
the same motion. Hence, lightweight systems have primary importance in design and 
manufacturing stages of mobile manipulators.  

1.3 Motivation 
Unfortunately, reviewing of the recent literature on modelling and optimization of flexible 
and mobile manipulators shows that a very scant attention has been paid to study of model 
that describes both link and joint flexibility, particularly for mobile manipulators. The main 
motivation for this study is to present a comprehensive modelling and optimal control of 
flexible link-joint mechanical mobile manipulators. It can provide an inclusive reference for 
other researchers with comparative assessment view in the future studies.   
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1.4 Prior work 
Analyzing of nonlinear dynamic motion of elastic manipulators is a very complex task  
that plays a crucial role in design and application of such robots in task space. This 
complexity arises from very lengthy, fluctuating and highly nonlinear and coupled set of 
dynamic equations due to the flexible nature of both links and joints. The original dynamics 
of robotic manipulators with elastic arms, being described by nonlinear coupled partial 
differential equations. They are continuous nonlinear dynamical systems distinguished by 
an infinite number of degrees of freedom. The exact solution of such systems does not exist.  
However, most commonly the dynamic equations are truncated to some finite dimensional 
models with either the assumed modes method (AMM) or the finite element method  
(FEM). 
The assumed mode expansion method was used to derive the dynamic equation of the 
flexible manipulator (Sasiadek & Green, 2004). Dynamic modelling technique for a 
manipulator with multiple flexible links and flexible joints was presented based on a 
combined Euler–Lagrange formulation and assumed modes method (Subudhi & Morris, 
2002). Then, control of such system was carried out by formulating a singularly perturbed 
model and using it to design a reduced-order controller. Combined Euler–Lagrange 
formulation and assumed modes method was used for driving the equation of motions of 
flexible mobile manipulators with considering the simply support mode shape and one 
mode per link (Korayem & Rahimi Nohooji, 2008). Then, open-loop optimal control method 
was proposed to trajectory optimization of flexible link mobile manipulator for a given two-
end-point task in point-to-point motion. 
In finite element method, the elastic deformations are analyzed by assuming a known rigid 
body motion and later superposing the elastic deformation with the rigid body motion 
(Usoro et al. 1986). One of the main advantages of FEM over the most of other approximate 
solution methods to modelling the flexible links is the fact that in FEM the connection  
are supposed to be clamp-free with minimum two mode shapes per each link (Korayem et 
al. 2009(a)). This ensures to achieve the results that display the nonlinearity of the system 
properly. 
The Timoshenko beam theory and the finite element method was employed to drive the 
dynamic equation of flexible link planar cooperative manipulators in absolute coordinates 
(Zhang & Yu, 2004). Dynamic model of a single-link flexible manipulator was derived using 
FEM and then studied the feed-forward control strategies for controlling the vibration 
(Mohamed & Tokhi, 2004). Finite element method was used for describing the dynamics of 
the system and computed the maximum payload of kinematically redundant flexible 
manipulators (Yue et al., 2001). Then, the problem was formulated for finding the optimal 
trajectory and maximum dynamic payload for a given point-to-point task. Finally, 
numerically simulation was carried out for a planar flexible robot manipulator to validate 
the research work.   
The review of the recent literature shows that extensive research has been addressed the 
elastic joints robotic arms (Korayem et al. 2009(b)). However, there is only limited research  
works have been reported on a comprehensive model that describes both link and joint 
elasticity (Rahimi et al. 2009). Moreover, in almost all cases, linearized models of the link 
flexibility are considered which reduced the complexity of the model based controller 
(Chen, 2001). 
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Mobile manipulators have recently received considerable attention with wide range of 
applications mainly due to their extended workspace and their ability to reach targets that 
are initially outside of the manipulator reach. A comprehensive literature survey on mobile 
manipulator systems can be found (Bloch, 2003). A host of issues related to mobile 
manipulators have been studied in the past two decade. These include for example: 
dynamic and static stability (Papadopoulos & Rey, 1996), force development and application 
(Papadopoulos & Gonthier, 1999), maximum payload determination (Korayem & Ghariblu, 
2004). However, a vast number of research publications that deal with the mobile 
manipulators focus on techniques for trajectory planning of such robots (Korayem & Rahimi 
Nohooji, 2008).  
Motion planning for mobile manipulators is concerned with obtaining open-loop or close-
loop controls. It steers a platform and its accompanying manipulator from an initial state to 
a final one, without violating the nonholonomic constraints (Sheng & Qun, 2006). In most 
studies of trajectory planning for mobile manipulators the end effector trajectory is specified 
and the optimal motion planning of the base is considered (Mohri et al., 2001), or integrated 
motion planning of the base and the end effector is carried out (Papadopoulos, et al., 2002). 
However, because of designing limitation or environmental obstacle in majority of practical 
application of mobile manipulators especially in repetitive applications, the platform must 
follow a specified pose trajectory. In this case, designer must control the joint motions to 
achieve the best dynamic coordination that optimize the defined cost function such as 
energy consumption, actuating torques, traveling time or bounding the velocity 
magnitudes. Applications for such systems abound in mining, construction or in industrial 
factories. 
Optimal control problems can be solved with direct and indirect techniques. In the direct 
method at first the control and state variables are discretized and the optimal control 
problem is transcribed into a large, constrained and often sparse nonlinear programming 
problem, then, the resulting nonlinear programming problem is treated by standard 
algorithm like interior point methods (Wachter & Biegler, 2006). Famous realizations of 
direct methods are direct shooting methods (Bock & Plitt, 1984) or direct collocation 
methods (Hargraves & Paris, 1987). However, direct methods are not yield to exact results. 
They are exhaustively time consuming and quite inefficient due to the large number of 
parameters involved. Consequently, when the solution of highly complex problems such as 
the structural analysis of optimal control problems in robotics is required, the indirect 
method is a more suitable candidate. This method is widely used as an accurate and 
powerful tool in analyzing of the nonlinear systems. The indirect method is characterized by 
a ''first optimize, then discretize'' strategy. Hence, the problem of optimal control is first 
transformed into a piecewise defined multipoint boundary value problem, which contains 
the full mathematical information about the respective optimal control problem. In the 
following step, this boundary value problem is discretized to achieve the numerical solution 
(Sentinella & Casalino, 2006). It is well known that this technique is conceptually fertile, and 
has given rise to far-reaching mathematical developments in the wide ranges of optimal 
dynamic motion planning problems. For example, it is employed in the path planning of 
flexible manipulators (Rahimi et.al, 2009), for the actuated kinematic chains (Bessonnet & 
Chessé, 2005) and for a large multibody system (Bertolazzi et al., 2005). A survey on this 
method is found in (Callies & Rentrop, 2008). 
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1.5 Layout 
The balance of the remaining of the chapter is organized as follows. Section 2 provides 
background information about kinematic and dynamic analysis of the flexible mobile 
robotic manipulators. Hence, assumed mode and finite element methods are introduced and 
formulated to dynamic modelling of flexible link manipulators. Then, the flexible model is 
completed by adding the joint flexibility. After that, formulation is extended to comprise the 
mobile manipulators. Section 3 consists of a brief review of converting the problem from 
optimal control to optimization procedure with implementing of Pontryagin’s minimum 
principle. some application examples with the two links flexible mobile manipulator is 
detailed in this section. Finally, the concluding remarks with a brief summary of the chapter 
is presented in the last section. 

2. System modelling 
2.1 Kinematic analysis 
A mobile manipulator consisting of differentially driven vehicle with n flexible links and n 
flexible revolute joints is expressed in this section (Fig. 1). The links are cascaded in a serial 
fashion and are actuated by rotors and hubs with individual motors. The flexible joints are 
dynamically simplified as a linear torsional springs that works as a connector between the 
rotors and the links. A concentrated payload of mass mp is connected to the distal link. 
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Fig. 1. A schematic view of a multiple flexible links – joints mobile manipulator 

The following assumptions are made for the development of a dynamic model of the 
system. 
• Each link is assumed to be long and slender. 
• The motion of each link and its deformation is supposed to be in the horizontal plane.  
• Links are considered to have constant cross-sectional area and uniform material 

properties. 
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• The inertia of payload is neglected. 
• The backlash in the reduction gear and coulomb friction effects are neglected. 
• It is assumed that the mobile base does not slide. 
The generalized coordinates of the flexible links/joints mobile manipulator consist of four 
parts, the generalized coordinates defining the mobile base motion 1 2( , , , )

b

T
b b b bnq q q q=
� … , the 

generalized coordinates of the rigid body motion of links 1 2( , , , )T
r nq q q q=
� … and the 

generalized coordinates that related to the flexibility of the links 
11 12 1 21 2 1( , , , , , , , , , , )

f f f

T
f n n n nnq q q q q q q q=
� … … … … , and the generalized coordinate corresponding 
to the flexibility of joints 1 2( , , , )T

j n n n nq q q q+ + +=
� … .Where n, bn  and fn  are number of links, 

base degrees of freedom and manipulator mode shapes, respectively. 
The notion of redundancy expresses that the number of generalized coordinates (v) is 
strictly greater than the (global) degree of freedom (d). Thus, the mechanical system is 
redundant if d<v; and the order of redundancy is v-d. Hence, it is comprehensible that in 
most mobile manipulator systems v = n + nb is greater than the end effector degree of freedom 
in the work space (d). Accordingly, these systems usually are subjected to some non-integrable 
kinematic constraints known as non-holonomic constraints. There are different techniques, 
which can be applied to a robotic system to solve the redundancy resolution. Some of these 
techniques are based on an optimization criterion such as overall torque minimization, 
minimum joint motion and so on. Hence, Seraji has used r additional user-defined kinematic 
constraint equations as a function of the motion variables (Seraji, 1998). This method results in 
a simple and online coordination of the control of a mobile manipulator during motion. The 
presenting study follows this method. Hence, some additional suitable kinematic constraint 
equations to the system dynamics are applied. Results are in simple and on-line coordination 
of the mobile manipulator during the motion. These constraints undertake the robot 
movement only in the direction normal to the axis of the driving wheels along with previously 
specification of the base trajectory during the motion. 

2.2 Dynamic modelling 
2.2.1 Dynamic modelling of flexible link manipulator 
The original dynamics of robotic manipulators with elastic arms, being described by 
nonlinear coupled partial differential equations. They are continuous nonlinear dynamical 
systems distinguished by an infinite number of degrees of freedom. The exact solution of 
such systems does not exist. However, most commonly the dynamic equations are truncated 
to some finite dimensional models with either the assumed modes method (AMM) or the 
finite element method (FEM). 
2.2.1.1 Assumed mode method  
A large number of researchers use assumed modes of vibration to model robot dynamic in 
order to capture the interaction between flexural vibrations and nonlinear dynamics. In the 
assumed modes method, the dynamic model of the robot manipulator is described by a set 
of vibration modes other than its natural modes. Using assumed modes to model flexibility 
requires Euler–Bernoulli beam theory boundary conditions and accommodates changes in 
configuration during operation, whereas natural modes must be continually recomputed.  
According to this method an approximate deflection of any continuous elastic beam 
subjected to transverse vibrations, can be expressed through truncated modal expansion, 
under the planar small deflection assumption of the link as 
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The following assumptions are made for the development of a dynamic model of the 
system. 
• Each link is assumed to be long and slender. 
• The motion of each link and its deformation is supposed to be in the horizontal plane.  
• Links are considered to have constant cross-sectional area and uniform material 

properties. 
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minimum joint motion and so on. Hence, Seraji has used r additional user-defined kinematic 
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presenting study follows this method. Hence, some additional suitable kinematic constraint 
equations to the system dynamics are applied. Results are in simple and on-line coordination 
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specification of the base trajectory during the motion. 
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The original dynamics of robotic manipulators with elastic arms, being described by 
nonlinear coupled partial differential equations. They are continuous nonlinear dynamical 
systems distinguished by an infinite number of degrees of freedom. The exact solution of 
such systems does not exist. However, most commonly the dynamic equations are truncated 
to some finite dimensional models with either the assumed modes method (AMM) or the 
finite element method (FEM). 
2.2.1.1 Assumed mode method  
A large number of researchers use assumed modes of vibration to model robot dynamic in 
order to capture the interaction between flexural vibrations and nonlinear dynamics. In the 
assumed modes method, the dynamic model of the robot manipulator is described by a set 
of vibration modes other than its natural modes. Using assumed modes to model flexibility 
requires Euler–Bernoulli beam theory boundary conditions and accommodates changes in 
configuration during operation, whereas natural modes must be continually recomputed.  
According to this method an approximate deflection of any continuous elastic beam 
subjected to transverse vibrations, can be expressed through truncated modal expansion, 
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where ( , )i iv x t  is the bending deflection of the thi  link at a spatial point (0 )i i ix x L≤ ≤  and 
iL  is the length of the thi  link. in  is the number of modes used to describe the deflection of 

link i; ( )ij ixϕ  and ( )ije t are the thj  assumed mode shape function and thj  modal 
displacement for the thi  link, respectively. Position and velocity of each point on link i can 
be obtained with respect to inertial coordinate frame using the transformation matrices 
between the rigid and flexible coordinate systems. 
In the AMM there are numerous ways to choose the boundary conditions. The presenting 
study addresses four well-known conditions and chooses them with one mode shape per 
each link in the numerical simulations.  
Ideally, the optimum set of assumed modes is that closest to natural modes of the system. 
Hence, there is no stipulation as to which set of assumed modes should be used. Natural 
modes depend on several factors such as size of hub inertia and size of payload mass. 
Choosing appropriate conditions is very important and it may cause better consequences in 
the results. Hence, the ultimate choice requires an assessment based on the actual robot 
structure and for example, anticipated range of payloads together with its natural modes. 
Firs four normal modes for some familiar mode conditions are described as following: 
Clamped-free mode shapes are given by 
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In addition, mode shape functions with clamped-pinned boundary conditions are given by 
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Similarly, this theory determines pinned–pinned mode shapes as: 
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Choosing the appropriate set of assumed modes as a boundary condition may be quite 
valuable for robot to fit in a suitable application. Ideally, the optimum set of assumed modes is 
that closest to natural modes of the system. Natural modes depend on several factors within 
the robotic system ensemble including size of hub inertia and size of payload mass. For large 
joint gearing inertia and relatively small payload mass, the link may be considered clamped at 
the joint. Conversely, for smaller joint gearing inertia and larger payload mass both ends of the 
link may be considered pinned. The ultimate choice requires an assessment based on the 
actual robot structure and anticipated range of payloads together with its natural modes. 
Although assume mode method has been widely used, there are several ways to choose link 
boundary conditions and mode eigen-functions. This drawback may increase drastically 
when finding modes for links with non-regular cross sections and multi-link manipulators is 
objected. In addition, using the AMM to derive the equations of motion of the flexible 
manipulators, only the first several modes are usually retained by truncation and the higher 
modes are neglected.  
2.2.1.2 Finite element method 

The finite element method is broadly used to derive dynamic equations of elastic robotic 
arms. Researcher usually used the Euler–Bernoulli beam element with multiple nodes and 
Lagrange shape function to achieve the reasonable finite element model. The node number 
can be selected according to requirement on precision. But, increasing the node number may 
enlarge the stiffness matrix and it cause to long and complex equations. Hence, choosing the 
proper node number is very important in the finite element analyzing.  
The overall finite element approach involves treating each link of the manipulator as an 
assemblage of n elements of length Li. For each of these elements the kinetic energy Tij and 
potential energyVij, are computed in terms of a selected system of generalized coordinate q 
and their rate of change q . Note that subscript ij refer to the thj  element of link i.  
In summary the kinetic energy Tij and potential energy Vij are computed by the following 
equation: 
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In above equation, the potential energy is consisted of two parts. One part is due to gravity 
(Vgij) and another is related to elasticity of links (Veij). ri, mi, li and EIi are the position, mass, 
length and the flexural rigidity of ith element respectively. xij and yij are specified the 
distances along body- fixed system OijXijYij from common junction between elements ‘i(j-1)’ 
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attached to link 1 to inertial system of coordinates and θ1 is it’s correlated joint angle. These 
energies of elements are then combined to obtain the total kinetic energy T, and potential 
energy V, for the each link. Knowledge of the kinetic and potential energies is tantamount to 
specify the Lagrangian £ of the system, given by £=T-V. Using of finite element method in 
modelling of the robotics system are details in (Usoro, 1986). 
As it can be seen, modelling of flexural vibrations of robotic elements using finite element is 
a well-established technique. So, researchers can handle nonlinear conditions with this 
method. However, in order to solve a large set of differential equations derived by the finite 
element method, a lot of boundary conditions have to be considered, which are, in most 
situations, uncertain for flexible manipulators. Also, although significant advantages of FEM 
over analytical solution techniques such as easy to handle with which nonlinear conditions, 
this approach seems more complex over AMM. The main reason is that use of the finite 
element model to approximate flexibility usually gives rise to an overestimated stiffness 
matrix. Moreover, because of the large number of equations, the numerical simulation time 
may be exhausting for the finite element models. 
2.2.1.3 Numerical simulations 

The dynamic equations of the flexible robotic arms are verified in this section by 
undertaking a computer simulation. Hence, the case of harmonic motion of a nonlinear 
model of flexible robotic arms is selected to simulation. In this simulation, the robot is 
hanged freely and it influenced only under gravity effect. The physical parameters of the 
system used in this simulation study were 1 2 1L L m= = , 9 4

1 2 5 10I I m−= = × , 1 2 5m m kg= =  
and 11 2

1 2 2 10 /E E N m= = × . Simulating both FEM and AMM (pinned-pinned and clamped- 
pinned) models and comparing them with the rigid links in this simulation shows the 
oscillatory behavior of nonlinear robotic system advisably. 
Now, considering the equations describe in the last section for FEM and AMM, also, using 
Lagrangian formulation, the set of equation of motion for each method is derived in 
compact form as  

 ( ) ( , )M q q H q q U+ =  (8) 

where M is the inertia matrix, H is the vector of Coriolis and centrifugal forces in addition to 
the gravity effects vector and U is the generalized force vector inserted into the actuator.  
Open loop system response of changing the initial condition from normal equilibrium 
position to the relative angle between the first and second link of this system (θ2) to the 
deviation of 5 degree is studied in this simulation (Fig. 2).  
The responses of the system are presented in Figs. 3-5. Figures show the difference between 
rigid and flexible robotic arms also between the FEM and AMM with both pinned- pinned 
and clamped- pinned boundary conditions. 
Figs. 3 and 4 show the angular positions and angular velocities of joints. It is obvious from 
figures that the link elasticity appears in velocity graph more and more than the position 
graph. Also, these figures restate the issue that the FEM model displays the nonlinearity of 
the system properly.  
The corresponding amplitudes of vibration modes in the AMM are shown in Fig. 5. It is 
clear that link flexibility significantly affects the link vibrations. In addition, pictures shows 
that these effects are appeared more when clamped – pinned boundary condition is 
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considered. Figures are plotted in this section clearly show a good agreement between the 
obtained results in this study and those presented in (Usoro, 1986). 
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Fig. 2. Initial robot configuration 
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Fig. 3. Angular position of joints: (a) joint 1; (b) joint 2. 
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Fig. 4. Angular velocity of joints: (a) joint 1; (b) joint 2. 
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considered. Figures are plotted in this section clearly show a good agreement between the 
obtained results in this study and those presented in (Usoro, 1986). 
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Fig. 3. Angular position of joints: (a) joint 1; (b) joint 2. 
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Fig. 4. Angular velocity of joints: (a) joint 1; (b) joint 2. 
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Fig. 5. Amplitudes of vibration’s modes: (a) Link 1; (b) Link 2 

2.2.2 Dynamic modelling of flexible joint manipulator 
To model a flexible joint manipulator (FJM) the link positions are let to be in the state vector 
as is the case with rigid manipulators. Actuator positions must be also considered because in 
contradiction to rigid robots these are related to the link position through the dynamics of 
the flexible element. By defining the link number of a flexible joint manipulator is m, 
position of the thi  link is shown with 2 1 : 1,2,...,i i mθ − =  and the position of the thi actuator 
with 2 : 1,2,...,i i mθ = , it is usual in the FJM literature to arrange these angles in a vector as 
follows: 

 [ ]1 3 2 1 2 4 2 1 2, ,... | , ,... ,
TT T T

m mQ q qθ θ θ θ θ θ− ⎡ ⎤= = ⎣ ⎦  (9) 

So by adding the joint flexibility with considering the elastic mechanical coupling between 
the thi joint and link is modeled as a linear torsional spring with constant stiffness coefficient 

ik , the set of equation of motion comprising mobile base with both link and joint flexibility 
can be rearranged into the following form: 

 
( )

( )
1 1 1 1 1 1 2

2 2 1

( ) ( , ) ( ) 0M q q H q q G q K q q
Jq K q q U

+ + + − =

+ − =
 (10) 

where K=diag[ 1 2, ,..., mk k k ] is a diagonal stiffness matrix which models the joint elasticity, 
J=diag[ 1 2, ,..., mJ J J ] is the diagonal matrix representing motor inertia. 
A simulation is performed to investigate the effect of joint flexibility on the response of 
model by adding the elasticity at each joint as a linear spring. The case study with clamped-
pinned boundary condition is modeled for that issue. Simulation is done at the overall time 
5 seconds. Parameter values of joints are 1 2 1500k k= = N.m and 1 2 2J J= = kg. 2m . 
As shown in Fig. 6 the joint flexibility has considerable consequences on the robot behavior 
and link parameters have significant deviations from rotor’s one. Hence, it can be conclude 
that the joint flexibility, considerably influences the performance of robotic arms and it can 
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be as a significant source of nonlinearity and system’s oscillatory behavior. Therefore, it is 
recommended that to improve the performance of the robotic systems, joint flexibility taken 
into account in modelling and control of such systems. 
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(b) 

Fig. 6. Effect of joint flexibility in (a) Position and (b) Velocity of joints 

2.2.4 Dynamic modelling of mobile manipulator 
Consider an n DOFs rigid mobile manipulator with generalized coordinates [ ]iq q= , 

1,2,...,i n=  and a task described by m task coordinates , 1,2,...,jr j m=  with m < n. By 
applying h holonomic constraints and c non-holonomic constraints to the system, r h c= +  
redundant DOFs of the system can be directly determined. Therefore m DOFs of the system 
is remained to accomplish the desired task. As a result, we can decomposed the generalized 
coordinate vector as [ ]Tr nrq q q= , where rq  is the redundant generalized coordinate vector 
determined by applying constraints and nrq  is the non-redundant generalized coordinate 
vector. By considering the flexible link manipulators instead of the rigid ones, their related 
generalized coordinates, fq , are added to the system; therefore, the overall decomposed 
generalized coordinate vector of system obtain as 

T

r nrfq q q⎡ ⎤= ⎣ ⎦  , where nrfq  is the 
combination vector of  nrq  and fq . 
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Fig. 5. Amplitudes of vibration’s modes: (a) Link 1; (b) Link 2 
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as is the case with rigid manipulators. Actuator positions must be also considered because in 
contradiction to rigid robots these are related to the link position through the dynamics of 
the flexible element. By defining the link number of a flexible joint manipulator is m, 
position of the thi  link is shown with 2 1 : 1,2,...,i i mθ − =  and the position of the thi actuator 
with 2 : 1,2,...,i i mθ = , it is usual in the FJM literature to arrange these angles in a vector as 
follows: 
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ik , the set of equation of motion comprising mobile base with both link and joint flexibility 
can be rearranged into the following form: 
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where K=diag[ 1 2, ,..., mk k k ] is a diagonal stiffness matrix which models the joint elasticity, 
J=diag[ 1 2, ,..., mJ J J ] is the diagonal matrix representing motor inertia. 
A simulation is performed to investigate the effect of joint flexibility on the response of 
model by adding the elasticity at each joint as a linear spring. The case study with clamped-
pinned boundary condition is modeled for that issue. Simulation is done at the overall time 
5 seconds. Parameter values of joints are 1 2 1500k k= = N.m and 1 2 2J J= = kg. 2m . 
As shown in Fig. 6 the joint flexibility has considerable consequences on the robot behavior 
and link parameters have significant deviations from rotor’s one. Hence, it can be conclude 
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recommended that to improve the performance of the robotic systems, joint flexibility taken 
into account in modelling and control of such systems. 

0 1 2 3 4 5
-91.5

-91

-90.5

-90

-89.5

-89

Time (s)

An
gu

la
r P

os
iti

on
 - 

Fi
rs

t L
in

k 
& 

M
ot

or
 (d

eg
re

e)

 

 

Link
Motor 3 3.05 3.1 3.15

-89.12

-89.11

-89.1

-89.09

-89.08

 

 

0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time (s)
An

gu
la

r P
os

iti
on

 -
 S

ec
on

d 
Li

nk
 &

 M
ot

or
 (d

eg
re

e)
 

 

Link
Motor

2.3 2.4 2.5
4.5

4.6

4.7

4.8

4.9

 

 

 

(a) 

0 1 2 3 4 5
-0.1

-0.05

0

0.05

0.1

0.15

Time (s)

A
ng

ul
ar

 V
el

oc
ity

 -
 F

irs
t L

in
k 

&
 M

ot
or

 (
ra

d/
s)

 

 
Link
Motor

0 1 2 3 4 5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

A
ng

ul
ar

 V
el

oc
ity

 -
 S

ec
on

d 
Li

nk
 &

 M
ot

or
 (

ra
d/

s)

 

 
Link
Motor

 

(b) 

Fig. 6. Effect of joint flexibility in (a) Position and (b) Velocity of joints 

2.2.4 Dynamic modelling of mobile manipulator 
Consider an n DOFs rigid mobile manipulator with generalized coordinates [ ]iq q= , 

1,2,...,i n=  and a task described by m task coordinates , 1,2,...,jr j m=  with m < n. By 
applying h holonomic constraints and c non-holonomic constraints to the system, r h c= +  
redundant DOFs of the system can be directly determined. Therefore m DOFs of the system 
is remained to accomplish the desired task. As a result, we can decomposed the generalized 
coordinate vector as [ ]Tr nrq q q= , where rq  is the redundant generalized coordinate vector 
determined by applying constraints and nrq  is the non-redundant generalized coordinate 
vector. By considering the flexible link manipulators instead of the rigid ones, their related 
generalized coordinates, fq , are added to the system; therefore, the overall decomposed 
generalized coordinate vector of system obtain as 

T

r nrfq q q⎡ ⎤= ⎣ ⎦  , where nrfq  is the 
combination vector of  nrq  and fq . 
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The system dynamics can also be decomposed into two parts: one is corresponding to 
redundant set of variables, rq  and the remained set of them, nrfq . That is, 

 , ,

, ,

r r r nrf r r r r

r nrf nrf nrf nrf nrf nrf nrf

M M q C G U
M M q C G U

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (11) 

where by considering the second row in order to path optimization procedure leads to  

 nrf nrfU Aq B= + . (12) 

Using redundancy resolution rq  will be obtained as a known vector in terms of the time (t). 
Therefore A is obtained as a function of time and nrfq  and B as a function of time, rq  and 

nrfq . 

By defining the state vector as 

 [ ]1 2

TT
nrf nrfX X X q q⎡ ⎤= = ⎣ ⎦ ,  (13) 

Eq. (5) can be rewritten in state space form as 

 2 11

22 ( ) ( )
X FX

X
N X D X U FX

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦⎣ ⎦

, (14) 

where 1D M−=  and 1
1 2 1( ( , ) ( ))N M C X X G X−= − + . Then, optimal control problem is 

determined the position and velocity variable X1(t) and X2(t), and the joint torque U (t) 
which optimize a well-defined performance measure when the model is given in Eq. (14).  

3. Optimal control  
3.1 Defining the optimal control problem 
Pontryagin's minimum principle provides an excellent tool to calculate optimal trajectories 
by deriving a two-point boundary value problem. Let the trajectory generation problem be 
defined here as determining a feasible specification of motion, which will cause the robot to 
move from a given initial state to a given final state. The method presented in this article 
adapts in a straightforward manner to the generation of such dynamic profiles.  
There are known that nonlinear system dynamics stated as Eq. (14) be expressed in the term 
of states (X), controls (U) and time (t) as 

 ( , , )X f X U t=  (15) 

Generating optimal movements can be achieved by minimizing a variety of quantities 
involving directly or not some dynamic capacities of the mechanical system. A functional is 
considered as the integral 

 
0

( ) ( , , )
ft

t

J u L X U t dt= ∫  (16) 
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where the function L may be specified in quite varied manners. There are initial and 
terminal constraints on the states: 

 0 0( ) ( )f fX t X X t X= =  (17) 

There may also be certain pragmatic constraints (reflecting such concerns as limited actuator 
power) on the inputs. For example: 

 max( ) ( )U t U t≤  (18)  

According to the minimum principle of Pontryagin (Kirk, 1970), minimization of 
performance criterion at Eq. (16), is achieved by minimizing the Hamiltonian (H) which is 
defined as follow: 

 ( , , , , ) ( , , , ) ( , , )T
p pH X U m t L X U m t f X U tΨ = + Ψ  (19) 

where 1 2( ) ( ) ( )
TT Tt t tψ ψ⎡ ⎤Ψ = ⎣ ⎦ is the nonzero costate time vector-function. 

Finally, according to the aforementioned principle, stating the costate vector-equation  

 T H XΨ = −∂ ∂  (20) 

in addition to the minimality condition for the Hamiltonian as 

 0H U∂ ∂ =  (21) 

 X H= ∂ ∂Ψ ,  (22) 

leads to transform the problem of optimal control into a non-linear multi-point boundary 
value problem. 
Consequently, for a specified payload value, substituting obtained computed control 
equations from Eqs. (21) and Eq. (18) into Eqs. (20) and (22), sixteen nonlinear ordinary 
differential equations are obtained which with sixteen boundary conditions given in Eq. (17), 
constructs a Two Point Boundary Value Problem(TPBVP). Such a problem is solvable with 
available commands in different software such as MATLAB and MATEMATHICA. 

3.2 Application 
3.2.1 Developing for two-link flexible mobile manipulator 
3.2.1.1 Equations of motion 

In this section, a mobile manipulator consists of a mobile platform with two flexible links / 
joints manipulator as depicted in Fig. 7 is considered to analysis. For study on the complete 
model, first, a mobile manipulator with two flexible links is considered to derive the 
dynamic equations, then, with applying the joint flexibility by modelling the elasticity at 
each joint as a linear torsinal spring the model is developed for integrated link and joint 
flexible mobile manipulator.  
To model the equations of motion of the system, assumed mode method is used. For this 
purpose, the total energy associated with the system must be computed to determine the 
Lagrangian function. 
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Fig. 7. Two links mobile manipulator with flexible links and joints 
The total kinetic energy of the system (T) is given by  

 L B MT T T T= + + , (23) 

The kinetic energy of flexible links can be found as 

 
2

1 0

1 ( ) ( )
2

iL
T

L i i i i i i
i

T r x r x dxρ
=

=∑ ∫ , (24) 

where ir  is the position vector that describes an arbitrary point along the thi  deflected link 
with respect to the global co-ordinate frame ( 0 0X Y ) and iρ is the linear mass density for the 

thi  link.  
By defining br  and mr  as position vectors of the base and the payload respectively, the 
associated kinetic energies are obtained as: 

 

2

2 2

1
2
1 1
2 2

M p m

B b b b b

T m r

T m r I ω

=

= +
, (25) 

where bI and bω  are the moment of inertia and the angular velocity of base, respectively. 
Note that the moment of inertia of the end effector has been neglected.  
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Next, the potential energy associated with the flexibility of the links due to the link 
deformation is obtained as: 

 
22

2
1 0

1 ( )
2

iL
i

L i i
i i

d vU EI dx
dx=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∫ , (26) 

where ( )iEI  is the flexural rigidity of the thi  link and ( , )i iv x t  is the bending deflection of the 
thi  link at a point , (0 )i i ix x l≤ ≤ . Now, by determining the gravity energy as: 

 
2

1 0

iL

g i i i
i

U g x dxρ
=

=∑∫ , (27) 

and adding this energy to those obtained in Eq. (26) the total potential energy of the system 
is obtained as L gU U U= + . Finally, by constructing the Lagrangian as L = T – U and using 
the Lagrangian equation, the equations of motion for two-link flexible mobile manipulator 
can be obtained as Eq. (8). Hence, the overall generalized co-ordinate vector of the system 
can be written as: 0 1 2 1 2[ ] [ ]b r f f fq q q q x y e eθ θ θ= = , where 0[ ]b f fq x y θ=  is 
the base generalized coordinates vector, 1 2[ ]rq θ θ=  is the link angles vector and 

1 2[ ]fq e e=  is the vector of link modal displacements. 
There is one nonholonomic constraint for the mobile base that undertakes the robot 
movement only in the direction normal to the axis of the driving wheels: 

 0 0 0 0sin( ) cos( ) 0f fx y Lθ θ θ− + = . (28) 

Now, by predefining the base trajectory, the system dynamics can be decomposed into two 
parts: one is corresponding to redundant set of variables, rq  and the remained set of them, 

nrfq . That is 
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Now, by remaining the second row of above equation, the non-redundant part of system 
equations is considered to path optimization procedure.  
For developing the system to encounter the flexible joints manipulator, adding the actuator 
positions and their dynamic equations is required. Hence, the set of system dynamic 
equation is rearranged as explain in Eq. (10). This overall system is clearly established the 
equations that involve the flexible nature of both links and joints. 
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Fig. 7. Two links mobile manipulator with flexible links and joints 
The total kinetic energy of the system (T) is given by  

 L B MT T T T= + + , (23) 

The kinetic energy of flexible links can be found as 

 
2

1 0

1 ( ) ( )
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L i i i i i i
i

T r x r x dxρ
=

=∑ ∫ , (24) 

where ir  is the position vector that describes an arbitrary point along the thi  deflected link 
with respect to the global co-ordinate frame ( 0 0X Y ) and iρ is the linear mass density for the 

thi  link.  
By defining br  and mr  as position vectors of the base and the payload respectively, the 
associated kinetic energies are obtained as: 
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1
2
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2 2
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=

= +
, (25) 

where bI and bω  are the moment of inertia and the angular velocity of base, respectively. 
Note that the moment of inertia of the end effector has been neglected.  
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Next, the potential energy associated with the flexibility of the links due to the link 
deformation is obtained as: 
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where ( )iEI  is the flexural rigidity of the thi  link and ( , )i iv x t  is the bending deflection of the 
thi  link at a point , (0 )i i ix x l≤ ≤ . Now, by determining the gravity energy as: 
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and adding this energy to those obtained in Eq. (26) the total potential energy of the system 
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1 2[ ]fq e e=  is the vector of link modal displacements. 
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movement only in the direction normal to the axis of the driving wheels: 

 0 0 0 0sin( ) cos( ) 0f fx y Lθ θ θ− + = . (28) 
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parts: one is corresponding to redundant set of variables, rq  and the remained set of them, 

nrfq . That is 
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Now, by remaining the second row of above equation, the non-redundant part of system 
equations is considered to path optimization procedure.  
For developing the system to encounter the flexible joints manipulator, adding the actuator 
positions and their dynamic equations is required. Hence, the set of system dynamic 
equation is rearranged as explain in Eq. (10). This overall system is clearly established the 
equations that involve the flexible nature of both links and joints. 
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These enhanced dynamic equations that involve dynamic of the two-link flexible mobile 
manipulator are considered in trajectory planning problem in the presenting study. 
3.2.1.2 Stating an optimal control solution 

Optimal control approach provides an excellent tool to calculate optimal trajectory with 
high accuracy for robots that include, in this case, two link flexible mobile manipulators. 
Let the trajectory generation problem be defined here as determining a feasible specification 
of motion which will cause the robot to move from a given initial posture (state) to a given 
final posture (state) while minimize a performance criterion such as integral quadratic norm 
of actuating torques or velocities, which leads to minimize energy consumption or bounding 
the velocity magnitude. 
For this reason, as it can be seen in Fig. 7 the state vectors can be defined as: 
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 (31) 

where θ1 and θ2 are angular positions of links, e1 and e2 are links modal displacements, and θ3 
and θ4 are angular positions of motors. The boundary condition can be expressed as: 

 1 9 10 3 11 30

1 9 1 3 11 3

(0) (0) , (0) (0) ;
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x x x x x X
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 (32) 

Other boundary conditions are assumed to be zero. 
Now, with defining 1

4 4 4 4Z M −
× ×= and 1

2 2 2 2I J −
× ×=  Eq. (30) can be rewritten in the compact 

form as: 
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 (33) 

where ( )21 1 3 0 0q x x= , ( )11 9 11 0 0q x x= , ( )22 1 3q x x= , ( )12 9 11q x x= , and  

( )1 2U u u= . Remember that in this simulation the gravity effect is assumed to be zero. 
Hence, by defining the vector F as: 1 2 1 2 3 4 5 6[ ] [ ]F F F f f f f f f= =  the set of state 
space equations of system can be written as: 
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. (34) 

In order to derive the equations associated with optimality conditions, penalty matrices can 
be selected as follows: 

 1 2 3 4 5 6

1 2

( , , , , , )
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=
=

 (35) 
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An important remark must be done here is that the study is planned a trajectory in the joint 
space rather than in the operating space. It means the control system acts on the manipulator 
joints rather than on the end effector. Trajectory planning in the joint space would allow 
avoiding the problems arising with kinematic singularities and manipulator redundancy. 
Moreover, it would be easier to adjust the trajectory according to the design requirements if 
working in the joint space. By controlling manipulator joints can achieve the best dynamic 
coordination of joint motions, while minimizing the actuating inputs together with bounding 
the velocity magnitudes. It causes to ensure soft and efficient functioning while improving the 
manipulator working performances. For that reason, the objective function is formed as: 

 
6

2 2 2
1 1 2 2 i 2i

i 1

1L= r u +r u w x
2 =
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∑ . (36) 

Subsequently, with defining the auxiliary costate vector as: 

1 2 12 13 14 24... ...x x xψ ψ ψΨ = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦   results to the Hamiltonian function as: 
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∑ ∑ , (37) 

Consequently, with differentiating the Hamiltonian function with respect to states, the 
costate equations are obtained as follow 

 , 1, ,12i
i

H i
x

ψ ∂
= − =

∂
. (38) 

Also, differentiating the Hamiltonian with respect to control and setting the derivative equal 
to zero, yields the following control equations: 
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 (39) 

where by solving them, the expression for control values in the admissible interval, 
; 1 ,2i i iu u u i− +< < =  can be obtained as follow: 

 ( ) ( )1 23 1 1 2 24 2 2;u x r J u x r J= − = − . (40) 

Then, by considering the constraint on control input, the optimal control can be expressed as 
follows: 
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where θ1 and θ2 are angular positions of links, e1 and e2 are links modal displacements, and θ3 
and θ4 are angular positions of motors. The boundary condition can be expressed as: 
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Other boundary conditions are assumed to be zero. 
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where ( )21 1 3 0 0q x x= , ( )11 9 11 0 0q x x= , ( )22 1 3q x x= , ( )12 9 11q x x= , and  

( )1 2U u u= . Remember that in this simulation the gravity effect is assumed to be zero. 
Hence, by defining the vector F as: 1 2 1 2 3 4 5 6[ ] [ ]F F F f f f f f f= =  the set of state 
space equations of system can be written as: 
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In order to derive the equations associated with optimality conditions, penalty matrices can 
be selected as follows: 
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Consequently, with differentiating the Hamiltonian function with respect to states, the 
costate equations are obtained as follow 
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Also, differentiating the Hamiltonian with respect to control and setting the derivative equal 
to zero, yields the following control equations: 
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where the final bound of control for each motor is obtained as: 
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 (42) 

where ( )miii /S ωτ= , iτ  and miω  are the stall torque and maximum no-load speed of thi  
motor respectively. 
Finally, 24 nonlinear ordinary differential equations are obtained by substituting Eq.(33) into 
Eqs. (38) and (34), which with 24 boundary conditions given in Eq.(32) construct a two point 
boundary value problem (TPBVP).  
There are numerous influential and efficient commands for solving such problems that are 
available in different software such as MATLAB, MATEMATHICA or FORTRAN. These 
commands by employing capable methods such as finite difference, collocation and 
shooting method solve the problem. In this study, BVP4C command in MATLAB® which is 
based on the collocation method is used to solve the aforesaid problem. This numerical 
technique have been detailed by (Shampine et al.). 
3.2.1.3 Required parameters 

In all simulations the mobile base is initially at point ( fix  = 0.5m, fiy = 0.5m, fiθ = 0) and 
moves along a straight-line path to final position ( ffx = 1.5m, ffy  = 1m). The necessary 
parameters used in the simulations are summarized in the Table 1. 
 

Properties Symbol Value (Unit) 
Length of Links l 1(m) 
Mass Density ρ  6 (kg. 1m − ) 
Flexural Rigidity EI 100 ( 2m.N ) 
Max. no Load Speed of Actuators sω  6  (rad / s) 
Actuator Stall Torque sτ  25 (N. m) 
Moment of Inertia (Motor) J 2 (kg. 2m ) 
Spring Constant k 1000 Nm 

Table 1. System parameters 
Velocity at start and stop is considered to be zero. Other boundary conditions are assumed 
to be: 

 
;30)f(x)f(x,30)f(x)f(x

;90)0(x)0(x,120)0(x)0(x

11391

11391

====

====
 (43) 

Also, in all simulations, the penalty matrix of control efforts R assumes to be R=diag[0.01]. 
Note that in all simulations, the payload is calculated with the accuracy of 0.1 Kg. 

3.2.2 Motion planning 
3.2.2.1 Motion planning for different penalty matrixes 
In the first case, effects of changing in performance index in the path planning problem are 
investigated. Hence, simulation is done for the different values of W and optimal paths for a 
given payload are obtained.  
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By considering penalty matrices as W = (w, w, 0, 0, w, w) by zero the first path is 
determined. Other paths are drowning with scaling up the value of W as: 1, 100, and 1000. 
Note that in these simulations the penalty matrices refer to velocities of mode shapes are 
fixed in zero and the payload is assumed to be 1 Kg. 
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Fig. 8. Angular velocities of joints 
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Fig. 9. Torques of motors 
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Fig. 10. Robot Configuration 
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where the final bound of control for each motor is obtained as: 
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where ( )miii /S ωτ= , iτ  and miω  are the stall torque and maximum no-load speed of thi  
motor respectively. 
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available in different software such as MATLAB, MATEMATHICA or FORTRAN. These 
commands by employing capable methods such as finite difference, collocation and 
shooting method solve the problem. In this study, BVP4C command in MATLAB® which is 
based on the collocation method is used to solve the aforesaid problem. This numerical 
technique have been detailed by (Shampine et al.). 
3.2.1.3 Required parameters 

In all simulations the mobile base is initially at point ( fix  = 0.5m, fiy = 0.5m, fiθ = 0) and 
moves along a straight-line path to final position ( ffx = 1.5m, ffy  = 1m). The necessary 
parameters used in the simulations are summarized in the Table 1. 
 

Properties Symbol Value (Unit) 
Length of Links l 1(m) 
Mass Density ρ  6 (kg. 1m − ) 
Flexural Rigidity EI 100 ( 2m.N ) 
Max. no Load Speed of Actuators sω  6  (rad / s) 
Actuator Stall Torque sτ  25 (N. m) 
Moment of Inertia (Motor) J 2 (kg. 2m ) 
Spring Constant k 1000 Nm 

Table 1. System parameters 
Velocity at start and stop is considered to be zero. Other boundary conditions are assumed 
to be: 

 
;30)f(x)f(x,30)f(x)f(x

;90)0(x)0(x,120)0(x)0(x

11391

11391

====

====
 (43) 

Also, in all simulations, the penalty matrix of control efforts R assumes to be R=diag[0.01]. 
Note that in all simulations, the payload is calculated with the accuracy of 0.1 Kg. 

3.2.2 Motion planning 
3.2.2.1 Motion planning for different penalty matrixes 
In the first case, effects of changing in performance index in the path planning problem are 
investigated. Hence, simulation is done for the different values of W and optimal paths for a 
given payload are obtained.  
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By considering penalty matrices as W = (w, w, 0, 0, w, w) by zero the first path is 
determined. Other paths are drowning with scaling up the value of W as: 1, 100, and 1000. 
Note that in these simulations the penalty matrices refer to velocities of mode shapes are 
fixed in zero and the payload is assumed to be 1 Kg. 
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Fig. 8. Angular velocities of joints 
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Fig. 9. Torques of motors 
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Fig. 10. Robot Configuration 
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Fig. 11. End effector trajectory in XY plane 

Fig. 8 shows the angular velocities of joints. The computed torques are plotted in Fig. 9. As 
shown in figures increasing W causes reducing the maximum velocity magnitude while the 
torques are growing. This issue is predictable, since, in the cost functional defined in the Eq. 
(16) increasing W causes to rise the role of velocity in path planning an it can decreases the 
proportion of R in such process. Furthermore, it can be found from figures, in order to attain 
a smoother path with smaller amount of velocity, more effort must be applied. Also, it is 
obvious that all the obtained graphs are satisfied the system cost function in Eq. (16). hence, 
they specify optimal trajectories of the system motion. Therefore, in the proposed method 
designer is able to choose most appropriate path among various optimal paths according to 
designing requirements. Robot configuration and end effector trajectory are depected in 
Figs. 10 and 11 respectively. 

3.2.2.2 Motion planning for different payloads 

In this case W is assumed to be constant at W=1. Then, the robot path planning problem will 
be investigated by increasing the payload mass until maximum allowable load will be 
determined. This maximum payload is obtained as 8.4 kg (case 4). The obtained angular 
positions, angular velocities and torque curves graphs for a range of mP given in Table 2 are 
shown in Fig.s 12 - 14. It can be found that, increasing the mP results to enlarge the velocity 
values as a consequence various optimal paths have been attained. As shown in figures, 
increasing the payload increases the required torque until the maximum payload. So that for 
the last case the torque curves lay on their limits. Hence, it is the most possible values of the 
torques and increasing the payload can lead to violate the boundary conditions. Finally, end 
effector trajectories in the Cartesian space are depicting in Fig. 15.  
 

Case 1 2 3 4 
pm  1 3 7 8.4 

Table 2. The values of mp used in the simulation. 

mpmax =8.4 kg is the maximum allowable payload for the selected penalty matrices while 
choosing the other penalty matrices, results in other optimal trajectories. To demonstrate 
that issue, simulations are carried out for different values of W given in Table 3. 
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Fig. 12. Angular positions of joints 
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Fig. 13. Angular velocities of joints 
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Fig. 11. End effector trajectory in XY plane 

Fig. 8 shows the angular velocities of joints. The computed torques are plotted in Fig. 9. As 
shown in figures increasing W causes reducing the maximum velocity magnitude while the 
torques are growing. This issue is predictable, since, in the cost functional defined in the Eq. 
(16) increasing W causes to rise the role of velocity in path planning an it can decreases the 
proportion of R in such process. Furthermore, it can be found from figures, in order to attain 
a smoother path with smaller amount of velocity, more effort must be applied. Also, it is 
obvious that all the obtained graphs are satisfied the system cost function in Eq. (16). hence, 
they specify optimal trajectories of the system motion. Therefore, in the proposed method 
designer is able to choose most appropriate path among various optimal paths according to 
designing requirements. Robot configuration and end effector trajectory are depected in 
Figs. 10 and 11 respectively. 

3.2.2.2 Motion planning for different payloads 

In this case W is assumed to be constant at W=1. Then, the robot path planning problem will 
be investigated by increasing the payload mass until maximum allowable load will be 
determined. This maximum payload is obtained as 8.4 kg (case 4). The obtained angular 
positions, angular velocities and torque curves graphs for a range of mP given in Table 2 are 
shown in Fig.s 12 - 14. It can be found that, increasing the mP results to enlarge the velocity 
values as a consequence various optimal paths have been attained. As shown in figures, 
increasing the payload increases the required torque until the maximum payload. So that for 
the last case the torque curves lay on their limits. Hence, it is the most possible values of the 
torques and increasing the payload can lead to violate the boundary conditions. Finally, end 
effector trajectories in the Cartesian space are depicting in Fig. 15.  
 

Case 1 2 3 4 
pm  1 3 7 8.4 

Table 2. The values of mp used in the simulation. 

mpmax =8.4 kg is the maximum allowable payload for the selected penalty matrices while 
choosing the other penalty matrices, results in other optimal trajectories. To demonstrate 
that issue, simulations are carried out for different values of W given in Table 3. 
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Fig. 13. Angular velocities of joints 
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Fig. 15. End effector trajectory in XY plane 

3.2.3 Maximum payload determination 
In this case, the maximum payload of flexible mobile manipulator will be calculated  
and corresponding optimal trajectory at point-to-point motion will be illustrated  
for different values of W. Payload paths for these cases are shown in Fig. 16. Fig. 17 shows 
the robot configuration for the first and last cases. Also, he computed torques for these  
cases are plotted in Fig.18. As it can be seen, increasing W causes to increase oscillatory 
behavior of the systems that results to reduce the maximum dynamic payload as shown in 
Table 3.  
 

Case 1 2 3 4 
W 1 400 600 800 

maxpm  8.4 7.9 7.5 6.3 

Table 3. The values of W and corresponding calculated maximum payloads  
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Fig. 16. End effector trajectory in XY plane 
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Fig. 17. Robot Configuration 
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Fig. 18. Torques of motors 

4. Conclusion 
In this chapter, modelling and control of mechanical manipulator had been studied. First, 
kinematic and dynamic modelling of flexible link, flexible joint and mobile manipulators 
have been considered. Then, optimal control of a flexible mobile manipulator in point-to-
point motion had been formulated based on the open-loop optimal control approach. The 
first objective of the chapter is to state the dynamic optimization problem under a quite 
generalized form in order to be applied to a variety of situations with any guess objective 
functions for the optimality solution. The second objective is consisting in developing the 
method for optimizing the applicable case studies, which results. 
Using assumed mode and finite element methods oscillatory behavior of he mobile robotic 
manipulators had been described. The model equations had been verified for a two-link 
manipulator, and the model responses had been discussed. Then, joint flexibility had been 
added to the system and obtained model had been simulated. After that, an efficient 
solution on the basis of TPBVP solution had been proposed to path optimization – 
maximum payload determination in order to achieve the predefined objective. The solving 
strategy makes it possible to get any guess objective functions for the optimality solution. 
Attaining the minimum effort trajectory along with bounding the obtained velocity 
magnitude had been chosen at the application example. The obtained results illustrate the 
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3.2.3 Maximum payload determination 
In this case, the maximum payload of flexible mobile manipulator will be calculated  
and corresponding optimal trajectory at point-to-point motion will be illustrated  
for different values of W. Payload paths for these cases are shown in Fig. 16. Fig. 17 shows 
the robot configuration for the first and last cases. Also, he computed torques for these  
cases are plotted in Fig.18. As it can be seen, increasing W causes to increase oscillatory 
behavior of the systems that results to reduce the maximum dynamic payload as shown in 
Table 3.  
 

Case 1 2 3 4 
W 1 400 600 800 

maxpm  8.4 7.9 7.5 6.3 

Table 3. The values of W and corresponding calculated maximum payloads  
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Fig. 16. End effector trajectory in XY plane 
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4. Conclusion 
In this chapter, modelling and control of mechanical manipulator had been studied. First, 
kinematic and dynamic modelling of flexible link, flexible joint and mobile manipulators 
have been considered. Then, optimal control of a flexible mobile manipulator in point-to-
point motion had been formulated based on the open-loop optimal control approach. The 
first objective of the chapter is to state the dynamic optimization problem under a quite 
generalized form in order to be applied to a variety of situations with any guess objective 
functions for the optimality solution. The second objective is consisting in developing the 
method for optimizing the applicable case studies, which results. 
Using assumed mode and finite element methods oscillatory behavior of he mobile robotic 
manipulators had been described. The model equations had been verified for a two-link 
manipulator, and the model responses had been discussed. Then, joint flexibility had been 
added to the system and obtained model had been simulated. After that, an efficient 
solution on the basis of TPBVP solution had been proposed to path optimization – 
maximum payload determination in order to achieve the predefined objective. The solving 
strategy makes it possible to get any guess objective functions for the optimality solution. 
Attaining the minimum effort trajectory along with bounding the obtained velocity 
magnitude had been chosen at the application example. The obtained results illustrate the 
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power and efficiency of the method to overcome the highly nonlinearity nature of the 
optimization problem which with other methods, it may be very difficult or impossible. 
Highlighting the main contribution of the chapter can be presented as: 
• The proposed approach can be adapted to any general serial manipulator including 

both non-redundant and redundant systems with link flexibility and base mobility.  
• In this approach the nonholonomic constraints do not appear in TPBVP directly, unlike 

the method given in (Mohri et al. 2001; Furuno et al. 2003). 
• This approach allows completely nonlinear states and control constraints treated 

without any simplifications. 
• The obtained results illustrate the power and efficiency of the method to overcome the 

high nonlinearity nature of the optimization problem, which with other methods, it 
may be very difficult or impossible. 

• In this method, boundary conditions are satisfied exactly, while the results obtained by 
methods such as Iterative Linear Programming (ILP) have a considerable error in final 
time (Ghariblu & Korayem, 2006). 

• In this method, designer is able to choose the most appropriate path among various 
optimal paths by considering the proper penalty matrices. 

The optimal trajectory and corresponding input control obtained using this method can be 
used as a reference signal and feed forward command in the closed-loop control of such 
manipulators.  
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1. Introduction 
Modern industrial robots are mostly (human) arm-inspired mechanisms with serially 
arranged discrete links. When it comes to industrial environment where the workspace is 
structured and predefined this kind of structure is fine. This type of robots are placed in 
carefully controlled environments and kept away from human and their world.  
When it comes to robots that must interact with the natural world, it needs to be able to 
solve the same problems that animals do. The rigid structure of traditional robots limit their 
ability to maneuver and in small spaces and congested environments, and to adapt to 
variations in their environmental contact conditions. For improving the adaptability and 
versatility of robots, recently there has been interest and research in “soft” robots. In 
particular, several research groups are investigating robots based on continuous body 
“continuum” structure. If a robot’s body is soft and/or continuously bendable it might 
emulate a snake or an eel with an undulating locomotion (Walker & Carreras, 2006). 
An ideal tentacle manipulator is a non-conventional robotic arm with an infinite mobility. It 
has the capability of takeing sophisticated shapes and of achieving any position and 
orientation in a 3D space. Behavior similar to biological trunks, tentacles, or snakes may be 
exhibited by continuum or hyper-redundant robot manipulators (Walker et al., 2005). Hence 
these manipulators are extremely dexterous, compliant, and are capable of dynamic 
adaptive manipulation in unstructured environments, continuum robot manipulators do not 
have rigid joints unlike traditional rigid-link robot manipulators. The movement of the 
continuum robot mechanisms is generated by bending continuously along their length to 
produce a sequence of smooth curves. This contrasts with discrete robot devices, which 
generate movement at independent joints separated by supporting links. 
The snake-arm robots and elephant’s trunk robots are also described as continuum robots, 
although these descriptions are restrictive in their definitions and cannot be applied to all 
snake-arm robots (Hirose, 1993). A continuum robot is a continuously curving manipulator, 
much like the arm of an octopus (Cowan & Walker, 2008). An elephant’s trunk robot is a 
good descriptor of a continuum robot (Hutchinson, S.; Hager et al., 1996). The elephant’s 
trunk robot has been generally associated with an arm manipulation – an entire arm used to 
grasp and manipulate objects, the same way that an elephant would pick up a ball. As the 
best term for this class of robots has not been agreed upon, this is still an emerging issue. 
Snake-arm robots are often used in association with another device meant to introduce the 
snake-arm into the confined space.  
However, the development of high-performance control algorithms for these manipulators 
is quite a challenge, due to their unique design and the high degree of uncertainty in their 
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dynamic models. The great number of parameters, theoretically an infinite one, makes very 
difficult the use of classical control methods and the conventional transducers for position 
and orientation.” must be moved after the paragraph “An ideal tentacle manipulator is a 
non-conventional robotic arm with an infinite mobility. It has the capability of takeing 
sophisticated shapes and of achieving any position and orientation in a 3D space. These 
systems are also known as hyper redundant manipulators and, over the past several years, 
there has been a rapid expanding interest in their study and construction. 
An ideal tentacle manipulator is a non-conventional robotic arm with an infinite mobility. It 
has the capability of takeing sophisticated shapes and of achieving any position and 
orientation in a 3D space. These systems are also known as hyper redundant manipulators 
and, over the past several years, there has been a rapid expanding interest in their study and 
construction. 
The control of these systems is very complicated and a great number of researchers tried to 
offer solutions for this difficult problem. In (Hemami, 1984); (Suzumori et al., 1991) it 
analyses the control by cables or tendons meant to transmit forces to the elements of the arm 
in order to closely approximate the arm as a truly continuous backbone. Also, Mochiyama 
has investigated the problem of controlling the shape of an HDOF rigid-link robot with two-
degree-of-freedom joints using spatial curves (Mochiyama & Kobayashi, 1999). Important 
results were obtained by Chirikjian (Chirikjian, 1993) who laid the foundations for the 
kinematic theory of hyper redundant robots. His results are based on a “backbone curve” 
that captures the robot’s macroscopic geometric features. 
The inverse kinematic problem is reduced to determining the time varying backbone curve 
behaviour (Takegaki & Arimoto, 1981). New methods for determining “optimal” hyper-
redundant manipulator configurations based on a continuous formulation of kinematics are 
developed. In (Gravagne & Walker, 2001), Gravagne analysed the kinematic model of 
“hyper-redundant” robots, known as “continuum” robots. Robinson and Davies (Robinson 
& Davies, 1999) present the “state of art” of continuum robots, outline their areas of 
application and introduce some control issues. The great number of parameters, 
theoretically an infinite one, makes very difficult the use of classical control methods and the 
conventional transducers for position and orientation. 
The lack of no discrete joints is a serious and difficult issue in the determination of the 
robot’s shape. A solution for this problem is the vision based control of the robot, kinematics 
and dynamics. 
The research group from the Faculty of Automation, Computers and Electronics, University 
of Craiova, Romania, started working in research field of hyper redundant robots over 25 
years ago. The experiments started on a family of TEROB robots which used cables and DC 
motors. The kinematics and dynamics models, as well as the different control methods 
developed by the research group were tested on these robots. Starting with 2008, the 
research group designed a new experimental platform for hyper redundant robots. This new 
robot is actuated by stepper motors. The rotation of these motors rotates the cables which by 
correlated screwing and unscrewing of their ends determine their shortening or prolonging, 
and by consequence, the tentacle curvature (Blessing & Walker, 2004). Segments were 
cylindrical in the initial prototype, and cone-shaped in actual prototype. The backbone of 
the tentacle is an elastic cable made out of steel, which sustains the entire structure and 
allows the bending. Depending on which cable shortens or prolongs, the tentacle bends in 
different planes, each one making different angles (rotations) respective to the initial 
coordinate frame attached to the manipulator segment – i.e. allowing the movement in 3D. 
Due to the mechanical design it can be assumed that the individual cable torsion, 
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respectively entire manipulator torsion can be neglected. Even if these phenomena would 
appear, the structure control is not based on the stepper motors angles, but on the 
information given by the robotic vision system which is able to offer the real spatial 
positions and orientations of the tentacle segments.  
 

 
Fig. 1. A tentacle arm prototype 

2. Kinematics 
In order to control a hyper-redundant robot it has to develop a method to compute the 
positions for each one of his segments (Immega & Antonelli, 1995). By consequence, given a 
desired curvature S*(x, tf) as sequence of semi circles, identify how to move the structure, to 
obtain s(x, t) such that  

 *lim ( , ) ( , )
ft t fs x t S x t→ =  (1) 

where x is the column vector of the shape description and tf is the final time (see Fig. 2). 
 

 
Fig. 2. The description of the desired shape 
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To describe the tentacle’s shape we will consider two angles (α, θ) for each segment, where θ 
is the rotation angle around Z-axis and α is the rotation angle around the Y-axis (see Fig. 2). 
To describe the movement we can use the roto-translation matrix considering θ = 2β as 
shown in Fig. 3. 
 

 
Fig. 3. Curvature and relation between θ and β 

The generic matrix in 2D that expresses the coordinate of the next segment related to the 
previous reference system can be written as follow: 
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In 3D space we cannot write immediately the dependence that exists between two segments. 
This relation can be obtained through the pre-multiplication of generic roto-translation 
matrix. One of the possible combinations to express the coordinate of the next segment 
related to the frame coordinate of the previous segment is the following: 

 : ( ) ( ) ( ) ( )i i i i i i i i
generic z y y zR R Tr V R Rθ α θ= ⋅ ⋅ ⋅  (3) 

where ( )i i
zR θ  and ( )i i

yR α  are the fundamental roto-translation matrix having 4x4 elements 
in 3-D space, and Try(Vi) is a 4x4 elements matrix of pure translation in 3-D space and where 
Vi is the vector describing the translation between two segments expressed in coordinate of 
i-th reference system.e main problem remains to obtain an imposed shape for the tentacle 
arm. In order to control the robot, we need to obtain the relation between the position of the 
wires and the position of the segment. 
Here, a decoupled approach is used for the robot control scheme. Thus the segments are 
controlled separately, without considering the interaction between them. Considering the 
segments of the tentacle separately, then (α, θ)i is the asigned coordinate of i-th segment. 
Having as purpose to command the robot to reach the position (α, θ)i the following relation 
is useful: 

  0CBLR θ
θ

= ∀ ≠  (4) 
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where R represents the curvature’s radius of the central bone and CBL  is a constant, equal to 
the length of the central bone. 
Once we have θ  and α together as parameters of the desired shape, and after we obtained R, 
we can compute the corresponding lengths of the wires. Depending on the types of wires 
and on the structure of the tentacle, we must choose the way to compute the length of each 
wire. 
For the hard wire, made from the same material as the central bone, and by consequence 
having the same elasticity, referring to Fig. 4, we can write: 
 

 
Fig. 4. Different types of wires. 
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For the soft wires, we can write: 
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where Lwn is the length of the n-th wire and Ri is the radius of the curvature of the real i-th 
wire.  
Farther it can be written: 

 ( ) cos( )n nR R R α= − Δ ⋅  (7) 

where ΔR is constant equal to the distance between the center and the wires and αn is: 
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Obviously the equations (5) and (6), become the same for i → ∞. 
In order to reach the desired shape in a finite time tf, we should choose the appropriate law 
for the time variation of the displacements and speed for the three wires, going from the 
home position to the final position. For each instant, the wires must be moved in order to 
avoid elongation or compression of it self.   
The reference systems for each segment are oriented with the X-axes passing through the 
first wire. That means that the angles considered between the wires and the desired 
directions are as in the equation (8). 
We can obtain the correlation between these angles and the bending direction of the 
segment. E.g. if the direction is α =2/3π, that means we intend to bend the tentacle in the 
direction of the second wire with the imposed value of θ  degrees. In this case, if we will 
move the second wire of ΔLw2, we should move the first and third wires with ΔLw2/2 and 
with the apropiate speed in order to maintain this relation during the movement. 
Once we know the angle α, we can obtain the value ( )cosi iR R αΔ = Δ ⋅ , defining the 
displacements of the wires. 
The algorithm that we are using, assigns the speed of the wires proportional to ΔRi in order 
to go from the home position (θ =0, α =0) to the position (α, θ)i with a constant speed of the 
motors. 
In fact, given the final time tf and the starting time ti, after we obtained the displacement of 
the wires we impose the speed in order to reach the desired position in (tf-ti) seconds. 
So the speed is: 
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Our structure does not have encoders. Counting the impulses given to the motors, we can 
evaluate the lengths [Lw1, Lw2, Lw3]. We use these values in order to obtain (α ,θ)i. The 
algorithm’s steps are the following. 
For the n-th rigid wire: 

 cos( )wn CB nL L Rθ α= − ⋅ Δ ⋅  (10) 

Considering the equation (8) and (10), evaluating these for all the wires we can obtain: 
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Considering again the equation (10) for the first and second wires, we can write: 

 1 1 2 2cos( ) cos( )w wL R L Rθ α θ α+ Δ ⋅ ⋅ = + Δ ⋅ ⋅  (12) 
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Replacing the (8) we obtain θ in function of α: 
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And considering the eq. (10) for the third wire: 
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Finally the α angle can be obtained using the function atan2. 

 ( )( )2 3 1 2 3atan2 3 ,2w w w w wL L L L Lα = − − −  (15) 

where atan2 is an extension of arctan(y/x) on more quadrant having the following form: 
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The same methodology can be applied for a tronconical robot. The following paragraphs 
will show how the equations change. The geometry of one segment for the 2D case is 
described in Fig. 6. The curvature’s angle θ of the segment is considered as the input 
parameter, while the lengths L1 and L2 of the control wires are the outputs. 
 

 
Fig. 5. Projection of the wire to get the α direction 
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Fig. 6. The geometry of one segment. 

The radius R of the segment curvature is obtained using equation (17): 
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where H is the height of the segment. The following lengths are obtained from Fig. 5, based 
on the segment curvature: 
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where D1 and D2 are the diameters of the segment end discs. Based on the Carnot theorem, 
the lengths A1 and A2 are then obtained:  
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The control wires curvature radius R1 and R2 are given by the relations (20): 
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Finally, the lengths of the control wires are obtained as in (21): 
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For the 3D case, a virtual wire is considered, which gives the α direction of the curvature. 
Considering one virtual wire in the direction of the desired curvature having length 
calculated as follows. Firstly the following lengths are computed: 
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where αn is according to Fig. 5: 
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Based on (19) and (20) the curvature radiuses R1, R2 and R3 of the three control wires are 
then obtained. Finally the lengths of the control wires are computed with (24): 

 
1 1

2 2

3 3

w

w

w

L R
L R
L R

θ
θ
θ

= ⋅
= ⋅
= ⋅

 (24) 

Apart from the system presented we can obtain two useful relations: 
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The second equation of (25), can be utilized to estimate the virtual compression or the 
extension of the central bone. We call that virtual compression because before we compress 
the central bone, the robot will twist to find the shape to guaranty the wrong length of the 
wires. 

3. Dynamics 
3.1 Theoretical model 
The essence of the tentacle model is a 3-dimensional backbone curve C that is parametrically 
described by a vector ( ) 3r s ∈R  and an associated frame ( ) 3 3sϕ ×∈R  whose columns create 
the frame bases (Fig. 7a) (Ivănescu et al., 2006). 
 

 
Fig. 7. Tentacle system parameters. 
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The independent parameter s is related to the arc-length from the origin of the curve C, a 
variable parameter, where 

 ( )0
1

N

i i
i

l l l
=

= + Δ∑  (26) 

or 

 0l l u= +  (27) 

where 0l  represents the length of the N elements of the arm in the initial position and 
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i
i

u l
=

= Δ∑  (28) 

 

determines the control variable of the arm length. 
The position of a point s on curve C is defined by the position vector, 

 ( )srr =  (29) 

when [ ].l,0s∈  For a dynamic motion, the time variable will be introduced, ( )t,srr = . 
We used a parameterization of the curve C based upon two "continuous angles" ( )sθ  and 
( )sq  and length variable u (Fig. 4). 

At each point ( )t,sr , the robot’s orientation is given by a right-handed orthonormal basis 
vector { }zyx e,e,e  and its origin coincides with point ( )t,sr , where the vector ex is tangent 

and ez is orthogonal to the curve C. The position vector on curve C is given by 
 

 ( ) ( ) ( ) ( )[ ]Tt,szt,syt,sxt,sr =  (30) 

where  

 ( ) ( ) ( )∫ ′′′=
s

0
sdt,sqcost,ssint,sx θ  (31) 

 ( ) ( ) ( )∫ ′′′=
s

0
sdt,sqcost,scost,sy θ  (32) 

 ( ) ( )∫ ′′=
s

0
sdt,sqsint,sz  (33) 

with [ ].s,0s ∈′ We can adopt the following interpretation: at any point s the relations (31)-
(33) determine the current position and ( )sΦ determines the robot’s orientation, and the 
robot’s shape is defined by the behaviour of functions ( )sθ  and ( )sq . The robot “grows” 
from the origin by integrating to get ( )t,sr , [ ]ul,0s 0 +∈ . The velocity components are 
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For an element dm, kinetic and gravitational potential (Douskaia, 1998) energy will be 
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The elastic potential energy will be approximated by two components, one determined by 
the bending of the element 
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and the other is given by the axial tension/compression energy component 
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where we assumed that each element has a constant curvature and a uniform equivalent 
elasticity coefficient k, assumed constant on all the length of the arm. 
The total elastic potential energy will be 

 eaebe VVV +=  (45) 

We will consider ( ) ( )t,sF,t,sF qθ  the distributed forces on the length that determine motion 
and orientation in the θ - plane, q - plane and ( )tFu , the force that determines axial motion, 
assumed constant along the length of the arm. 

3.2 Dynamic model 
In this paper, the manipulator model is considered a distributed parameter (Ivanescu, 2002). 
system defined on a variable spatial domain [ ]l,0=Ω   and  the spatial coordinate is denoted 
by s. 
The dynamic model of this manipulator with hyper-redundant configurations can be 
obtained, in general form, from Hamilton partial differential equations of the distributed 
parameter model, 
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where ω  and ν  are the generalized coordinates and momentum densities, respectively, and 
( ) ( )/δ δ⋅ ⋅  denotes a functional partial derivative. 

The state of this system at any fixed time t is specified by the set ( ) ( )( )s,t,s,t νω , where 
[ ] .uq Tθω =  The set of all functions of Ω∈s  that νω ,  can take on at any time is state 

function space ( ).ΩΓ  We will consider that ( ) ( ).L2 ΩΩΓ ⊂  
The control forces have the distributed components along the arm, ( ) ( ) [ ]l,0s,s,tF,s,tF q ∈θ  
and a lumped component ( ).tFu  
A practical form of dynamic model expressed only as a function of generalised coordinates 
is derived by using Lagrange equations developed for infinite dimensional systems, 
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where ( ) ( )⋅⋅∂∂ δδ /,/  denote classical and functional partial derivatives (in Gateaux sense]), 
respectively. 
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In Appendix 1 the dynamic model of this ideal spatial tentacle manipulator will be 
developed and the difficulties to obtain a control law will be easily inferred. 
The great number of parameters - theoretically an infinite number of parameters - the 
complexity of the dynamic model make the application of the classical algorithms meant to 
obtain the control law very difficult. In much of the literature concerned with the control of 
these systems, the complexity of the problem is emphasized and various methods that 
compensate all nonlinear terms in dynamics in real time are developed in order to reduce 
the complexity of control systems. Also, simplified procedures are introduced or the 
difficult components are neglected in order to generate a particular law for position or 
motion control. In all these cases, these methods require a large amount of complicated 
calculation so that it is difficult to implement these methods with usual level controllers. In 
addition, the reliability of these methods may be lost when a small error in computation or a 
small change in the system's parameters occurs. 

3.3 Unconstrained control 
The artificial potential is a potential function whose points of minimum are attractors for a 
dissipative controlled system. It was shown that the control of robot motion to a desired 
point is possible if the function has a minimum in the desired point. In this section we will 
extend this result for the infinite dimensional model of the tentacle manipulator with 
variable length. 
We consider that the initial state of the system is given by 

 ( ) [ ]T0000 l,q,s,0 θωω ==  (51) 

 ( ) [ ]T0 0,0,0s,0 ==νν  (52) 

 ( ) ( ) [ ]000 l,0s,s,0qq,s,0 ∈==θθ  (53) 

 ( )0ll0 =  (54) 

corresponding to the initial position of the manipulator defined by the curve 0C  

 ( ) ( )( ) [ ]θ ∈0 0 0 0 0: , , , 0,C s q s l s l  (55) 

The desired point in ( )ΩΓ  is represented by a desired position of the arm, the curve dC , 

[ ]Tdddd l,q,θω =  , [ ]Td 0,0,0=ν  

( ) ( )( ) [ ]ddddd l,0s,l,sq,s:C ∈θ  
(56) 

The system motion (48)-(5) corresponding to a given initial state ( )00 , νω  defines a trajectory 
in the state function space ( )ΩΓ . The control problem of the manipulator means the motion 
control by the forces uq F,F,Fθ  from the initial position 0C  to the desired position dC . From 
the viewpoint of mechanics, the desired position ( )dd ,νω  is asymptotically stable if the 
potential function of the system has a minimum at ( )( ) ( )( ) [ ]l,0s,s,s, dd ∈= νωνω  and the 
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where we assumed that each element has a constant curvature and a uniform equivalent 
elasticity coefficient k, assumed constant on all the length of the arm. 
The total elastic potential energy will be 

 eaebe VVV +=  (45) 

We will consider ( ) ( )t,sF,t,sF qθ  the distributed forces on the length that determine motion 
and orientation in the θ - plane, q - plane and ( )tFu , the force that determines axial motion, 
assumed constant along the length of the arm. 

3.2 Dynamic model 
In this paper, the manipulator model is considered a distributed parameter (Ivanescu, 2002). 
system defined on a variable spatial domain [ ]l,0=Ω   and  the spatial coordinate is denoted 
by s. 
The dynamic model of this manipulator with hyper-redundant configurations can be 
obtained, in general form, from Hamilton partial differential equations of the distributed 
parameter model, 
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where ω  and ν  are the generalized coordinates and momentum densities, respectively, and 
( ) ( )/δ δ⋅ ⋅  denotes a functional partial derivative. 

The state of this system at any fixed time t is specified by the set ( ) ( )( )s,t,s,t νω , where 
[ ] .uq Tθω =  The set of all functions of Ω∈s  that νω ,  can take on at any time is state 

function space ( ).ΩΓ  We will consider that ( ) ( ).L2 ΩΩΓ ⊂  
The control forces have the distributed components along the arm, ( ) ( ) [ ]l,0s,s,tF,s,tF q ∈θ  
and a lumped component ( ).tFu  
A practical form of dynamic model expressed only as a function of generalised coordinates 
is derived by using Lagrange equations developed for infinite dimensional systems, 
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where ( ) ( )⋅⋅∂∂ δδ /,/  denote classical and functional partial derivatives (in Gateaux sense]), 
respectively. 

Hyper Redundant Manipulators   

 

39 

In Appendix 1 the dynamic model of this ideal spatial tentacle manipulator will be 
developed and the difficulties to obtain a control law will be easily inferred. 
The great number of parameters - theoretically an infinite number of parameters - the 
complexity of the dynamic model make the application of the classical algorithms meant to 
obtain the control law very difficult. In much of the literature concerned with the control of 
these systems, the complexity of the problem is emphasized and various methods that 
compensate all nonlinear terms in dynamics in real time are developed in order to reduce 
the complexity of control systems. Also, simplified procedures are introduced or the 
difficult components are neglected in order to generate a particular law for position or 
motion control. In all these cases, these methods require a large amount of complicated 
calculation so that it is difficult to implement these methods with usual level controllers. In 
addition, the reliability of these methods may be lost when a small error in computation or a 
small change in the system's parameters occurs. 

3.3 Unconstrained control 
The artificial potential is a potential function whose points of minimum are attractors for a 
dissipative controlled system. It was shown that the control of robot motion to a desired 
point is possible if the function has a minimum in the desired point. In this section we will 
extend this result for the infinite dimensional model of the tentacle manipulator with 
variable length. 
We consider that the initial state of the system is given by 

 ( ) [ ]T0000 l,q,s,0 θωω ==  (51) 

 ( ) [ ]T0 0,0,0s,0 ==νν  (52) 

 ( ) ( ) [ ]000 l,0s,s,0qq,s,0 ∈==θθ  (53) 

 ( )0ll0 =  (54) 

corresponding to the initial position of the manipulator defined by the curve 0C  

 ( ) ( )( ) [ ]θ ∈0 0 0 0 0: , , , 0,C s q s l s l  (55) 

The desired point in ( )ΩΓ  is represented by a desired position of the arm, the curve dC , 

[ ]Tdddd l,q,θω =  , [ ]Td 0,0,0=ν  

( ) ( )( ) [ ]ddddd l,0s,l,sq,s:C ∈θ  
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The system motion (48)-(5) corresponding to a given initial state ( )00 , νω  defines a trajectory 
in the state function space ( )ΩΓ . The control problem of the manipulator means the motion 
control by the forces uq F,F,Fθ  from the initial position 0C  to the desired position dC . From 
the viewpoint of mechanics, the desired position ( )dd ,νω  is asymptotically stable if the 
potential function of the system has a minimum at ( )( ) ( )( ) [ ]l,0s,s,s, dd ∈= νωνω  and the 



 Advanced Strategies for Robot Manipulators 

 

40 

system is completely damped. As a control problem in this paper the results of will be 
extended for the infinite dynamic systems.  
We will consider the control forces, 
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=
Π  (58) 

The first two terms compensate the gravitational and elastic potential, the third components 
assure the damping control and the last terms define the new artificial potential introduced 
in order to assure the motion to the desired position. The minimum points of this potential 
must be identical with desired positions of the manipulator, as attractors of its motion. For 
example, the potential Π can be selected as a functional of generalised coordinates, 

 ( ) ( )( ) ( )( )( ) ( )2d0
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2
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2
d luldssqqsu,q, −++−+−= ∫ θθθΠ  (59) 

The control law (57)-(59) modifies the system potential and the Lagrange equation (48)-(50) 
(Masoud & Masoud, 2000) become 

 
( ) ( ) ( ) d

F
s,ts,t

T
s,t

T
t θδθ

Πδ
δθ
δ

θδ
δ

=+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  (60) 

 
( ) ( ) ( ) dqF

s,tqs,tq
T

s,tq
T

t
=+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂

δ
Πδ

δ
δ

δ
δ  (61) 

 
duF

uu
T

u
T

t
=

∂
∂

+
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂ Π  (62) 

The force components 
ddd uq F,F,Fθ  represent the damping components of the control and 

have the form 

 ( ) ( ) ( )∫ ′′′−=
l

0
sdt,ss,sKt,sF

d
θθθ  (63) 

 ( ) ( ) ( )∫ ′′′−=
l

0
qq sdt,sqs,sKt,sF

d
 (64) 

 ( ) ( )tuKtF uud
−=  (65) 

where ( ) ( )s,sK,s,sK q ′′θ  are positive definite specified spatial weighting functions on 
( )ΩΩ ×  and uK  is a positive constant. For practical reasons, the derivative components of 
the control have the form 
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 ( ) ( ) ( )sksss,sK θθ δ ⋅′−=′  (66) 

 ( ) ( ) ( )sksss,sK qq ⋅′−=′ δ  (67) 

3.4 Constrained control 
Let B be the region of the state (Ceah & Wang, 2005) space where the mechanical system 
motion is not admissible, its complement B  is the region of admissible movements and B∂  
is the boundary of B. The control problem is to determine the potential function ( )u,q,θΠ  
which would determine the motion to the desired position ( ) ( )( ) [ ]l,0s,s,s dd ∈νω  and it does 
not penetrate the constrained area B. In terms of the artificial potential, this means that this 
functional should have a single stationary point in B  and grows without limit when the 
system penetrates the boundary B∂ . 
We will consider the following artificial potential, 

 ( ) ( ) ( ){ }u,q,,u,q,maxu,q, 21 θΠθΠθΠ =  (68) 

where ( )u,q,1 θΠ  is the artificial potential for unconstrained problem and ( )u,q,2 θΠ  is the 
potential for constrained control problem. 

( )u,q,2 θΠ  is a non-negative, continuous functional defined in B  and 

 ( ) ∞=
→

u,q,lim 20d
θΠ  (69) 

where d is the distance between the current state ( )u,q,θ  and the boundary B∂ . 

3.5 Appendix 1 
We will consider a spatial tentacle model, an ideal system, neglecting friction and structural 
damping. We assume a uniformly distributed mass with a linear density ρ [kg/m].  
We will use the notations: 

( ) [ ] [ ]ft,0t,,0s,t,sqq ∈∈= l  ( ) [ ] [ ]ft,0t,,0s,t,s ∈∈= lθθ  

( ) [ ] [ ]ft,0t,s,0s,t,sqq ∈∈′′=′  ( ) [ ] [ ]ft,0t,,0s,
t

t,sqq ∈∈
∂

∂
= l  

( ) [ ] [ ]ft,0t,s,0s,
t

t,sq
q ∈∈′

∂
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=′  
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

( ) [ ] [ ]fqq t,0t,,0s,t,sFF ∈∈= l  ( ) [ ]fuu t,0t,tFF ∈=  
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system is completely damped. As a control problem in this paper the results of will be 
extended for the infinite dynamic systems.  
We will consider the control forces, 
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The first two terms compensate the gravitational and elastic potential, the third components 
assure the damping control and the last terms define the new artificial potential introduced 
in order to assure the motion to the desired position. The minimum points of this potential 
must be identical with desired positions of the manipulator, as attractors of its motion. For 
example, the potential Π can be selected as a functional of generalised coordinates, 
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The control law (57)-(59) modifies the system potential and the Lagrange equation (48)-(50) 
(Masoud & Masoud, 2000) become 
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The force components 
ddd uq F,F,Fθ  represent the damping components of the control and 

have the form 
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where ( ) ( )s,sK,s,sK q ′′θ  are positive definite specified spatial weighting functions on 
( )ΩΩ ×  and uK  is a positive constant. For practical reasons, the derivative components of 
the control have the form 
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3.4 Constrained control 
Let B be the region of the state (Ceah & Wang, 2005) space where the mechanical system 
motion is not admissible, its complement B  is the region of admissible movements and B∂  
is the boundary of B. The control problem is to determine the potential function ( )u,q,θΠ  
which would determine the motion to the desired position ( ) ( )( ) [ ]l,0s,s,s dd ∈νω  and it does 
not penetrate the constrained area B. In terms of the artificial potential, this means that this 
functional should have a single stationary point in B  and grows without limit when the 
system penetrates the boundary B∂ . 
We will consider the following artificial potential, 
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where ( )u,q,1 θΠ  is the artificial potential for unconstrained problem and ( )u,q,2 θΠ  is the 
potential for constrained control problem. 

( )u,q,2 θΠ  is a non-negative, continuous functional defined in B  and 
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where d is the distance between the current state ( )u,q,θ  and the boundary B∂ . 

3.5 Appendix 1 
We will consider a spatial tentacle model, an ideal system, neglecting friction and structural 
damping. We assume a uniformly distributed mass with a linear density ρ [kg/m].  
We will use the notations: 
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From (60)-(62), it results, 
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2
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4. Visual servoing system 
4.1 Camera system 
In the Appendix 2 the dynamic model of the 3D spatial hyper redundant arm is 
determinated. Two video cameras provide two images of the whole robot workspace. The 
two images planes are parallel with XOY and ZOY planes from robot coordinate frame, 
respectively (Fig. 8). The cameras provide the images of the scene stored in the frame 
grabber’s video memory being displayed on the computer screens (Hannan & Walker, 
2005); (Kelly, 1996). Related to the image planes, two dimensional coordinate frames, called 
screen coordinate frames or image coordinate systems are defined. Denote 

1SX , 
1SY  and 

2SZ , 
2SY , respectively, the axes of the two screen coordinate frames provided by the two 

cameras. The spatial centers for each camera are located at the distances D1 and D2, with 
respect to the XOY and ZOY planes, respectively. The orientation of the cameras arround 
the optical axes with respect to the robot coordinate frame, are noted with ψ  and φ , 
respectively. A point P in the coordinate frame is 

 P=[ x, y, z]T (70) 

The description of a point P in the two screen coordinate frames are denoted by 

 2SP =[ 1Sx ,
2Sy ] (71) 

 2SP =[
2Sz ,

2Sy ] (72) 

Geometric optics are used to model the mapping between the robot Cartesian space and the 
screen coordinate systems. We assume that the quantization and the lens distortion effects 
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are negligible. The description of the point P=[ x, y, z]T in the robot coordinate frame is given 
in terms of screen coordinate frames as 
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 (73) 

for the 
111 SSS YOZ  frame and 
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for the 
222 SSS YOZ  frame, where [

1xc ,
1yc ]T and [

2zc ,
2yc ]T the image centers, 1α  and 2α  are 

the scale factors of the length units in the front image planes given in pixel/m,  R(ψ ) and 
R(φ ) are the rotation matrices generated by clockwise rotating the cameras about their 
optical axes by ψ  and φ  radians, respectively, and [O11, O12]T and [O21, O22]T represent the 
distances between the optical axes and the XOY and ZOY planes, respectively.  
 

 
Fig. 8. Camera system 

In Fig. 9 the frames corresponding to the screen images of the two cameras are presented. 
From the relations (73), (74),  we obtain 
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From (60)-(62), it results, 
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4. Visual servoing system 
4.1 Camera system 
In the Appendix 2 the dynamic model of the 3D spatial hyper redundant arm is 
determinated. Two video cameras provide two images of the whole robot workspace. The 
two images planes are parallel with XOY and ZOY planes from robot coordinate frame, 
respectively (Fig. 8). The cameras provide the images of the scene stored in the frame 
grabber’s video memory being displayed on the computer screens (Hannan & Walker, 
2005); (Kelly, 1996). Related to the image planes, two dimensional coordinate frames, called 
screen coordinate frames or image coordinate systems are defined. Denote 

1SX , 
1SY  and 

2SZ , 
2SY , respectively, the axes of the two screen coordinate frames provided by the two 

cameras. The spatial centers for each camera are located at the distances D1 and D2, with 
respect to the XOY and ZOY planes, respectively. The orientation of the cameras arround 
the optical axes with respect to the robot coordinate frame, are noted with ψ  and φ , 
respectively. A point P in the coordinate frame is 
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The description of a point P in the two screen coordinate frames are denoted by 
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2Sz ,

2Sy ] (72) 

Geometric optics are used to model the mapping between the robot Cartesian space and the 
screen coordinate systems. We assume that the quantization and the lens distortion effects 
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are negligible. The description of the point P=[ x, y, z]T in the robot coordinate frame is given 
in terms of screen coordinate frames as 
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for the 
111 SSS YOZ  frame and 
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for the 
222 SSS YOZ  frame, where [

1xc ,
1yc ]T and [

2zc ,
2yc ]T the image centers, 1α  and 2α  are 

the scale factors of the length units in the front image planes given in pixel/m,  R(ψ ) and 
R(φ ) are the rotation matrices generated by clockwise rotating the cameras about their 
optical axes by ψ  and φ  radians, respectively, and [O11, O12]T and [O21, O22]T represent the 
distances between the optical axes and the XOY and ZOY planes, respectively.  
 

 
Fig. 8. Camera system 
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and the orientation angles for each plane will be 
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Fig. 9. Image frames 

This relation allows the computation of the orientation angle sq  in the plane 
222 SSS YOZ  
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where, ''s,'s and ''l,'l  represent the projections of the variable s and the length l in the two 
planes, respectively. The projection of the forces on the two planes can be easily inferred and 
the relations (77)-(79), 
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4.2 Servoing system 
The control system is an image – based visual servo control where the error control signal is 
defined directly in terms of image feature parameters. The desired position of the arm in the 
robot space is defined by the curve Cd, 
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Define the motion errors as 
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or, in the image coordinate frames, by ]'l,0['s∈ , ]''l,0[''s ∈  
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The global control system is presented in Fig. 10. The control problem of this system is a 
direct visual servocontrol but we do not use the clasical concept of the position control 
where the error between the robot end-effector and target is minimized (Grosso et all., 1996). 
 

 
Fig. 10. The global control system 

In this paper we will use the control of the curve’s shape in each point of the mechanical 
structure. The method is based on the particular structure of the system defined as a 
“backbone with two continuous angles )s(θ  and q(s)”. The control of the system is based on 
the control of the two angles )s(θ  and q(s). These angles are measured directly or indirectly.  
The angle )s(θ   is measured dircetly by the projection on the image plane 

111 SSS YOZ  
(relation 78) and q(s) is computed from the projection on the image plane 

222 SSS YOZ  
(relation 79). The stability of the closed-loop system is proven by the Lyapunov’s second 
method but, in order to avoid the complex problems derived from using the nonlinear 
derivation integral model, a method based on the energy-work relationship (Ge at al.,1996) 
was be developed (see Appendix 2). 
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Proposition: The closed-loop hyper redundant arm system is stable if the control law is 
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where ]'l,0['s∈ , ]''l,0[''s ∈  and )s(k),s(k),s(k 1
q

21
θθ  are positive coefficients of the control law 

for all ]l,0[s∈ . The parameter of the control law (88), (89), can be inferred from the image 
feature extraction of the two planes. The parameters 

s
eθ  can be directly calculated from 

equation (85-88) and seθ
•

 can be indirectly computed. Also sθ , qs and d
sq  are evaluated 

directly from the trajectory projections. We remark that the control law represents a robust 
control, independent of the camera parameters. No intrinsec camera parameters are 
assumed known. 

4.3 Appendix 2 
We will consider a spatial tentacle model, an ideal system, neglecting friction and structural 
damping. We assume a uniformly distributed mass with linear density ]m/kg[ρ . We will 
consider a non-extensible arm with constant length. 
We will use the notations: 
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The position of a point P is given by (31-33) and the velocity components are given by (34-
37). From an element dm, kinetic and potential energy are given by will be (38-40).  
Following (41-42) were computed. 
The dynamic model is obtained by using Lagrange equation of motion 
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where (.)/(.) δδ  denotes a functional partial (variational) Gateaux derivate (Wang, 1965), as 
shown before, that is defined as the variation of the functional Ω  with respect to the 
function θ at a point ]l,0[s∈ . From (41-42) it results, 
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We consider the following Lyapunov function. 
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where T, V represent the kinetic and potential energies of the system. V*(t) is pozitive 
definited because the terms that represent the energy T and V are always 0)t(T ≥ , 0)t(V ≥ . 
For the steady desired position, we have 
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If we use the control low defined by the relations (89)-(90), where the parameters of motion 
are evaluated from (78)-(79), (85)-(88), we will have, 
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Q.E.D. 
The derivative of the error in the control laws (89), (90) can be computed by an iteration 
procedure.  The coordinate 

1sx  on the projection 
1sC  can be evaluated by the relation 
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Proposition: The closed-loop hyper redundant arm system is stable if the control law is 
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If ( )
2

sisi

πθ = , a similar procedure for ( )'siy
1s Δ⋅  can be used. 

4.4 Camera calibration 
The term “camera calibration” in the context of this paper refers to positioning and orienting 
the two cameras at imposed values (Fig. 11) (Tanasie et al., 2009).). This calibration is 
performed only at the beginning, after that the cameras remain still. First, a zoom that 
maximizes the image resolution of the working space used by the manipulator is performed. 
Second, positioning of the two cameras brings the manipulator in the middle of the two 
images. Third, a pan / tilt orientation is performed (as descried later in the paper). At this 
step the manipulator is moved in a test position that allows free of (or minimum) errors 
calibration. The test images are compared to the images generated by the graphic simulator 
(ideal images) which represent references for the calibration operation. 
 

 
Fig. 11. Camera calibration system 

In order, to ease the fulfil of the cameras calibration, a graphic simulator based on a 2D 
direct kinematics model was designed, implemented and used. By consequence, during the 
calibration procedure, the robot was commanded to bend in planes perpendicular to the 
cameras axes. Thus only the arching angle needs to be computed and a 2D model is 
sufficient to solve the problem. The next version of the software application introduces also 
the possibility to calibrate in 3D, the test positions corresponding to unrestricted planes 
orientation. A very important task in developing this application is to control the camera 
position and orientation. From this point of view, the calibration operation assures that the 
two cameras’ axes are orthogonal. In the beginning, the tentacle manipulator receives the 
needed commands in order to stand in a test pose (imposed position and orientation). The 
same commands are sent to the graphic simulator. Two different sets of images are 
obtained: real images acquired by the real cameras and simulated images offered by the 
graphic simulator. From these two sets of images, two sets of parameters are computed: real 
parameters are computed from real images and, respectively, ideal parameters are 
computed from synthetic images. Comparing the two sets of parameters and knowing the 
image/parameters behavior for the camera orientation, the cameras are orientated 
(pan/tilt/zoom) in order to minimize the error. 
A graphical simulator was designed and implemented in order to test the robot behavior 
under certain circumstances (Cojocaru et al., 2010). The simulator approximates the curved 
segments of the hyper redundant robot and considers constant the length of the median arc 
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of each segment. To ease the presentation, the term segment will be used in all that follows 
referring to the median segment (arched or un-arched). For the arched segment, its median 
arc remains constant. In this paper the term O-X angle will be used to denote the angle that 
the chord made by an arched element of the robot makes with the O-X axis of a selected 
reference system. 
The inputs for the simulator are: robot configuration; robot initial position; rontrol laws for 
each of the segments of the hyper redundant robot. The robot configuration consists of the 
number of segments the hyper redundant robot has, the length of each segment and the 
angles that the cords make with the O-X axis. The arching angles are computed from these 
angles. An arching angle is defined as the angle made by the cord (determined by the ends 
of the arched segment) and the original un-arched segment. For the direct kinematics 
problem, the control of the robot simulation is accomplished by giving the O-X angles for 
each of the segments in their final position and the output of the simulation is the hyper 
redundant robot’s end-effector final position in the operation space. In order to compute the 
final position of the end-effector and the hyper redundant robot’s behavior during its 
motion, a few elements must be computed: the relation between the arching angle and the 
angle at center determined by the arched segment (this angle determines the length of the 
arc); the cord length; the relation between an O-X angle and an arching angle; the final 
arching angles – recurrent set.  
The computation of the relation between the arching angle and the angle at center 
determined by the arched segment is determined by the following axiom: For camera 
calibration a direct kinematics model was used, thus the rotation angles for each segment  
are given. For a robot that has only rotation joints, the O-X angle increases (or decreases, 
depending on the selected positive direction) for each segment with the sum of rotation 
angles of each of the previous segments (including the current segment). This is true 
because the orthogonal system attached to the ith segment is obtained from its initial 
position and applying all the anterior transformations. For a hyper redundant robot the 
problems are different. The arching angle is double the sum of each previous arching angle 
plus the current arching angle, because the un-arched segment is a prolongation of the 
previous segment.  
In order to simulate the circular arched segments a series of intermediate points (that are 
connected by lines) between the segment origins must be determined. The Catmull-Rom 
interpolation algorithm was used for this simulator because it was need an interpolation 
algorithm that passes through the control points. Catmull-Rom splines are a family of cubic 
interpolating splines formulated such that the tangent at each point ip  is calculated using 
the previous and next point on the splines, ( )1i1i pp −+ −τ .  
Camera calibration is the essential procedure for all such applications: positioning and 
orienting the cameras in order to support the accuracy of the image features extraction. 
Calibration for a pan/tilt/zoom camera shape is achieved by means of an engineered 
environment and a graphic simulation module.  
Term “camera calibration” in the context of this paper refers to positioning and orienting the 
two cameras at imposed values. This calibration is performed only at the beginning, after 
that the cameras remain still. The general control method is an image based visual servoing 
one instead of position based. Camera calibration based on intrinsic parameters (classic 
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If ( )
2

sisi

πθ = , a similar procedure for ( )'siy
1s Δ⋅  can be used. 
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because the orthogonal system attached to the ith segment is obtained from its initial 
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connected by lines) between the segment origins must be determined. The Catmull-Rom 
interpolation algorithm was used for this simulator because it was need an interpolation 
algorithm that passes through the control points. Catmull-Rom splines are a family of cubic 
interpolating splines formulated such that the tangent at each point ip  is calculated using 
the previous and next point on the splines, ( )1i1i pp −+ −τ .  
Camera calibration is the essential procedure for all such applications: positioning and 
orienting the cameras in order to support the accuracy of the image features extraction. 
Calibration for a pan/tilt/zoom camera shape is achieved by means of an engineered 
environment and a graphic simulation module.  
Term “camera calibration” in the context of this paper refers to positioning and orienting the 
two cameras at imposed values. This calibration is performed only at the beginning, after 
that the cameras remain still. The general control method is an image based visual servoing 
one instead of position based. Camera calibration based on intrinsic parameters (classic 
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sense, not the one used in this paper) is not necessary. Calibration operation assures that the 
two cameras’ axes are orthogonal.  
Taking into account the presented structure of the tentacle - vision system, in order to apply 
the tested visual servoing algorithm, the two cameras must be positioned and oriented as: 
both focus on the robot, their axes are orthogonal, both have the same zoom factor. 
Two different algorithms were implemented: one uses a cylindrical etalon, other uses the 
graphical simulator. 
For the first algorithm, special starting conditions were imposed in order to support the 
image processing tasks: white background, dark grey cylinder, red vertical equidistant (90 
degrees) axes, friendly initial camera's positions and orientations, zoom x1 (Fig. 12). 
 

 
 

Fig. 12. The cylindrical etalon 

Three succesive and dependent calibrations are performed: Horizontal (pan): position and 
orientation are obtained in two successive, but dependent steps; Vertical (tilt): position and 
orientation are obtained in two successive, but dependent steps; Zoom: tuning the two 
cameras as both look to the cylinder from virtual equal distances. 
Both offsets must be under the accepted thresholds. Else, the positioning destroyed the 
orientation and the procedure must be repeated. A similar algorithm is developed for the 
vertical orientation and positioning.  
The second algorithm works together with the graphic simulator. It was proven that the two 
camera axes are orthogonal if, when both cameras are looking at the tentacle successively 
bended as circle's arcs in two orthogonal planes, are seeing also two circle's arcs (Fig. 13). 
The previous condition is fulfilled if each camera looks at the center of the circle containing 
the arc and the view line is orthogonal on the plane's circle. 
Three calibration steps must be performed: Horizontal calibration - positioning and 
orienting the camera horizontally (pan); Vertical calibration - positioning and orienting the 
camera vertically (tilt); Zoom calibration -  tuning the two cameras as both look at the robot 
from virtual equal distances. 
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Fig. 13. Camera looks to the center of the circle 

How to “move” the camera according to the steps of these algorithms? The image behavior 
in accordance with camera’s movements was studied.  The effect of pan and tilt rotations on 
two points placed in a quadratic position on a circle was geometrically described. 
Coordinate transformation matrices corresponding to rotations with pan and tilt angles, 
respectively for perspective transformation were used. The variation of the distance between 
the two points, placed in a quadratic position on the circle, and the centre of the circle, 
depending of the tilt angle X, is plotted bellow in Fig. 14.  
 

 
 

Fig. 14. Distance variation for quadratic positions 

The variation of the ratio of the two distances is plotted bellow in Fig. 15a. The plot from 
Fig. 15b shows how is transformed a rectangle (inscribed in the circle and having the edges 
parallel with the axes OX and OY) when a tilt rotation is performed. Theoretically, by 
zooming, the distance between the two points varies in a linear way, as it is shown upper 
right. 
The image’s segmentation is basically a threshold procedure applied to the image’s 
histogram. All the procedures included in the calibration algorithms were mathematically 
proven. If the calibration algorithm was successfully applied then the system is ready to 
perform the visual servoing tasks. 
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Fig. 15. a. Ratio distances variation b. Rectangle transformation and distance variation under 
zoom influence 

5. A Compliance control of a hyper redundant robot 
This section treats a class of hyper redundant arms can achieve any position and orientation 
in 3D space, and that can perform a coil function for the grasping. The arm is a high degree 
of freedom structure or a continuum structure, but in this chapter a different technological 
solution is assumed. 
The general form of the arm is shown in Figure 16. It consists of a number (N) of elements, 
cylinders made of fibre-reinforced rubber. 
 

 
 

Fig. 16. The force sensors distribution 

There are four internal chambers in the cylinder, each of them containing the ER fluid with 
an individual control circuit. The deformation in each cylinder is controlled by an 
independent electrohydraulic pressure control system combined with the distributed 
control of the ER fluid. 
The last m elements (m < N) represent the grasping terminal. These elements contain a 
number of force sensors distributed on the surface of the cylinders. These sensors measure 
the contact with the load and ensure the distributed force control (Singh & Popa, 2005) 
during the grasping. The theoretical model is described as in Fig. 7 and equation (26)-(33). 
For an element dm, kinetic and gravitational potential energy will be: 
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x vvvdm

2
1dT ++= , zgdmdV ⋅⋅=  (101) 

where dsdm ⋅= ρ , and ρ  is the mass density. 
The elastic potential energy will be approximated by the bending of the element: 
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dV k q  (102) 

We will consider ( )t,sFθ , ( )t,sFq  the distributed forces on the length of the arm that 
determine motion and orientation in the θ -plane, q -plane. The mechanical work is: 

 ( ) ( ) ( ) ( )( )∫ ∫ +=
l

0

t

0
q dsd,sq,sF,s,sFL ττττθτθ  (103) 

The energy-work relationship will be 
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0
q dsd,sq,sF,s,sFL ττττθτθ  (104) 

where ( )tT  and ( )0T , ( )tV ∗  and ( )0V∗  are the total kinetic energy and total potential 
energy of the system at time t and 0, respectively. 
In this chapter, the manipulator model is considered as a distributed parameter system 
defined on a variable spatial domain [ ]L,0=Ω  and the spatial coordinate s.  
From (101-103), the distributed parameter model becomes, 
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The control forces have the distributed components along the arm, ( )t,sFθ , ( )t,sFq , 
[ ]L,0s∈  that are determined by the lumped torques, 
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Fig. 15. a. Ratio distances variation b. Rectangle transformation and distance variation under 
zoom influence 
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where δ  is Kronecker delta, llll N21 ==== … , and 

 ( ) ( ) 8dSppt 21
iii

⋅−= θθθτ  (108) 

 ( ) ( ) 8dSppt 2
q

1
qq iii

⋅−=τ , N,,2,1i …=  (109) 

In (107)-(108), 1
i

pθ , 2
i

pθ , 1
qi

p , 2
qi

p  represent the fluid pressure in the two chamber pairs, θ , q  
and S, d are section area and diameter of the cylinder, respectively (Fig. 17). 
 

 
Fig. 17. The cylinder driving 

The pressure control of the chambers is described by the equations: 
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where ( )θkia , ( )qbki  are determined by the fluid parameters and the geometry of the 
chambers and 

 ( ) 00aki > , ( ) 00bki >  (112) 

The control problem of a grasping function by coiling is constituted from two subproblems: 
the position control of the arm around the object-load and the force control of grasping 
(Chiaverini et al., (1996). We consider that the initial state of the system is given by 

 ( ) [ ]T000 q,s,0 θωω ==  (113) 

corresponding to the initial position of the arm defined by the curve 0C  
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Fig. 18. (a) The grasping position; (b) The grasping parameters 

The desired point is represented by a desired position, the curve Cd that coils the load, 

 [ ]Tddd q,θω =  (115) 

 ( ) ( )( )sq,s:C ddd θ , [ ]L,0s∈  (116) 

In a grasping function by coiling, only the last m elements (m < N) are used. Let lg be the 

active grasping length, where ∑
=

=
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mi
ig ll . We define by ( )tep  the position error 
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It is difficult to measure practically the angles θ , q  for all [ ]L,0s∈ . These angles can be 
evaluated at the terminal point of each element. In this case, the relation (117) becomes 
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The error can also be expressed with respect to the global desired position Cd 
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The position control of the arm means the motion control from the initial position C0 to the 
desired position Cd in order to minimize the error. An area reaching control problem is 
discussed. The desired area is specified by the inequality function: 
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where f is a scalar function with continuous first partial derivates, δ = − 0Fr r r , 3
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reference point of the desired area and Fr  is the position vector of the terminal point.  
The potential energy function for the area reaching control has the form: 
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where δ  is Kronecker delta, llll N21 ==== … , and 
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In (107)-(108), 1
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pθ , 2
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qi

p , 2
qi

p  represent the fluid pressure in the two chamber pairs, θ , q  
and S, d are section area and diameter of the cylinder, respectively (Fig. 17). 
 

 
Fig. 17. The cylinder driving 

The pressure control of the chambers is described by the equations: 
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The control problem of a grasping function by coiling is constituted from two subproblems: 
the position control of the arm around the object-load and the force control of grasping 
(Chiaverini et al., (1996). We consider that the initial state of the system is given by 
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Fig. 18. (a) The grasping position; (b) The grasping parameters 
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Theorem 1. The closed-loop control system for the desired reaching area problem is stable if 
the control forces are 
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Theorem 2. The closed-loop control system of the position (107)-(108), (110)-(111) is stable if 
the fluid pressures control law in the chambers of the elements given by: 
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and the coefficients θ ik , qik , θ
mn
ik , mn

qik  are positive and verify the conditions 
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The grasping by coiling of the continuum terminal elements offers a very good solution in 
the fore of uncertainty on the geometry of the contact surface. The contact between an 
element and the load is presented in Fig. 19. It is assumed that the grasping is determined 
by the chambers in θ -plane. The relation between the fluid pressure and the grasping forces 
can be inferred for a steady state from, 
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where ( )sf  is the orthogonal force on bC , ( )sf  is ( )sFθ  in θ -plane and ( )sFq  in q-plane. 
For small variation iθΔ  around the desired position idθ , in θ -plane, the dynamic model 
(118) can be approximated by the following discrete model, 

 ( ) ( ) ( )eiiididdidiidiiiii Ffdq,Hq,,Hcm −=−+++ θθθΔθθΔθΔ ���  (133) 
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Fig. 19. The grasping force 

 

 
 

Fig. 20. The block scheme of the control system 

where ΔρSmi = , 1l,,2,1i …= . ( )did q,H θ  is a nonlinear function defined on the desired 
position ( )did q,θ , ( )diii q,,cc θν= , 0ci > , ( )ΩΓθ ∈q, , where ν  is the viscosity of the 
fluid in the chambers. The equation (133) becomes: 

 ( ) ( ) ( )eiiiididiidiiii Ffdq,hq,,cm −=⋅++ θΔθθΔθνθΔ ���  (134) 

The aim of explicit force control is to exert a desired force idF . If the contact with load is 
modelled as a linear spring with constant stiffness Lk , the environment force can be 
modelled as iLei kF θΔ= . The error of the force control may be introduced as 
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It may be easily shown that the equation (134) becomes 
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Theorem 3. The closed force control system is asymptotic stable if the control law is 

 ( ) ( )( )idiLifi
2

iiLi
iL

i Fdkhemdkh
dk

1f −−++= σ , σii mc >  (137) 

si 

si+1 
Δ 

fi
kL 

Load

Grasping 
element 

Fid 
Eq(135), (136)

efi fi 
Eq(137) υ

Δθi 
+ 

Fie 

Transducer 



 Advanced Strategies for Robot Manipulators 

 

56 

Theorem 1. The closed-loop control system for the desired reaching area problem is stable if 
the control forces are 

 ( ) ( ) ( ) ( )( )iiP
T
P

2 q,akrV,0maxtektekt
iiiiii

θτ
θθθθθθ

∗∗ ⋅∂∂−−−= �  (122) 

 ( ) ( ) ( ) ( )( )iiP
T
P

2
qqqq q,akrV,0maxtektekt

iqiiiii
θτθ

∗∗ ⋅∂∂−−−= �  (123) 

Theorem 2. The closed-loop control system of the position (107)-(108), (110)-(111) is stable if 
the fluid pressures control law in the chambers of the elements given by: 

 ( ) ( ) ( ) ( )( )θ θ θ θ θθ= − +� ��1 2j j
ji ji i i i iu t a k e t k e t  (124) 

 ( ) ( ) ( ) ( )( )θ= − +� ��1 2j j
qji ji qi qi qi qiu t b k e t k e t  (125) 

where 2,1j = ; N,,2,1i …= , with initial conditions: 

 ( ) ( ) ( ) ( )θ θ θ θ θ− = −1 2 11 210 0 0i i i i ip p k k e  (126) 

 ( ) ( ) ( ) ( )− = −1 2 11 210 0 0qi qi qi qi qip p k k e  (127) 

 ( )θ =� 0 0ie  (128) 

 ( ) =� 0 0qie , N,,2,1i …=  (129) 

and the coefficients θ ik , qik , θ
mn
ik , mn

qik  are positive and verify the conditions 

 21
i

11
i kk θθ > ; 22

i
12
i kk θθ >  (130) 

 21
qi

11
qi kk > ; 22

qi
12
qi kk > , N,,2,1i …=  (131) 

The grasping by coiling of the continuum terminal elements offers a very good solution in 
the fore of uncertainty on the geometry of the contact surface. The contact between an 
element and the load is presented in Fig. 19. It is assumed that the grasping is determined 
by the chambers in θ -plane. The relation between the fluid pressure and the grasping forces 
can be inferred for a steady state from, 

 ( ) ( ) ( ) ( ) ( )θ
θ θ

∂
+ = −

∂∫ ∫ ∫� � � �
2

1 22
0 0 0 8

l l s
Ts dk ds f s T s T s ds p p S

s
 (132) 

where ( )sf  is the orthogonal force on bC , ( )sf  is ( )sFθ  in θ -plane and ( )sFq  in q-plane. 
For small variation iθΔ  around the desired position idθ , in θ -plane, the dynamic model 
(118) can be approximated by the following discrete model, 

 ( ) ( ) ( )eiiididdidiidiiiii Ffdq,Hq,,Hcm −=−+++ θθθΔθθΔθΔ ���  (133) 

Hyper Redundant Manipulators   

 

57 

 
 

Fig. 19. The grasping force 

 

 
 

Fig. 20. The block scheme of the control system 

where ΔρSmi = , 1l,,2,1i …= . ( )did q,H θ  is a nonlinear function defined on the desired 
position ( )did q,θ , ( )diii q,,cc θν= , 0ci > , ( )ΩΓθ ∈q, , where ν  is the viscosity of the 
fluid in the chambers. The equation (133) becomes: 

 ( ) ( ) ( )eiiiididiidiiii Ffdq,hq,,cm −=⋅++ θΔθθΔθνθΔ ���  (134) 

The aim of explicit force control is to exert a desired force idF . If the contact with load is 
modelled as a linear spring with constant stiffness Lk , the environment force can be 
modelled as iLei kF θΔ= . The error of the force control may be introduced as 

 idiefi FFe −=  (135) 

It may be easily shown that the equation (134) becomes 

 idi
i

iifii
i

fi
L

i
fi

L

i Fd
k
hfded

k
he

k
ce

k
m

⎟
⎠
⎞

⎜
⎝
⎛ +−=⎟

⎠
⎞

⎜
⎝
⎛ +++ ���  (136) 

Theorem 3. The closed force control system is asymptotic stable if the control law is 

 ( ) ( )( )idiLifi
2

iiLi
iL

i Fdkhemdkh
dk

1f −−++= σ , σii mc >  (137) 

si 

si+1 
Δ 

fi
kL 

Load

Grasping 
element 

Fid 
Eq(135), (136)

efi fi 
Eq(137) υ

Δθi 
+ 

Fie 

Transducer 



 Advanced Strategies for Robot Manipulators 

 

58 

6. Conclusion 
The research group from the Faculty of Automation, Computers and Electronics, University 
of Craiova, Romania, started working in research field of hyper redundant robots over 25 
years ago. The experiments used cables and DC motors or stepper motors. The rotation of 
these motors rotates the cables which by correlated screwing and unscrewing of their ends 
determine their shortening or prolonging, and by consequence, the tentacle curvature.  
The inverse kinematics problem is reduced to determining the time varying backbone curve 
behaviour. New methods for determining “optimal” hyper-redundant manipulator 
configurations based on a continuous formulation of kinematics are developed.  
The difficulty of the dynamic control is determined by integral-partial-differential models 
with high nonlinearities that characterize the dynamic of these systems. First, the dynamic 
model of the system was inferred. The method of artificial potential was used for these 
infinite dimensional systems. In order to avoid the difficulties associated with the dynamic 
model, the control law was based only on the gravitational potential and a new artificial 
potential. 
The control system is an image – based visual servo control. Servoing was based on 
binocular vision, a continuous measure of the arm parameters derived from the real-time 
computation of the binocular optical flow over the two images, and is compared with the 
desired position of the arm. The method is based on the particular structure of the system 
defined as a “backbone with two continuous angles”. The control of the system is based on 
the control of the two angles. The error angle was used to calculate the spatial error and a 
control law was synthesized. The general control method is an image based visual servoing 
one instead of position based. By consequence, camera calibration based on intrinsic 
parameters is not necessary („calibration“ in the classic sense of the term, not the one used 
in this paper). The term “camera calibration” in the context of this paper refers to 
positioning and orienting the two cameras at imposed values. This calibration is performed 
only at the beginning, after that the cameras remain still. 
A new application investigates the control problem of a class of hyper-redundant arms with 
continuum elements that performs the grasping function by coiling. The control problem of 
a grasping function by coiling is constituted from two subproblems: the position control of 
the arm around the object-load and the force control of grasping. 
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1. Introduction 
Neurosurgery is a part of the surgical field that focused in taking care of the diseases related 
to human’s central peripheral nervous system and also their central spinal cord [20]. The 
term surgery refers to the operation of peripheral nervous system as well as the spinal cord, 
brain, blood vessel connected to it, spine, spinal cord, and also nerves that control our senses 
and body’s movement [29]. There are lots of neuro diseases, which among them were brain 
tumors, head trauma, stroke, thalamic astrocytomas, and spinal cord trauma. These 
diseases, if not thrown away, will results the patient in body disorder, health problem, and 
of course, death. To put an end to these disorders, appropriate treatment is mandatory. 
Those diseases need to be cured and removed. Surgery, or specifically neurosurgery, is one 
of the effective methods to treat it. 
Neurosurgery comes with risks. Any operation dealing with brain or the spinal cord can 
cause paralysis, brain damage, infection, psychosis, or even death if a mistake happens. 
These operations are also likely to cause mental impairment as of any surgical procedure 
dealing with the brain. Therefore, it is vital for neurosurgeon to make sure that this kind of 
surgery is performed in an almost perfect condition to minimize any risks or poor results as 
the consequences from it. Traditionally, starting from scalp removing, drilling and removing 
the skull, handling the lump, until sewing the skull and scalp back at its original location; 
surgeons put their efforts with their own hands and bare eyes. Tools and equipments did 
improved, for example with the usage of apparatus such as top-mount microscope and 
magnetic resonance imaging (MRI) machine. However, they still need to manipulate the 
surgical tools, the closest tools to the human brain, such as the knife and biopsy needles 
with naked hands. As a results, it will surely introduced limits to the tools manipulation. 
This is where robots can do a lot better. A very precise robotic device that can perform 
manipulation at much smaller or micro scale, plus the capability of the surgeon himself, will 
produce much superior results. These robotic devices are termed surgical micro-
manipulator. 
This chapter presents readers with information regarding the design of a micro-manipulator 
purposely for neurosurgical application. It also shares beneficial facts and particulars 
regarding current progress about micro-manipulator research around the globe. This 
chapter is organized as the following: Section 2 provides details justification of designing a 
robotic hand in an operating room based on the constraints for a neurosurgical procedures. 
Section 3 will discuss design considerations for a micro-manipulator for neurosurgery. This 
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 Advanced Strategies for Robot Manipulators 

 

62 

includes the important hardware and software elements that contributed to the build-up of 
a micromanipulator. Section 4 briefly shares on the design and uniqueness of one of the 
recent and successful micro-manipulator for neurosurgical application. Section 5 will finally 
conclude this article. 

      
                                               (a)                 (b) 

Fig. 1. (a) Graphical illustration of brain tumor. A primary brain tumor is a mass created by 
the growth or uncontrolled proliferation of cells in the brain. (b) Spinal tumor 

2. Why robotics 

 
Fig. 2. Da Vinci® tele-surgical system. 

The idea of having robots inside the operation theatre is basically to assist the neurosurgeon 
perform the surgery. Fatigue experienced by surgeons, post-surgery trauma on the patient 
and human errors are among the challenges faced during neurosurgical operation [10]. 
According to [6], there are studies being done that shows during a long surgical operation, 
there will be substantial muscle fatigue. Neurosurgical or any surgical procedure usually 
takes a very long time, thus will decrease the effectiveness of a surgeon. In contrast, robots 
will never experience fatigue because their moves are controlled by devices. Moreover, they 
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can be very precise and reliable because robot can filter the handshakes and keep the 
operation steady. 
Another reason surgeons need to use such a system is that it can provide them with a 
minimally invasive surgery (MIS). This provides less trauma for the patient after the surgery 
and of course, a shorter recovery period. Moreover, human involvement is also a concern. In 
today's operating rooms, you'll find two or three surgeons, an anesthesiologist and several 
nurses, all needed for even the simplest of surgeries. Most surgeries require nearly a dozen 
people in the room. As with all automation, surgical robots will eventually eliminate the 
need for some personnel. Taking a glimpse into the future, surgery may require only one 
surgeon, an anesthesiologist and one or two nurses. In this nearly empty operating room, 
the doctor its at a computer console, either in or outside the operating room, using the 
surgical robot to   accomplish what it once took a crowd of people to perform. 
The first use of robot in a neurosurgical procedure is in 1985, according to [30]. Researches 
from Department of Radiology, Memorial Medical Center employed a PUMA 
(Programmable Universal Machine for Assembly) robot in the operating room. Even though 
the task of the robot at that time is only to hold and manipulate biopsy cannulae, it marked 
the start of a robot’s manipulator cooperation inside the operation room. Since then, various 
researches in various aspect of neurosurgery have been explored. Those included the 
micromanipulators design [22], vision and imaging scheme, sensors design [16], haptic 
technology [9], magnetic resonance imaging (MRI) compatibility equipments, telesurgery 
system [15], as well as controller technique and planning. 

2.1 What is a micro-manipulator? 
The term manipulator in robotics means a device or equipment that allows for movement of 
a part through multiple joints on the mechanical device. It is also better known as robotic 
arm [26]. Micro-manipulator also carries the same meaning, but the term ‘micro’ referred it 
to a  more specific task, which is object handling in small (micro) scale. In dealing with 
neurosurgical procedure, precision and accuracy plays a very important role. This situation 
leads to the needs of micro-manipulation, using micro-manipulator. This further explains 
that the level of manipulation is very small and the accuracy in need is very high. It is not  
 

   
                                      (a)             (b) 

Fig. 3. (a) A micro-manipulator for surgery, deisgned by Francesco Cepolina, [4] & [7] 
(b)NeuroMaster, a stereotactic neurosurgery robot system by Beihang University, [13] & [18] 
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necessarily that the tool and manipulator must be small, but the whole system itself must be 
able to integrate and produce very precise micro-manipulation with a very minimal error in 
all the 3- axis’s direction. This includes the sensors parts, vision and imaging system and 
also the controller technique. 

2.2 Type of robotics involvement in operation theatre / operation room 
According to [27], robotic involvement in surgical procedure can be divided into three 
categories. These categories were based on robot and surgeon interaction during the 
procedure. 
The first category is supervisory-controlled system. This is where robots performed the surgery 
by implementing specific instructions and paths set earlier by the surgeon. Those paths were 
planned during planning and registration process before the operation, which integrates the 
images from the MRI scanning process. In this scheme, surgeon is still playing the important 
roles, which is planning and setting up the whole operation’s path. Then, the robot will do 
everything that has been pre-planned, while the surgeon supervising the operation. Though, 
the surgeon did not directly use his hands during this procedure. 
The second category, which is the telesurgical system, needs the surgeon to use his own hands 
during the process. Also known as remote surgery, this is different from the previous 
technique. However, it is the robotic manipulator who is doing the real operation on the 
patient. The surgeon, on the other hand, is manipulating the robot through some distance 
from a computer console. In this method, sensors including haptic feedback system are 
providing the surgeon with all the necessary data for the surgeon to react with. The 
computer console is the master, while the manipulator is called slave. The operation being 
done by the robotic manipulator is imitating the master controller’s movement in real time. 
The most popular and widely used telesurgical system is the da Vinci® Surgical System 
manufactured by Intuitive Surgical, where more than 1000 units sold worldwide [5]. 
The last category is the shared-control system. This is where surgeon and robot works together 
at the same time, where a number of specifically designed tasks were done by the doctor 
and others by the robot. This system, compared to the previous two, has the most surgeon 
involvement in the operation theatre. Figure 3(b) is an example of this. 

4. Discussion 
The buildup of a neurosurgical type micro-manipulator usually consists of few important 
parts or elements, both hardwares and softwares. These elements were essential to ensure 
the specification and performance of the robot itself achieved the function of a 
micromanipulator. This description may act like a general guideline in developing the 
micromanipulator because some of the micro-manipulator might not have all the elements, 
because each of them has different specifications and design. 

4.1 Modeling 
Modeling is a process of using mathematical description to simulate real physical events 
[17]. It allows complex systems to be understood and thus their behavior can be predicted 
and simulated. In modeling, usually some details will be ignored or assumed, due to the 
shortcomings occurred in the process. Micro-manipulator is a very expensive system to 
build. 
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Thus, it needs to be modeled before it is fabricated. From the model, we can investigate 
much information, such as the kinematic and dynamic behavior of the model, the 
workspace of the model, materials to build the model, suitable actuator to achieve the 
design objectives and the controller technique that is most efficient to the system. There are 
lots of software that can be use to model a micro-manipulator system, including Robotics 
Toolbox® and SimMechanics from Matlab, AutoCAD, SolidWorks and Rhinoceros®. 
One common technique to model a manipulator system is to use Denavit-Hartenberg (DH) 
method [12]. From the DH model, either the classical or the modified version of it, we can 
simulate and further investigate the behavior of the micro-manipulator, both the kinematic 
and dynamic. Kinematics relates the motion behavior of the robot without regards to the 
forces that causes it, whereas dynamic considers the effect of internal and external forces or 
torques applied to the micro-manipulator. With the information from both the kinematic 
and dynamic behavior, we can have a good knowledge on how the micro-manipulator 
moves, which path it follows, how many micro-Newton of forces applied at the patient’s 
head, how precise the robot is, as well as the speed of the robot movements. Those are 
among the vital information needed by the surgeon during his usage of the micro-
manipulator during a surgery. In addition, we can always estimate the workspace of the 
robot. Workspace is the region where the end effector of the micro-manipulator can possibly 
reach, which a surgeon needs to know prior to an operation to estimate the tools 
arrangements and movements. 
Equation 1 below represents the transformation matrices associated with modified DH 
method. The parameters ‘α’ and ‘θ’ represents the angular behavior of the 
micromanipulator’s links, while the ‘a’ and ‘d’ parameters represents the prismatic aspect. 
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Equation 2 shows the equations of motion, in general, of a micro-manipulator.  

 ( ) ( , ) ( , )M C Nτ θ θ θ θ θ θ θ= + +  (2) 

where; 
τ = torques vector 
M = inertia matrix 
C = Coriolis and Centrifugal matrix (these are types of internal forces) 
N = gravity terms and other forces act on the joints (all external forces defines here) 

4.2 Trajectory planning 
Trajectory refers to time domain of the position, velocity and acceleration of a system [23]. It 
described the motion’s behavior of the micro-manipulator in all of the 3-dimensional (3-D) 
axis. The trajectories were generated through interpolation or approximation of the desired 
path by a polynomial or any other smooth function. The function is used to approximate 
and provide the mathematical description of the trajectory. 



 Advanced Strategies for Robot Manipulators 

 

64 

necessarily that the tool and manipulator must be small, but the whole system itself must be 
able to integrate and produce very precise micro-manipulation with a very minimal error in 
all the 3- axis’s direction. This includes the sensors parts, vision and imaging system and 
also the controller technique. 

2.2 Type of robotics involvement in operation theatre / operation room 
According to [27], robotic involvement in surgical procedure can be divided into three 
categories. These categories were based on robot and surgeon interaction during the 
procedure. 
The first category is supervisory-controlled system. This is where robots performed the surgery 
by implementing specific instructions and paths set earlier by the surgeon. Those paths were 
planned during planning and registration process before the operation, which integrates the 
images from the MRI scanning process. In this scheme, surgeon is still playing the important 
roles, which is planning and setting up the whole operation’s path. Then, the robot will do 
everything that has been pre-planned, while the surgeon supervising the operation. Though, 
the surgeon did not directly use his hands during this procedure. 
The second category, which is the telesurgical system, needs the surgeon to use his own hands 
during the process. Also known as remote surgery, this is different from the previous 
technique. However, it is the robotic manipulator who is doing the real operation on the 
patient. The surgeon, on the other hand, is manipulating the robot through some distance 
from a computer console. In this method, sensors including haptic feedback system are 
providing the surgeon with all the necessary data for the surgeon to react with. The 
computer console is the master, while the manipulator is called slave. The operation being 
done by the robotic manipulator is imitating the master controller’s movement in real time. 
The most popular and widely used telesurgical system is the da Vinci® Surgical System 
manufactured by Intuitive Surgical, where more than 1000 units sold worldwide [5]. 
The last category is the shared-control system. This is where surgeon and robot works together 
at the same time, where a number of specifically designed tasks were done by the doctor 
and others by the robot. This system, compared to the previous two, has the most surgeon 
involvement in the operation theatre. Figure 3(b) is an example of this. 

4. Discussion 
The buildup of a neurosurgical type micro-manipulator usually consists of few important 
parts or elements, both hardwares and softwares. These elements were essential to ensure 
the specification and performance of the robot itself achieved the function of a 
micromanipulator. This description may act like a general guideline in developing the 
micromanipulator because some of the micro-manipulator might not have all the elements, 
because each of them has different specifications and design. 

4.1 Modeling 
Modeling is a process of using mathematical description to simulate real physical events 
[17]. It allows complex systems to be understood and thus their behavior can be predicted 
and simulated. In modeling, usually some details will be ignored or assumed, due to the 
shortcomings occurred in the process. Micro-manipulator is a very expensive system to 
build. 

Micro-Manipulator for Neurosurgical Application   

 

65 

Thus, it needs to be modeled before it is fabricated. From the model, we can investigate 
much information, such as the kinematic and dynamic behavior of the model, the 
workspace of the model, materials to build the model, suitable actuator to achieve the 
design objectives and the controller technique that is most efficient to the system. There are 
lots of software that can be use to model a micro-manipulator system, including Robotics 
Toolbox® and SimMechanics from Matlab, AutoCAD, SolidWorks and Rhinoceros®. 
One common technique to model a manipulator system is to use Denavit-Hartenberg (DH) 
method [12]. From the DH model, either the classical or the modified version of it, we can 
simulate and further investigate the behavior of the micro-manipulator, both the kinematic 
and dynamic. Kinematics relates the motion behavior of the robot without regards to the 
forces that causes it, whereas dynamic considers the effect of internal and external forces or 
torques applied to the micro-manipulator. With the information from both the kinematic 
and dynamic behavior, we can have a good knowledge on how the micro-manipulator 
moves, which path it follows, how many micro-Newton of forces applied at the patient’s 
head, how precise the robot is, as well as the speed of the robot movements. Those are 
among the vital information needed by the surgeon during his usage of the micro-
manipulator during a surgery. In addition, we can always estimate the workspace of the 
robot. Workspace is the region where the end effector of the micro-manipulator can possibly 
reach, which a surgeon needs to know prior to an operation to estimate the tools 
arrangements and movements. 
Equation 1 below represents the transformation matrices associated with modified DH 
method. The parameters ‘α’ and ‘θ’ represents the angular behavior of the 
micromanipulator’s links, while the ‘a’ and ‘d’ parameters represents the prismatic aspect. 
 

 

1

1 1 1 1i-1
i

1 1 1 1

cos sin 0
sin cos cos cos sin sin

T
sin sin cos sin cos cos

0 0 0 1

i i i

i i i i i i i

i i i i i i i

d
d

θ θ α
θ α θ α α α
θ α θ α α α

−

− − − −

− − − −

−⎡ ⎤
⎢ ⎥× × − − ×⎢ ⎥=
⎢ ⎥× × ×
⎢ ⎥
⎢ ⎥⎣ ⎦

 (1) 

Equation 2 shows the equations of motion, in general, of a micro-manipulator.  

 ( ) ( , ) ( , )M C Nτ θ θ θ θ θ θ θ= + +  (2) 

where; 
τ = torques vector 
M = inertia matrix 
C = Coriolis and Centrifugal matrix (these are types of internal forces) 
N = gravity terms and other forces act on the joints (all external forces defines here) 

4.2 Trajectory planning 
Trajectory refers to time domain of the position, velocity and acceleration of a system [23]. It 
described the motion’s behavior of the micro-manipulator in all of the 3-dimensional (3-D) 
axis. The trajectories were generated through interpolation or approximation of the desired 
path by a polynomial or any other smooth function. The function is used to approximate 
and provide the mathematical description of the trajectory. 



 Advanced Strategies for Robot Manipulators 

 

66 

There are two categories of trajectory planning techniques. They are joint space technique 
and Cartesian space technique. Joint space technique is suitable for point-to-point motion, 
where the motion planning is done at the joint level. This technique describes the time 
function of all the joints’ variables including the speed and acceleration. Equation 3 below 
shows an example of a five-degree or quintic polynomial equations with its joints’ variables, 
Ci. The position of the end effector was computed by using forward kinematics. This is just 
one of many smooth functions that can be used to interpolate a trajectory. 
Cartesian space technique is a method that most suited with continuous path type of 
motion, and therefore suit neurosurgical application better than the previous technique. 
While joint space method focus on the joint position, Cartesian space method controls the 
end effector itself, with respect to the base of the robot. By using inverse kinematics, the 
joints variables were computed. 
In general, to set a trajectory, we must define the starting and end points, as well as the 
mathematical function that the joints and end effector will undertake during its movement. 
The time taken to complete the trajectory is also important as it will affect the speed and 
smoothness of the manipulation. This is important in designing a micro-manipulator since 
we need to specify each and every point on the route of the end-effector and the joints as 
well. Failing to do this will let us lose control of the surgical tools. 
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4.3 Actuator 
This is an equipment that allows a robot to move by conversion of different energy types 
such as electrical or mechanical processes [26]. This includes human muscles, propellers, 
and hydraulic cylinders. Actuators are very important because it’s the main mechanism to 
make the robot being in specified motion. For micro-manipulator, type of actuator that is 
widely used is the electrically controlled motors. Electrical motors are favored because it is 
much more precise and accurate in terms of their generated motion, as compared to the 
hydraulic and pneumatic-actuated motor. 
Accuracy to the highest level is very important for a micro-manipulator design. Thus, the 
selection of a suitable actuator is very important. In [1], Adha Cahyadi et al use piezo 
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electric actuator in their micro-manipulator design. With the special capability of piezo 
material, it can produce a very fine displacement, down till micrometers. This shows the 
importance of selecting the right actuator. It really depends on the micro-manipulator 
design. Moreover, suitable controller implementation technique can also contribute well to 
manage the output of an actuator. 

4.4 Sensors 
Sensors are very important devices that allow the analog world to communicate with the 
digital environment. By definition, it converts physical signals such as heat, light, sound, 
rotary motion, and force into electrical signal [24]. The resulting electrical signal will be send 
to the controller and the required calculation or assigned resulting action will be taken. A 
precise rotary encoder for example, can provide the system with the exact location of each 
joints and the end effector. Then by using various types of control method, their locations 
can be corrected if it does slightly differ from the desired one. 
In micro-manipulator design, there are many types sensor that is very useful to be 
incorporated with. Among them is vision or imaging sensor and force or haptic devices. 
Imaging is a key element for a robotic neurosurgery. It can be used during the registration 
process before the surgery to organize the surgery through coordinate relationship between 
the robot frame and the patient head’s frame [13]. In addition, MRI images can also help the 
surgeon. Using images from the MRI and special software, the patient head can be redraw 
in the computer, and allows the surgeon to use it for a rehearsal before the real surgery [8]. 
From the MRI images as well, the location of the tumor can be captured and locked for 
operation. This can act as a simulation tool for the surgeon, as well as it can help the surgeon 
during the registration process. 
On the other hand, the term haptic is referring to the tactile or sense of touch information 
that is required during a surgery [11]. By using the tele-operated surgery system, this kind 
of information is not there with the surgeon. Thus, haptic or force feedback sensor must be 
put at the slave robot so that the surgeon who is manipulating the master robot can have 
better control and awareness of the operation undertaken. Excessive force applied on the 
head of a patient might well damage important tissues or nerves. 

4.5 End-effector 
It is a device or tool specifically designed and attached to the last link of the robot or to the 
robot wrist [25]. It enables the robot to perform its intended tasks, for example cutting the 
skull or taking samples inside a body. The end-effector is loosely comparable to a human's 
hand. Its size is depending on the tasks assigned and also the working area. For a MIS 
operation, the end effector must be small enough to get to the body through the specified 
path or hole created. 

4.6 Controller design 
Control technique or controller is a tools used to cause the micro-manipulator perform the 
desired motions and actions, for example to executes planned trajectories. There are two 
class of manipulator control, namely the linear control and the nonlinear control. If a system 
can be defined using linear differential equations, than a linear control method is used. 
Otherwise, nonlinear control will come into action. There are various types of control 
method or technique. Among them were closed loop and open loop, classical, adaptive and 
intelligent control technique. 
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There are two categories of trajectory planning techniques. They are joint space technique 
and Cartesian space technique. Joint space technique is suitable for point-to-point motion, 
where the motion planning is done at the joint level. This technique describes the time 
function of all the joints’ variables including the speed and acceleration. Equation 3 below 
shows an example of a five-degree or quintic polynomial equations with its joints’ variables, 
Ci. The position of the end effector was computed by using forward kinematics. This is just 
one of many smooth functions that can be used to interpolate a trajectory. 
Cartesian space technique is a method that most suited with continuous path type of 
motion, and therefore suit neurosurgical application better than the previous technique. 
While joint space method focus on the joint position, Cartesian space method controls the 
end effector itself, with respect to the base of the robot. By using inverse kinematics, the 
joints variables were computed. 
In general, to set a trajectory, we must define the starting and end points, as well as the 
mathematical function that the joints and end effector will undertake during its movement. 
The time taken to complete the trajectory is also important as it will affect the speed and 
smoothness of the manipulation. This is important in designing a micro-manipulator since 
we need to specify each and every point on the route of the end-effector and the joints as 
well. Failing to do this will let us lose control of the surgical tools. 
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Otherwise, nonlinear control will come into action. There are various types of control 
method or technique. Among them were closed loop and open loop, classical, adaptive and 
intelligent control technique. 
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4.7 Size and materials 
The micro-manipulator’s type of materials used, its shape and size depends on the purpose 
and intended usage. The size and shape can be as shown in Figure 3(a) or as big as the 
DaVinci® system. It goes back to the user or surgeon, and the use of the system. The most 
important aspect is that it can works as it was intended to be, in a neurosurgical procedure. 
Moreover, the material is also very important. Let say it is going to be used inside an MRI 
machine, thus it must be made from MRI compatible type of materials. 

5. Case study: NeuroArm 
NeuroArm is a research project that was organized by the University of Calgary and 
MacDonald Dettwiler Associates (MDA). It was aimed to develop a MR-compatible micro- 
manipulator system for neurosurgical operation. This surgical robot system provides an 
immersive robotic system with full complement of planning and assistive software. Besides 
being a MR-compatible, this system is also incorporated with powerful image-guided 
system and haptic devices in its architecture ([2], [6] & [8]). 
The system consists of three main parts. They are the robot itself, the workstation, and its 
cabinet for control system. The robot has with two arms with a moveable platform. Each 
arm has 8 degree of freedom (dof). The size of the arm is small and can operate in a 68cm 
working area inside the MRI scanner. The end-effector of the robot can fit various surgical 
tools required by the surgical procedure, such as forceps, needle drivers, suction, 
microscissor, and dissector. It is using the master-slave concept, means it incorporated the 
telesurgical system. The type of actuator used on the surgical side is a piezoceramic motors. 
This is primarily used to ensure safe functioning of the robot at the operative site and to 
avoid image distortion. 
 

      
                                           (a)                                                     (b) 
Fig. 4. (a) NeuroArm workstation. (b) NeuroArm surgical robot. 
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The master and the surgeon workstation are placed in a room adjacent to the operation 
room, while the slave or the robot itself was put inside the operation room. The master and 
slave are bit different in design, where the master was only a 6-dof controller with 3-dof 
positional force feedback. The workstation also consists of high-resolution binoculars where 
the surgeon can have direct access to the surgical binoculars, haptic hand-controllers, 
microphone to communicate with the operation room’s personnel, and four monitors that 
display the information needed to know by the surgeon of the surgery that is going on. The 
master manipulator, as shown in Figure 6 has high-fidelity haptic capability, so the surgeon 
that is using the master controller will know the force currently being exerted to the patient 
at real time. In addition, tremor filter was installed in the system, to improve accuracy and 
precision as well as the stamina of the surgeon. This also enhances the surgical ability of the 
robot. The force exerted during operation can be limited. And for security purpose, if the 
robot fails itself, intrinsic braking system will automatically freeze the robot. Besides, the 
robot’s actuators are functioning at low torque and low force in order to reduce any risks of 
injury. It can also move on a slow pace as 1mm/s, and can go up to 200mm/s, depending on 
the needs. 
 

 
Fig. 5. Specifications and accuracy of NeuroArm 

This system has has a simulation software that allows the surgeon to do a simulation 
operation before actually going for the real surgery. During the simulation, he can calculate 
the safe region for the robot’s arm to operate. The virtual boundaries were also being able to 
define before the surgery. This can prevent injuries to the neural area surrounding the 
operation area. 
Among the uniqueness of this NeuroArm is that it can fit into an MRI magnet bore. This 
means that the material used in building this robot is not affected by the effect of the magnet 
bore. Its upper arm is made of titanium and its lower arm is made from 
polyetheretherketone (PEEK) materials. In addition it ensures that the image generated by 
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the MRI is not significantly affected by the surgical tools. Even though some of the 
procedure is still being done by the surgeon himself, like burr holes and cranial exposure, 
NeuroArm has started creating its milestones in neurosurgery. With tested accuracy of 
30micron, it is so great that in will surely enhance surgical capability. In addition to that, 
NeuroArm has successfully performed a neurosurgical operation in May 2008. The 
operation is to remove a tumor from a 21-year old’s women brain in United States of 
America. 
 

 
Fig. 6. Master manipulator of NeuroArm, that has the haptic interface 

6. Conclusion 
Researches on various aspects of neurosurgical operation were still going on. The purpose is 
to improve the existing system and also human lives. While surgical robots offer some 
advantages over the human hand, we are still a long way from the day when autonomous 
robots will operate on people without human interaction. With advances in our technology, 
it is not an impossible thing to be done. However, besides the excitement in this research 
field, the safety of the patient inside the operation theatre must be the highest priority. 
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1. Introduction 
A fully decoupled parallel manipulator is a mechanism in which one output kinematic joint, 
degree of freedom, is affected by only one active or input kinematic pair, the perfect 
mechanism from a kinematic point of view due to the possibility to generate linear input–
output kinematic constraint equations. Parallel manipulators with fewer than six–degrees–
of–freedom frequently referred as limited–dof or defective parallel manipulators were the 
first class of parallel manipulators to be considered in that trend. Kong & Gosselin (2002a) 
introduced a class of translational fully decoupled parallel manipulators called Tripteron 
family. Carricato & Parenti–Castelli (2004) invented a two–degrees–of–freedom parallel 
wrist in which two interconnected linkages independently actuate one of the two angles 
associated to the orientation of the moving platform. Recently, Briot & Bonev (2009) 
proposed a fully decoupled translational parallel manipulator, called Pantopteron, for 
simple pick–and–place operations. Certainly, there is a significative number of contributions 
dealing with the study of limited–dof fully decoupled parallel manipulators, see for instance 
Carricato & Parenti–Castelli (2002), Kong & Gosselin (2002b, 2002c), Gosselin et al., (2004), 
Gogu (2005), Li et al., (2005), Ruggiu (2009) and so on. On the other hand, a fully decoupled 
six–degrees–of–freedom parallel manipulator is maybe, still in our days, an unrealistic task. 
In fact, the dream that in a Gough–Stewart platform one degree of freedom shall be affected 
by only one active kinematic joint is a far away reality, if sensors are not considered. In 
order to diminish such drawback, the term fully can be removed from the original concept 
meaning that a decoupled parallel manipulator is a mechanism in which the position and 
orientation, pose, of the moving platform with respect to the fixed platform can be 
computed separately. The decoupled motion can be achieved by introducing geometric 
conditions, e.g. Wohlhart (1994) studied a Gough–Stewart platform in which three of the six 
limbs share a common spherical joint over the moving platform, other topologies with 
uncoupled rotations and translations were investigated by Innocenti & Parenti–Castelli 
(1991), Zabalza et al., (2002), Yang et al., (2004), Takeda (2005) and so on. Despite the 
indisputable recent valuable advances in this subject, the development of decoupled parallel 
manipulators with simplified architectures preserving the well–known benefits of parallel 
manipulators such as higher stiffness and payload/capacity is a rather complicated task. At 
this point, and mainly due to the lack of an efficient mathematical resource to approach the 
forward kinematics of a general Gough–Stewart platform capable to determine the actual 
configuration of the manipulator, without using sensors, one can take into account that if 
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there is not essential the fully decoupled motion, then the development of partially 
decoupled parallel manipulators is a viable option to apply the benefits of mechanisms with 
nearly parallel kinematic structures, see for instance Briot et al., (2009), Altuzarra et al., 
(2010). It is interesting to note that mechanisms with mixed motions can be included in the 
class known as partially decoupled parallel manipulators. 
In this chapter a new family of partially decoupled parallel manipulators endowed with an 
extra active kinematic joint is introduced. One member of this new family of robot 
manipulators is selected with the purpose to illustrate the methodology of kinematic 
analysis chosen to characterize the angular and linear kinematic properties, up to the 
acceleration analysis, of it. The forward position analysis of the robot, a challenging task for 
most parallel manipulators, is carried–out in a semi–closed form solution applying 
recursively the Sylvester dialytic elimination method that allows to determine all the 
feasible locations that the output platform can reach with respect to the fixed platform given 
a set of generalized coordinates. On the other hand, the velocity and acceleration analyses of 
the robot are approached by means of the theory of screws. With this mathematical tool, 
simple and compact expressions for computing the velocity and reduced acceleration states 
of the output platform are obtained taking advantage of the properties of reciprocal screws, 
via the Klein form of the Lie algebra e (3). Finally, the robot is simulated as a virtual five–
degrees–of–freedom parallel kinematic machine using special commercially available 
software like ADAMS©. 

2. Description of the DeLiA robot family 
Before the transcendental contributions of Gough (1957), Gough & Whitehall (1962) and 
Stewart (1965), it seems that a five–degrees–of–freedom spray painting machine was the first 
promissory industrial application of a parallel manipulator (Pollard, 1940; Bonev, 2003). 
Furthermore, many practical applications do not require the six degrees of freedom of a 
general Gough–Stewart platform, particularly five–degrees–of–freedom parallel 
manipulators had been proposed, among simple pointing devices, as multi–axis machine 
tools (Bohez, 2002; Zheng et al., 2005; Gao et al., 2005, 2006), bio–mechanical devices (Zhu et 
al., 2008; Gallardo–Alvarado, 2010) or new architectures for medical applications (Vlachos & 
Papadopoulos, 2005; Piccina, 2009). 
With these considerations in mind and with the motivation that not always is essential a 
pure parallel kinematic topology, this work is intended to be a viable option to the 
development of a new class of five–degrees–of–freedom robots with a nearly parallel 
kinematic architecture, preserving the advantages of serial-parallel manipulators but with 
the possibility to mount all the active limbs on the fixed platform. 
The proposed general topology is depicted in Fig. 1, it consists of a fixed platform, a coupler 
platform and an end–effector–platform also called output– platform. Please note that while 
in a general Gough–Stewart platform the generalized coordinates or active joints are 
necessarily coupled, in the proposed topology these motors can be decoupled into two 
different groups which allows to simplify the forward kinematics of the mechanisms at 
hand. Furthermore, the end–effector–platform is connected at the fixed platform by means 
of an active 6–dof three–legged parallel manipulator (XYS–type limb with X=RR,U,C,S; 
Y=P,R,C) whereas the coupler platform is connected at the fixed platform by means of an 
active 3–dof parallel manipulator (XYS–type limb with X=R,P; Y=R,P) and at the end–
effector platform through a passive 3–dof parallel manipulator (XYS–type limb with X=R,P; 
Y=R,P). Interesting benefits can be observed in this topology: 
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Fig. 1. General Gough–Stewart platform and the general proposed topology 

• The motors can be mounted on the fixed platform 
• The forward finite kinematics can be carried–out solving two decoupled systems of 

non–linear kinematic constraint equations 
• The spherical joints attached at the end–effector platform allow to affirm that this 

topology is a non–overconstrained mechanism, e.g. does not require of additional 
tolerances of manufacture that ensure the intersection of screws 

On the other hand, the 3–dof parallel manipulators chosen for this research, belong to the 
class known as zero–torsion parallel manipulators (Bonev, 2002). 
Several combinations can be generated with the considerations above–mentioned and one of 
them, here after called D1 robot, is presented in Fig. 2. 
D1 is a robot formed with an active 3–UPS parallel manipulator and two 3–RPS parallel 
manipulators, one active and the other passive. The nominal coordinates of the universal, 
prismatic, spherical and revolute joints of the chosen architecture are denoted respectively 
by U, P, S and R and are located by vectors U, P, S and R. In the rest of this work, the 
analysis is focused on the D1 robot. 

3. Mobility analysis of the D1 robot 
An exhaustive review of formulae addressing the mobility analysis of closed kinematic 
chains can be found in Gogu (2005) and the following is a variant of the well–known 
Kutzbach–Grübler formula for computing the degrees–of– freedom of spatial parallel 
manipulators 
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Fig. 2. D1, a member of the DeLiA robot family and its geometric scheme 
 

where n is the number of links, j is the number of kinematic pairs, and fi is the number of 
freedoms of the i–th kinematic pair. For the robot D1 n = 21, j = 6R+9P+3U+9S = 27, 

=1

j

i∑ fi = 48 and therefore F = 6, which is a wrong result. In fact, Dai et al. (2006) proved that 
in a 3–RPS parallel manipulator a basis representing the motions of the moving platform, 
with respect to the fixed platform, consists of three elements, two non–parallel coplanar 
rotations and one translation along an axis perpendicular to the plane formed by the 
spherical joints. According to this basis, the coupler platform of the robot D1 cannot rotate 
with respect to the fixed platform along an axis perpendicular to the plane formed by the 
spherical joints attached at the coupler platform. It is straightforward to demonstrate that 
such argument is valid too for the end– effector–platform and the coupler platform, in other 
words, the end–effector– platform has a rotation restricted with respect to the coupler 
platform due to the passive 3–RPS parallel manipulator connecting both platforms and the 
coupler platform has a rotation restricted with respect to the fixed platform due to the 3–
RPS active parallel manipulator. With these considerations in mind, although the computed 
degrees of freedom of the robot at hand is six, the end–effector–platform does not accept 
arbitrary orientations with respect to the fixed platform, and therefore D1 is in reality a five–
degrees–of–freedom redundant robot. 

4. Finite kinematics 
In this section the position analysis of the proposed robot is presented. 
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4.1 Forward position analysis 
The forward position analysis (FPA) consists of finding the pose of the end– effector–
platform with respect to the fixed platform given a set of six generalized coordinates  
qi(i = 1, 2, . . . , 6). Due to the decoupled architecture, the pose of the coupler platform, body 
B, with respect to the fixed platform, body A, is controled by means of the internal 
generalized coordinates qi(i = 1, 2, 3). Furthermore, the pose of the coupler platform is easily 
determined through the computation of the coordinates of the centers of the spherical joints 
attached at the coupler platform, points Si(i = 1, 2, 3). 
Let XY Z and xyz be two reference frames attached, respectively, at the fixed platform and at 
the end–effector–platform. With reference to Fig. 2, since the revolute joints attached at the 
fixed platform have a tangential arrangement, then it is possible to write three kinematic 
constraint equations as 

 
1 1 2 3

2 2 3 1

3 3 2 1

( ) ( ) = 0
( ) ( ) = 0
( ) ( ) = 0

− • − ⎫
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where the dot (•) denotes the usual inner product of the three–dimensional vectorial 
algebra. Furthermore, three closure equations can be written as 

 2( ) ( ) = = 1,2, 3i i i i iq i− • −S R S R   (3) 

Finally, according to the triangle ΔS1S2S3 three compatibility equations are given by 

 2
( ) ( ) = , = 1,2, 3 mod(3)i j i j i jS S i j− • −S S S S  (4) 

Expressions (2), (3) and (4) are solved by applying the Sylvester dialytic elimination method 
(Tsai, 1999; Gallardo et al., 2007). Once the coordinates of the points Si(i = 1, 2, 3) are 
calculated, the center of the triangle ΔS1S2S3, vector AρB, results in 

 1 2 3= ( ) / 3A B + +S S Sρ  (5) 

Finally, the pose of the coupler platform with respect to the fixed platform is summarized in 
the 4 × 4 homogeneous transformation matrix ATB: 
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where ARB is the rotation matrix which is computed by means of the coordinates of the points 
Si(i = 1, 2, 3), for details see Gallardo–Alvarado et al. (2008). Following a similar procedure, the 
homogeneous transformation matrix of the end–effector–platform with respect to the fixed 
platform, ATC, is computed. To this end, consider the following closure equations 
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where the vectors Ri(i = 4, 5, 6) are computed by using the matrix ATB. Furthermore, the 
homogeneous transformation matrix between the end–effector– platform and the fixed 
platforms, BTC, can be calculated from 

 =A C A B B CT T T   (8) 

4.2 Inverse position analysis 
The inverse position analysis consists of finding the active limb lengths qi(i = 1, 2, . . . , 6) of 
the robot given the pose of the end–effector–platform with respect to the fixed platform, 
matrix ATC. To this end, it is necessary to compute, as an intermediate step, the vectors  
Si(i = 1, 2, . . . , 6). 
Immediately emerges that the coordinates of the points Si(i = 4, 5, 6), expressed in the fixed 
reference frame XY Z, attached at the end–effector–platform can be obtained from 
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where si(i = 4, 5, 6) is the i–th point but expressed according to the moving reference frame 
xyz. Furthermore, the unknown vectors Ri(i = 4, 5, 6) and Si(i = 1, 2, 3) can be computed 
according to the following closure equations 
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Finally, the limb lengths qi(i = 1, 2, . . . , 6) result in 
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5. Infinitesimal kinematics 
In this section the velocity and acceleration analyses of the proposed robot are approached 
by means of the theory of screws. For detailed information of the kinematic analysis of 
closed chains and parallel manipulators, using such mathematical resource, the reader is 
referred to (Rico & Duffy, 2000; Gallardo et al., 2003). In particular screw theory is an 
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efficient mathematical resource to analyze five–degrees–of–freedom parallel manipulators 
(Li & Huang, 2002; Zhu et al., 2008; Gallardo–Alvarado et al., 2009). Furthermore, as a 
consideration for readers unfamiliar with the theory of screws an explanation of basic 
concepts dealing with it is also included in this section. 

5.1 Preliminary concepts. Basic concepts of the screw theory 
A screw $ = ( ŝ , sO) is a six-dimensional vector composed of a vector ŝ , namely the primal 
part, denoting the direction of the screw axis and a vector sO, namely the dual part, which is 
the moment produced by ŝ  about a point O fixed to the reference frame. The moment sO is 
calculated as follows 

 /ˆ ˆ=O O Ph + ×s s s r  (12) 

where h is the pitch of the screw and rO/P is a vector directed from a point P, fixed to the 
screw axis, to point O. Note that if the pitch of the screw goes to infinity, then the screw 
represents a prismatic joint and it is represented by $ = (0, ŝ ). Any lower kinematic pair can 
be represented either by a screw or a group of screws. A cylindrical joint can be simulated 
by the combination of one revolute joint and one prismatic joint, whereas a spherical joint 
results of the action of three revolute joints whose axes, usually mutually orthogonal, 
intersect a common point. 
Screw theory, which is isomorphic to the Lie algebra e(3) also referred as motor algebra, is 
the set of elements of the form $ = ( ŝ , sO) with the following operations. 
Let $1 = ( ŝ 1, sO1), $2 = ( ŝ 2, sO2), and $3 = ( ŝ 3, sO3) be elements of the Lie algebra e(3) with λ1, 
λ2, λ3 ∈ ℜ. Then 
1. Addition, $1 + $2 = ( ŝ 1 + ŝ 2, sO1 + sO2) 
2. Multiplication by a scalar, λ$1 = (λ ŝ 1, λsO1) 
3. Lie product or dual motor product, [$1 $2] = ( ŝ 1× ŝ 2, ŝ 1×sO2− ŝ 2×sO1). 

The Lie product exhibits interesting properties like 
a. Nilpotent, [$1 $1] = (0, 0) 
b. Non–commutative, [$1 $2] = −[$2 $1] 
c. Distributive 

[$1 λ2$2 + λ3$3] = λ2 [$1 $2] + λ3 [$1 $3] 

[λ$1 + λ2$2 $3] = λ1 [$1 $3] + λ2 [$2 $3] 
 

4. Jacobi identity, [$1 [$2 $3]] + [$3 [$1 $2]] + [$2 [$3 $1]] = (0, 0) 
Furthermore, the Lie algebra e(3) is endowed with two symmetric bilinear forms 
1. The Killing form, ($1; $2) = ŝ 1 • ŝ 2 

2. The Klein form, {$1; $2} = ŝ 1 • sO2 + ŝ 2 • sO1 
It is said that the screws $1 and $2 are reciprocal if {$1; $2} = 0, an interesting property that 
allows to simplify the forward infinitesimal kinematics of parallel manipulators. 
Screw theory is a powerful mathematical tool modeling the kinematics of rigid bodies. 
The velocity state n m

OV  of a rigid body m as it is observed from another body n or reference 
frame is a twist about screw (Ball, 1900), indeed n m

OV  = ωn$m, given by 
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where the vectors Ri(i = 4, 5, 6) are computed by using the matrix ATB. Furthermore, the 
homogeneous transformation matrix between the end–effector– platform and the fixed 
platforms, BTC, can be calculated from 
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2. The Klein form, {$1; $2} = ŝ 1 • sO2 + ŝ 2 • sO1 
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where nωm and n m
OV  are, respectively, the angular and linear velocities of the body under 

study and O is a point of the body m that is instantaneously coincident with the origin of the 
reference frame n, point O is also known as the reference pole. Furthermore, in an open 
kinematic chain, e.g. a serial manipulator, the velocity state of the end–effector, labeled body 
m, with respect to the base link, labeled body n, can be written as a linear combination of the 
involved infinitesimal screws associated to the kinematic pairs as follows 

 1 1 2 1
1 1 2 1$ $ $ =n n n n m m n m

n n n n m m Oω ω ω+ + + −
+ + + −+ + +… V   (14) 

On the other hand, the reduced acceleration state n m
OA  of body m with respect to body n, 

also known as accelerator, is a six-dimensional vector given by 
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n m n m
O n m n m n m n m
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where ω�  and n m
Oa  are the angular and linear accelerations of body m with respect to body n 

taking O as the reference pole. Furthermore, in a serial manipulator the reduced acceleration 
state of the end-effector with respect to the base link is given by 

 1 1 2 1
1 1 2 1$ $ $ =n n n n m m n m n m

n n n n m m Oω ω ω+ + + −
+ + + −+ + + +� � �… AL   (16) 

where 

1 1 2 1
1 1 2 1= [ $ $ $ ]n m n n n n m m

n n n n m mω ω ω+ + + −
+ + + −+ +…L  

  1 2 2 3 1
1 2 2 3 1[ $ $ $ ]n n n n m m

n n n n m mω ω ω+ + + + −
+ + + + −+ + + +…  

                            2 1 1
2 1 1[ $ $ ]m m m m

m m m mω ω− − −
− − −+ +…   (17) 

is the Lie screw or complementary six-dimensional vector of the reduced acceleration state. 
It is worth mentioning that eventhough its compactness, Eq. (16) contains all the terms 
involved in the acceleration analysis of a rigid body. In fact, e.g. Eq. (16) contains the terms 
of the acceleration of Coriolis and one not need to make a distinction of it. Furthermore, Eq. 
(16) can be easily translated into computer codes approaching the kinematic analysis of 
robot manipulators. This expression was introduced by the first time by Rico–Martínez & 
Duffy (1996) and its correctness was validated by the author of this work with the 
publication of several papers in well known journals. Before the pioneering contribution of 
Rico–Martínez & Duffy (1996) the screw theory was confined to the so–called first order 
analysis (velocity analysis). Its introduction almost fifteen years ago open the possibility to 
extend the screw theory to the so–called higher order kinematic analyses. 

5.2 Velocity analysis 
The modeling of the screws of three representative limbs of the robot is depicted in Fig. 3. It 
must be noted that due to existence of compound joints in the output platform, e.g. 
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Spherical + Spherical, these spherical joints require each one more of the usual three 
infinitesimal screws indicating concurrent revolute joints. Furthermore, before do any 
further, in order to solve the inverse velocity and acceleration analyses, it is necessary the 
introduction of auxiliary screws with the purpose to satisfy an algebraic requirement, with 
this consideration in mind the revolute joints are modeled as cylindrical joints, in  
which the corresponding translational velocities are equal to zero. In other words, 

1 70 6= = 0( = 1,2,3)
i i

iω ω . 
 

 
Fig. 3. Infinitesimal screws of three representative limbs of the robot D1 

Let AωC and A C
Ov  be, respectively, the angular and linear velocities of a point O attached at 

the end–effector–platform. The velocity state, or twist about a screw, of the end–effector–
platform with respect to the fixed platform, six– dimensional vector A C

OV  = [AωC, A C
Ov ]T , can 

be obtained trough the coupler and fixed platforms as 

 =A C A B B C
O O O+V V V   (18) 

where A B
OV  is the velocity state of the coupler platform with respect to the fixed platform, 

and B C
OV  is the velocity state of the end–effector–platform with respect to the coupler 

platform. Furthermore, these kinematic states can be written in screw form as 

 = , { , , } = 1,2,3A B B C A C
i i O O O i∈V V V V VJ Ω   (19) 
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where the Jacobians { , , }A B B C A C
i i i i∈J J J J  are given by 
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whereas { , , }A B B C A C
i i i i∈Ω Ω Ω Ω  are matrices containing the joint rate velocities. In fact: 
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The inverse velocity analysis consists of finding the joint rate velocities of the robot given a 
prescribed velocity state of the end–effector–platform with respect to the fixed platform, 
A C

OV . This analysis is solved directly by means of expressions (18) and (19), however the 
loss freedom of the end–effector–platform must be taken into proper account in order to 
obtain the desired velocity state. Furthermore, it is important to emphasize that the 
Jacobians A B

iJ , B C
iJ  and A C

iJ  must be invertible, otherwise the robot is at singular 
configuration. 
On the other hand, the forward velocity analysis consists of finding the velocity state A C

OV , 
given the active joint rate velocities of the robot. It is interesting to note that due to the 
decoupled architecture, the velocity state A B

OV  depends only of the three active joints 
2 3 ( = 1,2,3)i iω . Furthermore, since 3 4$ i  and 4 5$ i  are reciprocal to the remaining screws 
representing the revolute joints in the same limbs, the application of the Klein form, {∗; ∗}, 
between the velocity state A B

OV  and these reciprocal screws, the reduction of terms leads to 

 1 2 3
2 2 23 3 31

= [0 0 0 ]T A B T
O ω ω ωΔJ V   (22) 

where 

 3 4 4 5 3 4 4 5 3 4 4 5
1 1 2 2 3 31

= [ $ , $ , $ , $ , $ , $ ]J   (23) 

is the active Jacobian matrix between the middle and fixed platforms and 

 =
⎡ ⎤

Δ ⎢ ⎥
⎣ ⎦

O I
I O

  (24) 

is an operator of polarity defined by the 3 × 3 identity matrix I and the 3 × 3 zero matrix O. 
Hence, the velocity state A B

OV is obtained directly from the input/output velocity equation (22). 
In order to compute the velocity state A C

OV  please note that the screws 16 17$ ( = 1,2,3)i i  are 
reciprocal to the remaining screws, in the same limb, representing the revolute joints of the 
UPS–type limbs. Thus, after applying the Klein form between these screws and the velocity 
state A C

OV , the reduction of terms yields 
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 16 17
14 15{ $ ; } = = 1,2,3iA C

i O iωV   (25) 
Similarly, the application of the Klein form of the screws 9 10$ ( = 1,2,3)i i  to both sides of Eq. 
(18) allows to write 

 9 10 9 10{ $ ; } = { $ ; } = 1,2,3A C A B
i O i O iV V   (26) 

Finally, casting in a matrix–vector form Eqs. (25) and (26) one obtains 

 

1
14 15

2
14 15

3
14 15

2 9 10
1

9 10
2

9 10
3

=
{ $ ; }
{ $ ; }
{ $ ; }

T A C
O A B

O
A B

O
A B

O

ω

ω

ω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Δ
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

J V
V
V
V

  (27) 

where 

 16 17 16 17 16 17 9 10 9 10 9 10
1 2 3 1 2 32

= [ $ , $ , $ , $ , $ , $ ]J   (28) 

is the active Jacobian matrix between the output and fixed platforms. 
Therefore the velocity state A C

OV  can be computed directly from the input/ output velocity 
equation (27). Please note that the forward velocity analysis requires that the active Jacobian 
matrices 

1
J  and 

2
J  must be invertible, otherwise the manipulator is at a singular 

configuration. 

5.3 Redundancy analysis of the robot D1 
In what follows the redundancy of the robot under study is briefly explained. Firstly, 
consider that according to section 3 AωB • Aτ B = BωC • Bτ C = 0 where Aτ B and Bτ C are, 
respectively, normal vectors to the planes S1S2S3 and S4S5S6. Furthermore, taking into 
account that AωC = AωB + BωC, then the loss rotation of the robot leads to 

 ( ) = 0A C A B B C A B B C B C A B• + − • − •ω τ τ ω τ ω τ   (29) 

Equation (29) is called a zero–torsion condition and indicates that one element of the angular 
velocity AωC can be written as a linear combination of its remaining components. With this 
consideration in mind the velocity state A C

OV  can be considered, by using a proper reference 
frame, as a five–dimensional vector which implies that it is possible to write, according to 
Eqs. (22) and (27), A C

OV  in terms of first order coefficients (Gallardo–Alvarado & Rico–
Martínez, 2001) as 

 *=A C
O +GQ QV   (30) 

where Q is a 5 × 1 matrix containing five of the six generalized or active joint rate velocities 
which is affected by the 5 × 5 matrix G whose elements are the corresponding first order 
coefficients of the chosen active joints while Q∗ is a 5×1 matrix formed with the remaining 
active joint multiplied by its corresponding first order coefficients. Given a prescribed 
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The inverse velocity analysis consists of finding the joint rate velocities of the robot given a 
prescribed velocity state of the end–effector–platform with respect to the fixed platform, 
A C

OV . This analysis is solved directly by means of expressions (18) and (19), however the 
loss freedom of the end–effector–platform must be taken into proper account in order to 
obtain the desired velocity state. Furthermore, it is important to emphasize that the 
Jacobians A B

iJ , B C
iJ  and A C

iJ  must be invertible, otherwise the robot is at singular 
configuration. 
On the other hand, the forward velocity analysis consists of finding the velocity state A C

OV , 
given the active joint rate velocities of the robot. It is interesting to note that due to the 
decoupled architecture, the velocity state A B

OV  depends only of the three active joints 
2 3 ( = 1,2,3)i iω . Furthermore, since 3 4$ i  and 4 5$ i  are reciprocal to the remaining screws 
representing the revolute joints in the same limbs, the application of the Klein form, {∗; ∗}, 
between the velocity state A B

OV  and these reciprocal screws, the reduction of terms leads to 

 1 2 3
2 2 23 3 31

= [0 0 0 ]T A B T
O ω ω ωΔJ V   (22) 

where 

 3 4 4 5 3 4 4 5 3 4 4 5
1 1 2 2 3 31

= [ $ , $ , $ , $ , $ , $ ]J   (23) 

is the active Jacobian matrix between the middle and fixed platforms and 

 =
⎡ ⎤

Δ ⎢ ⎥
⎣ ⎦

O I
I O

  (24) 

is an operator of polarity defined by the 3 × 3 identity matrix I and the 3 × 3 zero matrix O. 
Hence, the velocity state A B

OV is obtained directly from the input/output velocity equation (22). 
In order to compute the velocity state A C

OV  please note that the screws 16 17$ ( = 1,2,3)i i  are 
reciprocal to the remaining screws, in the same limb, representing the revolute joints of the 
UPS–type limbs. Thus, after applying the Klein form between these screws and the velocity 
state A C

OV , the reduction of terms yields 
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 16 17
14 15{ $ ; } = = 1,2,3iA C

i O iωV   (25) 
Similarly, the application of the Klein form of the screws 9 10$ ( = 1,2,3)i i  to both sides of Eq. 
(18) allows to write 

 9 10 9 10{ $ ; } = { $ ; } = 1,2,3A C A B
i O i O iV V   (26) 

Finally, casting in a matrix–vector form Eqs. (25) and (26) one obtains 
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where 

 16 17 16 17 16 17 9 10 9 10 9 10
1 2 3 1 2 32

= [ $ , $ , $ , $ , $ , $ ]J   (28) 

is the active Jacobian matrix between the output and fixed platforms. 
Therefore the velocity state A C

OV  can be computed directly from the input/ output velocity 
equation (27). Please note that the forward velocity analysis requires that the active Jacobian 
matrices 

1
J  and 

2
J  must be invertible, otherwise the manipulator is at a singular 

configuration. 

5.3 Redundancy analysis of the robot D1 
In what follows the redundancy of the robot under study is briefly explained. Firstly, 
consider that according to section 3 AωB • Aτ B = BωC • Bτ C = 0 where Aτ B and Bτ C are, 
respectively, normal vectors to the planes S1S2S3 and S4S5S6. Furthermore, taking into 
account that AωC = AωB + BωC, then the loss rotation of the robot leads to 

 ( ) = 0A C A B B C A B B C B C A B• + − • − •ω τ τ ω τ ω τ   (29) 

Equation (29) is called a zero–torsion condition and indicates that one element of the angular 
velocity AωC can be written as a linear combination of its remaining components. With this 
consideration in mind the velocity state A C

OV  can be considered, by using a proper reference 
frame, as a five–dimensional vector which implies that it is possible to write, according to 
Eqs. (22) and (27), A C

OV  in terms of first order coefficients (Gallardo–Alvarado & Rico–
Martínez, 2001) as 

 *=A C
O +GQ QV   (30) 

where Q is a 5 × 1 matrix containing five of the six generalized or active joint rate velocities 
which is affected by the 5 × 5 matrix G whose elements are the corresponding first order 
coefficients of the chosen active joints while Q∗ is a 5×1 matrix formed with the remaining 
active joint multiplied by its corresponding first order coefficients. Given a prescribed 
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velocity state A C
OV , expression (30) indicates that the user can select five of the six active 

joints and the remaining one can be used in order to avoid/escape from possible 
singularities, if any. Furthermore, the extra active joint can be used with the purpose to 
optimize trajectories. This feature is one of the main benefits of the robot D1. 

5.4 Acceleration analysis 
Let A Cω  and A C

Oa  be, respectively, the angular and linear accelerations of a point O of the 
end–effector–platform. The reduced acceleration state, or accelerator, of the end–effector–
platform with respect to the fixed platform, = [ , ]A C A C A C A C A C T

O O O− ×A a vω ω , can be obtained 
trough the coupler and fixed platforms as 

 = [ ]A C A B B C A B B C
O O O O O+ +A A A V V   (31) 

where B C
OA  is the accelerator of the coupler platform with respect to the fixed platform, B C

OA  
is the accelerator of the end–effector–platform with respect to the coupler platform. 
Furthermore, these accelerators can be written in screw form as follows 

 = { , , }  = 1,2,3A B B C A C
i i i O O O i+ ∈JA A A A AL Ω  (32) 

where { , , }A B B C A C
i ii ii ii∈    Ω Ω Ω Ω  are matrices containing the joint rate accelerations of the 

corresponding limbs, whereas { , , }A B B C A C
i i i i∈    L L L L  are composed Lie products given by 
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The inverse acceleration analysis consists of finding the joint rate accelerations of the robot 
given a prescribed accelerator A C

OA . This analysis is carried–out by means of expressions 
(31) and (32). 
On the other hand the forward acceleration analysis consists of finding the accelerator of the 
end–effector–platform with respect to the fixed platform, A C

OA , given the active joint rate 
accelerations of the robot. This analysis is very close to the presented to solve the forward 
velocity analysis, therefore only the obtained expressions are included here. 
The accelerator A B

OA  can be computed upon the input/output acceleration expression 

 

3 4
1 1

1 4 5
2 1 13

3 4
2 2

2 4 51
2 1 23

3 4
3 3

3 4 5
2 3 33

{ $ ; }

{ $ ; }
{ $ ; }

=
{ $ ; }

{ $ ; }

{ $ ; }

A B

A B

A B
T A B

O A B

A B

A B

ω

ω

ω

⎡ ⎤
⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎢ ⎥Δ
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

J A

 

 

 

 

 

 

L

L
L

L
L

L

  (34) 
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whereas the reduced acceleration state A C
OA  can be obtained from the input/ output 

acceleration relationship 
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 (35) 

Finally, please note that the computation of the accelerators A B
OA  and A C

OA , by means 
respectively of expression (34) and (35), does not require the values of the passive joint rate 
accelerations of the robot. Furthermore, once these reduced acceleration states are 
calculated, the accelerator B C

OA  is obtained using expression (31). 

6. Computer aided kinematic simulations 
With the purpose to exemplify the performance of the D1 robot, in this section the kinematic 
behavior of a virtual prototype, left image provided in Fig. 2, is simulated by means of the 
commercially available software ADAMS©.  
The parameters of the robot, using hereafter SI units, are given by 
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whereas in the home position the coordinates of the spherical joints Si(i = 1, 2, . . . , 6) and of 
the tool tip T are given by 
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velocity state A C
OV , expression (30) indicates that the user can select five of the six active 

joints and the remaining one can be used in order to avoid/escape from possible 
singularities, if any. Furthermore, the extra active joint can be used with the purpose to 
optimize trajectories. This feature is one of the main benefits of the robot D1. 

5.4 Acceleration analysis 
Let A Cω  and A C

Oa  be, respectively, the angular and linear accelerations of a point O of the 
end–effector–platform. The reduced acceleration state, or accelerator, of the end–effector–
platform with respect to the fixed platform, = [ , ]A C A C A C A C A C T

O O O− ×A a vω ω , can be obtained 
trough the coupler and fixed platforms as 

 = [ ]A C A B B C A B B C
O O O O O+ +A A A V V   (31) 

where B C
OA  is the accelerator of the coupler platform with respect to the fixed platform, B C

OA  
is the accelerator of the end–effector–platform with respect to the coupler platform. 
Furthermore, these accelerators can be written in screw form as follows 
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i ii ii ii∈    Ω Ω Ω Ω  are matrices containing the joint rate accelerations of the 

corresponding limbs, whereas { , , }A B B C A C
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The inverse acceleration analysis consists of finding the joint rate accelerations of the robot 
given a prescribed accelerator A C

OA . This analysis is carried–out by means of expressions 
(31) and (32). 
On the other hand the forward acceleration analysis consists of finding the accelerator of the 
end–effector–platform with respect to the fixed platform, A C

OA , given the active joint rate 
accelerations of the robot. This analysis is very close to the presented to solve the forward 
velocity analysis, therefore only the obtained expressions are included here. 
The accelerator A B

OA  can be computed upon the input/output acceleration expression 
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whereas the reduced acceleration state A C
OA  can be obtained from the input/ output 

acceleration relationship 
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Finally, please note that the computation of the accelerators A B
OA  and A C

OA , by means 
respectively of expression (34) and (35), does not require the values of the passive joint rate 
accelerations of the robot. Furthermore, once these reduced acceleration states are 
calculated, the accelerator B C

OA  is obtained using expression (31). 

6. Computer aided kinematic simulations 
With the purpose to exemplify the performance of the D1 robot, in this section the kinematic 
behavior of a virtual prototype, left image provided in Fig. 2, is simulated by means of the 
commercially available software ADAMS©.  
The parameters of the robot, using hereafter SI units, are given by 
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whereas in the home position the coordinates of the spherical joints Si(i = 1, 2, . . . , 6) and of 
the tool tip T are given by 
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The inverse kinematics of the robot is proved simulating the D1 robot as a parallel kinematic 
machine tool. To this end, two tasks are assigned to the tool tip: 
• The robot will drill three holes 
• The robot will mill a hexagon 
In order to achieve these tasks, only five of the six available generalized coordinates are 
required, therefore one of them, e.g. q3, should be locked. After, the required instantaneous 
variations of the generalized coordinates satisfying such operations are provided in Fig. 4. 
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Fig. 4. The D1 robot working as a non–redundant five–degrees–of–freedom parallel 
kinematic machine 
On the other hand, the forward kinematics of the robot is simulated by using the six 
generalized coordinates. In other words, the robot D1 is used as a redundant manipulator 
with six active joints to realize five degrees of freedom in the output platform. To this end, 
upon the home position of the robot D1, the active limbs are conditioned to the following 
periodical variations 
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With these data the most representative results of the simulation are provided in Fig. 5. 
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Fig. 5. Forward kinematics, six active joints to realize five degrees of freedom 
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kinematic machine 
On the other hand, the forward kinematics of the robot is simulated by using the six 
generalized coordinates. In other words, the robot D1 is used as a redundant manipulator 
with six active joints to realize five degrees of freedom in the output platform. To this end, 
upon the home position of the robot D1, the active limbs are conditioned to the following 
periodical variations 
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With these data the most representative results of the simulation are provided in Fig. 5. 
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Fig. 5. Forward kinematics, six active joints to realize five degrees of freedom 
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Finally, of course a virtual prototype is not the final word about the correctness performance 
of a proposed manipulator, but it is an advisable option before the construction of a real 
prototype. 

7. Conclusions 
In this work a new class of redundant robot manipulators called DeLiA is introduced. The 
main features of the proposed robots are: 
• Symmetry 
• Decoupled architecture. Only three of the six active limbs connect the end–effector–

platform to the fixed platform 
• The forward position analysis, a challenging task of most parallel manipulators, is 

carried–out by solving two sets of non–linear equations 
• The proposed robot does not require of special conditions of mechanical assembly like 

intersection of screws or similar 
• The six active limbs are mounted on the fixed platform, simplifying the kinematics and 

control of the robot 
• Redundancy, the robot is endowed with an extra degree of freedom which can be used 

with the purpose to avoid/escape from singular configurations, as well to optimize 
trajectories. Any of the six active joints can play this role 

Finally, D1, a member of the DeLiA robot family, is simulated as a five-degrees- of-freedom 
parallel kinematic machine tool with the aid of commercially available software like 
ADAMS©. 
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1. Introduction 
Being an inherently open loop unstable mechanical system with highly nonlinear dynamics 
and with the number of actuators less than the number of degrees of freedom, the inverted 
pendulum system is a perfect benchmark for the design of a wide range of classical and 
contemporary control techniques. There are a number of different versions of the inverted 
pendulum systems offering a variety of control challenges. The most common types are the 
single inverted pendulum on a cart (Ohsumi & Izumikawa, 1995; Åström & Furuta, 2000; 
Yoshida, 1999), the double inverted pendulum on a cart (Zhong & Rock, 2001), the double 
inverted pendulum with an actuator at the first joint only (Pendubot) (Spong, 1996; 
Graichen & Zeitz, 2005; Fantoni et al., 2000), the double inverted pendulum with an actuator 
at the second joint only (Acrobot) (Spong, 1994; 1995; Hauser & Murray, 1990), the rotational 
single-arm pendulum (Furuta et al., 1991; 1992) and the rotational two-arm pendulum 
(Yamakita & Furuta, 1999). Beyond non-mobile inverted pendulum robots, wheeled 
inverted pendulum robots or commonly known as balancing robots (e.g., Segway 
(Browning et al., 2005), Quasimoro (Salerno & Angeles, 2003), and Joe (Grasser et al., 2002)) 
have induced much interests by researchers. 
The control techniques involved in various types of inverted pendulum systems are also 
numerous, ranging from simple conventional controllers to advanced control techniques 
based on modern nonlinear control theory. A vast range of contributions exists for the 
stabilization of different types of inverted pendulums (Mori et al., 1976; Chaturvedi et al., 
2008; Angeli, 2001). Besides the stabilization aspect, the swing-up of various types of single 
and double inverted pendulum(s) is also addressed in the literature. Examples include 
classic single pendulum on a cart (Åström et al., 2008; Åström & Furuta, 2000), Acrobot and 
Pendubot (Fantoni et al., 2000; Spong, 1994; 1995; Graichen et al., 2007; Brown & Passino, 
1997) and the rotary double inverted pendulum (Yamakita et al., 1993; 1995). In addition to 
the stabilization and swing-up of different kinds of inverted pendulum robots, trajectory 
tracking of these underactuated systems has gained attention by researches (Cho & Jung, 
2003; Chanchareon et al., 2006; Hung et al., 1997; Magana & Holzapfel, 1998). There are two 
major approaches to construct the trajectory tracking controller for such nonlinear systems. 
The first one is based on system inversion (Devasia et al., 1996; Wang & Chen, 2006) and the 
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second approach is based on output regulation theory (Isidori & Byrnes, 1990; Qian & Lin, 
2002; Hirschorn & Aranda-Bricaire, 1998). Extensive controller developments have also been 
achieved by researchers for mobile inverted pendulum robots over the last decade (Salerno 
& Angeles, 2007; Pathak et al., 2005; Tsuchiya et al., 1999). 
This chapter studies a novel underactuated wheeled manipulator (WAcrobot) comprising an 
underactuated 2-DOF planar manipulator or an unstable double inverted pendulum 
(Acrobot) combined with a balancing robot. The WAcrobot has two independent driving 
wheels in same axis, and two gyro type sensors to determine the inclination angular velocity 
of two arms and rotary encoders to know wheels and arms rotation individually. Due to its 
configuration with two coaxial wheels, each wheel is coupled to a geared dc motor. The 
manipulator is able to do stationary U-turns while keeping balance and manipulating. Such 
manipulator is of interest because it has a small foot-print and can turn on dime. The design, 
dynamic modeling and tracking control of this novel mobile manipulator is discussed in this 
chapter for the first time. This chapter aims at achieving three different types of trajectory 
tracking control tasks for a) wheels, b) first or second arm and c) wheels and one of the arms 
simultaneously, while the WAcrobot stabilization is guaranteed by the system internal 
equilibria calculation. The tracking controller is designed using the Gain Scheduling method 
that is based on the idea of the linearisation of the system equations around certain 
operating points and design of a linear controller for each region of operation (Lawrence & 
Rugh, 1993; Shamma & Athans, 1990a)]. For the design of the linear controller, we consider 
the Linear Quadratic Regulator (LQR) model to stabilize the WAcrobot around any point 
over the equilibrium manifold. We verified the effectiveness of the designed control system 
via numerical simulation visualized by graphical simulation to illustrate the physical 
response of the WAcrobot. 
In the following sections of this chapter the dynamic model of the wheeled manipulator 
(WAcrobot) is firstly presented. Then the equilibrium manifold of the WAcrobot is 
investigated. After that the stabilization controller based on LQR technique is proposed. 
Then by employing Gain Scheduling method, for any given trajectory of wheels and/or 
arm(s), the trajectories of the rest of DOF of the WAcrobot is determined such that during 
the trajectory tracking the WAcrobot system is stabilized. Numerical and graphical 
simulations for three types of tracking control tasks are given to show the effectiveness of 
the proposed scheme. 

2. Dynamics of WAcrobot 
The mechanism of the WAcrobot is shown in Figure 1 schematically. The WAcrobot 
(Wheeled Acrobot) is an underactuated mechanical system consisting of an underactuated 
planar manipulator (Acrobot), a double inverted pendulum robot with an actuator at the 
second joint only (Figure 1-a), which is combined with a balancing robot (Figure 1-b) or 
equipped with two actuated wheels and has the capability to be as an underactuated 
wheeled manipulator. The mathematical model of the WAcrobot can be derived using the 
Euler-Lagrange equation. The form of the Euler-Lagrangian equation used here is: 
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generalized coordinates can be determined as: 

                2 2 2 2
1 1 2 3 1 1 3 3 3 3 3 3 2 2 3 3

1 1
2 2/ ( ( ) ) / ( ) ( )   =    c cI m m m l m l I m l l cos Tθ θ θ θ θ+ + + + + +  (2) 

 2 2 2 2
3 3 2 3 2 2 3 2 3 3 2 3 2 3 3 3 2 3

1
2/ (2 ( ) )c c c c cm cos l l m l m l m l I I m l lθ θ θ θ+ + + + + + +  

                     1 2 2 3 2 2 3 3 2 3 1 2 3 1 3 2 3 1 3(( ) ( ) ( )) ( )c c cl m l m l cos m l cos m l l cosθ θ θ θ θ θ θ θ θ+ + + + + +  

                            1 2 3 1 3 3 2 3 2 2 3 2 2( ) ( ) ( ) ( )    =    c cm m m l g m l cos g m l m l cos g Vθ θ θ+ + + + + +  (3) 

Differentiating the Lagrangian (L = T – V) by generalized coordinate vector θ and θ  yields 
Euler-Lagrange Equation (1) as: 

          2
1 2 3 1 1 1 1 3 3 2 3 2 2 2 3 2 2 1(( ) ) ( ( ) ( )( ))    =    c cm m m l I l l m cos cos m l m lθ θ θ θ θ τ+ + + + + + +  (4) 

2
3 1 3 2 3 3 1 3 3 2 3 2 3 2 2 2 2( ) ( ( ) ( ) ( ))c c cm l l cos l l m sin l m l m sinθ θ θ θ θ θ θ+ + − + + +  

                    2
1 3 3 2 3 3 1 3 3 2 3 2 3( ) 2 ( )c cl l m sin l l m sinθ θ θ θ θ θ θ− + − +  



 Advanced Strategies for Robot Manipulators 

 

92 

second approach is based on output regulation theory (Isidori & Byrnes, 1990; Qian & Lin, 
2002; Hirschorn & Aranda-Bricaire, 1998). Extensive controller developments have also been 
achieved by researchers for mobile inverted pendulum robots over the last decade (Salerno 
& Angeles, 2007; Pathak et al., 2005; Tsuchiya et al., 1999). 
This chapter studies a novel underactuated wheeled manipulator (WAcrobot) comprising an 
underactuated 2-DOF planar manipulator or an unstable double inverted pendulum 
(Acrobot) combined with a balancing robot. The WAcrobot has two independent driving 
wheels in same axis, and two gyro type sensors to determine the inclination angular velocity 
of two arms and rotary encoders to know wheels and arms rotation individually. Due to its 
configuration with two coaxial wheels, each wheel is coupled to a geared dc motor. The 
manipulator is able to do stationary U-turns while keeping balance and manipulating. Such 
manipulator is of interest because it has a small foot-print and can turn on dime. The design, 
dynamic modeling and tracking control of this novel mobile manipulator is discussed in this 
chapter for the first time. This chapter aims at achieving three different types of trajectory 
tracking control tasks for a) wheels, b) first or second arm and c) wheels and one of the arms 
simultaneously, while the WAcrobot stabilization is guaranteed by the system internal 
equilibria calculation. The tracking controller is designed using the Gain Scheduling method 
that is based on the idea of the linearisation of the system equations around certain 
operating points and design of a linear controller for each region of operation (Lawrence & 
Rugh, 1993; Shamma & Athans, 1990a)]. For the design of the linear controller, we consider 
the Linear Quadratic Regulator (LQR) model to stabilize the WAcrobot around any point 
over the equilibrium manifold. We verified the effectiveness of the designed control system 
via numerical simulation visualized by graphical simulation to illustrate the physical 
response of the WAcrobot. 
In the following sections of this chapter the dynamic model of the wheeled manipulator 
(WAcrobot) is firstly presented. Then the equilibrium manifold of the WAcrobot is 
investigated. After that the stabilization controller based on LQR technique is proposed. 
Then by employing Gain Scheduling method, for any given trajectory of wheels and/or 
arm(s), the trajectories of the rest of DOF of the WAcrobot is determined such that during 
the trajectory tracking the WAcrobot system is stabilized. Numerical and graphical 
simulations for three types of tracking control tasks are given to show the effectiveness of 
the proposed scheme. 

2. Dynamics of WAcrobot 
The mechanism of the WAcrobot is shown in Figure 1 schematically. The WAcrobot 
(Wheeled Acrobot) is an underactuated mechanical system consisting of an underactuated 
planar manipulator (Acrobot), a double inverted pendulum robot with an actuator at the 
second joint only (Figure 1-a), which is combined with a balancing robot (Figure 1-b) or 
equipped with two actuated wheels and has the capability to be as an underactuated 
wheeled manipulator. The mathematical model of the WAcrobot can be derived using the 
Euler-Lagrange equation. The form of the Euler-Lagrangian equation used here is: 

 =d L L
dt q q

τ
⎡ ⎤∂ ∂

−⎢ ⎥∂ ∂⎣ ⎦
 (1) 

Dynamic Modelling, Tracking Control and Simulation Results  
of a Novel Underactuated Wheeled Manipulator (WAcrobot)   

 

93 

 

Active Joint 

Passive Joint 

a 

b 

 θ1 

 θ3 

 θ2 

 
 

Fig. 1. WAcrobot, Acrobot (a) and Wheeled Inverted Pendulum (b) 

where L = T – V is a Lagrangian, T is kinetic energy, V is potential energy, τ = [τ1 0 τ2]T is the 
input generalized force vector produced by two actuators at wheels and second arm,  
q = [q1 q2 q3]Tε R3

 is generalized coordinate vector which is selected as q = [θ1 θ2 θ3]T where θ1, 
θ2 and θ3 are angular positions of wheels, first arm, and second arm of the WAcrobot, 
respectively. The kinetic and potential energies of the WAcrobot’s components in terms of 
generalized coordinates can be determined as: 

                2 2 2 2
1 1 2 3 1 1 3 3 3 3 3 3 2 2 3 3

1 1
2 2/ ( ( ) ) / ( ) ( )   =    c cI m m m l m l I m l l cos Tθ θ θ θ θ+ + + + + +  (2) 

 2 2 2 2
3 3 2 3 2 2 3 2 3 3 2 3 2 3 3 3 2 3

1
2/ (2 ( ) )c c c c cm cos l l m l m l m l I I m l lθ θ θ θ+ + + + + + +  

                     1 2 2 3 2 2 3 3 2 3 1 2 3 1 3 2 3 1 3(( ) ( ) ( )) ( )c c cl m l m l cos m l cos m l l cosθ θ θ θ θ θ θ θ θ+ + + + + +  

                            1 2 3 1 3 3 2 3 2 2 3 2 2( ) ( ) ( ) ( )    =    c cm m m l g m l cos g m l m l cos g Vθ θ θ+ + + + + +  (3) 

Differentiating the Lagrangian (L = T – V) by generalized coordinate vector θ and θ  yields 
Euler-Lagrange Equation (1) as: 

          2
1 2 3 1 1 1 1 3 3 2 3 2 2 2 3 2 2 1(( ) ) ( ( ) ( )( ))    =    c cm m m l I l l m cos cos m l m lθ θ θ θ θ τ+ + + + + + +  (4) 

2
3 1 3 2 3 3 1 3 3 2 3 2 3 2 2 2 2( ) ( ( ) ( ) ( ))c c cm l l cos l l m sin l m l m sinθ θ θ θ θ θ θ+ + − + + +  

                    2
1 3 3 2 3 3 1 3 3 2 3 2 3( ) 2 ( )c cl l m sin l l m sinθ θ θ θ θ θ θ− + − +  



 Advanced Strategies for Robot Manipulators 

 

94 

                1 3 3 2 3 2 2 3 2 2 1 3 3 3 2 3 3( ( ) ( ) ( )) ( ( ))    =    0c c c cl l m cos m l m l cos m l l l cosθ θ θ θ θ θ+ + + + +  (5) 

    2 2 2 2
2 2 3 3 2 2 3 3 2 3 3 2 3 2 3 3 3( ( ) 2 ( )) ( )c c c cm l m l l I I m l l cos m l l sinθ θ θ θ+ + + + + + −  

         3 3 2 3 3 2 2 2 2 3 2 3 3 2 3( ( ) ( ) ( )) 2 ( )c c cm l sin m l m l sin g m l l sinθ θ θ θ θ θ− + + + −  

 2
1 3 3 2 3 1 3 3 3 2 3 2 3 3 3 3 2( ) ( ( )) ( )    =    c c c cl l m cos m l l l cos m l Iθ θ θ θ θ θ τ+ + + + +  (6) 

       2
2 3 3 3 2 3 3 2 3( ) ( )c cl l m sin l m sin gθ θ θ θ+ − +  

Equations (4), (5) and (6) can be put into the frequently used compact form (Spong & Block, 
1995): 

 ( ) ( , ) ( ) =M C Gθ θ θ θ θ θ τ+ +  (7) 

where θ = [θ1
 θ2

 θ3]T∈R3 is the generalized coordinate vector, M(θ )∈R3×3 is the symmetric 
positive definite inertia matrix, C(θ,θ )θ ∈R3 contains Coriolis and centrifugal terms, 
G(θ )∈R3 contains gravitational terms and τ = [τ1

 0 τ2]T is the input generalized force vector. 
Furthermore, 
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33 3 3 3= cM m l I+  
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and 

 1 2 3( ) = [ ]TG G G Gθ  (10) 

where 
                                          1 = 0G  

2 3 3 2 3 3 2 2 2 2= ( ( ) ( ) ( ))c cG m l sin m l m l sin gθ θ θ− + + +  

                           3 3 3 2 3= ( )cG l m sin gθ θ− +  
and g is the gravitational acceleration. The parameters of the WAcrobot are defined in Table 
1. Equation (7) represents the underactuated and nonlinear system of the WAcrobot 
including two input torques applied to wheels and second arm (τ1 and τ2), two active DOFs 
(θ1 and θ3) and one passive DOF (θ2). 
 

θi (i = 1,2, 3)  Angular rotation of the wheels and arms  
mi (i = 1,2, 3)  Mass of wheels and arms  
lci(i = 2, 3)  Length from the joint to the center of the gravity of the arms  
li(i = 1, 2,3)  Radius of the wheels and length of arms  
Ii(i = 1,2,3)  Inertia moment around the center of gravity  

Table 1. Definition of Parameters 

3. Tracking control 
The tracking controller of the WAcrobot is designed using the Gain Scheduling method 
based on the linearisation of the system equations around certain equilibrium points in a 
first stage followed by the design of a linear controller for each region of tracking operation 
in a second stage. For the design of the linear controller, we consider the Linear Quadratic 
Regulator (LQR) model to stabilize the WAcrobot around any operating point over the 
equilibrium manifold. 

3.1 Equilibrium manifold 
Underactuated mechanical systems generally have equilibria which depend on both their 
kinematic and dynamic parameters (Bortoff & Spong, 1992). In these systems, to track a 
trajectory while balancing is guaranteed, it is vital to consider the equilibrium manifold. 
Beyond the unforced equilibria of the WAcrobot, (θ,θ ) = (θ1,π, 0, 0, 0,0) (lower or pendent 
equilibrium) and (θ,θ ) = (θ1, 0, 0, 0, 0,0) (upper or inverted equilibrium), it has a manifold of 
forced equilibrium points. Generally the WAcrobot is at rest or particularly at equilibrium 
point whenever 1eq

θ , 2eq
θ  and 3eq

θ  are zero and the joint torque τeq = [τ1eq 0 τ2eq ]T
 is such that 

to equalize G(θ) in Equation (7). So this set of equilibrium points consists of all states where 

 = = 0eq eqθ θ  (11) 

 ( ) =eq eqG θ τ  (12) 

If the outputs that are required to track a trajectory include the first arm, it follows from 
Equations (7), (10), (11) and (12) that: 
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and g is the gravitational acceleration. The parameters of the WAcrobot are defined in Table 
1. Equation (7) represents the underactuated and nonlinear system of the WAcrobot 
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3. Tracking control 
The tracking controller of the WAcrobot is designed using the Gain Scheduling method 
based on the linearisation of the system equations around certain equilibrium points in a 
first stage followed by the design of a linear controller for each region of tracking operation 
in a second stage. For the design of the linear controller, we consider the Linear Quadratic 
Regulator (LQR) model to stabilize the WAcrobot around any operating point over the 
equilibrium manifold. 
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point whenever 1eq
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Fig. 2. Equilibrium set points according to the different values of parameter C 
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= [ ( ) ( )]
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θ θ θ+
+ −  (14) 

Since the value of the absolute angular position of the second arm with respect to the 
vertical direction 3 3 2=a

eq eq eq
θ θ θ+  cannot be imaginary, the condition for the existence of the 

equilibrium from Equation (14) may be written: 

 3 2 2 2

3 3

= 1c

c

m l m lC
m l
+

≤  (15) 

Figure 2 illustrates equilibrium set points derived from Equation (14) according to different 
values of parameter C from Equation (15). It demonstrates how value of parameter C affects 

3
a
eq

θ  corresponding to any given 2eq
θ  in which the WAcrobot is stabilized. By decreasing 

parameter C, the required 3
a
eq

θ , corresponding to the desired 2eq
θ  to stabilize the robot, 

decreases and to decrease parameter C, the second arm should be long and heavy which is 
not suitable. On the other hand, for any given angular position of the first arm, if the second 
arm is long and heavy, it needs smaller angular changes to stabilize the WAcrobot and vice 
versa. Therefore there needs to be a trade-off between the ranges of the rotational motions of 
arms and the volume and weight of the WAcrobot. In particular, for any given m3, if the 
specification of the first arm (m2, l2 and lc2) are given, Equation (15) is only true if lc3 ≥ (m3l2 + 
m2lc2)/m3 and for any given lc3, it is only true if m3 ≥ m2lc2/(lc3 –l2). Considering l2 = 2lc2 and l3 = 
2lc3, we can simplify Equation (15) as: 

 3 2

2 3

(2 )l m
l m
≥ +  (16) 
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From the other point of view, if the trajectory tracking of the second arm is desired, it 
follows from Equations (7), (10), (11) and (12) that: 

                                                               1 = 0
eq

τ  

 2 3 3 3= ( )a
ceq eq

m l gsinτ θ−  (17) 

                          3 3
2 3

3 2 2 2

= [ ( ) ( )]ac
eq eq

c

m larcsin sin
m l m l

θ θ−
+

 (18) 

Since the value of the angular position of the first arm ( 2eq
θ ) cannot be imaginary, the 

condition for the existence of the equilibrium from Equation (18) is: 

 1 3 3

3 2 2 2

= 1c

c

m lC
m l m l

− ≤
+

 (19) 

Considering l2 = 2lc2 and l3 = 2lc3, we can simplify Equation (19) as: 

 3 2

2 3

(2 )l m
l m
≤ +  (20) 

3.2 Stabilization 
The balancing controller is designed using the well known Linear Quadratic Regulator 
(LQR) method based on the linearised plant model around any equilibrium point. The LQR 
is a controller for state variable feedback in such a way that u = –Kx is the input so that the 
value of K is obtained from minimization of the cost function J = 0

∞∫ (x’Qx + u’Ru)dt where 
matrix Q and R are positive semidefinite matrix and symmetric positive definite matrix that 
penalize the state error and the control effort, respectively. 

3.3 Gain scheduling 
Jacobian linearisation or linearisation about an equilibrium point is the technique for 
transforming original system models into equivalent models with simpler form. Since the 
linearization is about a single point, trajectory tracking can only be guaranteed in a 
sufficiently small region of states about that point. There are several methods for 
circumventing this problem; one of the most common is Gain Scheduling (Shamma & 
Athans, 1990b). Control of nonlinear systems by Gain Scheduling is based on the idea of the 
linearising the system equations around certain operating points, and the design of a linear 
controller for each region of operation over the entire motion envelope (Cloutier et al., 1996; 
Dorato et al., 1994; Langson, 1997). The controller coefficients are varied continuously 
according to the value of the scheduling variable. In fact, this can be performed in a more or 
less continuous fashion using a technique called extended linearisation (Baumann & Rugh, 
1986). 
In broad terms, according to (WJ & Shamma, 2000), the design of a gain scheduled controller 
for nonlinear plant of the WAcrobot can be described with a six-step procedure, though 
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m2lc2)/m3 and for any given lc3, it is only true if m3 ≥ m2lc2/(lc3 –l2). Considering l2 = 2lc2 and l3 = 
2lc3, we can simplify Equation (15) as: 

 3 2

2 3

(2 )l m
l m
≥ +  (16) 

Dynamic Modelling, Tracking Control and Simulation Results  
of a Novel Underactuated Wheeled Manipulator (WAcrobot)   

 

97 

From the other point of view, if the trajectory tracking of the second arm is desired, it 
follows from Equations (7), (10), (11) and (12) that: 

                                                               1 = 0
eq

τ  

 2 3 3 3= ( )a
ceq eq

m l gsinτ θ−  (17) 

                          3 3
2 3

3 2 2 2

= [ ( ) ( )]ac
eq eq

c

m larcsin sin
m l m l

θ θ−
+

 (18) 

Since the value of the angular position of the first arm ( 2eq
θ ) cannot be imaginary, the 

condition for the existence of the equilibrium from Equation (18) is: 

 1 3 3

3 2 2 2

= 1c

c

m lC
m l m l

− ≤
+

 (19) 

Considering l2 = 2lc2 and l3 = 2lc3, we can simplify Equation (19) as: 

 3 2

2 3

(2 )l m
l m
≤ +  (20) 

3.2 Stabilization 
The balancing controller is designed using the well known Linear Quadratic Regulator 
(LQR) method based on the linearised plant model around any equilibrium point. The LQR 
is a controller for state variable feedback in such a way that u = –Kx is the input so that the 
value of K is obtained from minimization of the cost function J = 0

∞∫ (x’Qx + u’Ru)dt where 
matrix Q and R are positive semidefinite matrix and symmetric positive definite matrix that 
penalize the state error and the control effort, respectively. 

3.3 Gain scheduling 
Jacobian linearisation or linearisation about an equilibrium point is the technique for 
transforming original system models into equivalent models with simpler form. Since the 
linearization is about a single point, trajectory tracking can only be guaranteed in a 
sufficiently small region of states about that point. There are several methods for 
circumventing this problem; one of the most common is Gain Scheduling (Shamma & 
Athans, 1990b). Control of nonlinear systems by Gain Scheduling is based on the idea of the 
linearising the system equations around certain operating points, and the design of a linear 
controller for each region of operation over the entire motion envelope (Cloutier et al., 1996; 
Dorato et al., 1994; Langson, 1997). The controller coefficients are varied continuously 
according to the value of the scheduling variable. In fact, this can be performed in a more or 
less continuous fashion using a technique called extended linearisation (Baumann & Rugh, 
1986). 
In broad terms, according to (WJ & Shamma, 2000), the design of a gain scheduled controller 
for nonlinear plant of the WAcrobot can be described with a six-step procedure, though 
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various technical methods are available in each step. The first step involves finding  
3
a
eq

θ  or 2eq
θ  in all operating points, for each desired 2eq

θ  or 3
a
eq

θ , using Equations 14 or 18 

respectively. The second step is the calculation of the joint torque required to keep the 
WAcrobot at desired 2eq

θ  (or 3
a
eq

θ ) and calculated 3
a
eq

θ  (or 2eq
θ ). The third step is the 

computation of a linear parameter varying model for the plant. The most common approach 
is to linearise the nonlinear plant around a selection of equilibrium points. This results in a 
family of operating points. The fourth step is to design a family of controllers for the 
linearised models in each operating point. Because of the linearised model, linear controller 
design methods such as LQR can be used to stabilize the system around the operating point. 
The fifth step is the actual Gain Scheduling. Gain Scheduling involves the implementation of 
the family of linear controllers such that the controller coefficients are scheduled according 
to the current value of the scheduling variables which are 2eq

θ  or 3
a
eq

θ . The last step is the 

performance assessment that can be performed analytically or by using extensive 
computational analysis and simulation. 

3.4 Computational analysis and simulation 
In order to verify the validity of the Gain Scheduling method for trajectory tracking of 
different types of reference trajectories in the WAcrobot, we carried out computational 
analyses and visual simulations using MATLAB/Simulink® package integrated with 
ADAMS® simulation software. Three types of tracking control tasks for wheels and/or 
arm(s) have been evaluated which are presented in this section. The simulations are 
performed with the following parameters given in Table 2. 
 

Wheels/Arms Wheels First arm Second arm 
mi [kg] 1.22 0.28 0.72 
li [m] 0.05 0.15 0.45 
lci [kg] — 0.075 0.225 

Ii [kg.m2] 1.53E-003 5.98E-004 1.3138E-002 

Table 2. Parameters of the WAcrobot 

In table 2, parameter l, for wheels, means radius while for arms means length. From 
Equation (15) and Table 2, we obtain C=0.763. It is supposed that the WAcrobot starts the 
trajectory tracking from its unforced inverted equilibrium position. Therefore the initial 
conditions are as follow: 

θ1 = 0   θ2 = 0   θ3 = 0   1θ = 0   2θ = 0   3θ = 0   τ1 = 0   τ2 = 0 

Q and R in the optimal regulators for simulations are designed as: 

Q = diag([10, 100, 100, 0, 0,0]) 

                                                         R = diag([0.1, 0.1]) 
It must be noted that in order to have better sense of motion, the angular position and 
velocity of the second arm are considered as absolute states and are plotted with respect to 
the vertical direction not relative to the first arm. 
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3.4.1 Wheels tracking 
The control objective is that the wheels to follow a trajectory with linear segments and 
parabolic blends while both arms are balancing inverted close to their initial positions. 
Practically this task is that the WAcrobot smoothly starts moving at x = 0 (m) and gently 
stops at x = 1.5 (m) while both arms are stabilized during the movement. Figure 3 shows the 
computational analysis results. In this figure the responses of angular position and velocity 
of the wheels and arms as well as applied torques to actuated DOFs are shown respectively. 
Tracking errors are calculated for the linear position and velocity of the WAcrobot, as shown 
in Figure 4. It should be noted that this control task can be defined as tracking problem for 
wheels while the arms, instead of being at inverted position, are at any point over the 
equilibrium manifold. Assume that the WAcrobot is balanced while the first arm is at 1 
(rad). In this case the absolute angular position of the second arm and the input torque for 
the second joint required to keep the arms balanced at the specified angular positions, are 
calculated using Equations (13) and (14). Therefore the initial conditions for this simulation 
are as follow: 

θ1 = 0   θ2 = 1   θ3 = –0.7343   1θ = 0   2θ = 0   3θ = 0   τ1 = 0   τ2 = –1.065 

Figure 5 demonstrates a superimposed snapshot of the graphical simulation for two 
tracking problems of the WAcrobot’s wheels while the arms are at the inverted position and 
are at another point over the equilibrium manifold. It is clear from both numerical and 
graphical simulations that the WAcrobot’s wheels track a specified trajectory while both 
arms are close to the inverted position or a defined position over the equilibrium manifold 
at all times during the movement. 
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Fig. 3. The simulation responses of positions, velocities and torques for the wheels tracking 
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various technical methods are available in each step. The first step involves finding  
3
a
eq

θ  or 2eq
θ  in all operating points, for each desired 2eq

θ  or 3
a
eq

θ , using Equations 14 or 18 

respectively. The second step is the calculation of the joint torque required to keep the 
WAcrobot at desired 2eq

θ  (or 3
a
eq

θ ) and calculated 3
a
eq

θ  (or 2eq
θ ). The third step is the 

computation of a linear parameter varying model for the plant. The most common approach 
is to linearise the nonlinear plant around a selection of equilibrium points. This results in a 
family of operating points. The fourth step is to design a family of controllers for the 
linearised models in each operating point. Because of the linearised model, linear controller 
design methods such as LQR can be used to stabilize the system around the operating point. 
The fifth step is the actual Gain Scheduling. Gain Scheduling involves the implementation of 
the family of linear controllers such that the controller coefficients are scheduled according 
to the current value of the scheduling variables which are 2eq
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θ . The last step is the 

performance assessment that can be performed analytically or by using extensive 
computational analysis and simulation. 

3.4 Computational analysis and simulation 
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analyses and visual simulations using MATLAB/Simulink® package integrated with 
ADAMS® simulation software. Three types of tracking control tasks for wheels and/or 
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In table 2, parameter l, for wheels, means radius while for arms means length. From 
Equation (15) and Table 2, we obtain C=0.763. It is supposed that the WAcrobot starts the 
trajectory tracking from its unforced inverted equilibrium position. Therefore the initial 
conditions are as follow: 

θ1 = 0   θ2 = 0   θ3 = 0   1θ = 0   2θ = 0   3θ = 0   τ1 = 0   τ2 = 0 

Q and R in the optimal regulators for simulations are designed as: 

Q = diag([10, 100, 100, 0, 0,0]) 

                                                         R = diag([0.1, 0.1]) 
It must be noted that in order to have better sense of motion, the angular position and 
velocity of the second arm are considered as absolute states and are plotted with respect to 
the vertical direction not relative to the first arm. 
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3.4.1 Wheels tracking 
The control objective is that the wheels to follow a trajectory with linear segments and 
parabolic blends while both arms are balancing inverted close to their initial positions. 
Practically this task is that the WAcrobot smoothly starts moving at x = 0 (m) and gently 
stops at x = 1.5 (m) while both arms are stabilized during the movement. Figure 3 shows the 
computational analysis results. In this figure the responses of angular position and velocity 
of the wheels and arms as well as applied torques to actuated DOFs are shown respectively. 
Tracking errors are calculated for the linear position and velocity of the WAcrobot, as shown 
in Figure 4. It should be noted that this control task can be defined as tracking problem for 
wheels while the arms, instead of being at inverted position, are at any point over the 
equilibrium manifold. Assume that the WAcrobot is balanced while the first arm is at 1 
(rad). In this case the absolute angular position of the second arm and the input torque for 
the second joint required to keep the arms balanced at the specified angular positions, are 
calculated using Equations (13) and (14). Therefore the initial conditions for this simulation 
are as follow: 

θ1 = 0   θ2 = 1   θ3 = –0.7343   1θ = 0   2θ = 0   3θ = 0   τ1 = 0   τ2 = –1.065 

Figure 5 demonstrates a superimposed snapshot of the graphical simulation for two 
tracking problems of the WAcrobot’s wheels while the arms are at the inverted position and 
are at another point over the equilibrium manifold. It is clear from both numerical and 
graphical simulations that the WAcrobot’s wheels track a specified trajectory while both 
arms are close to the inverted position or a defined position over the equilibrium manifold 
at all times during the movement. 
 

0 1 2 3 4 5 6 7 8 9 10
-35.00
-30.00
-25.00
-20.00
-15.00
-10.00
 -5.00
  0.00
  5.00

θ 
(
r
a
d
)

 

 
θ
1
 desired

θ
1
 actual

0 1 2 3 4 5 6 7 8 9 10
-6.000
-5.000
-4.000
-3.000
-2.000
-1.000
 0.000
 1.000

d
θ/
d
t
 
(
r
a
d
/
s
)

 

 

dθ
1
/dt desired

dθ
1
/dt actual

0 1 2 3 4 5 6 7 8 9 10
-0.080
-0.060
-0.040
-0.020
 0.000
 0.020
 0.040
 0.060
 0.080

θ 
(
r
a
d
)

 

 

θ
2
 desired

θ
2
 actual

0 1 2 3 4 5 6 7 8 9 10
-0.250
-0.200
-0.150
-0.100
-0.050
 0.000
 0.050
 0.100
 0.150
 0.200
 0.250

d
θ/
d
t
 
(
r
a
d
/
s
)

 

 
dθ

2
/dt desired

dθ
2
/dt actual

0 1 2 3 4 5 6 7 8 9 10
-0.025
-0.020
-0.015
-0.010
-0.005
 0.000
 0.005
 0.010
 0.015
 0.020
 0.025

θ 
(
r
a
d
)

 

 
θ
3
 desired

θ
3
 actual

0 1 2 3 4 5 6 7 8 9 10
-0.060
-0.040
-0.020
 0.000
 0.020
 0.040
 0.060

d
θ/
d
t
 
(
r
a
d
/
s
)

 

 

dθ
3
/dt desired

dθ
3
/dt actual

0 1 2 3 4 5 6 7 8 9 10
-0.050
-0.040
-0.030
-0.020
-0.010
 0.000
 0.010
 0.020
 0.030
 0.040
 0.050

t
o
r
q
u
e
 
(
N
.
m
)

 

 

T
1

0 1 2 3 4 5 6 7 8 9 10
-0.060
-0.040
-0.020
 0.000
 0.020
 0.040
 0.060

t
o
r
q
u
e
 
(
N
.
m
)

 

 
T
2

time (s) time (s)  
Fig. 3. The simulation responses of positions, velocities and torques for the wheels tracking 
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Fig. 4. Tracking errors for the linear position and velocity of the wheels for wheels tracking 
 

 
Fig. 5. Superimposed snapshot of the visualized simulation of the wheels tracking task while 
the arms are in inverted position (left) and are not in inverted position (right) 
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Fig. 6. The desired and calculated trajectories for the wheels, arms and time-varying torque 

3.4.2 Arms tracking 
Another tracking control objective defined for the WAcrobot is that the first arm to follow a 
trajectory with linear segments and parabolic blends while the WAcrobot’s wheels are fixed 
in the initial position. Practically this task is that the first arm to smoothly start rotating from 
the inverted position and stop at a special angular position while wheels have no rotation 
during the tracking. To make the first arm to track the desired trajectory, the second arm 
should also track a calculated trajectory to make the WAcrobot stabilized during the 
tracking motion. Therefore the tracking problem for the first arm is also a tracking problem 
for the second arm. Figure 6 shows the desired and calculated trajectories for the first and 
second arm as well as the calculated time-varying torque required to be applied at the 
second joint to keep the WAcrobot balanced. Tracking errors of the linear and angular 
positions and velocities of the wheels, first arm and second arm are displayed in Figure 7 
from top to bottom, respectively. 
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Fig. 7. Tracking errors of the positions and velocities of the wheels and arms for arms 
tracking 

Simulation results are shown in Figure 8. In this figure the simulation responses of angular 
positions and velocities of wheels and arms as well as applied torques to actuated degrees of 
freedom are demonstrated, respectively. To show the correlation between the computational 
analysis results and the WAcrobot physical response, the graphical simulation is prepared 
and is shown in Figure 9. 
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Fig. 8. The simulation responses of positions, velocities and torques for the first arm tracking 



 Advanced Strategies for Robot Manipulators 

 

100 

0 1 2 3 4 5 6 7 8 9 10
-0.020
-0.015
-0.010
-0.005
 0.000
 0.005
 0.010
 0.015
 0.020  

tracking error

 
p
o
s
i
t
i
o
n
 
(
m
)

 
0 1 2 3 4 5 6 7 8 9 10

-0.040
-0.030
-0.020
-0.010
 0.000
 0.010
 0.020
 0.030
 0.040  

tracking errors
p
e
e
d
 
(
m
/
s
)

 

time (s) time (s)  
Fig. 4. Tracking errors for the linear position and velocity of the wheels for wheels tracking 
 

 
Fig. 5. Superimposed snapshot of the visualized simulation of the wheels tracking task while 
the arms are in inverted position (left) and are not in inverted position (right) 
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Fig. 6. The desired and calculated trajectories for the wheels, arms and time-varying torque 

3.4.2 Arms tracking 
Another tracking control objective defined for the WAcrobot is that the first arm to follow a 
trajectory with linear segments and parabolic blends while the WAcrobot’s wheels are fixed 
in the initial position. Practically this task is that the first arm to smoothly start rotating from 
the inverted position and stop at a special angular position while wheels have no rotation 
during the tracking. To make the first arm to track the desired trajectory, the second arm 
should also track a calculated trajectory to make the WAcrobot stabilized during the 
tracking motion. Therefore the tracking problem for the first arm is also a tracking problem 
for the second arm. Figure 6 shows the desired and calculated trajectories for the first and 
second arm as well as the calculated time-varying torque required to be applied at the 
second joint to keep the WAcrobot balanced. Tracking errors of the linear and angular 
positions and velocities of the wheels, first arm and second arm are displayed in Figure 7 
from top to bottom, respectively. 
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Fig. 7. Tracking errors of the positions and velocities of the wheels and arms for arms 
tracking 

Simulation results are shown in Figure 8. In this figure the simulation responses of angular 
positions and velocities of wheels and arms as well as applied torques to actuated degrees of 
freedom are demonstrated, respectively. To show the correlation between the computational 
analysis results and the WAcrobot physical response, the graphical simulation is prepared 
and is shown in Figure 9. 
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Fig. 8. The simulation responses of positions, velocities and torques for the first arm tracking 
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Fig. 9. Snapshots of the visualized simulation for the arms tracking task 

3.4.3 Wheels and arm tracking 
The most complicated task is that the first arm to follow a trajectory while the wheels are 
tracking another specified trajectory. In other words, this task is that the first arm to track 
the trajectory while the WAcrobot starts moving from the initial position (x = 0 (m)) and stop 
at x = 1.6 (m) smoothly. Both specified trajectories are linear segments with parabolic blends 
and are shown in Figure 10. Also the calculated trajectories for the angular position of the 
second arm as well as the input torque required at the second joint are also plotted in Figure 
10. 
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The WAcrobot system with gain scheduling tracking controller simulated in Simulink® is 
illustrated in Figure 11. Figure 12 shows the simulation results of the wheels and arm 
tracking task. In this figure the simulation responses of the angular positions and velocities 
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of wheels and arms as well as applied torques to actuated DOFs are shown. Figure 13 
respectively displays the tracking errors of the linear and angular positions and velocities of 
the wheels and arms from top to bottom. Figure 14 shows a superimposed snapshot of the 
visualized simulation of the WAcrobot while wheels are tracking the specified trajectory 
and the first arm is tracking another specified trajectory simultaneously. The simulation 
results illustrate the effectiveness of the proposed control methodology and the developed 
theory. 
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Fig. 12. The simulation responses of positions, velocities and torques for the manipulator 
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Fig. 9. Snapshots of the visualized simulation for the arms tracking task 
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The most complicated task is that the first arm to follow a trajectory while the wheels are 
tracking another specified trajectory. In other words, this task is that the first arm to track 
the trajectory while the WAcrobot starts moving from the initial position (x = 0 (m)) and stop 
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The WAcrobot system with gain scheduling tracking controller simulated in Simulink® is 
illustrated in Figure 11. Figure 12 shows the simulation results of the wheels and arm 
tracking task. In this figure the simulation responses of the angular positions and velocities 
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of wheels and arms as well as applied torques to actuated DOFs are shown. Figure 13 
respectively displays the tracking errors of the linear and angular positions and velocities of 
the wheels and arms from top to bottom. Figure 14 shows a superimposed snapshot of the 
visualized simulation of the WAcrobot while wheels are tracking the specified trajectory 
and the first arm is tracking another specified trajectory simultaneously. The simulation 
results illustrate the effectiveness of the proposed control methodology and the developed 
theory. 
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Fig. 12. The simulation responses of positions, velocities and torques for the manipulator 
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Fig. 14. Superimposed snapshot of the graphical simulation of the wheels and arms tracking 

4. Conclusion 
In this chapter the WAcrobot, a novel underactuated manipulator which is the combination 
of a well-known double inverted pendulum (Acrobot) and a wheeled inverted pendulum, 
was proposed and the tracking control algorithm of this mobile manipulator was 
investigated. The balancing controller is designed using the well known Linear Quadratic 
Regulator (LQR) method and the tracking controller was designed on the basis of the Gain 
Scheduling control strategy. Three different types of trajectory tracking tasks were 
investigated including tracking of a) wheels, b) first or second arm and c) wheels and first or 
second arm simultaneously. 
This chapter also provided numerical and graphical simulation results to validate the 
obtained theoretical results and to demonstrate the correlation between the numerical 
results and the WAcrobot physical response. Simulation results illustrated good 
performance results for different tracking controls designed based on the Gain Scheduling 
method. 
Research into the control of this novel robotic system is just in the beginning and there are a 
number of research problems that remain to be addressed. It would be desirable to develop 
the theory of robust and adaptive controller for swing-up control problem of the WAcrobot. 
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obtained theoretical results and to demonstrate the correlation between the numerical 
results and the WAcrobot physical response. Simulation results illustrated good 
performance results for different tracking controls designed based on the Gain Scheduling 
method. 
Research into the control of this novel robotic system is just in the beginning and there are a 
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5. References 
Angeli, D. (2001). Almost global stabilization of the inverted pendulum via continuous state 

feedback, Automatica 37(7): 1103–1108. 
Åström, K., Aracil, J. & Gordillo, F. (2008). A family of smooth controllers for swinging up a 

pendulum, Automatica 44(7): 1841–1848. 
Åström, K. & Furuta, K. (2000). Swinging up a pendulum by energy control, Automatica 36: 

287–295. 
Baumann, W. & Rugh, W. (1986). Feedback control of nonlinear systems by extended 

linearization, IEEE Transactions on Automatic Control 31(1): 40–46. 
Bortoff, S. & Spong, M. (1992). Pseudolinearization of the acrobot using spline functions, 

Proceedings of the 31st IEEE Conference on Decision and Control, pp. 593–598. 
Brown, S. & Passino, K. (1997). Intelligent control for an acrobot, Journal of Intelligent and 

Robotic Systems 18(3): 209–248. 

Dynamic Modelling, Tracking Control and Simulation Results  
of a Novel Underactuated Wheeled Manipulator (WAcrobot)   

 

105 

Browning, B., Searock, J., Rybski, P. & Veloso, M. (2005). Turning segways into soccer 
robots, Industrial Robot: An International Journal 32(2): 149–156. 

Chanchareon, R., Sangveraphunsiri, V. & Chantranuwathana, S. (2006). Tracking Control of 
an Inverted Pendulum Using Computed Feedback Linearization Technique, 
Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics, pp. 1–6. 

Chaturvedi, N., McClamroch, N. & Bernstein, D. (2008). Stabilization of a 3D axially 
symmetric pendulum, Automatica 44(9): 2258–2265. 

Cho, H. & Jung, S. (2003). Balancing and position tracking control of an inverted pendulum 
on a xy plane using decentralized neural networks, Proceedings of the IEEE/ASME 
International Conference on Advanced Intelligent Mechatronics (AIM 2003), Vol. 1. 

Cloutier, J., D’Souza, C. & Mracek, C. (1996). Nonlinear regulation and nonlinear H-infinity 
control via the state-dependent Riccati equation technique. I- Theory, Proceedings of 
the International Conference on Nonlinear Problems in Aviation and Aerospace, pp. 117– 
130. 

Devasia, S., Chen, D. & Paden, B. (1996). Nonlinear inversion-based output tracking, IEEE 
Transactions on Automatic Control 41(7): 930–942. 

Dorato, P., Cerone, V. & Abdallah, C. (1994). Linear-Quadratic Control: An Introduction, Simon 
& Schuster. 

Fantoni, I., Lozano, R. & Spong, M. (2000). Energy based control of the pendubot, IEEE 
Transactions on Automatic Control 45(4): 725–729. 

Furuta, K., Yamakita, M. & Kobayashi, S. (1991). Swing up control of inverted pendulum, 
Proceedings of the International Conference on Industrial Electronics, Control and 
Instrumentation (IECON’91), pp. 2193–2198. 

Furuta, K., Yamakita, M. & Kobayashi, S. (1992). Swing-up control of inverted pendulum 
using pseudo-state feedback, Proceedings of the Institution of Mechanical Engineers 
206: 263–9. 

Graichen, K., Treuer, M. & Zeitz, M. (2007). Swing-up of the double pendulum on a cart by 
feedforward and feedback control with experimental validation, Automatica 43(1): 
63–71. 

Graichen, K. & Zeitz, M. (2005). Nonlinear feedforward and feedback tracking control with 
input constraints solving the pendubot swing-up problem, Preprints of 16th IFAC 
world congress, Prague, CZ. 

Grasser, F., D’ Arrigo, A., Colombi, S. & Rufer, A. (2002). JOE: a mobile, inverted pendulum, 
IEEE Transactions on industrial electronics 49(1): 107–114. 

Hauser, J. & Murray, R. (1990). Nonlinear controllers for non-integrable systems: The 
acrobat example, American Control Conference, pp. 669–671. 

Hirschorn, R. & Aranda-Bricaire, E. (1998). Global approximate output tracking for 
nonlinear systems, IEEE Transactions on Automatic Control 43(10): 1389–1398. 

Hung, T., Yeh, M. & Lu, H. (1997). A PI-like fuzzy controller implementation for the 
inverted pendulumsystem, Proceedings of the IEEE International Conference on 
Intelligent Processing Systems (ICIPS’97), Vol. 1. 

Isidori, A. & Byrnes, C. (1990). Output regulation of nonlinear systems, IEEE Transactions on 
Automatic Control 35(2): 131–140. 

Langson, W. (1997). Optimal and suboptimal control of a class of nonlinear systems, PhD thesis, 
University of Illinois. 

Lawrence, D. & Rugh, W. (1993). Gain scheduling dynamic linear controllers for a nonlinear 
plant, Proceedings of the 32nd IEEE Conference on Decision and Control, pp. 1024–1029. 



 Advanced Strategies for Robot Manipulators 

 

106 

Magana, M. & Holzapfel, F. (1998). Fuzzy-logic control of an inverted pendulum with vision 
feedback, IEEE Transactions on Education 41(2): 165–170. 

Mori, S., Nishihara, H. & Furuta, K. (1976). Control of unstable mechanical system Control 
of pendulum, International Journal of Control 23(5): 673–692. 

Ohsumi, A. & Izumikawa, T. (1995). Nonlinear control of swing-up and stabilization of an 
invertedpendulum, Proceedings of the 34th IEEE Conference on Decision and Control, 
Vol. 4. 

Pathak, K., Franch, J. & Agrawal, S. (2005). Velocity and position control of a wheeled 
inverted pendulum by partial feedback linearization, IEEE Transactions on Robotics 
21(3): 505– 513. 

Qian, C. & Lin,W. (2002). Practical output tracking of nonlinear systems with uncontrollable-
unstable linearization, IEEE Transactions on Automatic Control 47(1): 21–36. 

Salerno, A. & Angeles, J. (2003). On the nonlinear controllability of a quasiholonomic mobile 
robot, Proceedings of the IEEE International Conference on Robotics and Automation 
(ICRA’03), Vol. 3. 

Salerno, A. & Angeles, J. (2007). A new family of two-wheeled mobile robots: Modeling and 
controllability, IEEE Transactions on Robotics 23(1): 169–173. 

Shamma, J. & Athans, M. (1990a). Analysis of gain scheduled control for nonlinear plants, 
IEEE Transactions on Automatic Control 35(8): 898–907. 

Shamma, J. & Athans, M. (1990b). Analysis of nonlinear gain-scheduled control systems, 
IEEE Transactions on Automatic Control 35(8): 898–907. 

Spong, M. (1994). Swing up control of the acrobot, Proceedings of the IEEE International 
Conference on Robotics and Automation, Vol. 3, pp. 2356–2361. 

Spong, M. (1995). The swing up control problem for the acrobot, IEEE Control Systems 
Magazine 15(1): 49–55. 

Spong, M. (1996). The control of underactuated mechanical systems, Proceedings of the First 
international conference on mechatronics, pp. 26–29. 

Spong, M. & Block, D. (1995). The Pendubot: a mechatronic system for control research 
andeducation, Proceedings of the 34th IEEE Conference on Decision and Control, Vol. 1. 

Tsuchiya, K., Urakubo, T. & Tsujita, K. (1999). A motion control of a two-wheeled mobile 
robot, Proceedings of the IEEE International Conference on Systems, Man, and 
Cybernetics (SMC’99), Vol. 5. 

Wang, X. & Chen, D. (2006). Output tracking control of a one-link flexible manipulator via 
causal inversion, IEEE Transactions on Control Systems Technology 14(1): 141–148. 

WJ, R. & Shamma, J. (2000). Research on gain scheduling, Automatica 36(10): 1401–1425. 
Yamakita, M. & Furuta, K. (1999). Toward robust state transfer control of titech double 

pendulum, Proceedings of the Åström Symposium on Control, pp. 73–269. 
Yamakita, M., Iwashiro, M., Sugahara, Y. & Furuta, K. (1995). Robust swing up control of 

double pendulum, Proceedings of the American Control Conference, Vol. 1. 
Yamakita, M., Nonaka, K. & Furuta, K. (1993). Swing up control of double pendulum, 

Proceedings of the American Control Conference, Vol. 3, pp. 2229–2229. 
Yoshida, K. (1999). Swing-up control of an inverted pendulum by energy-based methods, 

Proceedings of the American control conference, Vol. 6, pp. 4045–4047. 
Zhong, W. & Rock, H. (2001). Energy and passivity based control of the double inverted 

pendulum on a cart, Proceedings of the 2001 IEEE international conference on control 
applications, pp. 896–900. 

6 

Kinematics Synthesis of a New Generation of 
Rapid Linear Actuators for High Velocity 

Robotics with Improved Performance  
Based on Parallel Architecture 

Luc Rolland 
Ecole Normale Supérieure des Arts et Métiers, Metz 

France 

 

1. Introduction 
This article studies several classes of linear actuators based on parallel topology featuring 
lower mobility. 
Translation actuator design represents a very important issue in manipulator design in areas 
like machine tools for example and more recently hexapods. Actual designs are usually 
limited to low accelerations actually limited to 2 g. Moreover, alignment problems are 
difficult to circumvent and usually lead to non-uniform friction in the translation motion 
refered as hard spots. Despite important breakthroughs, linear motors are still limited to 
accelerations of 5g and they are plagued by problems such as surrounding magnetisation 
and limited torque. As for any parallel mechanisms, the proposed architectures do provide 
for a more rigid linkage. Their rigidity advantage leads to larger actuator bandwidth, 
thereby allowing for increased accelerations which result in larger forces being applicable to 
the extremity while keeping overall mass very low. The main disadvantage will be their 
transverse emcumbrance which will be minimized through mechanism networking. 
Two diamond and one rhombus configurations have been designed, analyzed, constructed 
and compared verifying their ability for very fast accelerations. Their kinematics are 
investigated allowing to write the forward and inverse problems for position, velocity and 
accelerations where closed-form solutions are determined. Motion limitations and 
singularity analysis are also provided from which configuration recommendations can be 
derived. These actuators will then be easily controllable despite their non-linear nature. 
In parallel manipulators, the prismatic pairs are usually encountered as the linear actuators 
for several architectures such as the planar 3RPR, the general Gough platform, (Gough & 
Whitehall, 1962; Fichter, Kerr and Rees-Jones) and the Kanuk (Rolland, 1999) for examples. 
These prismatic actuators, may they be guided or not, do play a very important role in 
robotics design and their performance has been an issue. According to the author’s 
obsevration on several high speed milling projects, these actuators have been hampering the 
advent of high speed milling by being unable to provide for adequate accelerations in low 
inertia and high rigidity packages. 
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derived. These actuators will then be easily controllable despite their non-linear nature. 
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for several architectures such as the planar 3RPR, the general Gough platform, (Gough & 
Whitehall, 1962; Fichter, Kerr and Rees-Jones) and the Kanuk (Rolland, 1999) for examples. 
These prismatic actuators, may they be guided or not, do play a very important role in 
robotics design and their performance has been an issue. According to the author’s 
obsevration on several high speed milling projects, these actuators have been hampering the 
advent of high speed milling by being unable to provide for adequate accelerations in low 
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                (a) Unimate                              (b) Versatran                             (c) Stanford Arm 

Fig. 1. Cylindrical robots 
Typically, contemporary linear actuators have generally evolved in devices which can be 
classified under the nine following categories: 
• Piston in a Cylinder or diaphragm being driven by a fluid 
• Linear motors 
• machine screw and nut 
• A worm gear and screw 
• Rack and pinion 
• Belts and pulleys 
• Cam and plunger 
• Crank-slider 
• Linkages 
Lets consider Euclid’s definition of a straight line: ”A straight line is a line which lies evenly 
with the points on itself”, (Euclid, 2002). 
A straight line mechanism is defined as a mechanism that generates a straight-line output 
motion from an input actuator which rotates, oscillates, or moves in a straight line. 
Inventing a straight line mechanism, referred as SLM hereafter, has been the concern of 
many researchers and engineers long before the industrial revolution. The use of linkages as 
SLM can be traced as far back as in the XIII century when sawmill drawings showed 
mechanisms for changing circular motion to straight-line motion. Even Da Vinci himself has 
drawn one mechanism to convert rotation to translation having slides acting as guides 
(DaVinci, 1493). Door locking mechanisms are other old examples where the rotation of the 
key was converted into translation motion of the lock element. 
In 1603, Christopher Scheiner invented the pantograph, (Scheiner, 1631). It may be regarded 
as the first example of the four-bar linkage. The pantograph is a device for copying and 
enlarging drawings. Knowing that the actuator is located to one end, this device can be 
made to move on a straight-line providing that the input follows a straight-line, therefore 
becoming a pure amplification linkage. 
In the late seventeenth century, it was extremely difficult to machine straight line and flat 
surfaces. Knowing that prismatic pair construction without backlash had become an 
important and difficult challenge, much effort was then diverted towards the coupler curve 
of a linkage comprising only revolute joints which were much easier to produce. 
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Fig. 2. Typical linear actuator 

Later, James Watt proposed a four-bar mechanism generating motion approximating 
roughly a straight-line. We would have to wait until 1864 when Peaucellier introduced the 
first planar linkage capable of transforming rotary motion into exact straight-line motion. 
Until this invention, no planar mechanism existed for producing straight-line motion 
without reference guideways which could not be made very straight themselves. 
It was soon followed by the grasshopper linkage which also provided for an exact straight-
line. These mechanisms were essential in the development of steam engines and machine 
tools. Then, Hart’s Linkage and A-frame both reduce the link number to only five. 
The Kmoddl library from Cornell University presents 39 linkages imagined to produce 
linear motion which come from Franz Reuleaux Collection of Kinematic Mechanisms 
(Reuleaux, 1876; Moon, 2007). Most of them feature relatively complex architectures where 
linkages cannot easily be practically applied in systems such as robots or milling machines. 
Several proposals were patented trying to simplify the linkage producing straight-line 
motion. In the class of nearly straight line linkages, one can identify several linkages by 
inventors such as Hoekens, Chebyshev, Evans, Roberts and Burmester. With appropriate 
linkage dimensions, part of the motion can be a straigth line. Hoekens linkage can be 
considered a Cognate linkage of the Chebyshev linkage since it produces a similar motion 
pattern. These simpler designs always applied the properties of special points on one of the 
links of a four-bar linkage. They could often produce straight-lines over some limited range 
of their motion. The commonality of all these ingenious mechanisms is in the fact that they 
feature linkages based on closed loops or so-called parallel topology. 
Very early on, the designers were faced with the fact that a prismatic pair or joint is much 
more difficult to build than a revolute joint. This is even more the case when trying to have a 
linear actuator, (Soylemez, 1999). This observation holds on even today. 
Practically, parallel mechanism architectures have been able to provide solutions to 
industrial problems and needs with improved performance manipulators. 
Theoritically, they may even improve accuracy but this is still an open problem at the 
moment, especially when control in concerned. 
When the proposed configurations allow to bring the actuators fixed on or jointed to the 
base, the inertia of mobile elements can be significantly reduced so the extremity or end-
effector can move at higher accelerations resulting in the deliverance of larger forces. 
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Fig. 3. Scheiner pantograph 

The principal drawback which shall be studied is the construction of kinematics models 
characterized by non-linear equations where an implicit relationship is produced between 
the manipulator configuration parameters, actuator joint positions and the end-effector 
position and orientation. 
The simplest forms of parallel manipulators are the ones producing one degree-of-freedom. 
Performance evaluation for these single DOF mechanisms includes the four following 
criterias: 
• workspace 
• singularity avoidance 
• linkage ecumbrance 
• linearity in motion transmission 
In a one DOF problem, the workspace criteria is then reduced to a simple range with two 
extremum values te be determined: the minimal and maximal positions. 
Moreover, the design of machine-tools based on parallel robots have been concerned by 
problems related to inherent difficulties with prismatic actuator designs which have 
hampered their successful implementation. 
This paper original contribution is in the design of a new generation of linear actuators for 
increased performance where planar parallel linkages are applied. For example, if 
implemented to replace classical linear actuators on Gough platform or even planar 3RPR 
manipulators, they allow to bring the motors in positions directly jointed to the base.  
The introduction is followed by chapter on kinematic topology synthesis consisting of a 
review of various kinds of mechanisms to provide straight-line motion where mobility is 
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analyzed. Chapter 3 is dedicated to the kinematics analysis of several promising alternatives 
based on the four-bar mechanism. Then, chapter four investigates the selected performance 
criterias. This paper closes on a design chapter where prototypes are shown with motion 
analysis in terms of position, velocity and acceleration. 

2. Kinematics topology synthesis 
Firstly, in this section, we shall make a review of some interesting planar mechanisms which 
can perform the specified set of functionnal requirements. In this case the tasks shall be to 
achieve straight-line motion. 

2.1 Background study 
We need two definitions related to degree-of-freedoms. 
The DOF of the space is defined as the number of independant parameters to define the 
position of a rigid body in that space, identified as λ. 
The DOF of a kinematic pair is defined as the number of independant parameters that is 
required to determine the relative position of one rigid body with respect to the other 
connected rigid body through the kinematic pair. 
The term mechanism is defined as a group of rigid bodies or links connected together to 
transmit force and motion. 
Mobility and kinematics analyses are possible under some assumptions: 
• Ideal mechanisms with rigid bodies reducing the mechanism motion to the geometric 

domain. 
• Elastic deformations are neglected 
• Joint clearance and backlash are insignificant 

2.2 Functionnal requirements 
Historically, the need for straight-line motion has resulted on linkages based on closed loops 
or so-called parallel topology. The idea is to convert rotation motion into translations or 
straight-line motions. It is usually considered that prismatic pairs are much harder to build 
than revolute joints, (Soylemez, 1999). 
Prismatic actuators as well as slides have the following problems: 
• the side reactions of prismatic pairs produce friction leading to wear 
• these wears are uneven, non-uniform and unpredictable along the path of the slide 

since the flat surfaces in contact are not well defined due to construction imperfections. 
Some mechanisms are designed to generate a straight-line output motion from an input 
element which rotates, oscillates or moves also in a straight line. 
The kinematic pair DOF is defined as the number of independent parameters necessary to 
determine the relative position of one rigid body with respect to the other connected to the 
pair, (Soylemez, 1999). 
The linkages are designed to generate motion in the plane and are then limited to three 
DOFs, therefore the only available joints are either with one or 2 dofs only. 
The actual problem is addressed from a robotics or even machine-tool point of view. It can 
be summarized by this question: how can you draw a straight line without a reference edge? 
Most robotics manipulators or machine tools are applying referenced linear motions with 
guiding rails and even now linear motors. In design of parallel manipulators such as 3RPR 
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or Gough platforms, the actuators have especially to generate straight lines without any 
guiding rails. 
This question is not new and it actually comes from the title taken from the book written by 
Kempe, where he describes plane linkages which were designed to constrain mechanical 
linkages to move in a straight line (Kempe, 1877). 

2.3 Mobility analysis of linkages 
Here is the mobility formula that is applied for topology investigation, (Rolland, 1998): 

 m = Σji − λn  (1) 

where Σji is the sum of all degree-of-freedoms introduced by joints and λ = 3 is the available 
DOF of the planar space in which the actuator is evolving. 
Finally, the number of closed loops in the system is n. This number can be multiplied and 
shall be a natural number n ∈ {1,2,3, . . .} 

2.4 Four-bar mechanisms 
If n = 1 and only revolute joints are selected, then the mechanisms can be selected in the 
large variety of four-bar mechanisms. These linkages feature one closed-loop or one 
mechanical circuit. According to Grashof’s law, the sum of the shortest and longest link 
cannot exceed the sum of the remaining two links if there is to be continuous relative motion 
between the links. Hence, they can be classified as four types as shown in figure 4. 
 

 
Fig. 4. Four-bar mechanism classification (from Wikipedia) 

Three four-bar mechanisms can produce partial straight-line motion. They are characterized 
by two joints connected to the fixed base. 
The Chebyshev linkage is the epitome of the four-bar mechanical linkage that converts 
rotational motion to approximate straight-line motion. It was invented by the 19th century 
mathematician Pafnuty Chebyshev. It is a four-bar linkage therefore it includes 4 revolute 
joints such that Σji = 4 ∗ 1 where n = 1 since there is only one closed loop. The resulting 
mobility: m = 4−3 ∗ 1=1. Hoekens linkage happens to be a Cognate linkage of the Chebyshev 
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Robert’s linkage can have the extremity P set at any distance providing it is layed out on 
that line perpendicular to the coupler, i-e link between A and B. This means that P can be 
positionned on top of the coupler curve instead of below. 
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This mobility calculation holds fo any four-bar mechanism including the free ones, i-e not 
being attached to the base. 
If properly designed and dimensionned, four-bar linkages can become straight-line motion 
generators as will be seen in the next section on kinematics. This is one of the contribution of 
this work. 

2.5 True straight-line mechanisms 
If n > 1 and only revolute joints are selected, then the mechanisms become more complex 
and will integrate two closed loops or two mechanical circuits. 
Three mechanisms can produce exact straight-line motion: the Peaucelier linkage, the 
Grasshoper mechanism and a third one which has no name. 
This linkage contains nine revolute joints such that Σji = 9 ∗ 1 = 9. Please note that where 
three links meet at one point, two revolute joints are effectively existing. Three closed loops 
can be counted for n = 3. The resulting mobility: m = 9 − 3 ∗ 3 = 0. The linkage designed by 
Peaucelier is one of those mechanisms which cannot meet the mobility criterion but do 
provide the required mobility.  Very recently, Gogu has reviewed the limitations of mobility 
analysis, (Gogu, 2004). 
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Fig. 5. Four-bar mechanisms: Chebyshev, Hoekens and Robert linkages 
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Fig. 6. Exact straigth-line mechanisms 

The two other linkages do provide for seven revolute joints for Σji = 7 ∗ 1 = 7 and two closed 
loops for n = 2. The resulting mobility: m = 7 − 3 ∗ 2 = 1 which is verified by experiments. 
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or Gough platforms, the actuators have especially to generate straight lines without any 
guiding rails. 
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These three mechanisms do provide for straight-line motion at the cost of complex linkages 
which do occupy very valuable space. This makes them less likely to be applied on robots. 

3. Kinematics analysis 
A mechanism is defined as a group of rigid bodies connected to each other by rigid 
kinematics pairs to transmit force and motion. (Soylemez, 1999). 
Kinematics synthesis is defined as the design of a mechanism to yield a predetermined set of 
motion with specific characteristics. 
We shall favor dimensional synthesis of function generation implementing an analytical 
method. The function is simply a linear function describing a straight-line positioned 
parallel to one reference frame axis. 
The method will implement a loop-closure equation particularily expressed for the general 
four bar linkage at first. The first step consists in establishing the fixed base coordinate system. 

3.1 Four-bar mechanism 
 

O2
O4

r 2

r 3

r 4

A

B

(a) Fixed four-bar
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Fig. 7. General four-bar linkages 

Lets define the position vectors and write the vector equation. Taking O2 and O4 as the link 
connecting points to the fixed base located at the revolute joint center, taking A and B as the 
remainder mobile revolute joint centers, the general vectorial formulation is the following, 
(Uicker, Pennock and Shigley, 2003): 

 (r1 + r2 + r3 + r4 = 0)  (2) 

This last equation is rewritten using the complex algebra formulation which is available in 
the textbooks, (Uicker, Pennock and Shigley): 

 31 2 4
1 2 3 4 = 0jj j jr e r e r e r eθθ θ θ+ + −   (3) 

where θ1, θ2, θ3 and θ4 are respectively the fixed base, crank, coupler and follower angles 
respective to the horizontal X axis. 
If we set the x axis to be colinear with O2O4, if we wish to isolate point B under study, then 
the equation system becomes: 
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 3 4 2
3 4 1 2=j j jr e r e r r eθ θ θ− −   (4) 

Complex algebra contains two parts directly related to 2D geometry. We project to the x and 
y coordinate axes, in order to obtain the two algebraic equations. The real part corresponds 
to the X coordinates and the imaginary part to the Y coordinates. Thus, the equation system 
can be converted into two distinct equations in trigonometric format. 
For the real or horizontal part: 

 ( ) ( ) ( )3 3 4 4 1 2 2cos = cos cosr r r rθ θ θ− −   (5) 

For the imaginary or vertical part: 

 ( ) ( ) ( )3 3 4 4 2 2sin = sin sinr r rθ θ θ−   (6) 

When O2O4 is made colinear with the X axis, as far as r1 is concerned, there remains only one 
real part leading to some useful simplification. 
The general four bar linkage can be configured in floating format where the O4 joint is 
detached from the fixed base, leaving one joint attached through a pivot connected to the 
base. Then, a relative moving reference frame can be attached on O2 and pointing towards 
O4. This change results in the same kinematic equations. 
Since, the same equation holds and we can solve the system: 

 ( )
2 2 2

4 = 2arctan B A B C
A C

θ
⎛ ⎞+ − + −
⎜ ⎟
⎜ ⎟+⎝ ⎠

  (7) 

where the A,B,C parameters are: 
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1
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2

2

2 2 2 2
1 2 1 2 3 4

4 2 4

= cos

= sin
cos 1=

2

rA
r

B
r r r r rC

r r r

θ

θ

θ

−

−

+ − +
−

  (8) 

To determine the position of joint center B in terms of the relative reference frame O: 

 ( ) ( )2 1 4 4 4 4= [ cos , sin ]tO B r r rθ θ+   (9) 

Then, the norm of the vector OB gives the distance between O and B: 

 ( )( ) ( )( )2 22
2 1 4 4 4 4= = cos sinx O B r r rθ θ+ +   (10) 

This explicit equation gives the solution to the forward kinematics problem. An expression 
spanning several lines if expanded and which cannot be shown here when the expression of 
θ4, equation 7, is substitued in it. This last equation gives the distance between O and B, the 
output of the system in relation to the angle θ2, the input of the system as produced by the 
rotary motor. The problem can be defined as: Given the angle θ2, calculate the distance x 
between O and B. 
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To determine the position of joint center B in terms of the relative reference frame O: 
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The four-bar can be referred as one of the simplest parallel manipulator forms, featuring one 
DOF in the planar space (λ = 3). One family of the lowest mobility parallel mechanisms. 
The important issue is the one of the path obtained by point B which is described by a 
coupler curve not being a straight line in the four-bar general case. 
However, in the floating case, if applied as an actuator, the general four-bar can be made to 
react like a linear actuator. The drawbacks are in its complex algebraic formulation and non-
regular shape making it prone for collisions. 

3.2 Specific four bar linkages 
We have two questions if we want to apply them as linear actuators: 
• Can we have the four-bar linkage to be made to move in a straight-line between point 

O2, the input, where the motor is located and B, the output, where the extremity or end-
effector is positionned? 

• Can simplification of resulting equations lead to their inversions? 
As we have seen earlier, specific four bar linkages can be made to produce straight-line 
paths if they use appropriate dimensions and their coupler curves are considered on link 
extensions. In this case, we still wish to study the motion of B with the link lengths made 
equal in specific formats to produce specific shapes with interesting properties. Three 
solutions can be derived: 
• the parallelogram configuration, 
• the rhombus configuration, 
• the kite or diamond shape configuration, (Kempe, 1877). 

3.2.1 The parallelogram configuration 
Parallelograms are characterized by their opposite sides of equal lengths and they can have 
any angle. They even include the rectangle when angles are set to 90 degrees. They have 
been applied for motion transmission in the CaPaMan robot, (Ceccarelli, 1997). 
The parallelogram four-bars are characterized by one long and one short link length. They 
can be configured into two different formats as shown in figure 8. 
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Fig. 8. The two parallelogram four-bar cases 
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The follower follows exactly the crank. This results in the equivalence of the input and 
following angles: θ4 = θ2. 
If we set R and r as the link lengths respectively, then to determine the position of joint 
center B in terms of the relative reference frame O2; an simple expression is derived from the 
general four-bar one: 

 ( ) ( )2 = [ cos , sin ]O B R r rθ θ+   (11) 

Then, the norm of the vector O2B gives the distance between O2 and B: 

 2 2
2=| |= 2 cos( )x O B R r Rr θ+ +   (12) 

This last equation is the result of the forward kinematics problem. 
Isolation of the θ variable will lead to the inverse kinematics problem formulation: 

 
2 2 2

= arccos
2

x R r
Rr

θ
⎛ ⎞− −
⎜ ⎟
⎝ ⎠

  (13) 

Detaching joint O4 from the fixed base, the parallelogram becomes a semi-free linkage which 
can be considered as one prismatic actuator. 

3.2.2 The rhombus configuration 
The rhombus configuration can be considered a special case of the parallelogram one. All 
sides of a Rhombus are congruent and they can have any angle. Therefore, r1 = r2 = r3 = r4 or 
even one can write r = R as for the parallelogram parameters. The mechanism configuration 
even includes the square when angles are set to 90 degrees. 
The forward kinematics problem becomes: 

 = 2 cos
2

x r θ⎛ ⎞
⎜ ⎟
⎝ ⎠

 (14) 

The Inverse kinematics problem is expressed as: 
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Fig. 9. The Rhombus detailed configuration 
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 = 2arccos
2
x
r

θ
⎛ ⎞
⎜ ⎟
⎝ ⎠

  (15) 

Simple derivation will lead to differential kinematics. 
The forward differential kinematics is expressed by the following equation: 

 = sin( )
2

v r θω−   (16) 

where = d
dt
θω  

We take the following geometric property: 

 cos =
2 2

xθ⎛ ⎞
⎜ ⎟
⎝ ⎠

  (17) 

We apply Pythagore’s theorem: 

 
2

2

1sin = 4
2 2

x
r

θ⎛ ⎞ −⎜ ⎟
⎝ ⎠

  (18) 

Then, the FDP can be rewritten in terms of the length x: 

 
2

2= 4
2
r xv

r
ω− −   (19) 

Inversion of equation 19 lead to the inverse differential kinematics problem being expressed 
as: 

 
2

=
sin( )

v
r θω −   (20) 

Substituting equation 17 and equation 18 into the former, we obtain: 

 = 1
2

v x
r r

ω − −   (21) 

Further derivation will give the extremity acceleration where the FDDP can be expressed as: 

 21= sin cos
2 2 2

a r rθ θα ω⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (22) 

Substituting equation 17 into the former lead to the following expression of the FDDP: 

 
2

2
2

1 1= 4
2 4

xa r x
r

α ω− − −   (23) 

The IDDP: 
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21 cos
2 2=
sin

2

a r

r

θω
α

θ

⎛ ⎞− − ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

  (24) 

Substituting equation 21, equation 17 and equation 18 into the former, we obtain: 

 
3/2

1 4

2
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1 1= 2 2
2
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xar vx r
rx

r
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−

− − ⎛ ⎞− − ⎜ ⎟
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−

  (25) 

O

A

B

C  
Fig. 10. The diamond shape four-bar 

3.2.3 The kite or diamond shape configuration 
The kite configuration is characterized by two pairs of adjacent sides of equal lengths, 
namely R and r. 
Then, two configurations into space depending on which joint the motor is attached. The 
motor is also located on the joint attached on the fixed base. 
To obtain the first configuration, the first pair is located at O2, the crank joint center where 
the motor is located, as its articulation center and the second pair at B, the extremity joint, as 
its center. 
The second configuration integrates the actuator on O4. However, the actuator x output is 
defined as the linear distance between O2 and B making this actuator moving sideways. The 
problem will be that the change of four-bar width is going to introduce parasitic transverse 
motion which will in turn prevent real linear motion due to the pivot effect caused by the 
motor joint. This approach is thus rejected. 
To obtain the second disposition, one can mount the driven joint between two unequal links 
and have the output on the opposite joint also mounted between two unequal links. This 
results in sideways motion. However, this would also result in parasitic transverse motion 
which would mean that the final motion would not be linear being their combination. 
Therefore, this last configuration will not be retained further. 
Lets R be the longest link length, the links next to B, and r be the smallest link one, the links 
next to O2. 
Since this configuration is symmetric around the axis going through O2 and B, it is thus 
possible to solve the problem geometrically by cutting the quadrilateral shape into two 
mirror triangles where the Pythagorean theorem will be applied to determine the distance 
between O2 and B giving: 
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Substituting equation 21, equation 17 and equation 18 into the former, we obtain: 
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Fig. 10. The diamond shape four-bar 

3.2.3 The kite or diamond shape configuration 
The kite configuration is characterized by two pairs of adjacent sides of equal lengths, 
namely R and r. 
Then, two configurations into space depending on which joint the motor is attached. The 
motor is also located on the joint attached on the fixed base. 
To obtain the first configuration, the first pair is located at O2, the crank joint center where 
the motor is located, as its articulation center and the second pair at B, the extremity joint, as 
its center. 
The second configuration integrates the actuator on O4. However, the actuator x output is 
defined as the linear distance between O2 and B making this actuator moving sideways. The 
problem will be that the change of four-bar width is going to introduce parasitic transverse 
motion which will in turn prevent real linear motion due to the pivot effect caused by the 
motor joint. This approach is thus rejected. 
To obtain the second disposition, one can mount the driven joint between two unequal links 
and have the output on the opposite joint also mounted between two unequal links. This 
results in sideways motion. However, this would also result in parasitic transverse motion 
which would mean that the final motion would not be linear being their combination. 
Therefore, this last configuration will not be retained further. 
Lets R be the longest link length, the links next to B, and r be the smallest link one, the links 
next to O2. 
Since this configuration is symmetric around the axis going through O2 and B, it is thus 
possible to solve the problem geometrically by cutting the quadrilateral shape into two 
mirror triangles where the Pythagorean theorem will be applied to determine the distance 
between O2 and B giving: 
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This equation expresses then the forward kinematics problem. 
Using the law of cosinuses on the general triangle where the longest side is that line between 
O2 and B, it is possible to write a more compact version for the FKP: 

 ( )2 2 1
22 cosx R r r θ= − −   (27) 

The inverse kinematics problem requires the distance or position x as input which completes 
the two triangle lengths into the diamond shape. Hence, the cosinus laws on general 
triangles can be applied to solve the IKP: 

 
2 2 21= 2arccos

2
R r x

r
θ

⎛ ⎞− −
⎜ ⎟
⎝ ⎠

  (28) 

To obtain the differential kinematics models, the kinematics models are differentiated. 
FDP: 
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Differentiation of the IKP leads to the following IDP expression: 
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After testing several approach for obtaining the differential model leading to accelerations, 
it was observed that starting with the inverse problem leads to more compact expressions: 
The IDDP is obtained by differentiating the IDP: 
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Inverting the IDDP produces the FDDP but it cannot be shown in the most compact form. 
The Kite configuration models are definitely more elaborate and complex than for the 
rhombus configuration without necessarily leading to any kinematics advantages. 

3.2.4 The rhombus configuration repetition or networking 
The rhombus four-bar linkage can be multiplied as it can be seen in platform lifting devices. 
The repetition of these identical linkages helps reduce the encumbrance and this will be 
studied in this section in the context of linear actuator design. 
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                         (a) Single rhombus       (b) Double rhombus       (c) Triple rhombus 

Fig. 11. Rhombus networking 
The distance traveled by the first moving central joint (FKP) is: 

 ( )1 2= 2 cosx r θ   (32) 

This problem can be solved just like solving the original single rhombus FKP. 
The distance traveled by the second moving central joint (FKP) is: 

 ( )2 1 2= 2 = 4 cosx x r θ   (33) 

The impact of adding the second rhombus is doubling the distance or position reach. 
The distance traveled by the third moving central joint or the solution of the FKP of a triple 
rhombus is: 

 ( )3 1 2= 3 = 6 cosx x r θ   (34) 

This trend can be generalized to a repetition of n identical rhombuses. 

 ( )1 2= = 2 cosnx nx n r θ   (35) 

The result of the four-bar rhombus repetition is the linear motion amplification by that 
repetition number. 
To obtain the inverse kinematics problem, one can proceed with inversion of the FKP. 
The double rhombus angular position of the actuator can then be deduced: 
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Fig. 11. Rhombus networking 
The distance traveled by the first moving central joint (FKP) is: 
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This equation can then also be extrapolated to a repetition of n identical rhombuses. 

 1= 2arccos
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The forward differential model is obtained by derivation of the forward kinematics model. 
For a double rhombus configuration, the relative speed of the second central joint is equal to 
the absolute speed of the first central joint: 

 2/ 1=rv v   (38) 

                                                        2 1 2/= rv v v+                                                  (39) 

 2 1= 2v v   (40) 
where 

 ( )1 2= sinv r θω−   (41) 

Hence, the actual speed of the second extremity or the final end-effector becomes: 

 ( )2 2= 2 sinv r θω−   (42) 

The impact of adding the second rhombus is doubling the end-effector velocity. 
The same result would be obtained by derivation of the equation for x2. 
We now calculate the velocity of the third moving central joint which corresponds to the 
solution of the FDP of a triple rhombus. 

 ( )3 1 2= 3 = 3 sinv v r θω−   (43) 

This trend can be generalized to a repetition of n identical rhombuses: 

 ( )1 2= = sinnv nv nr θω−   (44) 

The inverse differential model can be obtained in two ways, either by derivation of the 
inverse kinematics model or inversion of the forward differential model. 
By inversion of the FDP, the double rhombus angular position of the actuator can then be 
deduced: 
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  (45) 

For the triple rhombus, we extrapolate: 
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For a linkage with the repetition of n rhombuses, we obtain the following equation: 
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To determine the accelerations, we will again differentiate the former differential models. 
We calculate derivation of the equation for v2 for the second rhombus; it results in doubling 
the end-effector acceleration. 
The FDDP for the case where we are doubling the rhombus leads to: 

 ( ) ( )2
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For the triple rhombus, we can determine that: 
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For n rhombuses, it is possible to extrapolate: 

 ( ) ( )2
1 2 2

1= = sin cos
2na na nr rθ θα ω− −  (50) 

Multying n times the rhombus linkage results in multiplying the acceleration likewise. 
The IDDP, inverse model for a double rhombus, through derivation of the IDP or inversion 
of the FDDP, the calculation returns this equation: 
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For three rhombuses, the angular acceleration can then be determined: 
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We have then extrapolated for a linear actuator constructed with n rhombuses: 
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 (53) 
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3.2.5 The kite configuration repetition or networking 
There seems to be no advantage to gain from networking the kite configuration. This will 
even add complexity to the kinematics models. Therefore, this prospect has not been 
investigated further. 

4. Kinematics performance 
4.1 Singularity analysis 
4.1.1 General four bar linkage 
For the general four bar linkage, singularities can be found when A + C = 0 using the values 
of equation 8. The solution to this equation results in: 
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 (54) 

4.1.2 The parallelogram configuration 
Singularities could be found only when Rr = 0 which is impossible since all links obviously 
have lengths larger then zero. 
From the kinematics point of view, no limitations apply on the application of parallelograms 
since the rocker can follow the crank in any position allowing full rotation capability, 
therefore having no kinematics singularity whatesoever. 
This mechanism could be considered somewhat similar or equivalent to the belt and pulley 
one where the two pulleys are of equal lengths if the belt is considered without elasticity. 

4.1.3 The rhombus configuration 
For the IDP, singularities exist and they can be determined by cancelling the denominator in 
the equations 20 and 21 leading to the two following equations. 
The first one calculates the singularity in terms of the input angle θ: 

 ( )2sin = 0θ   (55) 

Hence, we find a singularity at θ = 0 and its conterpart θ = 360 degrees. 
For the second one determines the singularity in terms of the extremity position x: 

 
2

24 = 0x
r

−   (56) 

Hence, the singular position x = 2r corresponds to the same posture as θ = 0. 
From a geometric point of view, links have no material existence (no mass) and they can 
occupy the same position in space. In reality, the masses do not allow such cases and 
therefore the singularity will be alleviated by bar width as will be explained later in the 
design section. The IDDP models bring singularities. Observation of the denominator allows 
us to determine that the singular configurations are just the same as the one studied for the 
IDP since the equations feature the same denominators under the power. 

4.1.4 The kite or diamond shape configuration 
If R > r, then this results then into an amplified motion without any singularity with full 360 
degrees rotation of the input crank. This configuration has an advantage over the other 
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types of four-bars. This would surely represent one reason to apply this mechanism as a 
linear actuator. 
If R < r, then the mechanism cannot reach an input angle of 180 degrees since this would 
mean 2R > 2r in contradiction with stated configurations. Hence, the system will block into 
position θmax < 180° unable to go further. The angular range will be limited to [0, θmax] where: 

 ( )= 2arcsinmax
R
rθ   (57) 

This posture also yield a singularity which can also enforce mechanism blockage. Hence, 
this type will not be retained. 

4.1.5 The rhombus configuration repetition or networking 
In terms of singularities, finding the roots of the FDP and IDP will lead to the same 
singularities as for a single rhombus as it would seem logical. In terms of singularities, 
finding the roots of the FDDP and IDDP is equivalent to finding the same singularities 
solving the roots of only the IDDP as for a single rhombus. 
Therefore, networking rhombuses will not introduce any singularity. 

4.2 Workspace 
The second important performance criterion for robotic design is usually the workspace. In the 
case of single DOF device, this narrows down to a simple range which we wish to maximize. 

4.2.1 The general four-bar linkage 
The mechanism can reach the following maximum length where two links are aligned, 
either r1 and r4 or r2 and r3. Then, the mechanism reach will be xmax and is calculated by the 
length of the extension of the two shortest links going from O2 and leading to the extremity B: 

 ( )1 4 2 3= min ,maxx r r r r+ +   (58) 

The mechanism can also reach a minimum length which is a far more difficult problem to 
determine depending upon the configuration and relative link lengths. This is where 
Graschoff’s formulas could help solve this problem. Despite the fact that link lengths value 
could be found leading to a coupler curve being a straight line, this constitutes another 
reason to avoid the general four-bar mechanisms. 

4.2.2 The parallelogram configuration 
The maximum and minimum actuator values of x can be determined by looking for the 
roots of the x(θ) function derivative or by geometric reasoning. Hence, using the simplest, i-e 
the second approach, we can determine that the extremas are found at θ = kπ where k ∈ 
{0,1,2,3, . . .}. With n = 0, the maximum value is found xmax = R + r and with n = 1, the 
minimum value is xmin = |R − r|. We do not need to go further because of the repetitive 
nature of the trigonometric signal. These correspond to the posture where the four-bar is 
folded on itself: one fold to the left and one to the right. 

4.2.3 The rhombus configuration 
To determine the maximum and minimum values, several methods lead to the same results. 
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Taking the FKP, equation 14, the maximum value is obtained when cos( 2
θ ) = 1 and the 

minimum value will be when cos( 2
θ  ) = −1. Hence, xmax = 2r and the related angle is then θ = 

0. Moroever, xmin = −2r and the related angle is then θ = −2π. These values imply that the 
pure geometric nature of the kinematics analysis allows the mechanism to reverse by going 
unto itself. Hence, the minimum can be seen on the left or negative side of the reference 
frame and the maximum is located on the right or positive side. 
With considerations of the linkage dimensions, the geometric analysis can be augmented by 
taking into account the linkage width. 
Firstly, two linkages cannot occupy the same space, therefore, the rhombus linkage 
configuration will have a pair of opposite linkages below and one pair above. This lead to 
physical constraints equations. This property can also be translated into geometric 
information. 
These opposite links are parallel pairs which will eventually touch each other alongside at 
two mechanism rotations. These postures could be considered as folded ones. The first 
corresponds to the minimum rotation and the second to the maximum rotation. 
Let the rhombus linkage be constructed by four bars of identical width w. 
The minimal rotation angle increases to: 

 > 0minθ  (59) 

 = 2arcsinmin
w
r

θ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 (60) 

Taking into account that the kinematics chain cannot reverse by going unto itself, the 
maximal rotation angle reduces to: 

 <maxθ π  (61) 

 = 2arccosmax
w
r

θ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 (62) 

The final range of the linear actuator is then the interval determined by: [2 arcsin( w
r , 

2 arccos( w
r ]. 
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The extreme positions can be determined from these values. Minimal length is going to 
occur at maximal angular displacement. 

 = 2 cos
2min

max
x r θ⎛ ⎞

⎜ ⎟
⎝ ⎠

  (63) 

Substituting θmax into the equation, we get: 

 ( )( )= 2 cos 2arccosmin
w
rx r   (64) 

Similarily, maximal length is going to occur at minimal angular displacement. 

 = 2 cos
2max

min
x r θ⎛ ⎞

⎜ ⎟
⎝ ⎠

 (65) 

Substituting θmin into the equation, we get: 

 ( )( )= 2 cos 2arcsinmax
w
rx r   (66) 

4.2.4 The kite or diamond configuration 
Let the kite linkage be constructed by four bars of identical width w. 
The minimal rotation angle is exactly the same as the rhombus: 

 > 0minθ  (67) 

 ( )= 2arcsinmin
w
rθ  (68) 

Taking into account that the kinematics chain cannot reverse by going unto itself, the 
maximal rotation angle reduces to the case where the long bars touch each other in the 
negative sense of the reference frame. We have to take then the angle outside the triangle 
formed by these long bars: 

 < 2maxθ π  (69) 

 = 2 2arcsinmax
w
R

θ π ⎛ ⎞− ⎜ ⎟
⎝ ⎠

 (70) 

The extreme positions can be determined from these values. In the case of maximal position, 
the two geometric triangles formed by the long and short links add up: 
Minimal length is going to occur at maximal angular displacement. 

 2 2= ( ) cos
2 2min

max

wx R r θ⎛ ⎞− − ⎜ ⎟
⎝ ⎠

 (71) 

Maximal length is going to occur at minimal angular displacement. 

 2 2= ( ) cos
2 2max

max

wx R r θ⎛ ⎞− + ⎜ ⎟
⎝ ⎠

 (72) 



 Advanced Strategies for Robot Manipulators 

 

126 
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Fig. 13. The rhombus encumbrance 

4.3 Encumbrance 
4.3.1 The rhombus configuration 
The proposed linear actuators are based on four-bar linkage where encumbrance becomes 
an issue considering that the mechanism spread sideways making them subject to collisions 
if other actuators would be located in the vicinity such as it is often the case with parallel 
manipulators. 
Ecumbrance is defined as the distance from one side of the mechanism to the other side 
taking into account the linkage width. 
A Rhombus would have minimum encumbrance of Emin = 2w when the angle is at θmin. This 
characteristic is relatively unimportant compared to the maximum encumbrance occuring at 
the maximum input angle posture θmax: 

 2 2= 2maxE r w w− +  (73) 

4.3.2 The kite configuration 
A folded kite would have minimum encumbrance of Emin = 2w when the angle is at θmin just 
like the rhombus. The maximum encumbrance is occuring at the maximum input angle 

posture θmax = 2
π  when the smaller links are aligned: 

 = 2maxE r w+  (74) 

As can be observed, the kite encumbrance only really depends on the dimension of the 
shortest links. 

4.4 The repeated rhombus configuration 
The problem of encumbrance justifies the design of a mechanism based on the repetition of 
identical rhombuses as it is done for lifting platforms. 
The repetition of the four-bar rhombuses is not affecting the rotation input and the θmin and 
θmax values are only related to the first rhombus, therefore these extrema are unchanged. 

4.4.1 The double rhombus 
For the double rhombus, the minimum position is determined by: 

 ( )( )= 4 cos 2arccosmin
w
rx r  (75) 

Kinematics Synthesis of a New Generation of Rapid Linear Actuators for High Velocity Robotics  
with Improved Performance Based on Parallel Architecture   

 

129 

And the maximum position is calculated using: 

 ( )( )= 4 cos 2arcsinmax
w
rx r  (76) 

4.4.2 The triple rhombus 
For the triple rhombus, the minimum position is determined by: 

 ( )( )= 6 cos 2arcsinmax
w
rx r   (77) 

And the maximum position is calculated using: 

 ( )( )= 6 cos 2arcsinmax
w
rx r   (78) 

4.4.3 The multiple rhombus 
For the generalized case with n rhombuses, the minimum position is determined by: 

 ( )( )= 2 cos 2arcsinmax
w
rx n r   (79) 

And the maximum position is calculated using: 

 ( )( )= 2 cos 2arcsinmax
w
rx n r  (80) 

4.4.4 Encumbrance of the multiple rhombus 
The networking of rhombuses is not affecting encumbrance in the sense that the values are 
exactly the same. However, the main advantage is that the reach which can be defined as the 
maximum position is increasing while the encumbrance remains unchanged. This could not 
happen with a simple rhombus where we would need to increase the link lengths in order to 
increase reach resulting in larger emcumbrance. 
Lets define the encumbrance ratio. 
The encumbrance ratio is defined as the ratio of reach divided by the transverse 
encumbrance perpendicular to the axis of motion. 

 = max

max

Xe
E

  (81) 

For the repeated rhombus, this occus when θ = θmin and the encumbrance ratio becomes: 

 ( )( ) 2 2= 2 cos 2arcsin 2w
re n r r w w− +   (82) 

Hence, the motion to encumbrance ratio is increasing proportionaly with the rhombus repetition. 

5. Design examples 
5.1 Initial prototypes 
A first group of prototypes were constructed and tested using a Meccano set while the 
author was working at the Ecole Nationale des Arts et Metiers in Metz. This resulted in the 
constuction of a planar parallel manipulator as seen in figure 14. The DC motor was the 
typical Meccano 36 VDC. 



 Advanced Strategies for Robot Manipulators 

 

128 

Emax

Emin

B

O O

B

X

 
Fig. 13. The rhombus encumbrance 

4.3 Encumbrance 
4.3.1 The rhombus configuration 
The proposed linear actuators are based on four-bar linkage where encumbrance becomes 
an issue considering that the mechanism spread sideways making them subject to collisions 
if other actuators would be located in the vicinity such as it is often the case with parallel 
manipulators. 
Ecumbrance is defined as the distance from one side of the mechanism to the other side 
taking into account the linkage width. 
A Rhombus would have minimum encumbrance of Emin = 2w when the angle is at θmin. This 
characteristic is relatively unimportant compared to the maximum encumbrance occuring at 
the maximum input angle posture θmax: 

 2 2= 2maxE r w w− +  (73) 

4.3.2 The kite configuration 
A folded kite would have minimum encumbrance of Emin = 2w when the angle is at θmin just 
like the rhombus. The maximum encumbrance is occuring at the maximum input angle 

posture θmax = 2
π  when the smaller links are aligned: 

 = 2maxE r w+  (74) 

As can be observed, the kite encumbrance only really depends on the dimension of the 
shortest links. 

4.4 The repeated rhombus configuration 
The problem of encumbrance justifies the design of a mechanism based on the repetition of 
identical rhombuses as it is done for lifting platforms. 
The repetition of the four-bar rhombuses is not affecting the rotation input and the θmin and 
θmax values are only related to the first rhombus, therefore these extrema are unchanged. 

4.4.1 The double rhombus 
For the double rhombus, the minimum position is determined by: 

 ( )( )= 4 cos 2arccosmin
w
rx r  (75) 

Kinematics Synthesis of a New Generation of Rapid Linear Actuators for High Velocity Robotics  
with Improved Performance Based on Parallel Architecture   

 

129 

And the maximum position is calculated using: 

 ( )( )= 4 cos 2arcsinmax
w
rx r  (76) 

4.4.2 The triple rhombus 
For the triple rhombus, the minimum position is determined by: 

 ( )( )= 6 cos 2arcsinmax
w
rx r   (77) 

And the maximum position is calculated using: 

 ( )( )= 6 cos 2arcsinmax
w
rx r   (78) 

4.4.3 The multiple rhombus 
For the generalized case with n rhombuses, the minimum position is determined by: 

 ( )( )= 2 cos 2arcsinmax
w
rx n r   (79) 

And the maximum position is calculated using: 

 ( )( )= 2 cos 2arcsinmax
w
rx n r  (80) 

4.4.4 Encumbrance of the multiple rhombus 
The networking of rhombuses is not affecting encumbrance in the sense that the values are 
exactly the same. However, the main advantage is that the reach which can be defined as the 
maximum position is increasing while the encumbrance remains unchanged. This could not 
happen with a simple rhombus where we would need to increase the link lengths in order to 
increase reach resulting in larger emcumbrance. 
Lets define the encumbrance ratio. 
The encumbrance ratio is defined as the ratio of reach divided by the transverse 
encumbrance perpendicular to the axis of motion. 

 = max

max

Xe
E

  (81) 

For the repeated rhombus, this occus when θ = θmin and the encumbrance ratio becomes: 

 ( )( ) 2 2= 2 cos 2arcsin 2w
re n r r w w− +   (82) 

Hence, the motion to encumbrance ratio is increasing proportionaly with the rhombus repetition. 

5. Design examples 
5.1 Initial prototypes 
A first group of prototypes were constructed and tested using a Meccano set while the 
author was working at the Ecole Nationale des Arts et Metiers in Metz. This resulted in the 
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Fig. 14. Planar parallel manipulator with four-bar actuators 

They were sufficient to prove and validate the concept. In effect, one rhombus four-bar with 
a Meccano motor could not be seen moving due to very high accelerations. 

5.2 Actual prototypes 
This work was then completed during the author stay at Middle East Technical University, 
Northern Cyprus Campus. 
Three typical linear actuators were constructed as seen in figure 15. One comprising one 
rhombus, one with two rhombuses and one with a kite configuration using the same links 
and motors whenever possible. 

5.2.1 Configuration 
Here are the mechanism geometric parameters. They were constructed with two 
standardized bars. The short bars have length r = 10 cm and width w = 3 cm. The long bars 
have length R = 20 cm with same width.  
The geared electrical motors were selected to provide maximum rotation speed of 120 RPM. 
Hence, ωmax = 4π radians/s. 

5.2.2 Extreme positions 
For the rhombus, from the proposed equations, the minimum input angle is then θmin = 0,301 
radian. The maximum input angle is θmax = 2,84 radian. These values are confirmed by 
measurements on the prototypes. 
From these angular positions, we calculate the maximum position or reach as xmax = 19,77 cm 
and the minimum value is xmin = 3 cm. Again these calculated values are confirmed by 
measurements. 

Kinematics Synthesis of a New Generation of Rapid Linear Actuators for High Velocity Robotics  
with Improved Performance Based on Parallel Architecture   

 

131 

 

  
                                 (a) Kite                                                           (b) Single rhombus 

 
(c) Double rhombus 

Fig. 15. The three four-bar actuator prototypes 

The encumbrance can also be deduced. At θmax, the maximum encumbrance is calculated as 
Emax = 22,77 cm. This was confirmed by measurements. 

5.2.3 Motion analysis 
In the curves of figure 16, t is in fact θ2, the angular input position in radian, and ω is the 
angular velocity made to change from −4π to 4π radians/s. 
The first question is about the actuator linearity and this issue can be answered by plotting 
the extremity position in relation to the input angle position. The motion becomes non-linear 
at the angular extremities and it becomes almost linear for a large number of angular 
positions from -1 to 1 radian corresponding to the position range of -18 to 18 cm. 
The second question is to determine the extremity velocity profile according to input angle 
position at angular velocities going from the minimum until the maximum. This last value 
comes from the geared motor specifications. End-effector velocity changes almost linearily 
with the angular velocity but changes non-linearily with the angular position. It cancels out 
at angular extremities and it becomes maximal at θ = π. 
This velocity profile also corresponds to the accuracy profile. This means that for a 
predefined encoder accuracy located on the gearmotor shaft, the resulting extremity 
accuracy will be changing accordingly. One can foresee that the lowest accuracy is attained 
at θ = π and the best accuracies are achieved near the angular position extremities. 
The third question involves the extremity acceleration in relation to input angle position at 
angular velocities going from the minimum until the maximum. We have to fix some 
angular acceleration and the value 1rad/s2 has been selected arbitrarily. Extremity 
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acceleration changes non-linearily with the angular velocity. It changes almost linearily with 
the angular position. It reaches very high values when the linkage reaches very close to the 
maximum position. 
 

(a) Position 

 
 

(b) Velocity 

 
(c) Acceleration 

Fig. 16. The rhombus kinematics performance 
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6. Conclusion 
As can be seen by the results obtained by calculations as well by experiments on the 
prototypes, four-bar mechanisms can be rearranged in rhombus and kite configurations 
which lead to very performant prismatic pairs allowing to design very fast linear actuators. 
Moreover, to improve performance and to reduce emcumbrance, networking the rhombus 
four-bars can lead to very good results. 
In the author’s knowledge, this is the first time that four-bars were envisaged to be applied 
as linear actuators. 
The next step will be to analyze their dynamics design integrating force analysis. 
Then, to design a large scale parallel robot prototype will help investigate their worthiness 
towards the design a very high speed milling machine. 
Finaly, several optimization problems may arise to determine proper linkage sizing. 
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1. Introduction 
1.1 Robot manipulators 
Robot manipulators are well-known as nonlinear systems including strong coupling 
between their dynamics (Craig, 1996). These characteristics, in company with: 1) structured 
uncertainties caused by model imprecision of link parameters, payload variation, etc., and 2) 
unstructured uncertainties produced by un-modeled dynamics –such as nonlinear friction and 
external disturbances– make the motion control of rigid-link manipulators a complicated 
problem (Spong & Vidiasagar, 1989). Practice trajectory control is required in many of the 
sophisticated applications of manipulators (e.g. machining, welding, complex assembly). On 
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they are required to handle various tools and, hence, the dynamic parameters of the robots 
vary during operation. Thus, it is difficult to initiate an appropriate mathematical model for 
employing model-based control strategies. 
In general, the intelligent control approaches can attenuate the effects of structured 
parametric uncertainty and unstructured disturbance by using their powerful learning 
ability without a detailed knowledge of the controlled plant in the design processes. On the 
other hand, many intelligent control algorithms could have been found for the robot control 
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uncertainties may be structured, unstructured, or may result from nondeterministic features 
of the plant. A sliding mode controller is essentially high gain switching controller. The idea 
is to keep the trajectory of the system on a particular surface in the phase space. In a two 
dimensional system this would reduce to following a line in the phase plane. The SMC law 
is formulated using a Lyapunov approach that guarantees robustness despite the presence 
of bounded modeling uncertainties (Slotin & Li, 1991). 
However, sliding mode control has a good deal of advantages such as insensitivity to 
parameter variations, disturbance rejection and fast dynamic responses (Zhang et al., 2008). 
Despite these merits, SMC suffers from some disadvantages. Actually, the sliding mode 
control law consists of two main parts. The first part is the equivalent control law which 
involves inverse dynamics of model nonlinearities that demonstrates the dependency of 
SMC on the dynamical model of the plant. The second part is the robustifying term which has 
discontinuous nature and may employ unnecessary high control gain to overcome 
uncertainties and disturbances. However, this discontinuity may lead to chattering 
phenomenon that can excite un-modeled high-frequency plant dynamics and harm the 
overall control system. Also, using high control gain may cause saturating the actuators. 
Accordingly, several methods have been developed for improving the SMC performance 
which the most significant of them is intelligent control approach (Kaynak et al., 2001) 
mainly includes fuzzy logic control and neural network control. 

1.3 Fuzzy control 
Fuzzy control is based on fuzzy logic and is a nonlinear control strategy which uses 
heuristic information. In the fuzzy control design methodology, human thinking and expert 
knowledge are incorporated into a fuzzy system that emulates the decision-making process 
of the human. Basically, a fuzzy system in general or fuzzy control in especial comprises five 
main parts: 1) fuzzyfication of inputs, 2) fuzzy control rules, 3) fuzzy implication, 4) fuzzy 
reasoning and 5) defuzzification (Lee, 1990), (Wang, 1997). 
Fuzzy control represents efficient performance in absence of uncertainties and disturbance 
and where the plant dynamics were well-described with mathematical equations. Moreover, 
stability of the fuzzy control systems is hard to analyze and needs strong mathematical 
procedures. Therefore, it seems reasonable to enhance fuzzy control efficiency by using of 
incorporating well-organized nonlinear control methods (e.g. sliding mode control). 

1.4 Neural network control 
Prominent features of neural networks (NN) have drawn much attention in control research 
areas especially in robot control systems (Lewis, 1998). Some of this features that are closely 
related to control design strategies are: 
• Universal approximation: neural networks can approximate smooth nonlinear functions 

with any degree of accuracy. This feature may be utilized in nonlinear control systems. 
• Learning and adaptation: neural networks can be trained off-line with adequate amount 

of data or they can be adapted on-line with appropriate adaptation laws. This property 
is applied to identification concerns. 

• MIMO characteristic: neural networks can accept many inputs and can produce required 
number of outputs. So they are appropriate for MIMO control systems. 

Sliding Mode Control of Robot Manipulators via Intelligent Approaches    

 

137 

There are many other distinguished features as parallel processing, hardware 
implementation and data fusion etc. that we neglect them here. Also, fuzzy logic may be 
employed for constructing special networks like fuzzy-neural-networks. Alternatively, 
neural networks may be exerted to fuzzy control design like neuro-fuzzy control systems. 
In the reminder of this chapter three methods are proposed for controller designs. In the first 
case, sliding mode control plays the main role and fuzzy logic is employed for tuning the 
controller gains. In the second case, fuzzy control and sliding mode control have the parallel 
mission in control strategy. Finally, the third case proposes the sliding mode control method 
by using adaptive neural network approach. 

2. Sliding mode control using fuzzy approach 
2.1 Sliding_mode_PID controller design by using of fuzzy tuning 
This section addresses a chattering free sliding mode control (SMC) for a robot manipulator 
including PID part with a fuzzy tunable gain. The main idea is that the robustness property 
of SMC and good response characteristics of PID are combined with fuzzy tuning gain 
approach to achieve more acceptable performance. For this purpose, in the first stage, a PID 
sliding surface is considered such that the robot dynamical equations can be rewritten in 
terms of sliding surface and its derivative and the related control law of the SMC design will 
contain a PID part. The stability guarantee of this sliding mode PID-controller is proved by a 
lemma using Lyapunov direct method. Then, in the second stage, in order to decrease the 
reaching time to the sliding surface and deleting the oscillations of the response, a fuzzy 
tuning system is used for adjusting both controller gains including sliding controller gain 
parameter and PID coefficients (Ataei & Shafiei, 2008). 

2.1.1 Mathematical model of the system 
The dynamical equation of an n-link robot manipulator in the standard form is as follows 
(Spong & Vidiasagar, 1989): 

 ( ) ( , ) ( ) dM q q C q q q G q τ τ+ + + =  (1) 

where ( ) n nM q R ×∈  is the completed inertia matrix, the vectors , , nq q q R∈  are the position, 
velocity and angular acceleration of the robot joints, respectively. Moreover, the matrix 

( , ) n nC q q R ×∈  is the matrix of Coriolis and centrifugal forces and ( ) nG q R∈  is the gravity 
vector. Also, n

d Rτ ∈  denotes the vector of disturbance and un-modeled dynamics, and 
finally, τ  is the torque vector. In the following, two conventional properties of the robot 
manipulators are considered. 
Property 2.1. The inertia matrix ( )M q  is symmetric and positive definite, TM M= . 

Property 2.2. The matrix of ( 2 )M C−  is skew-symmetric, i.e. for any vector of X , we have 

( 2 ) 0TX M C X− = . 

2.1.2 Sliding mode control with PID 
The objective of the tracking control is to design such a control law, for obtaining the 
suitable input torque τ , that the position vector q  could track the desired trajectory dq . In 
this regard, the tracking error vector is defined as follows: 



 Advanced Strategies for Robot Manipulators 

 

136 

uncertainties may be structured, unstructured, or may result from nondeterministic features 
of the plant. A sliding mode controller is essentially high gain switching controller. The idea 
is to keep the trajectory of the system on a particular surface in the phase space. In a two 
dimensional system this would reduce to following a line in the phase plane. The SMC law 
is formulated using a Lyapunov approach that guarantees robustness despite the presence 
of bounded modeling uncertainties (Slotin & Li, 1991). 
However, sliding mode control has a good deal of advantages such as insensitivity to 
parameter variations, disturbance rejection and fast dynamic responses (Zhang et al., 2008). 
Despite these merits, SMC suffers from some disadvantages. Actually, the sliding mode 
control law consists of two main parts. The first part is the equivalent control law which 
involves inverse dynamics of model nonlinearities that demonstrates the dependency of 
SMC on the dynamical model of the plant. The second part is the robustifying term which has 
discontinuous nature and may employ unnecessary high control gain to overcome 
uncertainties and disturbances. However, this discontinuity may lead to chattering 
phenomenon that can excite un-modeled high-frequency plant dynamics and harm the 
overall control system. Also, using high control gain may cause saturating the actuators. 
Accordingly, several methods have been developed for improving the SMC performance 
which the most significant of them is intelligent control approach (Kaynak et al., 2001) 
mainly includes fuzzy logic control and neural network control. 

1.3 Fuzzy control 
Fuzzy control is based on fuzzy logic and is a nonlinear control strategy which uses 
heuristic information. In the fuzzy control design methodology, human thinking and expert 
knowledge are incorporated into a fuzzy system that emulates the decision-making process 
of the human. Basically, a fuzzy system in general or fuzzy control in especial comprises five 
main parts: 1) fuzzyfication of inputs, 2) fuzzy control rules, 3) fuzzy implication, 4) fuzzy 
reasoning and 5) defuzzification (Lee, 1990), (Wang, 1997). 
Fuzzy control represents efficient performance in absence of uncertainties and disturbance 
and where the plant dynamics were well-described with mathematical equations. Moreover, 
stability of the fuzzy control systems is hard to analyze and needs strong mathematical 
procedures. Therefore, it seems reasonable to enhance fuzzy control efficiency by using of 
incorporating well-organized nonlinear control methods (e.g. sliding mode control). 

1.4 Neural network control 
Prominent features of neural networks (NN) have drawn much attention in control research 
areas especially in robot control systems (Lewis, 1998). Some of this features that are closely 
related to control design strategies are: 
• Universal approximation: neural networks can approximate smooth nonlinear functions 

with any degree of accuracy. This feature may be utilized in nonlinear control systems. 
• Learning and adaptation: neural networks can be trained off-line with adequate amount 

of data or they can be adapted on-line with appropriate adaptation laws. This property 
is applied to identification concerns. 

• MIMO characteristic: neural networks can accept many inputs and can produce required 
number of outputs. So they are appropriate for MIMO control systems. 

Sliding Mode Control of Robot Manipulators via Intelligent Approaches    

 

137 

There are many other distinguished features as parallel processing, hardware 
implementation and data fusion etc. that we neglect them here. Also, fuzzy logic may be 
employed for constructing special networks like fuzzy-neural-networks. Alternatively, 
neural networks may be exerted to fuzzy control design like neuro-fuzzy control systems. 
In the reminder of this chapter three methods are proposed for controller designs. In the first 
case, sliding mode control plays the main role and fuzzy logic is employed for tuning the 
controller gains. In the second case, fuzzy control and sliding mode control have the parallel 
mission in control strategy. Finally, the third case proposes the sliding mode control method 
by using adaptive neural network approach. 

2. Sliding mode control using fuzzy approach 
2.1 Sliding_mode_PID controller design by using of fuzzy tuning 
This section addresses a chattering free sliding mode control (SMC) for a robot manipulator 
including PID part with a fuzzy tunable gain. The main idea is that the robustness property 
of SMC and good response characteristics of PID are combined with fuzzy tuning gain 
approach to achieve more acceptable performance. For this purpose, in the first stage, a PID 
sliding surface is considered such that the robot dynamical equations can be rewritten in 
terms of sliding surface and its derivative and the related control law of the SMC design will 
contain a PID part. The stability guarantee of this sliding mode PID-controller is proved by a 
lemma using Lyapunov direct method. Then, in the second stage, in order to decrease the 
reaching time to the sliding surface and deleting the oscillations of the response, a fuzzy 
tuning system is used for adjusting both controller gains including sliding controller gain 
parameter and PID coefficients (Ataei & Shafiei, 2008). 

2.1.1 Mathematical model of the system 
The dynamical equation of an n-link robot manipulator in the standard form is as follows 
(Spong & Vidiasagar, 1989): 

 ( ) ( , ) ( ) dM q q C q q q G q τ τ+ + + =  (1) 

where ( ) n nM q R ×∈  is the completed inertia matrix, the vectors , , nq q q R∈  are the position, 
velocity and angular acceleration of the robot joints, respectively. Moreover, the matrix 

( , ) n nC q q R ×∈  is the matrix of Coriolis and centrifugal forces and ( ) nG q R∈  is the gravity 
vector. Also, n

d Rτ ∈  denotes the vector of disturbance and un-modeled dynamics, and 
finally, τ  is the torque vector. In the following, two conventional properties of the robot 
manipulators are considered. 
Property 2.1. The inertia matrix ( )M q  is symmetric and positive definite, TM M= . 

Property 2.2. The matrix of ( 2 )M C−  is skew-symmetric, i.e. for any vector of X , we have 

( 2 ) 0TX M C X− = . 

2.1.2 Sliding mode control with PID 
The objective of the tracking control is to design such a control law, for obtaining the 
suitable input torque τ , that the position vector q  could track the desired trajectory dq . In 
this regard, the tracking error vector is defined as follows: 



 Advanced Strategies for Robot Manipulators 

 

138 

 de q q= −  (2) 

In order to apply the SMC, the sliding surface is considered as relation (3) which contains 
the integral part in addition to the derivative term: 

 1 2 0

t
s e e edtλ λ= + + ∫�  (3) 

where iλ  is diagonal positive definite matrix. Therefore, 0s = is a stable sliding surface and 
0e →  as t →∞ . The robot dynamical equations can be rewritten based on the sliding 

surface (in term of filtered error) as: 

 dMs Cs f τ τ= − + + −�  (4) 
Where 

 1 2 1 2 0
( ) ( )

t

d df M q e e C q e edt Gλ λ λ λ= + + + + + +∫�� � �  (5) 

Now, the control input can be considered as: 

 ˆ sgn( )vf K s K sτ = + +  (6) 
where 

 GedteqCeeqMf
t

dd
ˆ)(ˆ)(ˆˆ

0
2121 ++++++= ∫λλλλ ����  (7) 

is an estimation of f and 
0

t

v v v vK s K e K e K edtλ λ= + + ∫�  is the outer PID tracking loop, and 

,vK K are diagonal positive definite matrices and are defined such that the stability 
conditions are guaranteed. The sgn(s) is also the sign function.  
We have also: 

 1 2 1 2 0
( ) ( )

t

d df M q e e C q e edt G Fλ λ λ λ= + + + + + + ≤∫� � �� �� � �  (8) 

where ˆf f f= −� , ˆM M M= −�  , ˆC C C= −� ,and ˆG G G= −� . Vector F can also be selected as 
the following relation: 

 1 2 1 2 0
( ) (

t

d dF M q e e C q e edt Gλ λ λ λ= + + + + + +∫� �� �� � �  (9) 

In order to govern the system states ( , )e e� to reach the sliding surface 0s = in a limited time 
and to remain there, the control law should be designed such that the following sliding 
condition is satisfied (Slotin & Li, 1991): 

 1/21 ( ) , 0
2

T Td s Ms s s
dt

η η⎡ ⎤ < − >⎣ ⎦  (10) 

This aim is fulfilled in the following lemma. 
Lemma 2.1. In the SMC design of a system with dynamical equation (1) and sliding surface 
(3), if the control input τ  is selected as (6), by considering F as (9) and 

11 22( , , , )nnK diag K K K= … with the following components: 
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 , 1,2, ,ii v D i
K F K s T i nη⎡ ⎤= + + + =⎣ ⎦ …  (11) 

Then, the sliding condition (10) is satisfied by equation (4). 
Proof: Consider the following Lyapunov function candidate: 

 1
2

TV s Ms=  (12) 

Since M is positive definite, for 0s ≠ we have 0V > and by taking derivative from relation 
(12) and regarding the symmetric property of M, it can be written: 

 1
2

T TV s Ms s Ms= +� � �  (13) 

By substituting (4) into (13) and considering that ( 2 ) 0Ts M C s− =� , we have: 

 1 ( ) ( )
2

T T T T
d dV s Ms s Cs s f s fτ τ τ τ= − + + − = + −� �  (14) 

By replacing the relation (6) into (14), V� can be rewritten as: 

 
1

ˆ( sgn( )) ( )
n

T T
d v d v ii i

i
V s f f K s K s s f K s K sτ τ

=

= + − − − = + − −∑��  (15) 

Since the following inequality (16) is valid and by regarding the relation (11), we have: 

 v D d vF K s T f K sτ+ + ≥ + −�  (16) 

 [ ]ii d v i iK f K sτ η≥ + − +�  (17) 

Finally, it can be concluded that: 

 
1

n

i i
i

V sη
=

≤ −∑�  (18) 

This indicates that V is a Lyapunov function and the sliding condition (10) has been 
satisfied. 
The use of sign function in the control law leads to high oscillations in control torque which 
is undesired phenomenon and is called chattering. To overcome this drawback, there are 
some solutions that one of them is using the following saturation function instead of sign 
function in the discontinuous part of the control law: 

 

1

1

s
s ssat s

s

ϕ

κ ϕ
ϕ ϕ

ϕ

⎧ ≥
⎪⎛ ⎞ ⎪= − < <⎨⎜ ⎟

⎝ ⎠ ⎪
⎪− ≤ −⎩

 (19) 
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By this, there is a boundary layer ϕ  around the sliding surface such that once the state 
trajectory reaches this layer, then it will be remaining there.  

2.1.3 Fuzzy gain tuning 
As mentioned before, by using a high gain in SMC, i.e. K, the sensitivity of the controller to 
the model uncertainties and external disturbances can be reduced. Moreover, a high gain in 
PID part of the control system ( )vK can reduce the reaching time to sliding surface and 
tracking error. However, increasing the gain causes the increment of the oscillations in the 
input torque around the sliding surface. Therefore, if this gain can be tuned based on the 
distance of the states to the sliding surface, a more acceptable performance can be achieved. 
In the other words, the value of gain should be selected high when the state trajectory is far 
from the sliding surface and when the distance is decreasing, its value should be decreased. 
This idea can be accomplished by using fuzzy logic in combination with SMC to tune the 
gain adaptively. 
For this purpose, two-input one-output fuzzy system is designed whose inputs are s  and s  
which are the distance of state trajectories to the sliding surface and its derivative, 
respectively. The membership functions of these two inputs are shown in Fig. 1. The output 
of the fuzzy system is denoted by fuzzK and has been shown in Fig. 2. For applying these 
gains to the control input, the normalization factors N and vN  are used as the following 
relations: 

 fuzzK N K= ⋅  (20) 

 v v fuzzK N K= ⋅  (21) 

These factors can be selected by trial and error such that the stability condition (17) is 
satisfied. 
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Fig. 1. The membership functions, (a) input s , (b) input s  

The maximum values of K and Kv are limited according to the system actuators power, and the 
minimum value of K should not be less than the provided amount in relation (17). The fuzzy 
rule base has been given in table 1 in which the following abbreviations have been used: NB: 
Negative Big; NS: Negative Small; Z: Zero; PS: Positive Small; PB: Positive Big; M: Medium. 
For example, when s is negative small (NS) and s is positive (P), then fuzzK is small (S). 
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Fig. 2. The membership functions of the output fuzzK  

PB PS Z NS NB 
s  
s  
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Table 1. The fuzzy rule base for tuning fuzzK  

Simulation example 2.1. In order to show the effectiveness of the proposed control law, it is 
applied to a two-link robot with the following parameters: 
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masses and lengths of the first and second links, respectively. The masses are assumed to be 
in the end of the arms and the gravity acceleration is considered as 9.8g = . Moreover, the 
masses are considered with 10% uncertainty as follow:   
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where 
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By this, there is a boundary layer ϕ  around the sliding surface such that once the state 
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satisfied. 
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Fig. 1. The membership functions, (a) input s , (b) input s  

The maximum values of K and Kv are limited according to the system actuators power, and the 
minimum value of K should not be less than the provided amount in relation (17). The fuzzy 
rule base has been given in table 1 in which the following abbreviations have been used: NB: 
Negative Big; NS: Negative Small; Z: Zero; PS: Positive Small; PB: Positive Big; M: Medium. 
For example, when s is negative small (NS) and s is positive (P), then fuzzK is small (S). 
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and the disturbance torque is considered as: 
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The design parameters are determined as follow: 
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Values of ϕ  and η  are selected as 0.167ϕ = and [ ]0.1 0.1 Tη = . Moreover, the factors N 

and vN  are selected as: 
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 (29) 

In order to show the improvement due to the proposed method, the simulation results of 
applying this method are compared with the related results of the conventional SMC. The 
tracking error and control law in the case of conventional SMC have been shown in Fig. 3 
and Fig. 4, respectively. The corresponding graphs for the case of applying fuzzy SMC-PID 
are also provided in Fig. 5 and 6.  
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Fig. 3. The tracking errors in the case of using conventional SMC 

As it can be seen from these figures, the proposed fuzzy SMC-PID has faster response and 
less tracking error in comparison with conventional SMC. In order to show more clearly the 
difference between the tracking errors in two cases, the enlarged graphs have been provided 
in Fig. 7 and 8. 
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Fig. 4. The control inputs in the case of using conventional SMC 
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Fig. 6. The control inputs in the case of using Fuzzy SMC-PID 
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Fig. 7. The enlargement of the tracking errors in the case of using conventional SMC 
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2.2 Incorporating sliding mode and fuzzy control 
In this section, a combined controller includes SMC term and fuzzy term is proposed for set-
point tracking of robot manipulators. Some practical issues, such as existence of joint 
frictions, restriction on input torque magnitude due to saturation of actuators, and modeling 
uncertainties have been considered here. Design procedure contains two steps. First, SMC 
design is accomplished and system stability in this case is provided by Lyapunov direct 
method. When the tracking error would be less than predefined value then a sectorial fuzzy 
controller (SFC), (Calcev, 1998), is responsible for control action. Designing of this kind of 
fuzzy controller is exactly the same as in which has performed in (Santibanez et al., 2005). 
This proposed controller has following advantages. 1) There are less tracking errors versus 
traditional SMC in condition that the control input is limited, 2) the chattering is avoided, 3) 
convergence of tracking error is more rapid than fuzzy controller designed in (Santibanez et 
al., 2005) and modeling uncertainty is considered here (Shafiei & Sepasi, 2010). 

2.2.1 Mathematical model and problem formulation 
This time the friction of joint is considered and is added to dynamical equation (1) as: 

 ( ) ( , ) ( ) ( , )M q q C q q q G q F q τ τ+ + + =  (30) 

where ( , ) nF q Rτ ∈  stands for the friction vector which is as follows (Cai & Song, 1994): 

 ( , ) sgn( ) 1 sgn( ) ( ; )i i i i ci i i i sif q b q f q q sat fτ τ⎡ ⎤= + + −⎣ ⎦  (31) 

 

where ( , )i if q τ , 1,2, ,i n= , denotes the i-th element of ( , )F q τ  vector. ib , cif  and  sif  are 
the viscous, Coulomb and static friction, respectively. The sat(·; ·) indicates saturation 
function with following equation.  

( ; )
r if x r

sat x r x if r x r
r if x r

>⎧
⎪= − ≤ ≤⎨
⎪− < −⎩

 

 

In the following, ( )M q , ( , )C q q  and ( )G q  might be shown by M , C , and G , respectively in 
where it would be requisite. 
Now, the boundedness properties are defined as below:  

 { }sup ( ) , 1, ,
n

i i
q R

g q g i n
∈

≤ =  (32) 

where ig  stands for the i-th element of ( )G q  and ig  is finite nonnegative constant. Assume 
that the maximum torque that joint actuator can supply is maxτ . Therefore: 

 max , 1, ,i i i nτ τ≤ =  (33) 

and each actuator satisfies the following condition:  

 max
i i sig fτ > +  (34) 



 Advanced Strategies for Robot Manipulators 

 

144 

0 2 4 6 8 10
-100

0

100

200

time(sec)

in
pu

t1
 (N

.m
)

0 2 4 6 8 10
-100

-50

0

50

100

time(sec)

in
pu

t2
 (N

.m
)

 
Fig. 6. The control inputs in the case of using Fuzzy SMC-PID 

0 2 4 6 8 10
-0.01

-0.005

0

0.005

0.01

time(sec)

Er
ro

r1
(r

ad
)

0 2 4 6 8 10
-5

0

5
x 10

-3

time(sec)

Er
ro

r2
(r

ad
)

 
Fig. 7. The enlargement of the tracking errors in the case of using conventional SMC 
 

0 2 4 6 8 10
-5

0

5
x 10-4

time(sec)

Er
ro

r1
 (r

ad
)

0 2 4 6 8 10
-1

-0.5

0

0.5

1
x 10-3

time(sec)

Er
ro

r2
 (r

ad
)

 
Fig. 8. The enlargement of the tracking errors in the case of using Fuzzy SMC-PID 

Sliding Mode Control of Robot Manipulators via Intelligent Approaches    

 

145 

2.2 Incorporating sliding mode and fuzzy control 
In this section, a combined controller includes SMC term and fuzzy term is proposed for set-
point tracking of robot manipulators. Some practical issues, such as existence of joint 
frictions, restriction on input torque magnitude due to saturation of actuators, and modeling 
uncertainties have been considered here. Design procedure contains two steps. First, SMC 
design is accomplished and system stability in this case is provided by Lyapunov direct 
method. When the tracking error would be less than predefined value then a sectorial fuzzy 
controller (SFC), (Calcev, 1998), is responsible for control action. Designing of this kind of 
fuzzy controller is exactly the same as in which has performed in (Santibanez et al., 2005). 
This proposed controller has following advantages. 1) There are less tracking errors versus 
traditional SMC in condition that the control input is limited, 2) the chattering is avoided, 3) 
convergence of tracking error is more rapid than fuzzy controller designed in (Santibanez et 
al., 2005) and modeling uncertainty is considered here (Shafiei & Sepasi, 2010). 

2.2.1 Mathematical model and problem formulation 
This time the friction of joint is considered and is added to dynamical equation (1) as: 

 ( ) ( , ) ( ) ( , )M q q C q q q G q F q τ τ+ + + =  (30) 

where ( , ) nF q Rτ ∈  stands for the friction vector which is as follows (Cai & Song, 1994): 

 ( , ) sgn( ) 1 sgn( ) ( ; )i i i i ci i i i sif q b q f q q sat fτ τ⎡ ⎤= + + −⎣ ⎦  (31) 

 

where ( , )i if q τ , 1,2, ,i n= , denotes the i-th element of ( , )F q τ  vector. ib , cif  and  sif  are 
the viscous, Coulomb and static friction, respectively. The sat(·; ·) indicates saturation 
function with following equation.  

( ; )
r if x r

sat x r x if r x r
r if x r

>⎧
⎪= − ≤ ≤⎨
⎪− < −⎩

 

 

In the following, ( )M q , ( , )C q q  and ( )G q  might be shown by M , C , and G , respectively in 
where it would be requisite. 
Now, the boundedness properties are defined as below:  
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where ig  stands for the i-th element of ( )G q  and ig  is finite nonnegative constant. Assume 
that the maximum torque that joint actuator can supply is maxτ . Therefore: 

 max , 1, ,i i i nτ τ≤ =  (33) 

and each actuator satisfies the following condition:  

 max
i i sig fτ > +  (34) 



 Advanced Strategies for Robot Manipulators 

 

146 

In robot modeling, one can well determine the terms ( )M q  and ( )G q  but it is difficult in 
most cases obtaining the parameters of ( , )C q q  and ( , )F q τ  exactly. So, in present section, the 
matrix C  is considered as follows: 

 ˆC C C= + Δ  (35) 

where Ĉ  denotes estimation of C , and CΔ  is bounded estimation error which has the 
following relation: 

 , ,0.1i j i jC CΔ ≤  (36) 

where ,i jC  stands for elements of the matrix C . Also the vector F is supposed as an external 
disturbance with the following unknown upper bound: 

 upF F≤  (37) 

where the operator ⋅  denotes Euclidean norm. 
If one considers the desired point which joint position must be held on it as dq , then the 
position error could be defined as: 

 dq q q= −  (38) 

Here, the set-point tracking problem refers to define the control law such that error e would 
be driven toward the inside of an arbitrary small region around zero with maintaining the 
torques within the constraints (33). In succeeding subsections, this aim will be attained. 

2.2.2 Sliding mode controller design 
The following sliding surface is considered for designing SMC controller. 

 s e eλ= +  (39) 

where de q q q= − = −  is error vector and λ  is supposed symmetric positive definite matrix 
such that s=0 would become a stable surface. The reference velocity vector " rq " is defined as 
in (Slotin & Li, 1991): 

 r dq q eλ= −  (40) 

Thus, one can interpret sliding surface as: 

 rs q q= −  (41) 

Here, the SMC controller design is expressed by lemma 2.2. 
Lemma 2.2. Consider the system with dynamic equation (30) and sliding surface and 
reference velocity defined by (39) and (40), respectively. If one chooses the control law 
below, 

 ˆ sgn( )K sτ τ= −  (42) 
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such that 

 ˆˆ r rMq Cq Gτ = + +  (43) 
and 

 i r iK Cq≥ Δ + Γ  (44) 

then the sliding condition (10) is satisfied. In the last inequality, Ki denotes the element of 
sliding gain vector K and Γ  is design parameter vector which must be selected such 
that i up iF ηΓ ≥ + . 
Proof: Consider the following Lyapunov function candidate: 

 1
2

TV s Ms=  (45) 

Since M is positive definite, for 0s ≠ we have 0V > and by taking time derivative of the 
relation (45) and regarding the symmetric property of M, it can be written: 

 1
2

T TV s Ms s Ms= +  (46) 

from (40), gives: 

 1( )
2

T T
rV s Mq Mq s Ms= − +  (47) 

By substituting (30) in (47) and considering asymmetry property ( 2 ) 0Ts M C s− = , we have: 

 ( )T
r rV s Cq G F Mqτ= − − − −  (48) 

Now, applying (42) and (43) yields: 

 
1

( )
n

T
r i i

i
V s Cq F K s

=

= Δ + −∑  (49) 

Finally, from relation (44) it can be concluded that:  

 
1

n

i i
i

V sη
=

≤ −∑  (50) 

This indicates that V is a Lyapunov function and the sliding condition (10) has been 
satisfied. 
Note that, in general, the sign function is replaced by saturation function as ( )sat /s ϕ , 
where ϕ  denotes boundary layer thickness. 

2.2.3 Fuzzy controller design 
In this section, the SFC class of fuzzy controller studied in (Santibanez et al., 2005) is 
considered which has two-input one-output rules used in the formulation of the knowledge 
base. These IF-THEN rules have following form: 
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base. These IF-THEN rules have following form: 
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j jx U⊂  and output fuzzy set 1 2l lB  in y V⊂ , exist an input membership function ( )l j
j

jA
xμ  

and output membership function 1 2 ( )l lB
yμ  shown in Fig. 10 and Fig. 11, respectively.  

 

 
Fig. 9. Input membership functions 

 

 
Fig. 10. Output membership functions 
The fuzzy system considered here has following specifications: Singleton fuzzifier, 
triangular membership functions for each inputs, singleton membership functions for the 
output, rule base defined by (51), (see Table. 2), product inference and center average 
defuzzifier.  
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Special properties of this input-output mapping ( )y x  for x1, x2 are given in (Santibanez et 
al., 2005). 
Lemma 2.3. For the system with dynamical equation (30), if one chooses the following 
control law, 

 ( , ) ( )q q G qτ ϕ= +  (53) 

where q  is defined as (38) and dq q q= − is velocity error vector, then the closed-loop system 
shown in Fig. 11 becomes stable. 
Proof: the stability analysis is based on the study performed in (Calcev 1998) and is fully 
discussed in (Santibanez et al., 2005), so it is omitted here. Note that for constant set-point 
we have 0dq = , hence q q= − . 
 

 
Fig. 11. Closed-loop system in the case of fuzzy controller (Santibanez et al., 2005) 

2.2.4 Incorporating SMC and SFC 
Each of the two controllers explained in last two subsections drives the robot joint angles to 
desired set-point in finite time and according to the Lemma 2.2 and 2.3 the closed-loop 
system is stable in both cases. In this section, for utilizing advantages of both sliding mode 
control and sectorial fuzzy control, and also minimizing the drawbacks of both of them, the 
following control law is proposed: 

 e

e

ˆ sgn( ) when q
( , ) ( ) when qe e

K s
y q q G q
τ α

τ
α

⎧ − ≥⎪= ⎨ + <⎪⎩
 (54) 

where α  is strictly positive small parameter which can be determined adaptively or set to a 
constant value. So, while the magnitude of error is greater than or equal to α , SMC drives 
the system states, errors in our case, toward sliding surface and as soon as the magnitude of 
error becomes less than α , then the SFC which is designed independent of initial 
conditions, controls the system. Since the SMC shows faster transient response, the response 
of the system controlled by (54) is faster than the case of SFC. Additionally, in spite of the 
torque boundedness, since the SFC controls the system in the steady state, the proposed 
controller (54) has less set-point tracking error. Also, since near the sliding surface the 
proposed controller switch from SMC to SFC, therefore, the chattering is avoided here. 
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Simulation example 2.2. In order to show the effectiveness of the proposed control law, it is 
applied to a two-link direct drive robot arm with the following parameters (Santibanez et 
al., 2005): 

2 2

2
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ˆC C C= + Δ  

(55) 

According to the actuators manufacturer, the direct drive motors are able to supply torques 
within the following bounds: 

 
max

1 1

max
2 2

150[Nm]
15[Nm]

τ τ

τ τ

≤ =

≤ =
 (56) 

The desired set-point is, 

 [ ]Tdq π π= −  (57) 

which is applied as a step function at time zero. The SMC design parameters are as below: 
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⎡ ⎤
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 and 5φ =  (58)  

For SFC case, according to Fig. 9 and Fig. 11, 2 1 0 1 2{ , , , , }
jx j j j j jp p p p p p= − − is fuzzy partition of 

the input universe of discourse and 2 1 0 1 2{ , , , , }yp y y y y y= − −  is for output universe of 
discourse. Now, SFC design parameters are given by following equations (Santibanez et al., 
2005): 
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(59) 

For our proposed controller (54), the constant 0.3α =  is supposed. Additionally, to show the 
improvement achieved from applying the proposed method of this section (incorporating 
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SMC and SFC), the simulation results of applying this method are compared with the 
related results of the SMC case and SFC case, separately. The error vector and control law in 
the case of conventional SMC have been shown in Fig. 12 and Fig. 13, respectively.  
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Fig. 12. Error vector in the case of SMC 
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Fig. 13. The control torques in the case of SMC 
The tracking error in this case is about 0.1(rad) and when one choose the thinner boundary 
layer to decrease this error, chattering will be occurred. The corresponding graphs for the 
case of applying SFC are also provided in Fig. 14, and Fig. 15. 
In the case of control law proposed in the present section, Fig. 16 and Fig. 17 illustrate the 
error vector and control law, respectively. The tracking error is about 0.002 in this state of 
affairs. 
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Fig. 13. The control torques in the case of SMC 
The tracking error in this case is about 0.1(rad) and when one choose the thinner boundary 
layer to decrease this error, chattering will be occurred. The corresponding graphs for the 
case of applying SFC are also provided in Fig. 14, and Fig. 15. 
In the case of control law proposed in the present section, Fig. 16 and Fig. 17 illustrate the 
error vector and control law, respectively. The tracking error is about 0.002 in this state of 
affairs. 
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As it can be seen from these results, the proposed incorporating SMC and SFC controller has 
faster response and less tracking error in comparison with SMC and also the error vector 
converges toward zero faster than SFC. 
In order to show the robustness of the proposed method, the inertia and torque 
perturbations are considered as following. The elements of inertia matrix are supposed to 
increase fifty percent after 2 sec. It can be a weight that added to the mass of 2nd link. Also, 
disturbance torque is considered with the following equation. 

 [ ]3sin 2 3sin 2 T
d tτ π π=  (60) 
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Fig. 14. Error vector in the case of SFC 
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Fig. 15. The control torques in the case of SFC 
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In this case, the vector of joint errors is shown in Fig. 18. The errors are as good as previous 
case. Fig. 19 illustrates the control torques which are not change significantly, and because of 
existing perturbations, they alter trivially after 2 sec. these two recent results verify the 
robustness of the presented approach. 
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Fig. 16. Error vector in the case of incorporating SMC and SFC 
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Fig. 17. The control torques in the case of incorporating SMC and SFC 
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Fig. 17. The control torques in the case of incorporating SMC and SFC 
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Fig. 18. Error vector in the case of torque and inertia perturbations 
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Fig. 19. The control torques in the case of torque and inertia perturbations 

3. Sliding mode control using neural network approach 
Sliding-Mode-PID control for robot manipulator was explored by (Ataei & Shafiei, 2008). In 
their study, although, the uncertainties are considered but controller design is extremely 
model-dependent. Also, control command starts with high gain and actuator dynamics is 
neglected. Moreover, stability analysis is not investigated after incorporating fuzzy tuning 
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system. A robust neural-fuzzy-network controller was designed in (Wai & Chen 2006) for 
the position control of an n-link robot manipulator including actuator dynamics. Although, 
their control scheme does not require compensating auxiliary control design, but the 
employed network is more complicated and uses excess number of neurons. In addition, the 
second derivative of position angle is required as a part of controller inputs. Capisani et al., 
(Capisani et al., 2009) presented an inverse dynamic-based second-order sliding mode 
controller to perform motion control of robot manipulators, but this method involves the 
higher order derivatives of the state variables. 
In this section, the motion tracking control of multiple-link robot manipulators actuated by 
permanent magnet DC motors is addressed. Sliding-mode-PID tracking controller is 
designed such that all the states and signals of the closed loop system remain bounded in 
the presence of unknown parameters and uncertainties. Also, neural network universal 
approximation property is employed for compensating uncertainties. Furthermore, the 
proposed controller contains an outer PID-loop that enhances the approximation 
performance during the initial period of weight adaptations, and provides designing a 
simple NN with lower amount of layers and neurons. Adaptation laws are applied to adjust 
the NN weights on-line. In order to avoid high gain control, the gain factor of robustifying 
term is designed adaptively (Shafiei & Soltanpour, 2010). 

3.1 Actuated robot dynamics 
The mathematical equations describing electrical and mechanical dynamics of a permanent 
magnet DC motor are as follows (Spong & Vidiasagar, 1989): 

 b
di dV Ri L K
dt dt

θ
= + +  (61) 

 m m mJ Bθ θ τ τ+ + =  (62) 

 mK iτ =  (63) 

where V  is the armature voltage of the motor, R  and L  are armature equivalent resistance 
and inductance, respectively, bK  is the back electromotive force constant, i  is the armature 
current and θ  denotes the rotor position, mJ  is the total moment of inertia, mB  is the 
damping coefficient, mτ  and τ  represent the generated motor torque and the load torque, 
respectively, and mK  is the diagonal matrix of motor torque constant. 
The dynamical equation of an n-link robot manipulator is in the standard form of (30) and is 
rewritten here. 

 ( ) ( , ) ( ) ( ) dM q q C q q q G q F q τ τ+ + + + =  (64) 

Here, nRqF ∈)(  is the dynamic friction vector, n
d R∈τ  denotes the vector of disturbance 

and un-modeled dynamics, and τ  is the torque vector. 
With the purpose of increasing motion speed of the manipulators, motors are equipped with 
the high reduction gears as follows: 

 rq g θ=  (65) 
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Fig. 18. Error vector in the case of torque and inertia perturbations 
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Fig. 19. The control torques in the case of torque and inertia perturbations 
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respectively, and mK  is the diagonal matrix of motor torque constant. 
The dynamical equation of an n-link robot manipulator is in the standard form of (30) and is 
rewritten here. 

 ( ) ( , ) ( ) ( ) dM q q C q q q G q F q τ τ+ + + + =  (64) 

Here, nRqF ∈)(  is the dynamic friction vector, n
d R∈τ  denotes the vector of disturbance 

and un-modeled dynamics, and τ  is the torque vector. 
With the purpose of increasing motion speed of the manipulators, motors are equipped with 
the high reduction gears as follows: 

 rq g θ=  (65) 
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and 

 m rgτ τ=  (66) 

where rg  is the diagonal matrix of reduction ratio. In the following a practical constraint is 
considered. 
Constraint 3.1. The maximum voltage that joint actuator can supply is maxV . So, we have: 
 

max
i iV V≤ , 1, ,i n=  

 

It should be noted that, the applicable control input for driving robot arm is the armature 
voltage of the motors, here. So, by using equations (61)-(66) and neglecting the inductance 
L , because of its tiny amount, the following equation is achieved. 

 1 1 1 1 1{[ ] ( ) ( ) }m m r r m r r m b r r r r dV RK J g g M q B g g C K R K g q g G g F q g τ− − − − −= + + + + + + +  (67) 

The previous equation can be expressed in a compact form as: 

 U Dq H d= + +  (68) 

with U V=  is the control command and the other parameters are 

 1 1( )m m r rD RK J g g M− −= +  (69) 

 1 1 1 1[( ) ( )]m m m r m b r rH V RK B g K R K g q g G q− − − −= + + +  (70) 

 1 ( , )m m rV RK g C q q−=  (71) 

 1 ( ( ) )m r dd RK g F q τ−= +  (72) 

Remark 3.1. By noting that the parameters, R , mK , mJ  and rg  are positive definite diagonal 
matrices, the matrix D  is symmetric and positive definite. 
Remark 3.2. From relations (69) and (71), and property 2.2, the matrix )2( mVD −  is skew-
symmetric too. 

3.2 SMC- PID design and NN description 
The tracking error could be defined as before as: 

 de q q= −  (73) 

A key step in designing sliding mode controller is to introduce a proper sliding surface so 
that tracking errors and output deviations can be reduced to a satisfactory level (Eker, 2006). 
Accordingly, the sliding surface is considered as (74), containing the integral part in 
addition to the derivative term. 

 1 2 0

t
s e e edtλ λ= + + ∫  (74) 
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where iλ  is diagonal positive definite matrix. Hence, 0=s  is a stable sliding surface and 
0→e  as ∞→t . Only defining the sliding surface as (74) is not adequate to claim that SMC-

PID is designed, but the control effort must contain the independent PID part. For this 
purpose, the robot dynamic equations can be rewritten based on the sliding surface (in term 
of filtered error) as follows: 

 mDs V s f U= − + −  (75) 

where 

 1 2( ) ( )d mf x D q e e V s H dλ λ= + + + + +  (76) 

where D , mV  and d  are given by (69), (71) and (72) respectively, and 

 
TT T T

dx q s q⎡ ⎤= ⎣ ⎦  (77) 

Note that the input vector of s  includes linear combination of e  and e , (i.e. ee 1λ+ ) which 
they comprise dq , q  and dq , q , too, respectively. The input dimension of the two-layer 
NN designed here is less than that of given by (Lewis et al., 1996), and thus the proposed 
method is more desirable from an implementation point of view. Sliding mode control 
strategy consists of designing a two-part controller. 

 SMC eq sU U U= +  (78) 

with eqU  is equivalent control part which is applied to cancel the uncertain nonlinear 
function f , and sU  specifies robust control term. Considering unknown parameter, 
uncertainties and disturbances indicates that the function f  is not accessible. Briefly 
speaking, neural networks incorporate to reconstruct the eqU  part by approximating the 
function f , here. According to universal approximation property of neural networks 
(Lewis et al., 1998), there is a two-layer NN with sufficient number of neurons, and sigmoid 
or RBF activation function for hidden layer and linear activation function for output layer 
(see Fig. 20) such that: 

 ( ) ( )T Tf x W V xσ ε= +  (79) 

where 2NRx∈  is the input vector computed by (77), 22 NNRV ×∈  and 22 NNRW ×∈  represents 
the NN weights for hidden and output layers, respectively, ( )⋅σ  denotes activation function 
of the hidden layer and ε  is NN approximation error. Choosing activation function is 
arbitrary provided that the function satisfies an approximation property and it and its 
derivative are bounded (Lewis et al., 1998), consequently the sigmoid activation function is 
considered, here. 

 1( )
1 zz

e
σ −=

+
 (80) 

Succeeding section explains complete controller design and investigates stability content.  
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Fig. 20. Two-layer NN structure 

3.3 Sliding mode control using adaptive neural network 
Note that the utilized weights in (79) are optimum and )(xf  is approximated ideally, over 

there. Estimation of f  is accomplished by the estimated weights Ŵ  and V̂ , respectively. 
So, the NN controller is designed as: 

 )ˆ(ˆ)(ˆ xVWxf TTσ=  (81) 

here )(ˆ xf  is estimation of )(xf  and Ŵ  and V̂  are updated adaptively. The estimation 
errors are defined as follows: 

 WWWVVV ˆ~,ˆ~
−=−=  (82) 

also, the hidden layer output error for a given input x  is 

 σσσσσ ˆ)ˆ()(~ −=−= xVxV TT  (83) 

Consider the )( xV Tσ  as its Taylor series expansion as 

 )~(~)ˆ()ˆ()( xVOxVxVxVxV T
h

TTTT +′+= σσσ  (84) 

where )(⋅hO  denotes higher order terms in Taylor series and 

 
zzdz

zdz
ˆ

)()(
=

≡′ σ
σ  (85) 

From (83) and (84), we have: 
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 h
TT

h
TT OxVxVOxVxV +′=+′=

~ˆ)~(~)ˆ(~ σσσ  (86) 

Now, one can obtain overall error between optimum function f  and its estimation f̂  as: 

 

ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( )
ˆˆ ˆ ˆ[ ( ) ( ) ] [ ( ) ]

ˆˆ ˆ ˆ ˆ ˆ( ) ( )
ˆˆ ˆ ˆ ˆ( ) ( )

T T T T T T T T

T T T T T T T
h h

T T T T T T T T T T
h

T T T T T T T
N

f f W V x W V x W V x W V x

W V x V x V x O W V x V x O

W V x W V x V x W V x W V x W O

W V x W V x V x W V x

σ ε σ σ σ ε

σ σ σ ε

σ σ σ σ ε

σ σ σ ε

− = + − = + +

′ ′= + + + + +

′ ′ ′= − + + + +

′ ′= − + +

 (87) 

where 

 εσε ++′= h
TTT

N OWxVW ˆ~  (88) 

is the uncertain term and is supposed to be bounded by K  as demonstrated in (89). 

 KOWxVW h
TTT

N <++′≤ εσε ˆ~  (89) 

Design of the control system is provided in the following theorem and is illustrated in Fig. 
21 schematically. 
Theorem 3.1. Robot manipulator including actuator dynamics represented by equation (68) 
is considered, and the sliding surface is defined by (74). If the control input U  is designed 
as (90) together with adaptation laws of NN controller as (91)-(93), then the asymptotic 
stability of the dynamical system is guaranteed. 

 )sgn(ˆˆ sKfsKU v ++=  (90) 

 TTTT xsVsxVW ˆˆ)ˆ(ˆ σαασ ′−=  (91) 

 σβ ′= ˆˆˆ TTWxsV  (92) 

 )sgn(ˆ ssK Tγ=  (93) 

where vK  is a positive definite diagonal matrix, K̂  is the estimated value of K . Also, α , β  
and γ  are positive constants and )sgn(⋅  denotes sign function. 
Proof: consider the following Lyapunov function candidate 

 ( ) ( )1 1 1 1
2 2 2 2

T T T T
LV s Ds tr W W tr V V K K

α β γ
= + + +  (94) 

where )(⋅tr  denotes the trace operator and KKK ˆ~
−= . Differentiating of the relation (94) 

gives 

 ( ) ( )1 1 1 1
2

T T T T T
LV s Ds s Ds tr W W tr V V K K

α β γ
= + + + +  (95) 
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By substituting (90) in to the first part of (95) and by using (87) one can obtain 

 
ˆ ˆ[ ] [ sgn( )]

ˆˆ ˆˆ ˆ ˆ[ sgn( )]

T T T
m m v

T T T T T T
m v N

S Ds s V s f U s V s f K s f K s

s V s K s W W V x W V x K sσ σ σ ε

= − + − = − + − − −

′ ′= − − + − + + −
 (96) 

Some useful relations for manipulating last tow equations are provided in the following. 

( )
( )
( )

ˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ

T T T T

T T T T T T

T T T T T T

s W tr W s

s W V x tr W V xs

s W V x tr V xs W

σ σ

σ σ

σ σ

⎧ =
⎪
⎪ ′ ′=⎨
⎪

′ ′⎪ =⎩

 

Replacing (96) in (95) and using above relations, produce 

 

1 1 ˆˆ ˆ( 2 ) ( )
2

1 1ˆ ˆˆ( ) sgn( )

T T T T T T
L v m

T T T T T
N

V s K s s D V s tr W W s V xs

tr V V xs W s Ks s KK

σ σ
α

σ ε
β γ

⎡ ⎤′= − + − + + −⎢ ⎥⎣ ⎦
⎡ ⎤′+ + + − +⎢ ⎥
⎣ ⎦

 (97) 

Note that ˆW W= − , ˆV V= − , ˆK K= − , and Remark 3.2 yields ( 2 ) 0T
ms D V s− = . Also, if 

adaptive laws (91) and (92) are taken in to account, then we have 

 1ˆ ˆ ˆsgn( ) ( ) sgn( )T T T T T T
L v N v NV s K s s Ks s K K K s K s s Ks sε ε

γ
= − + − − − = − + −  (98) 

substituting (93) in (98) and adopting (99), yields 

 ( )
min min

2 2
1 2

1
0

m

L v N m i v
i

V K s s s s K s K sε
=

≤ − + + + + − ≤ − ≤∑  (99) 

where 
minvK  is minimum singular value of vK . Since 0LV ≤ , the stability in the sense of 

Lyapunov is guaranteed which implies that the parameters s , W , V  and K  (and 
consequently Ŵ , V̂ , K̂ ) are bounded. In addition, 

0
lim

t

Lt
V dτ

→∞
− < ∞∫  and LV−  is bounded, 

hence Barbalat’s Lemma (Khalil, 2001) indicates that lim( ) 0Lt
V

→∞
− = . Note that 

min

2( ) 0L vV K s− ≥ ≥ , as a result 0s →  as t →∞ . Therefore, the proposed control system is 
asymptotically stable. 
Remark 3.3. The PID term in the above control effort, makes Lyapunov derivative more 
negative, so it makes the transient response faster and also ensures the performance 
efficiency during the initial period of weights adaptations. 
Remark 3.4. In practical systems, however, it is impossible to achieve infinitely fast switching 
control, because of finite time delays for the control computation and limitation of physical 
actuators. For that reason, the sign function is replaced by saturation function here, and the 
stability matter is investigated analytically. 
The saturation function is selected as 
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sgn( )

s s
ssat

s s

ϕ
ϕ

ϕ ϕ
ϕ

⎧ ≤⎪⎛ ⎞ ⎪= ⎨⎜ ⎟
⎝ ⎠ ⎪ ≥

⎪⎩

 (100) 

where ϕ  is a thin boundary layer such that 10 ≤<ϕ . The adaptive law (93) must be 

replaced by ˆ ( )TK s sat sγ ϕ= ; So, the equation (98) is changed to 

 ( )T T T
L v NV s K s s Ks sat sε ϕ= − + −  (101) 

Now, there are two situations; 
a. if s ϕ> , then 

 
min

2
1 2

1
( ) 0

m

L v N m i
i

V K s s s s K sε
=

≤ − + + + + − <∑  (102) 

b. if s ϕ≤ , then 

 
min

2
1 2

1
( ) 0

m

L v N m i
i

KV K s s s s sε
φ =

≤ − + + + + − <∑  (103) 

Note that, since 0 1ϕ< < , therefore NKK ε
ϕ

>≥ . Both situations imply that 0<LV , and 

consequently, the control system remains stable after replacing saturation function. 
 

 
Fig. 21. Block diagram of the control system structure 

Remark 3.5. The sliding gain K̂  is chosen dynamically and its dynamic depends on sliding 
surface. When the states go far from the sliding manifold, the absolute value of K̂  increases 
to force them back to sliding manifold, and when the states are close to the sliding manifold, 
the absolute value of K̂  decreases accordingly. This feature beside the replacing saturation 
function, act as what is heuristically designed by fuzzy system in (Ataei & Shafiei, 2008). 
Furthermore, the system stability is addressed here. 
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Fig. 21. Block diagram of the control system structure 
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Simulation example 3.1. In order to show the effectiveness of the proposed control method, 
it is applied to a two-link elbow robot driven by permanent magnet DC motors with the 
following parameters: 
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where qi is the angle of joint i, mi is the mass of link i, li is the total length of link i, lci  is 
center-of-gravity length of link i, and g = 9.8 m/s2 is gravity acceleration. The detailed 
parameters of this robot manipulator and permanent magnet DC motor actuators are 
provided in Table 3 (Wai & Chen, 2006). According to the actuator manufacturer, the DC 
motors are able to accept input voltages within the following bounds: 

 max max
1 1 2 212 [ ],  12 [ ]V V volt V V volt≤ = ≤ =  (105) 

For example, one can use 12V DC servo motors for actuating joints. In practice, also, a servo 
control card is required which should include multi-channels of digital/analog (D/A) and 
encoder interface circuits. 
 

Two-link elbow robot Permanent-magnet DC motors 
55.31 =m  kg 75.02 =m  kg 5

1 107.3 −×=mJ kg.m2 4
2 1047.1 −×=mJ  kg.m2 

2051 =l  mm 2102 =l  mm 5
1 103.1 −×=mB  N.m/s 5

2 102 −×=mB  N.m/s 
8.1541 =cl  mm 1052 =cl  mm 8.21 =R   Ω 8.42 =R    Ω 

21.01 =mK Nm/A 23.02 =mK Nm/A 31 =L    mH 4.22 =L   mH 
6011 =rg  3012 =rg  4

1 1042.2 −×=bK s/rad.V 4
2 1018.2 −×=bK s/rad.V 

Table 3. Parameters of two-link elbow robot and actuators 
The external disturbances can be considered as external forces injected into the robotic 
system, and are supposed to have following expression.  

 [ ]Td tt 4sin4sin=τ  (106) 

Also, the friction term is considered here as (Wai & Chen, 2006): 

 [ ]TqqqqqF )sgn(16.04)sgn(8.020)( 2211 ++=  (107) 

In order to show the effectiveness of proposed controller in tracking of desired trajectory, it 
is assumed to have the sinusoidal shape in this simulation. 

 [ ]Td ttq sinsin=  (108) 

The design parameters are given in Table 4. The gain matrices λ1 and λ2 are selected such 
that  the roots of the characteristic polynomial 021 =++ eee λλ  lie strictly in the open left half 
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of the complex plane when the system is in sliding mode ( 0=s ). The neural network 
designed here has four neurons as hidden layer and two neurons as output layer, and its 
weights are totally initialized at zero.  
Remark 3.6. For a two-layer NN designed here with the input vector given by (77), we have 
N1 = 6, N2 = 4 and N3 = 2, for a two-link manipulator. Accordingly, the numbers of adaptive 
weights are 24 and 8 for input-to-hidden layer weights and output layer weights, 
respectively. So, only 32 weight parameters must be adaptively updated here while using 
the NN given in (Lewis et al., 1996), with N1 = 10, N2 = 10 and N3 = 2, this number increases 
to 120. If the network size is chosen to large, the improvement of control performance is 
limited and the computation burden for the CPU is significantly increased. 
The gain matrix Kv which acts as the gain of the PID term is determined large enough to 
improve transient response in the initial period of weight adaptations. On the other hand, 
choosing Kv to a large extent increases the overall controller gain and may exceed the 
permissible voltages of the actuators that are regarded in constraint 3.1. So, there is a trade 
off between fast response and practical limitations. 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

100
010

1λ  ⎥
⎦

⎤
⎢
⎣

⎡
=

240
024

2λ  ⎥
⎦

⎤
⎢
⎣

⎡
=

3010
0601

rg  ⎥
⎦

⎤
⎢
⎣

⎡
=

50
05

vK  

5=α  5=β  2=γ  0.05ϕ =  

Table 4. Design parameters 

The mass variation of second link, the external disturbance and the friction are the major 
factors that affect the control performance of the robotic system. In the reminder of this section, 
two simulation cases are carried out to show the improvement due to the NNSM_PID control 
method proposed in this section. In both cases, the simulation results of applying presented 
method are compared with the related results of the fuzzy sliding mode_PID (FSM_PID) 
control method proposed in (Ataei & Shafiei, 2008). In the first case, the disturbance (106) and 
mass variation are injected and in the second case, the friction term is exerted too. The mass 
variation condition is that 1 kg weight is added to the mass of 2nd link (i.e. m2 = 1.75 kg). For the 
FSM_PID case, the control law is as following (Ataei & Shafiei, 2008): 

 )sgn(ˆ sKfsKU ffvff ++=  (109) 

 fuzzyvfvf KNK =  (110) 

 fuzzyff KNK =  (111) 

where, Uf is the control input, Kfuzzy is of fuzzy system output and Nvf and Nf  are the scaling 
gain of the fuzzy system output. Here, it is assumed that only manipulator parameters could 
be estimated and actuator parameters are still unknown. So, ff̂  is chosen as (Ataei & 
Shafiei, 2008): 

 GedteqCeeqMf
t

ddf
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0
2121 ++++++= ∫λλλλ  (112) 

where M̂ , Ĉ  and Ĝ  are achieved from nominal value of manipulator parameters. 
However, all of the manipulator parameters are considered with 10% uncertainty. The 
design parameters of the FSM_PID controller are 
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Simulation 1─ In this case, the friction term is neglected, mass variation occurs at 3 sec and 
external disturbance is injected at 6 sec. The desired trajectory is depicted in Fig. 22. The 
vectors of tracking errors of FSM_PID and NNSM_PID are shown in Fig. 23 (a) and (b), 
respectively. Both diagrams of Fig. 23 are plotted in the same scaled axes to achieve fairly 
comparison. The FSM_PID controller does not meet the tracking purpose in the unknown 
actuator parameters and mass variation conditions. On the contrary, the method proposed 
in this section provides swift and precise tracking responses. Fig. 24 displays the control 
efforts (i.e. input armature voltages of motors). The FSM_PID associated control commands 
are jagged to some extent, while, the NNSM_PID case produces smooth control commands 
with slowly variation and lower voltage amplitude. Lower voltage commands are more 
protected toward actuator saturations. The NN outputs are shown in Fig. 25 and it indicates 
that the designed neural network can approximate nonlinear terms with unknown 
parameters, smoothly and boundedly. 
Simulation 2─ With the purpose of showing robustness of our designed controller against 
uncertainties and un-modeled dynamics, the friction term (107) is added here. The vectors of 
tracking errors of FSM_PID and NNSM_PID are shown in Fig. 26 (a) and (b), respectively. 
However, the response of the FSM_PID case is further undesirable in this condition, on the 
other hand, the NNSM_PID control remains robust and its response is satisfactory, as well 
as previous simulation case. Control efforts of this case are demonstrated in Fig. 27. Because 
of exerting friction term, the input voltage commands are higher than previous case but the 
NNSM_PID control commands are still smooth and vary slowly. The NN output is shown 
in Fig. 28. Finally, as can be seen from Fig. 29, matrix norm of the adaptive weights, Ŵ  and 
V̂ , have bounded value, less than 3, that it verifies what was claimed in the Theorem 3.1 

about boundedness of these signals.  
 

 
Fig. 22. Desired input trajectory qd 
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Fig. 23. (sim1) Tracking error of joints, (a) FSM_PID (b) NNSM_PID 
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Fig. 23. (sim1) Tracking error of joints, (a) FSM_PID (b) NNSM_PID 
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Fig. 24. (sim1) Control commands (a) FSM_PID (b) NNSM_PID 

Sliding Mode Control of Robot Manipulators via Intelligent Approaches    

 

167 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 25. (sim1) NN control effort 
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Fig. 24. (sim1) Control commands (a) FSM_PID (b) NNSM_PID 
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Fig. 25. (sim1) NN control effort 
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Fig. 26. (sim2) Tracking error of joints (a) FSM_PID (b) NNSM_PID 
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Fig. 27. (sim2) Control commands (a) FSM_PID (b) NNSM_PID 
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Fig. 26. (sim2) Tracking error of joints (a) FSM_PID (b) NNSM_PID 
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Fig. 27. (sim2) Control commands (a) FSM_PID (b) NNSM_PID 
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Fig. 28. (sim2) NN control effort 

 

 
 

Fig. 29. (sim2) Matrix norm of adaptive weights W  and V  
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4. Conclusion 
This chapter addressed sliding mode control (SMC) of n-link robot manipulators by using of 
intelligent methods including fuzzy logic and neural network strategies. In this regard, three 
control strategies were investigated. In the first case, design of a sliding mode control with a 
PID loop for robot manipulator was presented in which the gain of both SMC and PID was 
tuned on-line by using fuzzy approach. The proposed methodology in fact tries to use the 
advantages of the SMC, PID and Fuzzy controllers simultaneously, i. e., the robustness 
against the model uncertainty and external disturbances, quick response, and on-line 
automatic gain tuning, respectively. Finally, the simulation results of applying the proposed 
methodology to a two-link robot were provided and compared with corresponding results 
of the conventional SMC which show the improvements of results in the case of using the 
proposed method. In the second case, a new combination of sliding mode control and fuzzy 
control is proposed which is called incorporating sliding mode and fuzzy controller. Three 
practical aspects of robot manipulator control are considered there, such as restriction on 
input torque magnitude due to saturation of actuators, friction and modeling uncertainty. In 
spite of these features, the designed controller can improve the sliding mode and fuzzy 
controller performance in the tracking error and faster transient points of view, respectively. 
As previous case, the simulation results of applying the proposed methodology and other 
two methodologies to a two-link direct drive robot arm were provided. Comparing these 
results demonstrate the success of the proposed method. 
Whenever, fast and high-precision position control is required for a system which has high 
nonlinearity and unknown parameters, and also, suffers from uncertainties and 
disturbances, such as robot manipulators, in that case, necessity of designing a developed 
controller that is robust and has self-learning ability is appeared. For this purpose, an 
efficient combination of sliding mode control, PID control and neural network control for 
position tracking of robot manipulators driven by permanent magnet DC motors was 
addressed in the third case. SMC is robust against uncertainties, but it is extremely 
dependent on model and uses unnecessary high control gain; So, NN control approach is 
employed to approximate major part of the model. A PID part was added to make the 
response faster, and to assure the reaching of sliding surface during initial period of weight 
adaptations. Moreover, four practical aspects of robot manipulator control such as actuator 
dynamics, restriction on input armature voltage of actuators due to saturation of them, 
friction and uncertainties were considered. In spite of these features, the controller was 
designed based on Lyapunov stability theory and it could carry out the position control 
with fast transient and high-precision response, successfully. Finally, two-step simulation 
was performed and its results confirmed the success of presented approach. However, the 
presented design was performed in the joint space of robot manipulator and kinematic 
uncertainty was not considered. For the future work, one can expand this method to work 
space design with uncertain kinematics. 
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1. Introduction  
Currently, the Stewart Platform is used in different engineering applications (machine tool 
technology, underwater research, entertainment, medical applications surgery, and others) 
due to its low mechatronic cost implementation as an alternative to conventional robots. The 
current trend of using parallel manipulators has created the need for developing open 
supervision and control architectures. This chapter presents the mathematical analysis, 
simulation, supervision and control implementation of a six degree of freedom (DOF) 
parallel manipulator known as the Stewart platform. The related studies are critically 
examined to ascertain the research trends in the field. An analytical study of the kinematics, 
dynamics and control of this manipulator covers the derivation of closed form expressions 
for the inverse Jacobian matrix of the mechanism and its time derivative, the evaluation of a 
numerical iterative scheme for forward kinematics on-line solving, the effects of various 
configurations of the unpowered joints due to angular velocities and accelerations of the 
links, and finally the Newton-Euler formulation for deriving the rigid body dynamic 
equations.  
The contents of this chapter are organized as follows: 
• Section II presents the features of a Stewart Platform manipulator, describing its spatial 

motion and applications. 
• Section III covers the mathematical description, with the kinematics and dynamics 

modelling, and the actuator control using a mechatronic prototyping approach.  
• Section IV details the control structure, and compares two different control strategies: 

the PID joint control structure and the Generalized Predictive Control (GPC). Both 
controllers structured in the polynomial RST form, as a generic framework for 
numerical control laws satisfying open architecture requirements.  
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1. Introduction  
Currently, the Stewart Platform is used in different engineering applications (machine tool 
technology, underwater research, entertainment, medical applications surgery, and others) 
due to its low mechatronic cost implementation as an alternative to conventional robots. The 
current trend of using parallel manipulators has created the need for developing open 
supervision and control architectures. This chapter presents the mathematical analysis, 
simulation, supervision and control implementation of a six degree of freedom (DOF) 
parallel manipulator known as the Stewart platform. The related studies are critically 
examined to ascertain the research trends in the field. An analytical study of the kinematics, 
dynamics and control of this manipulator covers the derivation of closed form expressions 
for the inverse Jacobian matrix of the mechanism and its time derivative, the evaluation of a 
numerical iterative scheme for forward kinematics on-line solving, the effects of various 
configurations of the unpowered joints due to angular velocities and accelerations of the 
links, and finally the Newton-Euler formulation for deriving the rigid body dynamic 
equations.  
The contents of this chapter are organized as follows: 
• Section II presents the features of a Stewart Platform manipulator, describing its spatial 

motion and applications. 
• Section III covers the mathematical description, with the kinematics and dynamics 

modelling, and the actuator control using a mechatronic prototyping approach.  
• Section IV details the control structure, and compares two different control strategies: 

the PID joint control structure and the Generalized Predictive Control (GPC). Both 
controllers structured in the polynomial RST form, as a generic framework for 
numerical control laws satisfying open architecture requirements.  

• Section V describes the supervision and control architecture, particularly the spatial 
tracking error is analyzed for both controllers. 
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• Section VI provides time domain simulation results and performance comparison for 
several scenarios (linear and circular displacements, translational or rotational 
movements), using reconfigurable computing applied to a Stewart-Gough platform.  

• Section VII presents the supervisory control and hardware interface implemented in a 
LabviewTM environment. 

• Finally, section VII presents the conclusions and contributions. 

2. Stewart platform manipulator 
The Stewart platform is a 6 DOF mechanism with two bodies connected by six extendable 
legs. The manipulation device is obtained from the generalisation of the proposed 
mechanism of a flight simulator presented in (Stewart, 1965)(Gough & Whitehall, 
1962)(Karger, 2003)(Cappel, 1967). It legs are connected through spherical joints at both 
ends, or a spherical joint at one end, and a universal joint at the other. The structure with 
spherical joints at both ends is the 6-SPS (spherical-prismatic-spherical) Stewart platform 
(Fig. 1), while the one, with an universal joint at the base and a spherical joint at the top is 
the 6-UPS (universal-prismatic-spherical) Stewart platform (Dasgupta, 1998)(Bessala, 
Philippe & Ouezdou, 1996). 
The spatial movements of the six-axis parallel manipulator provide three translational and 
three rotational DOF of the movable plate, allowing position accuracy, stiffness and 
payload-to-weight ratio to exceed conventional serial manipulators performances. Due to 
these mechanical advantages, the Stewart platform manipulator is used in many 
applications such as flight simulators, parallel machine-tools, biped locomotion systems and 
surgery manipulators (Sugahara et al., 2005)(Wapler et al., 2003)(Wentlandt & Sastry, 1994). 
 

      

             a) MathworksTM description          b) The 6-UPS Stewart Platforms 

Fig. 1. Schematic Representation of the Stewart-Gough Platform. 

3. Mathematical description 
The mathematical model has to respond to a desired trajectory by actuating forces in order 
to properly move the mobile plate to the targeted position and orientation. For obtaining the 
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mathematical representation, a reference coordinated system for analyzing the manipulator 
is presented in Fig. 1. 

3.1 Geometric model 
Given the accomplishment of numerous tasks due to its configuration, the platform legs are 
identical kinematics chains whose motion varies accordingly to the tip of the joint used 
(Fasse & Gosselin, 1998)(Boney, 2003). Typically, the legs are designed with an upper and 
lower adjustable body, so each one has a variable length (Fig. 1). The geometrical model of a 
platform is expressed by its (X, Y, Z) position  and the (ψ, θ, φ) orientation due to a fixed 
coordinate system linked at the base of the platform. The obtained function of this 
generalized coordinates (joints linear movements), is presented in (1). 

 ( )i iX f L=  (1) 

where 1 2 6( )iL L L L=  are each joint linear position, ( )iX X Y Z ψ θ ϕ=  the 
position-orientation vector of a point of the platform. Then the transformation matrix for 
rotations can be organised as Shown in (2), where, cψ: cos ψ, sψ: sin ψ 
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                  a) Inferior base                                                b) Superior base 

Fig. 2. Platform Geometric Model – Actuators reference points. 
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Given the accomplishment of numerous tasks due to its configuration, the platform legs are 
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(Fasse & Gosselin, 1998)(Boney, 2003). Typically, the legs are designed with an upper and 
lower adjustable body, so each one has a variable length (Fig. 1). The geometrical model of a 
platform is expressed by its (X, Y, Z) position  and the (ψ, θ, φ) orientation due to a fixed 
coordinate system linked at the base of the platform. The obtained function of this 
generalized coordinates (joints linear movements), is presented in (1). 
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This transformation matrix allows changing each actuator's position into a new 
configuration in order to define the kinematics model as shown in Fig.2 (Kim, Chungt & 
Youmt, 1997)(Li & Salcudean, 1997).  
The points that define the upper base motion are located at the extremities of the six linear 
actuators fixed at the lower base of the platform. When assuming that the actuators have 
reached their final position and orientation, the problem is calculating the coordinates of the 
center of mass on the superior base, and the RPY orientation angles (roll, pitch and yaw). 
The relative positions can be calculated from the position and orientation analysis (using the 
transformation matrix), leading to new ones within the platform’s workspace. 
The position vector for the actuator of the upper/lower base, ,i sP P , is determined in 
relation to the fixed reference system at the center of mass of the inferior part as described in 
(3). The parameters , , , , , , ,a b d eα β δ ε  are reported in Fig.2, where h represents the position 
of the center of mass of the upper base in its initial configuration, and each line of ,i sP P  
represents the lower ( 1 6A A ) and superior ( 1 6B B ) coordinated extremities of 
the actuators. 
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where, 0.5iA α= , 0.5sA b= , 0.5iB β= , 0.5sB a= , 2( )cos( )i iC B tε= − , 2( )cos( )s sC e B t= − , 
( )cos( )i i iD A B t= + , ( )cos( )s s sD A B t= +  

Each actuator is associated to a position vector iX  considering its inferior end and the value 
of the distension associated with the ith actuator. With the transformation matrix, T

iX  is the 
new associated position vector for each upper position ith, obtained in (4). 

 ( , , ) T
i iX T Xψ θ ϕ=  (4) 

From the known position of the upper base, the coordinates of its extremities are calculated 
using the previous equations resulting in new ones, whose norm corresponds to the new 
size of the actuator. If X0 is the reference point, then the difference between the current sizes 
and the target ones is the distension that must be imposed to each actuator in order to reach 
its new position as presented in (5) 

 00 XXXXL i
T
i −−−=Δ  (5) 

Thus, the distance between the extremities is calculated using the transformation matrix and 
the known coordinates. The kinematic model of the platform receives the translation 
information in vector form and the rotation from a matrix with the RPY angles. 
This analysis allows calculating each axes lengths so that the platform moves to the target 
position, so the required of each linear actuator k connected to the upper mobile base before 
and after movement is described in Eqs. 6 and 7. 
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The links of the platform are defined by: 

T T
i p i p i ix iy izA =[r  cos( ), r  sen( ),0] =[A , A , A ]α α i  

i
=   for  i=1,3,5 

2
paπ

α
−

i i-1 p= a   for  i=2,4,6 α α +  (8)   

And the links of the base by: 

T T
i b i b i ix iy izB  [r cos( ), r  sen( ),0]  = [B , B , B ]β β= i  

i   for i=1,3,5
2

baπβ −
= i i-1 b= a  for i=2,4,6 β β +  (9) 

Where rp: radius of platform; rb: radius of base; ap: angle of platform and ab: angle of base 

3.2 Kinematic model 
The Stewart Platform Manipulator changes its position and orientation as a function of its 
linear actuator’s length. Fig. 3 shows the corresponding geometric model viewed from the 
top, where the bottom base geometry is formed by the B1 to B6 points, and the upper one by 
A1 to A6 points.  
 

      

Fig. 3. Stewart Platform geometric model 

3.3 Inverse kinematics 
The inverse kinematics model of the manipulator expresses the joint linear motion as a 
position and orientation function due to the fixed coordinate system at the base of the 
platform (Wang, Gosselin & Cheng, 2002)(Zhang & Chen, 2007), as presented in Eq. 10: 

 ( )xl=f  (10) 

Where, l=(l1,l2,l3,l4,l5,l6) is the linear position of the joints, x=(X, Y, Z, ψ, θ, φ) is the position 
vector of the platform, X,Y,Z the cartesian position and ψ, θ, φ represents the  orientation of 
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This transformation matrix allows changing each actuator's position into a new 
configuration in order to define the kinematics model as shown in Fig.2 (Kim, Chungt & 
Youmt, 1997)(Li & Salcudean, 1997).  
The points that define the upper base motion are located at the extremities of the six linear 
actuators fixed at the lower base of the platform. When assuming that the actuators have 
reached their final position and orientation, the problem is calculating the coordinates of the 
center of mass on the superior base, and the RPY orientation angles (roll, pitch and yaw). 
The relative positions can be calculated from the position and orientation analysis (using the 
transformation matrix), leading to new ones within the platform’s workspace. 
The position vector for the actuator of the upper/lower base, ,i sP P , is determined in 
relation to the fixed reference system at the center of mass of the inferior part as described in 
(3). The parameters , , , , , , ,a b d eα β δ ε  are reported in Fig.2, where h represents the position 
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 ( , , ) T
i iX T Xψ θ ϕ=  (4) 

From the known position of the upper base, the coordinates of its extremities are calculated 
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size of the actuator. If X0 is the reference point, then the difference between the current sizes 
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 00 XXXXL i
T
i −−−=Δ  (5) 

Thus, the distance between the extremities is calculated using the transformation matrix and 
the known coordinates. The kinematic model of the platform receives the translation 
information in vector form and the rotation from a matrix with the RPY angles. 
This analysis allows calculating each axes lengths so that the platform moves to the target 
position, so the required of each linear actuator k connected to the upper mobile base before 
and after movement is described in Eqs. 6 and 7. 
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The links of the platform are defined by: 

T T
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2
paπ

α
−
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And the links of the base by: 

T T
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2

baπβ −
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Where rp: radius of platform; rb: radius of base; ap: angle of platform and ab: angle of base 

3.2 Kinematic model 
The Stewart Platform Manipulator changes its position and orientation as a function of its 
linear actuator’s length. Fig. 3 shows the corresponding geometric model viewed from the 
top, where the bottom base geometry is formed by the B1 to B6 points, and the upper one by 
A1 to A6 points.  
 

      

Fig. 3. Stewart Platform geometric model 

3.3 Inverse kinematics 
The inverse kinematics model of the manipulator expresses the joint linear motion as a 
position and orientation function due to the fixed coordinate system at the base of the 
platform (Wang, Gosselin & Cheng, 2002)(Zhang & Chen, 2007), as presented in Eq. 10: 

 ( )xl=f  (10) 

Where, l=(l1,l2,l3,l4,l5,l6) is the linear position of the joints, x=(X, Y, Z, ψ, θ, φ) is the position 
vector of the platform, X,Y,Z the cartesian position and ψ, θ, φ represents the  orientation of 
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the platform. The reference systems are fixed to A(u,v,w) and B(x,y,z) at the base, as shown 
in Fig. 4.  
 

      

Fig. 4. Vector representation of the manipulator. 
The transformation for the mobile platform´s centroid to the base, is described by the 
position vector x and the rotation matrix BRA, where, 
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The angular motions are expressed as Euler angle rotations in respect to x-axis, y-axis, and 
z-axis, i.e. roll, pitch and yaw, in sequence. 
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The vector-loop equation for the ith actuator of the manipulator is as follows:  

 A
i B i il  R  A   x B= + −  (13) 

By substituting the terms for each actuator, (14) describes the platform motion in relation to 
its base.  
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 + r A  + r A Y  B  + r A  + r A Y B + Z r A  + r A   XB  + YB

−

− − −
(14) 

3.4 Dynamics study 
The dynamic equations are derived for the Stewart Platform with a universal joint at the 
base and a spherical joint at the top of each leg. For this study, it is assumed that there is no 
rotation allowed on any leg about its own axis, so the kinematics and dynamics for each one 
considers and calculates the constraining force over the spherical joint at its top.  
Finally, the kinematics and dynamics of the platform are considered so the spherical joint 
forces from all the six legs complete the dynamic equations.   
The motion control can be implemented on every joint considering the movements of each 
actuator (Guo & Li, 2006). Considering the coupling effects and to solve the trajectory 
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problem, the dynamic control takes the inputs of the system so the drive of each joint moves 
its links to the target position with the required speed. 
The dynamic model of a 6-DOF platform can be calculated with the Euler-Lagrange 
formulation that expresses the generalized torque (Jaramillo et al, 2006)(Liu, Li and Li, 
2000).The dynamic model is described by a set of differential equations called dynamic 
equations of motion as shown in (15). 
 

 1, ,6J L F L ii i i i i iτ = + + Γ =  (15) 

 

where ( )i tτ  is the generalized torque vector, ( )iL t  the generalized frame vector (linear 
joints), ( )iJ t  the inertial matrix, ( )iF t  the non-linear forces (for example centrifugal) matrix, 

iΓ  the gravity force matrix. 

3.5 Actuator model 
Each joint is composed of a motor, a transmission system and an encoder and by 
considering DC motor (Ollero, Boverie & Goodal, 2005), its three classic equations are 
presented in Eq. 16 
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where ( )mT t  is the torque, ( )m tθ  the angular position of the motor axis, ( )i t  the current, 
,mot motL R  respectively the inductance, resistance, eqJ , eqB  the inertia, friction of the axis load 

calculated on the motor side. 

4. Control structure 
A simulation environment allows implementing and testing advanced axis control 
strategies, such as Predictive Control, which is a well known structure for providing 
improved tracking performance. The purpose of the control structure is to obtain a model of 
the system that predicts the future system's behaviour, calculates the minimization of a 
quadratic cost function over a finite future horizon using future predicted errors. It also 
elaborates a sequence of future control values; only the first value is applied both on the 
system and the model, finally the repetition of the whole procedure at the next sampling 
period happens accordingly to the preceding horizon strategy (Li & Salcudean, 1997) 
(Nadimi, Bak & Izadi, 2006)(Remillard & Boukas, 2007)(Su et al, 2004). 

4.1 Model 
The Controlled Autoregressive Integrated Moving Average Model (CARIMA) form is used 
as numerical model for the system so the steady state error is cancelled due to a step input 
or disturbance by introducing an integral term in the controller (Clarke, Mohtadi & Tuffs, 
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1987). The predictive control law uses an external input-output representation form, given 
by the polynomial relation: 

 1 1
1

( )( ) ( ) ( ) ( 1)
( )

kA q y k B q u k
q

ξ− −
−= − +

Δ
 (17)   

where u is the control signal applied to the system, y the output of the system, Δ(q-1) =1 - q-1 

the difference operator, A and B polynomials in the backward shift operator q-1, of 
respective order na and nb, ξ  an uncorrelated zero-mean white noise. 

4.2 Predictive equation 
The predictive method requires the definition of an optimal j-step ahead predictor which is 
able to anticipate the behaviour of the process in the future over a finite horizon. From the 
input-output model, the polynomial predictor is designed under the following form: 
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where Fj, Gj, Hj and Jj, unknown polynomials, corresponding to the expression of the past 
and of the future, are derived solving Diophantine equations, with unique solutions 
controller (Clarke, Mohtadi & Tuffs, 1987). 

4.3 Cost function 
The GPC strategy minimizes the weighted sum of the square predicted future errors and the 
square control signal increments: 
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Assuming that 0)( =+Δ jtu  for uj N≥ . Four tuning parameters are required: N1, the 
minimum prediction horizon, N2 the maximum prediction horizon, Nu the control horizon 
and λ  the control-weighting factor. 

4.4 Cost function minimization 
The optimal j-step ahead predictor (20) is rewritten in matrix form: 
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The future control sequence is then obtained by minimizing the criterion (23) (Clarke, 
Mohtadi and Tuffs, 1987): 
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4.5 RST form controller 
The minimization of the previous cost function (Clarke, Mohtadi & Tuffs, 1987), results in 
the predictive controller derived in the RST form according to Fig. 5 and implemented 
through a differential equation in (25). 

 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )S q q u t R q y t T q w t− − −Δ = − +  (25) 
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Fig. 5. GPC in a RST form.  

The main feature of this RST controller is the non-causal form of the T polynomial, creating 
the anticipative effect of this control law. 

4.6 Complete model implementation 
Taking the xr as the system's input trajectory the objective is to calculate the actuator’s length 
lr for each sampled position. Mechanism and actuator controller dynamic effects are 
considered over the six legs having as outputs their δld and previous position xi-1, this is done 
in order to calculated the current manipulator position xo, xf  is determined by the length of 
the actuator l0. Then these values are compared with the target position in order to estimate 
the error δl between the reference position xr and the manipulator’s position xo after all the 
dynamics effects have been considered (Fig. 6 and Fig. 7) (Hunt, 1978)(Jaramillo et al, 2006) 
(Ghobakhloo, Eghtesad & Azadi, 2006). 
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Fig. 6. Total system Model  
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(b) Discrete PID in RST form 

Fig. 7. Continuous and Discrete PID Controller. 
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The GPC has shown to be an effective strategy in many fields of applications, with good 
time-domain and frequency properties (small overshoot, improved tracking accuracy and 
disturbance rejection ability, good stability and robustness margins), is able to cope with 
important parameters variations. 

5. Simulation 
The modelling of the Parallel Manipulator leads to the design of a simulator adopting 
electric and mechanical libraries blocks using Simulink (Gosselin, Lavoie & Toutant, 1992). 
The main elements of the robotics joints are brushless DC motor drives, axis inertia, gears 
and control blocks. Other elements of the manipulator (including loads) are represented by 
three nonlinear models, one for each motor drive. The control system itself consists, 
essentially, in a cascade of control loops (for each axis). The inner speed and torque control 
loops are part of the drive model where only the position loop is explicitly modelled. In fact, 
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the position control of the manipulator can be implemented through the control feedback of 
each isolated joint (Cappel, 1967).  
The developed simulator also includes a path generation module, providing the joints with 
axis trajectories as reference signal for controlling each of the parts (Jaramillo et al, 2006). 
Finally, a graphic interface is developed, showing the results of joint motion obtained 
through typical trajectories. The simulation software was implemented using Matlab ® and 
programmed with the equations of the Stewart Platform manipulator. This interface allows 
the input of the dynamic simulation parameters: mass and inertia of the mobile platform, 
actuator parameters and the gains of the PID controller. Fig. 8 shows a screen capture of the 
developed interface. 
 

      

Fig. 8. Implemented simulation environment  

In Fig. 9 the overall block diagram with the dynamic and control model (Fig. 3) 
implemented in Simulink is presented 
The considered system used for supervision and control implementation includes 3 DC 
motors, a 1:100 gear box (N), a ball screw transmission (for joint 1 only) and incremental 
encoders (Table 1).The joint controllers are designed independently, resulting in three RST 
parameters, considering the same axis motor but with different inertia on the motor side due 
to different geometrical features for each one. 
Four tuning parameters are required: N1 the minimum prediction horizon, N2 the maximum 
prediction horizon, Nu the control horizon and λ  the control weighting factor. These are 
given in Table 2 have been chosen to provide good stability and robustness margins (Clarke, 
Mohtadi, & Tuffs, 1998). 
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the position control of the manipulator can be implemented through the control feedback of 
each isolated joint (Cappel, 1967).  
The developed simulator also includes a path generation module, providing the joints with 
axis trajectories as reference signal for controlling each of the parts (Jaramillo et al, 2006). 
Finally, a graphic interface is developed, showing the results of joint motion obtained 
through typical trajectories. The simulation software was implemented using Matlab ® and 
programmed with the equations of the Stewart Platform manipulator. This interface allows 
the input of the dynamic simulation parameters: mass and inertia of the mobile platform, 
actuator parameters and the gains of the PID controller. Fig. 8 shows a screen capture of the 
developed interface. 
 

      

Fig. 8. Implemented simulation environment  

In Fig. 9 the overall block diagram with the dynamic and control model (Fig. 3) 
implemented in Simulink is presented 
The considered system used for supervision and control implementation includes 3 DC 
motors, a 1:100 gear box (N), a ball screw transmission (for joint 1 only) and incremental 
encoders (Table 1).The joint controllers are designed independently, resulting in three RST 
parameters, considering the same axis motor but with different inertia on the motor side due 
to different geometrical features for each one. 
Four tuning parameters are required: N1 the minimum prediction horizon, N2 the maximum 
prediction horizon, Nu the control horizon and λ  the control weighting factor. These are 
given in Table 2 have been chosen to provide good stability and robustness margins (Clarke, 
Mohtadi, & Tuffs, 1998). 
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Fig. 9. Simulink Dynamic and control Model 
 

Jm - Inertia (kgm2) 0.71  10-3 
Weight (kg) 8 

Mechanical time constant (ms) 1.94 
Voltage constant (V/rad/s) 0.807 
Torque constant (Nm/A) 1.33 

L - Inductance (mH) 14.7 
R - Resistance (Ω ) 1.44 

Table 1. Motor Parameters. 
 

Joint N1 N2 Nu λ  
1 1 8 1 92 
2 1 8 1 107.3 
3 1 8 1 126 

Table 2. GPC tuning parameters for each joint. 

5.1 Manipulator geometry variation: case study 
The manipulator workspace and behaviour can be studied from the variation and 
simulation of various upper and bottom plate geometries, these configurations are 
presented in Fig. 10 with their corresponding geometry parameters. Once the geometry of 
each plate is chosen, motion to target positions can be simulated using the implemented 
path generator, Fig. 11 presents a circular path over a xy plane. 
An initial point of the circular trajectory on the xy plane is presented in Fig. 11. 
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Fig. 10. Top and bottom implemented base geometries and parameters 
 

 

Fig. 11. Path Generator Results  

The maximum velocity for this workspace trajectory is 2mm/s and the maximum 
acceleration is 0.1 mm/s2 (Fig. 12). 
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Fig. 12. a. workspace velocity  b. workspace acceleration 

The joint space trajectory corresponding to the target workspace path for each actuator li(t) 
is obtained through the inverse kinematics model obtaining the trajectories trajectories 
presented in Fig. 13.    
 

 
Fig. 13. Joint space trajectory  
The singular configurations with various conditions along the trajectory are analyzed (Fig. 
14), in this case, the variation of the singular number respect to the initial condition is 2.52%; 
with this small variation singular configurations are avoided, while in other cases changing 
the number of conditions results in higher singularities.     
 

 
Fig. 14. Singular Analyses.  
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The constant workspace volume of the manipulator is also evaluated (Fig. 15). This useful 
characteristic helps to plan new workspace trajectories with constant orientation.  
 

 

Fig. 15. Work space volume 

5.2 Dynamics study 
In order to perform the dynamic study and analyze the associated effects of various forces 
over the platform, the entire system has been modelled in a Simulink environment. The 
obtained model is composed of of one equation and four integration blocks for calculating 
velocity and position from the known acceleration. In addition, to simplify the 
implementation of the simulation, the platform initial conditions are declared through an 
initialization button. Finally a graph button allows the visualization of the results after 
simulation. 
The simulation tests were performed using values defined in subsection 5.1, and also the 
initial position of the center of gravity of the following platform: 
 

To = [ 0.1 0 0.395 ] m 

θo = [ 0.1 0 -0.2 ] rad 
 
The initial position of the 3D platform is presented in Fig. 16a, where a 50N constant force is 
applied on each arm for 0.5 s resulting in the position of the platform shown in Fig. 16b. 
During this movement the change of position, linear and angular velocities of the center of 
gravity is calculated and presented in Fig.17. 

5.3 Control analysis 
For joint space position control the PID controller is tunned with the following gains:   
Kp=100, Ki=1 and kd=1. the li(t) input and ld(t) output joint space trajectory is presented in 
Fig. 18. 
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Fig. 16. Stewart Platform Positions 

0 0.2 0.4 0.6 0.8
-0.5

0

0.5

1
Déplacement linéaire

 

 

0 0.2 0.4 0.6 0.8
-2

-1.5

-1

-0.5

0
Déplacement angulaire

 

 

0 0.2 0.4 0.6 0.8
-4

-2

0

2
Vitesse linéaire

 

 

0 0.2 0.4 0.6 0.8
-10

-5

0

5
Vitesse angulaire

 

 
wx
wy
wz

tetax
tetay
tetaz

x
y
z

dx
dy
dz

  
Fig. 17.  Linear and angular displacement of of the center of gravity of the Stewart Platform. 

 
Fig. 18. Input and output joint space trajectory.  
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The maximum joint space error is 0.1 mm in all the actuators resulting in a maximum 
motion of 30 mm or 0.333%. 
 

 
Fig. 19. Joint Space error 

Appling the forward kinematics for calculating and comparing the workspace output x0  is 
calculated and compared with the workspace input xr.    
 

 
Fig. 20. Output and input workspace trajectory 

The maximum work space error is 0.5 mm for a maximum linear motion of 390 mm in the z 
axis (Fig. 21).  

6. Supervision and control architecture 
The purpose of implementing a supervisory system over the platform is to permit an easy, 
fast adaptation and expansion of the system due to current technological trends, resulting in 
better portability and scalability of the system. Through the structure division in functional 
blocks, with very specific dedicated interfaces, the project implementation becomes more 
efficient. The rapid prototyping tools allow designing integrated environments for  
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Fig. 20. Output and input workspace trajectory 

The maximum work space error is 0.5 mm for a maximum linear motion of 390 mm in the z 
axis (Fig. 21).  

6. Supervision and control architecture 
The purpose of implementing a supervisory system over the platform is to permit an easy, 
fast adaptation and expansion of the system due to current technological trends, resulting in 
better portability and scalability of the system. Through the structure division in functional 
blocks, with very specific dedicated interfaces, the project implementation becomes more 
efficient. The rapid prototyping tools allow designing integrated environments for  
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Fig. 21. Work space error 

 

 

 a) Tracking error     b) Disturbance reaction, PID 

Fig. 22. Time domain simulation results, tracking error and disturbance reaction  

modelling, simulating, and testing algorithm development, through components that 
simulates the dynamic models of the mechatronic systems; performs complex simulation of 
the overall system and environment; generates programming code for embedded robot 
control, and communicates with the platform for controlling it locally or remotely 
(McCallion, 1977). 
The proposed control architecture is a set of implemented hardware and software modules 
emphasizing on rapid prototyping systems integrated to support the development of the 
platform tasks. 

6.1 Control levels 
In the supervisory control level, the supervision of a generic platform task can be achieved 
through the execution of global control strategies. This level also allows correcting the task 
execution according to the data obtained through the sensors. The embedded control level is 
dedicated for executing control strategies allowing locally decision making, with occasional 
corrections from the supervisory control level. The local control is restricted to local 
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strategies associated with the sensors and actuators data. The strategies in this level can be 
implemented under a rapid prototyping framework like FPGA, as described in Fig. 23.  
 

 
Fig. 23. Stewart-Gough Platform – Control Architecture. 

6.2 Embedded level 
At the embedded control level two main tasks are implemented: the command decoder and 
the logic control. The first task decodes commands received by the embedded 
communication interface (from supervisory control), allowing different actions to be 
executed according to the received data. The second task generates control signals to 
actuators’ interfaces and receives signals from sensors’ interfaces, both located at local 
control level, so control strategies are implemented in the logic control block. 
The prototype uses a FPGA from Altera (Stratix II EP2S60) (Altera, 2008), the configware 
blocks were implemented in VHDL or Graphic language in the Altera’s development 
platform Quartus II. The embedded control strategies in the logic control block were 
development using C++ language, in a system-on-a-programmable-chip (SOPC) 
environment or through the use of blocks implemented in reconfigurable hardware.  

6.3 Position control using FPGA 
The objective of the proposed controller is to control the linear actuators of the platform. It is 
able to process the digital signals from the encoders coupled to each linear actuator and the 
digital signals of the target trajectory. For example, a PID digital controller written in a RST 
form can be implemented in PLD, with the fitted gain parameters through external 
programming. The controller’s output is a digital signal for the PWM power block. Various 
implementations of the digital PID (Proportional-Integrative-Derivative) controllers are 
implemented, and, consequently tuning parameters are necessary for fulfulling the different 
performance requirements, or to endure different levels of operating noise. A typical 
implementation of a PID controller can be achieved using a set of differential equations, as 
follows: 

 [ ] [ ] [ ] [ ]U n P n I n D n= + + , (45) 

 [ ] [ ]P n Kp e n= ⋅ , (46) 
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where: U[n] is the current control signal resultant, P[n] the current proportional control 
signal, I[n] the current integral control signal, D[n] is composed of the  proportional, 
derivative and integral parameters (Kp, Td and Ti) where Ts is the sampling time, 
respectively. Also, e[n] the current error sample, and finally, e[n-1] the previous error 
sample. A register error block stores values of e[n] and e[n-1], and makes shift operations 
(e[n-1] = e[n] and u[n-1] = u[n]). An output register block stores u[n] and u[n-1]. 
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Fig. 24. Embedded DC motor control blocks. 
Some of the blocks are described as follows: Error Detecting is used for comparing of the 
reference input and output velocity signals, allowing the generation of a proportional binary 
word to the error among the periods of the signs. The obtained output of this block is U[n], 
Difference Equation implements the PID digital controller, using the gain parameters (Kp, 
Ts and Ti) contained in the control input registers. Control Register implements the control 
registers, responsible for the programming of several operational parameters, including the 
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gain parameters. PWM and Power Interface converts the binary word supplied by PID 
controller in a pattern of digital signs to control the PWM potency block.   
The considered reconfiguration in the interface and logical block design eases testing, 
implementation and future updating, due to this, the development of systems based on 
reconfigurable computing present well-suited features for developing this kind of problem.  
The synchronized control of the actuator system can be easily achieved through the same 
PLD.  

6.4 Prototyping environment 
A simulation tool was developed for the 6 DOF parallel manipulator, including motor 
drives, gear boxes, kinematic and dynamic models, and design of the control system for 
three axes. Simulations described below consider trajectories issued from the path 
generation module. The model was tested first in Matlab-Simulink language and the final 
control hardware implementation was performed in visual programming using LabVIEWTM 
software (Fig. 25). This last one is used for communication purposes between the program 
and the control hardware of the prototype. 
 

 
Fig. 25. Model implemented in LabVIEWTM. 

6.5 Experimental results 
The development of a numerical algorithm [8], allows calculating the linear positions for a 
task defined with respect of the platform center in the Cartesian Space, contains the solution 
of the inverse kinematics through the use of recursive numerical methods based on the 
calculation of the kinematics model and of the inverse Jacobian matrix of the manipulator. 
This algorithm has been validated through different simulations, assessing the behavior of 
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the trajectory (joint coordinate). For this purpose the kinematics model of the platform was 
used with six linear joints. Fig. 26a shows the joints movements of each linear actuator and 
their displacement (45 degrees, approximately) of one point of the upper base of this 
platform obtained through the inverse kinematics model (Fig. 26b). Fig. 26c shows results of 
the proposed simulation, obtained with PID axis controllers implemented through FPGA, 
considering general sea movements and LABVIEWTM experimental platform. 
 

 
                                         a)                           b) 

 
c) 

a) Joints evolutions. b) Trajectory description. c) Joint motion 
Fig. 26. Kinematics model - Simulation results. 

7. Conclusions 
This chapter presents the study of kinematics, dynamics and supervision and control of a 
Stewart-Gough platform, under a reconfigurable architecture concept, considering the 
division of the system in small functional blocks. This implementation consisted in merging 
knowledge acquired in multiple areas, and appears as a very promising design strategy for 
a better reconfiguration capability and portability. 
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This platform also becomes a powerful benchmark for many research activities, such as the 
validation of controllers and supervision strategies, model generation and data transmission 
protocols, among others. For example, the implementation of predictive controllers on this 
prototype may enable the test of this advanced control strategy under severe conditions of 
use. 
To simplify tests, implementation and future modifications, the use of rapid prototyping 
functions in the implementation of the interfaces and other logical blocks is emphasized in 
the proposed prototype. The control block, for example, can benefit of the characteristics of 
low consumption, high-speed operations, integration capacity, flexibility and simple 
programming. Some promising aspects of this architecture are: 
• Flexibility, as there is a large variety of possible configurations in the implementation of 

solutions for several problems, 
• It is a powerful tool for prototype design, allowing simple solution to control the 

several sensors and actuators usually present in this kind of projects, 
• Possibility of modification of control strategies during operation of the platform, 
• The open architecture of this platform enables the use for educational and researches 

activities.  
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the trajectory (joint coordinate). For this purpose the kinematics model of the platform was 
used with six linear joints. Fig. 26a shows the joints movements of each linear actuator and 
their displacement (45 degrees, approximately) of one point of the upper base of this 
platform obtained through the inverse kinematics model (Fig. 26b). Fig. 26c shows results of 
the proposed simulation, obtained with PID axis controllers implemented through FPGA, 
considering general sea movements and LABVIEWTM experimental platform. 
 

 
                                         a)                           b) 

 
c) 

a) Joints evolutions. b) Trajectory description. c) Joint motion 
Fig. 26. Kinematics model - Simulation results. 

7. Conclusions 
This chapter presents the study of kinematics, dynamics and supervision and control of a 
Stewart-Gough platform, under a reconfigurable architecture concept, considering the 
division of the system in small functional blocks. This implementation consisted in merging 
knowledge acquired in multiple areas, and appears as a very promising design strategy for 
a better reconfiguration capability and portability. 
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This platform also becomes a powerful benchmark for many research activities, such as the 
validation of controllers and supervision strategies, model generation and data transmission 
protocols, among others. For example, the implementation of predictive controllers on this 
prototype may enable the test of this advanced control strategy under severe conditions of 
use. 
To simplify tests, implementation and future modifications, the use of rapid prototyping 
functions in the implementation of the interfaces and other logical blocks is emphasized in 
the proposed prototype. The control block, for example, can benefit of the characteristics of 
low consumption, high-speed operations, integration capacity, flexibility and simple 
programming. Some promising aspects of this architecture are: 
• Flexibility, as there is a large variety of possible configurations in the implementation of 

solutions for several problems, 
• It is a powerful tool for prototype design, allowing simple solution to control the 

several sensors and actuators usually present in this kind of projects, 
• Possibility of modification of control strategies during operation of the platform, 
• The open architecture of this platform enables the use for educational and researches 

activities.  
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1. Introduction 
Flexible manipulators that are lightweight and mechanically flexible are useful for operations 
in various fields, e.g. space development programs, robotic assistants to humans and so 
forth. However, the derivation of their exact mathematical model and synthesis of the 
accurate positioning controller is exceptionally difficult because of the mechanical flexibility. 
On the other hand, the mechanical flexibility is conducive to the safety in collision between 
the manipulator and the obstacles. However, it is not positive safety measures that 
reduction of the influence due to the impact force of collision for the flexible manipulator 
depends only on its mechanical flexibility. In order to develop flexible manipulators so that 
they work safely with persons cooperatively, we need to introduce the active collision 
detection and suspension control algorithms to the flexible manipulators. 
The functional requirements of safety in the operations of flexible manipulators are as 
follows: i) to avoid collisions with obstacles placed or moving in the work space; ii) to detect 
collisions when unlooked-for obstacles contact with the flexible arm of the manipulator and 
to suspend the motion as immediately as possible; iii) to plan a new path so as to avoid the 
place of obstacles. 
There are several researches on collision detection methods without extra sensors (A. Garcia 
& Somolinos, 2003), (M. Kaneko & Tsuji, 1998), (T. Matsumoto & Kosuge, 2000). Moorehead 
and Wang proposed (Moorehead & Wang, 1996) a collision detection method using strain 
gauges to determine the intensity and position of external force due to collision with a 
flexible cantilevered beam. The estimation of the contact position in their approach was 
achieved by the mechanical relation between positions of the two strain gauges and the 
bending moments measured by the sensors. Payo et al. (I. Payo & Cortazar, 2009) is 
produced the method of collision detection and suspend control of the very lightweight 
single-link flexible arm based on coupling torque feedback. They used the variation of the 
control torque. 
The authors have focused our attention on the second item mentioned above. We already 
developed a method of collision detection for the single-link flexible manipulator using the 
innovation process of the Kalman filter (Sawada, 2002a), (Sawada, 2002b), (Sawada, 2002c), 
(Sawada, 2004 (in Japanese)), (Kondo & Sawada, 2008). Our approach requires no particular 
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1. Introduction 
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in various fields, e.g. space development programs, robotic assistants to humans and so 
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and Wang proposed (Moorehead & Wang, 1996) a collision detection method using strain 
gauges to determine the intensity and position of external force due to collision with a 
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achieved by the mechanical relation between positions of the two strain gauges and the 
bending moments measured by the sensors. Payo et al. (I. Payo & Cortazar, 2009) is 
produced the method of collision detection and suspend control of the very lightweight 
single-link flexible arm based on coupling torque feedback. They used the variation of the 
control torque. 
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developed a method of collision detection for the single-link flexible manipulator using the 
innovation process of the Kalman filter (Sawada, 2002a), (Sawada, 2002b), (Sawada, 2002c), 
(Sawada, 2004 (in Japanese)), (Kondo & Sawada, 2008). Our approach requires no particular 
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sensors for measuring the contact events between the flexible arm and the obstacles. This 
collision detection method is based on the observation data for vibration control of the 
flexible manipulator. The mathematical model of the flexible manipulators is expressed by 
nonlinear partial differential equations and ordinary differential equations, which is 
regarded as the infinite-dimensional system. The Kalman filter is constructed for the 
linearized finite-dimensional model corresponding to the mathematical model of the 
manipulator. 
This chapter describes a method of collision detection and suspend control for parallel-
structured flexible manipulators subject to random disturbance using unscented Kalman 
filter (UKF), which is one of the nonlinear filters. The features of the parallel-structured 
flexible manipulator are that it holds sufficient rigidity along the vertical axis and mechanical 
flexibility along the displacement axis of the arm (Sawada & Watanabe, 2007). The exact 
mathematical model of the parallel-structured flexible manipulator is described by quite 
complex nonlinear partial and ordinary differential equations, because the manipulator 
consists of two flexible beams which are disposed parallel. In this chapter, the parallel-
structured flexible manipulators are approximately modeled by a flexible arm consisting of 
a flexible beam with the same boundary conditions as the parallel-structured one. 
The approximated model of the flexible manipulator is also a nonlinear system. In order to 
construct the state estimate for the flexible manipulator, we employed the unscented 
Kalman filter as the nonlinear state estimator (S. Julier & Durrant-Whyte, 2000), (S.J. Julier & 
Durrant-Whyte, 1997), (Y.-S. Chen & Wakui, 1989). The UKFs are based on the Monte Carlo 
method, which have been developed by Simon Julier (S. Julier & Durrant-Whyte, 2000), (S.J. 
Julier & Durrant-Whyte, 1997) in order to improve the accuracy of the extended Kalman 
filters. The UKF generates a population of so-called sigma-points on the basis of the current 
mean and covariance of the state vector. The mean and covariance of the state are calculated 
using these sigma-points, which means that the algorithm is not necessary to evaluate the 
Jacobians. 
Collision between the parallel-structured flexible manipulator and an undesirable obstacle 
can be detected using the innovation process of the UKF based on the measured data of 
strain sensors pasted on the side of the manipulator. The UKF is constructed for the 
nonlinear state space model corresponding to the parallel-structured flexible manipulator 
without the impact force term due to the collision. The collision detection function is defined 
by the strength of the innovation process. The detection algorithm decides that the collision 
occurs if the collision detection function exceeds a preassigned threshold. 
The controller for the manipulator has the following two objectives: i) to rotate the flexible 
arm from the initial position to the desired position; ii) to safely suspend the rotation of the 
arm when the collision is detected. 

2. Mathematical model of parallel-structured single-link flexible manipulator 
Consider a parallel-structured single-link flexible arm with collision illustrated in Fig.1. This 
arm consists of two uniform Euler-Bernoulli beams with their length ℓ. The end of each 
beam is clamped to an unit of hub and the other end is to a tip-mass. 
Let OXY be the inertial Cartesian coordinate system; Oxy the rotating coordinate system 
around the servomotor shaft at the hub; O1x1y and O2x2y the rotating coordinate systems for 
Beam 1 and 2, respectively. ui(t, xi) (i = 1,2) denotes the transverse displacement of Beam I 
from the xi-axis. Physical parameters of the beams are as follows: ρ the uniform mass  
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Fig. 1. Parallel-structured single-link flexible arm. 

density; S the cross section; EI the uniform flexible rigidity (where E denotes the Young’s 
modulus and I the second moment of cross sectional area); and cD the coefficient of Kelvin-
Voigt type damping. The unit of the hub has the moment of inertia J0. The tip-mass has its 
mass m and the moment of inertia J1. It is assumed that the obstacle collides at  
x = xc (0 < xc < ℓ) at t = tc, where xc and tc are all unknown. Ψ0 denotes the angle of position 
which is the contact point between the arm and the obstacle, where Ψ0 is also unknown. 
The exact mathematical model of the parallel-structured single-link flexible arm derived by 
the Hamilton’s principle is highly complex. For the sake of simplicity, the parallel-structured 
single-link flexible arm consisting of two Euler-Bernoulli type beams is approximately 
modeled by a single-link flexible arm constructed by a flexible beam with the same 
boundary conditions as the parallel-structured one (see Fig.2). u(t, x) denotes the transverse 
displacement of the approximated model from the equilibrium state of the beam. θ(t) is the 
angle of the tangential axis of the root of the arm from the X-axis; e(t) the error of the 
rotation angle θ(t) from the desired position θd, i.e. e(t) := θ(t) – θd. 
Now we derive the approximated mathematical model of the parallel-structured single-link 
flexible arm with the collision based on the simple-structured model using the Hamilton’s 
principle. The position vectors of the arbitrary point of the beam, r(t, x), and the mass center 
of the tip-mass, p(t), are expressed by 
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where 2h denotes the length of the tip-mass. 
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where 2h denotes the length of the tip-mass. 
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Fig. 2. Simplified structure of parallel-structured single-link flexible arm. 
The kinetic energy of rigid part of the arm, TR(t), is given by the sum of the kinetic energies 
of the translation motion and rotation of the tip-mass and the rotation of the hub attached to 
the shaft of the servomotor: 

 2 2
0 1
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where ·  denotes the Euclid norm. Similarly, the kinetic energy of the flexible beam is 
given by 
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where ˆ( , )T t x  represents the kinetic energy density of flexible part defined by 
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The total kinetic energy of the arm is expressed by the sum of the kinetic energies of the 
rigid and flexible parts, i.e., 

 ( ) = ( ) ( ).R FT t T t T t+  (6) 

The potential energy of the whole arm is expressed by 

 
0

ˆ( ) =  ( , ) ,V t V t x dx∫   (7) 

where ˆ ( , )V t x  is the density function of the potential energy of the flexible part given by 
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The Hamilton’s principle is described by the following equation: 

 { }2

1
( ) ( ) ( ) ( ) ( ) = 0,

t

nct
T t V t W t s t δψ t dtδ δ δ− + +∫   (9) 

where t1 and t2 are arbitrary times; s(t) represents the Lagrange multiplier which is 
equivalent to the external force generated by the collision with the obstacle; and δWnc(t) 
denotes the virtual work due to the nonconservative forces, e.g. internal damping forces of 
the beams, the control torque and external disturbances. ψ(t) describes the geometric 
constrained condition between the unlooked-for obstacle and the flexible beam, i.e. 

 0( ) = ( , ) tan{ ( )} 0.c cψ t u t x x tϕ θ− − ≡   (10) 

Let us assume that |ϕ0 – θ(t)| is sufficiently small. We can regard tan{ϕ0 – θ(t)} ≅ ϕ0 – θ(t). 
Then, (10) can be rewritten into 

 00
( ) = ( , ) ( ) { ( )} 0.c cψ t u t x x x dx x tδ ϕ θ− − − ≡∫  (11) 

δWnc(t) is expressed by 
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δ γ δ
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∫ ∫  (12) 

where the prime denotes the differentiation with respect to x; μ denotes the damping 
coefficient corresponding to the damping force acting at the shaft of the servomotor; τ (t) the 
control torque; γθ(t) the random disturbance acting at the rotation of the arm; γ(t, x) the 
distributed random disturbance along the beam due to the aerodynamic resistance; and 
gθ and gf are constants. 
As the generalized coordinates, we consider the following variables: θ(t), ( )tθ , u(t, x), 

( , )u t x , u’(t, x), u’(t, x), u’’(t, x), ( , ),u t x′′  u(t, ℓ), ( , )u t . Substituting (7), (8) and (11) into (10); 
in addition, performing a large amount of calculations, we have the following nonlinear 
differential equations as the mathematical model of the approximated dynamical model 
corresponding to the parallel-structured single-link flexible manipulator: 
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δ δ

⎧ ⎫∂
+ − − + + − −⎨ ⎬

∂⎩ ⎭
 (13) 

where γ(t, x) the distributed random disturbance modeled by the white Gaussian noise; g1 
and h are constants; δ(·) denotes the Dirac’s delta function; and s(t) the magnitude of 
collision input. Assuming that the collision occurs momentarily, the magnitude of collision 
is assumed to be expressed by s(t) := s0δ(t – tc), where s0 and tc are all unknown. The initial 
and boundary conditions of (13) are 
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Fig. 2. Simplified structure of parallel-structured single-link flexible arm. 
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where γ(t, x) the distributed random disturbance modeled by the white Gaussian noise; g1 
and h are constants; δ(·) denotes the Dirac’s delta function; and s(t) the magnitude of 
collision input. Assuming that the collision occurs momentarily, the magnitude of collision 
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 (0, ). . : (0, ) = = 0u xI C u x
t

∂
∂

 (14) 
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3

( ,0) ( , ) ( , ). . : ( ,0) = = = = 0.u t u t u tBC u t
x x x

∂ ∂ ∂
∂ ∂ ∂

 (15) 

The initial condition of the error of rotation e(t) is given by e(0) = θ0 – θd, where θ0 is initial 
angle position of the arm. 
The dynamics of rotation is given by the following nonlinear differential equation: 

                         2 2
0 1 0

( , ) ( ) ( , ) ( )J J mu t mh h S u t x dx e tρ⎡ ⎤+ + + + +⎢ ⎥⎣ ⎦∫  

                       
0

2 ( , ) ( , ) 2 ( , ) ( , ) ( ) ( , )mu t u t S u t x u t x dx e t mhu tθμ ρ⎡ ⎤+ + + +⎢ ⎥⎣ ⎦∫  

                       
5 4

2
4 40 0

( , ) ( , )( , ) ( , ) ( ) D
u t x u t xS u t x dx m u t e t x c I EI dx
x t x

ρ
⎡ ⎤∂ ∂⎡ ⎤− − − +⎢ ⎥⎢ ⎥⎣ ⎦ ∂ ∂ ∂⎣ ⎦

∫ ∫  

 10
( , ) ( ) ( ) = 0.                            g x t x dx t g tθ θγ τ γ+ − −∫   (16) 

The observation data is obtained by means of P strain sensors pasted at x = ξj, (j = 1, … ,P) 
and a potentiometer installed at the shaft of the hub, i.e. 

 0 0 0 0( ) = ( ) ( )y t c e t e tβ+  (17) 

                        
2

2

( , )( ) = ( ),
bj s

j j j j
j

u t xy t c dx e t
x

ξ

ξ
β

+ ∂
+

∂∫  (18) 

where cj and ej are constants; and βj(t), (j =0, 1, … ,P) represents the observation noise which 
is modeled by the white Gaussian noise. In order to use the finite-dimensional controller 
and state estimator, the dynamics of the arm described by (13) and (16) are converted into 
the stochastic finite-dimensional state space model via the modal expansion technique, 

 
=1

( , ) = ( ) ( ),
N

k k
k

u t x u t xφ∑  (19) 

where {uk(t)}k=1,… ,N denote the modal displacements; N the large positive number; φk(x) the 
eigenfunction (mode function) of the following eigenvalue problem with respect to the 
operator A = {(EI)/(ρS)}(d4/dx4): 

 ( ) = ( ).k k kx xφ λ φA   (20) 

Introducing the state vector defined by v(t) = [u1(t),… ,uN(t), 1u (t), … , Nu (t), e(t), e (t)]T, the 
state space model of the approximated flexible arm can be described by the following  
stochastic differential equation: 

 ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ; ) ( )c cv t A v v t b v t G v t g v x s tτ γ+ + +  (21) 
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 ( ) = ( ) ( ),                                                  y t Cv t E tβ+  (22) 

where γ (t) = [γ1(t), … ,γ 
N(t),γθ(t)]T; γ 

k(t) = ∫ 0 γ (t, x)φk(x)dx; β(t) := [β0(t), β1(t), … , βP(t)]T; E{γ (t) 

γ T(τ)g} = Wδ(t – τ); E{β(t)βT(τ)} = Vδ(t – τ) (E{·}: mathematical expectation). 

3. Nonlinear state estimation using UKF 
The state space model described by (21) and (22) is a stochastic nonlinear system with the 
collision input. In order to control the tip position and to reduce the random vibration of the 
whole flexible manipulator, the information of the state v(t) is required. However, the 
collision input affects as an unknown disturbance. For achieving these purposes, the 
unscented Kalman filter (UKF) for the following collision-free system is employed: 

 ( ) = ( ) ( ) ( ) ( ) ( ) ( ),f f f f fv t A v v t B v f t G v tγ+ +   (23) 

where vf (t) denotes the state vector of collision-free system. 
The UKF is constructed for the discrete-time nonlinear stochastic system given by equation 
(23) that is the continuous-time system. Equation (23) and (22) can be converted into the 
discretized version of the system. By using the Runge-Kutta method, (22) and (23) are 
rewritten into the following nonlinear discrete-time system: 

 ( 1) = ( ( ), ( ), ( ))f fv k F v k k kτ γ+  (24) 

 ( ) = ( ) ( ),y k Cv k E kβ+  (25) 

where k denotes the time-step; Δt the time interval; and F(·) the nonlinear function defined by 

      1 2( ( ), ( ), ( )) = ( ) { ( ( ), ( ), ( )) 2 ( ( ), ( ), ( ))
6f f f f
tF v k k k v k H v k k k H v k k kτ γ τ γ τ γΔ

+ +  

                             3 42 ( ( ), ( ), ( )) ( ( ), ( ), ( ))}fH v k k k H v k k kττ γ τ γ+ +  (26) 

                     1( ( ), ( ), ( )) = ( ( )) ( ) ( ( )) ( ) ( ( )) ( )f f f f fH v k k k A v k v k B v k k G v k kτ γ τ γ+ +  

                     2 1( ( ), ( ), ( )) = ( ( )){ ( ) ( ) / 2} ( ( )) ( ) ( ( )) ( )f f f f fH v k k k A v k v k H t B v k k G v k kτ γ τ γ+ ⋅ Δ + +  

                     3 2( ( ), ( ), ( )) = ( ( )){ ( ) ( ) / 2} ( ( )) ( ) ( ( )) ( )f f f f fH v k k k A v k v k H t B v k k G v k kτ γ τ γ+ ⋅ Δ + +  

                     4 3( ( ), ( ), ( )) = ( ( )){ ( ) ( ) } ( ( )) ( ) ( ( )) ( ).f f f f fH v k k k A v k v k H t B v k k G v k kτ γ τ γ+ ⋅ Δ + +  

The algorithm of UKF is summarized the three steps as follows: 
Step 1. The (2N + 2)-dimensional random variable vf (k) is approximated by 2(2N + 2) + 1 

sigma points Xi with weight coefficients Wi. 

 0 ˆ= ( | )                                    fv k kX  (27) 

          0 =                                         
2 2

W
N

κ
κ+ +

 (28) 
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       ˆ= ( | ) { (2 2 ) ( | )}i f iv k k N P k kκ+ + +X  (29) 

           1=                                     
2(2 2 )iW

N κ+ +
 (30) 

 2 2 ˆ= ( | ) { (2 2 ) ( | )}   i N f iv k k N P k kκ+ + − + +X  (31) 

           2 2
1= , ( = 1, ,2 2)            

2(2 2 )i NW i N
N κ+ + +

+ +
 (32) 

where κ denotes the integer scaling parameter; Wi the weight coefficient that is 
associated with the i-th point and { (2 2 ) ( | )}iN P k kκ+ +  represents the i-th column 
of the matrix U satisfying M = UUT if M := (2N + 2 + κ)P(k|k). In this paper, the 
matrix U is calculated via the incomplete Cholesky decomposition (Saad, 1996). 

Step 2. Transform each point through the nonlinear function F(·), and the predicted mean, 
covariance and observation, the innovation covariance Pyy(k + 1|k) and the cross 
correlation matrix Pxy(k + 1|k) are computed as follows: 

 ( 1| ) = ( ( | ), ( ),0)i ik k F k k kτ+X X  (33) 
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 ( 1| ) = ( 1| )       i ik k C k k+ +Y X  (36) 
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Step 3. The state estimate and covariance are given through updating the prediction by the 
linear update rule which is specified by the weights chosen to minimize the mean 
squared error of the estimate. The update rule is 
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 ˆ ˆ ˆ( 1| 1) = ( 1| ) ( 1){ ( 1) ( 1| )}f fv k k v k k K k y k y k k+ + + + + + − +  (40) 

 T( 1| 1) = ( 1| ) ( 1) ( 1| ) ( 1| ),yyP k k P k k K k P k k K k k+ + + − + + +  (41) 

where K(k + 1) is the Kalman filter gain given by 

 1( 1) = ( 1| ) ( 1| ).vy yyK k P k k P k k−+ + +  (42) 

4. Collision detection algorithm 
It is an undesirable accident that the flexible manipulator collides with an unknown 
obstacle, because the collision input s(t) affects the state of flexible manipulators as the 
disturbance. The problem of the collision detection is considered as a detection problem of 
the abrupt change from the collision-free system to the system with the collision. The change 
of the systems can be detected using the observation data measured by the piezoelectric 
sensors pasted at the root of the flexible arm. In other words, the collision is detected by 
making a decision whether the observation data y(t) is provided from the collision included 
model or the collision-free model. 
For this purpose, the intensity of the innovation process is used. The innovation process of 
the UKF, μ(k), is defined by the difference between the actual observation data and the 
estimated observation data measuring collision-free system, i.e., 

 ˆ( ) = ( ) ( | ),fk y k Cv k kμ −  (43) 

where ˆ ( | )fv k k  is the estimate of vf (k) which is calculated by the UKF mentioned in the 
previous Section. Substituting (25) into (43), we have 

 ( ) = ( ) ( ),k Cz k E kμ β+   (44) 

where z(k) is the estimation error defined by z(k) := v(k) – ˆ ( | )fv k k . If the collision does not 
occurr, the state vector v(k) is equal to vf (k). However, if the collision occurrs, v(k) is equal to 
the state vector of collision model. In this case, z(k) becomes large because of the collision 
input. In order to detect the collision, the following scalar function (collision detection 
function) is introduced: 

 T( ) = ( ) ( ).r k k kμ μ   (45) 

If the collision detection function r(k) exceeds a threshold ε, then the collision has occurred. 
In fact, it is assumed that the estimation error when the collision has occurred is separated as 

 ( ) = ( ) ( ),z k z k kα+   (46) 

where ( )z k  is the estimation error of the UKF based on the collision-free system; and α(k) 
the estimation error caused by the collision input. Substituting (46) into (44), the innovation 
process μ(k) is rewritten into 

 ( ) = ( ) ( ) ( ).k Cz k C k E kμ α β+ +   (47) 
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           1=                                     
2(2 2 )iW
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+ +
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where κ denotes the integer scaling parameter; Wi the weight coefficient that is 
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Step 3. The state estimate and covariance are given through updating the prediction by the 
linear update rule which is specified by the weights chosen to minimize the mean 
squared error of the estimate. The update rule is 
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input. In order to detect the collision, the following scalar function (collision detection 
function) is introduced: 

 T( ) = ( ) ( ).r k k kμ μ   (45) 

If the collision detection function r(k) exceeds a threshold ε, then the collision has occurred. 
In fact, it is assumed that the estimation error when the collision has occurred is separated as 
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where ( )z k  is the estimation error of the UKF based on the collision-free system; and α(k) 
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From equations (45) and (47), the mathematical expectation of the collision detection 
function r(k) is evaluated by 

 T T T T{ ( )} = tr{ ( ) } tr{ } tr{ ( ) ( ) },zr k CP k C EVE C k k Cα α+ +E  (48) 

where T( ) { ( ) ( )}zP k z k z k:= E . The first two terms in the right-hand side of (48) is the bias 
depending on the observation and the system noises. The third term is caused by the 
collision input which is the deterministic process. If the third term becomes sufficiently 
large, then r(k) becomes also large at the time when the collision occurs. 

5. Position and suspend control 
The purpose of controller is to generate the control torque for the servomotor so that the tip 
position of the flexible manipulator follows the reference trajectory. In this work, the sliding 
mode controller is employed (Utkin, 1992). The flexible manipulator is controlled so that its 
state converges to the equilibrium sate. 
The sliding mode controller is constructed for the following deterministic collision-free 
system: 

 ( ) = ( ( )) ( ) ( ( )) ( )f f f fv t A v t v t B v t tτ+  (49) 

which has no system noise term. If the flexible manipulator is well controlled, the error state 
vector vf (t) is assumed to sufficiently be small, i.e. vf (t)  1. In this work, we consider that 
the matrices A(vf (t)) and B(vf (t)) can be approximated as A(vf (t)) ≅ A(0) and B(vf (t)) ≅ B(0). 
Using these approximations, the error system is rewritten into the following equation: 

 ( ) = ( ) ( ),f e f ev t A v t B tτ+   (50) 

where Ae and Be are constant matrices defined by 

 (0), (0).e eA A B B:= :=   (51) 

The objectives of the sliding mode controller are to control the tip position, to suppress the 
random vibration of the whole manipulator, and to suspend the motion of the manipulator 
when a collision is detected. The control torque τ(t) is generated by the sliding mode 
controller. The output of the controller can be separated into two parts, i.e.: 

 ( ) = ( ) ( ),eq nlt f t f tτ +   (52) 

where feq(t) represents the term of linear control input called the equivalent control input in 
the sliding mode; and fnl(t) the term of nonlinear control input in the reaching mode.  
The switching function σ(t) is given by 

 ( ) = ( ),ft Sv tσ   (53) 

where S represents the gradient of the switching plane. In the sliding mode, the switching 
function σ(t) holds the following conditions: 

 ( ) = 0tσ  (54) 
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 ( ) = 0.tσ  (55) 

The equivalent control input is obtained using (50), (53) and (55) as: 

 1( ) = ( ) ( ).eq e e ff t SB SA v t−−  (56) 

Substituting (56) into (50), the equivalent control system can be described by 

 1( ) = { ( ) } ( ) ( ),f e e e e f e fv t A B SB SA v t A v t−− ≡  (57) 

where 1( )e e e e eA A B SB SA−:= − . 
In order to find the switching plane, we consider the cost functional defined by 

                                    2 2
1 20 0

=  {  [ { ( , )} { ( , )}
t

J q u s x q u s x+∫ ∫  

         2 2 2 2
3 4 5 6{ ( , )} { ( , )} ] ( ) ( )} ,q u s x q u s x dx q e s q e s ds′′ ′′+ + + +  (58) 

 

where qi (i = 1, … 6) are positive constants. Substituting the solution of the system described 
by the equation (13) given by (19) into this, it is rewritten into the following expression: 

 T

0
= ( ) ( ) ,

T

f fJ v t Qv t dt∫  (59) 

where Q := diag{Θ1,Θ2, q5, q6}; Θ1 = q1 IN + q3Ψ; Θ2 = q2 IN + q4Ψ; (IN: N-dimensional unit 
matrix); and 

 
1 1 10 0

10 0

 ( ) ( ) ...  ( ) ( )

= .

 ( ) ( ) ...  ( ) ( )

N

i
N N N

x x dx x x dx

x x dx x x dx

φ φ φ φ

φ φ φ φ

⎡ ⎤′′ ′′ ′′ ′′
⎢ ⎥
⎢ ⎥Ψ
⎢ ⎥
⎢ ⎥′′ ′′ ′′ ′′
⎣ ⎦

∫ ∫

∫ ∫
  (60) 

 

The gradient of the switching plane S must be decided so that the eigenvalues of eA  
becomes stable. There are a method to choose S as a feedback gain of the optimal control. 
Namely, S is determined as follows (Y.-S. Chen & Wakui (1989)): 

 T= eS B P  (61) 

 T T = 0.e e e ePA A P PB B P Q+ − +  (62) 

The nonlinear control input in reaching mode is considered. The sliding mode control is 
regarded as variable structure control as a required condition. So, using the switching 
function σ(t), the term of nonlinear control input fnl(t) is defined by 

 ( ) = sgn( ( )),nlf t F tσ−  (63) 

where F is the nonlinear controller gain; and sgn(·) the signum function. Therefore, the 
control input f (t) is given by 
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controller. The output of the controller can be separated into two parts, i.e.: 
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where feq(t) represents the term of linear control input called the equivalent control input in 
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The switching function σ(t) is given by 
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 1( ) = ( ) ( ) sgn( ( )).e e ft SB SA v t F tτ σ−− −  (64) 

In order to achieve σ(t)→0 (t→∞), the Lyapunov function for the switching function is 
chosen as 

 T1( ) = ( ) ( ).
2

V t t tσ σ   (65) 

The time derivative of the the Lyapunov function defined by (65) is described with (50) and 
(64) by 

 T( ) = ( ) sgn( ( )).eV t t SB F tσ σ−   (66) 

If ( )V t < 0, the switching function converges to zero. Hence, the nonlinear control gain F 
must satisfy the following condition: 

 
> 0 : if > 0
< 0 : if < 0.

e

e

SB
F

SB
⎧
⎨
⎩

  (67) 

At the neighborhood of the switching plane, the signum function raises the chattering. So, 
the signum function is approximated as follows: 

 ( ) ( )sgn( ( )) = ,
( ) ( )
t tt
t t

σ σσ
σ σ δ

≈
+

  (68) 

where δ is a positive constant. As a result, (64) is rewritten into 

 1 ( )( ) = ( ) ( ) .
( )e e f

tt SB SA v t F
t

στ
σ δ

−− −
+

  (69) 

Because of using the unscented Kalman filter, it is necessary that the switching function σ(t) 
and the controller input τ(t) given by the sliding mode controller with the UKF are 
converted into the discretized version given by 

 ˆ( ) = ( )fk Sv kσ  (70) 

 1 ( )ˆ( ) = ( ) ( ) .
( )e e f

kk SB SA v k F
k

στ
σ δ

−− −
+

 (71) 

When the collision occurs, it is necessary that the flexible manipulator is suspended because 
of absorbing the impact of collision. The proposed flexible manipulator is controlled by 
tracking the reference trajectory using the sliding mode controller. For suspending the 
motion of the manipulator, we consider that the reference trajectory (position control) is 
changed into a steady position when the collision occurs. The angle position of flexible 
manipulator at the time tc when the collision occurs is given by 

 ( ) = ,c ctθ θ  (72) 
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After the collision occurred, the reference trajectory is changed into the trajectory given by 
the following equation: 

 ( ) .d ctθ θ≡   (73) 

The desired position becomes the position that the flexible manipulator collides with the 
obstacle. Then, the flexible manipulator can be suspended at this position. 

6. Simulation studies 

In this section, several numerical results are presented. The flexible beam is assumed to be 
made with the phosphor bronze. The physical parameters and the coefficients of the flexible 
manipulator are listed in Table 1. The observation data is supposed to be measured by 
piezoelectric sensors with their length bs = 3×10–2[m] and width 1.2×10–2 [m] pasted at  
ξ1 = 3×10–3[m] and potentiometers installed at each hub. The parameters of the observation 
system were set as c0 = 10, c1 = 1, e0 = e1 = 1. The parameter for the UKF κ was set as κ = 1. The 
covariance matrices for the system and observation noises were given by W = 10–5

 × I2N+2,  
V = 10–8

 × I2. The number of modes of the system was set as N = 2. The time partition in 
numerical simulation was set as Δt = 1 × 10–3[s]. 
The initial condition of state vector were set as u(0, x)=0[m], u (0, x)=0[m/sθ ], 
θ(0)=0[rad/s] and θ(0) = 0[rad]. The initial condition of the state vector of the control error 
system was also set as zero. The weight coefficients of cost functional for the hyperplane S 
were set as the values; q1 = 100, q2 = 100, q3 = 100, q4 = 5, q5 = 4500, q6 = 200. The nonlinear 
controller gain was F = 4, δ = 10 and the simulation study was carried out for 5 seconds. 
 

Parameters Values 
ℓ1 

E 
S 

ρ 
cD 

J0 

J1 

m 

h 
g1 

g2 

0.3[m] 
1.1×105[MPa] 
2×10–5 [m2] 
8.8×103[kg/m2] 
4.84×107[N·s/m2] 
5 [kg·m2] 
0.08[kg·m2] 
0.61[kg] 
0.026[m] 
0.05 
0.4 

Table 1. Physical parameters of the flexible manipulator. 

6.1 Position control 
The simulation results of the position control in the collision-free case are shown in Figs.3-6. 
Fig.3 depicts the angle θ(t) and its estimate computed by the UKF ˆ( )tθ . The estimation error 
with respect to θ(t) sufficiently small. The controlled angle has converged at the desired 
position using the UKF based sliding mode control. Figs. 4 and 5 presents the observation 
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6.1 Position control 
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data of the strain measured by the piezoelectric sensor y1(t) and the displacement of the tip 
mass u(t,ℓ), respectively. Furthermore, Fig.5 also depicts the estimate of the tip-mass 
displacement ˆ( , )u t  which is calculated by 

=1
ˆ ˆ( , ) = ( ) ( )N

i ii
u t u t φ∑ . The estimation error of 

the tip-displacement based on the noisy observation data (see Figure 4) is adequately small for 
suppressing the vibration of the tip-mass. Fig.6 shows the response of the control torque τ(t). 
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Fig. 3. Behavior of the rotational angle θ(t) and its estimate ˆ( )tθ  obtained using the UKF in 
the collision-free case. The solid line and the dashed line depict the true state of the angle 
θ(t) and its estimate ˆ( )tθ , respectively 
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Fig. 4. Observation data of the strain measured by the piezoelectric sensor, y1(t) in the 
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Fig. 6. Control torque τ(t) generated by the sliding mode controller in the collision-free case. 

6.2 Collision detection and suspend control 
The simulation results in the collision case are shown in Figs.7-11. In this case, the desired 
position θd was set as the same as in the collision-free case. Figure 7 shows the behavior of 
the collision detection function given by equation (45). We considered that the collision 
between the prallel-structured single-link flexible manipulator and the unlooked-for 
obstacle occurs at tc = 1.24[s]. The value of r(t) before the collision occurs is very small. When 
the collision occurs at t = tc, the value of r(t) abruptly increases. As seen in Fig. 8, the  
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data of the strain measured by the piezoelectric sensor y1(t) and the displacement of the tip 
mass u(t,ℓ), respectively. Furthermore, Fig.5 also depicts the estimate of the tip-mass 
displacement ˆ( , )u t  which is calculated by 
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i ii
u t u t φ∑ . The estimation error of 

the tip-displacement based on the noisy observation data (see Figure 4) is adequately small for 
suppressing the vibration of the tip-mass. Fig.6 shows the response of the control torque τ(t). 
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Fig. 3. Behavior of the rotational angle θ(t) and its estimate ˆ( )tθ  obtained using the UKF in 
the collision-free case. The solid line and the dashed line depict the true state of the angle 
θ(t) and its estimate ˆ( )tθ , respectively 
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Fig. 7. Behavior of the collision detection function r(t) generated by the innovation process of 
the UKF in the collision case. The collision occurs at tc = 1.24[s]. 
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Fig. 8. Observation data of the strain measured by the piezoelectric sensor, y1(t) in the 
collision case. 
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Fig. 9. Behavior of the rotational angle θ(t) obtained using the UKF in the collision-free and 
the collision cases. The solid line and the dashed line depict the angle θ(t) in the collision 
and collision-free cases, respectively.  
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Fig. 10. Displacement of the tip mass u(t, ℓ) and its estimate ˆ( , ).u t  
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Fig. 11. Control torque τ(t) generated by the sliding mode controller in the collision case. 

observation data of the strain is very noisy. From Figs. 7 and 8, we can see that the collision 
detection function can detect the week collision based on the noisy observation data. 
The results of the suspend control are shown in Figs. 9 and 10. The rotation of the 
manipulator was interrupted when the collision has been detected using the collision 
detection function (see Figure 9). After r(t) exceeded the preassigned threshold ε = 1 × 10–12, 
the desired position has been changed from θd to θ(tc). The displacement of the tip-mass  
u(t, ℓ) shows the vibration with large amplitude after the collision was detected (Fig. 10). The 
control torque is depicted in Fig. 11. This figure explains that the control torque when the 
motion of the manipulator was suspended requires the torque of large value. 

7. Conclusions 
This chapter has presented the new collision detection method and the suspend control of 
parallel-structured single-link flexible manipulators using the unscented Kalman filter and 
the sliding mode control. The main result is that the collision detection was achieved using 
the innovation process of the UKF which is one of the nonlinear filters. Furthermore, the 
high performance suspend control has been constructed using the sliding mode controller 
based on the UKF. The proposed approach brings an advantage that the system model 
requires no linearization. In our previous work, the linearized mathematical model was 
required because of using the Kalman filter and the LQG controller for collision detection 
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and control. The proposed collision detection method can be applied to the multi-link 
flexible manipulators, which have strong nonlinearity. 
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1. Introduction 
Industrial robots are naturally equipped with classical PID controllers, which theoretically 
assure semi–global asymptotic stability of the closed–loop system equilibrium for the 
regulation case (see, e.g., Arimoto & Miyazaki (1984), Arimoto et al., (1990), Kelly (1995b), 
Ortega et al., (1995), Alvarez-Ramirez et al., (2000), Kelly et al., (2005), Meza et al., (2007)). 
Uniform ultimate boundedness of the closed–loop solutions can be concluded when the 
desired position is a function of time (some stability analyzes for this case can be found in 
the works of Kawamura et al. (1988), Wen & Murphy (1990), Qu & Dorsey (1991), Rocco 
(1996), Cervantes & Alvarez-Ramirez (2001), Choi & Chung (2004), and Camarillo et al., 
(2008)), but to the authors’ knowledge, so far there is not a proof of global regulation for 
such controller. 
In the search of a practical globally stable PID regulator, some nonlinear control structures 
based on the classical PID controller, which assure global asymptotic stability of the closed– 
loop system, have emerged. Some works that deal with global nonlinear PID regulators 
based on Lyapunov theory and passivity theory have been reported by Arimoto (1995), 
Kelly (1998), Santibañez & Kelly (1998a), and Meza & Santibañez (1999). Recently, a 
particular case of the class of nonlinear PID global regulators originally proposed in 
(Santibañez & Kelly, 1998a) was presented by Sun et al., (2009). 
On the other hand, it is well known that saturation phenomena in robot control systems are 
intrinsically present when the actuators are driven by sufficiently large control signals. If 
these physical constraints are not considered in the controller design they may lead to a lack 
of the stability properties. 
Even though no one of the controllers mentioned above considers the influence of the 
saturation phenomena, there are some works that have been reported to solve this 
saturation problem in PD-like controllers for the case of regulation tasks (Kelly & 
Santibañez, 1996; Colbaugh et al., 1997a; Loria et al., 1997; Santibañez & Kelly, 1997; 1998b). 
Solutions without considering velocity measurements and with gravity compensation are 
treated in (Loria et al., 1997). A full–state (position and velocity) feedback solution with 
adaptive gravity compensation is presented in (Zergeroglu et al., 2000). More recently, new 
schemes dealing with this regulation problem of robot manipulators with bounded inputs 
have been presented by Zavala & Santibañez (2006), Zavala & Santibañez (2007), Dixon 
(2007), Alvarez-Ramirez et al., (2003), and Alvarez–Ramirez et al., (2008). An adaptive 
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approach involving task–space coordinates, and considering the uncertainities of the 
kinematic model of the robot manipulator is proposed in Dixon (2007). Also, for the 
bounded input tracking case, the following works have appeared in the control literature: 
Loria & Nijmeijer (1998), Dixon et al., (1999), Santibañez & Kelly (2001), Moreno et al., 
(2008a), Moreno et al., (2008b), Aguinaga-Ruiz et al., (2009), Zavala-Rio et al., (2010). 
Few saturated PID controllers (that is, bounded PID controllers taking into account the 
actuator torque constraints) have been reported: for the case of semiglobal asymptotic 
stability, a saturated linear PID controller was presented in (Alvarez-Ramirez et al., 2003) 
and (Alvarez–Ramirez et al., 2008); for the case of global asymptotic stability, saturated 
nonlinear PID controllers were introduced in (Gorez, 1999; Meza et al., 2005; Santibañez et 
al., 2008). The work introduced by Gorez (1999) was the first bounded PID–like controller in 
assuring global regulation; the latter works, introduced in (Meza et al., 2005) and 
(Santibañez et al., 2008), also guarantee global regulation, but with the advantage of a 
controller structure which is simpler than that presented in Gorez (1999). A local adaptive 
bounded regulator was presented by Laib (2000). 
Most of nonlinear PID global regulators for robot manipulators are based on the energy– 
shaping methodology. There are two approaches: those controllers which do not take into 
account the effects of actuator saturations, and those which consider the saturation 
phenomena introduced only by the actuators. However, the actuators are not the only 
components of the closed–loop system that produce saturation constraints; there exist other 
devices, such as the servo–drivers and the output electronics of the control computer, 
presenting saturation effects. 
In the practice, industrial robots are equipped with a position control computer which 
produces the commands of desired joint velocities to the joint actuator servo-drivers. In such a 
sense, Santibañez et al. (2010) recently proposed a new saturated nonlinear PID regulator for 
robot manipulators that considers the saturation phenomena of both the control computer, the 
velocity servo–drivers and the torque constraints of the actuators. The structure of this 
controller is closer to the structure of the practical PID controllers used in the industry. Fig. 1 
shows the scheme that was considered to design such saturated nonlinear PID controller; in 
this figure the constraints over the input and output commands of the servo driver and the 
torque constraints of the actuators are clearly shown. Notice that because a cascade connection 
of two saturation blocks can be reduced to only one saturation function, and for simplicity, the 
saturation of the velocity PI loop and the saturation of the actuators, are both represented by 
one saturation block in Fig. 1; also, the driver is assumed to have an ideal inner torque 
controller. In such a work a proportional outer position loop and a PI inner velocity loop 
constitute the main structure of the controller, which is intrinsic to the industrial robots if we 
consider the typical low–level controllers in the actuator servo–drivers. 
The contribution of this chapter is twofold: first, we present a variant of the work presented 
by Santibañez et al. (2010), where now the controller is composed by a saturated velocity 
proportional (P) inner loop, provided by the servo–driver, and a saturated position 
proportional–integral (PI) outer loop, supplied by the control computer (see Fig. 2). Such a 
controller also has a structure that naturally matches that of the practical industrial robots. 
Secondly, we present an experimental evaluation on the PA10-7C robot arm, comparing the 
nonlinear PID regulator previously reported in Santibañez et al. (2010) and the controller 
proposed in this chapter. 
By following similar steps as those given in Santibañez et al. (2010) we employ the singular 
perturbation theory to analyze the exponential stability of the equilibrium of the closed– 
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Fig. 1. Practical nonlinear PID controller with bounded torques for robot manipulators. 

COMPUTER DRIVER

 
Fig. 2. Variant of the practical PID controller with bounded torques for robot manipulators. 

loop system. This result guarantees that exponential stability of the classical PID linear 
regulator in industrial robots is preserved even though the saturation phenomena due to the 
electronic devices and/or the actuators are present. 
The remainder of this chapter is organized as follows: Section 2 states the dynamic model of 
a serial n–link rigid robot manipulator in open–loop, some of its properties, as well as some 
considerations, assumptions and definitions that are useful throughout the analysis. The 
proposed control scheme is presented in Section 3. Section 4 shows the singularly perturbed 
system to analyze. Section 5 states the stability analysis and proves that the control objective 
is achieved. Section 6 is devoted to the real–time experimental evaluation carried out on the 
PA-10 robot arm. The conclusions of the work are presented in Section 7. 
Throughout this chapter, we use the notation λmin{A(x)} and λmax{A(x)} to indicate the 
smallest and largest eigenvalues, respectively, of a symmetric positive definite bounded 
matrix A(x), for any x ∈ Rn. Also, we define λmin{A} as the greatest lower bound (infimum) of 
λmin{A(x)}, for all x ∈ Rn, that is, λmin{A} = infx∈Rn λmin{A(x)}. Similarly, we define λmax{A} as 
the least upper bound (supremum) of λmax{A(x)}, for all x ∈ Rn, that is, λmax{A} = supx∈Rn 

λmax{A(x)}. The norm of vector x is defined as = Tx x x and that of matrix A(x) is defined 
as the corresponding induced norm λm( ) = { ( ) ( )}T
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2. Preliminaries 
2.1 Robot dynamics 
The dynamics of a serial n–link rigid robot, without the effect of friction, can be written as 
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approach involving task–space coordinates, and considering the uncertainities of the 
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Fig. 1. Practical nonlinear PID controller with bounded torques for robot manipulators. 

COMPUTER DRIVER

 
Fig. 2. Variant of the practical PID controller with bounded torques for robot manipulators. 
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2.1 Robot dynamics 
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 τ+ +�� � �( ) ( , ) ( ) =M q q C q q q g q  (1) 

where q, �q , q��  ∈ Rn are the vectors of joint positions, velocities and accelerations, respectively, 
τ ∈ Rn is the vector of applied torques, M(q) ∈ Rn×n is the symmetric positive–definite inertia 
matrix, C(q, �q ) ∈ Rn×n is the matrix of centripetal and Coriolis torques, and g(q) ∈ Rn is the 
vector of gravitational torques obtained as the gradient of the robot potential energy U(q), i.e. 

 ∂
∂
U( )( ) = .qg q

q
 (2) 

We assume that all the joints of the robot are of the revolute type. 

2.2 Properties of the robot dynamics 
We recall two important properties of dynamics (1) which are useful in our paper: 
Property 1. The matrix C(q, �q ) and the time derivative �M (q) of the inertia matrix satisfy 
(Koditschek, 1984; Ortega & Spong, 1989): 

1 ( ) ( , ) = 0 , .
2

T nq M q C q q q q q⎡ ⎤− ∀ ∈⎢ ⎥⎣ ⎦
�� � � � R  

◊ 
Property 2. The gravitational torque vector g(q) is bounded for all q ∈ Rn. This means that 

there exist finite constants γ i ≥ 0 such that (Craig, 1998): 

 sup ( ) = 1,2, , ,
n

i i
q

g q i nγ
∈

≤ �
R

 (3) 

where gi(q) stands for the i-th element of g(q). Equivalently, there exists a constant ′k  such 
that g(q)  ≤ ′k , for all q ∈ Rn. Furthermore, there exists a positive constant kg such that 

( ) ,g
g q k

q
∂

≤
∂

 

for all q ∈ Rn, and g(x) − g(y)  ≤ kg x − y , for all x,y ∈ Rn. Moreover, a simple way to 

compute kg
 is: 
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⎝ ⎠

… …
, ,

( ) where = 1,2, and = 1,2, .max i
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i j q j

g qk n i n j n
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 (4) 

A less restrictive constant gi
k  can be computed by: 
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⎝ ⎠
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2.3 Useful theorems 
Here, we recall two versions of the Mean–Value Theorem, which are key in finding the less 
restrictive constants gi

k  related with the gravitational torque vector. 

Theorem 1. [Kelly et al., (2005), p. 384] Consider the continuous function f: Rn → R. If  
f (z1 ,z2, . . . , zn) has continuous partial derivatives then, for any constant vectors x,y ∈ Rn, we have 
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where ξ ∈ Rn is a vector suitably chosen on the line segment which joins  vectors x and y.               ◊ 

Theorem 2. [Kelly et al. (2005), p.385] Consider the continuous vectorial function f : Rn → Rm. If  

f i
 (z1,z2, . . . ,zn) has continuous partial derivatives for i = 1, . . . , m, then, for each pair of vectors  

x,y ∈ Rn and each ω ∈ Rm there exists ξ ∈ Rn such that: 
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ω ω
∂
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 (7) 

where ξ ∈ Rn is a vector on the line segment that joins  vectors x and y.                                          ◊ 

2.4 Problem formulation 
Before presenting the formulation of the control problem, we recall some useful definitions. 
Definition 1. The hard saturation function is denoted by sat(x;k) ∈Rn, where 
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with ki being the i–th saturation limit, i = 1,2, . . . ,n, and each element of sat(x;k) is defined as: 
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2.4 Problem formulation 
Before presenting the formulation of the control problem, we recall some useful definitions. 
Definition 1. The hard saturation function is denoted by sat(x;k) ∈Rn, where 
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with ki being the i–th saturation limit, i = 1,2, . . . ,n, and each element of sat(x;k) is defined as: 

      if | |
sat( ; ) =      if >

     if <

i i i

i i i i i

i i i

x x k
x k k x k

k x k

≤⎧
⎪
⎨
⎪− −⎩

 

◊ 



 Advanced Strategies for Robot Manipulators 

 

222 

Furthermore, the control scheme proposed in this chapter involves special saturation 
functions which fit in the following definition. 
Definition 2. [Zavala & Santibañez (2006)] Given positive constants l and m, with l < m, a 
function Sat(x; l,m) : R→R: x  Sat(x; l,m) is said to be a strictly increasing linear saturation 
function for (l,m) if it is locally Lipschitz, strictly increasing, C2 differentiable and satisfies: 
1. Sat(x; l,m) = x when |x| ≤ l 
2. |Sat(x; l,m)| < m for all x ∈ R.                                                                                                    ◊ 

For instance, the following saturation function is a special case of the linear saturation given 
in Definition 2: 

 

( )tanh    if <

Sat( ; , )=                                    if | |

( )tanh     if >

x ll m l x l
m l

x l m x x l
x ll m l x l
m l
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⎪ −⎛ ⎞⎪ + − ⎜ ⎟⎪ −⎝ ⎠⎩

 (8) 

n saturation functions of the form (8) can be joined together in an n × 1 saturation function 
vector denoted by Sat(x; l,m), i.e., 
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where x, l, m ∈Rn, that is, 
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Consider the robot dynamic model (1). Assume that each joint actuator is able to supply a 
known maximum torque τ max

i  so that: 

 max| | , = 1,2, ,i i i nτ τ≤ …  (9) 

where τ i stands for the i–th entry of vector τ. In other words, if ui represents the control 
signal (controller output) before the actuator, related to the i-th joint, then 

 max
max= sat ,i

i i
i

u
τ τ

τ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (10) 

for i = 1, . . . ,n, where sat(·) is the standard hard saturation function. We also assume: 
Assumption 1. The maximum torque τ max

i of each actuator satisfies the following condition: 
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 τ γmax > ,i i  (11) 

where γ i was defined in Property 2, with i = 1,2, ...,n.                                                                     ◊ 
This assumption means that the robot actuators are able to supply torques in order to hold 
the robot at rest for all desired joint positions qd ∈ Rn. 
The control problem is to design a controller to compute the torque τ ∈Rn applied to the 
joints, satisfying the constraints (9), such that the robot joint positions q tend asymptotically 
toward the constant desired joint positions qd. 

3. Proposed control scheme 
In this section we present a nonlinear PID controller which can be seen as a practical version 
of the classical PID control of robot manipulators. 
The proposed nonlinear PID controller has the form: 

 τ + −* * *  =    [ [ ( ; , ) ]; , ]pv pp pi pi p pK K q w l m q l mSat Sat  (12) 

                              ∫*
0

  =    
t

ipw K q dr                                                                                        (13) 

where Kpv, Kpp and Kip are diagonal positive definite matrices. This control law is formed by 
two loops: an outer joint–position proportional–integral PI loop and an inner joint–velocity 
proportional P loop, and considers the saturation effects existing in the output of the control 
stage (see Figure 2), where Sat[Kpv [ ( , , ) ]pp pi piK q w l m q∗ ∗ ∗+ −Sat ; lp,mp] is a vector where each 
element is a saturation function as in Definition 2 for some (lp,mp), where lp and mp are 
vectors with elements lpi and mpi, respectively, and i = 1,2, . . . ,n. The control law (12) can be 
rewritten as: 

 τ + −  =    [ ( ; , ) ; , ]p pi pi v p pK q w l m K q l mSat Sat  (14) 

                                   ∫0
   =    

t
iw K q dr   (15) 

where 

* *= , = , = , = , =p pv pp i pv ip v pv pi pv pi pi pv piK K K K K K K K l K l m K m  

and the following assumption is satisfied. 
Assumption 2: The saturation limits of the PI and P loops satisfy: 

 γ < <i pi pii i
l m  (16) 

 γ τ max< < < .i p p ii i
l m  (17) 

◊ 
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rewritten as: 

 τ + −  =    [ ( ; , ) ; , ]p pi pi v p pK q w l m K q l mSat Sat  (14) 

                                   ∫0
   =    

t
iw K q dr   (15) 

where 

* *= , = , = , = , =p pv pp i pv ip v pv pi pv pi pi pv piK K K K K K K K l K l m K m  

and the following assumption is satisfied. 
Assumption 2: The saturation limits of the PI and P loops satisfy: 

 γ < <i pi pii i
l m  (16) 

 γ τ max< < < .i p p ii i
l m  (17) 

◊ 
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Remark: In practice, the saturation constraints of the electronic devices and the actuators 
are, in fact, hard saturations like those in Definition 1. However, with the end of carrying 
out the stability analysis, they can be aproximated by linear saturation functions like those 
defined in Definition 2, with l < m, and l arbitrarily close to m. 
In order to simplify the notation, henceforth, we will omit, in the argument, the limits of the 
saturation functions. 

4. Singularly perturbed system 
4.1 Closed–loop system 
By substituting (14) into the robot dynamics (1), we obtain 

 1= ( ) [ [ ( ) ] ( , ) ( )]p v

i

qq

d q M q K q w K q C q q q g q
dt

w K q

−

−⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + − − −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦

Sat Sat  (18) 

which is an autonomous differential equation with a unique equilibrium point given by  
[ q T q T wT]T = [0T 0T g(qd)T ]T ∈ R3n, where we have used Assumption 2, and (3), to get that 
Sat(Sat(w)) − g(qd) = 0 implies w = g(qd). In order to move the equilibrium point of (18) to the 
origin, we apply the change of variables x = w − g(qd). Now the new closed–loop system is 
given by: 

 1= .( ) [ [ ( ( )) ] ( , ) ( )]p d v

i

qq

d q M q K q x g q K q C q q q g q
dt

x K q

−

−⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + + − − −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦

Sat Sat  (19) 

The previous closed–loop system can be studied as a singularly perturbed system. To this 
end, system (19) can be described as two first–order differential equations as follows: 

                          =    i
d x K q
dt

                                                                                                        (20) 

        1= .
( ) [ [ ( ( )) ] ( , ) ( )]p d v

qqd
q M q K q x g q K q C q q q g qdt −

−⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ + + − − −⎢ ⎥⎣ ⎦ ⎣ ⎦Sat Sat

 (21) 

Moreover, by choosing the integral gain matrix as Ki = ε *
iK , where *

iK is a diagonal 
positive–definite matrix and ε > 0 is a small parameter, and letting ′t  = εt be a new time–
scale ( ′t  is a slow time compared to t), we can rewrite (20)–(21) as 

                       
′

*   =    i
d x K q

dt
                                                                                                        (22) 
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 1   =    
( ) [ [ ( ( )) ] ( , ) ( )]p d v

qqd
q M q K q x g q K q C q q q g qdt

ε −

−⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥′ + + − − −⎢ ⎥⎣ ⎦ ⎣ ⎦Sat Sat

 (23) 

 

where, in the forthcoming analysis, and in accordance with the singular perturbation theory, 
x in (23) will be treated as a fixed parameter, due to its slow variation. 

4.2 Equilibrium points 
For each fixed x representing the frozen variable as a fixed parameter in (23), the 
equilibrium points are the solutions of the nonlinear system: 

                                                      =    0,q  (24) 

 [ [ ( )]] ( )   =    0.p dK q x g q g q+ + −Sat Sat  (25) 

According to Definition 2 and Assumption 2, (25) can be written as: 

 ( ) ( ) = 0.p dK q x g q g q+ + −  (26) 

Now, the Contraction Mapping Theorem (Kelly et al., 2005; Khalil, 2002), guarantees that 
(26) has a unique solution q  = h1(x) ∈ Rn provided that 

 >p gi i
k k  (27) 

is satisfied (see Appendix A). 
Then we have that, for each x ∈ Rn, the unique equilibrium point of (23) is: 

 1 2( )
= = ( ) .

0
nq h x

h x
q
⎡ ⎤ ⎡ ⎤

∈⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

R  (28) 

Consequently, we have that: 

 − − − +1= ( ) = ( ) ( )p dx h q K q g q g q  (29) 

which we will use later on. 

4.3 Overall singularly perturbed system 
In order to proceed with the stability analysis, we shift the equilibrium point of (23) to the 
origin. To this end, we make the following change of variables: 

 
′ ′ −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥′ ′⎣ ⎦ ⎣ ⎦

1 1

2

( ) ( ) ( )
=

( ) ( )
y t q t h x
y t q t

 (30) 

which implies that q  = y1 + h1(x). Then, (22)–(23) can be now represented by the new 
variables as a singularly perturbed system given by 
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Remark: In practice, the saturation constraints of the electronic devices and the actuators 
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( ) ( )
y t q t h x
y t q t
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                  +
′

*
1 1  =    [ ( )]i

d x K y h x
dt

  (31) 

 

ε

ε
−

⎡ ⎤⎡ ⎤∂
− − +⎢ ⎥⎡ ⎤ ⎢ ⎥

∂⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥′
⎢ ⎥⎢ ⎥ − − − + + −⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥− − − − − −⎣ ⎦

*1
2 1 11

1
1 1 1 1 2

2
1 1 2 2 1 1

( ) [ ( )]

  =    .

( ( )) [ [ [ ( ( )) ( )] ]

( ( ), ) ( ( ))]

i

d p d v

d d

h xy K y h xy
x

d
dt

M q y h x K y h x x g q K y
y

C q y h x y y g q y h x

Sat Sat
 (32) 

5. Stability analysis 
According to the theory of singularly perturbed systems (Khalil, 2002), the origin of (22)–
(23) is asymptotically stable if and only if the origin of (31)–(32) is asymptotically stable. It is 
important to remember that x is a fixed parameter in (23) and (32), this is because ′t  and x 
are varying slowly since, in the t time scale, they are given by (Khalil, 2002): 

 0 0= , = ( ),t t t x x t tε ε′ + +  (33) 

being t0 the initial time. The setting of ε = 0 freezes these variables at ′t  = t0 and x = x(t0 ) 
(initial conditions). 
By simplicity, we divide the stability analysis in two parts: 
• First, we will prove asymptotic stability and local exponential stability of the origin of a 

saturated PD controller with desired gravity compensation plus a constant vector x, 
which can be seen as a constant control input. 

• Second, based on a theorem of singularly perturbed systems, we will prove that the 
origin of (22)–(23) is locally exponentially stable. 

5.1 Stability analysis of a Saturated PD Controller with Desired Gravity Compensation 
plus a constant vector x 
The control law that describes the proposed Saturated PD Controller with Desired Gravity 
Compensation plus a constant vector x is given by: 

 = [ ( ( )) ].p d vK q x g q K qτ + + −Sat Sat  (34) 

 

By substituting (34) into the robot dynamics (1), we obtain 

 −

−⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ + + − − −⎢ ⎥⎣ ⎦ ⎣ ⎦

1=
( ) [ [ ( ( )) ] ( , ) ( )]p d v

qqd
q M q K q x g q K q C q q q g qdt Sat Sat

 (35) 

 

whose equilibrium points are the solutions of the nonlinear equations (24)-(25) and they 

have already been proven to have a unique solution ⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦1= ( ) 0

T TT T T Tq q h x , provided 

that >p gi i
k k  is satisfied. 
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5.1.1 Asymptotic stability analysis 
To carry out the stability analysis of the equilibrium of (35), we propose the following 
Lyapunov function candidate, which is inspired from one in (Alvarez–Ramirez et al., 2008): 

 + 1
1( , ) = ( ) ( )
2

TW q q q M q q W q  (36) 

 where  

1
0=1

( )   =    Sat[Sat( ( ))] ( )
n qi

p i i i d i di
i

W q k r x g q dr q q+ + + −∑∫ U  

                    
( )1

1
0=1

Sat[Sat( ( ))] ( ( )).
n h x

i p i i i d i di
i

k r x g q dr q h x− + + − −∑∫ U  

By following similar steps to those given by Zavala & Santibañez (2007) (see Appendix B) 
we prove that (36) is a positive definite and radially unbounded function, provided that 

>p gi i
k k . The time derivative of ( , )W q q  along the trajectories of (35), and after some 
algebraic simplifications, results in: 

 + + − − + +( , ) = [ ( ( )) ] [ ( ( ))].T T
p d v p dW q q q K q x g q K q q K q x g qSat Sat Sat Sat  (37) 

Finally, by using the following property of linear saturation functions (Santibañez et al., 
2010): 

− − ≤ − − − 2[Sat( ) Sat( )] |Sat( ) Sat( )|i i i i i i iq z q z z q z  

we have that ( , )W q q  is upper bounded by: 

≤ − + + − − + + ≤
2

( , ) [ ( ( )) ] [ ( ( ))] 0.p d v p dW q q K q x g q K q K q x g qSat Sat Sat Sat  

Thus ( , )W q q  is a negative semidefinite function and we can conclude stability of the 

equilibrium point ⎡ ⎤ ⎡ ⎤ ∈⎣ ⎦ ⎣ ⎦ R 2
1= ( ) 0  

T TT T T T nq q h x  of (35). We can use the LaSalle’s 

Invariance Principle (Kelly et al., 2005) to conclude that the equilibrium point is, in fact, 
globally asymptotically stable. To this end, let us define Ω as: 

= { ,  :  ( , ) = 0} = { = 0, }.n nq q W q q q qΩ ∈ ∈R R  

Notice that, from (35), 

( ) 0 ( ) 0 [ ( ( ))] ( ) 0.p d dq t q t K q x g q g q q≡ ⇒ ≡ ⇒ + + − − ≡Sat Sat  

Furthermore, under the assumption (27) we can assure that 

1[ ( ( ))] ( ) 0 ( ).p d dK q x g q g q q q h x+ + − − ≡ ⇒ ≡Sat Sat  
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                  +
′

*
1 1  =    [ ( )]i

d x K y h x
dt

  (31) 

 

ε

ε
−

⎡ ⎤⎡ ⎤∂
− − +⎢ ⎥⎡ ⎤ ⎢ ⎥

∂⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥′
⎢ ⎥⎢ ⎥ − − − + + −⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥− − − − − −⎣ ⎦

*1
2 1 11

1
1 1 1 1 2

2
1 1 2 2 1 1

( ) [ ( )]

  =    .

( ( )) [ [ [ ( ( )) ( )] ]

( ( ), ) ( ( ))]

i

d p d v

d d

h xy K y h xy
x

d
dt
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y

C q y h x y y g q y h x

Sat Sat
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qqd
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Therefore, from LaSalle’s Invariance Principle we conclude that the equilibrium point 

⎡ ⎤ ⎡ ⎤ ∈⎣ ⎦ ⎣ ⎦ R 2
1= ( ) 0  

T TT T T T nq q h x  of (35) is globally asymptotically stable. 

5.1.2 Local exponential stability analysis 
Before proceeding with the stability analysis of this section, we recall a useful existing 
lemma presented in (Kelly, 1995a). 
Lemma1. Consider the nonlinear system: 

 += ( ) ( ) ( ),y A y y B y f y  (38) 

where y ∈ Rm, A(y) and B(y) are m×m nonlinear functions of y, and f (y) is a m×1 nonlinear 
function of y. Assume that f (0) = 0; hence, y = 0 ∈ Rm is an equilibrium point of the system 
(38). Then, the linearized system of (38) around the equilibrium y = 0 is given by: 

 
⎡ ⎤∂

+⎢ ⎥
∂⎣ ⎦

(0)= (0) (0) .fy A B y
y

 (39) 

◊ 
In order to prove that the equilibrium point of the closed–loop system (35) is locally 
exponentially stable, we consider a local linearization of the closed–loop system around the 

equilibrium point ⎡ ⎤ ⎡ ⎤ ∈⎣ ⎦ ⎣ ⎦ R 2
1= ( ) 0  

T TT T T T nq q h x  (Khalil, 2002). In the neighborhood of 

this equilibrium point, the closed–loop system (35) can be represented by: 

 + + − + − −( ) ( , ) ( ) ( ) = 0.p v dM q q C q q q g q K q K q x g q  (40) 

A local change of variables y1 = q  − h1(x), and y2 = q  leads to: 

− − + − −1 1 2 1 1 2 2( ( )) ( ( ), )d dM q y h x y C q y h x y y  

+ − − − + + − −1 1 1 1 2( ( )) [ ( )] ( ) = 0d p v dg q y h x K y h x K y x g q  

whose unique equilibrium is the origin, provided that (27) is satisfied. The previous 
equation can be written as: 

 += ( ) ( ) ( ).y A y y B y f y  (41) 

where, 

                            
⎡ ⎤
⎢ ⎥
⎣ ⎦

1

2
   =    

ydy
ydt

 

                        −

−⎡ ⎤
⎢ ⎥

− − − + − −⎢ ⎥⎣ ⎦
1

1 1 1 1 2

0
( )   =    

0 ( ( )) [ ( ( ), )]d v d

I
A y

M q y h x K C q y h x y
 

                         −

⎡ ⎤
⎢ ⎥

− −⎢ ⎥⎣ ⎦
1

1 1

0 0
( )   =    

0 ( ( ))d
B y

M q y h x
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1 1 1 1

0
( )   =    .[ ( )] ( ) ( ( ))p d d

f y K y h x x g q g q y h x
⎡ ⎤
⎢ ⎥+ + + − − −⎢ ⎥⎣ ⎦

 

According to Lemma 1, the linearized system from (41), around the equilibrium y = 0, has 
the form (39), with: 

    1
1

0
(0)   =    

0 ( ( ))d v

I
A

M q h x K−

−⎡ ⎤
⎢ ⎥

− −⎢ ⎥⎣ ⎦
 

                                                    1
1

0 0
(0)   =    

0 ( ( ))d
B

M q h x −

⎡ ⎤
⎢ ⎥

−⎢ ⎥⎣ ⎦
 

                                                 *

0 0(0)   =    
0

f
y K

⎡ ⎤∂
⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
 

which can be compacted in: 

 − −

−⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥

− − −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

1 1
1 * 1

2 21 1

0
=

( ( )) ( ( ))d d v
J

Iy yd
y ydt M q h x K M q h x K

 (42) 

where *K  is given by: 

* 1 1

1

( ( ))= .d
p

g q y h xK K
y

∂ − −
−

∂
 

Notice that if (27) is satisfied then *K  is a positive definite matrix (Hernandez-Guzman et 
al., 2008). To analyze the stability of the origin of (42), we propose the Lyapunov function 
candidate: 

 − + *
1 2 2 1 2 1 1

1 1( , ) = ( ( ))
2 2

T T
L dW y y y M q h x y y K y  (43) 

which is a positive definite function. The time derivative along the trajectories of (42) is: 

                       − + *
1 2 2 1 2 1 1( , )   =   ( ( ))T T

dW y y y M q h x y y K y  

− − −* *
2 1 2 1 2 2 2=   [ ] =T T T

v vy K y K y y K y y K y  

which is a negative semidefinite function. By using the LaSalle’s Invariance Principle we can 
conclude global asymptotic stability of the closed–loop system (42). To this end, let us define 
Ω as: 

 1 2 1 2 2 1= { , : ( , ) = 0} = { = 0, }.n ny y W y y y yΩ ∈ ∈R R  (44) 

Notice that, from (42): 

 1 *
2 2 1 1( ) 0 ( ) 0 ( ( )) 0.dy t y t M q h x K y−≡ ⇒ ≡ ⇒ − ≡  (45) 
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Therefore, from LaSalle’s Invariance Principle we conclude that the equilibrium point 

⎡ ⎤ ⎡ ⎤ ∈⎣ ⎦ ⎣ ⎦ R 2
1= ( ) 0  

T TT T T T nq q h x  of (35) is globally asymptotically stable. 
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+⎢ ⎥
∂⎣ ⎦

(0)= (0) (0) .fy A B y
y

 (39) 

◊ 
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1= ( ) 0  

T TT T T T nq q h x  (Khalil, 2002). In the neighborhood of 
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⎡ ⎤
⎢ ⎥
⎣ ⎦

1

2
   =    

ydy
ydt
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−⎡ ⎤
⎢ ⎥

− − − + − −⎢ ⎥⎣ ⎦
1

1 1 1 1 2

0
( )   =    

0 ( ( )) [ ( ( ), )]d v d

I
A y

M q y h x K C q y h x y
 

                         −

⎡ ⎤
⎢ ⎥

− −⎢ ⎥⎣ ⎦
1

1 1

0 0
( )   =    

0 ( ( ))d
B y

M q y h x
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1 1 1 1

0
( )   =    .[ ( )] ( ) ( ( ))p d d

f y K y h x x g q g q y h x
⎡ ⎤
⎢ ⎥+ + + − − −⎢ ⎥⎣ ⎦
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⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
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Furthermore, under assumption (27) we can assure that 

1 *
1 1 1( ( )) 0 0.dM q h x K y y−− ≡ ⇒ ≡  

Therefore, from LaSalle’s Invariance Principle we conclude that the origin of the linear 
system (42) is globally asymptotically stable. This implies that the eigenvalues of J in (42) are 
located in the left–hand side of the complex plane (see Theorem 4.5 in Khalil (2002)), and 
hence, the origin of the linear system (42) is exponentially stable (see e.g. Theorem 4.11 in 
Khalil (2002) that shows that, for linear systems, uniform asymptotic stability of the origin is 
equivalent to exponential stability). According to this, exponential stability of the origin for 
the linear system (42) implies the local exponential stability of the origin for the nonlinear 
system (41) (see e.g. Theorem 4.13 in Khalil (2002)). 
Finally, we can conclude that the equilibrium point of the nonlinear system (35) is locally 
exponentially stable. So we have proven the following: 
Proposition 1. Under Assumption 2, and (27), the control law (34) guarantees global 
asymptotic stability and local exponential stability of the closed–loop system (35) with 
 τ τ≤ max| ( )|i it  for all i = 1,2, ...,n and t ≥ 0. 

5.2 Stability analysis of the singularly perturbed system. 
To prove the exponential stability of the origin of (22)–(23), we recall an existing theorem: 
Theorem 3 (Khalil, 2002): Consider the singularly perturbed system 

  ε′  = ( , , , )x f t x z  (46) 

   = ( , , , ).z g t x zε ε′  (47) 

Assume that the following are satisfied for all ( ,t′ x,ε) ∈ [0,∞) × Br × [0, ε], with Br = {x ∈ Rn
 :  

x  ≤ r}: 
a. ( ,0,0, )f t ε′  = 0 and ( ,0,0, )g t ε′ = 0. 
b. The equation 0 = ( , , ,0)g t x z′  has an isolated root z = h( ,t x′ ) such that h( ,0t′ ) = 0. 
c. The functions f, g, h and their partial derivatives up to the second order are bounded for z − 

h( ,t x′ ) ∈ Bρ, with Bρ = {y ∈ R2n : y  ≤ ρ}. 
d. The origin of the reduced system 

 ′ ′= ( , , ( , ),0)x f t x h t x  (48) 

is exponentially stable. 
e. The origin of the boundary–layer system 

 ′ ′+= ( , , ( , ),0)dy g t x y h t x
dt

 (49) 

is exponentially stable, uniformly in ( ′t ,x). 
Then, there exists ε* > 0 such that, for all ε < ε *, the origin of (46)–(47) is exponentially stable.         ◊ 
We are now ready to present our main contribution. 
Proposition 2. Consider the robot dynamics (1) in closed–loop with the practical saturated 
PID control law (12). Under Assumption 2, and (27), the origin of the closed–loop system 
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(22)–(23) is locally exponentially stable, and therefore, the equilibrium point of (18) is locally 
exponentially stable. Besides |τi (t)| ≤ τmax

i for all i = 1,2, ...,n and t ≥ 0.                                    ◊ 
Proof. Notice that (46)–(47) correspond to (22)–(23), respectively, with 

              ε′ *( , , , )   =    if t x z K q  

              ε −

−⎡ ⎤
′ ⎢ ⎥

+ + − − −⎢ ⎥⎣ ⎦
1( , , , )   =    

( ) [ [ ( ( )) ] ( , ) ( )]p d v

q
g t x z

M q K q x g q K q C q q q g qSat Sat
 

                              2  =     .nq
z

q
⎡ ⎤

∈⎢ ⎥
⎣ ⎦

R  

In order to complete the stability analysis, we are going to check each item of the Theorem 3. 
a) By substituting x = q  = q  = 0 in (22)–(23), it is straightforward to verify this assumption. 
b) This item is easily fulfilled by noting that the root of ( , , , )g t x z ε′  has been obtained in 
Section 4.2, where it was proven that, for each x ∈ Rn, the unique root of (23) is z = h(x) = 
[h1(x)T 0T]T ∈ R2n, provided that (27) is satisfied. On the other hand, we know from (28) that 
q  = h1(x), and therefore, when x = 0 we have that q  = h1(0); then, from (29), 0 = 1

1h − ( )q  = 
−[KpKpc

 q + g(qd) − g(qd
 − q )] which under assumption (27) has a unique solution q = 0. 

Hence, h(0) = [h1(0)T 0T]T = [0T 0T]T and assumption b) is verified. 
c) This is straightforward given that the right–hand side of (22)–(23) is C2. 
d) By substituting the isolated root z = h(x) and ε = 0 in (22), that is q  = h1(x) and q  = 0, we 
obtain the so–called reduced system, which is given by: 

 *
1= ( )i

d x K h x
dt′

 (50) 

whose unique equilibrium point results from h1(x) = 0 and is given by x = 1
1h −  (0) = 0 

provided that (27) is satisfied. Comparing the reduced system (50) with the terms used in 
Theorem 3, we have *

1( , , ( , ),0) ( ).ix f t x h t x K h x′= =  
On the other hand, to analyze the origin of the reduced system (50), let us define the 
quadratic Lyapunov function candidate 

 * 11( ) = ( )
2

T
iV x x K x−  (51) 

which satisfies 

 * 1 2 * 1 21 1{( ) }  ( ) {( ) }
2 2max i min iK x V x K xλ λ− −≥ ≥  (52) 

and hence, it is a positive definite and radially unbounded function. The time derivative 
along the trajectories of (50) is given by: 

 * 1
1( ) = ( ) = ( ).T T

iV x x K x x h x−  (53) 
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(22)–(23) is locally exponentially stable, and therefore, the equilibrium point of (18) is locally 
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Proof. Notice that (46)–(47) correspond to (22)–(23), respectively, with 

              ε′ *( , , , )   =    if t x z K q  
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−⎡ ⎤
′ ⎢ ⎥

+ + − − −⎢ ⎥⎣ ⎦
1( , , , )   =    

( ) [ [ ( ( )) ] ( , ) ( )]p d v

q
g t x z

M q K q x g q K q C q q q g qSat Sat
 

                              2  =     .nq
z

q
⎡ ⎤

∈⎢ ⎥
⎣ ⎦

R  

In order to complete the stability analysis, we are going to check each item of the Theorem 3. 
a) By substituting x = q  = q  = 0 in (22)–(23), it is straightforward to verify this assumption. 
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q  = h1(x), and therefore, when x = 0 we have that q  = h1(0); then, from (29), 0 = 1
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 − q )] which under assumption (27) has a unique solution q = 0. 

Hence, h(0) = [h1(0)T 0T]T = [0T 0T]T and assumption b) is verified. 
c) This is straightforward given that the right–hand side of (22)–(23) is C2. 
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obtain the so–called reduced system, which is given by: 
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whose unique equilibrium point results from h1(x) = 0 and is given by x = 1
1h −  (0) = 0 

provided that (27) is satisfied. Comparing the reduced system (50) with the terms used in 
Theorem 3, we have *
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On the other hand, to analyze the origin of the reduced system (50), let us define the 
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which satisfies 
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Consider (29) with q�  = h1(x): 

 = ( ) ( ) ( ( )),p d dx K h x g q g q h x− − + −  (54) 
substituting in (53) we have 

1 1  =   ( ) [ ( ) ( ) ( ( ))]T T
p d dh x h x K h x g q g q h x− − + −  

                                                   1 1 1 1=    ( ) ( ) ( ) [ ( ) ( ( ))]T T
p d dh x K h x h x g q g q h x− + − + −  

                                                   1 1
=

( )  ( ) ( )T
p

z

g zh x K h x
z ξ

⎡ ⎤∂⎢ ⎥≤ − +
∂⎢ ⎥⎣ ⎦

 

where we use Theorem 2, and 

 
=

( )
p

z

g zK
z ξ

∂
+

∂
 (55) 

is a positive definite matrix provided that 

 
=1

( )> for = 1, , .max
n

i
pi q jj

g qk i n
q

∂
∂∑ …  (56) 

is satisfied (Hernandez-Guzman et al., 2008). 
Note that (27) implies (56). Therefore 

 2
1 1 min 1

= =

( ) ( )( ) ( ) ( ) ( )T
p p

z z

g z g zV x h x K h x K h x
z zξ ξ

λ
⎡ ⎤ ⎧ ⎫∂ ∂⎪ ⎪⎢ ⎥≤ − + ≤ − +⎨ ⎬

∂ ∂⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

�  (57) 

Notice that, due to h1(0) = 0, the time derivative (53) is a negative definite function and we 
can conclude global asymptotic stability of the origin of (50). 
Moreover, we have that: 

     2    =   Tx x x  

                 1 1 1 1=    [ ( ) ( ) ( ( ))] [ ( ) ( ) ( ( ))]T
p d d p d dK h x g q g q h x K h x g q g q h x− − + − − − + −  

                 2
1 1 1 1=    ( ) ( ) 2 ( ) [ ( ) ( ( ))]T T

p p d dh x K h x h x K g q g q h x+ − + −  

                       1 1[ ( ) ( ( ))] [ ( ) ( ( ))]T
d d d dg q g q h x g q g q h x+ − + − − + −  

             22 2
max max 1   [ { } 2 { } ] ( )p g p gK k K k h xλ λ≤ + +  

             22
max 1=    [ { } ] ( ) .p gK k h xλ +  

Then 

 2 2
1 2

max

1( ) ,
[ { } ]p g

h x x
K kλ

≥
+

 (58) 
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and we have that 

 
min

= 2
2

max

( )

( ) .
[ { } ]

p
z

p g

g zK
z

V x x
K k

ξ
λ

λ

⎧ ⎫∂⎪ ⎪− +⎨ ⎬∂⎪ ⎪⎩ ⎭≤
+

 (59) 

 

Therefore, from (52) and (59), we can conclude that x = 0 is a globally exponentially stable 
equilibrium point for the reduced system (50) provided that (27) is satisfied (see Theorem 
4.10, Khalil (2002)). So we have verified the assumption d) of Theorem 3. 

e) By setting ε = 0 and considering that =dy dy
dt dt

ε
′

 in (32), we obtain the boundary–layer 

system: 

 ( )( )
21

1
1 1 1 1 2

2 1 1 2 2 1 1

( , , ( , ),0)

( ( ))  ( ) ( )   =    

                ( ( ), ) ( ( ))

d p d v

d d
d y g t x y h t x
dt

yy
d M q y h x K y h x g q x K y
dt

y C q y h x y y g q y h x

−

+

−⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎡ ⎤⎡⎢ ⎥− − + + + −⎢ ⎥ ⎢⎢ ⎥⎣⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − − − − − − ⎤⎣ ⎦ ⎦⎣ ⎦

Sat Sat  (60) 

 

where, according to (33), x is frozen at x = x(t0 ), which corresponds to the robotic system 
under the Saturated PD Controller with Desired Gravity Compensation plus a constant 
vector x, whose unique equilibrium point is the origin, provided that (27) is satisfied. 
The stability analysis of (60) has already been carried out in the previous subsection, where 
we concluded, in accordance with Proposition 1, that the origin of (60) is asymptotically 
stable and locally exponentially stable, uniformly in x. The uniformity in x is given 
straightforward with the asymptotic stability of the origin of (60) because it is an 
autonomous system. This checks the assumption e). Finally, we conclude, in accordance 
with Theorem 3, that the equilibrium point of the closed–loop system (18) is locally 
exponentially stable for a sufficiently small ε. Under Assumption 2 the constraints (9) are 
trivially satisfied. This completes the proof.                                                                                     ◊ 

6. Experimental results 
6.1 The PA10 robot system 
The Mitsubishi PA10 arm is an industrial robot manipulator which completely changes the 
vision of conventional industrial robots. Its name is an acronym of Portable General-Purpose 
Intelligent Arm. There exist two versions (Higuchi et al., 2003): the PA10-6C and the PA10- 
7C, where the suffix digit indicates the number of degrees of freedom of the arm. This work 
focuses on the study of the PA10-7CE model, which is the enhanced version of the PA10-7C. 
The PA10-7CE robot is a 7–dof redundant manipulator with revolute joints. Figure 3 shows 
a diagram of the PA10 arm, indicating the positive rotation direction and the respective 
names of each of the joints. The PA10 arm is an open architecture robot; it means that it 
possesses (Oonishi, 1999): 
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Notice that, due to h1(0) = 0, the time derivative (53) is a negative definite function and we 
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Therefore, from (52) and (59), we can conclude that x = 0 is a globally exponentially stable 
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4.10, Khalil (2002)). So we have verified the assumption d) of Theorem 3. 
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where, according to (33), x is frozen at x = x(t0 ), which corresponds to the robotic system 
under the Saturated PD Controller with Desired Gravity Compensation plus a constant 
vector x, whose unique equilibrium point is the origin, provided that (27) is satisfied. 
The stability analysis of (60) has already been carried out in the previous subsection, where 
we concluded, in accordance with Proposition 1, that the origin of (60) is asymptotically 
stable and locally exponentially stable, uniformly in x. The uniformity in x is given 
straightforward with the asymptotic stability of the origin of (60) because it is an 
autonomous system. This checks the assumption e). Finally, we conclude, in accordance 
with Theorem 3, that the equilibrium point of the closed–loop system (18) is locally 
exponentially stable for a sufficiently small ε. Under Assumption 2 the constraints (9) are 
trivially satisfied. This completes the proof.                                                                                     ◊ 

6. Experimental results 
6.1 The PA10 robot system 
The Mitsubishi PA10 arm is an industrial robot manipulator which completely changes the 
vision of conventional industrial robots. Its name is an acronym of Portable General-Purpose 
Intelligent Arm. There exist two versions (Higuchi et al., 2003): the PA10-6C and the PA10- 
7C, where the suffix digit indicates the number of degrees of freedom of the arm. This work 
focuses on the study of the PA10-7CE model, which is the enhanced version of the PA10-7C. 
The PA10-7CE robot is a 7–dof redundant manipulator with revolute joints. Figure 3 shows 
a diagram of the PA10 arm, indicating the positive rotation direction and the respective 
names of each of the joints. The PA10 arm is an open architecture robot; it means that it 
possesses (Oonishi, 1999): 
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• A hierarchical structure with several control levels. 
• Communication between levels, via standard interfaces. 
• An open general–purpose interface in the higher level. 
 

Axis 1 (S1)Axis 2 (S2)

Axis 3 (S3)

Axis 4 (E1)

Axis 5 (E2)

Axis 6 (W1)

Axis 7 (W2)

 
Fig. 3. Mitsubishi PA10-7CE robot 
This scheme allows the user to focus on the programming of the tasks at the higher level of 
the PA10 system, without regarding on the operation of the lower levels. The control 
architecture of the PA10-7CE robot arm has been modified in order to have access to the 
low–level signals and configure it in both torque and velocity modes (Ramirez, 2008). 

6.2 Numeric values of the parameters for the PA10-7CE. 
The vector of gravitational torques for the PA10-7CE is (Ramirez, 2008): 

1 2( ) = ( ) ( ) ( ) T
ng q g q g q g q⎡ ⎤⎣ ⎦…  

where 

1( )   =    0g q  

2 2 2 3 4 2 4( )   =   9.81( 6.9472sin( ) 3.1393(cos( )cos( )sin( ) sin( )cos( ))g q q q q q q q− − +  

                 2 3 4 2 4 50.004((( cos( )cos( )cos( ) sin( )sin( ))cos( )q q q q q q− − +  
 
 
 

  2 3 5 6 2 3 4 2 4 6cos( )sin( )sin( ))sin( ) (cos( )cos( )sin( ) sin( )cos( ))cos( )))q q q q q q q q q q+ − +  
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3 2 3 4 2 3 4 5( )   =    9.81(3.1393sin( )sin( )sin( ) 0.004((sin( )sin( )cos( )cos( )g q q q q q q q q−  

                   2 3 5 6 2 3 4 6sin( )cos( )sin( ))sin( ) sin( )sin( )sin( )cos( )))q q q q q q q q+ +   

4 2 3 4 2 4 2 3 4( )   =   9.81( 3.1393(sin( )cos( )cos( ) cos( )sin( )) 0.004((sin( )cos( )sin( )g q q q q q q q q q− + −  

    2 4 5 6 2 3 4 2 4 6cos( )cos( ))cos( )sin( ) (sin( )cos( )cos( ) cos( )sin( ))cos( )))q q q q q q q q q q− − +  

5 5 2 3 4( )    =    9.81( 0.004( sin( )( sin( )cos( )cos( )g q q q q q− − −  

                    2 4 2 3 5 6cos( )sin( )) sin( )sin( )cos( ))sin( ))q q q q q q− +  

6 2 3 4 2 4 5( )   =   9.81( 0.004((( sin( )cos( )cos( ) cos( )sin( ))cos( )g q q q q q q q− − −  

 2 3 5 6 2 3 4 2 4 6sin( )sin( )sin( ))cos( ) (sin( )cos( )sin( ) cos( )cos( ))sin( )))q q q q q q q q q q+ + −  

7 ( )   =   0g q  

The following expressions recall how the parameters of interest can be found: 

, , ,

( ) ( ), ,max maxi i
g gii j q j qj j

g q g qk n k n
q q

∂ ∂
≥ ≥

∂ ∂
 

2 2 2
1 2sup| ( )|, .i i n

q
g q kγ γ γ γ′≥ ≥ + + +…  

The numerical values of the parameters for the PA10-7CE are shown in Table 1. The table 
also shows the torque and velocity saturation limits of each joint, which are employed to 
select the corresponding limits of the saturation functions in the controller. 
 

Parameter Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 Units 

gi
k  0 909.58 216.39 432.25 0.8240 1.3734 0 [Nm/rad] 

γ i 0 129.94 30.91 61.75 0.11772 0.1962 0 [Nm] 
max
iτ  232 232 100 100 14.5 14.5 14.5 [Nm] 
max
iv  1 1 2 2 2π 2π 2π [rad/s] 

kg 909.58 [Nm/rad] 

k′  147.1513 [Nm] 

Table 1. Numerical values of the parameters for the PA10-7CE 
In order to illustrate the stability results described in the previous pages, this section shows 
a real–time experiment essay on the PA10-7CE robot system, using the controller proposed 
in this chapter, given by equation (12) and labeled in this section as Sat(Sat(PI)+P)), and the 
controller presented in Santibañez et al. (2010), labeled Sat(Sat(P)+PI),whose equation is 
given by 
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controller presented in Santibañez et al. (2010), labeled Sat(Sat(P)+PI),whose equation is 
given by 



 Advanced Strategies for Robot Manipulators 

 

236 

 ( )   =   ; ,    ; ,pd pc p p pd pi piK K q l m K q w l mτ ⎡ ⎤− +⎢ ⎥⎣ ⎦
Sat Sat  (61) 

                                  
0

   =    ( ( ); , ) ( )
t

id pc p pw K K q r l m q r dr⎡ ⎤−⎣ ⎦∫ Sat  

where Kpd, Kpc, Kid ∈ Rn×n
 are diagonal positive definite matrices, and we take α = 1 (see  

Fig. 1). 
Each of the experiments consisted in taking the robot from the vertical home position 

(where q = 0) to the following desired position: 2 3 2 3 2 2 2     rad.
T

dq π π π π π π π⎡ ⎤= − −⎣ ⎦  

6.3 Sat(Sat(PI)+P) scheme 
Table 2 shows the values of the gains and the saturation limits for each joint of the proposed 
control scheme (12). It is easy to check that the assumptions (16), (17) and (27) are fulfilled. 
Figure 4 shows the evolution of the position error for each joint. It can be seen that transient 
responses are relatively fast (lower than 1 second for joints 4 to 7 and lower than 2 seconds 
for joints 1 to 3) without overshoot. The steady state error for each joint is lower than 0.4 
degrees. Figure 5 shows the applied torque for each joint. The torques evolve inside of the 
prescribed limits. For the joints 4 to 7 the torques reach, sometimes, the permitted torque 
limits, confirming in this way the stability theoretical result. 
 

Gain Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 Units 

Kpp 10.0 100.0 60.0 60.0 50.0 35.0 30.0 [1/s] 

Kip 0.01 0.01 0.3 0.01 0.5 0.01 0.01 [1/s2] 

Kpv 90.0 150.0 35.0 85.0 10.0 6.0 12.0 [Nm s/rad] 
*
pil  0.95 0.95 1.75 1.75 5.5 5.5 5.5 [rad/s] 
*
pim  1 1 1.9 1.9 6 6 6 [rad/s] 

lp 185 185 75 75 12 12 12 [Nm] 

mp 200 200 80 80 13 13 13 [Nm] 

Table 2. Values of the control parameters selected for the Sat(Sat(PI)+P) scheme 

6.4 Sat(Sat(P)+PI) scheme 
Table 3 shows the values of the gains and the saturation limits for each joint of the control 
scheme (61). The parameters of the controller have been chosen in such a way that 
assumptions for the controller (61), given in (Santibañez et al., 2010), are satisfied. Figure 6 
shows the position error for each joint. Slightly slower transient responses were obtained, 
but without overshoot. The steady state errors are similar to those obtained for the 
Sat(Sat(PI)+P) scheme. Figure 7 shows the evolution of the applied torques, which are more 
noisy than those of the proposed scheme. 
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Fig. 4. Position errors for the (Sat(Sat(PI)+P)) scheme 
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Gain Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 Units 

Kpc 3.0 15.0 8.0 8.0 1.2 2.25 1.0 [1/s] 

Kpd 40.0 280.0 45.0 110.0 15.0 12.0 8.0 [Nm s/rad] 

Kid 15.0 18.0 10.0 12.0 5.0 8.0 4.0 [Nm/rad] 

lp 0.95 0.95 1.75 1.75 5.5 5.5 5.5 [rad/s] 

mp 1 1 1.9 1.9 6 6 6 [rad/s] 

lpi 185 185 75 75 12 12 12 [Nm] 

mpi 200 200 80 80 13 13 13 [Nm] 

Table 3. Values of the control parameters selected for the Sat(Sat(P)+PI) scheme 

7. Conclusions 
In this chapter we have proposed an alternative to the saturated nonlinear PID controller 
previously presented by Santibañez et al. (2010) which, also, results from the practical 
implementation of the classical PID controller, by considering the natural saturations of the 
electronics in the control computer, servo drivers, and actuators. The stability analysis of the 
closed–loop system is carried out by using the singular perturbation theory. Based on auxiliary 
Lyapunov functions, we prove local exponential stability of the equilibrium point of the closed–
loop system. It is also guaranteed that, regardless of the initial conditions, the delivered actuator 
torques evolve inside the permitted limits. Experimental results confirm the proposed analysis. 
Furthermore, the theoretical result explains why the classical linear PID regulator used in 
industrial robot manipulators preserves the exponential stability in spite of entering the 
saturation zones inherent to the electronic control devices and the actuator torque constraints. 
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Gain Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 Units 
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mp 1 1 1.9 1.9 6 6 6 [rad/s] 

lpi 185 185 75 75 12 12 12 [Nm] 

mpi 200 200 80 80 13 13 13 [Nm] 

Table 3. Values of the control parameters selected for the Sat(Sat(P)+PI) scheme 

7. Conclusions 
In this chapter we have proposed an alternative to the saturated nonlinear PID controller 
previously presented by Santibañez et al. (2010) which, also, results from the practical 
implementation of the classical PID controller, by considering the natural saturations of the 
electronics in the control computer, servo drivers, and actuators. The stability analysis of the 
closed–loop system is carried out by using the singular perturbation theory. Based on auxiliary 
Lyapunov functions, we prove local exponential stability of the equilibrium point of the closed–
loop system. It is also guaranteed that, regardless of the initial conditions, the delivered actuator 
torques evolve inside the permitted limits. Experimental results confirm the proposed analysis. 
Furthermore, the theoretical result explains why the classical linear PID regulator used in 
industrial robot manipulators preserves the exponential stability in spite of entering the 
saturation zones inherent to the electronic control devices and the actuator torque constraints. 
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If f ( q� , qd) satisfies the Contraction Mapping Theorem (Kelly et al., 2005; Khalil, 2002), then 
(62) has a unique solution q� *. Considering this, we have 
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If A  < 1, then f ( q� , qd) fulfills the Contraction Mapping Theorem. Now notice that 
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Considering (5) and (27), we have that each element in ATA fulfills 

 1| ( , )|< .TA A i j
n

 (67) 

Now, knowing that the eigenvalues of any matrix B, where bij denotes its ij-th element, fulfill 
(Horn & Johnson, 1985): 
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and consequently we have that max= { } < 1 = 1.TA A Aλ  Therefore, we get f (v, qd)−  
f (w, qd)  ≤ A w −v  where A  is strictly smaller than the unity. Hence, we have that (26) 
has a unique solution q�  = h(x) ∈ Rn
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Appendix B 

The positive definiteness and radial unboundedness analysis of W( ,q q� � ) is dealt in this 
appendix. The Lyapunov function candidate W( ,q q� � ) can be written as: 
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Notice that the positive definiteness and the radial unboundedness of W1( ,q q� � ) implies the 
positive definiteness and the radial unboundedness of W( ,q q� � ). 
Let us define a region β1 where the saturation functions of the P and PI parts of the 
controller work in their linear section, such that: 
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i cip p ik k q�  + xi + gi(qd). For 
this case, we will show that W1( q� ) is a strictly convex function with a unique minimum 
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point at q  = h1(x). To this end, we evaluate W1( q ) at q  = h1(x) and obtain its gradient and 
Hessian: 
a)   1 = ( )( )|q h xi

W q  can be written as: 

                1 = ( ) 01 =1 = ( )1

( )    =   ( ) ( )
n qi
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                          =    0  
b)   The gradient of W1( q ) with respect to q  is given by: 

 1( ) = ( ) ( ) = 0.p d d
W q K q x g q g q q

q
∂

+ + − −
∂

 (69) 

Under assumption (27), and by using the Contraction Mapping Theorem, (69) has a 
unique solution q  = h1(x), that is, a unique critical point. 

c)    The Hessian of W1( q ) with respect to q  is given by: 
2

1
2
( ) ( )= = 0d

p
W q g q qK

qq
∂ ∂ −

−
∂∂

 

which is a positive definite function for all q  ∈ Rn provided that (Hernandez-Guzman 
et al., 2008): 

 
=1

( )> max
n

i
pi q ij

g qk
q

∂
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Note that (27) implies (70). 
Therefore, in the linear region β1, W1( q ) is a strictly convex function with a unique minimal 
point q  = h1(x) which implies that W1( q  − h1(x)) is a locally positive definite function. 
Also notice that the gradient of W1( q ) with respect to q  is given globally by 

 ( )1( ) = ( ) ( )p d d
W q K q x g q g q q

q
∂ ⎡ ⎤+ + − −⎢ ⎥⎣ ⎦∂

Sat Sat  (71) 

which, under Assumption 2, will have a unique critical point for all iq  ∈R with i = 1,2, . . . 
,n, and hence, the minimum point of W1( q ) results to be a global minimum point q  = h1(x). 
In order to prove radially unboundedness of W1( q ), it is possible to prove that outside of 
the region β1 the function W1( q ) can be lower bounded by straight lines of the type 

1 1= ( )i ii i i
W k q h x cβ β − −  

where 1i
kβ  and ci are suitable constants. So, | iq  − 1i

h (x)| →∞ implies 
i

Wβ → ∞ for i = 1,2, . 
. . ,n; therefore W( q )→ ∞ as q  → ∞, which proves that W1( q ) is radially unbounded. 
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1. Introduction 
Robot manipulators, in general, are required to have the same number of actuators as the 
number of joints to obtain full control. In the case of under-actuated robots, this condition is 
not satisfied which make the behavior of that class of robots very difficult to be predicted. 
Under-actuated robots can be a better design choice for robots in space and other industrial 
applications, their advantages over fully actuated robots led to many studies to predict their 
behavior (Yu et al., 1998; Berkemeier & Fearing, 1999; Spong, 1995; Ono et al., 2001; 
Nakanishi et al., 2000; Funda et al., 1996; Luca et al., 2000; Luca & Oriolo, 2002; Arai & Tachi, 
1991; Mukherjee & Chen, 1993;Yu et al., 1993;Bergerman et al., 1995; Mahindrakar et al., 
2006; Muscato, 2006; Begovich et al., 2002). As a first advantage, a light-weight and low 
power consumption manipulator can be made. This feature is required in low cost 
automation and space robots. Second, they can easily overcome actuator failure due to 
unexpected accident. The under-actuated manipulator could be the model of the direct drive 
manipulator that has some failed joints; such fault-tolerant behavior is highly desirable for 
robots in remote or hazardous environments (Yu et al., 1998). Other interesting applications 
include the Acrobot (Berkemeier & Fearing, 1999; Spong, 1995), the gymnast robots (Ono et 
al., 2001), the brachiating robots (Nakanishi et al., 2000), and surgical robots (Funda et al., 
1996).  
The mathematical complexity and wide variety of applications have kept under-actuated 
robots an area of open research. (Luca et al., 2000; Luca & Oriolo, 2002) have investigated the 
behavior of a 2R manipulator moving in a horizontal plane with a single actuator at the first 
joint, neglecting joint friction which is not easy to achieve in real world as it involves high 
manufacturing cost. Trying to overcome that problem, some researchers have implemented 
additional equipments such as breaks at the passive joint (Arai & Tachi, 1991; Mukherjee & 
Chen, 1993; Yu et al., 1993; Bergerman et al., 1995). In this case, the brake can generate 
torque that means after all that kind of systems is considered some kind of actuator. So, it 
will be difficult to consider that robot as an under-actuated manipulator.  
Motivated by this problem, (Yu et al., 1998) have investigated the dynamic characteristics of 
a two-link manipulator in view of global motion including joint friction by proposing a 
mathematical model; they have found that the manipulator can be positioned if the friction 
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torque that means after all that kind of systems is considered some kind of actuator. So, it 
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acts on the passive joint. In this case, any additional equipment such as brakes is not needed 
in positioning all the joints to desired position. Their results were verified using numerical 
simulation. Later on, (Mahindrakar et al., 2006) have presented a mathematical model for a 
two-link under-actuated manipulator wherein the motion of the system was confined to a 
horizontal plane; their proposed dynamic model takes into account the frictional forces 
acting on the joints. Results obtained were also verified through numerical simulation.  
Many attempts to solve the problem have been found in the literature. Yet, solutions 
proposed are still lack of generality and systematization. To overcome this problem, 
artificial intelligence was introduced for prediction and making robot systems able to 
attribute more intelligence and high degree of autonomy.   
Appling fuzzy logic to under-actuated robots (as an artificial intelligence method), there 
were few studies in recent past (Muscato, 2006; Begovich et al., 2002).  
Although the results presented were promising, these results cannot be generalized to other 
systems, because they only came from practical considerations. Besides, despite the fact that 
unlike most learning control algorithms, multiple trials are not necessary for the robot to 
learn the desired trajectory. A major drawback was that Fuzzy Logic based approaches only 
remembers the most recent data points introduced (Graca & Gu, 1993). Gleaning the 
learning abilities of genetic algorithms GA (as another method of artificial intelligence) to 
solve the problem was an alternative. Blending of GA with fuzzy rules, in order to capture 
the hidden nonlinearities of the system will be useful in developing any learning techniques. 
(Lee & Zak, 2002) have presented the design criterion of a GA based neural fuzzy controller 
for an anti-break system. As it has been seen, each of the previously mentioned techniques 
has their own drawbacks. To overcome this problem researchers have recommended neural 
networks so that it would remember the trajectories as it traversed them (Graca & Gu, 1993).  
Artificial neural networks (ANNs) have been widely used for their extreme flexibility due to 
its learning ability and the capability of non-linear function approximation. Their ability to 
learn by example makes them very flexible and powerful. ANNs while implemented on 
computers are not programmed to perform specific tasks. Instead, they are trained with 
respect to data sets until they learn the patterns presented to them. Once they are trained, 
new patterns may be presented to them for prediction or classification (Kalogirou, 2001; 
Hasan et al., 2006). Therefore, ANNs have been intensively used for solving regression and 
classification problems in many fields. A number of realistic approaches have been 
proposed and justified for applications to robotic systems (Balakrishnan et al., 2000; Kim et 
al., 2002; Köker, 2005; Hasan et al., 2007; Al-Assadi et al., 2007; Siqueira & Terra, 2009). 
 In real world application, no physical property such as the friction coefficient can be exactly 
derived. Besides, there are always kinematics uncertainties presence in the real world such 
as ill-defined linkage parameters and backlashes in gear trains (Hasan et al., 2009; Hasan et 
al., 2010). In this paper, and to overcome whichever uncertainty presented in the real world, 
data were recorded experimentally from sensors fixed on each joint for a horizontal two-link 
under-actuated robot.  
The developed learning algorithm is based on weight adaptation of the network, by 
minimizing the tracking error after each iteration process. This scheme does not require any 
prior knowledge of the dynamic model of the system being controlled. The basic idea of this 
concept is the use of the ANNs to learn the characteristics of the robot system rather than to 
specify an explicit robot system model, so, every uncertainty in the system will be counted 
for. Experimental trajectory tracking has shown the ability of the proposed approach to 
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overcome the disadvantages of using some schemes like the Fuzzy Learning for example 
that only remembers the most recent data sets introduced, as the literature has shown.  

2. Equations of motion with friction effect  

As Figure 1 show, the space coordinate of the manipulator is parameterized by q .  
 

 
Fig. 1. Schematic diagram of the robot used 

The coordinate iq , 1,2i =  are the joint angles. The Euler–Lagrange equation of motion is 
(Mahindrakar et al., 2006): 

 ( ) ( , ) ,M q q h q q τ
•• •
+ =  (1) 

Where q
•

and q
••
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acts on the passive joint. In this case, any additional equipment such as brakes is not needed 
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The equations of motion accounting for the Coulomb plus viscous friction at the joints become: 
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=  represent the Coulomb and viscous friction forces respectively. The set-
valued signum function is defined as: 
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The above shown function suffers from the fact that the solution does not give a clear 
indication on how to select an appropriate solution from the several possible solutions for a 
particular arm configuration. 

3. Experiment procedure 
In this section, the real time implementation of the experimentally collecting data procedure 
is discussed. Different methods for collecting data have been found in the literature. Using a 
pre-specified model, using a trajectory planning method or using a simulation program for 
this purpose are examples for some of these methods. However, there are always kinematics 
uncertainties presences in the real world such as ill-defined linkage parameters, links 
flexibility and backlashes in gear train, in this approach, data were recorded directly from 
sensors fixed on each joint, so every uncertainty in the dynamics of the system will be 
counted for. 
The manipulator used is shown in Figure 2, which is actuated only at the first joint. The 
actuator used is a DC motor connected to the first link through a gearbox with a reduction 
ratio of 100:1, while the second joint is passive.  
Each of the joints have an encoder attached to it, in order to measure the rotation angle and 
there are torque sensors between the motor output shaft and the robot joint to measure the 
torque being supplied by the motor.  Joints encoders are connected to a computer equipped 
with MATLAB software through a data acquisition card. The robot arms were made of an 
aluminum square section beam to ensure a resisting to bending lightweight arm. Length of 
arms are l1 = 40 cm and l2 = 30 cm respectively. The control circuit is made up of computer  
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Fig. 2. The robot system used showing the computer, the data acquisition card and the robot 
arms 
with the MATLAB software connected to the robot through a data acquisition card that 
acquires the motion data of the two links. Input signal is generated by the MATLAB 
software and transferred to the motor using the electrical board, and the robot response is 
recorded using the MATLAB software. 
A Sinusoidal excitation signal was applied to the actuator causing different torque to the 
joints and the dynamic coupling effect was moving the passive joint correspondently. As a 
standard signal generated by the MATLAB, Sinusoidal excitation signal, was chosen in 
order to cause a robot motion that covers the whole working cell rather than being a 
specified signal to perform a pre-defined trajectory. 
When the excitation signal is given, the motion of the active joint and the corresponding 
response of the passive joint that can be seen in Figures 3 and 4 respectively were recorded 
in order to be used in the training process of the ANN. 

4. The adaptive learning algorithm 
The fundamental idea underlying the design of the network is that the information entering 
the input layer is mapped as an internal representation in the units of the hidden layer and 
the outputs are generated by this internal representation rather than by the input vector. 
Given that there are enough hidden neurons, input vectors can always be encoded in a form 
so that the appropriate output vector can be generated from any input vector. 
Figure 5 shows the network used. The output of the units in layer A are multiplied by 
appropriate weights Wij and these are fed as inputs to the hidden layer. Hence if Oi are the 
output of units in layer A, then the total input to the hidden layer, i.e., layer B is: 
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Fig. 3. Trajectory of the active joint when the excitation signal was applied 
 

 
Fig. 4. Corresponding trajectory of the passive joint 

 

Real-Time-Position Prediction Algorithm for Under-actuated  
Robot Manipulator Using of Artificial Neural Network   

 

255 

 
Fig. 5. The topology of the ANN used 

 B i ij
i

Sum O W=∑  (5) 

And the output Oj of a unit in layer B is: 

 ( )j BO f sum=  (6) 

Where f is a non-linear activation function, it is a common practice to choose the sigmoid 
function given by: - 

 1( )
1 jj Of O

e−
=

+
 (7) 

As a nonlinear activation function.  
However, any input-output function that possesses a bounded derivative can be used in 
place of the sigmoid function. 
If there is a fixed, finite set of input-output pairs, the total error in the performance of the 
network with a particular set of weights can be computed by comparing the actual and the 
desired output vectors for each presentation of an input vector.  
Error at any output unit eK in the layer C can be calculated by: - 

 K K Ke d O= −  (8) 

Where dK is the desired output for that unit in layer C and OK is the actual output produced 
by the network .the total error E at the output can be calculated by: - 
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 21 ( )
2 K K

K
E d O= −∑  (9) 

Learning comprises changing weights so as to minimize the error function.  
To minimize E by the gradient descent method. It is necessary to compute the partial 
derivative of E with respect to each weight in the network. Equations (5) and (6) describe the 
forward pass through the network where units in each layer have there states determined 
by the inputs they received from units of lower layer. 
The backward pass through the network that involves “ back propagation “ of weight error 
derivatives from the output layer back to the input layer is more complicated. For the 
sigmoid activation function given in equation (7), the so-called delta-rule for iterative 
convergence towards a solution maybe stated in general as:  
 

 JK K JW OηδΔ =  (10) 

Where η is the learning rate parameter, and the error δK at an output layer unit K is given by: - 

 (1 )( )K K K K KO O d Oδ = − −  (11) 

And the error δJ at a hidden layer unit is given by: - 

 (1 )J J J K JK
K

O O Wδ δ= − ∑  (12) 

Using the generalize delta rule to adjust weights leading to the hidden units is back 
propagating the error-adjustment, which allows for adjustment of weights leading to the 
hidden layer neurons in addition to the usual adjustments to the weights leading to the 
output layer neurons. 
A back propagation network trains with two step procedure, the activity from the input 
pattern flows forward through the network and the error signal flows backwards to adjust 
the weights using the following equations: - 

 IJ IJ J IW W Oηδ= +  (13) 

 JK JK K JW W Oηδ= +  (14) 

Until for each input vector the output vector produced by the network is the same as (or 
sufficiently close to) the desired output vector (Kalogirou, 2001; Hasan et al., 2006). Number 
of hidden neurons and the learning factor are determined by trial and error. 

5. Results  
A supervised feed forward ANN was designed using C programming language to learn the 
system behavior over its workspace. The network consists of input, output and one hidden 
layer, the input vector for the network consists of the angular displacement, the torque 
applied at the active joint (first joint) and the time interval, while the output vector was the 
angular position of the passive joint (second joint). As can be seen in Figure 5, every neuron 
in the network is fully connected with each other, sigmoid transfer function was used to be 
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the activation function, and generalized backpropagation delta learning rule (GDR) 
algorithm was used in the training process. All control datasets values had been scaled 
individually so that the overall difference in the dataset was maximized. 
Training data were divided into 50 input–output sets, which covered the entire work cell of 
the manipulator. To build the control knowledge, a training process was carried out using 
the experimentally obtained data. The network was trained by presenting several target 
points that the network had to learn, number of neurons in the hidden layer was set to 25 
with a constant learning factor of 0.9 by trial and error. Figure 6 shows the building 
knowledge process for the system. 
To verify the success of the algorithm, the predicted values of the passive joint were 
compared to the experimentally collected data. The average absolute error was 4.9% after 
100,000 Iterations. Figure 7 graphically shows the trajectory tracking of the passive joint, 
Results obtained show that the design network is capable of learning and predicting the 
position of the passive joint successfully. 

6. Conclusions and recommendations for further research 
In this paper, the Artificial Neural Network technique was applied to the problem of 
positioning an under-actuated robot manipulator. The position of the passive joint of under-
actuated 2R manipulator is now learned through training a network based only on 
observation of the input–output relationship. 
The proposed technique does not require any prior knowledge of the system model, the 
basic idea of this concept is the use of the ANN to learn the characteristics of the robot 
system rather than to specify explicit robot system model. Any modification in the physical 
set-up of the robot such as the addition of a new tool would only require training for a new 
trajectory without the need for any major system software modification, which is a 
significant advantage of using neural network approach. 
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Fig. 6. Building knowledge curve of the system 
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Fig. 7. Predicted trajectory tracking of the passive joint 

Results obtained have shown the ability of the network to predict the trajectory of the 
passive joint, that is positioned by the dynamic coupling of the active joint, overcoming the 
disadvantages of using some schemes like the Fuzzy Learning for example that only 
remembers the most recent data sets introduced. 
Backpropagation algorithm was used as a learning algorithm with sigmoid transfer function 
as an activation function in all neurons, For further research, we recommend that a different 
learning algorithm, different activation function and/or different number of hidden layers 
to be used in order to achieve, if possible, a better response in terms of precision and 
iteration. 
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Fig. 7. Predicted trajectory tracking of the passive joint 

Results obtained have shown the ability of the network to predict the trajectory of the 
passive joint, that is positioned by the dynamic coupling of the active joint, overcoming the 
disadvantages of using some schemes like the Fuzzy Learning for example that only 
remembers the most recent data sets introduced. 
Backpropagation algorithm was used as a learning algorithm with sigmoid transfer function 
as an activation function in all neurons, For further research, we recommend that a different 
learning algorithm, different activation function and/or different number of hidden layers 
to be used in order to achieve, if possible, a better response in terms of precision and 
iteration. 

7. References 
Al-Assadi, H.M.A.A., Hamouda, A.M.S., Ismail, N. and Aris, I., An Adaptive Learning

Algorithm for Controlling a Two-Degree-Of-Freedom Serial Ball-and-Socket 
Actuator. Proceedings of the IMechE Part I: Journal of Systems and Control 
Engineering, 2007,221(7): 1001-1006. 

Arai, H. and Tachi, S., Position Control of a Manipulator With Passive Joints Using Dynamic
Coupling. IEEE Trans. On Robotics and Automation, 1991,7(4): 528-534. 

Balakrishnan, S., Popplewell, N. and Thomlinson, M., Intelligent Robotic Assembly. 
International Journal of Computers and Industrial Engineering, 2000, 38: 467-478. 

Begovich, O., Sanchez, E.N., and Maldonado, M., Takagi–Sugeno fuzzy scheme for real-time 
trajectory tracking of an under-actuated robot. IEEE Transactions on Control
Systems Technology, January 2002, 10(1): 14–20. 

Bergerman, M., Lee, C. and Xu, Y., Experimental Study of an Underactuated Manipulator.
Proc. 1995 IEEE/RSJ Int. Conf. On Intelligent Robotics and Systems, 1995,2:317-322. 

Berkemeier, M. D. and Fearing, R. S., Tracking fast inverted trajectories of the underactuated

Real-Time-Position Prediction Algorithm for Under-actuated  
Robot Manipulator Using of Artificial Neural Network   

 

259 

acrobot, IEEE Transactions on Robotics and Automation, Aug. 1999, 15(4): 740 –
750. 

Funda, J., Taylor, R., Eldridge, B., Gomory, S. and Gruben, K., Constrained Cartesian motion 
control for teleoperated surgical robots. IEEE Transactions on Robotics and
Automation, June 1996, 12(3): 453 – 465. 

Graca, R.A. and Gu, Y., A Fuzzy Learning Algorithm for Kinematics Control of a Robotic
System. Proceeding of the 32nd Conference on Decision and Control. San Antonio,
Texas. December, 1993: 1274-1279. 

Hasan, A. T., Hamouda, A.M.S., Ismail, N, Aris, I. and Marhaban, M.H., Trajectory Tracking
for a Serial Robot Manipulator Passing Through Singular Configurations Based on 
the Adaptive Kinematics Jacobian Method. Proceedings of the IMechE Part I:
Journal of Systems and Control Engineering, 2009, 223(3): 393-415. 

Hasan, A. T., Ismail, N, Hamouda, A.M.S., Aris, I., Marhaban, M.H. and Al-Assadi, 
H.M.A.A., Artificial Neural Network-Based Kinematics Jacobian Solution for Serial
Manipulator Passing Through Singular Configurations. International Journal of
Advanced in Engineering Software, 2010, 41:359-367. 

Hasan, A.T., Hamouda, A.M.S., Ismail, N., and Al-Assadi, H.M.A.A., An adaptive-learning 
algorithm to solve the inverse kinematics problem of a 6 D.O.F serial robot
manipulator. Journal of Advances in Engineering Software, 2006, 37(7): 432-438. 

Hasan, A.T., Hamouda, A.M.S., Ismail, N., and Al-Assadi, H.M.A.A., A New Adaptive 
Learning Algorithm for Robot Manipulator Control. Proceeding of the IMechE, Part
I: Journal of System and Control Engineering, 2007, 221(4): 663-672. 

Kim, I.S., Son, J.S., Park, C.E. Lee, C.W., and Prasad, Y. K.D.V., A Study on Prediction of
Bead Height in Robotic Arc Welding Using a Neural Network. International
Journal of Materials Processing Technology, 2002,130–131: 229–234. 

Köker, R., Reliability-based approach to the inverse kinematics solution of robots using
Elman’s networks. International Journal of Engineering Applications of Artificial
Intelligence, 2005, 18: 685-693. 

Lee, Y. and Zak, S. H., Designing a genetic neural antilock-break system controller. IEEE 
Transactions on Evolutionary Computation, 2002, 6(2): 198 – 211. 

Luca, A.D. and Oriolo, G., Trajectory Planning and Control for Planar Robots With Passive
Last Joint. International Journal of Robotics Research, 2002, 21:575-590. 

Luca, A.D., Mattone, R. and Oriolo, G., Stabilization of an Underactuated Planar 2R
Manipulator. International Journal of Robust and Nonlinear Control, 2000,24:181-
198. 

Mahindrakar, A.D., Rao, S. and Banavar, R.N., Point-to Point Control of a 2R Planar 
Horizontal Underactuated Manipulator. International Journal of Mechanism and
Machine Theory, 2006, 41:838-844. 

Mukherjee, R. and Chen, D., Control of Free-Flying Underactuated Space Manipulators To
Equilibrium Manifolds. IEEE Trans. On Robotics and Automation, 1993, 9(5): 561-
570. 

Muscato, G., Fuzzy Control of an Underactuated Robot With a Fuzzy Microcontroller. 
International Journal of Microprocessors and Microsystems, 1999,23:385-391.  

Nakanishi, J.  , Fukuda, T. and Koditschek, D., A brachiating robot controller. IEEE
Transactions on Robotics and Automation, April 2000,16(2): 109 – 123. 

 



 Advanced Strategies for Robot Manipulators 

 

260 

Ono, K., Yamamoto, K. and Imadu, A. Control of giant swing motion of a two-link 
horizontal bar gymnastic robot. Advanced Robotics, 2001, 15(4): 449 – 465.  

Siqueira, A. A. G. and Terra, M. H., Neural Network-Based H∞ Control for Fully Actuated 
and Underactuated Cooperative Manipulator. International Journal of Control
Engineering Practice, 2009, 17:418-425. 

Kalogirou, S. A., Artificial Neural Networks In Renewable Energy Systems Applications: a
review. International Journal of Renewable and Sustainable Energy Reviews. 2001, 
5: 373-401.  

Spong, M. W., The swing up control problem for the acrobat. IEEE Control Systems
Magazine, Feb. 1995, 15(1): 49 – 55. 

Yu, K-H, Shito, Y. and Inooka, H., Position Control of an Underactuated Manipulator Using
Joint Friction. International Journal of Non-Linear Mechanics, 1998, 33(4): 607- 614.  

Yu, K-H., Takahashi, T. and Inooka, H. ,Dynamics and Motion Control of a Two-Link Robot 
Manipulator With a Passive Joint. Proc. 1995 IEEE/RSJ Int. Conf. On Intelligent
Robots and Systems, 1995, 2:311-316. 

 

12 

On Nonlinear Control Perspectives  
of a Challenging Benchmark 

Guangyu Liu and Yanxin Zhang 
The University of Auckland 

New Zealand 

1. Introduction 
Dynamical systems are often nonlinear in nature. It motives people to explore various 
theoretical nonlinear analysis and control design tools, of which constructive nonlinear 
design methods are the most celebrated ones. However, applying a constructive tool faces 
up a big hurdle that the tool deals only with a certain dynamical structure, often not 
possessed by the natural dynamics. Nonlinear constructive control designs heavily relies on 
the identification of a particular structure via coordinate transformation and control 
transformation. To be realistic, these theoretical tools are not general to all of the nonlinear 
systems. Here, a challenging benchmark example–a four degrees of freedom inverted 
pendulum under the influence of a planar force–is considered that is nonlinear, multiple 
input and multiple output, underactuated and unstable. The benchmark is also of practical 
interests because it is an abstract of several applications. Three challenging control objectives 
are envisaged for the first time in the literature in order to how to apply various cutting-
edge theoretical nonlinear control tools. In fact, the key step of all of the nonlinear designs is 
to identify spectral structures– certain “normal” forms. From this aspect, a sequence of 
preliminary designs will accompany the existing tools to construct nonlinear controllers, 
which is quite different from the linear control designs. 

2. The benchmark problem 
2.1 Modeling 
The spherical inverted pendulum is subject to a holonomic constraint on the vertical direction 
and its self-spin about the principal axis along the pole is neglected from the context. As a 
result, the benchmark has only four degrees of freedom described by a set of generalized 
coordinates q ∈ R4 that include two translational ones (also called external variables) and two 
angular ones (also called shape variables). The translational coordinates are unanimously 
denoted by two globally fixed Cartesian coordinates (x,y) while the angular ones have 
several choices as is given later. Q ∈ R4 denotes the generalized input for the system with 

 Q = ( Fx, Fy, 0, 0 )T
 + vf , (1) 

where (Fx, Fy)  F is the actual planar force and vf ∈ R4 is a collection of exogenous 
disturbances and unmodelled dynamics. 
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Fig. 1. The configurations of a spherical inverted pendulum 
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Define a Lagrangian L = K – V where K and V are respectively the kinetic energy and the 
potential energy of the benchmark. Applying the Euler-Lagrangian equations 

 d d d Q
dt dq dq

− =
L L  (2) 

for the benchmark derives the dynamics 

 ( ) { } ( , ) { } ( ) ,iq q q q q q Q⋅ + ⋅ + =D C G  (3) 

where D(q) is the matrix of inertia, C(q, q ) is the centrifugal and Coriolis matrix and G(q) is 
the gravitational matrix. Equation 3 is taken as the mathematical model of the benchmark. 
Three models with respect to three sets of generalized coordinates are derived (see Fig. 1) 
M.1 The model in q = (x,y, θ,φ) in (Liu, 2006) – θ and φ are the procession and nutation angles 

respectively; the model has singular points at φ = . . . , 0,π,2π, . . . but the model is ideal 
for the objective of swing-up (e.g., (Albouy & Praly, 2000)); the upper space is defined 
by U = {(x,y, θ,φ, x , y , θ , φ ) ∈ R8|– π/2 < φ < π/2}; 

M.2 The model in q = (x,y, δ, ε) in (Liu et al., 2008a) – δ and ε denote the heading and bank 
angles respectively; the model has singular points at δ = π/2,3π/2, . . . and/or ε = 
π/2,3π/2, . . . that does not affect the control objectives here; special structures have 
been derived from this model (see S.1 and S.2 in the sequel); the upper space is defined 
by U = {(x,y, δ, ε, x , y , δ , ε ) ∈ R8| – π/2 < δ < π/2 and – π/2 < ε < π/2}; 

M.3 The model in q = (x,y,X,Y) in (Liu et al., 2008b) – X and Y are the projection of the center 
of mass in the horizontal plane; the model can only represent the case that the 
pendulum is either above the horizontal plane or below the plane but it is sufficient to 
the control objectives in this paper; the description of the model is technically simpler 
than the above two but we cannot ensure that it also implies particular structures as 
those derived from M.2; the upper space is defined by U = {(x,y,X,Y, x , y , X , Y ) ∈ 
R8| 2 2X Y+  < L} (L is the length of the center of mass to the pivot). 

Generally, Equation 3 can be written in a state space form 

 ( , , )ff F vη η=   (4) 

where η (q, q ) ∈ U denotes the state vector and Equation 4 is called the nominal dynamics 
as vf  ≡ 0. 

2.2 Problem formulation 
In the literature, a local stabilizing controller is used to switch from a swing-up strategy 
(Albouy & Praly, 2000) to achieve a large domain attraction. Here, three different control 
objectives are envisaged which are more challenging: 
PF.1 The non-local stabilization – Find a planar force F to drive the spherical inverted 

pendulum in such a way that for a non-trivial set S ⊂ U and S  0, where the trivial 
solution denotes the upright position of the pendulum and a given point on the 
horizontal plane in (x,y) for the universal joint of the pendulum, S is contained in a 
domain of attraction. If S ⊆ U and U ⊆ S, the closed loop system is said to yield a 
“global” stability region. If ∀S ⊆ U, there exist certain design parameters such that S is 
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contained in a domain of attraction. Then, the closed loop system is said to yield a 
“semi-global” stability region. 

PF.2 Exact output tracking – Let (xd(t),yd(t)) for t ∈ (–∞,∞) be a sufficiently smooth desired 
curvature in the globally fixed frame with respect to the time variable t. Derive a 
feedback control law for F such that the pivot position, denoted by triplet (t,x(t),y(t)), of 
the pendulum starting from a set of initial conditions (t0, x(t0),y(t0)) converges to 
(t,xd(t),yd(t)) asymptotically, i.e., x(t) – xd(t) →0, y(t) – yd(t) →0 as t → ∞. Meanwhile, the 
pendulum is kept in U. 

PF.3 Way-point tracking – Let p = {p1, p2..., pn} with pi = (xri,yri ) for i = 1, 2, ..., n be a given 
sequence of points on the plane x – y of the globally fixed frame. Associated with each 
pi, consider the closed ball Nμi (pi) with center pi and radius μi > 0. Derive a feedback 
control law for F such that the pivot (x,y) of the pendulum converges to pn after visiting 
the ordered sequence of neighborhood Nμi (pi) for i = 1, 2, ..., (n – 1) while keeping the 
pendulum in the upper space U. 

2.3 Derivatives of the benchmark 
The system is an abstraction of many real life applications/problems (see Fig. 2) 
A.1 A juggler’s balancing problem – One of very childish games is to balance a pole using a 

finger. The pole may fall in any direction and its base moves together with the finger. 
When the finger moves to the left, to the right, forward or backward in a horizontal 
plane, a planar force F = (Fx, Fy) is applied the pole to steer it around. The human’s hand 
is replaced by a manipulator in an automated environment. 

A.2 The hovering of a vector thrusted rocket – This system may hover at certain altitude either 
staying at a point or tracking certain trajectory. The rocket may head to any direction in 
a horizontal plane under the influence of injection–the main thrust. In this case, the 
main thrust can be decoupled to a vertical thrust against the gravity force or the drag 
and a planar thrust F = (Fx, Fy) steering the rocket in the plane. 

A.3 A personal transporter – It is a two-wheel vehicle on which a rider stands without falling 
over in any direction. The rider who hold the bar bending to the left, the right, forward 
and backward induces the cart to move intelligently to balance the rider. Some different 
accelerations may yielded by two wheels that together with an acceleration yielded by 
the centrifugal and Coriolis effects form a planar force F = (Fx, Fy) to balance the rider. 
There is a commercial product from Segway. 

A.4 The test bench – A pole with a universal joint stands on a cart sliding on a beam that in 
turn slides in a fixed frame. The cart and the beam that are driven by two motors 
respectively yields a planar force F = (Fx, Fy) to the pole. This is a case where the 
classical inverted pendulum on the cart operates in three dimensional space; 

A.5 Others – There are other controlled systems similar to the benchmark, for example, the 
launching of a spacecraft (without the thrust at the beginning). 

As is given in A.1-A.5, a planar force F = (Fx, Fy) could be derived from several different 
types of original actuation for different controlled systems. Without loss of generality, we 
take the planar force F as the “generalized” force acting on the models from M.1-M.3. This 
gives us the same benchmark when exploring various control ideas. So, one can focus on the 
basic dynamic behaviors and the principles. 
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take the planar force F as the “generalized” force acting on the models from M.1-M.3. This 
gives us the same benchmark when exploring various control ideas. So, one can focus on the 
basic dynamic behaviors and the principles. 
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3. Nonlinear analysis and design tools 
In the realm of various nonlinear analysis and design tools, the following concepts and tools 
are among the mainstream (not a complete survey), which are either used, incorporated, or 
related to several successful designs for the benchmark 
T.1 The differential geometric approach (see (Isidori, 1995)) – It is fundamental to nonlinear 

control systems. One of the key ideas is to transform a system to a linear one by means 
of feedback and coordinate transformation. The notion of “zero” dynamics plays an 
important role in the problem of achieving local asymptotic stability, asymptotic 
tracking, model matching and disturbance decoupling. 

T.2 Input-to-state stability (ISS) (see (Sontag, 1990; 2005)) – The concept establishes a result on 
feedback redesign to obtain a desirable stability condition with respect to actuator 
errors, and provides a necessary and sufficiency test in terms of ISS-Lyapunov function. 
It brings about a number of powerful analysis tools, one of which is asymptotic “ISS” 
gain and its small gain theorem (Teel, 1996). The latter leads to a “celebrated” design 
tool–forwarding. 

T.3 Forwarding and backstepping – Forwarding is a recursive control design procedure for 
nonlinear systems possessing an upper triangular structure. Nest saturating design (a 
low gain approach) (Teel, 1996) is the first tool in forwarding where design parameters 
are carefully selected to make the feedback interconnection of two systems satisfying 
small gain conditions. Lyapunov approaches (see (Mazenc & Praly, 1996; Sepulchre et 
al., 1997)) for forwarding are practically very difficult to apply because constructing an 
“exact” cross term in the Lyapunov function is hard. Backstepping (a high gain 
approach) (see (Kristić, 1995; Sepulchre et al., 1997)) is a different recursive design 
procedure for nonlinear systems possessing a lower triangular structure. It is a very 
successful tool. However, one must realize that many nature systems do not possess 
such a structure. A misconception is that the interlaced designs (Sepulchre et al., 1997) 
apply also to special structures (half upper and half lower structures). Sliding mode 
control (see (Utkin, 1992)) can be taken as a recursive design procedure similar to 
backstepping. 

T.4 Singular perturbations (see (Kokotović, 1986) – It is a means of taking into account 
neglected high-frequency phenomena and considering them in a separate fast time-
scale. This is achieved by treating a change in the dynamic order of a system of 
differential equations as a parameter perturbation, called the “singular perturbations”. 
It results in a structure of a dynamical system with two time scales (fast and slow) so 
that the control problem is simplified. 

T.5 Controlled Lagrangians/Hamiltanians (IDA-PBC) (see (Block et al., 2001; Ortega et al., 2002) 
– The methods are constructive passivity based control tools for a physical system that 
can be described in Lagrangian dynamics or Hamiltanian dynamics. The key notion is 
the energy shaping (kinetic, potential or total energy) such that the closed loop system 
preserves the structure of Lagrangian or Hamiltanian dynamics with a desired 
behavior. For example, the unstable equilibrium of the original dynamics may become a 
stable equilibrium of the modified dynamics. For mechanical systems, two variations 
are equivalent. 

T.6 Stable inversion/output regulation (see (Devasia, 1996; Isidori, 1995) – The Byrnes-Isidori 
(see (Isidori, 1995)) regulator generalizes internal model principle to nonlinear systems 
that can be applied to track any trajectory generated by a given exosystem if one can 
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solve the associated PDEs. The stable inversion technique (see (Devasia, 1996)) trades 
the requirement of solving these general PDES for a specific trajectory. Both tools can 
deal with the unstable “zero” dynamics that cannot be dealt with by the conventional 
inversion technique. 

T.7 Hybrid control1–There is no ultimate definition. It refers to a control system that mixes 
discrete parts (e.g., a controller, a supervisor) and continuous parts (e.g., a continuous 
plant). 

4. Constructive control designs 
4.1 Step 1 identifying “normal” forms 
Unlike linear systems that can be written more or less in a unified manner, nonlinear 
systems are so diversified that one can only cope with a subclass of nonlinear systems even 
one particular example at a time. Therefore, nonlinear control designs are usually much 
more complex and difficult than linear ones. The situation well fits in with a famous 
sentence in Leo Tolstoy’s Anna Karenina 
“All happy families (linear systems here) are happy alike, all unhappy families (nonlinear systems 
here) are unhappy in their own way.” 

Nevertheless, the linear control theory is not a panacea to all control problems as it holds 
only around an operating point if and only if the first approximation principle holds at this 
point. In contrast, nonlinear control systems may yield a large (even “global”) region of 
stability, tracks asymptotically a nonlinear trajectory that exceeds the bandwidth of a linear 
control system, and provides more physical insights. 
A significant effort in nonlinear control designs is to identify a structure that is suitable for a 
particular design procedure. Ad hoc approaches for identifying a structure of a nonlinear 
control system maybe 
• neglecting some nonlinear effects or considering them as perturbations; 
• exploring physical properties to provide insight to the dynamics; 
• taking a preliminary feedback and/or a change of states to simplify the dynamics. 
Neglecting some nonlinear effects in a nonlinear design should be taken carefully because 
the claimed properties (e.g., a “global” domain of attraction and robustness) for the reduced 
dynamics may not represent a real situation. In our designs, we only neglect the disturbance 
and the unmodelled dynamics in analysis and design. So, we guarantee that the closed loop 
systems represents the original full nonlinear control system. 
The structures that are explored for our designs are listed (to compare with the different 
structures, we abuse notations a little bit for new states) 
S.1 The original dynamics maps to an “appropriate” upper triangular structure (Liu et al., 

2008a) 

 
( , )

      for = 1,2,3,4
( , ),

i i i i i

i i i

A g u
i

f u
ζ = ζ + ξ

ξ = ξ
 (5) 

by a nonsingular transformation T1U → R8
 (there is no constraint in new states) and a 

preliminary feedback F = α1(η,u), where u is the new input, ξi+1  (ξi, ζi), (ξi, ζi) are the 

                                                 
1 It does not mean a particular tool or method but a broad class of mixed tools and methods. 
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dynamics may not represent a real situation. In our designs, we only neglect the disturbance 
and the unmodelled dynamics in analysis and design. So, we guarantee that the closed loop 
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structures, we abuse notations a little bit for new states) 
S.1 The original dynamics maps to an “appropriate” upper triangular structure (Liu et al., 

2008a) 

 
( , )

      for = 1,2,3,4
( , ),

i i i i i

i i i

A g u
i

f u
ζ = ζ + ξ

ξ = ξ
 (5) 

by a nonsingular transformation T1U → R8
 (there is no constraint in new states) and a 

preliminary feedback F = α1(η,u), where u is the new input, ξi+1  (ξi, ζi), (ξi, ζi) are the 

                                                 
1 It does not mean a particular tool or method but a broad class of mixed tools and methods. 



 Advanced Strategies for Robot Manipulators 

 

268 

states corresponding to each augmented subsystem and Ai = 0. The feedback 
linearization technique (Isidori, 1995) in T.1 is incorporated. 

S.2 The original dynamics also maps to two interconnected subsystems (Liu et al., 2008c) 
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by a nonsingular transformation T2U → R8
 (there is no constraint in new states) and a 

preliminary feedback F = α2(η,u), where u = (u1,u2) is the new input, (ξ1, ξ2,ω) (with  
ω = (ω1,ω2)) and (ζ1, ζ2,ϑ) (with ϑ = (ϑ1,ϑ2)) are the states for two subsystems 

respectively, 
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, and ϕη(·) and ϕϑ(·) are interconnected terms which 

are high order nonlinear terms with respect to their arguments. 
S.3 This structure is trivial as we can write the original unperturbed dynamics in an 

“appropriate” form of the Euler-Lagrangian equations (Block et al., 2001) 
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by a nonsingular transformation T3U → χ ∈ R8
 (χ is a locally bounded set about  

(ω,ϑ)  0) and a preliminary feedback F = α3(η,u), where u = (u1,u2) is the new input, (ξ1, 

ξ2, ω, ζ1, ζ2, ϑ) with ω = (ω1, ω2) and ϑ = (ϑ1,ϑ2) are the new states, 
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 for a scalar c > 0. Here, a combination of a linear transformation and the 

feedback linearization technique is used. 

4.2 Step 2 applying nonlinear tools 
The structures S.1-S.4 enable us to complete a number of nonlinear control designs 
relatively easier for three control objectives PF.1-PF.3. Fig. 3 shows the close loop systems 
with the controllers NC.1-NC.5 as follows. 
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Fig. 3. Diagrams of NC.1-NC.5 



 Advanced Strategies for Robot Manipulators 

 

268 

states corresponding to each augmented subsystem and Ai = 0. The feedback 
linearization technique (Isidori, 1995) in T.1 is incorporated. 

S.2 The original dynamics also maps to two interconnected subsystems (Liu et al., 2008c) 

 
1 1 2 1 2

1 2

2 1

( , , , )A B

u

ηω ω ϕ= + ξ + ξ ξ ζ ζ

ξ = ξ

ξ =

 (6) 

 
1 1 2 1 2

1 2

2 2

( , , , )A B

u

ϑϑ ϑ ϕ= + ζ + ξ ξ ζ ζ

ζ = ζ

ζ =

  (7) 

by a nonsingular transformation T2U → R8
 (there is no constraint in new states) and a 

preliminary feedback F = α2(η,u), where u = (u1,u2) is the new input, (ξ1, ξ2,ω) (with  
ω = (ω1,ω2)) and (ζ1, ζ2,ϑ) (with ϑ = (ϑ1,ϑ2)) are the states for two subsystems 

respectively, 
0 1
0 0

A
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 
0
1

B
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, and ϕη(·) and ϕϑ(·) are interconnected terms which 

are high order nonlinear terms with respect to their arguments. 
S.3 This structure is trivial as we can write the original unperturbed dynamics in an 

“appropriate” form of the Euler-Lagrangian equations (Block et al., 2001) 

 
1 2

1 2

2 1

( , , , )uA ψ u u

u

ηω ω ω ϑ= +

ξ = ξ

ξ =

  (10) 

 
1 2

1 2

2 2

( , , , )sA ψ u u

u

ϑϑ ϑ ω ϑ= +

ζ = ζ

ζ =

  (11) 

by a nonsingular transformation T3U → χ ∈ R8
 (χ is a locally bounded set about  

(ω,ϑ)  0) and a preliminary feedback F = α3(η,u), where u = (u1,u2) is the new input, (ξ1, 

ξ2, ω, ζ1, ζ2, ϑ) with ω = (ω1, ω2) and ϑ = (ϑ1,ϑ2) are the new states, 
0

0u
c

A
c

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 and 

0
0s
c

A
c

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 for a scalar c > 0. Here, a combination of a linear transformation and the 

feedback linearization technique is used. 

4.2 Step 2 applying nonlinear tools 
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NC.1 The high-low gain controller (see (Liu et al., 2008a) for PF.1 is designed on the basis of S.1 

 1 1 for 1,2,3,4iu L iσ += − ξ − =  (12) 

where L ∈ R4×4 is a linear high gain matrix, 1 1 1 1 1
1sat( ( ))i i i i i i
i

K vσ λ
λ+ + + + +⋅ ξ + Γ  with 

vi+1 = σi+2 (v5 does not necessary to be given as the design is complete, Ki+1 and λi are 
associated gain matrices and saturation levels). Nested saturating method (Teel, 1996) 
in T.3 is used to design a low gain control part σi+1 at the aid of a linear control design 
method–LQR. The controller yields a closed loop system with a “global” stability 
region. The design implies the existence of appropriate λi that is related to the domain 
of attraction yielded by a linear controller. Practically, λi is found by trails and errors. 
ISS (see (Sontag, 2005)) in T.2 is a key analysis tool in both the design and the redesign. 

NC.2 The decentralized controller in (Liu et al., 2008c) for PF.1 is designed on the basis of S.2 
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where L.,. and K.,. are positive scalars, ε ∈ (0,1) is time scaling parameters. The resultant 
closed loop system is a hidden singularly perturbed system that can be transformed 
into a standard singular perturbation form (slow) x  = f ( x , y ), (fast) ε y  = h( x , y , ε). A 
“strong” Lyapunov function comes with the design and the total stability of the system 
is ensured. A “semi-global” stability region (it increases as ε decreases) is yielded by the 
closed loop system. The design is heavily relying on T.4 (see (Kokotović, 1986)). 

NC.3 The controller via controlled Lagrangians in (Block et al., 2001) and (Liu et al., 2007) (a 
complete version) for PF.1 is based on S.3 

 F ⇐ Lc (14) 

which defines a passivity based controller F, where Lc is defined as a controlled 
Lagragian that satisfies the conditions in (Block et al., 2001). Although the controller is a 
direct result of the theory (Block et al., 2001) in T.5, the derivation is technically 
complex. A “weak” Lyapunov function comes with the design, that is, an energy 
function of the closed loop system. LaShall’s invariance principle is used to established 
the stability but the principle cannot guarantee the stability under disturbances. 

NC.4 The exact output tracking controller in (Liu et al., 2008b) for PF.2 is a designed on the 
basis of S.3 
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where {ξ1d, ζ1d|ξ2d, ζ2d, 1dξ , 1dζ ,ω1d,ω2d,ϑ1d,ϑ2d} are obtained based on the stable 
inversion tool (Devasia, 1996) in T.6 with respect to a desired output trajectory. K. are 
linear feedback gain matrices obtained by a linear controller design–LQR. ( 1dξ , 1dζ ) is 
a guidance controller (a feedforward part) and the rest is a feedback minimizing the 
tracking errors and rejecting exogenous disturbances. For an achievable desired 
trajectory that is c2(–∞,∞), the output (the translational variables ξ1 and ζ1 – the original x 
and y) of the closed loop system tracks exactly the desired trajectory while keeping the 
pendulum upward. 

NC.5 The hybrid controller in (Liu & Yang, 2010) for PF.3 is in the category of T.7. The result is 
relying on NC.1 or NC.2 and an event driven piecewise constant signal σ[t0,∞) →Zn that 
is continuous from the right at every point and is defined recursively by 

 0  ( , , ),    ψ t tσ α χ σ −= ≥   (16) 

where χ and ψ are metrics on the current tracking errors with respect to the 
neighborhood Nμi of ith way-point, σ–(τ ) is equal to the limit from the left of σ(τ ) as τ → 
t based on an event that determines the discrete value i in a set {1, 2, ...,n}. The controller 
yields either “global” or “semi-global” stability region to the closed loop system inherit 
from NC.1 or NC.2. The ordered sequence of way-points are guaranteed but the timing 
to a way-point is uncertain. 

5. Conclusion and future work 
The cutting-edge theoretical nonlinear analysis and designs tools have been used 
successfully to solve the challenging control goals for a four degrees of freedom spherical 
inverted pendulum, such as the global stabilization and the nonlinear exact tracking. 
However, the tools are unable to yield satisfactory controllers on their own. A designer 
should perform preliminary designs via identify the special structures, “normal” forms, to 
bridge the gap. Observed from these successful designs, a good insight to the physical 
dynamical system would help us to find a way, bridging the gap. The experiences obtained 
from the benchmark example should be extended to other nonlinear control systems. 
Techniques of identifying various “normal forms” should be emphasized. 
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where {ξ1d, ζ1d|ξ2d, ζ2d, 1dξ , 1dζ ,ω1d,ω2d,ϑ1d,ϑ2d} are obtained based on the stable 
inversion tool (Devasia, 1996) in T.6 with respect to a desired output trajectory. K. are 
linear feedback gain matrices obtained by a linear controller design–LQR. ( 1dξ , 1dζ ) is 
a guidance controller (a feedforward part) and the rest is a feedback minimizing the 
tracking errors and rejecting exogenous disturbances. For an achievable desired 
trajectory that is c2(–∞,∞), the output (the translational variables ξ1 and ζ1 – the original x 
and y) of the closed loop system tracks exactly the desired trajectory while keeping the 
pendulum upward. 

NC.5 The hybrid controller in (Liu & Yang, 2010) for PF.3 is in the category of T.7. The result is 
relying on NC.1 or NC.2 and an event driven piecewise constant signal σ[t0,∞) →Zn that 
is continuous from the right at every point and is defined recursively by 

 0  ( , , ),    ψ t tσ α χ σ −= ≥   (16) 

where χ and ψ are metrics on the current tracking errors with respect to the 
neighborhood Nμi of ith way-point, σ–(τ ) is equal to the limit from the left of σ(τ ) as τ → 
t based on an event that determines the discrete value i in a set {1, 2, ...,n}. The controller 
yields either “global” or “semi-global” stability region to the closed loop system inherit 
from NC.1 or NC.2. The ordered sequence of way-points are guaranteed but the timing 
to a way-point is uncertain. 

5. Conclusion and future work 
The cutting-edge theoretical nonlinear analysis and designs tools have been used 
successfully to solve the challenging control goals for a four degrees of freedom spherical 
inverted pendulum, such as the global stabilization and the nonlinear exact tracking. 
However, the tools are unable to yield satisfactory controllers on their own. A designer 
should perform preliminary designs via identify the special structures, “normal” forms, to 
bridge the gap. Observed from these successful designs, a good insight to the physical 
dynamical system would help us to find a way, bridging the gap. The experiences obtained 
from the benchmark example should be extended to other nonlinear control systems. 
Techniques of identifying various “normal forms” should be emphasized. 
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1. Introduction 
This chapter presents a unified approach to robust control of a variety of flexible mechanical 
systems, which are not only systems having flexible structure themselves such as a robotic 
manipulator with a flexible structure and a crane system, but also systems not having 
flexible structure but handling flexible objects such as a liquid container system and a 
fishery robot. So far, a lot of research efforts have been devoted to solve control problems of 
such flexible systems, one of the most typical problems among which is the problem of 
flexible robotic manipulators, e.g., [Sharon & Hardt (1984); Spong (1987); Wang & 
Vidyasagar (1990); Torres et al., (1994); Magee & Book (1995); Nenchev et al., (1996); 
Nenchev et al., (1997)]. As other types of applications, the problems of a crane system [Kang 
et al. (1999)] and of a liquid container system [Yano & Terashima (2001); Yano et al., (2001)] 
have been investigated. The common control problem for flexible systems can be stated as 
“how to achieve required motion control with suppressing undesirable oscillation due to its flexibility”. 
From the control methodology point of view, let us review those previous works. For so-
called micro-macro manipulators associated with large flexible space robots, [Torres et al 
(1994)] and [Nenchev et al., (1996); Nenchev et al., (1997)] have proposed path-planning 
based control methods using a coupling map and a reaction null-space respectively, which 
utilize the geometric redundancy. The control methods in [Sharon & Hardt (1984)] for a 
micro-macro manipulator and in [Kang et al., (1999)] for a crane system rely on the endpoint 
direct feedback, which require sensors to measure the endpoint. In [Wang & Vidyasagar 
(1990)], a passivity-based control method has been proposed for a single flexible link, and in 
[Spong (1987)] an exact-linearization method and an integral manifold method have been 
presented for a flexible-joint manipulator. The method in [Magee & Book (1995)] is based on 
input signal filtering where the underlying concept is pole-zero cancellation. [Ueda & 
Yoshikawa (2004)] has applied a mode-shape compensator based on acceleration feedback 
to a flexible-base manipulator. For a liquid container system, H∞ control in [Yano & 
Terashima (2001)] and a notch-type filter based control, that is, equivalent to pole-zero 
cancellation, in [Yano et al., (2001)] are utilized respectively. In general, most other works 
have focused on individual systems and hence their control methods are not directly 
available for various flexible systems. For example, the path-planning methods in [Torres et 
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This chapter presents a unified approach to robust control of a variety of flexible mechanical 
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Nenchev et al., (1997)]. As other types of applications, the problems of a crane system [Kang 
et al. (1999)] and of a liquid container system [Yano & Terashima (2001); Yano et al., (2001)] 
have been investigated. The common control problem for flexible systems can be stated as 
“how to achieve required motion control with suppressing undesirable oscillation due to its flexibility”. 
From the control methodology point of view, let us review those previous works. For so-
called micro-macro manipulators associated with large flexible space robots, [Torres et al 
(1994)] and [Nenchev et al., (1996); Nenchev et al., (1997)] have proposed path-planning 
based control methods using a coupling map and a reaction null-space respectively, which 
utilize the geometric redundancy. The control methods in [Sharon & Hardt (1984)] for a 
micro-macro manipulator and in [Kang et al., (1999)] for a crane system rely on the endpoint 
direct feedback, which require sensors to measure the endpoint. In [Wang & Vidyasagar 
(1990)], a passivity-based control method has been proposed for a single flexible link, and in 
[Spong (1987)] an exact-linearization method and an integral manifold method have been 
presented for a flexible-joint manipulator. The method in [Magee & Book (1995)] is based on 
input signal filtering where the underlying concept is pole-zero cancellation. [Ueda & 
Yoshikawa (2004)] has applied a mode-shape compensator based on acceleration feedback 
to a flexible-base manipulator. For a liquid container system, H∞ control in [Yano & 
Terashima (2001)] and a notch-type filter based control, that is, equivalent to pole-zero 
cancellation, in [Yano et al., (2001)] are utilized respectively. In general, most other works 
have focused on individual systems and hence their control methods are not directly 
available for various flexible systems. For example, the path-planning methods in [Torres et 
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al., (1994); Nenchev et al., (1996); Nenchev et al., (1997)] cannot be applied to non-redundant 
systems. The direct endpoint feedback might be difficult in such a case as of a large space 
robot where it is difficult to employ sensors to directly measure the endpoint. 
In a stark contrast with those works, we have been tackling with a unified control design 
method which can be applied to various flexible mechanical systems in a uniform and 
systematic manner. The proposed method exploits a problem setting framework which is 
referred to as “generic problem setting” in the modeling phase and then, in the control 
design phase, H∞ control powered by PD control. In the sense of control methodology, the 
underlying concept is pole-zero cancellation similarly with [Magee & Book (1995); Yano et 
al., (2001)], however the control design approach is totally different from ones in those 
works. On the other hand, although [Yano & Terashima (2001)] has employed H∞ control, its 
usage is different from ours as explained later, and further the pole-zero cancellation is not 
the case in [Yano & Terashima (2001)]. In our control design method, the point to be 
emphasized is that PD control plays very important roles in facilitating the generic problem 
setting and the H∞ control design, and most importantly in enhancing the robustness of the 
control system. Then, the advantageous features of our control design method are: 
1. The method can be applied to various flexible systems in a uniform, systematic, and 

simple manner where the frequency-domain perspective will be provided; 
2. The robustness can easily be enhanced by appropriately choosing the PD control gains; 
3. Due to the nature based on pole-zero cancellation, any oscillation sensors will not be 

required, which is considerably important in the practical sense. 
In [Toda (2004)], we have first introduced the fundamental idea and demonstrated control 
simulations using linear system and weakly nonlinear system examples. Then, in [Toda 
(2007)], robust control has been explicitly considered and a rather strongly nonlinear system 
example has been tackled. Now, in this article the control design method and the previous 
achievements are summarized, moreover a multiple-input-multiple-output (MIMO) system 
and the optimality with respect to PD control are examined while those points have not 
been considered in [Toda (2004); Toda (2007)]. 
The remainder of this chapter is organized as follows. Section 2 presents the generic problem 
setting and an illustrative MIMO system example. Section 3 introduces the control design 
method and discusses its features in some detail. Then, Section 4 demonstrates control 
simulations using the MIMO system example. Finally, Section 5 gives some concluding remarks. 

2. Generic problem setting and an illustrative example 
2.1 Generic problem setting 
For the purpose of accommodating a variety of flexible systems, in the modeling phase, a 
generic model which can represent such systems in a uniform manner is required. Hence, 
we consider a cascade chain of linear mass-spring-damper systems as shown in Fig. 1. mi, ki, 
di, fi, and qi denote the mass, stiffness parameter, damping parameter, exerted force, and 
displacement from the equilibrium of the ith component respectively. The first component is 
connected to the stationary base. The number of components depends on systems to be 
modeled. For example, a single-link flexible-joint manipulator can be modeled as a two-
component model, where m1 denotes the inertia of the actuator, f1 the actuator torque, m2 the 
inertia of the link, and f2 must be zero, that is, the first component is directly actuated while 
the second one is not so, thus, is merely an oscillatory component. Applying PD control to 
the actuator, the corresponding dynamical model can be described as follows, 
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Fig. 1. Schematic diagram of the generic problem setting. 
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On the other hand, let us consider a single-link flexible-base linear manipulator. In this case, 
conversely, the first component is merely an oscillatory component while the second one is 
to be directly controlled via the actuator. The dynamical model including PD control to the 
actuator can be described as follows, 

 1 1 2 1 2 1 1 1 1

2 1 2 2 2 2 2 2

( )       0
          ( )       .

m q m q q d q k q
m q q d q k q f

+ + + + =
+ + + =

  (2) 

As seen from the above discussion, by assigning a component to be directly controlled via 
the corresponding actuator or an oscillatory component to each mass, this chain model can 
represent various flexible systems. This problem setting framework based on the chain 
model is referred to as “generic problem setting”. Then, the control problem is how to 
control positions of the directly controlled components with suppressing oscillations of the 
oscillatory components. It should be noted that with the proposed control method any 
sensors for the oscillatory components will not be required except such cases where, in the 
steady state, deformation due to the flexibility and the gravity would become a problem. In 
cases of nonlinear and/or uncertain systems, through some linearization procedures such as 
nonlinear state feedback and linear approximation around the equilibrium, the system is 
modeled as a linear model with parametric uncertainties and/or disturbances. Furthermore, 
by applying PD control to the nonlinear system, one can make the linear dynamics 
dominant, therefore can facilitate the generic problem setting. 

2.2 Illustrative example 
In [Toda (2004)], as illustrative examples, we have chosen the flexible-joint manipulator and 
the flexible-base linear one represented by (1) and (2) respectively, and a gantry-crane 
system which can be represented by the same model as the flexible-joint manipulator one by 
using linear approximation. Then, in [Toda (2007)], as a strongly nonlinear system example, 
a single-link revolutionary-joint flexible-base manipulator has been considered. Since all the 
examples in these previous works are of single-input-single-output (SISO) systems, in this 
article we choose a two-link flexible-joint manipulator as an MIMO system example as 
depicted in Fig. 2. 
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Fig. 1. Schematic diagram of the generic problem setting. 
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On the other hand, let us consider a single-link flexible-base linear manipulator. In this case, 
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to be directly controlled via the actuator. The dynamical model including PD control to the 
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As seen from the above discussion, by assigning a component to be directly controlled via 
the corresponding actuator or an oscillatory component to each mass, this chain model can 
represent various flexible systems. This problem setting framework based on the chain 
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2.2 Illustrative example 
In [Toda (2004)], as illustrative examples, we have chosen the flexible-joint manipulator and 
the flexible-base linear one represented by (1) and (2) respectively, and a gantry-crane 
system which can be represented by the same model as the flexible-joint manipulator one by 
using linear approximation. Then, in [Toda (2007)], as a strongly nonlinear system example, 
a single-link revolutionary-joint flexible-base manipulator has been considered. Since all the 
examples in these previous works are of single-input-single-output (SISO) systems, in this 
article we choose a two-link flexible-joint manipulator as an MIMO system example as 
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Fig. 2. Two-link flexible-joint manipulator. 

q = [q1, q2, q3, q4]t denotes the position vector of the manipulator, k2, k4, and d2, d4 denote the 
joint stiffness and damping parameters respectively. [·]t denotes the transpose. Additionally, 
by introducing PD control to the actuators with the P gains k1, k3 and the D gains d1, d3, the 
dynamical model is as in the following. 

 ( ) + ( , ) + +M C D K =q q q q q q f  (3) 

where M(q) is the inertia matrix, C(q, q ) is the centripetal and Coriolis term,  
D = diag[d1,d2,d3,d4] is the damping diagonal matrix, K = diag[k1, k2, k3, k4] is the stiffness 
diagonal matrix, and f = [ f1, 0, f3, 0]t

 is the control torque vector excluding the PD control 
scheme. Specifically, each element of M(q), Mij is as follows: 
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where mi and R are the inertia parameters. And C(q, q ) is formulated as 
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q q  (5) 

As seen from Equations (3)–(5), it is confirmed that except the nonlinear terms the dynamical 
model can completely be represented in the generic problem setting with four components. 
Moreover, assuming that the dynamics due to the PD control scheme is more dominant than 
C(q, q ) and that M(q) with q3 = π/3 and q4 = 0 is a nominal constant matrix, the proposed 
control design method will be applied to this problem. The physical parameters in the 
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dynamical model employed for the control design and simulations in the sequel are shown 
in Table 1, which are set by considering the experimental apparatus at hand. 
 

parameter value unit 
m1 1.000e-5 kgm2 

m2 2.027e-3 kgm2 

m3 1.000e-6 kgm2 

m4 1.520e-4 kgm2 

R 9.410e-5 kgm2 

d2 0.000e 0 Nms 
d4 0.000e 0 Nms 
k2 2.180e-1 Nm 
k4 1.520e-2 Nm 

Table 1. Physical parameters. 

3. Control design 
Here we introduce our control design method which is applied to the obtained model in the 
generic problem setting. In the design procedure, first one should determine the PD control 
gains, then proceed to the H∞ control design aiming to shape the associated sensitivity 
functions. However, in this section, for ease of exposition we first present the H∞ control 
design and after that discuss the PD control scheme in some detail. 

3.1 Sensitivity function shaping by H∞ control 
Once the PD control scheme has been determined, the control design procedure is almost 
automatically processed in the linear H∞ control framework with the aim of shaping the 
associated sensitivity functions. Fig. 3 depicts the augmented plant for H∞ control design 
where P denotes the plant incorporating the PD control scheme which consists of Pi 
corresponding to the components to be directly controlled and Pj to the oscillatory ones, 
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Fig. 2. Two-link flexible-joint manipulator. 

q = [q1, q2, q3, q4]t denotes the position vector of the manipulator, k2, k4, and d2, d4 denote the 
joint stiffness and damping parameters respectively. [·]t denotes the transpose. Additionally, 
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where mi and R are the inertia parameters. And C(q, q ) is formulated as 
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As seen from Equations (3)–(5), it is confirmed that except the nonlinear terms the dynamical 
model can completely be represented in the generic problem setting with four components. 
Moreover, assuming that the dynamics due to the PD control scheme is more dominant than 
C(q, q ) and that M(q) with q3 = π/3 and q4 = 0 is a nominal constant matrix, the proposed 
control design method will be applied to this problem. The physical parameters in the 
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dynamical model employed for the control design and simulations in the sequel are shown 
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where Pi and Pj are coupled systems each other. The sensitivity functions taken into account 
are the transfer function S1 from the reference commands r to the tracking control errors e, S2 

from r to the control inputs fi, and S3 from r to the oscillatory component displacements qj. In 
the example given in Section 2.2, qi are q1, q3, and qj are q2, q4 respectively. 
Note that S3 plays a key role in this problem and, in terms of H∞ control design, makes our 
method differ from the others such as [Yano & Terashima (2001)] which does not consider S3 
but only the standard mixed sensitivity problem. By explicitly employing S3, the resultant 
H∞ controller will automatically contain the corresponding zeros to the oscillatory poles of 
the plant and thus pole-zero cancellation will occur in the closed-loop system which leads to 
suppression of oscillation. Due to this nature of pole-zero cancellation, the control system 
will not require any sensors to measure the states of the oscillatory components qj. 
The respective weighting functions for the sensitivity functions in the example are 
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W1 is only a quasi-integrator intended for step tracking control. W2 is a high-pass filter which 
will be determined by the actuator capability. W3 for S3 is only a constant gain. These functions 
are very simple, and in particular W1 and W3 might not depend on problems. Therefore, the 
designer will only need to care the constants 20/7, 3/7, 20/7 to adjust the balance among the 
functions. This simplicity is one of the important advantages of the proposed method. 
Then, by constructing the augmented plant G as in Fig. 3, an H∞ controller C will be 
synthesized such that the H∞ norm of the closed-loop system Trz from r to z = [z1, z2, z3]t, that 
is, Trz ∞ is minimum. In this example, the resultant Trz ∞ was 1. 
If one may wish to explicitly consider the model uncertainties in the control design, μ- 
synthesis [Packard & Doyle (1993); Zhou et al., (1995)] can be applied instead of merely H∞ 
control design. The interested readers may consult [Toda (2007)] for the specific approach in 
the same framework. 
In addition, to improve the transient performance of the obtained control system, a low-pass 
filter is employed for step reference commands. In this example, the reference command 
filter is 
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3.2 PD control 
3.2.1 Roles of PD control 
Next, let us discuss the PD control scheme exploited for this problem. One role of the PD 
control scheme is, as mentioned in Section 2.1, of facilitating the generic problem setting by 
making the linear dynamics dominant. And as the second role, the scheme serves to 
facilitate the H∞ control design, that is, by eliminating the poles on the imaginary axis and 
turning the problem into so-called the standard H∞ control problem [Doyle et al. (1989); 
Zhou et al., (1995)]. However, a more important role is of enhancing the robustness with 
respect to the oscillation suppression capability, which is deeply connected with the pole-
zero cancellation mechanism of the H∞ controller. 
In the case of a completely linear system with neither model uncertainties nor perturbations, 
the pole-zero cancellation will never fail, and hence the constant oscillation suppression 
performance can be acquired. However, otherwise, that is, in cases of a nonlinear system 
and/or with model uncertainties, the pole-zero cancellation will fail since the oscillatory 
poles of the plant vary. In such a case, the damping property of the plant will become 
critical. Specifically, when the minimum among the damping factors of the plant poles is too 
small, the oscillation suppression performance can largely degrade in case of failure of the 
pole-zero cancellation. Here the damping factor ζ of a stable pole s, whose real part  
Re(s) ≤ 0, is defined as 

 Re( ): - sζ
s

=  (10) 

where ζ of a real s is the maximum of 1. 
However, by choosing the PD control gains, this damping property can be appropriately 
modified. We illustrate this fact by using a nonlinear SISO system example, i.e., a single-link 
revolutionary-joint flexible-base manipulator, investigated in [Toda (2007)]. Fig. 4 shows the 
frequency responses of the H∞ controller C, sensitivity functions S1, S3 of the two control 
systems with the different PD gains respectively. The upper figure shows the case with the 
minimal damping factor of 8 × 10-4, and the lower one does the case with the factor of 6 × 10-2. 
Further, in each figure, the nominal and perturbed cases are compared. As seen from the 
figures, in the upper case, the controller has a very stark notch compared to that in the lower 
case. Then, considering the sensitivity function S1 corresponding to the tracking control 
performance, in both the systems and in both the nominal and perturbed cases, the 
properties are the same. However, when it comes to S3 related to the oscillation suppression 
performance, although in the nominal case their properties are the same in both the system, 
in the perturbed case they are totally different. In the upper case, the stark oscillatory 
property has appeared due to the pole-zero cancellation failure while in the lower case it is 
not the case despite of such a failure. This difference stems from the difference in the 
minimal damping factors. Therefore, all the above discussions have been demonstrated, and 
it has been proved that the PD control scheme plays an important role of enhancing the 
robustness with respect to the oscillation suppression capability. 
Additionally, note that considering the fact that the obtained H∞ controller is strictly proper, 
employing PD control obviously extends the class of controllers. 
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W1 is only a quasi-integrator intended for step tracking control. W2 is a high-pass filter which 
will be determined by the actuator capability. W3 for S3 is only a constant gain. These functions 
are very simple, and in particular W1 and W3 might not depend on problems. Therefore, the 
designer will only need to care the constants 20/7, 3/7, 20/7 to adjust the balance among the 
functions. This simplicity is one of the important advantages of the proposed method. 
Then, by constructing the augmented plant G as in Fig. 3, an H∞ controller C will be 
synthesized such that the H∞ norm of the closed-loop system Trz from r to z = [z1, z2, z3]t, that 
is, Trz ∞ is minimum. In this example, the resultant Trz ∞ was 1. 
If one may wish to explicitly consider the model uncertainties in the control design, μ- 
synthesis [Packard & Doyle (1993); Zhou et al., (1995)] can be applied instead of merely H∞ 
control design. The interested readers may consult [Toda (2007)] for the specific approach in 
the same framework. 
In addition, to improve the transient performance of the obtained control system, a low-pass 
filter is employed for step reference commands. In this example, the reference command 
filter is 

 
2

2

100 0
36 100       .

1000
36 100

r
s sP

s s

⎡ ⎤
⎢ ⎥+ += ⎢ ⎥
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 (9) 

A Unified Approach to Robust Control of Flexible Mechanical Systems  
Using H∞ Control Powered by PD Control   

 

279 

3.2 PD control 
3.2.1 Roles of PD control 
Next, let us discuss the PD control scheme exploited for this problem. One role of the PD 
control scheme is, as mentioned in Section 2.1, of facilitating the generic problem setting by 
making the linear dynamics dominant. And as the second role, the scheme serves to 
facilitate the H∞ control design, that is, by eliminating the poles on the imaginary axis and 
turning the problem into so-called the standard H∞ control problem [Doyle et al. (1989); 
Zhou et al., (1995)]. However, a more important role is of enhancing the robustness with 
respect to the oscillation suppression capability, which is deeply connected with the pole-
zero cancellation mechanism of the H∞ controller. 
In the case of a completely linear system with neither model uncertainties nor perturbations, 
the pole-zero cancellation will never fail, and hence the constant oscillation suppression 
performance can be acquired. However, otherwise, that is, in cases of a nonlinear system 
and/or with model uncertainties, the pole-zero cancellation will fail since the oscillatory 
poles of the plant vary. In such a case, the damping property of the plant will become 
critical. Specifically, when the minimum among the damping factors of the plant poles is too 
small, the oscillation suppression performance can largely degrade in case of failure of the 
pole-zero cancellation. Here the damping factor ζ of a stable pole s, whose real part  
Re(s) ≤ 0, is defined as 
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where ζ of a real s is the maximum of 1. 
However, by choosing the PD control gains, this damping property can be appropriately 
modified. We illustrate this fact by using a nonlinear SISO system example, i.e., a single-link 
revolutionary-joint flexible-base manipulator, investigated in [Toda (2007)]. Fig. 4 shows the 
frequency responses of the H∞ controller C, sensitivity functions S1, S3 of the two control 
systems with the different PD gains respectively. The upper figure shows the case with the 
minimal damping factor of 8 × 10-4, and the lower one does the case with the factor of 6 × 10-2. 
Further, in each figure, the nominal and perturbed cases are compared. As seen from the 
figures, in the upper case, the controller has a very stark notch compared to that in the lower 
case. Then, considering the sensitivity function S1 corresponding to the tracking control 
performance, in both the systems and in both the nominal and perturbed cases, the 
properties are the same. However, when it comes to S3 related to the oscillation suppression 
performance, although in the nominal case their properties are the same in both the system, 
in the perturbed case they are totally different. In the upper case, the stark oscillatory 
property has appeared due to the pole-zero cancellation failure while in the lower case it is 
not the case despite of such a failure. This difference stems from the difference in the 
minimal damping factors. Therefore, all the above discussions have been demonstrated, and 
it has been proved that the PD control scheme plays an important role of enhancing the 
robustness with respect to the oscillation suppression capability. 
Additionally, note that considering the fact that the obtained H∞ controller is strictly proper, 
employing PD control obviously extends the class of controllers. 
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(a) Frequency responses of C, S1, and S3 with the minimal damping factor of 8 × 10-4.  
(a) nominal case (b) perturbed case. 
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(b) Frequency responses of C, S1, and S3 with the minimal damping factor of 6 × 10-2.  
(a) nominal case (b) perturbed case. 
 

Fig. 4. Pole-zero cancellation failure examples from [Toda (2007)]. 
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3.2.2 Optimality with respect to the PD gains 
Here, one question may arise, “when is it optimal in choosing the PD control gains and/or 
the minimal damping factor?”. To seek the answer to this question, by using the illustrative 
example, we have examined various PD gains, the resultant minimal damping factors and 
control simulation results in a trial and error manner. Then, we have found the following 
points: 
P1  A too small minimal damping factor leads to poor oscillation suppression performance; 
P2 The maximum of minimal damping factor however does not necessarily reveal the 

optimal control performance; 
P3  even if with the same minimal damping factor, the control performance varies according 

to the P gain. 
Accordingly, in this example, we have employed the following cost function η1 to be 
minimized in choosing the PD gains; 

 2
1 1 3 1 3 1 3( , , , ) : ( 0.4) 100( )mind d k k ζ k kη = − + +  (11) 

where di’s and ki’s are bounded as 2.18e-5 ≤ d1 ≤ 2.18e1, 1.52e-6·≤ d3 ≤ 1.52, 2.18e-6 ≤ k1 ≤ 
2.18e2, 1.52e-7 ≤ k3 ≤ 1.52e1, respectively. Further, to demonstrate the above point 3, the 
other cost function η2 taking only ζmin into account 

 2
2 1 3 1 3( , , , ) : ( 0.4)mind d k k ζη = −  (12) 

for similarly bounded di’s and ki’s has been also considered. In the next section, these 
optimization strategies will be discussed based on control simulations. 

4. Control simulations 
In this article, to prove that the proposed control method can be applied to even MIMO 
systems, and to demonstrate the above discussions on the optimality with respect to the PD 
gains, we here present control simulations. According to the last section, four cases of PD 
gains are considered, which includes the cases of the respective optimal gains due to η1 and 
η2, and additional two non-optimal cases. The respective ζmin and PD gains are shown in 
Table 2. Comparing Cases 1 and 2 in Table 2, it is noticed that the same ζmin and similar D 
gains can be obtained, however that the P gains in Case 2 are considerably larger than those 
in Case 1, which indeed reflects the cost functions in (11) and (12). 
 

Case  ζmin d1(Nms) d3(Nms) k1(Nm) k3(Nm) 
Case 1 (η1) 0.40 2.25e-2 1.60e-3 2.18e-6 1.52e-7 
Case 2 (η2) 0.40 2.20e-2 1.46e-3 8.49e-2 6.22e-3 
Case 3  0.06 1.02e-1 1,76e-2 4.68e-5 7.60e-7 
Case 4  1.00 3.3e-3 5.67e-4 9.35e-4 1.52e-5 

Table 2. ζmin and PD gains. 

For these cases, step tracking control simulations have been conducted. The conditions are: 
1. the simulation period is 10 s; 
2. all the initial states are zeros; 
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(a) Frequency responses of C, S1, and S3 with the minimal damping factor of 8 × 10-4.  
(a) nominal case (b) perturbed case. 
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(b) Frequency responses of C, S1, and S3 with the minimal damping factor of 6 × 10-2.  
(a) nominal case (b) perturbed case. 
 

Fig. 4. Pole-zero cancellation failure examples from [Toda (2007)]. 
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P1  A too small minimal damping factor leads to poor oscillation suppression performance; 
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to the P gain. 
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other cost function η2 taking only ζmin into account 
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2 1 3 1 3( , , , ) : ( 0.4)mind d k k ζη = −  (12) 

for similarly bounded di’s and ki’s has been also considered. In the next section, these 
optimization strategies will be discussed based on control simulations. 

4. Control simulations 
In this article, to prove that the proposed control method can be applied to even MIMO 
systems, and to demonstrate the above discussions on the optimality with respect to the PD 
gains, we here present control simulations. According to the last section, four cases of PD 
gains are considered, which includes the cases of the respective optimal gains due to η1 and 
η2, and additional two non-optimal cases. The respective ζmin and PD gains are shown in 
Table 2. Comparing Cases 1 and 2 in Table 2, it is noticed that the same ζmin and similar D 
gains can be obtained, however that the P gains in Case 2 are considerably larger than those 
in Case 1, which indeed reflects the cost functions in (11) and (12). 
 

Case  ζmin d1(Nms) d3(Nms) k1(Nm) k3(Nm) 
Case 1 (η1) 0.40 2.25e-2 1.60e-3 2.18e-6 1.52e-7 
Case 2 (η2) 0.40 2.20e-2 1.46e-3 8.49e-2 6.22e-3 
Case 3  0.06 1.02e-1 1,76e-2 4.68e-5 7.60e-7 
Case 4  1.00 3.3e-3 5.67e-4 9.35e-4 1.52e-5 

Table 2. ζmin and PD gains. 

For these cases, step tracking control simulations have been conducted. The conditions are: 
1. the simulation period is 10 s; 
2. all the initial states are zeros; 
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3. two types of references 0→π/3 rad and 0→π/2 rad for both r1 and r3, with the step time 
of 1 s are applied. 

The simulation results are shown in Figs. 5–7 respectively. First we shall see the two optimal 
cases. In Figs. 5 and 6, the upper figures show each displacement on large scale graphs while 
the lower ones do each tracking control error to the final goal on fine scale ones. Comparing 
Case 1 of η1 and Case2 of η2, that is, with the same ζmin of 0.40, on large scale graphs those 
results are almost the same and reveal the good performances for both tracking control and 
oscillation suppression. On fine scale graphs, they are still very similar, however the 
oscillations of the oscillatory components e2 and e4 in Case 2 are slightly larger than those in 
Case 1, and slight overshoots of e3 can be seen at around 3 s in Case 2, which might be due to 
the largenesses of k1 and k3. 
Next, let us see the non-optimal cases in Fig. 7. In the figure, the upper figure shows the 
results of Case 3 with the small ζmin of 0.06, while the lower one does those of Case 4 with the 
large, in fact, maximal ζmin of 1.00 on fine scale graphs respectively. As seen from the figures, 
as pointed out before, the results of Case 3 reveal poor oscillation suppression performances, 
while the results of Case 4 reveal a slightly slow response in e3 and a slight steady error in e1, 
which thus has demonstrated P1 and P2 in the last section. 
Consequently, the main goal of extending our proposed method to MIMO systems has 
successfully been achieved, that is, it has been confirmed that the proposed method is 
effective and feasible for even MIMO systems. Additionally, discussions on the optimality 
with respect to the PD control gains have been given in some detail. The obtained control 
system based on the cost function η1 has revealed good performances in both tracking 
control and oscillation suppression, which therefore can be one of the promising candidates 
for the optimality, although it has not yet been conclusive that η1 can be useful for other 
examples. 

5. Conclusions 

In this article, we have presented the control design method based on H∞ control and PD 
control aiming at a uniform approach to motion control of various flexible mechanical 
systems. In particular, with a special emphasis on MIMO systems and the optimal PD 
gains, we have introduced and demonstrated the concept of the generic problem setting in 
the modeling phase, the physics behind our control method, that is, how the PD control 
scheme elaborately powers the H∞ control system, the promising candidate of cost 
function for the optimal PD gains, and the control simulations which have supported all 
the discussions. 
Here, again we emphasize the advantageous features of the proposed approach: 
1. A variety of flexible mechanical systems can be systematically dealt with in a uniform 

and simple manner where the frequency-domain perspective will be provided; 
2. The robustness can be easily enhanced by appropriately choosing the PD control  

gains; 
3. Due to the nature based on pole-zero cancellation, any oscillation sensors will not be 

required, which is considerably important in the practical sense. 
Consequently, we have shown that our methodology is easy to use and effective indeed and 
further will possibly evolve in the sense of optimality. 
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3. two types of references 0→π/3 rad and 0→π/2 rad for both r1 and r3, with the step time 
of 1 s are applied. 

The simulation results are shown in Figs. 5–7 respectively. First we shall see the two optimal 
cases. In Figs. 5 and 6, the upper figures show each displacement on large scale graphs while 
the lower ones do each tracking control error to the final goal on fine scale ones. Comparing 
Case 1 of η1 and Case2 of η2, that is, with the same ζmin of 0.40, on large scale graphs those 
results are almost the same and reveal the good performances for both tracking control and 
oscillation suppression. On fine scale graphs, they are still very similar, however the 
oscillations of the oscillatory components e2 and e4 in Case 2 are slightly larger than those in 
Case 1, and slight overshoots of e3 can be seen at around 3 s in Case 2, which might be due to 
the largenesses of k1 and k3. 
Next, let us see the non-optimal cases in Fig. 7. In the figure, the upper figure shows the 
results of Case 3 with the small ζmin of 0.06, while the lower one does those of Case 4 with the 
large, in fact, maximal ζmin of 1.00 on fine scale graphs respectively. As seen from the figures, 
as pointed out before, the results of Case 3 reveal poor oscillation suppression performances, 
while the results of Case 4 reveal a slightly slow response in e3 and a slight steady error in e1, 
which thus has demonstrated P1 and P2 in the last section. 
Consequently, the main goal of extending our proposed method to MIMO systems has 
successfully been achieved, that is, it has been confirmed that the proposed method is 
effective and feasible for even MIMO systems. Additionally, discussions on the optimality 
with respect to the PD control gains have been given in some detail. The obtained control 
system based on the cost function η1 has revealed good performances in both tracking 
control and oscillation suppression, which therefore can be one of the promising candidates 
for the optimality, although it has not yet been conclusive that η1 can be useful for other 
examples. 

5. Conclusions 

In this article, we have presented the control design method based on H∞ control and PD 
control aiming at a uniform approach to motion control of various flexible mechanical 
systems. In particular, with a special emphasis on MIMO systems and the optimal PD 
gains, we have introduced and demonstrated the concept of the generic problem setting in 
the modeling phase, the physics behind our control method, that is, how the PD control 
scheme elaborately powers the H∞ control system, the promising candidate of cost 
function for the optimal PD gains, and the control simulations which have supported all 
the discussions. 
Here, again we emphasize the advantageous features of the proposed approach: 
1. A variety of flexible mechanical systems can be systematically dealt with in a uniform 

and simple manner where the frequency-domain perspective will be provided; 
2. The robustness can be easily enhanced by appropriately choosing the PD control  

gains; 
3. Due to the nature based on pole-zero cancellation, any oscillation sensors will not be 

required, which is considerably important in the practical sense. 
Consequently, we have shown that our methodology is easy to use and effective indeed and 
further will possibly evolve in the sense of optimality. 
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Fig. 6. Simulation results using the optimal PD gains due to η2 (ζmin=0.40). 
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(b) Simulation results with ζmin = 1.00. 
 

Fig. 7. Simulation results using the non-optimal PD gains. 
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1. Introduction 
In real time applications, the trajectory which has to be followed and the task that has to be 
performed during motion planning of multi-axis non-linear mechanical systems, such as 
robot manipulators are of great importance. Due to the non-linear transformation between 
the task space and the joint space coordinates, singularities and uncertainties in the arm 
configuration occur, the unplanned occurrence of such problems drive the end-effector out 
of the desired path which may cause collision of the robot arm with objects located in its 
work cell (Köker, 2005; Antonelli et al., 2003).  
Depending on different tasks operation requirements and circumstances, motion control 
algorithms can be developed either at the kinematics level or at the dynamic level (Graca & 
Gu, 1993; Karilk & Aydin, 2000). To develop a dynamic control algorithm, torque limits of 
the joint actuators are to be handled, two typical approaches were introduced which are the 
Computed-torque and Resolved-acceleration approach, both approaches are based on the 
inverse dynamic model of the robot system (Asada & Soltin,1986; Sopng & Vinyasagar,1998; 
Faiz & Agrawal ,2000). A problem with these algorithms is the remarkable computational 
load required to handle the dynamics of a full-sized manipulator, which is seldom 
affordable by current industrial control units. In addition, implementation of torque-based 
control laws requires replacement of the low-level joint servos typically available in 
industrial robots with custom control loops.  
Aimed at overcoming the above drawbacks, a different approach to path tracking based on 
the kinematics control was proposed. In detail, kinematics control consists in an inverse 
kinematics transformation which sends to the joint servos the reference values 
corresponding to an assigned end-effector trajectory; as a first advantage, this allows simple 
interfacing with the standard control architecture of industrial robots. In the framework of 
kinematics-based methods for path tracking, the counterpart of the physically meaning joint 
torque limits is played by acceleration constraints and the use of full dynamic models can be 
avoided; this typically leads to computationally light algorithms that allow real-time 
implementation on standard numerical hardware even for robot arms of many Degrees of 
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1. Introduction 
In real time applications, the trajectory which has to be followed and the task that has to be 
performed during motion planning of multi-axis non-linear mechanical systems, such as 
robot manipulators are of great importance. Due to the non-linear transformation between 
the task space and the joint space coordinates, singularities and uncertainties in the arm 
configuration occur, the unplanned occurrence of such problems drive the end-effector out 
of the desired path which may cause collision of the robot arm with objects located in its 
work cell (Köker, 2005; Antonelli et al., 2003).  
Depending on different tasks operation requirements and circumstances, motion control 
algorithms can be developed either at the kinematics level or at the dynamic level (Graca & 
Gu, 1993; Karilk & Aydin, 2000). To develop a dynamic control algorithm, torque limits of 
the joint actuators are to be handled, two typical approaches were introduced which are the 
Computed-torque and Resolved-acceleration approach, both approaches are based on the 
inverse dynamic model of the robot system (Asada & Soltin,1986; Sopng & Vinyasagar,1998; 
Faiz & Agrawal ,2000). A problem with these algorithms is the remarkable computational 
load required to handle the dynamics of a full-sized manipulator, which is seldom 
affordable by current industrial control units. In addition, implementation of torque-based 
control laws requires replacement of the low-level joint servos typically available in 
industrial robots with custom control loops.  
Aimed at overcoming the above drawbacks, a different approach to path tracking based on 
the kinematics control was proposed. In detail, kinematics control consists in an inverse 
kinematics transformation which sends to the joint servos the reference values 
corresponding to an assigned end-effector trajectory; as a first advantage, this allows simple 
interfacing with the standard control architecture of industrial robots. In the framework of 
kinematics-based methods for path tracking, the counterpart of the physically meaning joint 
torque limits is played by acceleration constraints and the use of full dynamic models can be 
avoided; this typically leads to computationally light algorithms that allow real-time 
implementation on standard numerical hardware even for robot arms of many Degrees of 
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Freedom (DOF). A further advantage of kinematics control methods is the possibility of 
exploiting the presence of redundant (DOF) (Antonelli et al., 2003). 
A considerable research effort has been devoted to solve the Inverse Kinematics problem in 
past years (Yang, 1969; Duffy & Rooney, 1975; Albala & Angeles, 1979; Tsai & Morgan, 1985; 
Daniel & Raul, 2003). Even though, Closed-form analytical solutions can only be found for 
manipulators having simple geometric structures (Antonelli et al., 2003; Karilk & Aydin, 
2000). A number of algorithmic techniques mainly based on inversion of the mapping 
established between the joint space and the task space of the manipulator’s Jacobian matrix 
have been proposed for those structures that cannot be solved in closed form.  
The Resolved Motion Rate-Control technique was the first work in this field (Whitney,1969), 
in this technique the pseudoinverse of the Jacobian matrix is used to obtain the joint 
velocities corresponding to a given end-effector velocity, a major drawback of this method 
was the singularity problem. The use of a damped least-squares inverse of the Jacobian 
matrix has been later proposed in lieu of the pseudoinverse to overcome the problem of 
kinematics singularities (Nakamura & Hanafusa, 1986; Wampler, 1986).  
Since in the above algorithmic methods the joint angles are obtained by numerical 
integration of the joint velocities, these and other related techniques suffer from errors due 
to both long-term numerical integration drift and incorrect initial joint angles.  
To alleviate the difficulty, algorithms based on the feedback error correction are introduced 
(Balestrino et al., 1984; Wampler & Leifer, 1988). However, it is assumed that the exact 
model of manipulator Jacobian matrix of the mapping from joint coordinate to Cartesian 
coordinate is exactly known. It is also not sure to what extent the uncertainty could be 
allowed. Therefore, most research on robot control has assumed that the exact kinematics 
and Jacobian matrix of the manipulator from joint space to Cartesian space are known. This 
assumption leads to several open problems in the development of robot control laws today 
(Antonelli et al., 2003). 
A new direction making control systems able to attribute more intelligence and high degrees 
of autonomy was proposed. With proper development, intelligent control systems may have 
great potential for solving today’s and tomorrow’s more complex control problems. The 
common objective associated with an intelligent control system can be identified to reduce 
accurate crisp model dependence and increase intelligent abilities of the control system. 
Owing to this motivation, there have been increasing research interest of ANNs and a 
number of realistic control approaches have been proposed and justified for their feasible 
applications to robotic systems (D’Souza et al., 2001; Ogawa et al., 2005; Köker, 2005; Hasan 
et al., 2006; Al-Assadi et al., 2007). Artificial neural network (ANN) uses data sets to obtain 
the models of systems in fields such as robotics, factory automation and autonomous 
vehicles. Their ability to learn by example makes artificial neural networks very flexible and 
powerful. Therefore, neural networks have been intensively used for solving regression and 
classification problems in many fields. In short, neural networks are nonlinear processes that 
perform learning and classification. Recently neural networks have been used in many areas 
that require computational techniques such as pattern recognition, optical character 
recognition, outcome prediction and problem classification. The current focuses in learning 
research lies on increasingly more sophisticated algorithms for the off-line analysis of finite 
data sets, without severe constraints on the computational complexity of the algorithms 
(Bingual et al., 2005).  
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Kuroe and colleges (Kuroe et al., 1994) have proposed a learning method of a neural 
network such that the network represents the relations of both the positions and velocities 
from the Cartesian coordinate to the joint space coordinate. They’ve derived a learning 
algorithm for arbitrary connected recurrent networks by introducing adjoint neural 
networks for the original neural networks (Network inversion method). On-line training has 
been performed for a 2 DOF robot. 
It was essentially an on-line learning process (Graca & Gu, 1993) have developed a Fuzzy 
Learning Control algorithm. Based on the robotic differential motion procedure, the 
Jacobian inverse has treated as a fuzzy matrix and has learned through the fuzzy regression 
process. It was significant that the fuzzy learning control algorithm neither requires an exact 
kinematics model of a robotic manipulator, nor a fuzzy inference engine as is typically done 
in conventional fuzzy control. Despite the fact that unlike most learning control algorithms, 
multiple trials are not necessary for the robot to “learn” the desired trajectory. A major 
drawback was that it only remembers the most recent data points introduced, the 
researchers have recommended neural networks so that it would remember the trajectories 
as it traversed them.  
Studying the trajectory tracking of a serial manipulator by using ANNs has two problems, 
one of these is the selection of the appropriate type of network and the other is the 
generating of suitable training data set (Funahashi, 1998; Hasan et al, 2007). Researchers 
have applied different methods for gathering training data, while some of them have used 
the kinematics equations (Karilk & Aydin, 2000; Bingual et al., 2005), others have used the 
network inversion method (Kuroe et al., 1994); Köker, 2005), while the cubic trajectory 
planning was also used (Köker et al., 2004), a simulation program has also been used for this 
purpose (Driscoll, 2000). However, there are always kinematics uncertainties presence in the 
real world such as ill-defined linkage parameters, links flexibility and backlashes in gear 
train. 
The proposed solution of the kinematics Jacobian in this approach, involves the 
determination of the end-effectors coordinates and their rate of change as a function of given 
positions and speed of the axes of motion, although this is very difficult in practice (Hornic, 
1991), training data were recorded experimentally from sensors fixed on each joint and the 
Euler (RPY) representation was used to represent the orientation (as was recommended by 
Karilk and Aydin (Karilk & Aydin, 2000), as they have used the robot model to get the 
training data and used the homogeneous transformation matrix representation to represent  
the orientation). On the other hand, two different network’s configurations were trained and 
compared to examine the effect of the orientation on the Inverse Kinematics solution of 
serial robots. Finally, the obtained results from the testing phase of the best network were 
verified experimentally using a six DOF serial robot manipulator. 

2. Kinematics of serial robots 
For serial robot manipulators, the Cartesian space coordinates x  of a robot manipulator is 
related to the joint coordinates q  by:  
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Freedom (DOF). A further advantage of kinematics control methods is the possibility of 
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If the Cartesian coordinates x  were given, joint coordinates q can be obtained as: 

 1( )q f x−=  (2) 

If a Cartesian linear velocity is denoted by V , the joint velocity vector q
•

 has the following 
relation: 

 V J q
•

=  (3) 

Where  J  is the Jacobian matrix. 
If V , is a desired Cartesian velocity which represents the linear velocity of the desired 
trajectory to be followed. Then, the joint velocity vector q

•

 can be resolved by: 

 1q J V
•

−=  (4) 

In differential motion control, the desired trajectory is subdivided into sampling points 
separated by a time interval tΔ  between two terminal points of the path. Assuming that at 
time it  the joint positions take on the value ( )iq t , the required q at time ( )it t+ Δ is 
conventionally updated by using: 

 ( ) ( )i iq t t q t q t
•

+ Δ = + Δ  (5) 

Substituting Eqs. (2) and (4) into (5) yields: 

 1 1( ) ( )( )i iq t t f x t J V t− −+ Δ = + Δ  (6) 

Equation (6) is a kinematics control law used to update the joint position q  and is evaluated 
on each sampling interval. The resulting ( )iq t t+ Δ  is then sent to the individual joint motor 
servo-controllers, each of which will independently drive the motor so that the robotic 
manipulator can be maneuvered to follow the desired trajectory (Graca & Gu, 1993). 
Using ANN to solve relation (2), researchers applied two approaches. In (Ogawa et al., 2005; 
Hasan et al., 2006; Köker et al.,2004) only the Cartesian coordinates has been inverted, 
mapping from the joint space to the Cartesian space is uniquely decided when the end 
effector’s position is calculated using direct kinematics, as shown in figure 1(a). However, 
the transformation from the Cartesian to the joint space is not uniquely decided in the 
inverse kinematics as shown in figure 1(b). 
When coupling of the position and orientation e.g., (Köker,2005; Karilk & Aydin, 2000) 
Denavit and Hartenberg (Denavit & Hertenberg, 1955) proposed a matrix method of 
systematically establishing a coordinate system to each link of an articulated chain as shown 
in figure 2 to describe both translational and rotational relationships between adjacent links 
(Fu et al., 1987; Köker, 2005).  
In this method each of the manipulator links is modelled, this modelling describes the “A” 
homogeneous transformation matrix, which uses four link parameters. The forward 
kinematics solution can be obtained as: 
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Fig. 1. a) Joint angles and end-effector’s coordinates (forward kinematics). 
            b) Combination of all possible joint angles (Inverse Kinematics). 

Where: 
:n  Normal vector of the hand. Assuming a parallel-jaw hand, it is orthogonal to the 

fingers of the robot arm. 
:a  Sliding vector of the hand. It is pointing in the direction of the finger motion as the 

gripper opens and closes. 
:a  Approach vector of the hand. It is pointing in the direction normal to the palm of the

hand (i.e., normal to the tool mounting plate of the arm). 
:p  Position vector of the hand. It points from the origin of the base coordinate system to

the origin of the hand coordinate system, which is usually located at the center point
of the fully closed fingers.  

The orientation of the hand is described according to the RPY rotation as: 

 ( , , ) ( , ). ( , ). ( , )x y z w z w y w xRPY Rot Z Rot Y Rot Xϕ ϕ ϕ ϕ ϕ ϕ=  (8) 

After 6T  matrix is solved: 

 2( , )z y xATAN n nϕ =  (9) 

 2( , cos sin )y z x z y zATAN n n nϕ ϕ ϕ= − +  (10) 

 2( sin cos , cos sin )x x z y z y z x zATAN a a o oϕ ϕ ϕ ϕ ϕ= − −  (11) 
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Fig. 2. Schematic diagram for a general 6 DOF serial robot showing the wrist mechanism 

These equations describe the orientation according to the RPY representation (Karilk & 
Aydin, 2000). To find the IK solution, however, joints angels are found according to the 
manipulator’s end position, described with respect to the world coordinate system. 
IK solution can be shown as a function: 

 1 2 3 4 5 6( , , , , , ) ( , , , , , )x y zIK X Y Z ϕ ϕ ϕ θ θ θ θ θ θ=  (12) 

Traditional methods for solving the IK problem are inadequate if the structure of the robot is 
complex, besides; these methods suffer from the fact that the solution does not give a clear 
indication on how to select an appropriate solution from the several possible solutions for a 
particular arm configuration, users often needs to rely on their intuition to choose the right 
answer (Fu et al., 1987; Hasan et al., 2006). 
On the other hand, solving Eq. (4) for the joint velocities (Inverting the Jacobian matrix), 
results in the singularity problem. The manipulator singularity resolution problem has 
attracted many research interests, and various approaches have been proposed to tackle the 
problem. Techniques of coping with kinematics singularities can be divided into four 
groups: avoiding singular configurations, robust inverses, a normal form approach and 
extended Jacobian techniques.  
The first approach to cope with singularities is to keep a current configuration far away 
from singular configurations. Unfortunately, it causes severe restrictions on the 
configuration space as well as the workspace because the singular configurations split the 
configuration space into separate components. To avoid ill conditioning of the Jacobian 
matrix, robust inverses are used. Instead inverting the original Jacobian matrix at 
singularity, a disturbed well-conditioned Jacobian matrix is inverted. The main drawback 
using this approach is that robust inverse methods increase errors in following a desired 
path. 
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The normal form technique, with the use of diffeomorphisms in joint and task spaces, 
expresses original kinematics around singularity in the simplest normal form. Then, a piece 
of the path to follow corresponding to the singular configuration mapped into the task space 
is moved from the task to the joint space and trajectory planning is performed there. Far 
away from singularities the basic Newton algorithm is used to generate a trajectory. Finally, 
trajectory pieces are joined. 
For most singularities the normal form approach enables to detect their types. It provides for 
a smooth passing through singular configurations. The main disadvantage of the normal 
form approach is a significant computational load in deriving the diffeomorphisms.  
Finally, The extended Jacobian technique, supplements original kinematics with auxiliary 
functions. Then, extended Jacobian is formulated to be well conditioned. 
For nonredundant manipulators with square Jacobian matrices the extended Jacobian forms 
a non-square matrix and its generalized (Moore-Penrose) inversion is computationally 
expensive (Dulęba & Sasiadek, 2000). 
Therefore, to analyze the singular conditions of a manipulator and develop effective 
algorithms to resolve the inverse kinematics problem at or in the vicinity of singularities are 
of great importance. 

3. Artificial neural networks 
The possibility of developing a machine that would “think” has intrigued human beings 
since ancient times, Machinery can outperform humans physically. Similarly, computers can 
outperform mental functions in limited areas, notably in the speed of mathematical 
calculations. For example, the fastest computers developed are able to perform roughly 10 
billion calculations per second. But making more powerful computers will probably not be 
the way to create a machine capable of thinking. Computer programs operate according to 
set procedures, or logic steps, called algorithms. In addition, most computers do serial 
processing such as operations of recognition and computations are performed one at a time. 
The brain works in a manner called parallel processing, performing a number of operations 
simultaneously. To achieve simulated parallel processing, artificial neural networks (ANNs) 
are collections of small individual interconnected processing units. Information is passed 
between these units along interconnections. An incoming connection has two values 
associated with it, an input value and a weight. The output of the unit is a function of the 
summed value. ANNs while implemented on computers are not programmed to perform 
specific tasks. Instead, they are trained with respect to data sets until they learn the patterns 
presented to them. Once they are trained, new patterns may be presented to them for 
prediction or classification (Kalogirou, 2001). 
The elementary nerve cell called a neuron, which is the fundamental building block of the 
biological neural network. Its schematic diagram is shown in Figure 3.  
A typical cell has three major regions: the cell body, which is also called the soma, the axon, 
and the dendrites. Dendrites form a dendritic tree, which is a very fine bush of thin fibbers 
around the neuron's body. Dendrites receive information from neurons through axons-Long 
fibbers that serve as transmission lines. An axon is a long cylindrical connection that carries 
impulses from the neuron. The end part of an axon splits into a fine arborization. Each 
branch of it terminates in a small end bulb almost touching the dendrites of neighbouring 
neurons. The axon-dendrite contact organ is called a synapse. The synapse is where the 
neuron introduces its signal to the neighbouring neuron (Zurada, 1992; Hasan et al., 2006), 
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to stimulate some important aspects of the real biological neuron. An ANN is a group of 
interconnected artificial neurons usually referred to as “node” interacting with one another 
in a concerted manner; Figure 4 illustrates how information is processed through a single 
node. The node receives weighted activation of other nodes through its incoming 
connections. First, these are added up (summation). The result is then passed through an 
activation function and the outcome is the activation of the node. The activation function 
can be a threshold function that passes information only if the combined activity level 
reaches a certain value, or it could be a continues function of the combined input, the most 
common to use is a sigmoid function for this purpose. For each of the outgoing connections, 
this activation value is multiplied by the specific weight and transferred to the next node 
(Kalogirou, 2001; Hasan, 2006). 

Fig. 3. Schematic diagram for the biological neuron  
An artificial neural network consists of many nods joined together usually organized in 
groups called ‘layers’, a typical network consists of a sequence of layers with full or random 
connections between successive layers as Figure 5 shows. There are typically two layers 
with connection to the outside world; an input buffer where data is presented to the 
network, and an output buffer which holds the response of the network to a given input 
pattern, layers distinct from the input and output buffers called ‘hidden layer’, in principle 
there could be more than one hidden layer, In such a system, excitation is applied to the 
input layer of the network.  
Following some suitable operation, it results in a desired output. Knowledge is usually 
stored as a set of connecting weights (presumably corresponding to synapse efficiency in 
biological neural system) (Santosh et al., 1993). A neural network is a massively parallel-
distributed processor that has a natural propensity for storing experiential knowledge and 
making it available for use. It resembles the human brain in two respects; the knowledge is 
acquired by the network through a learning process, and interneuron connection strengths 
known as synaptic weights are used to store the knowledge (Haykin, 1994). 
Training is the process of modifying the connection weights in some orderly fashion using a 
suitable learning method. The network uses a learning mode, in which an input is presented 
to the network along with the desired output and the weights are adjusted so that the 
network attempts to produce the desired output. Weights after training contain meaningful 
information whereas before training they are random and have no meaning (Kalogirou, 
2001).  
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Fig. 4. Information processing in the neural unit 

Fig. 5. Schematic diagram of a multilayer feedforward neural network 
Two different types of learning can be distinguished: supervised and unsupervised learning, 
in supervised learning it is assumed that at each instant of time when the input is applied, 
the desired response d of the system is provided by the teacher. This is illustrated in Figure 
6-a. The distance ρ  [d,o] between the actual and the desired response serves as an error 
measure and is used to correct network parameters externally. Since adjustable weights are 
assumed, the teacher may implement a reward-and-punishment scheme to adopt the 
network's weight. For instance, in learning classifications of input patterns or situations with 
known responses, the error can be used to modify weights so that the error decreases. This 
mode of learning is very pervasive.  
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reaches a certain value, or it could be a continues function of the combined input, the most 
common to use is a sigmoid function for this purpose. For each of the outgoing connections, 
this activation value is multiplied by the specific weight and transferred to the next node 
(Kalogirou, 2001; Hasan, 2006). 

Fig. 3. Schematic diagram for the biological neuron  
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connections between successive layers as Figure 5 shows. There are typically two layers 
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making it available for use. It resembles the human brain in two respects; the knowledge is 
acquired by the network through a learning process, and interneuron connection strengths 
known as synaptic weights are used to store the knowledge (Haykin, 1994). 
Training is the process of modifying the connection weights in some orderly fashion using a 
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to the network along with the desired output and the weights are adjusted so that the 
network attempts to produce the desired output. Weights after training contain meaningful 
information whereas before training they are random and have no meaning (Kalogirou, 
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Fig. 4. Information processing in the neural unit 

Fig. 5. Schematic diagram of a multilayer feedforward neural network 
Two different types of learning can be distinguished: supervised and unsupervised learning, 
in supervised learning it is assumed that at each instant of time when the input is applied, 
the desired response d of the system is provided by the teacher. This is illustrated in Figure 
6-a. The distance ρ  [d,o] between the actual and the desired response serves as an error 
measure and is used to correct network parameters externally. Since adjustable weights are 
assumed, the teacher may implement a reward-and-punishment scheme to adopt the 
network's weight. For instance, in learning classifications of input patterns or situations with 
known responses, the error can be used to modify weights so that the error decreases. This 
mode of learning is very pervasive.  
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Also, it is used in many situations of learning. A set of input and output patterns called a 
training set is required for this learning mode. Figure 6-b shows the block diagram of 
unsupervised learning. In unsupervised learning, the desired response is not known; thus, 
explicit error information cannot be used to improve network’s behaviour. Since no 
information is available as to correctness or incorrectness of responses, learning must 
somehow be accomplished based on observations of responses to inputs that we have mar-
ginal or no knowledge about (Zurada, 1992). 
The fundamental idea underlying the design of a network is that the information entering 
the input layer is mapped as an internal representation in the units of the hidden layer(s) 
and the outputs are generated by this internal representation rather than by the input vector. 
Given that there are enough hidden neurons, input vectors can always be encoded in a form 
so that the appropriate output vector can be generated from any input vector (Santosh et al., 
1993). 

 
Fig. 6. Basic learning modes 
As it can be seen in figure 5, the output of the units in layer A (Input Layer) are multiplied 
by appropriate weights Wij and these are fed as inputs to the hidden layer. Hence if Oi are 
the output of units in layer A, then the total input to the hidden layer, i.e., layer B is: 

 B i ij
i

Sum O W=∑  (13) 

And the output Oj of a unit in layer B is: 

 ( )j BO f sum=  (14) 

Where f is the non-linear activation function, it is a common practice to choose the sigmoid 
function given by:  

 1( )
1 jj Of O

e−
=

+
 (15) 

as the nonlinear activation function. However, any input-output function that possesses a 
bounded derivative can be used in place of the sigmoid function. If there is a fixed, finite set 
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of input-output pairs, the total error in the performance of the network with a particular set 
of weights can be computed by comparing the actual and the desired output vectors for 
each presentation of an input vector. The error at any output unit eK in the layer C can be 
calculated by:  

 K K Ke d O= −  (16) 

Where dK is the desired output for that unit in layer C and OK is the actual output produced 
by the network .the total error E at the output can be calculated by:  

 21 ( )
2 K K

K
E d O= −∑  (17) 

Learning comprises changing weights so as to minimize the error function and to minimize 
E by the gradient descent method. It is necessary to compute the partial derivative of E with 
respect to each weight in the network. Equations (13) and (14) describe the forward pass 
through the network where units in each layer have there states determined by the inputs 
they received from units of lower layer. The backward pass through the network that 
involves “back propagation “ of weight error derivatives from the output layer back to the 
input layer is more complicated. For the sigmoid activation function given in equation (15), 
the so-called delta-rule for iterative convergence towards a solution maybe stated in general 
as:  

 JK K JW OηδΔ =  (18) 

Where η  is the learning rate parameter, and the error Kδ  at an output layer unit K is given 
by:  

 (1 )( )K K K K KO O d Oδ = − −  (19) 

And the error Jδ  at a hidden layer unit is given by:  

 (1 )J J J K JK
K

O O Wδ δ= − ∑  (20) 

Using the generalize delta rule to adjust weights leading to the hidden units is back 
propagating the error-adjustment, which allows for adjustment of weights leading to the 
hidden layer neurons in addition to the usual adjustments to the weights leading to the 
output layer neurons. A back propagation network trains with two step procedures as it is 
shown in figure 7, the activity from the input pattern flows forward through the network 
and the error signal flows backwards to adjust the weights using the following equations:  

 IJ IJ J IW W Oηδ= +  (21) 

 JK JK K JW W Oηδ= +  (22)  

Until for each input vector the output vector produced by the network is the same as (or 
sufficiently close to) the desired output vector (Santosh et al., 1993).  
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ANNs while implemented on computers are not programmed to perform specific tasks. 
Instead, they are trained with respect to data sets until they learn the patterns presented to 
them. Once they are trained, new patterns may be presented to them for prediction or 
classification (Kalogirou, 2001).  

4. Experiment design 
Trajectory planning was performed for every 1-second interval using cubic trajectory 
planning method to generate the angular position and velocity for each joint, and then these 
generated data were fed to the robot’s controller to generate the corresponding Cartesian 
position, orientation and linear velocity of the end-effector, which were recorded 
experimentally from sensors fixed on the robot joints.  
In trajectory planning of a manipulator, it is interested in getting the robot from an initial 
position to a target position with free of obstacles path. Cubic trajectory planning method 
has been used in order to find a function for each joint between the initial position, θ0, and 
final position, θf of each joint. 
It is necessary to have at least four-limit value on the θ(t) function that belongs to each joint, 
where θ(t) denotes the angular position at time t.  
Two limit values of the function are the initial and final position of the joint, where: 

 0(0)θ θ=  (23) 

 ( )f ftθ θ=  (24) 

Additional two limit values, the angular velocity will be zero at the beginning and the target 
position of the joint, where: 

 (0) 0θ
•

=  (25) 

 ( ) 0ftθ
•

=  (26) 

Based on the constrains of typical joint trajectory listed above, a third order polynomial 
function can be used to satisfy these four conditions; since a cubic polynomial has four 
coefficients.  
These conditions can determine the cubic path, where a cubic trajectory equation can be 
written as: 

 2 3
0 1 2 3( )t a a t a t a tθ = + + +  (27) 

The angular velocity and acceleration can be found by differentiation, as follows: 

 2
1 2 3( ) 2 3t a a t a tθ

•

= + +  (28) 

 2 3( ) 2 6t a a tθ
••

= +  (29) 

Substituting the constrain conditions in the above equations results in four equations with 
four unknowns: 

An Improved Adaptive Kinematics Jacobian Trajectory Tracking  
of a Serial Robot Passing Through Singular Configurations   

 

299 

00 ,aθ =  
2 3

0 1 2 3 ,f f f fa a t a t a tθ = + + +  

00 ,a=  
2

1 2 30 2 3f fa a t a t= + +  

(30) 

The coefficients are found by solving the above equations. 

0 0 ,a θ=  

1 0,a =  

2 02

3 ( ),f
f

a
t

θ θ= −  

3 03

2 ( )f
f

a
t

θ θ−
= −  

(31) 

Angular position and velocity can be calculated by substituting the coefficients driven in Eq. 
(31) into the cubic trajectory Equations (27) and (28) respectively (Köker et al.,2004), which 
yield: 

 2 3
0 0 02 3

3 2( ) ( ) ( ) ,i i if i if i
f f

t t t
t t

θ θ θ θ θ θ= + − − −  (32) 

2
0 02 3

6 6( ) ( ) ( )i if i if i
f f

t t t
t t

θ θ θ θ θ
•

= − − −  

1,2,...........,i n=     Where n  is the joint number 
(33) 

Joint angles generated ranged from amongst all the possible joint angles that do not exceed 
the physical limits of each joint; Table 1 shows the range of angles for each joint used in this 
study. 
 

 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 
Range of 

angles 0 160−  0 60−  00 150−  00 150−  0 120−  0 160−  

Table 1. The range of angles for each joint used  

Trajectory used for the training process has meant to be random trajectory rather than a 
common trajectory performed by the robot in order to cover as most space as possible of the 
robot’s working cell. The interval of 1 second was used between a trajectory segment and 
another where the final position for one segment is going to be the initial position for the 
next segment and so on for every joint of the six joints of the robot. 
After generating the joint angles and their corresponding angular velocities, these data are 
fed to the robot controller, which is provided with a sensor system that can detect the 
angular position and velocity on one hand and the Cartesian position, orientation and the 
linear velocity of the end-effector on the other hand; which are recorded to be used for the 
networks’ training and testing process later. 
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5. ANN implementation 
To avoid modeling kinematics and the determination of the inverse of the Jacobian matrix, 
the ANN technique has been used.   
Two different configurations of supervised feed-forward ANNs were designed using           
C programming language, each of which consists of input, output, and one hidden layer. 
Every neuron in each network was fully connected with each other. Sigmoid transfer 
function was chosen to be the activation function, and the generalized backpropagation 
GDR algorithm was used in the training process. 
Off-line training was implemented, every input and output values are usually scaled 
individually such that overall variance in the data set is maximized, this is necessary as it 
leads to faster learning, all the vectors were scaled to reflect continuous values ranges      
from  -1 to 1. 
FANUC M-710i robot was used in this study, which is a serial robot manipulator consisting 
of axes and arms driven by servomotors. The place at which arm is connected is a joint, or 
an axis. This type of robot has three main axes; the basic configuration of the robot depends 
on whether each main axis functions as a linear axis or rotation axis. The wrist axes are used 
to move an end effecter (tool) mounted on the wrist flange. The wrist itself can be wagged 
about one wrist axis and the end effecter rotated about the other wrist axis, this highly non-
linear structure makes this robot very useful in typical industrial applications such as the 
material handling, assembly of parts and painting. 

5.1 Training stage 
In order to overcome the uncertainties in arm configuration and singularities that result 
from applying the robot system model, and to make sure that for a certain trajectory the 
angular position and velocity of each joint will be the same as desired when planning the 
trajectory for the robot; the ANN technique has been utilized where learning is only based 
on observation of the input–output relationship. 
In back-propagation networks, the number of hidden neurons determines how well a 
problem can be learned. If too many are used, the network will tend to try to memorize the 
problem and thus not generalize well later; if too few are used, the network will generalize 
well but may not have enough power to learn the patterns well. Obtaining the correct 
number of hidden neurons is a matter of trial and error. 

5.1.1 Networks’ topologies 
In this chapter, two different configurations were used in the training process to determine 
which configuration is better to be used corresponding to Eq. (2) previously discussed in 
section 2. 
5.1.1.1 First Configuration (4 – 12 Network Configuration) 
As can be seen in Figure 7, the input layer consists of 4 neurons the first three of them 
represent the Cartesian position of the X, Y and Z positions along the world coordinate 
system of the robot while the fourth neuron represents the linear velocity of the end-effector. 
The output layer consists of 12 neurons; the first 6 of them represent the angular position of 
the robot joints while the last 6 of them represent the angular velocity of each joint 
respectively. Number of neurons in the hidden layer was set to 77 with a constant learning 
factor of 0.9 by trail and error. 

An Improved Adaptive Kinematics Jacobian Trajectory Tracking  
of a Serial Robot Passing Through Singular Configurations   

 

301 

 

Fig. 7. The Topology of the First Network (4 –12 Network Configuration) 
5.1.1.2 Second Configuration (7 – 12 Network Configuration) 

In this configuration, the input layer has 7 neurons; the first three of them represent the X, Y 
and Z coordinates of the robot along the world coordinates system, the next three represent 
the orientation of the tool mounted on the last joint of the robot according to the RPY (Roll, 
Pitch, Yaw) representation, while the last neuron represents the linear velocity of the end-
effector; as can be seen in figure 8. 
Same as the first configuration, the output layer consists of 12 neurons; the first 6 of them 
represent the angular position of the robot joints while the last 6 of them represent the 
angular velocity of each joint respectively. 
Number of neurons in the hidden layer was set to 55 with a constant learning factor of 0.9 
by trail and error.  

5.1.2 Networks’ performance 
The success of the ANN approach is measured according to the training error (the difference 
between the desired and actual system outputs). In the Generalized Delta learning Rule 
GDR the system is modified following each iteration, which leads to the learning curves a 
sample of which is shown in Figure 9 of each network configuration compared to the other 
(the rest of the curves have a similar behavior), as this curve shows; error is reduced in 
subsequent trials. 
Table 2, shows the error percentages of each of the six joints compared for each other in both 
network configurations after the training has finished after 150 000 iteration. 
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Fig. 8. The Topology of the Second Network (7 –12 Network Configuration) 
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Fig. 9. The learning curve for the angular position of Joint 1 as a sample 
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Network Configuration   
4 - 12 7 - 12 

θ Joint 1 ω 
7.898% 
8.67% 

2.27% 
1.8% 

θ Joint 2 ω 
12.432% 
39.75% 

0.907% 
2.183% 

θ Joint 3 ω 
2.607% 
5.03% 

1.033% 
1.775% 

θ Joint 4 ω 
9.82% 
10.4% 

2.015% 
2.342% 

θ Joint 5 ω 
8.47% 

19.94% 
4.435% 
1.558% 

θ Joint 6 ω 
10.86% 
5.735% 

1.143% 
1.528% 
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Fig. 10. The response of both network configurations compared to each other during 
training (The angular position of the firs joint as an example) 
As a result for the training stage, 7-12 network configuration has shown a better response 
than the 4-12 network configuration, in terms of precision and iteration (as can be seen 
through Table 2). Therefore, it has been chosen to apply the testing data. 
To drive the robot to follow a desired path, it will be necessary to divide this path into small 
segments, and to move the robot through all intermediate points. To accomplish this task, at 
each intermediate location, the robot’s trajectory equations are solved, a set of joint variables 
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Fig. 8. The Topology of the Second Network (7 –12 Network Configuration) 
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Fig. 9. The learning curve for the angular position of Joint 1 as a sample 
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is calculated, and the controller is directed to drive the robot to the next segment. When all 
segments are completed, the robot will be at the end point as desired. Figure 10 shows a 
sample of angular position and velocity for each joint during training (other joints have a 
similar behavior). 

5.2 Testing phase 
New data that has never been introduced to the network before have been fed to the trained 
network in order to test its ability to make prediction and generalization to any set of data 
later overcoming the singularity and uncertainty in the arm configuration resulting from 
applying the robot model.  
Testing data were meant to pass nearby and through the singular configurations (Fourth 
and Fifth joints), these configurations have been determined by setting the determinant of 
the Jacobian matrix to zero.  
Table 3 shows the percentages of error for the testing data set for each joint. 
In order to verify the testing results, experiment has been performed to make sure that the 
output is the same or sufficiently close to the desired trajectory, and to show the combined 
effect of error, Figures 11 to 16 show the tracking of the Cartesian paths for the X, Y, and Z 
coordinates with the Roll, Pitch and Yaw orientation angles respectively.  
The locus of which robot is passing through singular configurations are also shown.  The 
error percentages in the experimental data are shown in Table 4.  
 

 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 
Angular Position 
Angular Velocity 

0.06% 
3.79% 

0.029% 
4.285% 

0.039% 
3.745% 

5.865% 
3.085% 

5.065% 
4.97% 

1.495% 
2.1% 

Table 3. Error percentages for the testing data set for each joint 
 

Cartesian Position Orientation 
Px Py Pz Roll Pitch Yaw 

5.645% 1.09% 3.93% 5.95% 9.24% 5.338% 

Table 4. Error percentages in the experimental data 

6. Conclusions 
In this approach, ANN technique has been used. The Jacobian inverse is now learned 
through training the network based only on observation of the input–output relationship 
unlike most other control schemes, which depends on the robot system model 
The proposed technique does not require any prior knowledge of the kinematics model of 
the system being controlled, the basic idea of this concept is the use of the ANN to learn the 
characteristics of the robot system rather than to specify explicit robot system model. 
Two different ANN configurations were used in this study. Training results have shown a 
better response (in terms of precision and iteration) for the configuration where the orientation 
of the tool is considered as an input to the network, which makes it useful in applications 
where a relatively accurate, minimally complex, and cheaper configuration is required. 
As a conclusion, this study shows that ANNs are applicable to the Kinematics Jacobian 
solution of serial robots. Since one of the most important issues in using ANNs is the 
selection of the appropriate type of network, for future research, we suggest that different 
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types of networks (different topology, different activation function, different learning mode) 
to be used in order to get, if possible, more accurate trajectory tracking.  
 

 

Fig. 11. Experimental trajectory tracking for the predicted X coordinate 
 

 

Fig. 12. Experimental trajectory tracking for the predicted Y coordinate 
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Fig. 13. Experimental trajectory tracking for the predicted Z coordinate 
 

 

Fig. 14. Experimental trajectory tracking for the Roll orientation angle 
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Fig. 15. Experimental trajectory tracking for the Pitch orientation angle 
 

 

Fig. 16. Experimental trajectory tracking for the Yaw orientation angle 
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Fig. 13. Experimental trajectory tracking for the predicted Z coordinate 
 

 

Fig. 14. Experimental trajectory tracking for the Roll orientation angle 

An Improved Adaptive Kinematics Jacobian Trajectory Tracking  
of a Serial Robot Passing Through Singular Configurations   

 

307 

 

Fig. 15. Experimental trajectory tracking for the Pitch orientation angle 
 

 

Fig. 16. Experimental trajectory tracking for the Yaw orientation angle 
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1. Introduction      
Servomotors are used in a variety of applications in industrial electronics and robotics that 
includes precision positioning as well as speed control. Basically, any motor can be used in a 
servo system (Kissell, 2002). There are two types of motors: (a) DC motors, and (b) AC 
motors. DC motors have better starting torque than AC motors although they are more 
expensive than AC motors. Servomotors use feedback controller to control the speed or the 
position, or both. The basic continuous feedback control is PID controller. The PID controller 
posses good performance but is not adaptive enough. This is appealing when the load is 
changed, where the original controller generally cannot maintain the design performance 
and thus should be re-designed for the new system conditions (Shieh & Li, 1998). 
The pioneering work dealing with expert knowledge that can be well applied to the control 
of systems with uncertained, nonlinear dynamics is credited to Zadeh (Zadeh, 1968) who 
proposed fuzzy control theory to overcome the weakness of conventional controllers, and 
investigated by which owns good robustness (Yu et. al., 2004). Fuzzy systems are capable of 
handling complex, non-linear and sometimes mathematically intangible dynamic systems 
using simple solutions. Fuzzy logic uses human-like but systematic properties of converting 
linguistic control rules based on expert knowledge into automatic control strategies. But, the 
response of a fuzzy logic controller is slower than a PID controller. It has been reported in a 
number of papers that hybrid of PID or PI, with fuzzy logic in control system can overcome 
the set-back of fuzzy logic controller, see (Yeh & Tsao, 1994), (He et. al., 1993), (Ga & Feng, 
2005) and (Jee & Koren, 2004). In fuzzy systems, the numerical input values should be first 
converted into the corresponding fuzzy representations by using ‘fuzzifiers’. The fuzzy 
output are then provided by a fuzzy model, which could be a set of fuzzy logic rules, fuzzy 
relations or even a simple fuzzy table, with or without deep fuzzy reasoning. Finally, the 
fuzzy output can be converted back into their relevant numerical (crisp) output through 
’defuzzifiers’ (Lu, 1996). Basic configuration of fuzzy systems with fuzzifier and defuzzifier 
is shown in Figure 1. 
Singleton fuzzifier maps a real-valued point *x U∈  into a fuzzy singleton A’ in U, which 
has membership value 1 at x* and 0 at all other points in U (Wang, 1997). If 

l
y  is the center 

of the l'th fuzzy set and wl is its height, then the center of average defuzzifier determines y* 
as (Wang, 1997). 
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the set-back of fuzzy logic controller, see (Yeh & Tsao, 1994), (He et. al., 1993), (Ga & Feng, 
2005) and (Jee & Koren, 2004). In fuzzy systems, the numerical input values should be first 
converted into the corresponding fuzzy representations by using ‘fuzzifiers’. The fuzzy 
output are then provided by a fuzzy model, which could be a set of fuzzy logic rules, fuzzy 
relations or even a simple fuzzy table, with or without deep fuzzy reasoning. Finally, the 
fuzzy output can be converted back into their relevant numerical (crisp) output through 
’defuzzifiers’ (Lu, 1996). Basic configuration of fuzzy systems with fuzzifier and defuzzifier 
is shown in Figure 1. 
Singleton fuzzifier maps a real-valued point *x U∈  into a fuzzy singleton A’ in U, which 
has membership value 1 at x* and 0 at all other points in U (Wang, 1997). If 

l
y  is the center 

of the l'th fuzzy set and wl is its height, then the center of average defuzzifier determines y* 
as (Wang, 1997). 
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Fig. 1. Basic configuration of fuzzy systems with fuzzifier and defuzzifier (Wang, 1997) 
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A study on induction machine speed control proved that PID controller’s parameters can be 
tuned on-line by an adaptive mechanism based on a fuzzy logic (Bousserhanel et. al., 2006). 
It is expected that hybrid of PID and fuzzy logic in control system can overcome the 
problem of fuzzy logic controller. 
Servomotor controllers need optimization to give a good performance as desired. 
Sometimes, it requires time and has big risk in the optimization process. To investigate this 
issue, a detail study on servomotor control is conducted. A real plant, constituting of a DC 
motor and its controller has been built and this system is modeled and simulated to allow 
detail analysis about its control system. The system identification problem is to estimate a 
model of a system based on the observed input-output data (Takami & Mahmoudi, 2007). 
The expected output of identification is an s-domain model of a real system. System 
identification technique is used to get a transfer function of the plant and is used to build a 
virtual controller, which is basically the software equivalent of the real controller at the 
abstraction level. The virtual controller is optimized, and then the optimized parameters are 
applied to the real controller in the real control system. 
Therefore, this work discusses the modeling, simulation and hardware implementation of a 
DC servomotor controller built using MATLAB/Simulink, and the analysis of controller’s 
performance, namely a PID controller, PI controller, fuzzy logic controller, fuzzy-logic-based 
self tuning PI controller, and a fuzzy-logic-based self tuning PID controller on the system. In 
this work the aim is to improve the controller’s performance using hybrid fuzzy and PID. 
Figure 2 outlines the background and purpose of this work. 

2. The experimental DC servomotor system 
The experimental rig constituiting the servo speed and position controller system consists of 
the servomotor and load, measuring and controlling devices. The servo system contains a DC 
motor driven by an IGBT chopper inverter. The measuring device is the speed sensor 
(tachogenerator), ADC and a digital filter i.e., finite input response (FIR), while the controlling 
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devices are DAC, differential amplifier, and the IGBT inverter circuit. The measuring devices 
provide status of the output responses of the speed and position where the information about 
the speed and position is fed through signal conditioning circuit and anti-aliasing filter for 
analysis and calculation of the control signal. The speed and position requirements 
proportional to the manipulated variable of the controller’s output are fed to a computer. 
 

 
Fig. 2. Overview of the study background 

The modeling and analysis of the DC servomotor for the speed and position was conducted 
using Simulink, with the block diagram is as shown in Figure 3. In this arrangement, the 
speed control loop is in the position control loop (Lacevic et. al., 2007). Basically, the position 
control loop work until reaching the position set point while the speed is limited to the 
speed set point. Position control systems with conventional position sensor have well-
known drawbacks. Notably, friction, stiction, backlash, and hysteresis limit the positioning 
accuracy. This would lead to mechanical wear that introduces impurities in the form of dust 
particles into the manufacturing environment. The other consequence would be mechanical 
coupling transmits to the microstepper vibrations from the surrounding environment, 
(Fulford et. al., 2009). Notably, in this experimental set-up the position control is sensorless. 
Practically, position control is preferred to be sensorless to reduce cost and size and increase 
the reliability of overall system (Montanari et. al., 2007). 
The input, feedback, and output elements for position and speed are implemented in the 
Simulink diagram with specifications as follows: 

AP=1 
Av=0.002 
Kv=9.5455 
Hv=0.002 
HP=0.005 
KP=0.005 
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Fig. 3. Structure of feedback controller (Lacevic et. al., 2007) 

These specifications have been based on realistic assumptions. 
The hardware implementation for the block diagram is as follows: 
 

DC motor: 175 W, 1500 rpm, 240 V, 1.1 A 
Load: Dynamometer load controller 

 

Input elements: 
Tacho-generator with 500 rpm/volt 
ADC: 1 channel 0 to 10 volts 
Filtering: FIR with 30 points 
Output elements: 
DAC: 2 channels 0 to 4 volts 
Differential amp: HA-17741 
Power amp: Chopper/Inverter and IGBT 

 

Controller elements: 
Computer with Intel Pentium Dual Core T2080 processor, Windows XP SP3,  
MATLAB/SIMULINK software. 

 

The block diagram of hardware design is shown in Figure 4, and the power amplifier and 
differential amplifier are presented more detail in Figures 5 and 6.  
As an illustration to substantiate the applicability of this approach, the following test 
parameters have been chosen. The set point for position is 5 rad, and the set point for speed 
equals 250 rpm. The load is initially at 0 Nm and then abruptly increases to 1 Nm after about 
15 sec. The total duration of experiment is 90 sec. The speed of DC motor is detected by a 
tacho-generator, sampled every 0.01 sec, and filtered by 30-point FIR. 
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Fig. 4. Block diagram of hardware design 

 

  
Fig. 5. Power amplifier circuit diagram 
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Fig. 4. Block diagram of hardware design 

 

  
Fig. 5. Power amplifier circuit diagram 
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Fig. 6. Differential amplifier circuit diagram 

3. Experimental procedures 
3.1 The identification process 
The typical identification process consists of stages where the model structure is iteratively 
selected, computed and updated for the best model in the structure, and finally the 
evaluation of the model’s properties (Takami & Mahmoudi, 2007). The steps can be itemized 
as follows:  
a. Design an experiment and collect input-output data from the process to be identified. 
b. Examine the data. Polish the data by removing trends and outliers, and select useful 

portions of the original data. Apply filters to the data to enhance important frequency 
ranges. 

c. Select and define a model structure (a set of candidate system descriptions), within 
which a model is to be found. 

d. Compute the best model in the model structure according to the input-output data and 
a given criterion for goodness of fit. 

e. Examine the properties of the model obtained. If the model is good enough, then stop; 
otherwise go back to step c to try another model structure. Attempt other estimation 
methods (step 4), or work further on the input-output data (steps a and b).  

3.1.1 Process I: Open loop analysis 
Open loop characteristic of the gray box is tested using Simulink, which is applied to the 
plant through a data acquisition (DAQ), 30-point FIR, chopper/inverter control unit, and 
IGBT. The input voltage is varied randomly in the range of 0 to 20 volts for 100 seconds. The 
output of the gray box model is in rad/sec. There are five variations of input, and the 
characteristic of one of the input-output is shown in Figure 7. 
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3.1.2 Process II: Best model selection  
There are six process models that can represent the system. To select the most suitable 
model, these models will be analysed and compared:  
a. Process model using 1st order transfer function without zero,  
b. Process model using 1st order transfer function with zero,  
c. Process model using 2nd order transfer function without zero,  
d. Process model using 2nd order transfer function with zero,  
e. Process model using 3rd order transfer function without zero, and  
f. Process model using 3rd order transfer function with zero.  
The DC motor is operated for 150 sec with variations of input voltages as shown in Figure 7. 
The sampling time is 0.01 sec. The result (output voltage) and the input are then saved in 
workspace. The data for identification is obtained from the MATLAB using the command as 
below: 
 

data=iddata(workspace_output,workspace_input,0.01); 
 

Using MATLAB command, the general command to get the process model is as follows: 
 

model=pem(data, 'PnDZU'); 
 

where: 
P : (required) for process model 
n : 0,1,2, or 3 (required) for the number of poles 
D : (optional) to include a time-delay term 
Z : (optional) to include a process zero (numerator term) 
U : (optional) to indicate possible complex-valued (underdamped) poles 

 

 
Fig. 7. Graphical process of identification 
To select the best process model, the fitness value has to be obtained. If i_FIT is the fitness 
value for identification process, Y is the real (measured) output, Ŷ  is the estimated output, 
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 Advanced Strategies for Robot Manipulators 

 

318 

and Y is the mean value of real output, then the fitness value can be obtained from the 
formula below, see (Montanari et. al., 2007): 
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3.2 The controllers 
3.2.1 Conventional controllers  
In this work the following two conventional controllers, namely the PI and PID are used. 
Each controller is optimized using Ziegler-Nichols (ultimate cycle) method. If Kpu is the 
minimum value of KP resulting undamped oscillation and Tu is the oscillation period, then 
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for the PID controller. 

3.2.2 Fuzzy logic controllers  
In this work, a fuzzifier is a singleton mode with two inputs consisting of error and change 
of error, each with seven uniform triangular membership functions, and one output with 
seven triangular membership functions. As an inference engine, the Mamdani product is 
used and as a defuzzifier, the center of average is used. The controllers use the rules as 
shown in Table I. 
 

D, change of error  
E, error NB NM NS Z PS PM PB 

NB NB NM NM NM NM NM NM 
NM NM NM NM NM NM NM NM 
NS NS NS NS NS NS NS NS 
Z Z Z Z Z PS PM PB 
PS Z PS PM PB PB PB PB 
PM Z PS PM PB PB PB PB 
PB Z PS PM PB PB PB PB 

Table I. The rules for FLC 

NB: Negative Big; NM: Negative Medium; NS: Negative Small  Z: Zero; PS: Positive Small; 
PM: Positive Medium; PB: Positive Big 
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The fuzzy sets and their corresponding membership functions for input (error, and change 
of error) are shown in Figure 8, and for output are shown in Figure 9.  
 

 
Fig. 8. Fuzzy sets for input 

 
Fig. 9. Fuzzy sets for output rate 

3.2.3 Hybrid controllers  
There are two kinds of hybrid controllers that be the focus of this work: FLBPI and FLBPID. 
FLBPID uses the basis of FLBPI with additional of fixed value of KD. The block diagram of 
fuzzy-logic-based self tuning PI for speed controller is shown in Figure 10. In this figure, 

( )m kω  is the process value of speed and * ( )m kω  is the setpoint of speed. 



 Advanced Strategies for Robot Manipulators 

 

318 

and Y is the mean value of real output, then the fitness value can be obtained from the 
formula below, see (Montanari et. al., 2007): 

 
( )

( )
ˆ1

_ 100
NORM Y Y

i FIT
NORM Y Y

⎛ ⎞− −
⎜ ⎟= ∗
⎜ ⎟−
⎝ ⎠

 (2) 

3.2 The controllers 
3.2.1 Conventional controllers  
In this work the following two conventional controllers, namely the PI and PID are used. 
Each controller is optimized using Ziegler-Nichols (ultimate cycle) method. If Kpu is the 
minimum value of KP resulting undamped oscillation and Tu is the oscillation period, then 
 

 
0.45 *

1
0.83 *

P Pu

I
u

K K

K
T

=

=
 (2a) 

for the PI controller, and 

 

0.6 *

8
2

P Pu

u
D

I
u

K K
TK

K
T

=

=

=

 (2b) 

for the PID controller. 

3.2.2 Fuzzy logic controllers  
In this work, a fuzzifier is a singleton mode with two inputs consisting of error and change 
of error, each with seven uniform triangular membership functions, and one output with 
seven triangular membership functions. As an inference engine, the Mamdani product is 
used and as a defuzzifier, the center of average is used. The controllers use the rules as 
shown in Table I. 
 

D, change of error  
E, error NB NM NS Z PS PM PB 

NB NB NM NM NM NM NM NM 
NM NM NM NM NM NM NM NM 
NS NS NS NS NS NS NS NS 
Z Z Z Z Z PS PM PB 
PS Z PS PM PB PB PB PB 
PM Z PS PM PB PB PB PB 
PB Z PS PM PB PB PB PB 

Table I. The rules for FLC 

NB: Negative Big; NM: Negative Medium; NS: Negative Small  Z: Zero; PS: Positive Small; 
PM: Positive Medium; PB: Positive Big 

Development of Fuzzy-logic-based Self Tuning PI Controller for Servomotor   

 

319 

The fuzzy sets and their corresponding membership functions for input (error, and change 
of error) are shown in Figure 8, and for output are shown in Figure 9.  
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Fig. 9. Fuzzy sets for output rate 
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Fig. 10. Block diagram of fuzzy-logic-based self-tuning PI for the speed controller [11] 

The fuzzy sets and their corresponding membership functions for input (error, ( )e kω  and 
change of error, ( )e kωΔ ) and output (h) are shown in Figure 11. The rules for FLBPI and 
FLBPID (KP and KI) are shown in Table II. The value of KD is constant based on Ziegler-
Nichols method in PID tuning. 
 

 
Fig. 11. Fuzzy sets and their corresponding membership functions, (Mannan et. al., 2004). 
 

Error 
Change of Error 

N Z P 
N S B S 
Z S B S 
P S B S 

N: Negative, Z: Zero, P: Positive, S: Small, B: Big 

Table II. Fuzzy Rules Base for KP and KI in Hybrid (Mannan et. al., 2004). 

The values of KP, KI, and KD for hybrid controllers are obtained from the following formula: 

 2
Im. ; . ;p Pm I D DmK h K K h K K K= = =  (3) 

Proportional based controller is used for the position control since the requirement is such 
that the motor would rotate in one direction. The proportional controller for position (KPP) is 
tuned using experimental method with no overshoot criteria.  
Integral of Absolute value of Error (IAE) is used as a performance index for overall speed 
control (IAEv) in which the formula is as follows, see (Marlin, 2000): 

 
90
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( ) ( )vIAE SP t PV t dt= −∫  (4)   
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Integral of Time Absolute value of Error (ITAE) is used as a performance index for position 
control (ITAEp), the first 8-second of starting speed control (ITAEvp), and the 9-second of 
loading speed control (ITAEvpl) which the formulas are as follows, see (Marlin, 2000):  
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( ) ( )pITAE t SP t PV t dt= −∫  (5c) 

 

and the fitness value is obtained from the basic formula as follows, see (Xiu & Ren, 2004): 
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Based on Eq (6), the fitness values for overall speed (fv), first 8-second starting speed (fvp), 9-
second loading speed (fvpl) and position (fp) are as follows: 
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4. Experimental results 
The comparison on the effectiveness of modeling the DC motor based on the fitness value is 
presented in Table III.  
Selecting the best process model in Table III, the transfer function (s-domain model) of the 
plant based on the best model is as follows: 
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Integral of Time Absolute value of Error (ITAE) is used as a performance index for position 
control (ITAEp), the first 8-second of starting speed control (ITAEvp), and the 9-second of 
loading speed control (ITAEvpl) which the formulas are as follows, see (Marlin, 2000):  
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and the fitness value is obtained from the basic formula as follows, see (Xiu & Ren, 2004): 
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4. Experimental results 
The comparison on the effectiveness of modeling the DC motor based on the fitness value is 
presented in Table III.  
Selecting the best process model in Table III, the transfer function (s-domain model) of the 
plant based on the best model is as follows: 
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Process Model Fitness Remark 
1 84.1416  
2 84.4121  
3 84.8531  
4 -34.0071  
5 86.5877 Best 
6 75.5157  

Table III. Fitness value modelling the DC motor 
Graphical comparison of actual (real time) response and s-model (estimated) response in 
open loop analysis is shown in Figure 12. 

The PI, PID, FLBPI and FLBPID have parameters as follows: 
KP=10.58 and KI=1.47 for PI controller 
KP=14.10, KD=0.1, and KI=2.44 for PID controller 
KPm=6 and KIm=7.9 for FLBPI controller (experiment) 
KPm=10.4 (experiment), KDm=0.1 (Ziegler-Nichols), and KIm=7.2 (experiment) for 
FLBPID controller 

 

 
Fig. 12. Graphical comparison of actual (real time) and estimation (s-model) 

The relevant parameters were obtained during the simulation (offline optimization) using 
the transfer function as shown in Eq (8). The comparison on the effectiveness of 
implementing FLBPI as compared to FLBPID, FLC, PID, and PI controller based on the 
performance metrics for real time experiment is presented in Table IV. 
The ability to understand the influence of the different controllers on the servomotor speed 
and achieving its target position is one of the important aspects of this study. It is noted that 
the speed response with the FLBPID-type controller has a relatively good settling time, but 
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the fitness values for the motor during starting and loading is not good enough due to the 
fact that the noise is a bit larger as compared to FLBPI, albeit the fitness value of the overall 
speed for the FLBPI and the FLBPID are similar. A closer observation at the starting and 
loading performances during the real time experimentations, FLBPI performances is 
relatively better as compared to the PI, PID, FLBPID or FLC for speed control. A similar 
performance is also observed in the fitness value of position for real time experiment, where 
the FLBPI is relatively better as compared to the PI, PID, FLBPI or FLC for position control. 
 

NO. PERFORMANCE 
INDEX PI PID FLC FLBPI FLBPID 

1 Overshoot (%) 0.0000 0.0000 11.4299 9.5200 0.0000 
2 Settling Time (sec) 3.4900 3.6200 8.9400 2.1700 1.1100 
3 #SSEP (%) 0.3914 0.0334 0.5290 0.0896 0.0083 
4 Undershoot (%) 38.4279 36.5108 41.5249 41.2515 40.7199 
5 IAE v all 1.15E+03 1.22E+03 1.34E+03 7.12E+02 7.13E+02 
6 ITAE v start 2.54E+02 1.84E+02 5.17E+02 1.45E+02 1.49E+02 
7 ITAE v load 2.28E+03 1.59E+03 2.42E+03 1.54E+03 1.62E+03 
8 ITAE p 1.40E+03 1.30E+03 1.49E+03 1.29E+03 1.30E+03 
9 fv all 1.2137 0.7666 0.0000 4.0140 4.0057 

10 fv start 1.9715 2.4915 0.0000 2.7820 2.7550 
11 fv load 0.0528 0.3132 0.0000 0.3321 0.3019 
12 fp 1.3433 2.8358 0.0000 2.9851 2.8358 

 

#SSEP: Steady State Error of Position 
Table IV. Performance Index Comparison for Real time experiment 

Comparing the conventional and hybrid controllers based on fitness values in real time 
experiments, the PID performs better than the PI for speed and position control in the case 
for conventional controllers. Interestingly, for hybrid controllers, the FLBPI is better than the 
FLBPID for speed and position control, whilst the FLBPI is better than the PID for speed and 
position control. This shows that the performance has improved when having the hybrid 
fuzzy and PI as a controller. In the standalone condition and using default parameters, the 
FLC is not as good as its competitors for both speed and position controls.  
Plots for the speed control in response to a set-point specified in both simulation and real 
time experiment for FLBPI controller are presented in Figure 13 and for the position control 
are presented in Figure 14. Comparing the simulation and real time experiment results as 
shown in Figures 13 and 14, the performances are not exactly the same but the output 
patterns are similar and the results in real time experiments are validly representing the real 
system’s performance. This shows that identification (s-modeling) is an estimation of real 
hardware plant. 
Plots for the speed control in response to a set-point specified in the real time experiment for 
FLBPI compared to PID controller are presented in Figure 15 and for the position control are 
as presented in Figure 16. A sudden change in load requirements that happens at t=15 
seconds causes the speed to fall and then rises and stabilized at the original level within a 
reasonable range of time. This demonstrates the action of the controllers to regulate the 
speed. 
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FLBPID for speed and position control, whilst the FLBPI is better than the PID for speed and 
position control. This shows that the performance has improved when having the hybrid 
fuzzy and PI as a controller. In the standalone condition and using default parameters, the 
FLC is not as good as its competitors for both speed and position controls.  
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shown in Figures 13 and 14, the performances are not exactly the same but the output 
patterns are similar and the results in real time experiments are validly representing the real 
system’s performance. This shows that identification (s-modeling) is an estimation of real 
hardware plant. 
Plots for the speed control in response to a set-point specified in the real time experiment for 
FLBPI compared to PID controller are presented in Figure 15 and for the position control are 
as presented in Figure 16. A sudden change in load requirements that happens at t=15 
seconds causes the speed to fall and then rises and stabilized at the original level within a 
reasonable range of time. This demonstrates the action of the controllers to regulate the 
speed. 
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Fig. 13. Speed control of DC servomotor using FLBPI in real time experiment vs simulation 
 

 
 
Fig. 14. Position control of DC servomotor using FLBPI in real time vs simulation  

Plots for the speed control in response to a set-point specified in the real time experiment for 
FLBPI compared to FLC are presented in Figure 17 and for the position control are 
presented in Figure 18. A sudden change in load requirements that happens at t=15 seconds 
causes the speed to fall and then rises and stabilized at the original level within a reasonable 
range of time. Interestingly, it can be seen the delay in speed and position when using FLC 
alone as the controller. This demonstrates the action of the controllers to regulate the speed, 
and the effect of the PI in improving the response time of the hybrid controller. 
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Fig. 15. Speed control of DC servomotor using FLBPI vs PID in real time experiment 

 
 

 
 
 

Fig. 16. Position control of DC servomotor using FLBPI vs PID in real time experiment 
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Fig. 15. Speed control of DC servomotor using FLBPI vs PID in real time experiment 

 
 

 
 
 

Fig. 16. Position control of DC servomotor using FLBPI vs PID in real time experiment 
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Fig. 17. Speed control of DC servomotor using FLBPI vs FLC in real time experiment 

 

 
 

Fig. 18. Position control of DC servomotor using FLBPI vs FLC in real time experiment 

5. Conclusions 
This work discusses the modeling of a DC servomotor from gray box identification and 
performance evaluations of real time experiment using a fuzzy-logic-based self tuning PI 
controller as compared to fuzzy-logic-based self tuning PID controller, fuzzy logic 
controller, PID controller and PI controller on the DC servomotor system. Here, the s-model 
transfer function of a DC servomotor is identified as a third order transfer function without 
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zero. This identification is useful in offline optimization of a DC servomotor control, and the 
performance of s-modeled and real DC servomotor are similar. 
Two control modes are applied in sequential to the plant: speed control in the position 
control loop. The open loop characteristic of a DC servomotor is sampled at 0.01 sec interval 
by a DAQ based on Simulink platform. Some controllers are applied to both s-modeled and 
real DC servomotor. It has been demonstrated that defining the fuzzy rules for the fuzzy 
logic-based self-tuning PI/PID controller is a much simpler task than for fuzzy logic 
controller. Based on the real time experiment, hybrid controllers are better than 
conventional controllers and fuzzy logic-based self-tuning PI controller tends to be the 
better choice for implementation in the hybrid controller.  

6. References 
Bousserhanel, I.K., Hazzabl, A., Rahli, M., Kamli, M. and Mazari, B. (2006). Adaptive PI 

Controller using Fuzzy System Optimized by Genetic Algorithm for Induction 
Motor Control, presented at CIEP-IEEE, Puebla, Mexico. 

Fulford, C., Maggiore, M. and Apkarian, J. (2009). Control of a 5DOF Magnetically Levitated 
Positioning Stage, IEEE Transaction on Control System Technology, vol. 17 no. 4, 
pp. 844-852. 

Ga, X. and Feng, Z.J. (2005). Design study of an adaptive fuzzy-PD controller for pneumatic 
servo system, Control Engineering Practice, vol. 13, issue 1, pp 55-65. 

He, S.Z., Tan S., and Xu, F.L (1993). Fuzzy self-tuning of PID controllers, Fuzzy Sets and 
Systems, vol. 56, pp. 37-46. 

Jee, S. and Koren, Y. (2004). Adapative fuzzy-logic controller for feed drive of a CNC 
machine tool, Mechatronics, vol: 14, pp. 299-326. 

Kissell, T. (2002). Motor Control Technology for Industrial Maintenance. New Jersey 07458: 
Prentice-Hall, Inc., Upper Saddle River. 

Lacevic, B., Velagic, J. and Osmic, N. (2007). Design of Fuzzy Logic Based Mobile Robot 
Position Controller Using Genetic Algorithm," presented at International 
Conference on Advanced Intelligent Mechatronics, IEEE/ASME 2007, vol., no., 
pp.1-6. 

Lu, Y.Z. (1996). Industrial Intelligent Control, Fundamentals and Applications. West Sussex 
PO19 1UD, England: John Wiley&Sons Ltd. 

Mannan, M.A., et al. (2004). Fuzzy-Logic-Based Self-Tuning PI Controller for Speed Control 
of Indirect Field-Oriented Induction Motor Drive, in SICE Annual Conference. 
Sapporo: Hokkaido Institute of Technology. 

Marlin, T.E. (2000). Process Control: Designing Processes and Control Systems for Dynamic 
Performance, 2nd International ed. Singapore: McGraw-Hill Book Companies, Inc. 

Montanari, M., Peresada, S.M., Rossi, C. and Tilli, A. (2007).  Speed Sensorless Control of 
Induction Motors Based on a Reduced-Order Adaptive Observer," IEEE 
Transaction on Control System Technology, vol. 15 no. 6, pp. 1049-1064. 

Shieh, M. Y. and Li, T.H.S. (1998).  Design and implementation of integrated fuzzy logic 
controller for servomotor system, Mechatronics, vol. 8, pp. 217-240. 

Takami, K.M. and Mahmoudi, J. (2007). Identification of a Best Thermal Formula and Model 
for Oil and Winding of Power Transformers Using Prediction Methods, presented 
at The 48th Scandinavian Conference on Simulation and Modeling (SIMS 2007), pp. 
182-188. 



 Advanced Strategies for Robot Manipulators 

 

326 

 

 
 

Fig. 17. Speed control of DC servomotor using FLBPI vs FLC in real time experiment 

 

 
 

Fig. 18. Position control of DC servomotor using FLBPI vs FLC in real time experiment 

5. Conclusions 
This work discusses the modeling of a DC servomotor from gray box identification and 
performance evaluations of real time experiment using a fuzzy-logic-based self tuning PI 
controller as compared to fuzzy-logic-based self tuning PID controller, fuzzy logic 
controller, PID controller and PI controller on the DC servomotor system. Here, the s-model 
transfer function of a DC servomotor is identified as a third order transfer function without 

Development of Fuzzy-logic-based Self Tuning PI Controller for Servomotor   

 

327 

zero. This identification is useful in offline optimization of a DC servomotor control, and the 
performance of s-modeled and real DC servomotor are similar. 
Two control modes are applied in sequential to the plant: speed control in the position 
control loop. The open loop characteristic of a DC servomotor is sampled at 0.01 sec interval 
by a DAQ based on Simulink platform. Some controllers are applied to both s-modeled and 
real DC servomotor. It has been demonstrated that defining the fuzzy rules for the fuzzy 
logic-based self-tuning PI/PID controller is a much simpler task than for fuzzy logic 
controller. Based on the real time experiment, hybrid controllers are better than 
conventional controllers and fuzzy logic-based self-tuning PI controller tends to be the 
better choice for implementation in the hybrid controller.  

6. References 
Bousserhanel, I.K., Hazzabl, A., Rahli, M., Kamli, M. and Mazari, B. (2006). Adaptive PI 

Controller using Fuzzy System Optimized by Genetic Algorithm for Induction 
Motor Control, presented at CIEP-IEEE, Puebla, Mexico. 

Fulford, C., Maggiore, M. and Apkarian, J. (2009). Control of a 5DOF Magnetically Levitated 
Positioning Stage, IEEE Transaction on Control System Technology, vol. 17 no. 4, 
pp. 844-852. 

Ga, X. and Feng, Z.J. (2005). Design study of an adaptive fuzzy-PD controller for pneumatic 
servo system, Control Engineering Practice, vol. 13, issue 1, pp 55-65. 

He, S.Z., Tan S., and Xu, F.L (1993). Fuzzy self-tuning of PID controllers, Fuzzy Sets and 
Systems, vol. 56, pp. 37-46. 

Jee, S. and Koren, Y. (2004). Adapative fuzzy-logic controller for feed drive of a CNC 
machine tool, Mechatronics, vol: 14, pp. 299-326. 

Kissell, T. (2002). Motor Control Technology for Industrial Maintenance. New Jersey 07458: 
Prentice-Hall, Inc., Upper Saddle River. 

Lacevic, B., Velagic, J. and Osmic, N. (2007). Design of Fuzzy Logic Based Mobile Robot 
Position Controller Using Genetic Algorithm," presented at International 
Conference on Advanced Intelligent Mechatronics, IEEE/ASME 2007, vol., no., 
pp.1-6. 

Lu, Y.Z. (1996). Industrial Intelligent Control, Fundamentals and Applications. West Sussex 
PO19 1UD, England: John Wiley&Sons Ltd. 

Mannan, M.A., et al. (2004). Fuzzy-Logic-Based Self-Tuning PI Controller for Speed Control 
of Indirect Field-Oriented Induction Motor Drive, in SICE Annual Conference. 
Sapporo: Hokkaido Institute of Technology. 

Marlin, T.E. (2000). Process Control: Designing Processes and Control Systems for Dynamic 
Performance, 2nd International ed. Singapore: McGraw-Hill Book Companies, Inc. 

Montanari, M., Peresada, S.M., Rossi, C. and Tilli, A. (2007).  Speed Sensorless Control of 
Induction Motors Based on a Reduced-Order Adaptive Observer," IEEE 
Transaction on Control System Technology, vol. 15 no. 6, pp. 1049-1064. 

Shieh, M. Y. and Li, T.H.S. (1998).  Design and implementation of integrated fuzzy logic 
controller for servomotor system, Mechatronics, vol. 8, pp. 217-240. 

Takami, K.M. and Mahmoudi, J. (2007). Identification of a Best Thermal Formula and Model 
for Oil and Winding of Power Transformers Using Prediction Methods, presented 
at The 48th Scandinavian Conference on Simulation and Modeling (SIMS 2007), pp. 
182-188. 



 Advanced Strategies for Robot Manipulators 

 

328 

Wang, L.X. (1997). A Course in Fuzzy Systems and Control. New Jersey 07458: Prentice-
Hall, Inc, A Division of Simon and Schuster Upper Saddle River, New Jersey 07458. 

Xiu, Z. and Ren, G. (2004). Optimization Design of TS-PID Fuzzy Controllers Based on 
Genetic Algorithms," presented at 5th World Congress on Intelligent Control and 
Automation, Hangzhou, P.R. China. 

Yeh, E.C., and Tsao, Y.J. (1994). A fuzzy preview control scheme of active suspension for 
rough road, Inc. Journal of Vehicle Design, vol. 15, pp. 166-180. 

Yu, G.R., Hwang, R.C. and  Lin, C.P. (2004). Optimal Fuzzy Control of the Spindle Motor in 
a CD-ROM Drive Using Genetic Algorithms, presented at Asian Control 
Conference, vol. 5, pp. 51-57. 

Zadeh, L.A. (1988). Fuzzy Logic, Computer, vol. 21 no. 24, pp. 83-93. 

16 

Distributed Particle Filtering over Sensor 
Networks for Autonomous Navigation of UAVs 

Gerasimos G. Rigatos 
Industrial Systems Institute 

Greece 

1. Introduction 
State estimation and control over sensor networks is a problem met in several applications 
such as surveillance and condition monitoring of large-scale systems, multi-robot systems 
and cooperating UAVs. In sensor networks the simplest kind of architecture is centralized. 
Distributed sensors send measurement data to a central processing unit which provides the 
state estimate for the monitored system. Such an approach has several weaknesses: (i) it 
lacks fault tolerance: if the central processing unit is subject to a fault then state estimation 
becomes impossible, (ii) communication overhead often prohibits proper functioning in case 
of a large number of distributed measurement units. On the other hand decentralized 
architectures are based on the communication between neighboring measurement units. 
This assures scalability for the network since the number of messages received or sent by 
each measurement unit is independent of the total number of measurement units in the 
system. It has been shown that scalable decentralized state estimation can be achieved for 
linear Gaussian models, when the measurements are linear functions of the state and the 
associated process and measurement noise models follow a Gaussian distribution (Nettleton 
et al. 2003). A solution to decentralized sensor fusion over sensor networks with the use of 
distributed Kalman Filtering has been proposed in (Olfati-Saber 2006), (Watanabe & 
Tzafestas 1992), (Olfati-Saber 2005), (Gan & Harris 2001), (Gao et al. 2009). Distributed state 
estimation in the case of non-Gaussian models has been studied in (Rosencrantz et al. 2003) 
where decentralized sensor fusion with the use of distributed particle filters has been 
proposed in several other research works (Mahler 2007), (Makarenko & Durrant-Whyte 
2006), (Deming & Perlovsky 2007). 
In this paper autonomous navigation of UAVs will be examined and a solution to this 
problem will be first attempted with the use of the Extended Information Filter and the 
Unscented Kalman filter (Shima et al. 2007), (Lee et al. 2008), (Lee et al. 2008), (Vercauteren 
& Wang 2005). Comparatively, autonomous UAV navigation with the use of the Distributed 
Particle Filter will be studied. This problem belongs to the wider area of multi-source multi-
target tracking (Coué et al. 2006), (Hue et al. 2002), (Ing & Coates 2005), (Coué et al. 2003), 
(Morelande & D. Mušicki 2005). Subproblems to be solved for succeeding autonomous 
navigation of the UAVs are: (i) implementation of sensor fusion with the use of distributed 
filtering. In this approach the goal is to consistently combine the local particle distribution 
with the communicated particle distribution coming from particle filters running on nearby 



 Advanced Strategies for Robot Manipulators 

 

328 

Wang, L.X. (1997). A Course in Fuzzy Systems and Control. New Jersey 07458: Prentice-
Hall, Inc, A Division of Simon and Schuster Upper Saddle River, New Jersey 07458. 

Xiu, Z. and Ren, G. (2004). Optimization Design of TS-PID Fuzzy Controllers Based on 
Genetic Algorithms," presented at 5th World Congress on Intelligent Control and 
Automation, Hangzhou, P.R. China. 

Yeh, E.C., and Tsao, Y.J. (1994). A fuzzy preview control scheme of active suspension for 
rough road, Inc. Journal of Vehicle Design, vol. 15, pp. 166-180. 

Yu, G.R., Hwang, R.C. and  Lin, C.P. (2004). Optimal Fuzzy Control of the Spindle Motor in 
a CD-ROM Drive Using Genetic Algorithms, presented at Asian Control 
Conference, vol. 5, pp. 51-57. 

Zadeh, L.A. (1988). Fuzzy Logic, Computer, vol. 21 no. 24, pp. 83-93. 

16 

Distributed Particle Filtering over Sensor 
Networks for Autonomous Navigation of UAVs 

Gerasimos G. Rigatos 
Industrial Systems Institute 

Greece 

1. Introduction 
State estimation and control over sensor networks is a problem met in several applications 
such as surveillance and condition monitoring of large-scale systems, multi-robot systems 
and cooperating UAVs. In sensor networks the simplest kind of architecture is centralized. 
Distributed sensors send measurement data to a central processing unit which provides the 
state estimate for the monitored system. Such an approach has several weaknesses: (i) it 
lacks fault tolerance: if the central processing unit is subject to a fault then state estimation 
becomes impossible, (ii) communication overhead often prohibits proper functioning in case 
of a large number of distributed measurement units. On the other hand decentralized 
architectures are based on the communication between neighboring measurement units. 
This assures scalability for the network since the number of messages received or sent by 
each measurement unit is independent of the total number of measurement units in the 
system. It has been shown that scalable decentralized state estimation can be achieved for 
linear Gaussian models, when the measurements are linear functions of the state and the 
associated process and measurement noise models follow a Gaussian distribution (Nettleton 
et al. 2003). A solution to decentralized sensor fusion over sensor networks with the use of 
distributed Kalman Filtering has been proposed in (Olfati-Saber 2006), (Watanabe & 
Tzafestas 1992), (Olfati-Saber 2005), (Gan & Harris 2001), (Gao et al. 2009). Distributed state 
estimation in the case of non-Gaussian models has been studied in (Rosencrantz et al. 2003) 
where decentralized sensor fusion with the use of distributed particle filters has been 
proposed in several other research works (Mahler 2007), (Makarenko & Durrant-Whyte 
2006), (Deming & Perlovsky 2007). 
In this paper autonomous navigation of UAVs will be examined and a solution to this 
problem will be first attempted with the use of the Extended Information Filter and the 
Unscented Kalman filter (Shima et al. 2007), (Lee et al. 2008), (Lee et al. 2008), (Vercauteren 
& Wang 2005). Comparatively, autonomous UAV navigation with the use of the Distributed 
Particle Filter will be studied. This problem belongs to the wider area of multi-source multi-
target tracking (Coué et al. 2006), (Hue et al. 2002), (Ing & Coates 2005), (Coué et al. 2003), 
(Morelande & D. Mušicki 2005). Subproblems to be solved for succeeding autonomous 
navigation of the UAVs are: (i) implementation of sensor fusion with the use of distributed 
filtering. In this approach the goal is to consistently combine the local particle distribution 
with the communicated particle distribution coming from particle filters running on nearby 
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measurement stations (Caballero et al. 2008). It is assumed that each local measurement 
station runs its own local filter and communicates information to other measurement 
stations close to it. The motivation for using particle filters is that they can represent almost 
arbitrary probability distributions, thus becoming well-suited to accommodate the types of 
uncertainty and nonlinearities that arise in the distributed estimation (Rigatos 2009a), 
(Rigatos 2009b) (ii) nonlinear control of the UAVs based on the state estimates provided by 
the particle filtering algorithm. Various approaches have been proposed for the UAV 
navigation using nonlinear feedback control (Ren & Beard 2004), (Beard et al. 2002), (Singh 
& Fuller 2001). The paper proposes flatness-based control for the UAV models. Flatness-
based control theory is based on the concept of differential flatness and has been 
successfully applied to several nonlinear dynamical systems. Flatness-based control for a 
UAV helicopter-like model has been developed in (Léchevin & Rabbath 2006), assuming 
that the UAV performs manoeuvres at a constant altitude. 
The paper proposes first the Extended Information Filter (EIF) and the Unscented 
Information Filter (UIF) as possible approaches for fusing the state estimates provided by 
the local monitoring stations, under the assumption of Gaussian noises. The EIF and UIF 
estimated state vector is in turn used by a flatness-based controller that makes the UAV 
follow the desirable trajectory. The Extended Information Filter is a generalization of the 
Information Filter in which the local filters do not exchange raw measurements but send to 
an aggregation filter their local information matrices (local inverse covariance matrices) and 
their associated local information state vectors (products of the local information matrices 
with the local state vectors) (Shima et al. 2007), (Lee et al. 2008). In the case of the Unscented 
Information Filter there is no linearization of the UAVs observation equation. However the 
application of the Information Filter algorithm is possible through an implicit linearization 
which is performed by approximating the Jacobian matrix of the system’s output equation 
by the product of the inverse of the state vector’s covariance matrix (which can be also 
associated to the Fisher Information matrix) with the cross-correlation covariance matrix 
between the system’s state vector and the system’s output (Lee et al. 2008)], (Vercauteren & 
Wang 2005). Again, the local information matrices and the local information state vectors are 
transferred to an aggregation filter which produces the global estimation of the system’s 
state vector. 
Next, the Distributed Particle Filter (DPF) is proposed for fusing the state estimates 
provided by the local monitoring stations (local filters). The motivation for using DPF is that 
it is well-suited to accommodate non-Gaussian measurements. A difficulty in implementing 
distributed particle filtering is that particles from one particle set (which correspond to a 
local particle filter) do not have the same support (do not cover the same area and points on 
the samples space) as particles from another particle set (which are associated with another 
particle filter) (Ong et al. 2008), (Ong et al. 2006). This can be resolved by transforming the 
particles sets into Gaussian mixtures, and defining the global probability distribution on the 
common support set of the probability density functions associated with the local filters. The 
state vector which is estimated with the use of the DPF is used again by a flatness-based 
controller to make each UAV follow a desirable flight path. 
The structure of the chapter is as follows: in Section 2 the Distributed Extended Kalman 
Filter (Extended Information Filter) is studied. In Section 3, the Distributed Unscented 
Kalman Filter (Unscented Information Filter) is analyzed and its use for distributed sensor 
fusion and state estimation is explained. In Section 4 Distributed Particle Filtering for sensor 
fusion-based state estimation will be analyzed. In Section 5 nonlinear control will be 
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proposed for succeeding trajectory tracking by the UAVs. In Section 6 simulation 
experiments will be provided about UAVs autonomous navigation using the proposed 
distributed particle filtering algorithm. The test case will be concerned with m helicopter 
models monitored by n different ground stations. By fusing the measurements from the 
distributed observation units with the use of the Extended Information Filter and the 
proposed Particle Filter algorithm, state estimates of the UAVs are obtained. These in turn 
are used by local nonlinear controllers for succeeding trajectory tracking. Finally in Section 7 
concluding remarks will be provided. 

2. Distributed Extended Kalman Filtering 
2.1 Extended Kalman Filtering at local processing units 
The distributed Extended Kalman Filter, also know as Extended Information Filter, 
performs fusion of the state estimates which are provided by local Extended Kalman Filters. 
Thus, the functioning of the local Extended Kalman Filters should be analyzed first. The 
following nonlinear state model is considered (Rigatos & Tzafestas 2007): 
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 is the system’s output, while w(k) and 
v(k) are uncorrelated, zero-mean, Gaussian zero-mean noise processes with co- variance 
matrices Q(k) and R(k) respectively. The operators φ(x) and γ(x) are φ (x) = [φ1(x), φ2(x), 
···,φm(x)]T, and γ (x) = [γ1(x), γ2(x), ··· , γp(x)]T, respectively. It is assumed that φ and γ are 
sufficiently smooth in x so that each one has a valid series Taylor expansion. 
Following a linearization procedure, φ is expanded into Taylor series about x̂ : 

 ˆ ˆ ˆ( ( )) = ( ( )) ( ( ))[ ( ) ( )]x k x k J x k x k x kφφ φ + − +   (2) 

where Jφ(x) is the Jacobian of φ calculated at ˆ( )x k : 

 

1 1 1

1 2

2 2 2

ˆ 1 2= ( )

1 2

( ) = | =

m

mx x k

m m m

m

x x x

x x xJ x
x

x x x

φ

φ φ φ

φ φ φ
φ

φ φ φ

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂

∂ ⎜ ⎟∂ ∂ ∂⎜ ⎟∂ ⎜ ⎟
⎜ ⎟

∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂⎝ ⎠

 (3) 

Likewise, γ  is expanded about ˆ ( )x k−  

 ˆ ˆ( ( )) = ( ( )) [ ( ) ( )]x k x k J x k x kγγ γ − −+ − +   (4) 

where ˆ ( )x k−  is the estimation of the state vector x(k) before measurement at the k-th instant 
to be receivec and ˆ( )x k  is the updated estimation of the state vector after measurement at 
the k-th instant has been received. The Jacobian Jγ(x) is 
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measurement stations (Caballero et al. 2008). It is assumed that each local measurement 
station runs its own local filter and communicates information to other measurement 
stations close to it. The motivation for using particle filters is that they can represent almost 
arbitrary probability distributions, thus becoming well-suited to accommodate the types of 
uncertainty and nonlinearities that arise in the distributed estimation (Rigatos 2009a), 
(Rigatos 2009b) (ii) nonlinear control of the UAVs based on the state estimates provided by 
the particle filtering algorithm. Various approaches have been proposed for the UAV 
navigation using nonlinear feedback control (Ren & Beard 2004), (Beard et al. 2002), (Singh 
& Fuller 2001). The paper proposes flatness-based control for the UAV models. Flatness-
based control theory is based on the concept of differential flatness and has been 
successfully applied to several nonlinear dynamical systems. Flatness-based control for a 
UAV helicopter-like model has been developed in (Léchevin & Rabbath 2006), assuming 
that the UAV performs manoeuvres at a constant altitude. 
The paper proposes first the Extended Information Filter (EIF) and the Unscented 
Information Filter (UIF) as possible approaches for fusing the state estimates provided by 
the local monitoring stations, under the assumption of Gaussian noises. The EIF and UIF 
estimated state vector is in turn used by a flatness-based controller that makes the UAV 
follow the desirable trajectory. The Extended Information Filter is a generalization of the 
Information Filter in which the local filters do not exchange raw measurements but send to 
an aggregation filter their local information matrices (local inverse covariance matrices) and 
their associated local information state vectors (products of the local information matrices 
with the local state vectors) (Shima et al. 2007), (Lee et al. 2008). In the case of the Unscented 
Information Filter there is no linearization of the UAVs observation equation. However the 
application of the Information Filter algorithm is possible through an implicit linearization 
which is performed by approximating the Jacobian matrix of the system’s output equation 
by the product of the inverse of the state vector’s covariance matrix (which can be also 
associated to the Fisher Information matrix) with the cross-correlation covariance matrix 
between the system’s state vector and the system’s output (Lee et al. 2008)], (Vercauteren & 
Wang 2005). Again, the local information matrices and the local information state vectors are 
transferred to an aggregation filter which produces the global estimation of the system’s 
state vector. 
Next, the Distributed Particle Filter (DPF) is proposed for fusing the state estimates 
provided by the local monitoring stations (local filters). The motivation for using DPF is that 
it is well-suited to accommodate non-Gaussian measurements. A difficulty in implementing 
distributed particle filtering is that particles from one particle set (which correspond to a 
local particle filter) do not have the same support (do not cover the same area and points on 
the samples space) as particles from another particle set (which are associated with another 
particle filter) (Ong et al. 2008), (Ong et al. 2006). This can be resolved by transforming the 
particles sets into Gaussian mixtures, and defining the global probability distribution on the 
common support set of the probability density functions associated with the local filters. The 
state vector which is estimated with the use of the DPF is used again by a flatness-based 
controller to make each UAV follow a desirable flight path. 
The structure of the chapter is as follows: in Section 2 the Distributed Extended Kalman 
Filter (Extended Information Filter) is studied. In Section 3, the Distributed Unscented 
Kalman Filter (Unscented Information Filter) is analyzed and its use for distributed sensor 
fusion and state estimation is explained. In Section 4 Distributed Particle Filtering for sensor 
fusion-based state estimation will be analyzed. In Section 5 nonlinear control will be 
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proposed for succeeding trajectory tracking by the UAVs. In Section 6 simulation 
experiments will be provided about UAVs autonomous navigation using the proposed 
distributed particle filtering algorithm. The test case will be concerned with m helicopter 
models monitored by n different ground stations. By fusing the measurements from the 
distributed observation units with the use of the Extended Information Filter and the 
proposed Particle Filter algorithm, state estimates of the UAVs are obtained. These in turn 
are used by local nonlinear controllers for succeeding trajectory tracking. Finally in Section 7 
concluding remarks will be provided. 

2. Distributed Extended Kalman Filtering 
2.1 Extended Kalman Filtering at local processing units 
The distributed Extended Kalman Filter, also know as Extended Information Filter, 
performs fusion of the state estimates which are provided by local Extended Kalman Filters. 
Thus, the functioning of the local Extended Kalman Filters should be analyzed first. The 
following nonlinear state model is considered (Rigatos & Tzafestas 2007): 
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  (5) 

The resulting expressions create first order approximations of φ and γ. Thus the linearized 
version of the system is obtained: 
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Now, the EKF recursion is as follows: First the time update is considered: by ˆ( )x k  the 
estimation of the state vector at instant k is denoted. Given initial conditions ˆ(0)x  and P−(0) 
the recursion proceeds as: 
• Measurement update. Acquire z(k) and compute: 

 

1ˆ ˆ ˆ( ) = ( ) ( ( )) [ ( ( )) ( ) ( ( )) ( )]
ˆ ˆ ˆ( ) = ( ) ( )[ ( ) ( ( ))]

ˆ( ) = ( ) ( ) ( ( )) ( )

T TK k P k J x k J x k P k J x k R k

x k x k K k z k x k
P k P k K k J x k P k

γ γ γ

γ

γ

− − − − − −

− −

− − −

⋅ +

+ −

−

  (7) 

• Time update. Compute: 
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The schematic diagram of the EKF loop is given in Fig. 1. 

2.2 Calculation of local estimations in terms of EIF information contributions 
Again the discrete-time nonlinear system of Eq. (1) is considered. The Extended Information 
Filter (EIF) performs fusion of the local state vector estimates which are provided by the 
local Extended Kalman Filters, using the Information matrix and the Information state vector 
(Lee et al. 2008), (Lee et al. 2008), (Vercauteren & Wang 2005), (Manyika & H. Durrant-
Whyte 1994). The Information Matrix is the inverse of the state vector covariance matrix, 
and can be also associated to the Fisher Information matrix.” (Rigatos & Zhang 2009). The 
Information state vector is the product between the Information matrix and the local state 
vector estimate 
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The update equation for the Information Matrix and the Information state vector are given by 

Distributed Particle Filtering over Sensor Networks for Autonomous Navigation of UAVs   

 

333 

 
Fig. 1. Schematic diagram of the EKF loop 
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The predicted information state vector and Information matrix are obtained from 
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The Extended Information Filter is next formulated for the case that multiple local sensor 
measurements and local estimates are used to increase the accuracy and reliability of the 
estimation. It is assumed that an observation vector zi(k) is available for N different sensor 
sites i = 1, 2, ··· ,N and each sensor observes a common state according to the local 
observation model, expressed by 

 ( ) = ( ( )) ( ), = 1,2, ,i iz k x k v k i Nγ +   (14) 

where the local noise vector vi(k)~N(0,Ri) is assumed to be white Gaussian and uncorrelated 
between sensors. The variance of a composite observation noise vector vk

 is expressed in 
terms of the block diagonal matrix 
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• Time update. Compute: 
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measurements and local estimates are used to increase the accuracy and reliability of the 
estimation. It is assumed that an observation vector zi(k) is available for N different sensor 
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observation model, expressed by 
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where the local noise vector vi(k)~N(0,Ri) is assumed to be white Gaussian and uncorrelated 
between sensors. The variance of a composite observation noise vector vk

 is expressed in 
terms of the block diagonal matrix 



 Advanced Strategies for Robot Manipulators 

 

334 

 R(k) = diag[R(k)1, ··· ,RN(k)]T  (15) 

The information contribution can be expressed by a linear combination of each local 
information state contribution ii and the associated information matrix Ii at the i-th sensor site 
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Using Eq. (16) the update equations for fusing the local state estimates become 
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It is noted that in the Extended Information Filter an aggregation (master) fusion filter 
produces a global estimate by using the local sensor information provided by each local filter. 
 

 
Fig. 2. Fusion of the distributed state estimates with the use of the Extended Information Filter 
As in the case of the Extended Kalman Filter the local filters which constitute the Extended 
Information Filter can be written in terms of time update and a measurement update equation. 
Measurement update: Acquire z(k) and compute 
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Time update: Compute 
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Fig. 3. Schematic diagram of the Extended Information Filter loop 

2.3 Extended Information Filtering for state estimates fusion 
In the Extended Information Filter each one of the local filters operates independently, 
processing its own local measurements. It is assumed that there is no sharing of 
measurements between the local filters and that the aggregation filter (Fig. 2) does not have 
direct access to the raw measurements feeding each local filter. The outputs of the local 
filters are treated as measurements which are fed into the aggregation fusion filter (Lee et al. 
2008), (Lee et al. 2008), (Vercauteren &Wang 2005). Then each local filter is expressed by its 
respective error covariance and estimate in terms of information contributions given in 
Eq.(13) 
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It is noted that the local estimates are suboptimal and also conditionally independent given 
their own measurements. The global estimate and the associated error covariance for the 
aggregate fusion filter can be rewritten in terms of the computed estimates and covariances 
from the local filters using the relations 
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_^
1

1

1

1

( ) ( ) ( ) [ ( ) ( ( )) ( ) ( )]

( ) ( ) ( ) ( )

N
i T i i k i

i
N

i T i i

i

i k J k R k z k x k J k x k

I k J k R k J k

γ γ

γ γ

γ−

=

−

=

= − +

=

∑

∑
  (16) 

Using Eq. (16) the update equations for fusing the local state estimates become 
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It is noted that in the Extended Information Filter an aggregation (master) fusion filter 
produces a global estimate by using the local sensor information provided by each local filter. 
 

 
Fig. 2. Fusion of the distributed state estimates with the use of the Extended Information Filter 
As in the case of the Extended Kalman Filter the local filters which constitute the Extended 
Information Filter can be written in terms of time update and a measurement update equation. 
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Time update: Compute 
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Fig. 3. Schematic diagram of the Extended Information Filter loop 
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filters are treated as measurements which are fed into the aggregation fusion filter (Lee et al. 
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It is noted that the local estimates are suboptimal and also conditionally independent given 
their own measurements. The global estimate and the associated error covariance for the 
aggregate fusion filter can be rewritten in terms of the computed estimates and covariances 
from the local filters using the relations 
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For the general case of N local filters i = 1, ··· , N, the distributed filtering architecture is 
described by the following equations 
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It is noted that the global state update equation in the above distributed filter can be written 
in terms of the information state vector and of the information matrix 
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The local filters provide their own local estimates and repeat the cycle at step k + 1. In turn 
the global filter can predict its global estimate and repeat the cycle at the next time step k + 1 
when the new state x̂ (k + 1) and the new global covariance matrix P(k + 1) are calculated. 
From Eq. (24) it can be seen that if a local filter (processing station) fails, then the local 
covariance matrices and the local state estimates provided by the rest of the filters will 
enable an accurate computation of the system’s state vector. 

3. Distributed Sigma-Point Kalman Filtering 
3.1 Unscented Kalman Filtering at local processing units 
It is also possible to estimate the state vectors of the distributed UAVs which constitute the 
multi-UAV system through the fusion of the estimates provided by local Sigma-Point 
Kalman Filters. This can be succeeded using the Distributed Sigma-Point Kalman Filter, also 
known as Unscented Information Filter (UIF) (Lee et al. 2008), (Lee et al. 2008). First, the 
functioning of the local Sigma-Point Kalman Filters will be explained. Each local Sigma-
Point Kalman Filter generates an estimation of the UAV’s state vector by fusing 
measurement from distributed sensors (e.g. IMU and GPS). Sigma-Point Kalman Filtering is 
proposed (Julier et al. 2000), (Julier et al. 2004), (Särrkä 2007). The Sigma-Point Kalman Filter 
overcomes the flaws of Extended Kalman Filtering. Unlike EKF no analytical Jacobians of 
the system equations need to be calculated as in the case for the EKF. This makes the sigma-
point approach suitable for application in ”black-box” models where analytical expressions 
of the system dynamics are either not available or not in a form which allows for easy 
linearization. This is achieved through a different approach for calculating the posterior 1st 
and 2nd order statistics of a random variable that undergoes a nonlinear transformation. 
The state distribution is represented again by a Gaussian Random Variable but is now 
specified using a minimal set of deterministically chosen weighted sample points. The basic 
sigma-point approach can be described as follows: 
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1. A set of weighted samples (sigma-points) are deterministically calculated using the 
mean and square-root decomposition of the covariance matrix of the system’s state 
vector. As a minimal requirement the sigma-point set must completely capture the first 
and second order moments of the prior random variable. Higher order moments can be 
captured at the cost of using more sigma-points. 

2. The sigma-points are propagated through the true nonlinear function using functional 
evaluations alone, i.e. no analytical derivatives are used, in order to generate a posterior 
sigma-point set. 

3. The posterior statistics are calculated (approximated) using tractable functions of the 
propagated sigma-points and weights. Typically, these take on the form of a simple 
weighted sample mean and covariance calculations of the posterior sigma points. 

It is noted that the sigma-point approach differs substantially from general stochastic 
sampling techniques, such as Monte-Carlo integration (e.g Particle Filtering methods) which 
require significantly more sample points in an attempt to propagate an accurate (possibly 
non-Gaussian) distribution of the state. The deceptively simple sigma-point approach 
results in posterior approximations that are accurate to the third order for Gaussian inputs 
for all nonlinearities. For non-Gaussian inputs, approximations are accurate to at least the 
second-order, with the accuracy of third and higher-order moments determined by the 
specific choice of weights and scaling factors. 
The Unscented Kalman Filter (UKF) is a special case of Sigma-Point Kalman Filters. The 
UKF is a discrete time filtering algorithm which uses the unscented transform for computing 
approximate solutions to the filtering problem of the form 
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where x(k)∈Rn is the system’s state vector, y(k)∈Rm is the measurement, w(k)∈Rn is a 
Gaussian process noise w(k)~N(0,Q(k)), and v(k)∈Rm is a Gaussian measurement noise 
v(k)~N(0,R(k)). The mean and covariance of the initial state x(0) are m(0) and P(0), 
respectively. 
Some basic operations performed in the UKF algorithm (Unscented Transform) are 
summarized as follows: 
1. Denoting the current state mean as x̂ , a set of 2n+1 sigma points is taken from the 

columns of the n×n matrix ( ) xxn Pλ+  as follows: 
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and the associate weights are computed: 
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For the general case of N local filters i = 1, ··· , N, the distributed filtering architecture is 
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It is noted that the global state update equation in the above distributed filter can be written 
in terms of the information state vector and of the information matrix 
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The local filters provide their own local estimates and repeat the cycle at step k + 1. In turn 
the global filter can predict its global estimate and repeat the cycle at the next time step k + 1 
when the new state x̂ (k + 1) and the new global covariance matrix P(k + 1) are calculated. 
From Eq. (24) it can be seen that if a local filter (processing station) fails, then the local 
covariance matrices and the local state estimates provided by the rest of the filters will 
enable an accurate computation of the system’s state vector. 

3. Distributed Sigma-Point Kalman Filtering 
3.1 Unscented Kalman Filtering at local processing units 
It is also possible to estimate the state vectors of the distributed UAVs which constitute the 
multi-UAV system through the fusion of the estimates provided by local Sigma-Point 
Kalman Filters. This can be succeeded using the Distributed Sigma-Point Kalman Filter, also 
known as Unscented Information Filter (UIF) (Lee et al. 2008), (Lee et al. 2008). First, the 
functioning of the local Sigma-Point Kalman Filters will be explained. Each local Sigma-
Point Kalman Filter generates an estimation of the UAV’s state vector by fusing 
measurement from distributed sensors (e.g. IMU and GPS). Sigma-Point Kalman Filtering is 
proposed (Julier et al. 2000), (Julier et al. 2004), (Särrkä 2007). The Sigma-Point Kalman Filter 
overcomes the flaws of Extended Kalman Filtering. Unlike EKF no analytical Jacobians of 
the system equations need to be calculated as in the case for the EKF. This makes the sigma-
point approach suitable for application in ”black-box” models where analytical expressions 
of the system dynamics are either not available or not in a form which allows for easy 
linearization. This is achieved through a different approach for calculating the posterior 1st 
and 2nd order statistics of a random variable that undergoes a nonlinear transformation. 
The state distribution is represented again by a Gaussian Random Variable but is now 
specified using a minimal set of deterministically chosen weighted sample points. The basic 
sigma-point approach can be described as follows: 
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1. A set of weighted samples (sigma-points) are deterministically calculated using the 
mean and square-root decomposition of the covariance matrix of the system’s state 
vector. As a minimal requirement the sigma-point set must completely capture the first 
and second order moments of the prior random variable. Higher order moments can be 
captured at the cost of using more sigma-points. 

2. The sigma-points are propagated through the true nonlinear function using functional 
evaluations alone, i.e. no analytical derivatives are used, in order to generate a posterior 
sigma-point set. 

3. The posterior statistics are calculated (approximated) using tractable functions of the 
propagated sigma-points and weights. Typically, these take on the form of a simple 
weighted sample mean and covariance calculations of the posterior sigma points. 

It is noted that the sigma-point approach differs substantially from general stochastic 
sampling techniques, such as Monte-Carlo integration (e.g Particle Filtering methods) which 
require significantly more sample points in an attempt to propagate an accurate (possibly 
non-Gaussian) distribution of the state. The deceptively simple sigma-point approach 
results in posterior approximations that are accurate to the third order for Gaussian inputs 
for all nonlinearities. For non-Gaussian inputs, approximations are accurate to at least the 
second-order, with the accuracy of third and higher-order moments determined by the 
specific choice of weights and scaling factors. 
The Unscented Kalman Filter (UKF) is a special case of Sigma-Point Kalman Filters. The 
UKF is a discrete time filtering algorithm which uses the unscented transform for computing 
approximate solutions to the filtering problem of the form 
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where x(k)∈Rn is the system’s state vector, y(k)∈Rm is the measurement, w(k)∈Rn is a 
Gaussian process noise w(k)~N(0,Q(k)), and v(k)∈Rm is a Gaussian measurement noise 
v(k)~N(0,R(k)). The mean and covariance of the initial state x(0) are m(0) and P(0), 
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where i = 1, 2, ··· ,2n and λ = α 2(n + κ) − n is a scaling parameter, while α, β and κ are 
constant parameters. Matrix Pxx is the covariance matrix of the state x. 

2. Transform each of the sigma points as 

 zi = h(xi) i = 0, ··· ,2n  (29) 

3. Mean and covariance estimates for z can be computed as 
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4. The cross-covariance of x and z is estimated as 
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The matrix square root of positive definite matrix Pxx means a matrix = xxA P such that  
Pxx = AAT

 and a possible way for calculation is SVD. 
Next the basic stages of the Unscented Kalman Filter are given: 
As in the case of the Extended Kalman Filter and the Particle Filter, the Unscented Kalman 
Filter also consists of prediction stage (time update) and correction stage (measurement 
update) (Julier et al. 2004), (Särrkä 2007).  
Time update: Compute the predicted state mean x̂ −(k) and the predicted covariance Pxx−(k) as 
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Measurement update: Obtain the new output measurement zk and compute the predicted 
mean ẑ (k) and covariance of the measurement Pzz(k), and the cross covariance of the state 
and measurement Pxz(k) 
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Then compute the filter gain K(k), the state mean x̂ (k) and the covariance Pxx(k), conditional 
to the measurement y(k) 

 

1          ( ) = ( ) ( )
ˆ ˆ ˆ( ) = ( ) ( )[ ( ) ( )]

( ) = ( ) ( ) ( ) ( )

−

−

−

+ −

−

xz zz

T
xx xx zz

K k P k P k
x k x k K k z k z k
P k P k K k P k K k

  (34) 

 

The filter starts from the initial mean m(0) and covariance Pxx(0). The stages of state vector 
estimation with the use of the Unscented Kalman Filter algorithm are depicted in Fig. 6. 
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Fig. 4. Schematic diagram of the Unscented Kalman Filter loop 

3.2 Unscented Information Filtering 
The Unscented Information Filter (UIF) performs fusion of the state vector estimates which 
are provided by local Unscented Kalman Filters, by weighting these estimates with local 
Information matrices (inverse of the local state vector covariance matrices which are again 
recursively computed) (Lee et al. 2008), (Lee et al. 2008), (Vercauteren &Wang 2005). The 
Unscented Information Filter is derived by introducing a linear error propagation based on 
the unscented transformation into the Extended Information Filtering structure. First, an 
augmented state vector xα−(k) is considered, along with the process noise vector, and the 
associated covariance matrix is introduced 
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As in the case of local (lumped) Unscented Kalman Filters, a set of weighted sigma points 
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−  is generated as 
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where λ = α 2(nα + κ) − nα is a scaling, while 0 ≤ α ≤ 1 and κ are constant parameters. The 
corresponding weights for the mean and covariance are defined as in the case of the lumped 
Unscented Kalman Filter 
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where i = 1, 2, ··· ,2n and λ = α 2(n + κ) − n is a scaling parameter, while α, β and κ are 
constant parameters. Matrix Pxx is the covariance matrix of the state x. 
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Measurement update: Obtain the new output measurement zk and compute the predicted 
mean ẑ (k) and covariance of the measurement Pzz(k), and the cross covariance of the state 
and measurement Pxz(k) 
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Then compute the filter gain K(k), the state mean x̂ (k) and the covariance Pxx(k), conditional 
to the measurement y(k) 
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The filter starts from the initial mean m(0) and covariance Pxx(0). The stages of state vector 
estimation with the use of the Unscented Kalman Filter algorithm are depicted in Fig. 6. 
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Fig. 4. Schematic diagram of the Unscented Kalman Filter loop 
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where λ = α 2(nα + κ) − nα is a scaling, while 0 ≤ α ≤ 1 and κ are constant parameters. The 
corresponding weights for the mean and covariance are defined as in the case of the lumped 
Unscented Kalman Filter 
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where β is again a constant parameter. The equations of the prediction stage (measurement 
update) of the information filter, i.e. the calculation of the information matrix and the 
information state vector of Eq. (13) now become 
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where x
iX  are the predicted state vectors when using the sigma point vectors w

iX  in the 
state equation ( 1) = ( ( )) ( ) ( )x w

i iX k X k L k U kφ −+ + . The predicted state covariance matrix is 
computed as 
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As noted, the equations of the Extended Information Filter (EIF) are based on the linearized 
dynamic model of the system and on the inverse of the covariance matrix of the state vector. 
However, in the equations of the Unscented Kalman Filter (UKF) there is no linearization of 
the system dynamics, thus the UKF cannot be included directly into the EIF equations. In- 
stead, it is assumed that the nonlinear measurement equation of the system given in Eq. (1) 
can be mapped into a linear function of its statistical mean and covariance, which makes 
possible to use the information update equations of the EIF. Denoting Yi(k) = γ( x

iX  (k)) (i.e. 
the output of the system calculated through the propagation of the i-th sigma point Xi 

through the system’s nonlinear equation) the observation covariance and its cross-
covariance are approximated by 
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where z(k) = γ(x(k)) and Jγ(k) is the Jacobian of the output equation γ(x(k)). Next, mul- 
tiplying the predicted covariance and its inverse term on the right side of the information 
matrix Eq. (12) and replacing P(k)Jγ(k)T with ( )XYP k−  (k) gives the following representation of 
the information matrix (Lee et al. 2008), (Lee et al. 2008), (Vercauteren &Wang 2005) 
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where P−(k)−1 is calculated according to Eq. (39) and the cross-correlation matrix PXY(k) is 
calculated from 
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where ( ) = ( ( ))x
i iY k X kγ  and the predicted measurement vector ˆ ( )z k−  is obtained by 
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To complete the analogy to the information contribution equations of the EIF a 
”measurement” matrix HT(k) is defined as 

 1( ) = ( ) ( )T
XYH k P k P k− − −   (45) 

In terms of the measurement matrix H(k) the information contributions equations are 
written as 
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The above procedure leads to an implicit linearization in which the nonlinear measurement 
equation of the system given in Eq. (1) is approximated by the statistical error variance and 
its mean 

 ( ) = ( ( )) ( ) ( ) ( )z k h x k H k x k u k+   (47) 

where ˆ ˆ( ) = ( ( )) ( ) ( )u k x k H k x kγ − −−  is a measurement residual term. (47). 

3.3 Calculation of local estimations in terms of UIF information contributions 
Next, the local estimations provided by distributed (local) Unscented Kalmans filters will be 
expressed in terms of the information contributions (information matrix I and information 
state vector i) of the Unscented Information Filter, which were defined in Eq. (46) (Lee et al. 
2008), (Lee et al. 2008), (Vercauteren &Wang 2005). It is assumed that the observation vector 

( 1)iz k +  is available from N different sensors, and that each sensor observes a common state 
according to the local observation model, expressed by 

 ( ) = ( ) ( ) ( ) ( )i i i iz k H k x k u k v k+ +   (48) 

where the noise vector vi(k) is taken to be white Gaussian and uncorrelated between sensors. 
The variance of the composite observation noise vector vk of all sensors is written in terms of 
the block diagonal matrix R(k) = diag[R1(k)T, ··· ,RN(k)T]T. Then one can define the local 
information matrix Ii(k) and the local information state vector ii(k) at the i-th sensor, as follows 
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where β is again a constant parameter. The equations of the prediction stage (measurement 
update) of the information filter, i.e. the calculation of the information matrix and the 
information state vector of Eq. (13) now become 
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where x
iX  are the predicted state vectors when using the sigma point vectors w

iX  in the 
state equation ( 1) = ( ( )) ( ) ( )x w

i iX k X k L k U kφ −+ + . The predicted state covariance matrix is 
computed as 
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As noted, the equations of the Extended Information Filter (EIF) are based on the linearized 
dynamic model of the system and on the inverse of the covariance matrix of the state vector. 
However, in the equations of the Unscented Kalman Filter (UKF) there is no linearization of 
the system dynamics, thus the UKF cannot be included directly into the EIF equations. In- 
stead, it is assumed that the nonlinear measurement equation of the system given in Eq. (1) 
can be mapped into a linear function of its statistical mean and covariance, which makes 
possible to use the information update equations of the EIF. Denoting Yi(k) = γ( x

iX  (k)) (i.e. 
the output of the system calculated through the propagation of the i-th sigma point Xi 

through the system’s nonlinear equation) the observation covariance and its cross-
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where z(k) = γ(x(k)) and Jγ(k) is the Jacobian of the output equation γ(x(k)). Next, mul- 
tiplying the predicted covariance and its inverse term on the right side of the information 
matrix Eq. (12) and replacing P(k)Jγ(k)T with ( )XYP k−  (k) gives the following representation of 
the information matrix (Lee et al. 2008), (Lee et al. 2008), (Vercauteren &Wang 2005) 
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where P−(k)−1 is calculated according to Eq. (39) and the cross-correlation matrix PXY(k) is 
calculated from 
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To complete the analogy to the information contribution equations of the EIF a 
”measurement” matrix HT(k) is defined as 

 1( ) = ( ) ( )T
XYH k P k P k− − −   (45) 

In terms of the measurement matrix H(k) the information contributions equations are 
written as 
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The above procedure leads to an implicit linearization in which the nonlinear measurement 
equation of the system given in Eq. (1) is approximated by the statistical error variance and 
its mean 

 ( ) = ( ( )) ( ) ( ) ( )z k h x k H k x k u k+   (47) 

where ˆ ˆ( ) = ( ( )) ( ) ( )u k x k H k x kγ − −−  is a measurement residual term. (47). 

3.3 Calculation of local estimations in terms of UIF information contributions 
Next, the local estimations provided by distributed (local) Unscented Kalmans filters will be 
expressed in terms of the information contributions (information matrix I and information 
state vector i) of the Unscented Information Filter, which were defined in Eq. (46) (Lee et al. 
2008), (Lee et al. 2008), (Vercauteren &Wang 2005). It is assumed that the observation vector 

( 1)iz k +  is available from N different sensors, and that each sensor observes a common state 
according to the local observation model, expressed by 

 ( ) = ( ) ( ) ( ) ( )i i i iz k H k x k u k v k+ +   (48) 

where the noise vector vi(k) is taken to be white Gaussian and uncorrelated between sensors. 
The variance of the composite observation noise vector vk of all sensors is written in terms of 
the block diagonal matrix R(k) = diag[R1(k)T, ··· ,RN(k)T]T. Then one can define the local 
information matrix Ii(k) and the local information state vector ii(k) at the i-th sensor, as follows 
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Since the information contribution terms have group diagonal structure in terms of the 
innovation and measurement matrix, the update equations for the multiple state estimation 
and data fusion are written as a linear combination of the local information contribution terms 
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Then using Eq. (38) one can find the mean state vector for the multiple sensor estimation 
problem. 
As in the case of the Unscented Kalman Filter, the Unscented Information Filter running at 
the i-th measurement processing unit can be written in terms of measurement update and time 
update equations: 
Measurement update: Acquire measurement z(k) and compute 
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Time update: Compute 
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3.4 Distributed Unscented Information Filtering for state estimates fusion 
It has been shown that the update of the aggregate state vector of the Unscented Information 
Filter architecture can be expressed in terms of the local information matrices Ii and of the 
local information state vectors ii, which in turn depend on the local covariance matrices P 
and cross-covariance matrices PXY. Next, it will be shown that the update of the aggregate 
state vector can be also expressed in terms of the local state vectors xi(k) and in terms of the 
local covariance matrices Pi(k) and cross-covariance matrices ( )i

XYP k . It is assumed that the 
local filters do not have access to each other row measurements and that they are allowed to 
communicate only their information matrices and their local information state vectors. Thus 
each local filter is expressed by its respective error covariance and estimate in terms of the 
local information state contribution ii and its associated information matrix Ii at the i-th filter 
site. Then using Eq. (38) one obtains 
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Fig. 5. Schematic diagram of the Unscented Information Filter loop 
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Using Eq. (55), each local information state contribution ii and its associated information 
matrix Ii at the i-th filter are rewritten in terms of the computed estimates and covariances of 
the local filters 
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where according to Eq.(45) it holds 1
,( ) = ( ) ( )i i XY iH k P k P k− − − . Next, the aggregate estimates of 

the distributed unscented information filtering are derived for a number of N local filters  
i = 1, ··· , N and sensor measurements, first in terms of covariances (Vercauteren &Wang 
2005), (Lee et al. 2008), (Lee et al. 2008) 
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and also in terms of the information state vector and of the information state covariance matrix 
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Then using Eq. (38) one can find the mean state vector for the multiple sensor estimation 
problem. 
As in the case of the Unscented Kalman Filter, the Unscented Information Filter running at 
the i-th measurement processing unit can be written in terms of measurement update and time 
update equations: 
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3.4 Distributed Unscented Information Filtering for state estimates fusion 
It has been shown that the update of the aggregate state vector of the Unscented Information 
Filter architecture can be expressed in terms of the local information matrices Ii and of the 
local information state vectors ii, which in turn depend on the local covariance matrices P 
and cross-covariance matrices PXY. Next, it will be shown that the update of the aggregate 
state vector can be also expressed in terms of the local state vectors xi(k) and in terms of the 
local covariance matrices Pi(k) and cross-covariance matrices ( )i

XYP k . It is assumed that the 
local filters do not have access to each other row measurements and that they are allowed to 
communicate only their information matrices and their local information state vectors. Thus 
each local filter is expressed by its respective error covariance and estimate in terms of the 
local information state contribution ii and its associated information matrix Ii at the i-th filter 
site. Then using Eq. (38) one obtains 
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Fig. 5. Schematic diagram of the Unscented Information Filter loop 
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Using Eq. (55), each local information state contribution ii and its associated information 
matrix Ii at the i-th filter are rewritten in terms of the computed estimates and covariances of 
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where according to Eq.(45) it holds 1
,( ) = ( ) ( )i i XY iH k P k P k− − − . Next, the aggregate estimates of 

the distributed unscented information filtering are derived for a number of N local filters  
i = 1, ··· , N and sensor measurements, first in terms of covariances (Vercauteren &Wang 
2005), (Lee et al. 2008), (Lee et al. 2008) 
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and also in terms of the information state vector and of the information state covariance matrix 
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State estimation fusion based on the Unscented Information Filter (UIF) is fault tolerant. 
From Eq. (57) it can be seen that if a local filter (processing station) fails, then the local 
covariance matrices and local estimates provided by the rest of the filters will enable a 
reliable calculation of the system’s state vector. Moreover, it is and computationally efficient 
comparing to centralized filters and results in enhanced estimation accuracy. 

4. Distributed Particle Filter 
4.1 Particle Filtering at local processing units 
4.1.1 The particle approximation of probability density functions 
One can also estimate the state vector of the UAVs that constitute the multi-UAV system 
through the fusion of estimates provided by local Particle Filters. This can be succeeded 
using the Distributed Particle Filter (DPF). First, the functioning of the local Particle Filters 
will be explained. Each local Particle Filter generates an estimation of the UAV’s state vector 
by fusing measurements from distibuted sensors. Particle Filtering is a method for state 
estimation that is not dependent on the probability density function of the measurements. In 
the general case the equations of the optimal filter used for the calculation of the state-vector 
of a dynamical system do not have an explicit solution. This happens for instance when the 
process noise and the noise of the output measurement do not follow a Gaussian 
distribution. In that case approximation through Monte-Carlo methods can be used (Thrun 
wt al. 2005). A sampling of size N is assumed, i.e. N i.i.d. (independent identically 
distributed) variables ξ1, ξ2, ··· , ξN. This sampling follows the p.d.f. p(x) i.e. ξ1:N~p(x). Instead 
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If p(ξi) is known then the probability P(x) can be approximated using the discrete values of 
the p.d.f. p(ξi) = wi. If sampling over the p.d.f. p(x) is unavailable, then one can use a p.d.f. 
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The meaning of Eq. (60) is as follows: assume that the p.d.f. p(x) is unknown (target 
distribution), however the p.d.f. ( )p x  (importance law) is available. Then, it is sufficient to 
sample on ( )p x  and find the associated weight coefficients wi so as to calculate E(φ(x)). 
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4.1.2 The prediction stage 
As in the case of the Kalman Filter or the Extended Kalman Filter the particles filter consists 
of the measurement update (correction stage) and the time update (prediction stage) 
(Rigatos 2009b),(Thrun wt al. 2005). The prediction stage calculates p(x(k)|Z−) where Z− = 
{z(1), z(2), ··· , z(n − 1)} according to Eq. (59). It holds that: 
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The meaning of Eq. (62) is as follows: the state equation of the system is executed N times, 
starting from the N previous values of the state vectors 1( 1) = i

kx k ξ −−  

 
ˆ ˆ( 1) = ( ( )) ( ) ( ) ( )

ˆ            ( ) = ( ( )) ( )
x k x k L k u k w k

z k x k v k
φ

γ
+ + +

+
  (63) 

Thus estimations of the current value of the state vector ˆ( )x k  are obtained, and 
consequently the mean value of the state vector will be given from Eq. (62). This means that 
the value of the state vector which is calculated in the prediction stage is the result of the 
weighted averaging of the state vectors which were calculated after running the state 
equation, starting from the N previous values of the state vectors 1
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State estimation fusion based on the Unscented Information Filter (UIF) is fault tolerant. 
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Eq. (65) denotes the corrected value for the state vector. The recursion of the Particle Filter 
proceeds in a way similar to the update of the Kalman Filter or the Extended Kalman Filter, 
i.e.: 
• Measurement update: Acquire z(k) and compute 
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Resampling for substitution of the degenerated particles 
• Time update: compute state vector x(k + 1) according to the pdf 
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The stages of state vector estimation with the use of the Particle Filtering algorithm are 
depicted in Fig. 6. 
 

 
 

Fig. 6. Schematic diagram of the Particle Filter loop 
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4.1.4 Resampling issues in particle filtering 
The algorithm of particle filtering which is described through Eq. (62) and Eq. (65) has a 
significant drawback: after a certain number of iterations k, almost all the weights i

kw  

become 0. In the ideal case all the weights should converge to the value 1
N

, i.e. the particles 

should have the same significance. The criterion used to define a sufficient number of 

particles is eff
2

=1

1= [1, ]k N i
ki

N N
w

∈
∑

. When eff
kN  is close to value N then all particles have 

almost the same significance. However using the algorithm of Eq. (62) and Eq. (65) results in 
eff
kN  →1, which means that the particles are degenerated, i.e. they lose their effectiveness. 

Therefore, it is necessary to modify the algorithm so as to assure that degeneration of the 
particles will not take place (Rigatos 2009a), (Thrun wt al. 2005), (Zhang et al. 2005). 
When eff

kN  is small then most of the particles have weights close to 0 and consequently they 
have a negligible contribution to the estimation of the state vector. To overcome this 
drawback of the PF algorithm weakens such particles in favor of particles that have a non-
negligible contribution. Therefore, the particles of low weight factors are removed and their 
place is occupied by duplicates of the particles with high weight factors. The total number of 
particles remains unchanged (equal to N) and therefore this procedure can be viewed as a 
”resampling” or ”redistribution” of the particles set. 
The particles resampling presented above maybe slow if not appropriately tuned. There are 
improved versions of it which substitute the particles of low importance with those of 
higher importance. A first choice would be to perform a multinomial resampling. N 
particles are chosen between 1{ , , }N

k kξ ξ  and the corresponding weights are 1 , , N
k kw w . The 

number of times each particle is selected is given by [j1, ··· , jn]. Thus a set of N particles is 
again created, the elements of which are chosen after sampling with the discrete distribution 

=1
( )N i

k ii k
w x

ξ
δ∑ . The particles 1{ , , }N

k kξ ξ are chosen according to the probabilities { 1 , , N
k kw w  

}. The selected particles are assigned with equal weights 1
N

. 

Although sorting of the particles’ weights is not necessary for the convergence of the particle 
filter algorithm, there are variants of the resampling procedure of ( , = 1, ,i i

k kw i Nξ ) which 
are based on previous sorting in decreasing order of the particles’ weights (efficient sorting 
approaches make the complexity of the particle filtering to be O(Nlog(N)), while the 
avoidance of resampling results in a faster algorithm of complexity O(N)). Sorting of 
particles’ weights gives ws[1] > ws[2] > ··· > ws[N]. A random numbers generator is evoked and 
the resulting numbers ui:N~U[0,1] fall in the partitions of the interval [0,1]. The width of 
these partitions is wi and thus a redistribution of the particles is generated. For instance, in a 
wide partition of width wj will be assigned more particles than to a narrow partition of 
witdh wm. A detailed analysis on the tuning of the resampling procedure in Particle Fitlering 
has been given in (Rigatos 2009a). 

4.2 Distributed Particle Filtering for state estimation fusion 
The Distributed Particle Filter performs fusion of the state vector estimates which are 
provided by the local Particle Filters. This is succeeded by fusing the discrete probability 
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density functions of the local Particle Filters into a common probability distribution of the 
system’s state vector. Without loss of generality fusion between two estimates which are 
provided by two different probabilistic estimators (particle filters) is assumed. This amounts 
to a multiplication and a division operation to remove the common information, and is 
given by (Ong et al. 2008), (Ong et al. 2006) 

 ( ( )| ) ( ( )| )( ( )| )
( ( )| )

A B
A B

A B

p x k Z p x k Zp x k Z Z
p x k Z Z

∝∪ ∩
  (68) 

where ZA is the sequence of measurements associated with the i-th processing unit and ZB is 
the sequence of measurements associated with the j-th measurement unit. In the 
implementation of distributed particle filtering, the following issues arise: 
1. Particles from one particle set (which correspond to a local particle filter) do not have 

the same support (do not cover the same area and points on the samples space) as 
particles from another particle set (which are associated with another particle filter). 
Therefore a point-to-point application of Eq. (68) is not possible. 

2. The communication of particles representation (i.e. local particle sets and associated 
weight sets) requires significantly more bandwidth compared to other representations, 
such as Gaussian mixtures. 

Fusion of the estimates provided by the local particle filters (located at different processing 
units) can be performed through the following stages. First, the discrete particle set of 
Particle Filter A (Particle Filter B) is transformed into a continuous distribution by placing a 
Gaussian kernel over each sample (Fig. 7) (Musso et al. 2001) 

 Kh(x) = h2K(x)  (69) 

where K() is the rescaled Kernel density and h > 0 is the scaling parameter. Then the 
continuous distribution A (B) is sampled with the other particles set B (A) to obtain the new 
importance weights, so that the weighted sample corresponds to the numerator of Eq. (68) 
(Fig. 8). Such a conversion from a discrete particle probability distribution functions 
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The common information appearing in the processing units A and B should not be taken 
into account in the joint probability distribution which is created after fusing the local 
probability densities of A and B. This means that in the joint p.d.f. one should sample with 
importance weights calculated according to Eq. (68). The objective is then to create an 
importance sampling approximation for the joint distribution that will be in accordance to 
Eq. (68). A solution to this can be obtained through Monte Carlo sampling and suitable 
selection of the so-called ”proposal distribution” (Ong et al. 2008), (Ong et al. 2006)] 
According to the above, for the joint distribution the idea behind Monte Carlo sampling is to 
draw N i.i.d samples from the associated probability density function p(x), such that the 
target density is approximated by a point-mass function of the form 
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Fig. 7. Conversion of the particles discrete probability density function to a continuous 
distribution, after allocating a Gaussian kernel over each particle 

where ( )( )i
kxδ  is a Dirac delta mass located at ( )i

kx . Then the expectation of some function  
f (x) with respect to the pdf p(x) is given by 
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the Monte-Carlo approximation of the integral with samples is then 
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where x(i) p(X) and IN( f )→I( f ) for N→∞. since, the true probability distribution p(x) is 
hard to sample from, the concept of importance sampling is to select a proposal distribution 

( )p x  in place of p(x), with the assumption that ( )p x  includes the support space of p(x). Then 
the expectation of function f (x), previously given in Eq. (72), is now calculated as 
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where w(x) are the importance weights 
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Then the Monte-Carlo estimation of the mean value of function f (x) becomes 
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For the division operation, the desired probability distribution is 
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Particle Filter A (Particle Filter B) is transformed into a continuous distribution by placing a 
Gaussian kernel over each sample (Fig. 7) (Musso et al. 2001) 
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where K() is the rescaled Kernel density and h > 0 is the scaling parameter. Then the 
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The common information appearing in the processing units A and B should not be taken 
into account in the joint probability distribution which is created after fusing the local 
probability densities of A and B. This means that in the joint p.d.f. one should sample with 
importance weights calculated according to Eq. (68). The objective is then to create an 
importance sampling approximation for the joint distribution that will be in accordance to 
Eq. (68). A solution to this can be obtained through Monte Carlo sampling and suitable 
selection of the so-called ”proposal distribution” (Ong et al. 2008), (Ong et al. 2006)] 
According to the above, for the joint distribution the idea behind Monte Carlo sampling is to 
draw N i.i.d samples from the associated probability density function p(x), such that the 
target density is approximated by a point-mass function of the form 
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Fig. 7. Conversion of the particles discrete probability density function to a continuous 
distribution, after allocating a Gaussian kernel over each particle 
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where x(i) p(X) and IN( f )→I( f ) for N→∞. since, the true probability distribution p(x) is 
hard to sample from, the concept of importance sampling is to select a proposal distribution 

( )p x  in place of p(x), with the assumption that ( )p x  includes the support space of p(x). Then 
the expectation of function f (x), previously given in Eq. (72), is now calculated as 
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where w(x) are the importance weights 
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Then the Monte-Carlo estimation of the mean value of function f (x) becomes 
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For the division operation, the desired probability distribution is 
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In that case the important weights of the fused probability density functions become 
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which is then normalized so that ( )
=1

( ) = 1 /N i
i

w x N∑ , where N is the number of particles. 
The next step is to decide what will be the form of the proposal distribution ( )p x . A first 
option is to take ( )p x  to be a uniform distribution, with a support that covers both of the 
support sets of the distributions A and B. 

 ( ) = ( )p x U x   (79) 

Then the sample weights ( )( )ip x  are all equal at a constant of value C. Hence the importance 
weights are 
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  (80) 

Another suitable proposal distribution that takes more into account the new information re 
ceived (described as the probability distribution of the second processing unit) is given by 

 ( ) = ( )Bp x p x   (81) 

and the important weights are then adjusted to be 
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5. Nonlinear control for autonomous UAV navigation 
5.1 Kinematic model of the UAV 
For the design of the autonomous navigation system of the UAVs a suitable control scheme 
has to be chosen. In this control loop there will be processing of the estimated UAV state 
vector, as obtained through the distributed filtering algorithms which were presented in 
Sections 2 to 4. To this end, the kinematic model the kinematic model of the UAVs has to be 
analyzed first. Based on this kinematic model a flatness-based controller will be derived. 
The UAV dynamics suggest the following structure for constant altitude manoeuvres 
(Léchevin & Rabbath 2006): 

 1

2

= ( ), = ( ), =
             = , = 0
x vcos y vsin u

v u h
θ θ θ

  (83) 

where (x,y) is the desired inertial position of the UAV, θ is the UAV’s heading, v is the 
UAV’s velocity, h is the UAV’s attitude, and u1, u2 are constrained by the dynamic capability 
of the UAVs namely the heading rate constraint and the acceleration constraint respectively. 
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Fig. 8. Fusion of the probability density functions produced by the local particle filters 

An inertial measurement unit (IMU) of a UAV usually consists of a three axis gyroscope and 
a three axis accelerometer. A vision sensor can be also mounted underneath the body of the 
UAV and is used to extract points of interest in the environment. The UAV also carries a 
barometric pressure sensor for aiding of the platform attitude estimation. A GPS sensor, can 
be also mounted on the board. The sensor data is filtered and fused to obtain estimates of 
the desired entities such as platform and feature position (Vissière et al. 2008). 

5.2 Differential flatness for finite dimensional systems 
Flatness-based control is proposed for steering the UAV along a desirable trajectory (Oriolo 
et al. 2002), (Villagra et al. 2007), (Fliess et al. 1999). The main principles of flatness- based 
control are as follows: A finite dimensional system is considered. This can be written in the 
general form of an ODE, i.e. 

 ( , , , , ), = 1,2, ,i
iS w w w w i q   (84) 

The quantity w denotes the system variable while wi, i = 1, 2, ··· , q are its derivatives (these 
and can be for instance the elements of the system’s state vector). The system of Eq. (1) is 
said to be differentially flat if there exists a collection of m functions y = (y1, ··· ,ym) of the 
system variables wi, i = 1, ··· , s and of their time-derivatives, i.e. 

 = ( , , , , ), = 1, ,i
iy w w w w i mαφ   (85) 

such that the following two conditions are satisfied (Fliess et al. 1999), (Rigatos 2008): 
1. There does not exist any differential relation of the form 

 ( , , , ) = 0R y y yβ   (86) 
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Fig. 8. Fusion of the probability density functions produced by the local particle filters 

An inertial measurement unit (IMU) of a UAV usually consists of a three axis gyroscope and 
a three axis accelerometer. A vision sensor can be also mounted underneath the body of the 
UAV and is used to extract points of interest in the environment. The UAV also carries a 
barometric pressure sensor for aiding of the platform attitude estimation. A GPS sensor, can 
be also mounted on the board. The sensor data is filtered and fused to obtain estimates of 
the desired entities such as platform and feature position (Vissière et al. 2008). 

5.2 Differential flatness for finite dimensional systems 
Flatness-based control is proposed for steering the UAV along a desirable trajectory (Oriolo 
et al. 2002), (Villagra et al. 2007), (Fliess et al. 1999). The main principles of flatness- based 
control are as follows: A finite dimensional system is considered. This can be written in the 
general form of an ODE, i.e. 
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The quantity w denotes the system variable while wi, i = 1, 2, ··· , q are its derivatives (these 
and can be for instance the elements of the system’s state vector). The system of Eq. (1) is 
said to be differentially flat if there exists a collection of m functions y = (y1, ··· ,ym) of the 
system variables wi, i = 1, ··· , s and of their time-derivatives, i.e. 
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such that the following two conditions are satisfied (Fliess et al. 1999), (Rigatos 2008): 
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which implies that the derivatives of the flat output are not coupled in the sense of an 
ODE, or equivalently it can be said that the flat output is differentially independent. 

2. All system variables, i.e. the components of w (elements of the system’s state vectors) 
can be expressed using only the flat output y and its time derivatives 

 = ( , , , ), = 1, ,i
i iw ψ y y y i sγ   (87) 

An equivalent definition of differentially flat systems is as follows: 
Definition: The system = ( , )x f x u , x∈Rn, u∈Rm is differentially flat if there exist relations h : 

Rn×Rm→Rm, φ: (Rm)r→Rn and ψ: (Rm)r+1→Rm, such that ( )= ( , , , , )ry h x u u u , ( 1)= ( , , , )rx y y yφ −  

and ( 1) ( )( , ,..., , )r ru ψ y y y y−= . This means that all system dynamics can be expressed as a 
function of the flat output and its derivatives, therefore the state vector and the control input 
can be written as ( )( ) ( ( ), ( ),..., ( ))rx y y t y t y tφ=  and ( )( ( ), ( ),..., ( ))ru ψ y t y t y t= . 
It is noted that for linear systems the property of differential flatness is equivalent to that of 
controllability. 

5.3 Differential flatness of the UAV kinematic model 
It is assumed that the helicopter-like UAV, performs manoeuvres at a constant altitude. 
Then, from Eq. (83) one can obtain the following description for the UAV kinematics 

 = ( ), = ( ), = ( )vx vcos y vsin tan
l

θ θ θ φ   (88) 

where using the analogous of the unicycle robot v is the velocity of the UAV, l is the UAV’s 
length, θ is the UAV’s orientation (angle between the transversal axis of the UAV and axis 
OX), and φ is a steering angle. The flat output is the cartesian position of the UAV’s center of 
gravity, denoted as η = (x,y) , while the other model parameters can be written as: 

 3( )
=     =     ( ) = ( ) /

( )
cos

v tan ldet v
sin v

θ ηη φ ηη
θ

⎛ ⎞
± ⎜ ⎟

⎝ ⎠
  (89) 

These formulas show simply that θ is the tangent angle of the curve traced by P and tan(φ) is 
the associated curvature. With reference to a generic driftless nonlinear system 

 , ,n mq q R w R∈ ∈   (90) 

dynamic feedback linearization consists in finding a feedback compensator of the form 

 
= ( , ) ( , )
= ( , ) ( , )

q b q u
w c q d q u
ξ α ξ ξ

ξ ξ
+
+

  (91) 

with state ξ ∈ Rv and input u ∈ Rm, such that the closed-loop system of Eq. (90) and Eq. (91) 
is equivalent under a state transformation z = T(q, ξ) to a linear system. The starting point is 
the definition of a m-dimensional output η = h(q) to which a desired behavior can be 
assigned. One then proceeds by successively differentiating the output until the input 
appears in a non-singular way. If the sum of the output differentiation orders equals the 
dimension n + v of the extended state space, full input-state-output linearization is obtained 
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(In this case η is also called a flat output). The closed-loop system is then equivalent to a set 
of decoupled input-output chains of integrators from ui

 to ηi. The exact linearization 
procedure is illustrated for the unicycle model of Eq. (21). As flat output the coordinates of 
the center of gravity of the vehicle is considered η = (x,y). Differentiation with respect to 
time then yields (Oriolo et al. 2002), (Rigatos 2008) 
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= =
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θ ω
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  (92) 

showing that only v affects η , while the angular velocity ω cannot be recovered from this 
first-order differential information. To proceed, one needs to add an integrator (whose state 
is denoted by ξ) on the linear velocity input 
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= ,    = =
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cos
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sin
θ
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θ

⎛ ⎞
⇒ ⎜ ⎟

⎝ ⎠
  (93) 

where α denotes the linear acceleration of the UAV. Differentiating further one obtains 
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  (94) 

and the matrix multiplying the modified input (α,ω) is nonsingular if ξ ≠ 0. Under this 
assumption one defines 

 1
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η  is denoted as 
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2 2
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u
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  (96) 

which means that the desirable linear acceleration and the desirable angular velocity can be 
expressed using the transformed control inputs u1 and u2. Then, the resulting dynamic 
compensator is (return to the initial control inputs v and ω) 
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  (97) 

Being ξ∈R, it is n + v = 3 + 1 = 4, equal to the output differentiation order in Eq. (29). In the 
new coordinates 
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The extended system is thus fully linearized and described by the chains of integrators, in 
Eq. (29), and can be rewritten as 

 1 1

2 2

=
=

z u
z u

  (99) 

The dynamic compensator of Eq. (97) has a potential singularity at ξ = v = 0, i.e. when the 
UAV is not moving, which is a case never met when the UAV is in flight. It is noted 
however, that the occurrence of such a singularity is structural for non-holonomic systems. 
In general, this difficulty must be obviously taken into account when designing control laws 
on the equivalent linear model. 
A nonlinear controller for output trajectory tracking, based on dynamic feedback 
linearization, is easily derived. Assume that the UAV must follow a smooth trajectory 

(xd(t),yd(t)) which is persistent, i.e. for which the nominal velocity 
1

2 2 2= ( )d d dv x y+  along the 
trajectory never goes to zeros (and thus singularities are avoided). On the equivalent and 
decoupled system of Eq. (32), one can easily design an exponentially stabilizing feedback for 
the desired trajectory, which has the form 
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u x k x x k x x
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+ − + −

+ − + −
  (100) 

and which results in the following error dynamics for the closed-loop system 

 1 1

2 2

= 0

= 0
x d x p x

y d y p y

e k e k e

e k e k e

+ +

+ +
  (101) 

where ex = x − xd and ey = y − yd. The proportional-derivative (PD) gains are chosen as kp1 > 0 
and kd1 > 0 for i = 1, 2. Knowing the control inputs u1, u2, for the linearized system one can 
calculate the control inputs v and ω applied to the UAV, using Eq. (91). The above result is 
valid, provided that the dynamic feedback compensator does not meet the singularity. In 
the general case of design of flatness-based controllers, the following theorem assures the 
avoidance of singularities in the proposed control law (Oriolo et al. 2002): 
Theorem: Let λ11, λ12 and λ21, λ22, be respectively the eigenvalues of two equations of the 
error dynamics, given in Eq. (91). Assume that, for i = 1,2 it is λ11 < λ12 < 0 (negative real 
eigenvalues), and that λi2 is sufficiently small. If 
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with 0 = (0) 0x x ≠ε ε  and 0 = (0) 0y y ≠ε ε , then the singularity ξ = 0 is never met. 

6. Simulation tests 
6.1 Autonomous UAV navigation with Extended Information Filtering 
It was assumed that m = 2 helicopter models were monitored by n = 2 different ground 
stations. At each ground station an Extended Kalman Filter was used to track each UAV. By 

Distributed Particle Filtering over Sensor Networks for Autonomous Navigation of UAVs   

 

355 

fusing the measurements provided by the sensors mounted on each UAV, each local EKF 
was able to produce an estimation of a UAV’s motion. Next, the state estimates obtained by 
the pair local EKFs associated with each UAV were fused with the use of the Extended 
Information Filter. This fusion-based state estimation scheme is depicted in Fig. 2. As 
explained in Section 2 the weighting of the state estimates of the local EKFs was performed 
using the local information matrices. The distributed fitering architecture is shown in Fig. 9. 
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The IMU system provides measurements or the UAV’s position [x,y] and the UAV’s 
orientation angle θ over a sampling period T. These sensors are used to obtain an estimation 
of the displacement and the angular velocity of the UAV v(t) and ω(t), respectively. The IMU 
sensors can introduce incremental errors, which result in an erroneous estimation of the 
orientation θ. To improve the accuracy of the UAV’s localization, measurements from the 
GPS (or visual sensors) can be used. On the other hand, the GPS on this own is not always 
reliable since its signal can be intermittent. Therefore, to succeed accurate localization of the 
UAV it is necessary to fuse the GPS measurements with the IMU measurements of the UAV 
or with measurements from visual sensors (visual odometry). 
The inertial coordinates system OXY is defined. Furthermore the coordinates system O′X′Y′ 
is considered (Fig. 10). O′X′Y′ results from OXY if it is rotated by an angle θ. The coordinates 
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The extended system is thus fully linearized and described by the chains of integrators, in 
Eq. (29), and can be rewritten as 
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and which results in the following error dynamics for the closed-loop system 
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Fig. 10. Reference frames for the UAV 

the GPS or visual sensor that is mounted on the UAV, with respect to O′X′Y′ are ,i ix y′ ′ . The 
orientation of the GPS (or visual sensor) with respect to OX′Y′ is iθ′ . Thus the coordinates of 
the GPS or visual sensor with respect to OXY are (xi,yi) and its orientation is θi, and are given 
by: 
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For manoeuvres at constant altitude the GPS measurement (or the visual sensor 
measurement) can be considered as the measurement of the distance from a reference 
surface P j. A reference surface P j

 in the UAVs 2D flight area can be represented by j
rP  and 

j
nP , where (i) j

rP  is the normal distance of the plane from the origin O, (ii) j
nP  is the angle 

between the normal line to the plane and the x-direction. 
The GPS sensor (or visual sensor i) is at position xi(k),yi(k) with respect to the inertial 
coordinates system OXY and its orientation is θi(k). Using the above notation, the distance of 
the GPS (or visual sensor i), from the plane P j is represented by ,j j

r nP P  (see Fig. 10): 

 ( ) = ( ) ( ) ( ) ( )j j j j
i r i n i nd k P x k cos P y k sin P− −   (105) 

Assuming a constant sampling period Δtk = T the measurement equation is z(k + 1) = γ(x(k)) 
+ v(k), where z(k) is the vector containing GPS (or visual sensor) and IMU measures and v(k) 
is a white noise sequence ~N(0,R(kT)). 
By definition of the measurement vector one has that the output function is γ(x(k)) = 
[x(k),y(k), θ(k),d1(k)]T. The UAV state is [x(k),y(k), θ(k)]T and the control input is denoted by 
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U(k) = [v(k),ω(k)]T. To obtain the Extended Kalman Filter (EKF), the kinematic model of the 
UAV is linearized about the estimates ˆ( )x k  and ˆ ( )x k−  the control input U(k − 1) is applied. 
The measurement update of the EKF is 
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while Q(k) = diag[σ2(k),σ2(k),σ2(k)], with σ2(k) chosen to be 10−3 and ˆˆ ˆ ˆ( ( )) = [ ( ), ( ), ( )]Tx k x k y k kφ θ , 
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In the calculation of the observation equation Jacobian one gets 
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The UAV is steered by a dynamic feedback linearization control algorithm which is based 
the flatness-based control analyzed in Section 5: 
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Under the control law of Eq. (109) the dynamics of the tracking error finally becomes 
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= 0
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x d x p x

y d x p y
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e K e K e

+ +

+ +
  (110) 

where ex = x − xd and ey = y − yd. The proportional-derivative (PD) gains are chosen as Kp1 

and Kd1, for i = 1, 2. 
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Fig. 11. Autonomous navigation of the multi-UAV system when the UAVs state vector is 
estimated with the use of the Extended Information Filter (a) tracking of circular reference 
trajectory (b) tracking of a curve-shaped reference trajectory 

Results on the performance of the Extended Information Filter in estimating the state vectors 
of multiple UAVs when observed by distributed processing units is given in Fig. 11. Using 
distributed EKFs and fusion through the Extended Information Filter is more robust 
comparing to the centralized EKF since (i) if a local processing unit is subject to a fault then 
state estimation becomes is still possible and can be used for accurate localization of the 
UAV, as well as for tracking of desirable flight paths, (ii) communication overhead remains 
low even in the case of a large number of distributed measurement units, because the 
greatest part of state estimation is performed locally and only information matrices and state 
vectors are communicated between the local processing units, (iii) the aggregation 
performed on the local EKF also compensates for deviations in state estimates of local filters 
(which can be due to linearization errors). 

6.2 Autonomous UAV navigation with Distributed Particle Filtering 
Details on the implementation of the local particle filters are given first. Each local particle 
filter provides an estimation of the UAV’s state vector using sensor fusion. The UAV model 
described in Eq. (103), and the control law given in Eq. (109) are used again. 
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The measurement update of the PF is 
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 where the measurement equation is given by ˆ( ) = ( ) ( )z k z k v k+  

with z(k) = [x(k), y(k), θ(k), d(k)]T, and v(k) =measurement noise. 
The time update of the PF is 

=1
( ( 1)| ) = ( ( ))N i

k ii k
p x k Z w x k

ξ
δ+ ∑  where ( ( 1)| ( ) = )i i

k k
p x k x kξ ξ −+∼  

and the state equation is ˆ = ( ( )) ( ) ( )x x k L k U kφ− + , where φ(x(k)), L(k), and U(k) are defined in 
subsection 6.1. At each run of the time update of the PF, the state vector estimation ˆ ( 1)x k− +  
is calculated N times, starting each time from a different value of the state vector i

kξ . 
Although the Distributed Particle Filter can function under any noise distribution in the 
simulation experiments the measurement noise was assumed to be Gaussian. The obtained 
results are given in Fig. 12. 
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Fig. 12. Autonomous navigation of the multi-UAV system when the UAVs state vector is 
estimated with the use of the Distributed Particle Filter (a) tracking of circular reference 
trajectory (b) tracking of a curve-shaped reference trajectory 

In the simulation experiments it was observed that the Distributed Particle Filter, for  
N = 1000 particles, succeeded more accurate state estimation (smaller variance) than the EIF 
and consequently enables better tracking of the desirable trajectories by the UAVs. This 
improved performance of the DPF over the EIF is due to the fact that the local EKFs that 
constitute the EIF introduce cumulative errors due to the EKF linearization assumption 
(truncation of higher order terms in the Taylor expansion of Eq. (2) and Eq. (4)). Comparing 
to the Extended Information Filter, the Distributed Particle Filter demands more 
computation resources and its computation cycle is longer. However, the computation cycle 
of PF can be drastically reduced on a computing machine with a fast processor or with 



 Advanced Strategies for Robot Manipulators 

 

358 

Under the control law of Eq. (109) the dynamics of the tracking error finally becomes 
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Fig. 11. Autonomous navigation of the multi-UAV system when the UAVs state vector is 
estimated with the use of the Extended Information Filter (a) tracking of circular reference 
trajectory (b) tracking of a curve-shaped reference trajectory 

Results on the performance of the Extended Information Filter in estimating the state vectors 
of multiple UAVs when observed by distributed processing units is given in Fig. 11. Using 
distributed EKFs and fusion through the Extended Information Filter is more robust 
comparing to the centralized EKF since (i) if a local processing unit is subject to a fault then 
state estimation becomes is still possible and can be used for accurate localization of the 
UAV, as well as for tracking of desirable flight paths, (ii) communication overhead remains 
low even in the case of a large number of distributed measurement units, because the 
greatest part of state estimation is performed locally and only information matrices and state 
vectors are communicated between the local processing units, (iii) the aggregation 
performed on the local EKF also compensates for deviations in state estimates of local filters 
(which can be due to linearization errors). 

6.2 Autonomous UAV navigation with Distributed Particle Filtering 
Details on the implementation of the local particle filters are given first. Each local particle 
filter provides an estimation of the UAV’s state vector using sensor fusion. The UAV model 
described in Eq. (103), and the control law given in Eq. (109) are used again. 
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Fig. 12. Autonomous navigation of the multi-UAV system when the UAVs state vector is 
estimated with the use of the Distributed Particle Filter (a) tracking of circular reference 
trajectory (b) tracking of a curve-shaped reference trajectory 

In the simulation experiments it was observed that the Distributed Particle Filter, for  
N = 1000 particles, succeeded more accurate state estimation (smaller variance) than the EIF 
and consequently enables better tracking of the desirable trajectories by the UAVs. This 
improved performance of the DPF over the EIF is due to the fact that the local EKFs that 
constitute the EIF introduce cumulative errors due to the EKF linearization assumption 
(truncation of higher order terms in the Taylor expansion of Eq. (2) and Eq. (4)). Comparing 
to the Extended Information Filter, the Distributed Particle Filter demands more 
computation resources and its computation cycle is longer. However, the computation cycle 
of PF can be drastically reduced on a computing machine with a fast processor or with 
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parallel processors (Míguez 2007). Other significant issues that should be taken into account 
in the design of the Distributed Particle Filter are the consistency of the fusion performed 
between the probability density functions of the local filters and the communication 
overhead between the local filters. 
The simulation results presented in Fig. 12 show the efficiency of the Distributed Particle 
Filtering in providing accurate localization for the multi-UAV system, as well as for 
implementing state estimation-based control schemes. The advantages of using Distributed 
Particle Filtering are summarized as follows: (i) there is robust state estimation which is not 
constrained by the assumption of Gaussian noises. The fusion performed between the local 
probability density functions enables to remove outlier particles thus resulting in an 
aggregate state distribution that confines with accuracy the real state vector of each UAV. If 
a local processing unit (local filter) fails the reliability of the aggregate state estimation will 
be preserved (ii) computation load can be better managed comparing to a centralized 
particle filtering architecture. The greatest part of the necessary computations is performed 
at the local filters. Moreover the advantage of communicating state posteriors over raw 
observations is bandwidth efficiency, which is particularly useful for control over a wireless 
sensor network. 

7. Conclusions 
The paper has examined the problem of localization and autonomous navigation of a multi-
UAV system based on distributed filtering over sensor networks. Particular emphasis was 
paid to distributed particle filtering since this decentralized state estimation approach is not 
constrained by the assumption of noise Gaussian distribution. It was considered that m 
UAV (helicopter) models are monitored by n different ground stations. The overall concept 
was that at each monitoring station a filter should be used to track each UAV by fusing 
measurements which are provided by various UAV sensors, while by fusing the state 
estimates from the distributed local filters an aggregate state estimate for each UAV should 
be obtained. 
The paper proposed first the Extended Information Filter (EIF) and the Unscented 
Information Filter (UIF) as possible approaches for fusing the state estimates obtained by the 
local monitoring stations, under the assumption of Gaussian noises. It was shown that the 
EIF and UIF estimated state vector can be used by a flatness-based controller that makes the 
UAV follow the desirable trajectory. The Extended Information Filter is a generalization of 
the Information Filter in which the local filters do not exchange raw measurements but send 
to an aggregation filter their local information matrices (inverse covariance matrices which 
can be also associated to the Fisher Information matrices) and their associated local 
information state vectors (products of the local Information matrices with the local state 
vectors). In case of nonlinear system dynamics, such as the considered UAV models, the 
calculation of the information matrices and information state vectors requires the 
linearization of the local observation equations in the system’s state space description and 
consequently the computation of Jacobian matrices is needed. 
In the case of the Unscented Information Filter there is no linearization of the UAVs 
observation equation. However the application of the Information Filter algorithm is 
possible through an implicit linearization which is performed by approximating the 
Jacobian matrix of the system’s output equation by the product of the inverse of the state 
vector’s covariance matrix (Fisher information matrix) with the cross-covariance matrix 
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between the system’s state vector and the system’s output. Again, the local information 
matrices and the local information state vectors are transferred to an aggregation filter 
which produces the global estimation of the system’s state vector. 
Next, the Distributed Particle Filter (DPF) was proposed for fusing the state estimates pro- 
vided by the local monitoring stations (local filters). The motivation for using DPF was that 
it is well-suited to accommodate non-Gaussian measurements. A difficulty in implementing 
distributed particle filtering is that particles from one particle set (which correspond to a 
local particle filter) do not have the same support (do not cover the same area and points on 
the samples space) as particles from another particle set (which are associated with another 
particle filter). This can be resolved by transforming the particles set into Gaussian mixtures, 
and defining the global probability distribution on the common support set of the 
probability density functions associated with the local filters. Suitable importance 
resampling is proposed so as to derive the weights of the joint distribution after removing 
the common information contained in the probability density functions of the local filters. 
The state vector which is estimated with the use of the DPF was again used by the flatness-
based controller to make each UAV follow a desirable flight path. 
Comparing to centralized state estimation and control the proposed distributed state 
estimation and control schemes have significant advantages: (i) they are fault tolerant: if a 
local processing unit is subject to a fault then state estimation is still possible and accurate, 
(ii) the computation load is distributed between local processing units and since there is no 
need to exchange a large amount of information, the associated communication bandwidth 
is low. In the case of the Extended Information Filter and of the Unscented Information 
Filter the information transmitted between the local processing units takes the form of the 
information covariance matrices and the information state vectors. In the case of Distributed 
Particle Filtering the information transmitted between the local processing units takes the 
form of Gaussian mixtures. The performance of the Extended Information Filter and of the 
Distributed Particle Filter was evaluated through simulation experiments in the case of a 2-
UAV model monitored and remotely navigated by two local stations. 
Comparing the DPF to the EIF through simulation experiments it was observed that the 
Distributed Particle Filter, succeeded more accurate state estimation (smaller variance) than 
the EIF and consequently enabled better tracking of the desirable trajectories by the UAVs. 
This improved performance of the DPF over the EIF is explained according to to the fact that 
the local EKFs that constitute the EIF introduce cumulative errors due to the EKF 
linearization assumption. It was also observed that the Distributed Particle Filter demands 
more computation resources than the Extended Information Filter and that its computation 
cycle is longer. However, the computation cycle of the DPF can be drastically reduced on a 
computing machine with a fast processor or with parallel processors. Other issues that 
should be taken into account in the design of the Distributed Particle Filter are the 
consistency of the fusion performed between the probability density functions of the local 
filters and the communication overhead between the local filters. 
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parallel processors (Míguez 2007). Other significant issues that should be taken into account 
in the design of the Distributed Particle Filter are the consistency of the fusion performed 
between the probability density functions of the local filters and the communication 
overhead between the local filters. 
The simulation results presented in Fig. 12 show the efficiency of the Distributed Particle 
Filtering in providing accurate localization for the multi-UAV system, as well as for 
implementing state estimation-based control schemes. The advantages of using Distributed 
Particle Filtering are summarized as follows: (i) there is robust state estimation which is not 
constrained by the assumption of Gaussian noises. The fusion performed between the local 
probability density functions enables to remove outlier particles thus resulting in an 
aggregate state distribution that confines with accuracy the real state vector of each UAV. If 
a local processing unit (local filter) fails the reliability of the aggregate state estimation will 
be preserved (ii) computation load can be better managed comparing to a centralized 
particle filtering architecture. The greatest part of the necessary computations is performed 
at the local filters. Moreover the advantage of communicating state posteriors over raw 
observations is bandwidth efficiency, which is particularly useful for control over a wireless 
sensor network. 

7. Conclusions 
The paper has examined the problem of localization and autonomous navigation of a multi-
UAV system based on distributed filtering over sensor networks. Particular emphasis was 
paid to distributed particle filtering since this decentralized state estimation approach is not 
constrained by the assumption of noise Gaussian distribution. It was considered that m 
UAV (helicopter) models are monitored by n different ground stations. The overall concept 
was that at each monitoring station a filter should be used to track each UAV by fusing 
measurements which are provided by various UAV sensors, while by fusing the state 
estimates from the distributed local filters an aggregate state estimate for each UAV should 
be obtained. 
The paper proposed first the Extended Information Filter (EIF) and the Unscented 
Information Filter (UIF) as possible approaches for fusing the state estimates obtained by the 
local monitoring stations, under the assumption of Gaussian noises. It was shown that the 
EIF and UIF estimated state vector can be used by a flatness-based controller that makes the 
UAV follow the desirable trajectory. The Extended Information Filter is a generalization of 
the Information Filter in which the local filters do not exchange raw measurements but send 
to an aggregation filter their local information matrices (inverse covariance matrices which 
can be also associated to the Fisher Information matrices) and their associated local 
information state vectors (products of the local Information matrices with the local state 
vectors). In case of nonlinear system dynamics, such as the considered UAV models, the 
calculation of the information matrices and information state vectors requires the 
linearization of the local observation equations in the system’s state space description and 
consequently the computation of Jacobian matrices is needed. 
In the case of the Unscented Information Filter there is no linearization of the UAVs 
observation equation. However the application of the Information Filter algorithm is 
possible through an implicit linearization which is performed by approximating the 
Jacobian matrix of the system’s output equation by the product of the inverse of the state 
vector’s covariance matrix (Fisher information matrix) with the cross-covariance matrix 
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between the system’s state vector and the system’s output. Again, the local information 
matrices and the local information state vectors are transferred to an aggregation filter 
which produces the global estimation of the system’s state vector. 
Next, the Distributed Particle Filter (DPF) was proposed for fusing the state estimates pro- 
vided by the local monitoring stations (local filters). The motivation for using DPF was that 
it is well-suited to accommodate non-Gaussian measurements. A difficulty in implementing 
distributed particle filtering is that particles from one particle set (which correspond to a 
local particle filter) do not have the same support (do not cover the same area and points on 
the samples space) as particles from another particle set (which are associated with another 
particle filter). This can be resolved by transforming the particles set into Gaussian mixtures, 
and defining the global probability distribution on the common support set of the 
probability density functions associated with the local filters. Suitable importance 
resampling is proposed so as to derive the weights of the joint distribution after removing 
the common information contained in the probability density functions of the local filters. 
The state vector which is estimated with the use of the DPF was again used by the flatness-
based controller to make each UAV follow a desirable flight path. 
Comparing to centralized state estimation and control the proposed distributed state 
estimation and control schemes have significant advantages: (i) they are fault tolerant: if a 
local processing unit is subject to a fault then state estimation is still possible and accurate, 
(ii) the computation load is distributed between local processing units and since there is no 
need to exchange a large amount of information, the associated communication bandwidth 
is low. In the case of the Extended Information Filter and of the Unscented Information 
Filter the information transmitted between the local processing units takes the form of the 
information covariance matrices and the information state vectors. In the case of Distributed 
Particle Filtering the information transmitted between the local processing units takes the 
form of Gaussian mixtures. The performance of the Extended Information Filter and of the 
Distributed Particle Filter was evaluated through simulation experiments in the case of a 2-
UAV model monitored and remotely navigated by two local stations. 
Comparing the DPF to the EIF through simulation experiments it was observed that the 
Distributed Particle Filter, succeeded more accurate state estimation (smaller variance) than 
the EIF and consequently enabled better tracking of the desirable trajectories by the UAVs. 
This improved performance of the DPF over the EIF is explained according to to the fact that 
the local EKFs that constitute the EIF introduce cumulative errors due to the EKF 
linearization assumption. It was also observed that the Distributed Particle Filter demands 
more computation resources than the Extended Information Filter and that its computation 
cycle is longer. However, the computation cycle of the DPF can be drastically reduced on a 
computing machine with a fast processor or with parallel processors. Other issues that 
should be taken into account in the design of the Distributed Particle Filter are the 
consistency of the fusion performed between the probability density functions of the local 
filters and the communication overhead between the local filters. 
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1. Introduction 
Laparoscopic surgery is a technique where surgical tools and a laparoscope are inserted into 
the patient’s body through small holes in the abdomen, and the surgeon carries out the 
surgery while viewing the images from the laparoscope on a TV monitor (see Fig. 1(left)). 
Laparoscopic surgery has grown rapidly in popularity in recent years, not only because it is 
less invasive and produces less visible scarring, but also because of its benefits in terms of 
healthcare economy, such as shorter patient stays. The most important characteristic of this 
technique is that the surgeon performs the operation while watching the video image from 
the laparoscope on a monitor instead of looking directly at the site of the operation. Thus, an 
important factor affecting the safety and smoothness of the operation is the way in which 
the video images are presented in a field of view suitable for the surgical operation. 
Manipulation of the laparoscope is not only needed for orienting the laparoscope towards 
the parts requiring surgery, but also for making fine adjustments to ensure that the field of 
view, viewing distance and so on are suitable for the surgical operation being performed. A 
camera assistant operates the laparoscope according to the surgeon’s instructions, but must 
also make independent decisions on how to operate the laparoscope in line with the 
surgeon’s intentions as the surgery progresses. Consequently even the camera assistant that 
operates the laparoscope must have the same level of experience in laparoscopic surgery as 
the surgeon. However, not many surgeons are skilled in the special techniques of 
laparoscopic surgery. It is therefore not uncommon for camera assistants to be 
inexperienced and unable to maintain a suitable field of view, thus hindering the progress of 
the operation. To address this problem, laparoscope manipulating robots are expected as a 
substitute for the human camera assistant and have already been made commercially 
available (see Fig. 1(right)). However, there are several problems to be solved: 
1. Hardware problems: A large apparatus sometimes interferes with the surgeon. The 

setting and repositioning is awkward. Furthermore, the initial and maintenance costs 
are expensive. 
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1. Introduction 
Laparoscopic surgery is a technique where surgical tools and a laparoscope are inserted into 
the patient’s body through small holes in the abdomen, and the surgeon carries out the 
surgery while viewing the images from the laparoscope on a TV monitor (see Fig. 1(left)). 
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the laparoscope on a monitor instead of looking directly at the site of the operation. Thus, an 
important factor affecting the safety and smoothness of the operation is the way in which 
the video images are presented in a field of view suitable for the surgical operation. 
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the parts requiring surgery, but also for making fine adjustments to ensure that the field of 
view, viewing distance and so on are suitable for the surgical operation being performed. A 
camera assistant operates the laparoscope according to the surgeon’s instructions, but must 
also make independent decisions on how to operate the laparoscope in line with the 
surgeon’s intentions as the surgery progresses. Consequently even the camera assistant that 
operates the laparoscope must have the same level of experience in laparoscopic surgery as 
the surgeon. However, not many surgeons are skilled in the special techniques of 
laparoscopic surgery. It is therefore not uncommon for camera assistants to be 
inexperienced and unable to maintain a suitable field of view, thus hindering the progress of 
the operation. To address this problem, laparoscope manipulating robots are expected as a 
substitute for the human camera assistant and have already been made commercially 
available (see Fig. 1(right)). However, there are several problems to be solved: 
1. Hardware problems: A large apparatus sometimes interferes with the surgeon. The 

setting and repositioning is awkward. Furthermore, the initial and maintenance costs 
are expensive. 
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Fig. 1. Laparoscopic surgery. (left) Conventional laparoscopic surgery where the 
laparoscope is operated by a human camera assistant. (right) Robot-assisted surgery where 
the laparoscope is operated by a laparoscope manipulator. 
 

2. Software problems: It is difficult to build and implement the accurate laparoscope 
manipulating model and consequently the conventional systems may not always offer 
the optimal view that the surgeon wants. 

In this chapter, we will introduce a biologically inspired approach to the development of a 
new laparoscope manipulating robot to overcome those problems. 

2. Related works 
Laparoscope manipulators have been developed in the last fifteen years and there are at 
least 27 kinds of laparoscope controlling robots which are commercialized or published in 
refereed articles as of September 2009 (Taniguchi et al. (2010)). Some of them have already 
been made commercially available and are in widespread use. These include AESOP made 
in the US by Computer Motion Inc. (now known as Intuitive Surgical Inc.) (Sackier & Wang 
(1994)), EndoAssist made in the UK by Armstrong Healthcare Ltd. (now known as 
Prosurgics Inc.) (Aiono et al. (2002)), LapMan made in Belgium by Medsys s.a. (Polet & 
Donnez (2004)), and Naviot made in Japan by Hitachi Co.,Ltd. (Tanoue et al. (2006)). 
Although these commercialized manipulators have various merits such as stable view and 
reduction of need for medical staff, several problems have been noted. First, the bulky 
manipulator and the supporting arm often interfere with the surgical procedures. Second, 
the setting and detaching of the robot is frequently awkward, causing an extension of the 
time required for the operation. Furthermore, the initial and maintenance costs are 
expensive. In addition to such hardware problems, they usually must be controlled by the 
operating surgeon himself/herself using a human-machine interface such as an instrument-
mounted joystick, foot pedal, voice controller, or head/face motion-activated system. This is 
an additional task that distracts the surgeon’s attention from the main region of interest and 
may result in frustration and longer surgery time. 
To free the surgeon from the task of controlling the view and to automatically offer an 
optimal and stable view during laparoscopic surgery, several automatic camera positioning 
systems have been devised (Casals et al. (1996), Wei et al. (1997), Wang et al. (1998), 
Nishikawa et al. (2003), Ko & Kwon (2004), Nishikawa et al. (2006)). These systems visually 
extract the shape and/or position of the surgical instrument from the laparoscopic images in 
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real time, and automatically manipulate the laparoscope to always center the tip of the 
instrument in the displayed image. Such systems are based on the simple idea that the 
projected position of the distal end of the surgical tool corresponds to the surgeon’s region 
of interest in a laparoscopic image. Besides centering on the most interesting area, there is an 
additional and important factor that defines a good image of the surgical scene—zooming 
ratio (Nishikawa et al. (2008)) — that corresponds to the depth of insertion of the 
laparoscope along its longitudinal axis. The pioneering studies of fully automatic camera 
positioning systems defined the zooming ratio as a “uniform” function of the estimated 
distance between the tip of the tool and the laparoscope (Wei et al. (1997)) or the area ratio 
between the visible tool and the whole image (Casals et al. (1996)). Although these 
approaches may completely remove the surgeon’s camera control burden, they may not 
provide the specific view that the surgeon wants, because the most appropriate zooming 
ratio varies widely during surgery. The best zooming ratio depends on both the surgical 
procedure/phase and the habits/preferences of the operating surgeon. For this reason, most 
of the instrument tracking systems recently developed (Wang et al. (1998), Nishikawa et al. 
(2003), Ko & Kwon (2004), Nishikawa et al. (2006)) have abandoned the idea of systematic 
control of zooming parameters; instead, the surgeon is required to define the parameters 
preoperatively or adjust them intraoperatively through conventional human-machine 
interfaces, which again means an extra control burden for the surgeon. 

3. Hardware design: analogy to human muscular structure 
We developed a compact and lightweight robot manipulator, named P-arm (Sekimoto et al. 
(2009)), in collaboration with Daiken Medical Co., Ltd., Japan. 

3.1 Parallel mechanism 
There are several parallel robots (Kobayashi et al. (1999), Tanoue et al. (2006), Pisla et al. 
(2008)), which operates a laparoscope through the incision point on the abdominal wall of 
the patient. These systems have “less than 4” DOF and set up the laparoscope “outside” the 
parallel mechanism. Unlike the previous systems, the proposed manipulator is composed of 
a Stewart-Gough platform equipped with “six” linear actuators arranged in parallel 
“around” the laparoscope (see Fig. 2). This novel mechanism has an analogy to human 
muscular structure in which many extensors and flexors interact with each other; the rigid 
laparoscope corresponds to a bone of the human body and the linear actuators correspond 
to the muscles attached to the bone. This bio-inspired structure enables both the 
manipulator itself and the space necessary for operating the manipulator to be simple and 
small. The size of the P-arm is 120 mm in maximum diameter and 297.5 mm in length. 
Consequently, the manipulator can avoid interference with the surgeon’s work during 
surgery. The Stewart-Gough platform has 6 DOF, whereas laparoscope movements are 
kinematically restricted to 4 DOF, due to the constraints imposed by operating through the 
incision point. In our case, even when two of the six actuators stop and are dislocated, the 
manipulator works safely because the system uses the remaining four actuators to produce 
constrained 4 DOF motion. Thus, our laparoscope manipulating robot based on the use of 
Stewart-Gough platform architecture provides both flexibility and accuracy while 
maintaining safety. 
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                                        (a)                                                                            (b) 

Fig. 2. Compact and lightweight laparoscope manipulator, named P-arm. (a) The P-arm is 
composed of a Stewart-Gough platform equipped with six linear hydraulic actuators. (b) 
The P-arm can hold a general laparoscope and can be supported by the conventional 
instrument holder. 

3.2 Hydraulic actuators 
The “artificial” muscles of the manipulator, that is, the linear actuators, are driven by 
hydraulic pressure transmitted via tubes connecting to the water cylinders in the controller 
unit. The actuator, tube, and the cylinder containing water were assembled en bloc and 
packaged in sterilized condition for clinical use. Also, the materials that were as inexpensive 
as possible were selected for all the parts of the manipulator including the actuators among 
those suitable for medical use and sterilization. All of the previously developed robots had 
to be wrapped in a sterilized plastic bag preoperatively, because the robot itself was not 
suitable for sterilization. The proposed manipulator was designed to be disposable and to be 
provided in a sterilized condition to make the preparation for the operation easy and quick 
and lessen the maintenance cost of the robot. Furthermore, materials in the manipulator 
were also selected in consideration of their weight. The actuator, which was mainly made of 
polycarbonate, weighed only 30 g. In total, the manipulator weighed only 580 g. The light 
weight allows that the manipulator to be fixed to the operating table with a conventional 
slim instrument holder. This makes the setting and repositioning of the manipulator easier 
and quicker. Also, the operating table can be tilted without repositioning the manipulator. 
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The actuators are attached to the manipulator using a permanent magnet. Therefore, when 
excess force is applied to the manipulator, the actuator is readily dislocated so it does not 
injure the patient. In addition, even when two of the six actuators are dislocated, the 
manipulator works safely as discussed above. The dislocated actuators can be easily 
reattached to the manipulator. Furthermore, in the case of an emergency, the robot can be 
stopped promptly by the emergency stop system, which is controlled by a circuit 
independent of the operating system. 

3.3 Results 
The robot was evaluated by performing the following three types of operations using a 
living swine: a laparoscopic cholecystectomy, a laparoscopic anterior resection of the 
rectum, a laparoscopic distal gastrectomy (Sekimoto et al. (2009)). As a result, it worked 
steadily for all the operations, without interfering with the surgeon’s work (see Fig. 3). Also, 
 

 
 

    
Fig. 3. View of an in vivo experiment (laparoscopic cholecystectomy) using a living swine. 
The P-arm and its supporting arm were so small that they did not interfere with the 
surgeon’s work. 
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it contributed to shortening the setting and detaching time. The setting times were 66, 93, 
104 seconds and the detaching times were 24 and 17 seconds, respectively. Wagner reported 
the setting time of 2 minutes for AESOP and 5.3 minutes for EndoAssist (Wagner et al. 
(2006)). Compared with these results, the P-arm was considered to be superior. The facility 
of the system is essential for the robot to be accepted by surgeons. 

4. Software design: Use of biological fluctuation 
Recent studies revealed that biological systems did not require the precise environmental 
model but rather made use of “fluctuation” in order to adapt to the environment. This 
adaptation mechanism can be represented by the following equation (Kashiwagi et al. (2006)): 

 ( )dx f x activity
dt

η= × +  (1) 

where x  and ( )f x  are the state and the dynamics of the system, and η  indicates noise 
(fluctuation). A scalar variable activity indicates the fitness of the state x  to the environment 
and controls the behavior of the system. The term ( )f x  × activity becomes dominant in the 
above equation when the variable activity is large, and the state transition becomes 
deterministic. On the other hand, the noise η  becomes dominant when activity is small, and 
the state transition becomes probabilistic. If the function ( )f x  has several attractors, the 
state of the system x  is entrained into one attractor when activity is large, while the 
behavior of the system becomes like a random walk when activity is small. The variable 
activity is designed to be large (small) when the state x  is suited (not suited) to the 
environment. The function ( )f x  is designed to have several attractors and updated in real-
time based on the present activity information such that the state x  may efficiently become 
suited to the environment. As a result, the state of the system is entrained into an attractor 
that is suited to the environment and activity becomes large. Otherwise activity remains 
small and the system searches for a suitable attractor by a random walk. 
By letting the state x  be the desired position of the tip of the right-hand surgical instrument 
in terms of laparoscopic camera coordinates, we developed a novel laparoscope positioning 
system that did not require any precise camera manipulating models (Nishikawa et al. 
(2009a)). 

4.1 Design of activity 
In order to find the activity–the most important factor for offering the specific view that the 
surgeon wants during laparoscopic surgery, a number of in-vitro laparoscopic 
cholecystectomy tests were performed. For each test, a swine liver with a gallbladder was 
placed in a training box and the gallbladder was removed by an operating surgeon with the 
use of the laparoscope robot P-arm controlled through a joystick interface by a camera 
assistant (another surgeon). In order to gather the positional relationship between the right 
and left surgical instruments and the laparoscope during surgery, a 3D tracking system 
(Polaris Accedo, NDI Corporation) was used. As a result, it was found that the velocity of 
the tip of the left-hand instrument and the velocity of the tip of the laparoscope had a high 
correlation (the cross correlation coefficient between the two was +0.765, (Nishikawa et al. 
(2009b))). We hypothesized that, at least in case of laparoscopic cholecystectomy, the camera 
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assistant changed the field of view when the magnitude of the acceleration of the tip of the 
left-hand instrument was large, and employed the following equation as the activity: 
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where i means time, N indicates the positive number for calculating the moving average. vi 
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K(> 0) is a threshold value. 

4.2 Design of attractors 
In Eq. 1, ( )f x  must have several attractors. Fukuyori et al. (2008) pointed out that the 
attractor should be adaptively allocated where the activity becomes large. Based on this 
concept of “adaptive attractors”, we regard the position of the tip of the right-hand 
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where i means the present time, N indicates the positive number for calculating the moving 
average. The vector jr  represents the position of the tip of the right-hand instrument at time 
j. A, B, and C are all the positive constants: the parameters A and B respectively set the range 
and power of attractors, and the parameter C(<1) indicates a forgetting factor. M(>0) is a 
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4.3 Results 
We implemented this bio-inspired method on our robotic laparoscope positioner described 
in section 3. Fig. 4 shows the overview of our automatic laparoscope positioning system. The 
position/pose of the three tools: the right and left instruments and the laparoscope can be 
obtained simultaneously by the commercial 3D tracking system, Polaris Accedo (NDI 
Corporation) (See Blasinski et al. (2007) and Nishikawa et al. (2008) for the details). Then 
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assistant changed the field of view when the magnitude of the acceleration of the tip of the 
left-hand instrument was large, and employed the following equation as the activity: 
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4.3 Results 
We implemented this bio-inspired method on our robotic laparoscope positioner described 
in section 3. Fig. 4 shows the overview of our automatic laparoscope positioning system. The 
position/pose of the three tools: the right and left instruments and the laparoscope can be 
obtained simultaneously by the commercial 3D tracking system, Polaris Accedo (NDI 
Corporation) (See Blasinski et al. (2007) and Nishikawa et al. (2008) for the details). Then 
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Fig. 4. Overview of automatic laparoscope positioning system. The proposed system uses 
“fluctuation” to determine and update in real-time the desired position of the tip of the 
righthand instrument, x , during surgery. 

both ir  (the position of the tip of the right-hand instrument) and iv  (the velocity of the tip of 
the left-hand instrument) are estimated in terms of laparoscopic camera coordinates, and 
activity and ( )f x  are calculated from Eqs. 2 and 5 respectively. As a result, we can 
determine and update also in real-time the desired position of the tip of the right-hand 
instrument, x , during surgery, by substituting the resulting values: activity and ( )f x  into 
Eq. 1 and solving the Eq. 1 numerically (e.g., by the Runge-Kutta method) under the initial 
condition given by Eq. 6. 
To validate the proposed system, a number of in-vitro laparoscopic cholecystectomy tests 
were performed. For each test, a swine liver with a gallbladder was placed in the training 
box and the gallbladder was removed by an operating surgeon with the support of the 
laparoscope robot P-arm controlled by Eq. 1. As a result, our system successfully and 
automatically controlled the position of a laparoscope during all the operations (Figs. 5–10). 

5. Concluding remarks 
A compact and lightweight laparoscope manipulator was developed. Also, a novel method 
for controlling the position of a laparoscope was inspired by biological systems dynamics. 
Our approach opens potential applications to skill transfer and adaptive behavior in 
medicine. 
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Fig. 5. View of an in vitro experiment (laparoscopic cholecystectomy) using a swine liver 
with a gallbladder (1/6). (left) a surgeon and the laparoscope robot P-arm, (mid) image from 
the laparoscope, (right) visualization of attractors as the contour map on the image plane. 
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Fig. 5. View of an in vitro experiment (laparoscopic cholecystectomy) using a swine liver 
with a gallbladder (1/6). (left) a surgeon and the laparoscope robot P-arm, (mid) image from 
the laparoscope, (right) visualization of attractors as the contour map on the image plane. 
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Fig. 6. View of an in vitro experiment (laparoscopic cholecystectomy) using a swine liver 
with a gallbladder (2/6). (left) a surgeon and the laparoscope robot P-arm, (mid) image from 
the laparoscope, (right) visualization of attractors as the contour map on the image plane. 
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Fig. 7. View of an in vitro experiment (laparoscopic cholecystectomy) using a swine liver 
with a gallbladder (3/6). (left) a surgeon and the laparoscope robot P-arm, (mid) image from 
the laparoscope, (right) visualization of attractors as the contour map on the image plane. 
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Fig. 6. View of an in vitro experiment (laparoscopic cholecystectomy) using a swine liver 
with a gallbladder (2/6). (left) a surgeon and the laparoscope robot P-arm, (mid) image from 
the laparoscope, (right) visualization of attractors as the contour map on the image plane. 
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Fig. 7. View of an in vitro experiment (laparoscopic cholecystectomy) using a swine liver 
with a gallbladder (3/6). (left) a surgeon and the laparoscope robot P-arm, (mid) image from 
the laparoscope, (right) visualization of attractors as the contour map on the image plane. 
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Fig. 8. View of an in vitro experiment (laparoscopic cholecystectomy) using a swine liver 
with a gallbladder (4/6). (left) a surgeon and the laparoscope robot P-arm, (mid) image from 
the laparoscope, (right) visualization of attractors as the contour map on the image plane. 
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Fig. 9. View of an in vitro experiment (laparoscopic cholecystectomy) using a swine liver 
with a gallbladder (5/6). (left) a surgeon and the laparoscope robot P-arm, (mid) image from 
the laparoscope, (right) visualization of attractors as the contour map on the image plane. 
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Fig. 8. View of an in vitro experiment (laparoscopic cholecystectomy) using a swine liver 
with a gallbladder (4/6). (left) a surgeon and the laparoscope robot P-arm, (mid) image from 
the laparoscope, (right) visualization of attractors as the contour map on the image plane. 
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Fig. 9. View of an in vitro experiment (laparoscopic cholecystectomy) using a swine liver 
with a gallbladder (5/6). (left) a surgeon and the laparoscope robot P-arm, (mid) image from 
the laparoscope, (right) visualization of attractors as the contour map on the image plane. 
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Fig. 10. View of an in vitro experiment (laparoscopic cholecystectomy) using a swine liver 
with a gallbladder (6/6). (left) a surgeon and the laparoscope robot P-arm, (mid) image from 
the laparoscope, (right) visualization of attractors as the contour map on the image plane. 
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• Reusability is an issue that should be addressed from the beginning of the development 
process, identifying common problems that could be solved with reusable solutions and 
shared within the robotics community. 

• Extensibility to change or add several component (of hardware or software) to the 
system from different vendors. 

• Adaptability/dynamic reconfigurability, providing mechanism of easy adaptation of its 
parameters according to the application requirements. 

• Interoperability refers to the ability to support interchange of information between 
robotic modules designed by different vendors, providing effective communication and 
working in a coordinated manner. In particular it relies on the network and 
communication protocols that must provide effective real-time communication among 
distributed components, independently of the system specific particularities. 

Diverse approaches have been proposed to achieve these capabilities. Some solutions use 
Matlab/Simulink and Real Time Workshop to generate control applications for robotic 
systems with a proprietary operating systems (Gamez et al., 2007), but with the 
disadvantage of a limited interoperability. Today, most of the research and robotic 
applications developed based on proprietary hardware used a layered software architecture. 
This approach typically includes a standard based middleware to provide integration, 
efficient communication, interoperability, abstraction of software components, also 
providing portability. At the top level different reusable software components are used. In 
the low level layer, the hardware is controlled by drivers developed to run on a proprietary 
RTOS. However, since last decade, developers have a growing interest on developing open 
source applications based on Linux RTOS. Thus, vendors are offering commercial-grade 
Linux operating systems (Saravanan et al., 2009; Gamez et al. 2009). 
Another approach based on hardware modularity can support integration of new 
components from various vendors. The corresponding software must provide a well 
defined interface to provide easily integration between interconnected devices, and the 
capabilities of extensibility and modification (Xuemei & Liangzhong, 2007). 
As the hardware is always vendor-dependent, the integration of different devices may be 
difficult due to incompatibility reasons. To overcome this problem, some hardware 
standards have been proposed, however this method is considered too restrictive to achieve 
reusability of existing hardware (Hong et al. 2001). 

1.2 Related research 
In recent years, an increasing number of initiatives have been presented: 
• OROCOS (Open Robot Control Software) project (OROCOS, 2010), is a European 

initiative for providing free software project to develop advanced robotics applications. 
The project supports different C++ libraries for creating control applications over 
different proprietary operating systems (e.g. Win32, Mac OS). Also includes the Real-
Time Toolkit (RTT) library for writing hard real-time control applications in C++ for 
Linux based systems, and tools from contributors to generate components using Real-
Time Workshop from Matlab/Simulink. To achieve reusability, the framework 
supports standard component interfaces and CORBA for interoperability between 
distributed components over a network. Some others not real-time projects have 
derived from OROCOS, like ORCA (ORCA, 2010) and SmartSOFT (Schlegel, 1999). 

• RT-Middleware (from Robot-Technology) (Ando et al., 2006; Chishiro et al. 2009) is a 
CORBA based software platform for robot system integration developed in Japan, with 
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the participation of the Japan Robot Association (JARA). One of the objectives of the 
project is to simplify the construction of customized robot combining selected RT-
components. In recent years, the Object Management Group (OMG) (OMG, 2008) 
started a standardization process for these RT-components to achieve interoperability, 
interconnectivity and integration of components from different manufacturers.  

• In Korea, the Open Platform for Robotic Services (OPRoS) (Park & Han, 2009) is another 
open software project promoted to unify different robots platforms. The framework 
includes standardized components, an integrated development environment (IDE) and 
a simulation and testing environment. OPRoS supports CORBA and the Universal Plug 
and Play (UPnP) (Ahn et al., 2006) standards for modular integration. The operational 
scheme employs a server-client model to interact with the robot system as a target 
robot, and external servers for heavy computation.  

• The Coupled Layered Architecture for Robotic Autonomy (CLARAty) (Nesnas et al., 
2003) was initiated in the NASA to provide a software framework to develop advanced 
robotic technologies for robotic platforms employed in other NASA programs. Unlike 
others architectures, CLARAty is a two-level architecture were the system 
decomposition allows for intelligent behavior at low levels while the structure of the 
different levels is maintained. In this scheme, the high level Decision Layer sends 
command to the Functional Layer and in a client-server model, and the Functional 
Layer provides different levels of abstractions to achieve adaptation of the reusable 
components to the hardware of different robots. Also, the Decision Layer provides a 
unified representation of activity plans based on a declarative model. 

• For the Mobile and Autonomous Robotics Integration Environment (MARIE), the main 
goal was to provide a common component-based middleware to reuse and interconnect 
different programming environments (Cote et al., 2006). The framework followed a one-
to-many interaction model between different components to coordinate the interaction 
within a virtual shared space, and allowing each component to use its own 
communication protocol. 

• MIRO (Utz et al., 2002) is a CORBA based middleware organized in three layers: a 
device layer provides object-oriented interface abstraction for the hardware, and a 
service layer provides CORBA interface services between the device layer and the top 
layer. This layer provides reusability and easy integration in an object oriented 
framework. 

• In recent years, several RT-Linux based open projects are developed: RTOC (Xu & Jia, 
2006) is a RT-Linux based architecture based upon the OSACA model (OSACA, 1996) 
that can be ported to not PC-based platforms. In its layered model, a database stores 
universal application modules for control, path planning, etc. Other Linux based 
platforms use ST-RTL to generate control applications from Simulink models 
(Ostrovrsnik et al., 2003). Xenomai (Xenomai, 2010) is another Linux-based Real Time 
operating system used to develop robot control systems using open source and 
standardized communications protocols (Sarker et al. 2006). 

The remainder of this paper is organized as follows. Firstly, a brief explanation of the 
necessity of these platforms is introduced in Section 2. Later, Section 3 describes the 
hardware structure. In this section the main characteristics of both hardware configurations 
are presented. In Sec. 4, the software structure is presented, while Sec. 5 presents 
experimental results which validate the performance of the proposed architecture. Finally, 
Discussions and Conclusions are presented in Section 6 and 7, respectively. 
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2. Why the necessity of these robotic platforms 
It has been long recognized that multisensor-based control is an important problem in 
robotics (Gamez et al. 2008), the need to take advantage of multiple sensors in controlling a 
system becomes increasingly important. On the other hand, to the purpose of getting an 
adequate interaction between the manipulator and its environment, force/position feedback 
control is necessary, above all, if the environment where the robot wants to interact is 
unknown or changing (Gamez et al., 2005). In general, given the classical hierarchical 
control structure of a robot microcomputer controller (Groover, 2008) (Fig. 1), the 
possibilities of control or the integration of new sensors into the setup, are not offered 
nowadays by the robot manufacturers. 

 
Fig. 1. Classical hierarchical control structure of a robot microcomputer controller. 

A representative example of implementation of a force/position controller could be the 
impedance controller (Hogan, 1985). The purpose is to ensure that the manipulator is able to 
operate in a non-ideally structured constrained environment while maintaining contact 
forces within suitable limits. A description of this system is sumarized in fig. 2: 
 

 
Fig. 2. Impedance controller structure. 

However, an intrinsic problem occurs when trying the application of this control algorithm, 
if only a wrist force sensor has been used, in a dynamic situation, where the manipulator is 
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moving in either free or constraint space, the interaction forces and moments at the contact 
point, and also the noncontact ones, are measured by this sensor (Gamez et al., 2004). 
Furthermore, the magnitude of these dynamics disturbances cannot be ignored when large 
accelerations and fast motions are considered (Khatib & Burdick, 1986), when the 
manipulator carries out tasks with heavy tools (Johansson & Robertsson, 2003), or when the 
environment is not perfectly known (not allowing the use of switching strategies that 
compensate for the free space phase).  
To solve this problem, the integration of different sensors such as a force/torque and a 
acceleration sensor could be use to solve this problem (Gamez et al., 2008; Kroger et al., 
2007); however, fusion of data from multiple sensors into a robust and consistent model 
meets some difficulties such as measurements with different time bases (Luo et al., 2002) or 
noise and incompleteness of sensor data (Larsson et al., 1996). Another problem could be to 
easily connect these sensors, which are from diverse manufacturers, to the hardware setup 
(Gamez et al. 2009). 
Thus, observing these problems, it can be guessed why a complex dynamic system, such as 
robotic manipulator, is demanding new and highly sophisticated capabilities that traditional 
control technology of current industrial robots is not offering (Wills et al., 2001). 

3. Hardware elements of the platform 
This section describes the hardware components that convert this platform in a non-
conventional one from an industrial point of view. Also, we will describe the necessity of 
these elements that were used to test and validate new control concepts for manipulators 
that interacts with an unknown environments. In this point, it is necessary to point out that 
two different hardware configurations, and thus two software structure, were carried out. In 
both cases, the experimental setup contained the following elements: an anthropomorphic 6-
DOF Stäubli RX60 industrial manipulator and a CS8 controller, a Phantom 6D Haptic 
Device, a vision system composed of two cameras, a 6-DOF ATI wrist force/torque sensor, a 
3-DOF capacitive accelerometer , a 3-DOF gyroscope, a special purpose end effector and the 
teach pendant, an acquisition board integrated in the robot controller, a workcell and a 
number PCs to mainly develop software and to collect data. 

3.1 Old hardware configuration 
Initially we designed a hardware scheme that had the structure shown in Figure 3 (Gamez 
et al., 2009). 
The kernel of this architecture is the CS8 controller PC. It is in charged of the high-level 
operations (execution of the path planner, trajectory generation, sercos communication, etc.), 
and also of reading external sensors such us the wrist force and torque sensor or the 
acceleration sensor. These elements were connected to the open PCI slot in the controller PC. 
With this structure, software modules for collecting data where mainly resident in this PC. 
The main advantage of using a PC-based standard interface is that it ensures that the 
extensibility and scalability are available. Therefore, the hardware and software components 
can be integrated or replaced easily. 
Due to proprietary reasons, the operating system running on this PC is VxWorks (Wind-
River, 2005), which allows easy integration of many commercially available add-on 
peripherals such as acquisition boards, ethernet boards, etc.. It also provides deterministic 
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River, 2005), which allows easy integration of many commercially available add-on 
peripherals such as acquisition boards, ethernet boards, etc.. It also provides deterministic 
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context switching, timeliness, support for open standard. The external sensors used to 
model the environment, and thus to make the robot capable of interacting with it, are: a ATI 
wrist force/torque (f/t) sensor (MINI SI80-4) where the f/t strain gauge signals are 
conditioned using an intermediate module, called supply board, and later transmitted 
through a DAQ acquisition board which processes the strain gauge information and offers it 
through the PCI slot. A 3D accelerometer, which was attached to the end-effector of the 
manipulator and a 3D gyroscope of CFX Technology (an UCG-TX model). These two last 
sensors were also read by the same acquisition board. 
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Fig. 3. Hardware configuration for the old system. 

Regarding the vision system, the cameras are connected directly to a dedicated computer 
vision PC. Later, the image is processed and the required information -normally a vector 
with coordinates of positions and orientations- sent to the controller PC through ethernet. 
The haptic device is a PHANTOM 3/6DOF with six degrees of freedom in position and 
force feedback in three translational degrees of freedom. The 3.0/6 DOF has a range of 
motion approximating full arm movement pivoting at the shoulder. This device is connected 
to an extra PC via the parallel port (EPP) interface. The sample time of the haptic device is 
higher than the controller loop (1 Khz against 250 Hz.), and since there is no physical 
distance between them, the delay is one controller sample time at maximum. The 
bandwidth of all the mentioned sensors apart from the vision sensor is 250 Hz. This sample 
time has been chosen in order to synchronize the sensor readings with the robot control 
loop. The bandwidth of the vision sensor is smaller (around 30 Hz), because of the high 
computational effort required and the camera speed. Shortly, we are going to change these 
cameras to new ones with a bandwidth of 120 frames/sec. 
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3.2 New hardware configuration 
The main drawbacks that can be found in the former robotic system are: 
• The master PC, where a huge number of applications are running -sensor readings, 

control algorithm execution, robot movements- , is placed in the controller PC, so this 
structure is subject to a PC that in few years is antiquated and cannot be changed 
(without the manufacturer collaboration). 

• A great part of the code running in the controller is unknown -belongs to the 
manufacturer- and sometimes it occurs problems because of the inconsistency between 
the original code and the experimental one (as uncontrolled modifications of some 
common data). These problems are difficult to solve, again, without a close 
collaboration with the manufacturer. Also, while the experimental code is more 
complex and bigger, the inconsistencies are more probable. 

• The time synchronization is easier and more robust if we have an external master PC that 
configures and controls all the sensors, the control algorithms and the actuation system. 

To solve the problems that the first configuration presented, a new hardware and software 
structure is being developed. Similar to first one, the main difference can be found in where 
the main executions are carried out. Figure 4 shows a scheme of this new configuration. 
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Fig. 4. Hardware configuration for the new system. 

With respect to the old system, this new system introduces the following changes: 
• The operating system is based on LINUX with a real time framework called XENOMAI 

(Xenomai, 2010). 
• The vision sensors are read through a IEEE 1394 port placed in the master PC. From the 

experimental tests, it was checked that the computational effort required by a normal 
vision system processing does not bother to the rest of the tasks. 

• The haptic device is connected directly to the Master PC through a parallel port. 
• The external sensors, i.e. the wrist force sensor, the accelerometer, or other sensors, are 

connected to a Data Acquisition Board plugged into a PCI slot of the Master PC. 

4. Software structure 
In this section, we describe a component-based control software architecture developed in 
order to get a robust and easy-to-maintain experimental robotic platform. Two fundamental 
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In this section, we describe a component-based control software architecture developed in 
order to get a robust and easy-to-maintain experimental robotic platform. Two fundamental 
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goals were established for the architecture: first, it should standardize functions that are 
common across sensors and open robotic platforms; second, the architecture should enable 
design by composition. Since the most interesting configuration is the new one, we limit this 
section to its the description. Further information about the old software configuration can 
be found in (Gamez et al. 2010). 

4.1 Layer architecture and component definitions 
Although the software structure of the experimental setup contains basically two PCs: the 
master PC and the controller PC, it consists of a hierarchy of components that are divided 
into four main layers proposed originally by (Nilsson & Johansson, 1999): lowest layer, 
middle layer, high layer and end-user layer. Each layer contains different types of 
components, which are classified depending on their functionality (Fig. 5). This components 
are related, in the major cases, to a block or system of the hardware structure. The four 
layers are: 
1. Lowest layer: whose components correspond to those ones closer to the physical 

environment. Examples are the different sensor components or the joint control 
components. 

2. Middle layer: Components can use the information of the lowest layer and the high 
layer. Examples could be a virtual sensor component or a manipulator control 
component. 

3. High layer: Trajectory generator components. 
4. End-user layer: Task planner components. 

 
Fig. 5. Structure of the components developed for the platform. 
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The end-user layer describes the task to be carried out in terms of final positions, 
orientations and velocities of the robot end-effector. Different components have been 
developed and they are used depending if the task to be carried out is in open space, with 
constraint motion or with both. In addition, another component has been designed which is 
in charge of controlling the haptic device. The inputs to the components of this layer can be 
the reference position-orientation of the robot TCP, the desired contact forces exerted by the 
manipulator to the environment or even vision features. Currently, these inputs can only be 
defined off-line, not taking the most significant advantage of on-line programming, that is, 
the robot can be programmed in accordance with the actual position of equipment and 
pieces of these modules. 
The high-level layer is compound basically of two components with the functions of a path 
planner. This planner generates trajectory set points for the robot, according to motion 
command which it receives from task specification. The commands these components offer 
to their lower layer can be either the joints trajectory or the Cartesian trajectory of the robot 
end-effector. It is necessary to point out that both the original task planning and the original 
trajectory generator developed by Stäubli were not used in this platform due to proprietary 
reasons. For our applications, the components designed for the special-purpose planner 
calculate the joint coordinates from the Cartesian references solving the inverse kinematics 
on line (Gamez, 2006). In this sense, a second component has been developed to reduce the 
computational cost of the previous block if necessary. Specifically, it consists of the 
decomposition of the robot geometric structure into two subsystems: one for position and 
one for orientation. This option offers an analytic solution that simplifies the singularities 
problem. Furthermore, a number of restrictions have been imposed to prevent special 
singularities such as shoulder and wrist ones. Although the developed trajectory is not 
robust, the resultant workspace is acceptable for most of the practical cases. Currently, these 
components are used from the former configuration and, in the future, we expect to 
improve them using more sophisticated trajectory generators than can be found, for instant, 
in (Bruyninckx, 2001). 
For the middle-level layer, and from an engineering point of view, we note that tailoring the 
motion control requires control engineering competence while application support does not 
(Nilsson & Johansson, 1999). Although is therefore reasonable and appropriate to define two 
different sub-layers for these types of programming: application control layer, (movement 
constraints, tool mass, etc.) and control layer (to configure the control loop, tunes the gains, 
etc.), this level is built, on the one hand, using manipulator control components. On the 
other hand, other kind of components that are used in this layer are the virtual sensor 
components. These elements allowed the application of sensor fusion strategies in a 
structured way. Both components are designed with Simulink and the Real Time Toolboox 
of Matlab. 
Using the property that any Simulink control model is an interconnection of signals 
(reference commands, position feedback, velocity feedback, torque feedback, sensors 
feedback) and mathematical operations, a generic block has been designed with a 
predefined number of inputs and outputs. Inside each block, one can implement different 
control algorithms, or sensor fusion strategies, combining a high-performance language for 
technical computing with a fast prototyping of the robotic platform since all the inputs and 
outputs are readable and writable. 
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In the lowest layer dedicated to the sensor, each one is modeled by a component that 
contains basically two parts: one is for data structure building and the other is for sensory 
data sharing. One of the function of the sensor components is to process the information of a 
specific sensor and to provide a unified sensory data bank manager. The main advantage of 
this manager is that it can directly offer the calibrated sensor data. Furthermore, sensor data 
must be shared with every necessary function in the software architecture. Another 
important function of the sensor components, and on the rest of components, is to stamp a 
time when a set of measurements, or interaction, is obtained. It helps to obtain a history of 
the events. 

 
Fig. 6. Low level structure of the joint controllers. 

Regarding the joints control sub-layer, it uses a low level interface designed by Stäubli 
Robots (Pertin & Bonnet, 2004); in fact, this is the only software module that remains from 
the original Stäubli system. This level obeys the structure presented in Fig. 6 and its mission 
is to allow the low level control of each joint. Although three different components were 
defined in the previous software structure (given their possibility of control: torque, position 
and velocity controller), only a generic one is considered in this structure. This sub-layer is 
placed currently in the robot controller PC and we are working on how to define the 
component automatically -in terms of torque, position or velocity-, given the programming 
of manipulator control component. 

4.2 Middleware 
In our case, we have to different software contexts: this one placed at the controller PC and 
the second one running on the master PC. In the controller PC, where the component of the 
joints control sub-layer is running, to guarantee that the shared memory constraints are 
fulfilled, the system has to protect itself from invalid memory accesses that otherwise could 
compromise the system. 
In this case, to avoid this problem, between the component and the monitoring task, the 
tasks are synchronized following a structure "top to bottom" where the maximum priority is 
given to the joints control task. The operating system running on this PC was VxWorks 
(Wind-River, 2005). 
Another problem was to synchronize different components that are placed in a master PC 
with interconnections with external systems and a Real Time Linux operating system. The 
solution selected was to choose XENOMAI (Xenomai, 2010) with the RTNet (Real Time 
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Network) package. For our case, the synchronization scheme is not based on a master clock 
(as it was in the former configuration, where the it followed a "top to bottom" structure). 
Each component has its own clock, updating data with their respective bandwidth. 
Currently, we are implementing a middleware using concepts similar to those ones defined 
in OROCOS project (Bruyninckx, 2001). In a middle-long term, our intention is to obtain a 
user-friendly API that allows fast and easy prototyping. Figure 7 shows the block diagram 
of the hardware and software communications differentiating between the master PC and 
the controller PC. It can be guessed from this figure that each component communicates 
with other ones mainly through shared memory, or through Ethernet depending on where it 
is placed. 
 

 
Fig. 7. Block diagram of the hardware-software communications. 

5. Experimental validation 
Different experiments have been carried out to validate the performance of the proposed 
architecture, noting that these results are obtained from the old hardware configuration. 
They consisted in the application of a compliant motion controller where the environment 
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information was obtained fusing different sensors. In particular, for the case shown in this 
paper, the sensors used were a force/torque sensor, an accelerometer and the joint sensors. 
The objective of this integration was to develop a force observer capable of estimating, 
accurately and from the f/t sensor measurements -which reflect the contact forces, the 
inertial ones and the gravity forces- , the contact force exerted by a manipulator to its 
environment (Gamez et al., 2008). 
To carry out this test, some of the components that were described before in the previous 
section were used. 
 

 

 
Fig. 8. Force measurement from the wrist sensor ATI (upper-left), force observer output  
(upper-right), accelerometer output (lower-left) and real and measured position of the robot 
tip for y-axis (lower-right). 

The results obtained applying the force/position controller, where the information of the 
force observer is used, are presented in Fig. 8. The experiment consisted of a movement in 
the axis z of three phases: an initial movement in free space (from t =5s to t = 6.2s), a contact 
transition (from t =6.2s to t = 6.4s) and a movement in constrained space (from t =6.4s to t = 
9s). Apart from the force compensation shown in Fig. 8, it can be also compared how the 
observer eliminates the inertial effects and the noise introduced by the sensors. Note the 
time lag between the filtered signal and the original one. It was because the selection of the 
gains made the poles of observer to be quite near the unit-circle (Gamez, 2006). The force 
control loop applied was an impedance controller (Hogan, 1985). 

Open Software Architecture for Advanced Control of Robotic Manipulators   

 

393 

6. Discussion 
The construction of the open robotic system developed in the framework of this work was 
necessary because, as it is well known, industrial manipulators do not offer, with an 
appropriate bandwidth, the possibility of integrating either advanced control algorithms or 
new sensors into the software-hardware architecture. This fact forced the research 
community to extend an industrial manipulator architecture in order to get a completely 
open one in both senses: hardware and software. 
The proposed platform was designed considering a multi-layer structure that simplified the 
integration of external functionality in several ways. The first one consisted of offering 
different interfaces where the user was capable of reading all the parameters and variables, 
besides modifying the commanded signals, with a considerable bandwidth. The second one 
pretended to avoid the limitation of the industrial robots where the current methodology is 
to control exclusively the position without considering high level strategies for task decision 
making, or without taking into account new sensors that could improve the environment 
modelling. 
Certainly, a pending aspect of this platform is the the man-machine interaction. New 
solutions in the area of software technology have to be included in order to create a more 
friendly-interface that permits to modify easily the requirements of the system, especially 
for the experiment generation. Perhaps, creating pseudo intelligent task interpreters, as a 
experimental interface, will play an important role. 
Furthermore, it has to be pointed out that the design solutions have been driven following a 
trade-off between mass products (paying attention to the cost) and standardization 
requirements (leading edge technology). 
On the other hand, the proposed architecture was based on consolidated open robotic 
platforms, specially on those ones developed in Lund University (Sweden) and Leuven 
University (Belgium). These platforms have been developed during several decades and 
have accumulated a great deal of experience, representing an excellent paradigm for initial 
developments. In addition, a narrow collaboration with the company of the manipulator 
robot has existed, what allowed access to internal functions and hardware what would be 
impossible in other conditions. 
To conclude this section, the development of this kind of platforms does not only prove to 
be useful for testing advance control algorithms, but also it is necessary to emphasize the 
necessity of building such systems since, from a robotic research point of view, and mainly, 
from a robotic manufacturers overview, it helps to increase the development speed opening 
up the systems for third party. 

7. Conclusions 
This work describes an experimental platform that allows the implementation of model-
based and sensor-based control algorithms in robotic manipulator. Particulary, this new 
system allows to easily integrate new sensors and advance control algorithms in an Stäubli 
industrial 6-dof robot using a component-based software methodology. 
Based on a component-based development approach, two possible configurations were 
described, explaining why the original structure was modified migrating to a new one 
where the Master PC was different to the controller PC. It is also explained how the fact of 
using this paradigm allowed an easy reconfiguration of the robotic platform, demonstrating 
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6. Discussion 
The construction of the open robotic system developed in the framework of this work was 
necessary because, as it is well known, industrial manipulators do not offer, with an 
appropriate bandwidth, the possibility of integrating either advanced control algorithms or 
new sensors into the software-hardware architecture. This fact forced the research 
community to extend an industrial manipulator architecture in order to get a completely 
open one in both senses: hardware and software. 
The proposed platform was designed considering a multi-layer structure that simplified the 
integration of external functionality in several ways. The first one consisted of offering 
different interfaces where the user was capable of reading all the parameters and variables, 
besides modifying the commanded signals, with a considerable bandwidth. The second one 
pretended to avoid the limitation of the industrial robots where the current methodology is 
to control exclusively the position without considering high level strategies for task decision 
making, or without taking into account new sensors that could improve the environment 
modelling. 
Certainly, a pending aspect of this platform is the the man-machine interaction. New 
solutions in the area of software technology have to be included in order to create a more 
friendly-interface that permits to modify easily the requirements of the system, especially 
for the experiment generation. Perhaps, creating pseudo intelligent task interpreters, as a 
experimental interface, will play an important role. 
Furthermore, it has to be pointed out that the design solutions have been driven following a 
trade-off between mass products (paying attention to the cost) and standardization 
requirements (leading edge technology). 
On the other hand, the proposed architecture was based on consolidated open robotic 
platforms, specially on those ones developed in Lund University (Sweden) and Leuven 
University (Belgium). These platforms have been developed during several decades and 
have accumulated a great deal of experience, representing an excellent paradigm for initial 
developments. In addition, a narrow collaboration with the company of the manipulator 
robot has existed, what allowed access to internal functions and hardware what would be 
impossible in other conditions. 
To conclude this section, the development of this kind of platforms does not only prove to 
be useful for testing advance control algorithms, but also it is necessary to emphasize the 
necessity of building such systems since, from a robotic research point of view, and mainly, 
from a robotic manufacturers overview, it helps to increase the development speed opening 
up the systems for third party. 

7. Conclusions 
This work describes an experimental platform that allows the implementation of model-
based and sensor-based control algorithms in robotic manipulator. Particulary, this new 
system allows to easily integrate new sensors and advance control algorithms in an Stäubli 
industrial 6-dof robot using a component-based software methodology. 
Based on a component-based development approach, two possible configurations were 
described, explaining why the original structure was modified migrating to a new one 
where the Master PC was different to the controller PC. It is also explained how the fact of 
using this paradigm allowed an easy reconfiguration of the robotic platform, demonstrating 
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that the use of components -i. e. Sensor components- , that are independent of the context, 
allowed as well an important restructuration of the new robotic architecture. 
The resulting architecture has been designed, among other objectives, to allow different 
sensors to be easily switched and rewired depending on the new sensor fusion or control 
strategy that must be tested. Together with the component-based development approach, a 
software structure of layers has been proposed to facilitate the design, configuration and 
testing of new control algorithms and sensor fusion techniques. This structure allows 
systems of components, with standardized interfaces, to be connected while abstracting 
away implementation details of components. 
Eventually, a number of experiments were performed to validate the performance of the 
proposed architecture and its capacity of allowing a fast and easy implementation of 
advance control algorithms in non-structured environments. 
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1. Introduction 
During the past two decades, parallel manipulator system has become one of the research 
attentions in robotics. This popularity has been motivated by the fact that parallel 
manipulators possess some specific advantages over serial manipulators, i.e., higher rigidity 
and load-carrying capacity, better dynamic performance and a simpler inverse position 
kinematics, etc. Among various manipulators, the best-known is the Gough-Stewart 
Platform (GSP) that was introduced as a tire performance (Gough 1956-57) and an aircraft 
simulator (Stewart 1965). 
One of the important problems in robot kinematics is special configuration or singularity. As 
to parallel manipulators, in such configurations, the end-effector keeps at least one remnant 
freedom while all the actuators are locked. This transitorily puts the end-effector out of 
control. Meanwhile, the articular forces may go to infinity and cause mechanical damages. 
Determination of the special configurations of the six-DOF Gough-Stewart parallel 
manipulators is a very important problem. It is one of the main concerns in the analysis and 
design of manipulators. The singularity analysis of parallel manipulators has attracted a 
great deal of attention in the past two decades. Hunt (1983) first discovered a special 
configuration for this manipulator that occurs when the moving triangle-platform is 
coplanar with two legs meeting at a vertex of the triangle, and all the six segments 
associated with six prismatic actuators intersect a common line. Fichter (1986) discovered a 
singularity of the parallel manipulator. That occurs when the moving platform rotates ψ 
=±π/2 around Z-axis, whatever the position of the moving platform is. That mechanism has 
a triangular mobile platform and a hexagonal base platform. It may be named a 3/6-GSP. 
Huang and Qu (1987) and Huang, Kong and Fang (1997) also studied the singularity of the 
parallel manipulator, whose moving and basic platforms are both semi-regular hexagons 
(6/6-GSP). It also occurs whenψ= ±π/2. Merlet (1988, 1989) studied the singularity of the 
six-DOF 3/6-GSP more systematically based on Grassman line geometry. He discovered 
many new singularities including 3c, 4b, 4d, 5a and 5b. 3c occurs when four lines of the six 
legs intersect at a common point; 4b occurs when five lines are concurrent with two skew 
lines; 4d occurs when all the five lines are in one plane or pass through one common point 
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1. Introduction 
During the past two decades, parallel manipulator system has become one of the research 
attentions in robotics. This popularity has been motivated by the fact that parallel 
manipulators possess some specific advantages over serial manipulators, i.e., higher rigidity 
and load-carrying capacity, better dynamic performance and a simpler inverse position 
kinematics, etc. Among various manipulators, the best-known is the Gough-Stewart 
Platform (GSP) that was introduced as a tire performance (Gough 1956-57) and an aircraft 
simulator (Stewart 1965). 
One of the important problems in robot kinematics is special configuration or singularity. As 
to parallel manipulators, in such configurations, the end-effector keeps at least one remnant 
freedom while all the actuators are locked. This transitorily puts the end-effector out of 
control. Meanwhile, the articular forces may go to infinity and cause mechanical damages. 
Determination of the special configurations of the six-DOF Gough-Stewart parallel 
manipulators is a very important problem. It is one of the main concerns in the analysis and 
design of manipulators. The singularity analysis of parallel manipulators has attracted a 
great deal of attention in the past two decades. Hunt (1983) first discovered a special 
configuration for this manipulator that occurs when the moving triangle-platform is 
coplanar with two legs meeting at a vertex of the triangle, and all the six segments 
associated with six prismatic actuators intersect a common line. Fichter (1986) discovered a 
singularity of the parallel manipulator. That occurs when the moving platform rotates ψ 
=±π/2 around Z-axis, whatever the position of the moving platform is. That mechanism has 
a triangular mobile platform and a hexagonal base platform. It may be named a 3/6-GSP. 
Huang and Qu (1987) and Huang, Kong and Fang (1997) also studied the singularity of the 
parallel manipulator, whose moving and basic platforms are both semi-regular hexagons 
(6/6-GSP). It also occurs whenψ= ±π/2. Merlet (1988, 1989) studied the singularity of the 
six-DOF 3/6-GSP more systematically based on Grassman line geometry. He discovered 
many new singularities including 3c, 4b, 4d, 5a and 5b. 3c occurs when four lines of the six 
legs intersect at a common point; 4b occurs when five lines are concurrent with two skew 
lines; 4d occurs when all the five lines are in one plane or pass through one common point 
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in that plane; 5a is in general complex; 5b occurs when the six segments cross the same line. 
Based on line geometry, wrench singularity analyses for platform devices have been 
presented by Collins & Long (1995), and Hao & McCarthy (1998). Gosselin and Angeles 
(1990) pointed that singularities of closed-loop mechanisms can be classified into three 
different groups based on the Jacobian matrices. This classification was further discussed by 
Zlatanov, Fenton and Benhabib (1994, 1995). Zlatanov, Bonev and Gosselin (2002) discussed 
constraint singularities. Ma and Angeles (1991) studied architecture singularities of parallel 
manipulators. Kong (1998) also discussed architecture singularities of the general GSP. 
McAree and Daniel (1999) discussed the singularity and motion property of a 3/3-parallel 
manipulator. Karger and Husty (1998), Karger (2001) described the singular positions and 
self-motions of a special class of planar parallel manipulators where the platform is similar 
to the base one. It is shown that it has no self-motions unless it is architecturally singular. 
Kong (1998), Kong and Gosselin (2002) also studied self-motion. Chan and Ebert-Uphoff 

(2000) studied the nature of the kinematic deficiency in a singular configuration by 
calculating the nullspace of the Jacobian matrix. Di Gregorio (2004) studied the SX-YS-ZS 
Structures and Singularity. 
Many researches dealt only with isolated singular points in space. However, in the practical 
configuration space of parallel manipulators the singularity configuration should be a 
continuous singularity curve or even be high-dimension surface. One of the main concerns 
is further to find out its singularity loci and their graphical representations, as well as the 
structure and property of the singularity loci. That is of great significance in a context of 
analysis and design since it allows one to obtain a complete picture of the location of the 
singular configurations in the workspace. For a given practical application, it is therefore 
easy to decide whether the singularities can be avoided. Sefrioui and Gosselin (1994, 1995) 
studied singularity loci of planar and spherical parallel mechanisms. Wang and Gosselin 
(1996, 1997) used the numerical method to study the singularity loci of spatial four- and five-
DOF parallel manipulators. Collins and McCarthy (1997, 1998) studied singularity loci of the 
planar 3-RPR parallel manipulator, and 2-2-2 and 3-2-1 platforms and obtained cubic 
singularity surfaces. For the six-DOF Gough-Stewart Platform, however, the singularity 
expression generally is quite complicated, and difficult to analyze. Recently, Wang (1998) 
presented a method to analyze the singularity of a special form of the GSP and derived 
corresponding analytical singularity conditions. Di Gregorio (2001, 2002) also discussed the 
singularity loci of 3/6 and 6/6 fully-parallel manipulators. In particular, Mayer St-Onge and 
Gosselin (2000) analyzed the Jacobian matrix of general Stewart manipulators by two 
different new approaches. They derived a simpler explicit expression from the Jacobian 
matrix, and pointed out that the singularity locus of the general Gough-Stewart manipulator 
should be a polynomial expression of degree three. They also gave the graphical 
representations of the singularity loci.  
For practical application, we want to obtain a simpler algebra expression of the singularity 
loci, their accurate graphical representations and know whether it consists of some typical 
geometrical figures. But this is very difficult for the Gough-Stewart manipulator. Huang et 
al. (1999, 2003) studied the singularity kinematics principle of parallel manipulators, and 
proved a new kinematics sufficient and necessary condition to determine the singularity. 
Using this method he discovered the characters of singularity locus of the 3/6-Gough-
Stewart platform firstly. It shows that the singularity locus of the 3/6-Gough-Stewart 
platform is resolvable and consists of two typical geometrical graphs, a plane and a 
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hyperbolic paraboloid, for the special orientations: φ=±30°, ±90°, or ±150°. However, the 
singularity locus expression of degree three is irresolvable, and the locus graph in infinite 
parallel principal sections includes a parabola, four pairs of intersecting straight lines and 
infinite hyperbolas for the general orientations: φ≠±30°, ±90°, and ±150°. 
For the singularity loci of the 6/6-GSP which is a more general structure form and widely 
used in practice, its graphical representations of the singularity loci for different orientations 
are quite various and complex. Huang and Cao (2005) analyzed the singularity loci both in 
3-D space and in the principal-section on which the moving platform lies. The singularity 
locus equation of this class of Gough–Stewart manipulators in three-dimensional space is 
also irresolvable, and the curves in infinite parallel principal sections of the singularity loci 
also contains one parabola, four pairs of intersecting straight lines, and infinite hyperbolas. 
We also found out an incredible phenomenon, in that special configuration six lines 
associated with the six extensible links of the 6/6-Gough-Stewart manipulator can intersect 
the same common line and the remnant instantaneous motion of the manipulator is a pure 
rotation. 
All the above-mentioned analyses are only about positional singularity when the orientation 
of the moving platform is specified and invariable. On the other hand, there is a need to 
further find out the orientation-singularity space when the position of the moving platform 
is specified and invariable. Some researchers began to study the issue, such as Pernkopf and 
Husty (2002); Cao, Huang & Ge (2006). Of course, for this topic there is still much work to be 
done in depth. 

2. The kinematics principle and linear-complex classification 
2.1 The classification of singularity by linear-complex 
A general algebraic equation for a linear complex (Hunt 1978; Ball 1900) is: 

 1 2 3 4 5 6 0a P a Q a R a L a M a N+ + + + + =  (1) 

where the six coefficients denote a twist screw  
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Its pitch is 
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where $ denotes a line vector. The infinite line vectors satisfying Eq. (1) composed a line 
complex. 
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in that plane; 5a is in general complex; 5b occurs when the six segments cross the same line. 
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A general algebraic equation for a linear complex (Hunt 1978; Ball 1900) is: 
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Fig. 1. Linear complex 
In a linear complex (Hunt 1978), those lines that pass through any pole must all lie in the 
same polar plane; those lines that lie in any polar plane must all intersect the same point. 
Fig. 1 shows the pole and polar plane of a linear complex with the pencil of lines in α. All 
the lines that pass through the pole are normal to the helix. The linear complex can be 
divided into three parts according to its pitch hm: when hm is finite and nonzero, it is a 
general linear complex; when hm=0，this is the first special linear complex, in which all the 
coaxial helices collapse into homocentric circles with a common axis $m and all the lines of 
the complex intersect $m or parallel to it; and when hm=∞, this is the second special linear 
complex, in which all the lines of the complex comprise planar fields of lines in all planes 
normal to the direction $m, and $m is no longer occupying a specific line. The last two forms 
are associated respectively with pure rotation and pure translation. 
 All singularities of the Gough-Stewart parallel mechanism belong to the linear-complex 
singularity. From this point of view, the singularity can be divided into three kinds with 
different instant output motion: 
(1) The general Linear-Complex Singularity. The possible motion of end-effector is a twist 
with hm is finite and nonzero;  
(2) The First Special Linear-Complex Singularity. The possible motion of end-effector is a 
pure rotation with hm=0;  
(3) The Second Special Linear-Complex Singularity. The possible motion of end-effector is a 
pure translation with hm=∞. 

2.2 The kinematic principle of singularity 
First of all, let us discuss the velocity relationship of three points in a moving body. The 
following issue is to introduce the principle of a novel method analyzing the singularities of 
parallel manipulators (Huang et al. 1999; 2003; Ebert-Uphoff et al., 2000; Kong and Gosselin 
2001). Let us consider any non-collinear three points in a rigid body, and then we may 
deduce the following theorem: 
Theorem 1: Three velocities of three points in a moving body have three normal planes at 
the corresponding three points. In general, the three planes intersect at a common point, and 
the intersecting point necessarily lies in the plane determined by the three points. 

$m

α
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Fig. 2 The velocity relationship of three non collinear points in a moving body 
Theorem 2:  When three velocity directions of three points in a rigid body are given, then 
three normal planes of the three velocities are determined. If the intersecting point of the 
three planes lies in the plane determined by the three points, the three velocities can 
determine a twist; otherwise, the given velocities are improper and cannot determine a twist 
of that body. 
The thinking of the velocity analysis in the proof of Theorem 2 itself is also useful for 
singularity study of the 3/6-GSP. 
The 3/6-GSP is a typical manipulator which many authors paid attention to. The 3/6-GSP is 
represented schematically in Fig.3. It consists of a mobile platform B1B3B5, equilateral 
triangle; a base platform C1…C6, semi-regular hexagon; and they are connected via six 
extensible prismatic actuators. 
When all the legs of 3/6-GSP are locked, the three normal planes of three velocities VB1, VB3 
and VB5 are respectively B1C1C2, B3C3C4 and B5C5C6 (Fig.3). According to Theorem 2, we may 
educe the following deduction to determine the singularity of 3/6-GSP. Let us firstly define 
a “Star-frame C-B1B3B5” in the moving platform. It is constructed by using three ray lines 
passing three points, B1, B2 and B3, of the triangle B1B3B5 and intersecting at a common point 
C called the center of Star-Frame. 

 
a) A 3/6–Stewart manipulator 

 
b) Its top view 

Fig. 3. A 3/6-Stewart parallel manipulator 
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the corresponding three points. In general, the three planes intersect at a common point, and 
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Theorem 2:  When three velocity directions of three points in a rigid body are given, then 
three normal planes of the three velocities are determined. If the intersecting point of the 
three planes lies in the plane determined by the three points, the three velocities can 
determine a twist; otherwise, the given velocities are improper and cannot determine a twist 
of that body. 
The thinking of the velocity analysis in the proof of Theorem 2 itself is also useful for 
singularity study of the 3/6-GSP. 
The 3/6-GSP is a typical manipulator which many authors paid attention to. The 3/6-GSP is 
represented schematically in Fig.3. It consists of a mobile platform B1B3B5, equilateral 
triangle; a base platform C1…C6, semi-regular hexagon; and they are connected via six 
extensible prismatic actuators. 
When all the legs of 3/6-GSP are locked, the three normal planes of three velocities VB1, VB3 
and VB5 are respectively B1C1C2, B3C3C4 and B5C5C6 (Fig.3). According to Theorem 2, we may 
educe the following deduction to determine the singularity of 3/6-GSP. Let us firstly define 
a “Star-frame C-B1B3B5” in the moving platform. It is constructed by using three ray lines 
passing three points, B1, B2 and B3, of the triangle B1B3B5 and intersecting at a common point 
C called the center of Star-Frame. 

 
a) A 3/6–Stewart manipulator 

 
b) Its top view 

Fig. 3. A 3/6-Stewart parallel manipulator 
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Theorem 3: A necessary and sufficient condition that the three velocities of three points in a 
rigid body can express that the body has a possible twist motion is that the intersecting 
point of three normal planes of the three velocities lies in the plane determined by the three 
points. 

3. Structure and property of singularity loci of 3/6-Gough-Stewart for special 
orientations 
The kinematics method can determine the singularity of the manipulator. If the six 
extensible legs of the GSP are locked and the mechanism has an instantaneous freedom, the 
manipulator is singular. Now, let us firstly discuss the kinematics properties of the typical 
singularity structures including singularities: 3c, 4b, 4d, 5b (Merlet 1988; 1989) and others. 

3.1 Singularity hyperbola equation derived in an oblique plane 
Our task is to find the whole singularity loci of the GSP and identify their structure and 
property. It is of an important and difficult issue. Here three Euler angles φ, θ and ψ are used 
to represent orientation of the mobile in terms of a rotation φ about Z-axis, then a rotation θ 
about the new Y′-axis, and finally a rotation ψ about the new Z″-axis.  
In order to find the whole singularity loci and solve the issue, we first study the singularity 
equation in a special plane (Huang et al. 2003). The issue is divided into two parts: 
(1) When the first Euler angle φ is equal to one of the following values, ±30°, ±90°, and ±150°, 
it is a special orientation cases and easier to analyze. 
(2) When φ  is any value with the exception of ±30°, ±90°, and ±150°, this is the general case.  
Now, we solve the equation for singularity curve of the 3/6-GSP in a certain plane while the 
orientation of the mobile is provisionally set to φ=90°, ψ=0and θ is any finite nonzero value. 
The parameters of the parallel manipulator are as follows. The circumcircle radius of the 
basic hexagon platform is Ra, and the one of the triangle mobile is Rb; β0 denotes the central 
angle of the circumcircle of the basic hexagon corresponding to side C1C2. Point P is the 
geometric center of the mobile (Fig. 3). The stationary frame O-XYZ is fixed to the base and 
the moving frame P-X′Y′Z′ is attached to the mobile. 
Fig. 4 shows the position after the mobile rotates (90°, θ, 0). The oblique plane in which the 
moving platform lies intersects the basic plane at line UV, which is parallel to axis X. For the 
orientation, B1P(Y′)is parallel to A5A1 (X).At first, providing that point P is located at a 
special point C0 in the perpendicular bisector of UV, and the distance from O2 to point C0 is 
equal to that between point O2 and A3, then we deduce that C0B3 and A3A1 intersect at point 
V, and C0B5 and A3A5 intersect at U. In that case, the mechanism is singular according to 
Deduction 2. The included angle between the oblique plane and the basic one is θ. In order 
to conveniently express the oblique plane below, we call it θ-plane. Let us suppose that the 
mobile translates to the position B11B31B51 in θ-plane and line B11P intersects line O2C0 at C. If 
line B31C intersects A1A3 at point V, and line C1B51 intersects A3A5 at point U, the mechanism 
is also singular (Deduction 2). We can prove that the center of Star-frame always lies in line 
O2C0 for the orientation. In general, the singularity is a general-linear-complex singularity. 
Based on the analysis above, we study the singularities of 3/6–GSP when the mobile 
translates arbitrarily in θ-plane. The coordinates of point C0 and O2 with respect to the fixed 
frame are (0, Y0, Z0) and (0, u, 0), respectively. The frame O2-xyz is attached to θ-plane. It 
should be noticed that angle θ as shown in Fig. 5 about the Y′-axis is negative. 
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Fig. 4. θ- Oblique plane for the orientation (90°, θ, 0)  
The coordinates of points P, C, B31 and V with respect to O2-xyz are 
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Provided that the coordinates of an arbitrary point in line B31Vare ( , , 0)x yx y , its equation is 
written as 
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Since point C lies in line B31V, substitute the coordinates of point C ( 0xx =  and yy y= ) into 
Eq. (9) and simplify as 

 0 0
2 2sin

b bR Z Rxy y
θ

− − =  (12) 

Substituting Eq. (10) into Eq. (11) and eliminating 0Z , yield 

 0(3 cos( / 2) ) 0
2 2

b a bR R u Rxy y β −
− + =  (13) 

Eq. (13) denotes a hyperbola and is independent of the Euler angle θ. The coordinates of its 
center are (Rb/2,0), and its vertical and horizontal asymptotes are x= Rb/2, y=0 
This is an important conclusion, as we have known that the singularity equation of GSP in 3-
dimension space is a polynomial expression of degree three. However, equation (13) is only 
a quadratic equation in the special θ-plane. Eq. (13) only contains variables x and y, so it 
denotes the positions of point p when the mechanism is singular. The equation is termed the 
equation of the singularity curve in θ-plane. 
When orientation of the mobile is given by three Euler angles (-90°, θ, 0), the singularity 
equation can also be obtained in θ-plane with respect to the frame O2-xyz, the same as in Fig. 4. 

 0(3 cos( / 2) ) 0
2 2

b a bR R u Rxy y β −
+ − =  (14) 

When parameters of the mechanism are set to 2aR = , 1bR = , 0
0 90β =  and 2u = − , the 

hyperbolas denoted by Eqs. (13) and (14) are illustrated in Fig. 6(a). Since the result comes 
from the above-mentioned Theorem and satisfies the necessary and sufficient condition of 
singularity, so that there is no any singularity except the points on hyperbolas in that θ-plane. 
 

 
(a) For the orientation 0( 90 0)θ±  

 
(b) For the orientation 0 0( 90 60 )θ±  

Fig. 5. The singularity curve in θ- plane 
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3.2 The singularity equation derived in three-dimensional space 
Eqs. (13) and (14) are deduced by geometric method in the oblique plane. By Theorem 3, we 
can analyze the distribution properties of the singularities of 3/6-GSP in three-dimensional 
space. 
The coordinates of point Bi (i=1, 2, 3) of the mobile are denoted as Bi':(Bix', Biy', Biz') in the 
moving frame, and Bi:(Bix, Biy, Biz) in the fixed frame; the coordinates of point Cj are denoted 
as (Cjx, Cjy, Cjz) in the fixed frame. 
The transformation matrix T of the moving frame with respect to the fixed one can be 
written using Euler angles φ, θ and ψ as 

 [ ]
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sin cos cos cos sin sin cos sin cos cos sin sin

sin cos sin sin cos
0 0 0 1
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⎢ ⎥+ − +⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

T  (15) 

where(X, Y, Z) are the coordinates of point p with respect to the fixed frame. The coordinates 
of point Bi in the mobile with respect to the fixed frame are 

 [ ] , 1, 2, 3

1 1

ix ix

iy iy

iz iz

B B
B B

i
B B

′⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪′⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬′⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

T   (16) 

3.2.1 Singularity equation for orientation (90°, θ, 0) 
When three Euler angles are 900, θ and 0, respectively, from Eq. (16), we can obtain 
coordinates of three points ( 1, 2, 3)iB i =  in the mobile with respect to the fixed frame. Thus 
three equations of three normal planes B1C1C2, B3C3C4 and B5C5C6 and the one that the 
mobile belongs to can be written by the coordinates of the three corresponding points. The 
equation of plane B1C1C2 is 

 
1 1 1

1 1 1 1 1 1

2 1 2 1 2 1

0
x y z

x x y y z z

x x y y z z

x B y B z B
C B C B C B
C B C B C B

− − −

− − − =

− − −

 (17) 

where x, y and z are the coordinates of moving point in plane B1C1C2 with respect to the 
fixed frame. Substituting coordinates of points B1, C1 and C2 into the above equation, we 
obtain 

 0Z y Y z− =  (18) 

Similarly, the equation of plane B3C3C4 can be obtained 

 0

0 0

(-3 sin 2 3 ) (2 3 sin ) ( 2 6 cos( 2) 3 cos

3 2 3 )z 6 cos( 2) 3 3 sin cos( 2) 0 
b b a b

b a a b

R Z x Z - R y - Y R β / - R

R - X - Z R β / R R β /

θ θ θ

θ

+ + + +

+ + =
 (19) 
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0

3
2 2

3 3
2 3 sin 2

b
y b x

b
b

Ry y R x x

Z Ry R x
θ

− − − +
=

− − − − +
 (11) 

Since point C lies in line B31V, substitute the coordinates of point C ( 0xx =  and yy y= ) into 
Eq. (9) and simplify as 

 0 0
2 2sin

b bR Z Rxy y
θ

− − =  (12) 

Substituting Eq. (10) into Eq. (11) and eliminating 0Z , yield 

 0(3 cos( / 2) ) 0
2 2

b a bR R u Rxy y β −
− + =  (13) 

Eq. (13) denotes a hyperbola and is independent of the Euler angle θ. The coordinates of its 
center are (Rb/2,0), and its vertical and horizontal asymptotes are x= Rb/2, y=0 
This is an important conclusion, as we have known that the singularity equation of GSP in 3-
dimension space is a polynomial expression of degree three. However, equation (13) is only 
a quadratic equation in the special θ-plane. Eq. (13) only contains variables x and y, so it 
denotes the positions of point p when the mechanism is singular. The equation is termed the 
equation of the singularity curve in θ-plane. 
When orientation of the mobile is given by three Euler angles (-90°, θ, 0), the singularity 
equation can also be obtained in θ-plane with respect to the frame O2-xyz, the same as in Fig. 4. 

 0(3 cos( / 2) ) 0
2 2

b a bR R u Rxy y β −
+ − =  (14) 

When parameters of the mechanism are set to 2aR = , 1bR = , 0
0 90β =  and 2u = − , the 

hyperbolas denoted by Eqs. (13) and (14) are illustrated in Fig. 6(a). Since the result comes 
from the above-mentioned Theorem and satisfies the necessary and sufficient condition of 
singularity, so that there is no any singularity except the points on hyperbolas in that θ-plane. 
 

 
(a) For the orientation 0( 90 0)θ±  

 
(b) For the orientation 0 0( 90 60 )θ±  

Fig. 5. The singularity curve in θ- plane 
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3.2 The singularity equation derived in three-dimensional space 
Eqs. (13) and (14) are deduced by geometric method in the oblique plane. By Theorem 3, we 
can analyze the distribution properties of the singularities of 3/6-GSP in three-dimensional 
space. 
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moving frame, and Bi:(Bix, Biy, Biz) in the fixed frame; the coordinates of point Cj are denoted 
as (Cjx, Cjy, Cjz) in the fixed frame. 
The transformation matrix T of the moving frame with respect to the fixed one can be 
written using Euler angles φ, θ and ψ as 
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cos os cos sin sin cos cos sin sin cos cos sin
sin cos cos cos sin sin cos sin cos cos sin sin

sin cos sin sin cos
0 0 0 1

X
Y

Z

φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ
θ ψ θ ψ θ

− − −⎡ ⎤
⎢ ⎥+ − +⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

T  (15) 

where(X, Y, Z) are the coordinates of point p with respect to the fixed frame. The coordinates 
of point Bi in the mobile with respect to the fixed frame are 
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1 1

ix ix

iy iy

iz iz

B B
B B

i
B B

′⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪′⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬′⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

T   (16) 

3.2.1 Singularity equation for orientation (90°, θ, 0) 
When three Euler angles are 900, θ and 0, respectively, from Eq. (16), we can obtain 
coordinates of three points ( 1, 2, 3)iB i =  in the mobile with respect to the fixed frame. Thus 
three equations of three normal planes B1C1C2, B3C3C4 and B5C5C6 and the one that the 
mobile belongs to can be written by the coordinates of the three corresponding points. The 
equation of plane B1C1C2 is 

 
1 1 1

1 1 1 1 1 1

2 1 2 1 2 1

0
x y z

x x y y z z

x x y y z z

x B y B z B
C B C B C B
C B C B C B

− − −

− − − =

− − −

 (17) 

where x, y and z are the coordinates of moving point in plane B1C1C2 with respect to the 
fixed frame. Substituting coordinates of points B1, C1 and C2 into the above equation, we 
obtain 

 0Z y Y z− =  (18) 

Similarly, the equation of plane B3C3C4 can be obtained 

 0

0 0

(-3 sin 2 3 ) (2 3 sin ) ( 2 6 cos( 2) 3 cos

3 2 3 )z 6 cos( 2) 3 3 sin cos( 2) 0 
b b a b

b a a b

R Z x Z - R y - Y R β / - R

R - X - Z R β / R R β /

θ θ θ

θ

+ + + +

+ + =
 (19) 
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The one of plane B5C5C6 is: 

 0

0 0

(-3 sin 2 3 ) (2 3 sin ) ( 2 6 cos( 2) 3 cos 3

2 3 )z 6 cos( 2) 3 3 sin cos( 2) 0 
b b a b b

a a b

R Z x Z R y Y R β / R R

X Z R β / R R β /

θ θ θ

θ

− + + + − + + −

+ − − =
 (20) 

The one of plane B1B3B5 is 

 (sin )y+(cos ) (sin ) (cos ) 0z Y Zθ θ θ θ− − =  (21) 

Note that, the equations of these planes are on the same condition that point P (X, Y, Z) is 
located at some point and the orientation is denoted by three Euler angles (90°, θ, 0). 
Solving Eqs. (18), (19) and (20) for x, y and z, then substituting them into Eq. (21) and 
eliminating x, y and z, we obtain 

 [ ] [ ]0(sin ) (cos ) 2 (sin ) (cos ) 3 sin cos( / 2) 0b b b b aY Z XZ R Y R Z R Z R Rθ θ θ θ θ β+ + + − − =  (22) 

According to Theorem 3, Eq. (22) denotes the singularity locus of point P for the orientation 
(90°, θ, 0). Obviously, it includes a plane and a conicoid. The plane equation is 

 (sin ) (cos ) 0Y Zθ θ+ =  (23) 

Eq. (23) denotes that singularity locus of point P is a plane containing line C1C2 or A5A1, 
namely, X-axis. As the plane and plane B1B3B5 denoted by Eq. (23) have the same normal 
vector, and when plane B1B3B5 translates and coincides with plane expressed by Eq.(23), the 
configuration is singular. The case belongs to the Hunt’s singularity and is the first special-
linear-complex singularity explained in Case 5. Eq. (23) shows that the mechanism is 
singular, wherever point P locates in the plane. 
The conicoid equation is 

 02 (sin ) ((cos ) 1) 3 sin cos( / 2) 0b b b aXZ R Y R Z R Rθ θ θ β+ + − − =  (24) 

When θ  is constant, Eq. (24) denotes a hyperbolic paraboloid and we will explain later. 
Eq. (28) also represents a hyperbolic paraboloid. 

3.2.2 Singularity equation for the orientation (±90°, θ, ψ) 
3.2.2.1. The Derivation of the Equation 

For the orientation (±90°, θ, ψ), the transformation matrix T is 

 [ ]

0

0 0 0 1

c d X
bd bc a Y

ad ac b Z

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

T  (25) 

where 

 sina θ= ; cosb θ= ; sinc ψ= ; cosd ψ=  (26) 

Using the same method above, the equations of the three normal planes can be obtained. 
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 ( ) ( ) 0b bacR Z y bcR Y z− + + =  (27) 

 
0 0

3( 3 2 ) ( 3 2 ) (2 2 3 3 3

3 6 cos( / 2)) 3 cos( / 2)(2 3 ) 0
b b b b b b

b b a a b b

adR acR Z x adR Z acR y Y X bdR cR

dR bcR R z R Z acR adRβ β

− − + − − + + + − −

− − + + − =
 (28) 

 0

0

3( 2 3 ) (2 3 ) (2 6 cos( / 2)

3 3 3 2 3 ) 3 cos( / 2)(2 3 ) 0
b b b b b a

b b b a b b

acR Z adR x Z adR acR y Y bcR R

bdR cR dR X z R Z acR adR

β

β

+ + − + + + − − −

− + − + + + =
 (29) 

The equation of plane B1B3B5 is 

 0a y b z aY bZ+ − − =  (30) 

Solving Eqs. (27), (28) and (29) for x , y  and z , and then substituting them into Eq. (30), the 
singularity equation is 

 [ ] 2(sin ) (cos ) ( ) 0Y Z eZ f XZ gYZ h X iY jZ kθ θ+ − + + − + + =  (31) 

Eq. (31) shows that the singular loci include a plane and a conicoid. The plane equation is 
the same as Eq. (25). It also represents that in this case all the six lines cross a common line. 
This case belongs to the first special-linear-complex singularity. The quadratic equation is 

 2 0eZ f XZ gYZ h X iY jZ k− + + − + + =  (32) 

Eq. (32) is a singularity equation with respect to the fixed frame O-XYZ. When the mobile 
shown in Fig. 5 rotates an angle ψ  about Z″-axis again, its orientation is (90°, θ, ψ).  
The plane in which the mobile lies is still θ-plane. After the coordinate transformation, the 
equation of the singularity curve in θ-plane with respect to the frame O2-xyz is  

 

2
0

2
0

2(sin ) 2(cos ) sin(2 ) ( 2 sin 6 sin cos( / 2)
cos(2 )) sin cos(2 )(3 cos( / 2) ) 0

0

b a

b b b a

y xy R x u R
R y R R R u

z

ψ ψ ψ ψ ψ β

ψ ψ ψ β

⎧ + + + − +
⎪
− − + − =⎨
⎪ =⎩

 (33) 

It is also a hyperbola. In addition, Eq. (33) is independent of the Euler angle θ. 

3.2.2.2. Analysis of the Singularity Property  

The four invariants , ,D IΔ  and J  of Eq. (32) are 

 
2 6 2

0 0
2 2

0 0 sin cos 32 2 0
4

2 2 2

2 2 2

b

f h

g i
R

f g je

jh i k

θ ψ

−

−
Δ = = ≥

−

−

 (34) 
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The one of plane B5C5C6 is: 
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0 0

(-3 sin 2 3 ) (2 3 sin ) ( 2 6 cos( 2) 3 cos 3

2 3 )z 6 cos( 2) 3 3 sin cos( 2) 0 
b b a b b

a a b

R Z x Z R y Y R β / R R

X Z R β / R R β /

θ θ θ

θ

− + + + − + + −

+ − − =
 (20) 

The one of plane B1B3B5 is 

 (sin )y+(cos ) (sin ) (cos ) 0z Y Zθ θ θ θ− − =  (21) 

Note that, the equations of these planes are on the same condition that point P (X, Y, Z) is 
located at some point and the orientation is denoted by three Euler angles (90°, θ, 0). 
Solving Eqs. (18), (19) and (20) for x, y and z, then substituting them into Eq. (21) and 
eliminating x, y and z, we obtain 
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According to Theorem 3, Eq. (22) denotes the singularity locus of point P for the orientation 
(90°, θ, 0). Obviously, it includes a plane and a conicoid. The plane equation is 

 (sin ) (cos ) 0Y Zθ θ+ =  (23) 

Eq. (23) denotes that singularity locus of point P is a plane containing line C1C2 or A5A1, 
namely, X-axis. As the plane and plane B1B3B5 denoted by Eq. (23) have the same normal 
vector, and when plane B1B3B5 translates and coincides with plane expressed by Eq.(23), the 
configuration is singular. The case belongs to the Hunt’s singularity and is the first special-
linear-complex singularity explained in Case 5. Eq. (23) shows that the mechanism is 
singular, wherever point P locates in the plane. 
The conicoid equation is 

 02 (sin ) ((cos ) 1) 3 sin cos( / 2) 0b b b aXZ R Y R Z R Rθ θ θ β+ + − − =  (24) 

When θ  is constant, Eq. (24) denotes a hyperbolic paraboloid and we will explain later. 
Eq. (28) also represents a hyperbolic paraboloid. 

3.2.2 Singularity equation for the orientation (±90°, θ, ψ) 
3.2.2.1. The Derivation of the Equation 

For the orientation (±90°, θ, ψ), the transformation matrix T is 
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0

0 0 0 1

c d X
bd bc a Y

ad ac b Z

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
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⎢ ⎥⎣ ⎦
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where 

 sina θ= ; cosb θ= ; sinc ψ= ; cosd ψ=  (26) 

Using the same method above, the equations of the three normal planes can be obtained. 
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 ( ) ( ) 0b bacR Z y bcR Y z− + + =  (27) 

 
0 0

3( 3 2 ) ( 3 2 ) (2 2 3 3 3

3 6 cos( / 2)) 3 cos( / 2)(2 3 ) 0
b b b b b b

b b a a b b

adR acR Z x adR Z acR y Y X bdR cR

dR bcR R z R Z acR adRβ β

− − + − − + + + − −

− − + + − =
 (28) 

 0

0

3( 2 3 ) (2 3 ) (2 6 cos( / 2)

3 3 3 2 3 ) 3 cos( / 2)(2 3 ) 0
b b b b b a

b b b a b b

acR Z adR x Z adR acR y Y bcR R

bdR cR dR X z R Z acR adR

β

β

+ + − + + + − − −

− + − + + + =
 (29) 

The equation of plane B1B3B5 is 

 0a y b z aY bZ+ − − =  (30) 

Solving Eqs. (27), (28) and (29) for x , y  and z , and then substituting them into Eq. (30), the 
singularity equation is 

 [ ] 2(sin ) (cos ) ( ) 0Y Z eZ f XZ gYZ h X iY jZ kθ θ+ − + + − + + =  (31) 

Eq. (31) shows that the singular loci include a plane and a conicoid. The plane equation is 
the same as Eq. (25). It also represents that in this case all the six lines cross a common line. 
This case belongs to the first special-linear-complex singularity. The quadratic equation is 

 2 0eZ f XZ gYZ h X iY jZ k− + + − + + =  (32) 

Eq. (32) is a singularity equation with respect to the fixed frame O-XYZ. When the mobile 
shown in Fig. 5 rotates an angle ψ  about Z″-axis again, its orientation is (90°, θ, ψ).  
The plane in which the mobile lies is still θ-plane. After the coordinate transformation, the 
equation of the singularity curve in θ-plane with respect to the frame O2-xyz is  

 

2
0

2
0

2(sin ) 2(cos ) sin(2 ) ( 2 sin 6 sin cos( / 2)
cos(2 )) sin cos(2 )(3 cos( / 2) ) 0

0

b a

b b b a

y xy R x u R
R y R R R u

z

ψ ψ ψ ψ ψ β

ψ ψ ψ β

⎧ + + + − +
⎪
− − + − =⎨
⎪ =⎩

 (33) 

It is also a hyperbola. In addition, Eq. (33) is independent of the Euler angle θ. 

3.2.2.2. Analysis of the Singularity Property  

The four invariants , ,D IΔ  and J  of Eq. (32) are 
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2 2 2

2 2 2
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−

−
Δ = = ≥
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 (34) 
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0 0
2

0 0 0
2

2 2

f

gD

f g e

−

= =

−

 (35) 

 2sin (1 cos )I ψ θ= + , 2sinJ θ= −  (36) 

The following cases are discussed according to its invariants, in which D is always zero 
whatever θ and ψ are. 
1. If θ≠0, ψ≠±30°, ±90°, and ±150°, then D=0, Δ>0, the singular locus denoted by Eq. (32) is 

a hyperbolic paraboloid. Generally, the six lines 1, 2, …, 6 belong to a general linear 
complex when point P locates at the surface. 

2. If θ=0, Eq. (32) can be written as 

 34(sin ) 0Zψ =  (37) 

a. When ψ=0 and Z≠0, namely, the orientation is (90°, 0, 0), Eq. (37) is an identical 
equation and the mechanism is singular whatever the position of point P in three-
dimensional space is. This is the Fichter’s singular configuration and all the six 
lines belong to a general linear complex. 

b. When Z=0, the moving platform and the base are coplanar. The mechanism is also 
singular whatever Euler angle ψ is. The mechanism holds three remnant freedoms 
when all the legs are locked. In this case, there exist the first and the second special-
linear-complex singularities. 

3. If θ≠0, ψ=±30°, ±90°, or ±150°, then D=0, Δ=0 and J≠0, and the conicoid degenerates into 
a pair of intersecting planes. For instance, when ψ=±30°, two equations are 

 2 sin 0bZ R θ− =  (38) 

 03(sin ) (sin ) (1 cos ) sin 3 sin cos( / 2) 0b aX Y Z R Rθ θ θ θ θ β− − + − + =  (39) 

When ψ=-30°, ±90°, or ±150, the conicoid also degenerates into two planes. The singularity 
cases are similar to the above. 

3.2.2.3. Analysis of Other Singularities 
The singularities discussed above are all for the orientations, (±90°, θ, ψ), of the mobile. In 
these cases, the intersecting lines between the oblique moving plane and the basic one are 
parallel to line C1C2 or A1A5, one of the three sides of the triangle A1A3A5. 
The similar singularities with a plane equation and a quadratic one can also occur when the 
orientations are as follows 
1. The Euler angles are  

(–150°, θ, ψ) or (30°, θ, ψ) 
All the intersecting lines between the oblique mobile and the base are parallel to line C3C4 or 
A1A3. 
2. The Euler angles are 

(150°, θ, ψ) or (–30°, θ, ψ) 
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All the intersecting lines between the oblique mobile and the base are parallel to line C5C6 or 
A3A5. 
For the two cases, the singularity equation can also resolve into two parts: one is a plane 
equation containing the corresponding side CiCj, another is a hyperbolic paraboloid 
equation, too. When ψ =±30°, ±90°, or ±150°, the hyperbolic paraboloid also degenerates into 
two planes. 
However, when the orientation is  

(φ, θ, ±30°), (φ, θ, ±90°) or (φ, θ, ±150°) 
in which φ and θ, can be arbitrary values, the singularity locus also consists of two parts: 
One is a plane; another is also a hyperbolic paraboloid. When point P translates in the plane, 
two of three points B1, B3 and B5 lie in the basic plane.  

3.3 Singularity distribution in three-dimensional space 
According to the analysis method above, we may easily know the distribution 
characteristics of the singularity loci of the 3/6-Gough-Stewart manipulator, and draw their 
singularity surface in three-dimensional space for some different orientations of the mobile 
in frame O-XYZ. Here, the parameters of the mechanism are set to 2aR = , Rm=1m and 
β0=90°, and the surfaces are shown in Fig. 6. 

 
(a) The orientation (90° 45° 0) (b) The orientation (90° 30° 60°) 

 
(c) The orientation (90° 45° 30°) (d) The orientation (45° 25° 30°) 

Fig. 6. The singularity loci for 3/6―Stewart parallel manipulator  
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2. If θ=0, Eq. (32) can be written as 
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equation and the mechanism is singular whatever the position of point P in three-
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when all the legs are locked. In this case, there exist the first and the second special-
linear-complex singularities. 
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cases are similar to the above. 
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these cases, the intersecting lines between the oblique moving plane and the basic one are 
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The similar singularities with a plane equation and a quadratic one can also occur when the 
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All the intersecting lines between the oblique mobile and the base are parallel to line C5C6 or 
A3A5. 
For the two cases, the singularity equation can also resolve into two parts: one is a plane 
equation containing the corresponding side CiCj, another is a hyperbolic paraboloid 
equation, too. When ψ =±30°, ±90°, or ±150°, the hyperbolic paraboloid also degenerates into 
two planes. 
However, when the orientation is  

(φ, θ, ±30°), (φ, θ, ±90°) or (φ, θ, ±150°) 
in which φ and θ, can be arbitrary values, the singularity locus also consists of two parts: 
One is a plane; another is also a hyperbolic paraboloid. When point P translates in the plane, 
two of three points B1, B3 and B5 lie in the basic plane.  

3.3 Singularity distribution in three-dimensional space 
According to the analysis method above, we may easily know the distribution 
characteristics of the singularity loci of the 3/6-Gough-Stewart manipulator, and draw their 
singularity surface in three-dimensional space for some different orientations of the mobile 
in frame O-XYZ. Here, the parameters of the mechanism are set to 2aR = , Rm=1m and 
β0=90°, and the surfaces are shown in Fig. 6. 

 
(a) The orientation (90° 45° 0) (b) The orientation (90° 30° 60°) 

 
(c) The orientation (90° 45° 30°) (d) The orientation (45° 25° 30°) 

Fig. 6. The singularity loci for 3/6―Stewart parallel manipulator  
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The readers may wonder that the singularity loci are so huge and completed and ask how 
can the GSP work? In practice, if you notice the position of the origin point of the O-XYZ 
system in Figures, and the magnitudes of the parameters, 2aR = and Rm=1m, you can find 
that the workspace of the manipulator is smaller relative the singularity loci shown in 
figures. You can easily design the manipulator making its workspace locate over the 
singularity loci and avoiding singularity. 
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4. Structure and property of the singularity loci of the 3/6-Gough-Stewart for 
general orientations 
When φ takes any value with the exception of ±30°, ±90°, or ±150°, this is the general 
orientation case of the mobile of the GSP, and the analysis of the singularity loci is more 
difficult. In this case, UV is not parallel to any side of triangle A1A3 A5, as shown in Fig. 7.  

4.1 Singularity equation based on Theorem 3 for general orientations  
For the most general orientations of the mobile, φ≠±30°, ±90°, and ±150°, the singularity 
equation can be directly obtained by using Theorem 3. The equation of normal plane B1C1C2 is 
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1 1 1 1 1 1

2 1 2 1 2 1

0
x y z

x x y y z z

x x y y z z

x B y B z B
C B C B C B
C B C B C B

− − −
− − − =
− − −

 (40) 

where (x′, y′, z′)denotes coordinates of the moving point on plane B1C1C2 in the fixed frame. 
This gives  

 ' ' 0Fy Gz+ =  (41) 

Similarly, equations of three planes B3C3C4, B5C5C6 and B1B3B5 can be obtained as well. 
According to Theorem 3, solving the linear equation system of the four planes for 
intersecting point C, the singularity locus equation for general orientations is as follows 
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where (X, Y, Z)are the coordinates of center point P. It is a polynomial expression of degree 
three. The equation is still very complicated and difficult to further analyze, but it is very 
simple in the following special cases.  
When φ≠±30°, ±90°, and ±150°and ψ is one of the values ±30°, ±90°, or ±150°, Eq. (42) 
degenerates into a plane and a hyperbolic paraboloid as well. For example, whenψ=90°, the 
singularity equation is 

 
2 2 2

b 11 22 33 23 31 12
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2Z R sin a X a Y a Z 2a YZ 2a ZX 2a XY
2a X 2a Y 2a Z a 0
( )(

)
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where these coefficients are listed in the Appendix 2. Eq. (43) indicates a plane and a 
hyperbolic paraboloid. The first factor forms a plane equation 

 b2Z R sin 0θ+ =  (44) 

which is parallel to the basic plane. When point P lies in the plane, the mechanism is 
singular for orientation (φ, θ, 90°), because points B3 and B5 lie in the basic plane. This is 
similar to Case 6. All the six lines cross the same line C1C2. 

4.2 Singularity analysis using singularity-equivalent-mechanism 
The singularity locus expression (Eq. (43)) for general orientations has been derived by 
Theorem 3. But it is still quite complicated, and we are not sure whether it consists of some 
typical geometrical figures. Meanwhile the property of singularity loci is unknown yet. In 
order to reply this question, a “Singularity-Equivalent-Mechanism” which is a planar 
mechanism is proposed. Thus the troublesome singularity analysis of the GSP can be 
transformed into a position analysis of the simpler planar mechanism. 

4.2.1 The parallel case 
4.2.1.1 The Singularity-Equivalent-Mechanism 

In the parallel case, the three Euler angles of the mobile platform are (90°, θ, ψ), while θ and 
ψ can be any nonzero value. The mobile plane of the mechanism lies on θ-plane (Fig. 5).  
The corresponding imaginary planar singularity-equivalent-mechanism is illustrated in Fig. 
8. Where Rdenotes a revolute pair and P a prismatic pair, triangle B1B3B5 is connected to 
ground by three kinematic chains, RPP, PPR and RPR. The latter two pass through two 
points U andV, respectively, while the first one slides along the vertical direction and keeps 
L1C//UV. Three slotted links, L1, L2 and L3, intersect at a common point C. In order to keep 
the three links always intersecting at a common point and satisfying Deduction 2, a 
concurrent kinematic chain PRPRP is used. It consists of five kinematic pairs, where two R 
pairs connect three sliders. The three sliders and three slotted links form three P pairs. The 
PRPRP chain coincides with a single point C from top view. Based on the Grübler-Kutzbach 
criterion, the mobility of the mechanism is two. 
It is evident that the planar mechanism can guarantee that the three lines passing through 
three vertices intersect at a common point, and these three lines can always intersect the 
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points U andV, respectively, while the first one slides along the vertical direction and keeps 
L1C//UV. Three slotted links, L1, L2 and L3, intersect at a common point C. In order to keep 
the three links always intersecting at a common point and satisfying Deduction 2, a 
concurrent kinematic chain PRPRP is used. It consists of five kinematic pairs, where two R 
pairs connect three sliders. The three sliders and three slotted links form three P pairs. The 
PRPRP chain coincides with a single point C from top view. Based on the Grübler-Kutzbach 
criterion, the mobility of the mechanism is two. 
It is evident that the planar mechanism can guarantee that the three lines passing through 
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corresponding sides of the basic triangle. From Deduction 2, every position of the planar 
mechanism corresponds to a special configuration of the original GSP. So we call it a 
“singularity-equivalent-mechanism”. Thus the position solution of the planar mechanism 
expresses the singularity of the original mechanism. 
4.2.1.2 Forward Position Analysis of the Singularity -Equivalent-Mechanism 
The frames are set as the same as in Fig. 5 and Fig. 10. The coordinates of point P in frame 
O2-xy are (x, y). ψ indicates the orientation of the triangle B1B3B5 in θ,-plane. In order to 
obtain the locus equation of point P, firstly we can set three equations of three lines passing 
through the three vertices, and substitute the coordinates of points B1, B3 and B5 into the 
equations, then (x, y)and ψ can be obtained. 
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Fig. 8. The singularity-equivalent-mechanism for (90°, θ, ψ) 
Considering that the mobility of this mechanism is two, there need two inputs α andβ. Three 
equations of three lines CU, CV and CB1 in reference frame O2-xy are respectively 

 Y tan X a /2( )( )α= +  (45) 

         Y tan X a / 2( )( )β= −  (46) 
and 

 a tan atanY
tan tan

β
α β

= −
−

 (47) 

Solving Eqs. (52), (53) and (54) yields 

 1 3cos ( 3 sin )
2( tan tan )

b bR J R a Jx
α β

ψ ψ− +
=

−
 (48) 

 2 3sin 3 cos 2 tan tan
2( tan tan )

b bR J R J a α βy
α β

ψ ψ− −
=

−
 (49) 

and 

 (tan tan )tan
3tan - 3tan 2tan tan

β αψ
α β α β

+
=

−
 (50) 
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where 1 tan tan 2 3J α β= − − , 2 tan tan 2 3 tan tanJ α β α β= − − , 3J tan tanα β= + , Eqs. (48), 
(49) and (50) denote direct kinematics of the mechanism.  

4. 2. 1. 3. Singularity Equation in the θ- plane 

Once the orientation (90°, θ, ψ)of the mobile platform is specified, in Fig.10, Euler angle ψ is 
an invariant. So it only needs to choose one input in this case. From Eq. (65) one obtains 

 tan ( 3 tan -1)tan
3 tan 2 tan tan 1

α ψ
β

ψ α ψ
=

+ +
 (51) 

So the singularity equation in θ- plane for the orientation (90°, θ, ψ) can be obtained from 
Eqs. (48), (49) and (50) by eliminating parameters α andβ 
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2(sin ) 2(cos ) sin(2 )

( 3 sin cos(2 )) sin 3 cos(2 ) / 2 0
b

b b b

y xy R x

a R y R aR

ψ ψ ψ

ψ ψ ψ ψ

+ + +

− − + =
 (52) 

where 02(3 cos( / 2) ) / 3aa R uβ= − . Eq. (52) denotes a hyperbola. Especially, when ψ=±90°, 
Eq. (52) degenerates into a pair of intersecting straight lines respectively. Two of the four 
equations are  

 by R /2 0− = , by R /2 0+ =  (53) 

In both cases, two points B3 and B5 lie in line UV. So that four lines are coplanar with the 
base plane. This is the singularity of Case 6. The similar situation is for ψ=30°,ψ=-150°, 
ψ=-30° and ψ=150°.  

4.2.2 The general case  
When φ≠±30°, ±90°, and ±150°, the intersecting line UVW between θ- plane and the base one 
is not parallel to any side of triangle A1A3A5. This is the most general and also the most 
difficult case.  
4.2.2.1 The Singularity-Equivalent-Mechanism 

Fig. 11 shows the singularity-equivalent-mechanism. The triangle B1B3B5 is connected to the 
ground passing through three points W, V and U by three RPR kinematic chains. The three 
points U, V and W, as shown in Fig. 9, are three intersecting points between θ-plane and 
sides A3A5, A1A3 and A1A5, respectively. Three slotted links L1, L2 and L3 intersect at a 
common point C. In order to keep the three links always intersecting at a common point, a 
concurrent kinematic chain, PRPRP, is used as well. Therefore, all the configurations of the 
equivalent mechanism satisfying Deduction 2 are special configurations of the Gough-
Stewart manipulator. So we can analyze direct kinematics of the equivalent mechanism to 
find singularity loci of the manipulator.  
Similarly the mobility of the equivalent mechanism is two, and it needs two inputs when 
analyzing its position. 
4.2.2.2 Forward Position Analysis of the Singularity–Equivalent -Mechanism  

The frames are set as shown in Fig. 11. Similar to section 4.2.1.2, we may set three equations 
of three straight lines passing through three vertices, and substitute the coordinates of 
points B1, B3 and B5 into the equations, then solutions, (x, y)and ψ, can be obtained 
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(49) and (50) denote direct kinematics of the mechanism.  
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Fig. 9. The singularity-equivalent-mechanism for general case 
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 2 3 tan -3 tan tan 3 tantan
tan (-2 3 tan 3 tan -3 )

w u u
w u u

α α β β
ψ

β α α
−

=
+

 (56) 

where u indicates the distance from point U to V, and w the distance from V to W. 
Substituting Eq. (56) into Eqs. (55) and (54), and eliminating ψ, the relations between (x, y) 
and the inputs α, β can be obtained. This is direct kinematics of the equivalent mechanism.   

4.2.2.3 Singularity Equation in the θ- plane 

Under a general case, Euler angle φ can be any value with the exception of ±30°, ±90°, or 
±150°. From Eq (56) one obtains 

 2 3w tantan
-2 3w tan tan 3u tan tan -3 tan 3u tan 3uu

α
β

α ψ α ψ ψ α
=

+ + +
 (57)                          

In the case of some specified ψ, there are the same three particular situations that is B1 and 
B5, B1 and B3, or B3 and B5 lie in the line UV, respectively. The singularity loci are three pairs 
of intersecting straight lines.  
In order to use the above-mentioned formulas, u and w in Eq. (57) should be calculated in 
advance. They depend on their relative positions in UV, as shown in Fig. 10.  
The distance w between V and W is 

 03 cos( / 2) 3WV
cos

a VR xw β
φ

−
= =  (68) 

Structure and Property of the Singularity Loci of Gough-Stewart Manipulator    

 

415 

Y

X
x

γφ

y

φ
θ

U

V
W

O
1A

3A

5A

C

 
Fig. 10. The Intersecting Line UW of two planes 
The distance u between U and V is 

 V2 3xu
3 cot sin

UV
( )φ φ

= =
+

 (59)  

The sign of w is positive when point W is on the right side of V, and it is negative when W is 
on the left side of V. It is similar for the sign of u. 
For a given xv, the singularity equation in θ-plane can be obtained by eliminating the 
parameter α 

 2 0bxy cy dx ey f+ + + + =  (60) 

The two invariants D, δ of Eq. (60) are 

 2 2

0 b/2 d/2
1D b/2 c e/2 b f d c bde
4

d/2 e/2 f
( )= = − + −  (61) 

and 

 20 b/2 1δ b 0
b/2 c 4

= = − <  (62) 

Generally, D≠0 and δ<0 for a general value of xv, so Eq. (60) indicates a set of hyperbolas.  

4.3 Five special cases of the singularity equation 
There are five special cases. For the given parameters (Ra, Rb, β0)and (φ, θ, ψ)，D is a quartic 
equation while δ a quadratic equation with respect to the single variable xv, respectively. 
Generally, there are four real roots of xv when D=0 and δ≠0, and Eq. (60) degenerates into 
four pairs of intersecting straight lines. For the same reason, there is one real root of 
multiplicity 2 when δ=0 and D≠0, and Eq. (60) degenerates into a parabola. 
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on the left side of V. It is similar for the sign of u. 
For a given xv, the singularity equation in θ-plane can be obtained by eliminating the 
parameter α 

 2 0bxy cy dx ey f+ + + + =  (60) 

The two invariants D, δ of Eq. (60) are 

 2 2

0 b/2 d/2
1D b/2 c e/2 b f d c bde
4

d/2 e/2 f
( )= = − + −  (61) 

and 

 20 b/2 1δ b 0
b/2 c 4

= = − <  (62) 

Generally, D≠0 and δ<0 for a general value of xv, so Eq. (60) indicates a set of hyperbolas.  

4.3 Five special cases of the singularity equation 
There are five special cases. For the given parameters (Ra, Rb, β0)and (φ, θ, ψ)，D is a quartic 
equation while δ a quadratic equation with respect to the single variable xv, respectively. 
Generally, there are four real roots of xv when D=0 and δ≠0, and Eq. (60) degenerates into 
four pairs of intersecting straight lines. For the same reason, there is one real root of 
multiplicity 2 when δ=0 and D≠0, and Eq. (60) degenerates into a parabola. 
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(a) B5 does not coincide with A1 
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(b) B5 coincides with A1 

Fig. 11. UV passes through the points A1 
Case 1. The line UV passes through point A1, as shown in Fig. 11. In this case 

03 cos( 2)v ax R β /= , two points W and V coincide with point A1. The singularity equation 
denoted by Eq. (75) degenerates into a pair of intersecting straight lines   

 [ sin( 60 )][( 3 sin( ) cos( )) ( 3 cos( ) sin( )) ] 0b by R x y Rψ ψ ψ ψ ψ°− + − + + + + =  (63) 
One of them is 

  sin( 60 ) 0by R ψ °− + =  (64) 

Case 2. UV passes through point A3. In this case xv=0, two points U and V coincide with 
point A3. Eq. (60) degenerates into a pair of intersecting straight lines either  

 [( sin( )][ cos( ) sin( ) / 2] 0b by R x y Rψ ψ ψ+ + − =  (65)  

The first part of Eq. (65) indicates a straight line parallel to x-axis. Similarly when B1 
coincides with point A3, the singularity of this point is the first special-linear-complex 
singularity and the instantaneous motion is a pure rotation. When B1 does not coincide with 
A3, the singularities of points lying in this straight line are the general-linear-complex 
singularity and its instantaneous motion is a twist with hm≠0. 
The second part of Eq. (62) denotes another straight line. The singularities of points lying in 
this straight line are all the general-linear-complex singularity. 
Case 3. UV passes point A5. In this case 

v a 0x 3R cos β /2 3 cot / 3 cot( )( ) ( )φ φ= + −  

two points U and W coincide with point A5. Eq. (60) degenerates into a pair of intersecting 
straight lines. 

 
0

[ sin( 60 )][( 3 sin( ) cos( )) ( 3 cos( ) sin( ))

2 3 cos( / 2)sin( 60 ) /sin( 60 )] 0
b

b

y R x y

R

ψ ψ ψ ψ ψ

β ψ ϕ

°

° °

− − + + − +

+ − + − =
 (66) 

The first factor indicates a straight line parallel to the x-axis. Similarly when B3 coincides 
with A5, the singularity of this point is the first special-linear-complex singularity. When B3 
does not coincide with A5, the singularities of points lying in this straight line are the 
general-linear-complex singularity. 
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Similarly the second factor of Eq. (66) denotes another straight line. The singularities of 
points lying in this straight line are all the general-linear-complex singularity. 
Case 4. When 

 0( 1 2 cos(2 ))( cos 2 cos( / 2)cos )
(2( 3 sin cos )sin( ))

b a
v

R Rx φ φ β ψ
φ φ φ ψ

− + −
=

− +
 (67) 

Eq. (67) degenerates into a pair of intersecting straight lines as well 

 0 0( cos(( 6 ) / 2) cos( 2 ) cos(( 6 ) / 2)
2 sin( ))( ) 0

a b aR R R
y ax by c

β ψ φ ψ β ψ
φ ψ

− − − + +
− + + + =

 (68) 

For the first straight line when β0=90°, (φ, θ, ψ)=(60°, 30°, 0), and the coordinates of point P6 
are /2, (2 2 )/2 3b a bx R y R - R= = , point B5 lies in the intersecting line of two normal 
planes  B1A1A5 and B3A1A3. Therefore, the six lines associated with the six extensible links of 
the 3/6-GSP intersect a common line B5A1. It is the first special-linear-complex singularity. 
The instantaneous motion is a pure rotation about line B5A1. The singularities of points lying 
in the first line with the exception of the above-mentioned point and the points lying in the 
second line are all belong to the general-linear-complex singularity. 
Case 5. When 

0cos( / 2)cos (cos 3 sin ) /sin( )v ax R β ψ ϕ φ φ ψ= + + , δ=0 and D≠0, 

Eq. (60) degenerates into a parabola. 

 2 0cy dx ey f+ + + =  (69) 

According to the analysis mentioned above, it is shown that the singularity expression in θ-
plane is not cubic but always quadratic. This indicates the θ-plane is a very special cross 
section of the singularity surface, so the special θ-plane can be called the principal section.  
Generally speaking, the singularity loci of the 3/6-GSP for the most general orientations are 
different from those for some special orientations. The singularity loci in infinite parallel 
principal sections are all quadratic equations. The structure of the singularity loci in the 
principal sections of the cubic singularity surface includes a parabola, four pairs of 
intersecting straight lines and infinity of hyperbolas. The singularity loci in three-
dimensional space are illustrated in Fig. 12. 
In addition, it should be pointed out that once the mechanism is singular at the orientation 
(φ, θ, ψ), any orientation with different variable θ is singular as well (Huang at el. 2003).  

5. Structure and property of the singularity loci of the 6/6-Gough-Stewart 
Base on the above-mentioned analysis of the 3/6-GSP, here we focus on the most difficult 
issue, the singularity locus analysis of the 6/6-GSP including the singularity equation and 
the structure of singularity surface. The 6/6-GSP is typical manipulator. The 6/6-GSP is 
represented schematically in Fig. 13. It consists of two semi-regular hexagons: a mobile 
platform B1B3…B6and a base platform C1…C6. They are connected via six extensible 
prismatic actuators. 



 Advanced Strategies for Robot Manipulators 

 

416 

X

Y

3A

U

W)(V,A1

1B
3B

5B

'X

'Y

p

γ
θ

Q

5A

x

y

φ
O

 
(a) B5 does not coincide with A1 

X

Y

3A

5A

U

,V,W)(AB 15

1B
3B 'X

'Y

p
φ

γ
θ

Q

y

x

O

 
(b) B5 coincides with A1 

Fig. 11. UV passes through the points A1 
Case 1. The line UV passes through point A1, as shown in Fig. 11. In this case 

03 cos( 2)v ax R β /= , two points W and V coincide with point A1. The singularity equation 
denoted by Eq. (75) degenerates into a pair of intersecting straight lines   

 [ sin( 60 )][( 3 sin( ) cos( )) ( 3 cos( ) sin( )) ] 0b by R x y Rψ ψ ψ ψ ψ°− + − + + + + =  (63) 
One of them is 

  sin( 60 ) 0by R ψ °− + =  (64) 

Case 2. UV passes through point A3. In this case xv=0, two points U and V coincide with 
point A3. Eq. (60) degenerates into a pair of intersecting straight lines either  

 [( sin( )][ cos( ) sin( ) / 2] 0b by R x y Rψ ψ ψ+ + − =  (65)  

The first part of Eq. (65) indicates a straight line parallel to x-axis. Similarly when B1 
coincides with point A3, the singularity of this point is the first special-linear-complex 
singularity and the instantaneous motion is a pure rotation. When B1 does not coincide with 
A3, the singularities of points lying in this straight line are the general-linear-complex 
singularity and its instantaneous motion is a twist with hm≠0. 
The second part of Eq. (62) denotes another straight line. The singularities of points lying in 
this straight line are all the general-linear-complex singularity. 
Case 3. UV passes point A5. In this case 

v a 0x 3R cos β /2 3 cot / 3 cot( )( ) ( )φ φ= + −  

two points U and W coincide with point A5. Eq. (60) degenerates into a pair of intersecting 
straight lines. 
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The first factor indicates a straight line parallel to the x-axis. Similarly when B3 coincides 
with A5, the singularity of this point is the first special-linear-complex singularity. When B3 
does not coincide with A5, the singularities of points lying in this straight line are the 
general-linear-complex singularity. 
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Similarly the second factor of Eq. (66) denotes another straight line. The singularities of 
points lying in this straight line are all the general-linear-complex singularity. 
Case 4. When 
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Eq. (67) degenerates into a pair of intersecting straight lines as well 
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For the first straight line when β0=90°, (φ, θ, ψ)=(60°, 30°, 0), and the coordinates of point P6 
are /2, (2 2 )/2 3b a bx R y R - R= = , point B5 lies in the intersecting line of two normal 
planes  B1A1A5 and B3A1A3. Therefore, the six lines associated with the six extensible links of 
the 3/6-GSP intersect a common line B5A1. It is the first special-linear-complex singularity. 
The instantaneous motion is a pure rotation about line B5A1. The singularities of points lying 
in the first line with the exception of the above-mentioned point and the points lying in the 
second line are all belong to the general-linear-complex singularity. 
Case 5. When 

0cos( / 2)cos (cos 3 sin ) /sin( )v ax R β ψ ϕ φ φ ψ= + + , δ=0 and D≠0, 

Eq. (60) degenerates into a parabola. 

 2 0cy dx ey f+ + + =  (69) 

According to the analysis mentioned above, it is shown that the singularity expression in θ-
plane is not cubic but always quadratic. This indicates the θ-plane is a very special cross 
section of the singularity surface, so the special θ-plane can be called the principal section.  
Generally speaking, the singularity loci of the 3/6-GSP for the most general orientations are 
different from those for some special orientations. The singularity loci in infinite parallel 
principal sections are all quadratic equations. The structure of the singularity loci in the 
principal sections of the cubic singularity surface includes a parabola, four pairs of 
intersecting straight lines and infinity of hyperbolas. The singularity loci in three-
dimensional space are illustrated in Fig. 12. 
In addition, it should be pointed out that once the mechanism is singular at the orientation 
(φ, θ, ψ), any orientation with different variable θ is singular as well (Huang at el. 2003).  

5. Structure and property of the singularity loci of the 6/6-Gough-Stewart 
Base on the above-mentioned analysis of the 3/6-GSP, here we focus on the most difficult 
issue, the singularity locus analysis of the 6/6-GSP including the singularity equation and 
the structure of singularity surface. The 6/6-GSP is typical manipulator. The 6/6-GSP is 
represented schematically in Fig. 13. It consists of two semi-regular hexagons: a mobile 
platform B1B3…B6and a base platform C1…C6. They are connected via six extensible 
prismatic actuators. 
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(a) for orientation (600 ,450 ,450) (b) with a principal section xv=-4 

 

 

(c) for orientation (600 ,600 ,450) (d) with a principal section xv=-4 
Fig. 12. The singularity loci in three-dimensional space for the general orientations 

5.1 The Jacobian matrix  
The Jacobian matrix of this class of the Gough-Stewart manipulators can be constructed as 
follows according to the theory of static equilibrium (Huang and Qu 1987) 

 

[ ] [ ] 1 2 3 4 5 6
1 2 3 4 5 6

1 2 3 4 5 6

1 1 2 2 3 3 4 4 5 5 6 6

1 1 2 2 3 3 4 4 5 5 6 6
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⎟
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⎜ ⎟
⎜ ⎟⎜ ⎟

⎠

 (70) 

where vectors, Bi, Ci (i=1, 2, …, 6), respectively denote the vertex vectors of the moving and 
base platforms with respect to the fixed frame，Fig. 15; $i (i=1, 2, …, 6)is a line vector of the 
corresponding extensible link, and its Plücker coordinates are as follows $i=(Si; SOi)=(Li, Mi, 
Ni; Pi, Qi, Ri)where the subscript i (i=1, 2, …, 6) indicates the ith limb connected by two 
vertices Bi, Ci of the moving and base platforms of the manipulator. Si is a unit vector 
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specifying the direction of line vector $i, and SOi is a vector indicating the position of the line 
vector together with Si. 

 
(a) A 6/6-Gough-Stewart manipulators 

 
(b) Its top view 

Fig. 13. Schematic of a class of the Gough-Stewart manipulators  

5.2 Singularity analysis in three-dimensional space 
A moving reference frame P-X’Y’Z’ and a fixed one O-XYZ are respectively attached to the 
moving platform and the base platform of the manipulator, as shown in Fig. 15, where 
origins P and O are corresponding geometric center of the moving and base platforms. The 
position of the moving platform is given by the position of point P with respect to the fixed 
frame, designated by (X, Y, Z), and the orientation of the moving platform is represented by 
the standard Z-Y-Z Euler angles (φ, θ, ψ). Furthermore, geometric parameters of the 
manipulator can be described as follows. The circumcircle radius of the base hexagon is Ra, 
and that of the mobile hexagon is Rb,. β0 denotes the central angle of circumcircles of the 
hexagons corresponding to sides C1C2 and B1B6, as shown in Fig. 15. The coordinates of six 
vertices, Bi (i=1, 2, …, 6), of the moving platform are denoted by Bi' with respect to the 
moving frame, and Bi with respect to the fixed frame. Similarly, Ci and Aj represent 
coordinates of vertices, Ci (i=1, 2, …, 6) and Aj (j=1, 3, 5), of the base platform with respect to 
the fixed frame. 
Gosselin and Angeles (1990) pointed out that singularities of parallel manipulators could be 
classified into three different types, i.e., inverse kinematic singularity, direct kinematic 
singularity and architecture singularity. Here we only discuss the direct kinematic 
singularity of this class of 6/6-Gough-Stewart manipulators, which occurs when the 
determinant of the Jacobian matrix of the manipulator is equal to zero, i.e., det(J)=det(JT)=0. 
Expanding and factorizing the determinant of the Jacobian matrix, the singularity locus 
equation of the manipulator can be written as  

 
3 2 2 2 2 2 2

1 2 3 4 5 6 7 8
2

9 10 11 12 13 14 15 16 0
f Z f XZ f YZ f X Z f Y Z f XYZ f Z f X
f Y f XY f XZ f YZ f Z f X f Y f

+ + + + + + + +

+ + + + + + + =
 (71) 

Eq. (71) represents the constant-orientation singularity locus of this class of the Gough-
Stewart manipulators in the Cartesian space for a constant orientation (φ, θ, ψ). It is a 
polynomial expression of degree three in the moving platform position parameters XYZ. 
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where vectors, Bi, Ci (i=1, 2, …, 6), respectively denote the vertex vectors of the moving and 
base platforms with respect to the fixed frame，Fig. 15; $i (i=1, 2, …, 6)is a line vector of the 
corresponding extensible link, and its Plücker coordinates are as follows $i=(Si; SOi)=(Li, Mi, 
Ni; Pi, Qi, Ri)where the subscript i (i=1, 2, …, 6) indicates the ith limb connected by two 
vertices Bi, Ci of the moving and base platforms of the manipulator. Si is a unit vector 
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specifying the direction of line vector $i, and SOi is a vector indicating the position of the line 
vector together with Si. 
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(b) Its top view 

Fig. 13. Schematic of a class of the Gough-Stewart manipulators  

5.2 Singularity analysis in three-dimensional space 
A moving reference frame P-X’Y’Z’ and a fixed one O-XYZ are respectively attached to the 
moving platform and the base platform of the manipulator, as shown in Fig. 15, where 
origins P and O are corresponding geometric center of the moving and base platforms. The 
position of the moving platform is given by the position of point P with respect to the fixed 
frame, designated by (X, Y, Z), and the orientation of the moving platform is represented by 
the standard Z-Y-Z Euler angles (φ, θ, ψ). Furthermore, geometric parameters of the 
manipulator can be described as follows. The circumcircle radius of the base hexagon is Ra, 
and that of the mobile hexagon is Rb,. β0 denotes the central angle of circumcircles of the 
hexagons corresponding to sides C1C2 and B1B6, as shown in Fig. 15. The coordinates of six 
vertices, Bi (i=1, 2, …, 6), of the moving platform are denoted by Bi' with respect to the 
moving frame, and Bi with respect to the fixed frame. Similarly, Ci and Aj represent 
coordinates of vertices, Ci (i=1, 2, …, 6) and Aj (j=1, 3, 5), of the base platform with respect to 
the fixed frame. 
Gosselin and Angeles (1990) pointed out that singularities of parallel manipulators could be 
classified into three different types, i.e., inverse kinematic singularity, direct kinematic 
singularity and architecture singularity. Here we only discuss the direct kinematic 
singularity of this class of 6/6-Gough-Stewart manipulators, which occurs when the 
determinant of the Jacobian matrix of the manipulator is equal to zero, i.e., det(J)=det(JT)=0. 
Expanding and factorizing the determinant of the Jacobian matrix, the singularity locus 
equation of the manipulator can be written as  

 
3 2 2 2 2 2 2
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2

9 10 11 12 13 14 15 16 0
f Z f XZ f YZ f X Z f Y Z f XYZ f Z f X
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+ + + + + + + +

+ + + + + + + =
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Eq. (71) represents the constant-orientation singularity locus of this class of the Gough-
Stewart manipulators in the Cartesian space for a constant orientation (φ, θ, ψ). It is a 
polynomial expression of degree three in the moving platform position parameters XYZ. 
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Coefficients of Eq. (71), fi (i=1, 2, …, 15, 16), are all functions of geometric parameters, Ra, Rb 
and β0, and orientation parameters, (φ, θ, ψ), of the manipulator.  
Graphical representations of the constant-orientation singularity locus of the manipulator 
for different orientations are given to illustrate the result, as shown in Fig. 14. Geometric 
parameters used here are given as Rb=2, Ra=1.5, β0=π/2. 
 

 

(a) for orientation (90°, 60°, 30°) (b) for orientation (-90°, 30°, 60°) 

 
(c) for orientation (60°, 30°, 45°) (d) for orientation (45°, 30°, 45°) 

Fig. 14. Singularity loci for different orientations 

From Figure 14, it can be clearly seen that the singularity loci for different orientations are 
quite different, and they are complex and various. Among them, the most complicated 
graph of the singularity loci looks like a trifoliate surface, whose two branches are of the 
shape of a horn with one hole (Figure 14 (c) and (d)). 

5.3 Singularity analysis in parallel principal-sections 
5.3.1 Singularity locus equation in θ-plane 
Huang, Chen and Li (2003) pointed out that the cross-sections of the cubic singularity locus 
equation of the 3/6-GSP in parallelθ-planes are all quadratic expressions that include a 
parabola, four pairs of intersecting lines and infinite hyperbolas. This conclusion is of great 
importance for the property identification of the singularity loci of the 3/6-GSP. Similarly, in 
order to identify the characteristics of singularity loci of this class of the 6/6-GSP, singularity 
loci of the manipulator in parallel θ-planes will also be discussed in this section. Fig. 16 
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shows the position of the manipulator for orientation (φ, θ, ψ). The oblique plane is θ-plane 
on which the moving platform lies. 
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Fig. 15. The position of the manipulator for orientation (φ, θ, ψ)  
When θ≠0, the moving platform is not parallel to the base one. θ-plane intersects the base 
plane at a line UWV, where points U, W, V are intersecting points between θ-plane and 
three sides, A3A5, A1A5, and A3A1, of the base hexagon, as shown in Fig. 15. We set another 
moving reference frame V-xy in θ-plane, and the coordinates of point P in this moving frame 
V-xy are denoted by (x, y). 
Equations of three lines, A3A5, A1A5, and A3A1, in the fixed frame O-XYZ can be easily 
written. Owing to space limitations, we do not present these equations here. As point V, i.e., 
origin of the moving frame V-xy, lies on line A3A1, and it can be assumed that the 
coordinates of point V with respect to the fixed frame O-XYZ are 

: ( , , 0)V VX YV  

where XV  is a variable indicating the position of θ-plane, i.e., the position of the moving 
platform for any given geometric and orientation parameters, and YV can be established by 
the following expression 

 02 cos( / 2) 3V a VY R Xβ= −  (72) 

So, the equation of line UV can be written as follows 

 02 cos( / 2) 3 cot( )( )UV a V UV VY R X X Xβ φ− + = − −  (73) 

Therefore, coordinates of points U and W can be easily obtained. The coordinates of point P 
designated by (X, Y, Z) with respect to the fixed frame and (x, y) in the moving frame V-xy 
satisfy the following expression 

 
cos cos sin
sin cos cos

sin

V

V

X x y X
Y x y Y
Z x

φ θ φ
φ θ φ
θ

= − +
= + +
= −

 (74)  

Substituting Eq. (81) into Eq. (78) and after some rearrangements and factorizations, the 
singularity locus equation of the manipulator in θ-plane can be written as follows  
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Coefficients of Eq. (71), fi (i=1, 2, …, 15, 16), are all functions of geometric parameters, Ra, Rb 
and β0, and orientation parameters, (φ, θ, ψ), of the manipulator.  
Graphical representations of the constant-orientation singularity locus of the manipulator 
for different orientations are given to illustrate the result, as shown in Fig. 14. Geometric 
parameters used here are given as Rb=2, Ra=1.5, β0=π/2. 
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From Figure 14, it can be clearly seen that the singularity loci for different orientations are 
quite different, and they are complex and various. Among them, the most complicated 
graph of the singularity loci looks like a trifoliate surface, whose two branches are of the 
shape of a horn with one hole (Figure 14 (c) and (d)). 

5.3 Singularity analysis in parallel principal-sections 
5.3.1 Singularity locus equation in θ-plane 
Huang, Chen and Li (2003) pointed out that the cross-sections of the cubic singularity locus 
equation of the 3/6-GSP in parallelθ-planes are all quadratic expressions that include a 
parabola, four pairs of intersecting lines and infinite hyperbolas. This conclusion is of great 
importance for the property identification of the singularity loci of the 3/6-GSP. Similarly, in 
order to identify the characteristics of singularity loci of this class of the 6/6-GSP, singularity 
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shows the position of the manipulator for orientation (φ, θ, ψ). The oblique plane is θ-plane 
on which the moving platform lies. 
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Fig. 15. The position of the manipulator for orientation (φ, θ, ψ)  
When θ≠0, the moving platform is not parallel to the base one. θ-plane intersects the base 
plane at a line UWV, where points U, W, V are intersecting points between θ-plane and 
three sides, A3A5, A1A5, and A3A1, of the base hexagon, as shown in Fig. 15. We set another 
moving reference frame V-xy in θ-plane, and the coordinates of point P in this moving frame 
V-xy are denoted by (x, y). 
Equations of three lines, A3A5, A1A5, and A3A1, in the fixed frame O-XYZ can be easily 
written. Owing to space limitations, we do not present these equations here. As point V, i.e., 
origin of the moving frame V-xy, lies on line A3A1, and it can be assumed that the 
coordinates of point V with respect to the fixed frame O-XYZ are 

: ( , , 0)V VX YV  

where XV  is a variable indicating the position of θ-plane, i.e., the position of the moving 
platform for any given geometric and orientation parameters, and YV can be established by 
the following expression 

 02 cos( / 2) 3V a VY R Xβ= −  (72) 

So, the equation of line UV can be written as follows 

 02 cos( / 2) 3 cot( )( )UV a V UV VY R X X Xβ φ− + = − −  (73) 

Therefore, coordinates of points U and W can be easily obtained. The coordinates of point P 
designated by (X, Y, Z) with respect to the fixed frame and (x, y) in the moving frame V-xy 
satisfy the following expression 

 
cos cos sin
sin cos cos

sin

V

V

X x y X
Y x y Y
Z x

φ θ φ
φ θ φ
θ

= − +
= + +
= −

 (74)  

Substituting Eq. (81) into Eq. (78) and after some rearrangements and factorizations, the 
singularity locus equation of the manipulator in θ-plane can be written as follows  
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 3 2 2sin ( 2 2 2 ) 0ax bxy cy dx ey fθ + + + + + =  (75) 

Since θ≠0, the singularity locus equation of the manipulator with respect to θ-plane becomes 

 2 22 2 2 0ax bxy cy dx ey f+ + + + + =  (76) 

It can be proved that the coefficient c is always equal to zero, so Eq. (76) is a quadratic 
polynomial expression with respect to x and y, and the maximum degree of variable x is 2 
and y is 1. Coefficients a, b, d, e, f of Eq. (76) are all functions of geometric parameters Ra, Rb 
and β0, Euler angles (φ, ψ) and XV. They are all independent of Euler angle θ. Generally, the 
intersecting curve between a cubic surface and a plane is also a cubic expression that may 
also contain a closed-loop curve. For example, when Ra=2, Rb=1.5, β0=π/2, (φ, θ, ψ)=(π/3, 
π/6, π/4), intersecting curves between the corresponding singularity locus surface and the 
following two planes, Z=-Y/3 and  Z=-4(X-14)/45, are respectively presented as follows 
 

 
(a) with the plane / 3Z Y= −  

 
(b) with the plane 4( 14) / 45Z X= − −  

Fig. 16. Intersecting curves of closed-loop with different sections 

Obviously, the intersecting curves between the singularity locus surface of the manipulator 
and the two aforementioned planes are actually cubic expressions, which contain a closed-
loop curve, Fig.18. However, Eq. (76) is always a quadratic polynomial expression; it is 
worth noting the same conclusion presented above holds for any manipulator of this class of 
the Gough-Stewart manipulators considered in the current study. Therefore, θ-plane reflects 
characteristics of the singularity loci of this class of the Gough-Stewart manipulators, and 
that is why we call it the principal-section. 

5.3.2 Property identification of the singularity loci in parallel principal-sections 
The property of the singularity loci of the manipulator in parallel principal-sections can be 
analyzed by two invariants, D and δ, of Eq. (76)  

 2 2a b
ac b b

b c
δ = = − = −  (77) 

 2 2( 2 )
a b d

D b c e a e f b b d e
d e f

= = − + −  (78) 
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For any given geometric parameters and orientation parameters, generally, D≠0 and δ<0 for 
general values of XV, so Eq. (76) indicates a set of hyperbolas shown in Fig. 19. Geometric 
parameters and orientation parameters used in these examples are given as Ra=2, Rb=1.5, 
β0=π/2, (φ, θ, ψ)=(π/3, π/6, 0). 
Further research shows that for any given geometric parameters, Ra, Rb and β0, and 
orientation parameters, (φ, θ, ψ), of the manipulator, D is a quartic expression while δ is a 
quadratic expression with respect to the single variable XV. Generally, there are four real 
roots when D=0 and δ≠0, and, in each of the four cases, Eq. (76) degenerates into two 
intersecting lines. For the same reason, there is one real root of multiplicity two when δ=0 
and D=0; in this case, Eq. (83) degenerates into a parabola. In order to demonstrate the 
aforementioned theoretical results, a 6/6-GSP will be studied, whose geometric parameters 
and the orientation parameters are given as follows: Ra=2, Rb=1.5, β0=π/2, (φ, θ, ψ)=(π/3, 
π/6, 0). Please note that the following calculations are all based on these parameters. 
 

 
(a) for orientation (60°, 30°, 0°), 0VX =   

(b) for orientation (60°, 30°, 0°), 1VX = −  

Fig. 17. Singularity loci in parallel principal-planes for general values of VX  

 
Fig. 18. The first case of two intersecting lines 

5.3.2.1 First Case of Two Intersecting Lines 

The intersecting line UV passes through point C3 and then point V coincides with point C3. 
When 1 ( 6 2 ) / 2VX = + , Eq. (76) degenerates into two intersecting lines, as shown in  
Fig. 18. 

 1 1(8 3( 6 2 ))( ) 0x x k y c− + + + =  (79) 

5.3.2.2 Second Case of Two Intersecting Lines  

The intersecting line UV passes through point C4 and then point V coincides with point C4. 
When 
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5.3.2.1 First Case of Two Intersecting Lines 
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When 1 ( 6 2 ) / 2VX = + , Eq. (76) degenerates into two intersecting lines, as shown in  
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 1 1(8 3( 6 2 ))( ) 0x x k y c− + + + =  (79) 

5.3.2.2 Second Case of Two Intersecting Lines  

The intersecting line UV passes through point C4 and then point V coincides with point C4. 
When 
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 2 ( 6 2 ) / 2VX = −  (80) 

Eq. (76) also degenerates into two intersecting lines  

 2 2(8 3( 6 2 ))( ) 0x x k y c− − + + =  (81) 

The first part of Eq. (81) is 

 8 3( 6 2 ) 0x − − =  (82)  

which is a line parallel to y-axis. Meanwhile, it can be proved that point B1 is located on the 
base plane. Similarly, when B1 coincides with C4, the singularity of this point is of the first 
special-linear-complex singularity. Similarly, when B1 does not coincide with C4, 
singularities corresponding to points lying in line of Eq. (82) are of the general-linear- 
complex singularity. 
The second part of Eq. (81) denotes another line. Singularities corresponding to points lying 
in this line are all of the general-linear-complex singularity. 

5.3.2.3 Third Case of Two Intersecting Lines 

When 3 3( 6 2 ) / 2VX = + , D=0 and δ≠0, Eq. (76) degenerates into two intersecting lines 

 3 3(8 (9 2 3 6))( ) 0x x k y c+ + + + =  (83) 

5.3.2.4 The Fourth Case of Two Intersecting Lines 

When 4 (11 6 3 2 ) /12VX = − , D=0 and δ≠0, Eq. (76) degenerates into two intersecting lines  

 4 4(24 (15 2 5 6))( ) 0x x k y c− + + + =  (84)  

The first part of Eq. (84) is  

 24 (15 2 5 6) 0x − + =  (85) 

which is a line parallel to y-axis of frame V-xy. In particular, there are three special points at 
which all the segments associated with the six extensible links of the manipulator intersect 
one common line, respectively 

5.3.2.5 One Case of a Parabola 

When 5 (7 6 3 2 ) /6VX = + , δ=0and D≠0, Eq. (76) degenerates into a parabola, as shown in 
Fig. 23  

2(528 6 912 2 ) (1423 3 2472) (504 288 3) 513 6 909 2 0x x y− + − + − + − =         (86) 

The manipulator is always singular corresponding to points lying in the parabola. Similarly, 
there are three special points at which all the segments associated with the six extensible 
links of the manipulator intersect one common line. 
Based on the analyses described above, it can be concluded that the singularity loci of this 
class of the 6/6-Gough-Stewart manipulators in parallel principal-sections are always 
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quadratic expressions that generally include infinite hyperbolas. However, for four parallel 
locations of the principal-section, the quadratic expression degenerates into two intersecting 
lines respectively, and in one location the quadratic expression is a parabola when θ≠0. 
 

 
Fig. 19. One case of a parabola 

5.3.3 Singularity analysis when θ=0  
When θ=0, the moving platform is parallel to the base one. Meanwhile, Eq. (94) can be 
reduces as follows  

 3 cos( ) 0Z φ ψ+ =  (87) 

1. When Z=0, the moving and the base platforms are coincident. In this special 
configuration, the manipulator has three DOFs: two rotational freedoms and one 
translational freedom. 

2. When (φ+ψ)=±90°, for the 6/6-Gough-Stewart manipulator, it is the singularity 
proposed by Fichter (1986). 

As we have discussed, the singularity loci of this class of the 6/6-Gough-Stewart 
manipulators in parallel principal-sections include infinite hyperbolas, four cases of two 
intersecting lines, and one case of a parabola when θ=0.  
From analytic geometry, there are five different types of quadric surface with hyperbola 
sections: hyperbolic cylinder, hyperbolic paraboloid, hyperboloid of one sheet, hyperboloid 
of two sheets, and conic surface. However, none of these can contain infinite hyperbolas, 
one case of a parabola, and four cases of two intersecting lines simultaneously. Therefore, 
the singularity locus equation of this class of 6/6-Gough-Stewart manipulators considered 
in three-dimensional space is a special irresolvable polynomial expression of degree three, 
whose cross-sections in parallel principal-sections contain one case of a parabola, four cases 
of two intersecting lines and infinite hyperbolas.  

6. Conslusion 
6.1 A necessary and sufficient condition that the three velocities of three non-collinear points 
in a rigid body can reflect that the body has a possible twist motion is that the intersecting 
point of three normal planes of three velocities lies in the plane determined by the three 
points. This is also the necessary and sufficient condition of occuring singularity for a 
parallel mechanism, when all actuators are locked. 
6.2 Based on the singularity kinematics principle and Singularity-Equivalent-Mechanism 
method, the structure and property of the singularity surface of 3/6-Gough-Stewart 
platform for all different orientations (φ, θ, ψ)can be finally concluded as follows 
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6.2.1 When θ=0, the mobile platform and the base one are parallel with each other. The 
special configuration of the mechanism is (90°, 0, 0)which is proposed by Fichter (1986). The 
mechanism is singular whatever the position of the mobile platform is. It belongs to the 
general-linear-complex singularity. 
6.2.2 When θ=0, Z=0, the mobile platform and the base one are coincident. The mechanism is 
singular whatever the other two Euler angles are. The mechanism has three DOF: two 
rotational freedoms and one translational freedom. They belong to the first or the second 
special-linear-complex singularity, respectively (Huang; Chen; Li 2003).   
6.2.3 When θ≠0, φ≠±30°, ±90°, and ±150° and ψ≠±30°, ±90°, and ±150°, the singularity loci for 
this orientation include a plane (Hunt plane) and a hyperbolic paraboloid (Huang; Chen; Li 
2003). The intersecting line UV between the mobile platform and the base one is parallel to 
some side of the basic triangle A1A3A5.   
6.2.4 When θ≠0, φ≠±30°, ±90°, and ±150° and ψ=±30°, ±90°, or ±150°, the singularity loci are 
three intersecting planes (Huang; Chen; Li 2003). 
6.2.5 When θ≠0, φ≠±30°, ±90°, and ±150° and ψ=±30°, ±90°, or ±150°, the singularity loci for 
this orientation also include a plane and a hyperbolic paraboloid (Huang; Chen; Li 2003). 
6.2.6 When θ=0, neither φ  nor ψ  is equal to any one of the angles, ±30°, ±90°, ±150°. This is 
the most general case for 3/6-GSP. The singularity equation for this orientation is a special 
irresolvable polynomial expression of degree three, and the structure of the singularity loci 
in infinite parallel principal sections includes a parabola, four pairs of intersecting straight 
lines and infinity of hyperbolas (Huang and Cao 2006). 
6.2.7 There is only one instantaneous freedom forming a twist with hm≠0, appearing when 
3/6-GSP is singular for infinite general orientations. But there are seven special situations in 
which the instantaneous motion is a pure rotation with hm=0. However, under the case θ=0, 
Z=0 the instantaneous motion is a pure translation with hm=∞. 
6.2.8 According to the singularity-equivalent-mechanism, the singularity can occur at any 
point all over the θ-plane. That is to say, the singularity can occur everywhere in the 
workspace of the mechanism. But the singularity orientation of the platform in different 
points may be different.  
6.2.9 The planar section parallel to the mobile platform is named principal section of the 
singularity surface. The singularity expressions in infinite parallel principal sections are 
always quadratic.  
6.3 The structure and property of the singularity loci of this class of 6/6-Gough-Stewart 
manipulators for all different orientations can be finally concluded as follows (Huang and 
Cao 2005) 
6.3.1 The singularity locus equation of degree three, is of a special irresolvable polynomial 
expression whose cross-sections in parallel principal-sections contain one parabola, four 
pairs of intersecting lines, and infinite hyperbolas. 
6.3.2 The graphical representations of the singularity locus of this class of the 6/6-Gough-
Stewart manipulators are quite complex and various for different orientations. The most 
complex graphic of the singularity loci looks like a trifoliate surface with two holes. 
6.3.3 We find an incredible phenomenon, for this class of the 6/6-Gough-Stewart 
manipulators, there are also some special singularity cases where six lines associated with 
the six extensible links of the manipulator can intersect one common line and the remnant 
motion of the manipulator is a pure rotational motion. Even for the same orientation of the 
manipulator, there are two or more positions of the manipulator at which the six lines of the 
manipulator all intersect one common line simultaneously. 
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6.3.4 When θ=0, Z=0, the manipulator also has three remnant DOFs: two rotational freedoms 
and one translational freedom.  
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6.2.1 When θ=0, the mobile platform and the base one are parallel with each other. The 
special configuration of the mechanism is (90°, 0, 0)which is proposed by Fichter (1986). The 
mechanism is singular whatever the position of the mobile platform is. It belongs to the 
general-linear-complex singularity. 
6.2.2 When θ=0, Z=0, the mobile platform and the base one are coincident. The mechanism is 
singular whatever the other two Euler angles are. The mechanism has three DOF: two 
rotational freedoms and one translational freedom. They belong to the first or the second 
special-linear-complex singularity, respectively (Huang; Chen; Li 2003).   
6.2.3 When θ≠0, φ≠±30°, ±90°, and ±150° and ψ≠±30°, ±90°, and ±150°, the singularity loci for 
this orientation include a plane (Hunt plane) and a hyperbolic paraboloid (Huang; Chen; Li 
2003). The intersecting line UV between the mobile platform and the base one is parallel to 
some side of the basic triangle A1A3A5.   
6.2.4 When θ≠0, φ≠±30°, ±90°, and ±150° and ψ=±30°, ±90°, or ±150°, the singularity loci are 
three intersecting planes (Huang; Chen; Li 2003). 
6.2.5 When θ≠0, φ≠±30°, ±90°, and ±150° and ψ=±30°, ±90°, or ±150°, the singularity loci for 
this orientation also include a plane and a hyperbolic paraboloid (Huang; Chen; Li 2003). 
6.2.6 When θ=0, neither φ  nor ψ  is equal to any one of the angles, ±30°, ±90°, ±150°. This is 
the most general case for 3/6-GSP. The singularity equation for this orientation is a special 
irresolvable polynomial expression of degree three, and the structure of the singularity loci 
in infinite parallel principal sections includes a parabola, four pairs of intersecting straight 
lines and infinity of hyperbolas (Huang and Cao 2006). 
6.2.7 There is only one instantaneous freedom forming a twist with hm≠0, appearing when 
3/6-GSP is singular for infinite general orientations. But there are seven special situations in 
which the instantaneous motion is a pure rotation with hm=0. However, under the case θ=0, 
Z=0 the instantaneous motion is a pure translation with hm=∞. 
6.2.8 According to the singularity-equivalent-mechanism, the singularity can occur at any 
point all over the θ-plane. That is to say, the singularity can occur everywhere in the 
workspace of the mechanism. But the singularity orientation of the platform in different 
points may be different.  
6.2.9 The planar section parallel to the mobile platform is named principal section of the 
singularity surface. The singularity expressions in infinite parallel principal sections are 
always quadratic.  
6.3 The structure and property of the singularity loci of this class of 6/6-Gough-Stewart 
manipulators for all different orientations can be finally concluded as follows (Huang and 
Cao 2005) 
6.3.1 The singularity locus equation of degree three, is of a special irresolvable polynomial 
expression whose cross-sections in parallel principal-sections contain one parabola, four 
pairs of intersecting lines, and infinite hyperbolas. 
6.3.2 The graphical representations of the singularity locus of this class of the 6/6-Gough-
Stewart manipulators are quite complex and various for different orientations. The most 
complex graphic of the singularity loci looks like a trifoliate surface with two holes. 
6.3.3 We find an incredible phenomenon, for this class of the 6/6-Gough-Stewart 
manipulators, there are also some special singularity cases where six lines associated with 
the six extensible links of the manipulator can intersect one common line and the remnant 
motion of the manipulator is a pure rotational motion. Even for the same orientation of the 
manipulator, there are two or more positions of the manipulator at which the six lines of the 
manipulator all intersect one common line simultaneously. 
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6.3.4 When θ=0, Z=0, the manipulator also has three remnant DOFs: two rotational freedoms 
and one translational freedom.  
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