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Robot Visual Servoing With Iterative Learning Control

P. Jiang and R. Unbehauen

Abstract—This paper presents an iterative learning scheme for vision-
guided robot trajectory tracking. At first, a stability criterion for designing
iterative learning controller is proposed. It can be used for a system with
initial resetting error. By using the criterion, one can convert the design
problem into finding a positive definite discrete matrix kernel and a more
general form of learning control can be obtained. Then, a three-dimensional
(3-D) trajectory tracking system with a single static camera to realize robot
movement imitation is presented based on this criterion.

Index Terms—Adaptive control, iterative learning control, visual
servoing.

I. INTRODUCTION

Most of the industry manipulators can be programmed by so-called
“teaching by showing,” which involves moving the manipulator manu-
ally with a teaching pendant to a desired position and then recording the
position in a memory. The manipulator then plays back the recorded co-
ordinates. However, for a trajectory tracking, it is difficult to move the
manipulator exactly manually and then record the trajectory. Recently,
for the purpose of programming a humanoid robot, several researchers
investigated more general and flexible “teaching by showing” from the
point of learning strategy [1], [2], where camera, laser range finder, and
the marker-based optical recording equipment act as percept device to
replace the time-consuming manual programming. In this paper, we
use a camera instead of a teaching pendant for robot continuous tra-
jectory imitation, especially for manipulator curve tracking in industry
application. First, a teacher grasps a tool or simply an object and does a
demonstration. At the same time, a static camera records the trajectory
of some selected features of the object on the image plane. It describes
the desired trajectory of the object. Then, let the manipulator grasp
the same object and do the tracking repetitively. After several times
learning, it can be expected that a perfect replay of the demonstrated
trajectory can be achieved ultimately. It is a repetitive learning scheme
to track the demonstrated trajectory in image plane and both learning
and visual servoing techniques involve in it. From this process, the iter-
ative learning control (ILC) [3] fits this application very well. For tra-
jectory tracking, it improves the performance of each point along the
trajectory by the experience of the previous tracking of the same tra-
jectory. Usually, the learning operator is designed by using the discrete
Lyapunov method and the system input is updated in an affine fashion
such as a P type or a D type learning. One of known problem existing
in the ILC is the influence of the initial error. Some researchers have
studied this problem [4]–[6]. The results show that the final tracking
performances are related to the initial error or depend on initial state
learning.

To the visual serving, more attention was paid in the last decade.
Wijesomaet al. [7] employed an overhead static camera to detect the
position of the end-effector on the image plane, which was directly fed
to the joint servo controller. Allenet al. [8] used two static cameras
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to follow the motion of a toy train. Papanikolopouloset al. [9]–[11]
worked in the eye-in-hand manner, where they introduced SSD optical
flow and studied LQG, self-tuning regulators for object tracking. Es-
piau et al. [12] studied visual servoing from a more general point of
task function by image Jacobian matrix. The key to designing a suc-
cessful visual servo control is how to estimate the image Jabobian to
meet the so-called modeling condition [12]. The image Jacobian in-
cludes the information of depth, which is usually unmeasurable with
only a single camera. Some approaches simply allocate the nominal
one for the image Jacobian matrix. It works well if a robot is com-
manded to grasp a static object [12], [13]. However, it becomes worse
when the robot tracks a trajectory, as shown in the experiment result of
[13].

In this paper, an iterative learning controller based on a modified
error with deadzone is presented. The initial width of the deadzone is
designed such that the initial state is located within it, then the modified
error exhibits zero-error initially. In the period of trajectory tracking,
the width of the deadzone is decreased properly so that the control error
is eliminated. We proposed two possible methods, quadratic and ex-
ponential, to adjust the width. Both of them lead to the final tracking
performances not related to the initial error. In addition, this paper
proposes a more general iterative learning form in addition to P-type
or D-type learning. The learning operator is generally represented as
a positive discrete matrix kernel. Based on it, we design a learning
controller for the task of “teaching by showing” with visual servoing,
where we use a single static camera to do 3-D trajectory tracking con-
trol. In order to calculate the image Jacobian matrix, we present an
on-line pose estimation that identifies the coordinates of the feature
points on the tool frame of robot’s end-effector. Because these coordi-
nates are constant for a particular task, the convergence can be guaran-
teed. At the end of this paper, the simulations are carried out to verify
the efficacy of the proposed learning scheme.

II. STABILITY CRITERION FORITERATIVE LEARNING CONTROL

For a desired trajectoryxd(t) with a finite time interval0 � t � tf ,
the objective of the ILC is to design a learning law such that the system
states can converge to thexd(t) by tracking it repetitively. Suppose
that theith tracking of a time-varying system can be described by the
following equation:

_x(t; i) = f(t; i) + u(t; i) i = 1 . . . k; 0 � t � tf (1)

wheref(t; i) is an unknown vector but satisfies the repetitive condition,
i.e., f(t; i) = f(t); x(t; i) 2 Rn andu(t; i) 2 Rn are the state and
the control input of theith learning at instantt, respectively.

Most of the iterative learning schemes require an initial resetting
condition, i.e.,x(0; i) = xd(0). However, a practicable assumption is
to set the initial errors within a given region. We introduce a modified
equivalent errors�(t; i) to ILC with a deadzone

s�(t; i) = s(t; i)� �(t; i)

�(t; i) = ["f1(t) sat(s1(t; i)="f1(t)) . . .

"fn(t) sat(sn(t; i)="fn(t))]
T (2)

wheres(t; i) is a vector of an equivalent error,sj(t; i) is its jth com-
ponent, and the"f(t) = ["f1(t); . . . ; "fn(t)]

T is ann-dimensional
width of the deadzone that is time-varying but independent of the iter-
ative indexi.

If we specify the deadzone width"f(0) such that the initial resetting
errors of the system are always within it, thens�(0; i) = 0 and the
usual assumption of a vanishing initial error is satisfied.
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Theorem 1: If a system satisfies a weak initial resetting con-
dition of jsj(0; i)j < "fj(0), then an upper-bounded condition
limk!1

k
i=0 s

T
�(t; i)( _s(t; i)� sgn(s�) _"f) � 20 ; 0 � t � tf ,

where20 is any positive finite constant, ensures that the equivalent
error of every point along the desired trajectory will converge into the
deadzone, i.e.,limi!1 jsj(t; i)j � "fj(t); 0 � t � tf , as the system
tracks the desired trajectory repetitively.

Proof: See Appendix 1.
On the basis of this theorem, we shall design an iterative learning

controller for the system (1) and mainly focus our attention on two
problems: 1) Except usual P-type and D-type iterative learning, what
is the general learning scheme? 2) How to design the deadzone width
such that a perfect tracking can be achieved.

Suppose the tracking error of system (1) iss(t; i) = xd(t)�x(t; i).
From the repetitive conditionf(t; i) = f(t), we obtain

k

i=0

sT�(t; i)( _s(t; i)� sgn(s�) _"f)

=

k

i=0

sT�(t; i)( _xd(t)� f(t)� sgn(s�) _"f � u(t; i)): (3)

Let the control law be

u(t; i) = ul(t; i) + uf(t; i) (4)

whereul(t; i) is a learning term for compensating the unknown but
repetitive influence of_xd(t)�f(t), anduf(t; i) is a feedback term for
countermining the time varying width of the deadzone.

Substituting control law (4) into (3), we have

k

i=0

sT�(t; i)( _s(t; i)� sgn(s�) _"f)

=

k

i=0

sT�(t; i)( _xd(t)� f(t)� ul(t; i))

+

k

i=0

sT�(t; i)(�sgn(s�) _"f � uf(t; i)): (5)

In order to satisfy the upper bounded condition in Theorem 1, the
following property of a positive definite discrete matrix kernel [14] can
provide a more general learning form.

Lemma: For any vectory(i) and any unknown constant vectora,
a positive definite discrete matrix kernelF (i), whosez-transform is a
positive real discrete transfer matrix and with a pole atz = 1, ensures
that the following accumulation is always upper bounded

N

i=0

yT (i) a�

i

j=0

F (i� j)y(j) � 20 ; 8N:

In the first term of (5), although_xd(t) � f(t) is time-varying, it
remains constant over iterations for any given instantt, i.e., it can be
repeated. From the Lemma, if we use a learning law of the uncertainties
_xd(t) � f(t) through iterationsi as

ul(t; i) =

i

j=0

F (i� j)s�(t; j) (6)

whereF (i � j) is a positive definite discrete matrix kernel, then
k
i=0 s

T
�(t; i)( _xd(t)� f(t)� ul(t; i)) � 20 for any givent and

k

i=0

sT�(t; i)( _s(t; i)� sgn(s�) _"f)

� 20 +

k

i=0

sT�(t; i)(�sgn(s�) _"f � uf(t; i)): (7)

Further, let the feedback term be

uf(t; i) = �sgn(s�) _"f (8)

then limk!1
k
i=0 s

T
�(t; i)( _s(t; i)� sgn(s�) _"f) � 20 ; 0 � t �

tf , the condition in Theorem 1 is satisfied.
Take thez transformation along the iteration axisi for the (6), and

we get

ul(t; z) = F (z)s�(t; z): (9)

From the definition of a positive definite discrete matrix kernel that
has a pole atz = 1, we can rewriteF (z) = W (z)z=(z � 1), and (9)
becomes

ul(t; z) = z�1ul(t; z) +W (z)s�(t; z):

By its inversez-transform, the learning law (6) can be written in an
equivalent form

ul(t; i) = ul(t; i� 1) + Z�1(W (z) � s�(t; z)): (10)

Obviously, the usual P-type law with a gain of a positive constant
diagonal matrixW is a particular one of (10) becauseZ(F (i)) =
W � diag(z=(z� 1); . . . ; z=(z� 1)) is a positive real discrete transfer
matrix with a pole atz = 1. Therefore, (6) or (10) represents a more
general learning law. It updates the control input based on the output
of the error passed through a filterW (z) if F (z) = W (z)z=(z � 1)
is a positive real discrete transfer function. This kind of filter can guar-
antee convergence of the learning and improve its robustness to the
noise. For example, a first order low-pass filter1=(Ts + 1) is often
used in application, whereT is the time constant of the filter ands is
the Laplacian operator. For the purpose of discretization, its conversion
to digital form can be written by itsz-transform with a zero hold

G(z) = (1� z�1)Z
1

s(Ts+ 1)
=

1� e��=T

z � e��=T

=
(1� a)

z � a
(11)

wherea = e��=T is a constant satisfying0 < a < 1.
If we take this filter as the learning gain in (10), i.e.,W (z) = G(z),

the learning law can be written as

W (t; i) = aW (t; i� 1) + (1� a)s�(t; i� 1)

u(t; i) = u(t; i� 1) +W (t; i)
(12)

In this equation, it only uses the tracking errors of last tracking, i.e.,
s�(t; i�1) due to the zero hold to avoid noncausal problem in normal
digital control system. However, in ILC, the learning is along discrete
iteration axis but control is conducted along continuous time axis. Then
the ith control errors�(t; i) is available for theith learning control.
Usings�(t; i) instead ofs�(t; i� 1), the (12) becomes

W (t; i) = aW (t; i� 1) + (1� a)s�(t; i)

u(t; i) = u(t; i� 1) +W (t; i)
: (13)

With this low-pass filter, we have
W (z) = ((1� a)z)=(z� a); 0 < a < 1. Now, we
shall verify if F (z) = W (z)z=(z � 1) is a positive real discrete
transfer matrix, which is the convergent condition of the learning
control (6)

F (z) = W (z) �
z

z � 1
=

(1� a)z2

(z � 1)(z � a)
:

1) F (z) is analytic outside the unit circle. The pole on the unit circle
is simple and the associated residue is positive.
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2) Applying the transformationz = (1 + j!)=(1� j!) to F (z),
its real part is given by

Re[F (j!)] = (1� a)
(2 + 2a)!4 + (2� 6a)!2

(2 + 2a)2!4 + (2� 2a)2!2
:

In order to letRe[F (j!)] > 0 for all real!, we have the condition
of a < 1=3.

So the coefficient of the filterW (z) in (13) should satisfy0 < a <
1=3, and then the convergence of the learning control can be ensured.

Remark 1: The learning law (6) or (13) consist of the accumulation
of control history(0 . . . i� 1) and theith control error feedback. The
stability can be guaranteed ifF (z) = W (z)z=(z�1) is a positive real
discrete transfer matrix.

Remark 2: In addition to the system (1), for a class of nonlinear
system

_x(t; i) = f(t; i) + Y (x) � a(t; i) + u(t; i);

i = 1 . . . k; 0 � t � tf (14)

whereY (x) 2 Rn�m is a known nonlinear matrix,f(t; i) 2 Rn and
a(t; i) 2 Rm are unknown vectors but have the repetitive property, i.e.,
f(t; i) = f(t) anda(t; i) = a(t), we can also obtain the following
learning law to meet the upper bounded condition of Theorem 1:

ul(t; i) = f̂(t; i) + Y (x)â(t; i)

f̂(t; i) = f̂(t; i� 1) + Z�1(W1(z)s�(t; z))

â(t; i) = â(t; i� 1) + Z�1(W2(z)Y
T (x)s�(t; z))

(15)

if Fk(z) = Wk(z)z=(z � 1); k = 1; 2, are positive real discrete
transfer matrices.

From Theorem 1, we havelimi!1 jsj(t; i)j � "fj(t); 0 � t � tf .
It only implies that the tracking error converges into the deadzone. In
order to realize high accuracy tracking, we have to limit the width of
the deadzone as narrow as possible. As mentioned previously, the ini-
tial width of the deadzone is a constant that must be greater than any
possible uncertain initial state error, namely,jsj(0; i)j < "fj(0); 8i.
Then the width"f(t) should be decreased along the desired trajectory
so that"f(t) = 0 after a specific instantT and perfect tracking can
then be achieved after this instant. From the feedback law (8), this time
varying deadzone width"f(t) has to be differentiable. A lot of mathe-
matical functions can be used to realize this attenuating width of dead-
zone. One of possible and simpler candidate is the quadratic function.

1) Quadratic Deadzone:The width of the deadzone for thesj(t; i)
is decreased quadratically as

"fj(t) =
"fj(0)(t� T )2=T 2; t � T

0; t > T
: (16)

It is differentiable and the width of the deadzone reaches zero after
timeT . This meanslimi!1 jxd(t)� x(t; i)j = 0; T � t � tf , and a
perfect tracking can be realized. In application, for any desired trajec-
tory, we can design a ‘run up segment’ from time 0 toT before normal
tracking. It is only an assistant segment for the desired trajectory.

With this strategy, the feedback control term in (8) can be written as

ufj(t; i) =
2"fj(0)(T � t) sgn(s�j(t; i))=T

2; t � T

0; t > T

: (17)

This feedback term is discontinuous in the “run up segment.” In
normal tracking, it is removed. In order to realize a smooth feedback
control and remove the additional “run up segment,” an exponentially
attenuating width can be considered as an alternative.

2) Exponential Deadzone:Considering the second term in (5), we
have

k

i=0

sT�(t; i)[�sgn(s�) _"f � uf(t; i)]

=

k

i=0

�js�(t; i)j
T _"f � sT�(t; i)uf(t; i) (18)

wherejs�(t; i)j = [js�1(t; i)j; . . . ; js�n(t; i)j]
T .

Let

uf(t; i) = Kds(t; i);

whereKd = diag(Kd1; . . . ; Kdn) > 0 (19):

Substituting (19) into (18) and based on (2), we have

k

i=0

sT�(t; i)[�sgn(s�) _"f � uf(t; i)]

=

k

i=0

�sT�(t; i)Kds�(t; i)� js�(t; i)j
T _"f

� sT�(t; i)Kd�(t; i)

=

k

i=0

�sT�(t; i)Kds�(t; i)� js�(t; i)j
T _"f

� js�(t; i)j
TKd"f (20)

Therefore, when the width of the deadzone satisfies

_"f = �Kd"f ; with the initial condition of"f(0) (21)

the (20) is less than or equal to zero and the inequality in Theorem 1
can be satisfied too. Thenlimi!1 jsj(t; i)j � "fj(t); 0 � t � tf . It
implies that the system tracking performances can be better than any
given first-order linear system (21) if we use a linear feedback control
(19).

III. T EACHING BY SHOWING WITH ITERATIVE LEARNING

In this section, a teaching by showing algorithm for continuous
trajectory programming is proposed, where a static camera is used
as trajectory recording device instead of teaching pendant. First,
a human teacher grasps an object or a tool and does a movement
demonstration as shown in Fig. 1, where a cube is grasped to
move. At the same time, a static camera records the trajectories
pd(t) = [xd1(t); yd1(t); xd2(t); yd2(t); xd3(t); yd3(t)]

T of three
selected feature points of the object on the image plane, which are
three corner points of the cubep1(t); p2(t), andp3(t), in Fig. 1. Then,
let a manipulator grasp the same object to imitate the movement of
the teacher.

Let us define a moving tool frameFt attached to the end-effector of
the manipulator and a base frameFc attached to the static camera as
shown in Fig. 2. The vector that locatesFt ’s origin is calledF PF o.Ft
is rotated with respect toFc by F

F R. Then, any selected feature point
P (Xs; Ys; Zs) of an object can be described in the frame ofFc as

P = F
F R � F P + F PF o (22)

whereF P is coordinate vector of the pointP in the tool frameFt.
Note that it is an unknown constant vector for operating a rigid object,
which represents the fixed relationship between the object and the end-
effector for a given operation.
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Fig. 1. Teacher’s demonstration and feature points.

Fig. 2. Frames definition.

Let us assume that the end-effector moves with a transla-
tional velocity V = (Vx; Vy; Vz)

T and with an angular velocity
! = (!x; !y; !z)

T . Differentiating both side of (22) gives

_P = ! � F
F R � F P + V = ! � P � F PF o + V

= ! � P + V 0: (23)

DefineT 0 = �T , whereT 0 = [V 0; !]T ; T = [V; !]T

� =
I F PF o�

0 I
:

Now suppose the projection of the feature pointP (Xs; Ys; Zs) onto
the image isp(x; y) and satisfies the pinhole camera model with a unit
focal length as shown in Fig. 2. Then the optical flow of the point
p(x; y) is written as [12]

_p = JT 0 = J�T;

J =
1

Zs

1 0 �x

0 1 �y
;

�xy 1 + x2 �y

�1� y2 xy x
: (24)

It is known that, in order to compute the control input, at least three
noncollinear feature points are required [10]. Suppose three feature
points of the object are represented asPi; i = 1; 2; 3.

How to obtain the image Jacobian matrixJ of 3 feature points as
defined in (24), whereJ = [JT1 ; J

T
2 ; J

T
3 ]T 2 R6�6, is the key of

Fig. 3. Desired trajectories on the image plane.

designing a visual servoing controller, which involves unknown depths
of the feature points with only a single camera. From (22), we know
that the depth of thejth feature point can be expressed as

Zsj = Pjz = F
F Rz �

F Pj + Zo (25)

where[ � ]z corresponds to the third row of a matrix,Zo = bF PF ocz
andF

F Rz are measurable from the robot position sensors,F Pj is an
unknown constant vector that is a repetitive uncertainty and can be
learned by ILC. Then, we propose the following control for the system
(24) to follow the desired trajectorypd(t):

T (t; i) = ��1T 0(t; i) = ��1Ĵ�1(ul(t; i) + uf (t; i)) (26)

where Ĵ is an estimate of Jacobian matrix with estimated depths
Ẑsj ; j = 1; 2; 3, instead of the real one in (24) and is supposed to be
not singular. Theul(t; i) is the learning term and theuf(t; i) is the
feedback term.

Theorem 2: When selectul(t; i) as in (10) and use the following
depth estimation for computation of̂J :

1=Ẑsj = 1=Zo � 1 Z2

o
F
F Rz �

F P̂j(t; i)� j�jmax sgn(gj)
F P̂j(t; i) =

i

l=0
Gj(i� l)gj(t; l)

F
F RT

z Z2

o

whereGj(i�l); j = 1; 2; 3, should be positive definite discrete matrix
kernels. By iterative learning, the system can realize perfect tracking
with uf(t; i) in a form of (17) or exhibit exponential decrease with
uf(t; i) in a form of (19).

Proof: See Appendix 2.
In order to calculate (26), the invertibility of̂J must be guaranteed.

This means that the three estimate points must be not collinear
and the camera center is not located on the singular cylinder [15].
In order to avoid the singularity, we define three cubic regions
for every estimate of feature points such that they are impos-
sible to become collinear if the estimates ofX; Y; Z coordinates
of F P̂j ; j = 1; 2; 3, are confined inside the regions, namely,
bF Pjmcmax > F P̂jm(t; i) > bF Pjmcmin; m = 1; 2; 3. Then,
we modify the identification scheme in Theorem 2 with a bounded
learning scheme, as shown in (27), shown at the bottom of the next
page, wherem = 1; 2; 3 anddj = [dj1 dj2 dj3] = gj

F
F Rz=Z

2

o .
Then, (A.3) in Appendix 2 is upper bounded as well.

IV. SIMULATION RESULTS

In the showing phase, a teacher grasps a cube to do demonstration
as shown in Fig. 1 and the trajectories of three corner points in 5 s
are recorded by a camera (16 mm focal length) as shown in Fig. 3.
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(a) The 1st learning (b) The second learning
_ex, . . . ey, - - - ez

Fig. 4. Control errors of the feature point 1(� = �0:05).

Then, let the manipulator grasp the same cube to learn the demonstrated
trajectory repetitively.

During the training, suppose the origin of the tool frame can not coin-
cide with the desired one with a�0:05 m random initial error for each
tracking. It causes the initial resetting errors of the iterative learning.
In order to use bounded scheme (27) to estimate the coordinates of the
feature points in the tool-frame, a rough position estimation of the fea-
ture points in tool frame is needed

F P1 = [0:1 0:1 0]T ; F P2 = [0:1 0 0:1]T ;
F P3 = [0 0:1 0:1]T (28)

with an possible error bound of� = �0:05 for all of components, i.e.,
bF Pjmcmax = F Pjm +�; bF Pjmcmin = F Pjm �� required in
(27), shown at the bottom of the page, wherej;m = 1; 2; 3.

The servo period is 0.02 s and the control parameters are selected to
be

Kd = diag[10 10 10 10 10 10]T

F (i� j) = diag[10 10 10 10 10 10]T

j�jmax = [0:001 0:001 0:001]T

Gjm(i� l) = 50

The first tracking errors of the feature point 1 in the Cartesian space
are depicted in Fig. 4(a). After FIVE iterations, the simulation results
are shown in Fig. 4(b), and the control error has shown an exponen-
tial decrease for the whole trajectory. This simulation shows that the
proposed control scheme is effective in eliminating the influence of
initial errors. In (27), for the purpose of estimating1=Zsj , the initial
valueF P̂jm(t; 0) cannot be selected arbitrarily. It must be maintained
within the permitted region (� = �0:05 in this simulation), other-
wise it may be confronted with a singular problem. One of example
can be shown in Fig. 5. In this example,� = �0:2. It means we have
less prior knowledge about the coordinates of the feature points in the
tool frame. In this case, three estimating feature points might become

Fig. 5. Control errors of the feature point 1(� = �0:2).

collinear so that the estimate of Jacobian matrix might become singular.
At 2.66 s, when three feature points close to collinear, the determinant
of the image Jacobian matrix is less than5 � 10�8 and the control
law faces the singular problem and further causes system divergence.
How to avoid singularity for ILC withouta priori knowledge is impor-
tant for its visual servoing application. We proposed a possible solution
to the problem called Indirect Iterative Lerning Control [16]. Another
problem is how to avoid big deviation from the reference trajectory, es-
pecially in the first several times of learning, where the feature points
might get out of camera sight and the feedback is lost. We also pro-
posed a segmented training ILC to avoid too much deviation and keep
feature point within a permitted region [17].

V. CONCLUSION

This paper presented a general iterative learning scheme for non-
linear system trajectory tracking with initial resetting error. It can be
used for robot programming with “teaching by showing.” Our method
is different from the traditional one through a “teaching pendant.” A
camera is used to record the trajectory shown by a teacher. With the aid

F P̂jm(t; i) =

[F Pjm]max
F P̂jm > [F Pjm]max and djm > 0

[F Pjm]min
F P̂jm < [F Pjm]min and djm < 0

i

l=0

Gjm(i� l)djm else
(27)
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of this camera, the robot can track the desired trajectory after several
times learning. How to avoid singularity of image Jacobian without any
a priori knowledge is a further research topic.

APPENDIX I

Proof of Theorem 1:Define an energy function of theith learning
asVi(t) = sT�(t; i)s�(t; i). From definition (2)

Vi(t) =

n

j=1

s2�j(t; i); wheres2�j(t; i)

=

(sj � "fj)
2 sj > "fj

0 jsj j � "fj
(sj + "fj)

2 sj < �"fj

and thes2�j(t; i) is differentiable if"fj(t) is differentiable.
Then we have

d

dt
s2�j(t; i) = 2s�j(t; i)( _sj � sgn(sj) _"fj):

Definesgn(s�) = diag[sgn(s�1); . . . ; sgn(s�n)], then

_Vi(t) = 2sT�(t; i)( _s(t; i)� sgn(s�) _"f)

andVi(t) =
t

0

_Vi(t)dt+ sT�(0; i)s�(0; i) 0 � t � tf .
From the conditionjsj(0; i)j < "fj(0) and (2), we haveVi(t) =
t

0

_Vi(t)dt.
Then the total energy ofk iterations is

k

i=0

Vi(t) =

k

i=0

t

0

_Vi(t)dt

= 2
t

0

k

i=0

sT�(t; i)( _s(t; i)� sgn(s�) _"f)dt:

When the repetitive times go into infinite, the energy becomes

lim
k!1

k

i=0

Vi(t)

= 2
t

0

lim
k!1

k

i=0

sT�(t; i)( _s(t; i)� sgn(s�) _"f) dt:

If limk!1
k

i=0
sT�(t; i)( _s(t; i)� sgn(s�) _"f) � 20 ; 0 � t � tf ,

thenlimk!1
k

i=0
Vi(t) � 2

t

0
20 dt � 220 tf .

Because the time intervaltf is bounded, thenlimk!1
k

i=0
Vi(t)

is bounded. We havelimi!1 Vi(t) = 0, which means
limi!1 s�(t; i) = 0, for 0 � t � tf .

APPENDIX II

Proof of Theorem 2:Let the ith equivalent error bes(t; i) =
[sT1 (t; i); s

T
2 (t; i); s

T
3 (t; i)]

T = pd(t)� p(t; i) 2 R6, then from (24)

k

i=0

sT�(t; i)( _s(t; i)� sgn(s�) _"f)

=

k

i=0

sT�(t; i)( _pd(t)� sgn(s�) _"f � ĴT 0(t; i))

+

k

i=0

sT�(t; i)(Ĵ � J)T 0(t; i):

Substitute the control law (26) into this equation and letul(t; i) as in
(10) anduf(t; i) as in (17) or (19), the first term of the above equation is

upper bounded. Then, from the definition of the image Jacobian matrix
in (24), we have

k

i=0

sT�(t; i)( _s(t; i)� sgn(s�) _"f)

� 20 +

k

i=0

sT�(t; i)(Ĵ � J)T 0(t; i)

= 20 +

k

i=0

3

j=1

gj(t; i)(1=Ẑsj � 1=Zsj) (A.1)

where

gj(t; i) = sT�j(t; i)
V 0x � xjV

0

z

V 0y � yjV
0

z

:

From (25), we can approximate1=Zsj by the Taylor series around
Ft’s origin as

1=Zsj = 1=Zo � 1 Z2

o
F
F Rz �

F Pj + � (A.2)

where� is a small value for a task with a small size/distance ratio.
Substituting (A.2) and the depth estimating law of the Theorem 2

into (A.1) gives

k

i=0

sT�(t; i)( _s(t; i)� sgn(s�) _"f)

� 20 +

k

i=0

3

j=1

gj(t; i)
1

Z2
o

F
F Rz

� (F Pj �
F P̂j(t; i))� � � j�jmax sgn(gj)

� 20 +

3

j=1

k

i=0

gj(t; i)
F
F Rz

�
1

Z2
o

F Pj �

i

l=0

Gj(i� l)gj(t; l)
F
F RT

z

1

Z2
o

: (A.3)

From the Lemma, it satisfies the upper bounded condition in The-
orem 1.
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