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“My talent is getting things to work that people think are many decades in the
future. I say we can make them happen now. ”

Rodney Brooks
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Abstract

Robotics is increasingly attracting interest for more and more applications. In
particular, underwater robotics is having a large development since the need
of mineral resources is growing. The latter pushes to find out new deposits on
the seabed. Therefore, the construction and the maintenance of underwater
structures are necessary, e.g., submarine pipelines for carrying oil and gas.
However, performing any task on the seabed is very dangerous for the man,
for obvious reasons. Thus, several Autonomous Underwater Vehicles (AUVs),
equipped with manipulators as well, have been implemented in recent years,
aimed at physically substituting the man.

The control of Underwater Vehicles-Manipulator Systems (UVMSs) require full
control of the vehicle. Indeed, cruise vehicles with rudder and stern are not
suitable for carrying a manipulator since they are not able to counteract the
interaction forces with the arm itself. Furthermore, for a rigid body moving
in a fluid there exist several hydrodynamic effects acting on it. In particu-
lar, among the latter, the restoring generalized forces, which are gravity and
buoyancy, and the ocean current are of major concern in designing the control
law since they influence the steady-state position and orientation errors. Be-
yond Proportional-Integral-Derivative actions (PID), several adaptive control
laws have been proposed in literature for compensating these effects. However,
they all are designed starting from the dynamic models written either in the
earth-fixed or in the vehicle-fixed frame, respectively. Nevertheless, some hy-
drodynamic terms are constant in earth-fixed frame, e.g., the restoring linear
force, and some others are constant in the vehicle-fixed frame, e.g., the restor-
ing moment. Thus, in this thesis work, a mixed earth/vehicle-fixed frame-based
adaptive control able to build each dynamic compensation action in the proper
reference frame is proposed. In particular, a reduced version has been derived
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within the aim to achieve null steady state error under modelling uncertainty
and presence of ocean current with respect to a minimal number of parame-
ters. Furthermore, the effects of including the thruster dynamics within the
full-dimensional adaptive control are investigated. Simulations and compar-
isons with other control laws, such as PID, show the better performance of the
proposed technique.

The proposed adaptive control law has been also tested within the EC-funded
ROBUST Project with the interuniversity Center of Integrated Systems for the
Marine Environment (ISME). The ROBUST system has been designed and
implemented for performing sea bed material identification merging the ca-
pabilities of an AUV and a robotic manipulator with a LIBS (Laser Induced
Breakdown Spectroscopy) sensor mounted on its end-effector. Thus, the adap-
tive technique has been used for the vehicle dynamic control.

Redundant systems can be exploited to perform multiple tasks simultaneously.
For this purpose, the Multi-Task Priority (MTP) inverse kinematics algorithm
can be used. As well known in literature, the latter is based on the Closed
Loop Inverse Kinematics (CLIK) and allows to manage a prioritized hierarchy
of equality-based tasks, which are control functions characterized by a specific
desired value, e.g, position and orientation. In addition to the latter there
exists another category of control functions which are named set-based tasks
since their value can range between an upper and lower bound, respectively.
One of the most common set-based tasks is for instance the obstacle avoidance.
Indeed, the obstacle distance has to respect a lower bound (a minimum distance
value). However, it can assume values greater than the latter.

Within the aim to control systems taking into account safety-related tasks, it
is necessary to manage both equality and set-based tasks. Thus, the Set-Based
Task-Priority Inverse Kinematics (SBTPIK) is proposed in this thesis. In par-
ticular, simulations and experiments with fixed and mobile base manipulators
show the effectiveness of the algorithm as well as its integration into an assistive
control framework for Remotely Operated Vehicles (ROVs).

The SBTPIK validity is also demonstrated through its application within the
EC-funded DexROV Project with ISME. More in detail, a via-satellite remotely



v

controlled UVMS has been developed to perform several kind of tasks such as
oil and gas pipelines maintenance. Therefore, it has been necessary to manage
multiple tasks ensuring the safety system. Thus, the SBTPIK has been applied
to fulfill this objective.

The SBTPIK is a local motion control algorithm which efficiently performs
on redundant systems since it handles real-time changes in the environment.
However, it is prone to local minimum as any local motion controllers. Motion
planners, on the other hand, are global methods and they are able to take into
consideration the same system constraints. Nevertheless, their implementation
often requires sacrificing some of the constraints or the redundancy exploita-
tion. For this reason, in this thesis an approach based on merging the global
and local planners in an effort to preserve the features of both ones is pro-
posed. In particular, the global planner is implemented as a sampling-based
algorithm which works in the reduced-dimensionality of the robot work space
applying the Cartesian constraints only. The output trajectory is then checked
against the inverse kinematics algorithm verifying the fulfillment of the other
task constraints. The SBTPIK is then used also in real-time to ensure a reac-
tive behaviour. During the movement, the motion planner runs in background
to adapt to changes in the environment, human presence or, in general, to con-
tinuously optimize the path. The proposed method has been simulated within
the DexROV and ROBUST frameworks and experimentally validated in lab-
oratory with a mockup represented by the Kinova Jaco2 7 DOFs (Degrees of
Freedom) manipulator.

The SBTPIK framework has been successfully used in assistive applications as
well, aimed at allowing users with severe motion disabilities to perform manip-
ulation tasks that may help in daily-life operations. Tests have been performed
using the Kinova Jaco2 7 DOFs manipulator operated via a P300-based Brain
Computer Interface (BCI). More in detail, the P300 paradigm is based on the
P300 potential which is a component of the Event Related Potentials (ERPs),
i.e., a fluctuation in the EEG generated by the electrophysiological response
to a significant sensorial stimulus or event. In particular, the P300 consists of
a positive shift in the EEG signal approximately 300-400ms after a task rele-
vant stimulus. Thus, the user with motion disabilities can generate command



vi

through a proper P300-based Graphical Interface (GUI). It is worth noticing
that the present thesis focuses on underwater robotics therefore the BCI topic
is not discussed in this work.
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Chapter 1

Introduction

1.1 Motivation

Underwater robotics is an engineering field that attracts a lot of interest for sev-
eral applicative scenarios. This interest is not recent but there has always been.
Famous scientists of the past devoted their efforts in designing an underwater
vehicle. Leonardo Da Vinci is one of them. Indeed, a draw has been found in
the Codex Atlanticus about a mechanical submarine (see Fig. 1.1). According
to legends, Leonardo worked on the project of an underwater military machine
which then he destroyed since judged too dangerous.

Figure 1.1: Render of the mechanical submarine designed by Leonardo
Da Vinci.

In the last years, underwater robotics has known an increasing development
due to the growing need of mineral resources, that pushes to find out new de-
posits on the seabed, and to the need to construct and to do maintenance of
underwater structures, e.g., submarine pipelines used primarily to carry oil and
gas. Indeed, the aim of the research is to perform these tasks in a completely
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autonomous way. Therefore, through the years, increasingly advanced systems
have been developed to physically substitute the human in performing these
tasks because of the dangerous conditions. However, performing autonomous
underwater tasks is still challenging both from the technological and theoreti-
cal point of view since it involves a wide range of technical and research topics.
The underwater environment is actually unknown and unstructured with poor
visibility in most of cases. Then, the vision based systems are generally not
reliable. Furthermore, the online communication is limited since technologies
as GNSS (Global Navigation Satellite System) are not applicable due to the
impossibility of underwater electromagnetic transmission at GNSS specific fre-
quencies. Therefore, all these factors require some on board intelligence and
the ability to react in a proper way according to the specific scenario.

The actuation system of an underwater vehicle is strictly related to the type
of mission to perform. Cruise vehicles are usually equipped with one thruster
and several control surfaces. Furthermore, they are usually under-actuated and
controlled in surge, sway and heave directions. However, for vehicles aimed at
manipulation tasks, that are the focus of this work, the actuation in all DOFs
is necessary, therefore requiring configurations with 6 or more thrusters.

Thrusters are propellers generally driven by electrical motors. They can be
divided into two groups: thrusters and tunnel thrusters. The latter consist in
propellers mounted in ducts or shrouds which increase their static and dynamic
efficiency. Furthermore thrusters are usually asymmetric and optimized for
producing thrust force in one direction; on the other hand, tunnel thrusters
are usually symmetric [70, 63]. Thus most small-to-medium-sized underwater
vehicles are powered by tunnel-thrusters.

Underwater robots are mainly divided into two types: Remotely Operated Ve-
hicles (ROVs) and Autonomous Underwater Vehicles (AUVs). ROVs are under-
water systems physically linked via tether to a human operator whose working
station can be either on a submarine or on a surface vessel, as shown in Fig. 1.2.
The tether is a crucial element for this kind of vehicle since it is in charge of
giving power to the ROV as well as closing the manned control loop, i.e., by
providing sensor information to the operator and by transmitting motion di-
rectives to the ROV. However, its presence makes more difficult the navigation
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and manoeuvring tasks; indeed, the operator has to reduce the twisting and to
avoid entanglements while taking into account the tether inertia effects on the
vehicle. Thus man continues to have an essential role.

Figure 1.2: ROV and pilots from Comex, France, within the European
Community funded DexROV Project.

AUVs, on the other hand, are systems supposed to be completely autonomous
with onboard power and unmanned control loop. Some tests have shown that
the use of an AUV in place of a ROV for the same task can have a cost sav-
ing up to 85% [4]. Furthermore, the tether absence, for the reasons men-
tioned above, represents a consistent advantage especially for survey missions.
Therefore, AUVs are knowing an increasing interest, in particular from the re-
search perspective. However, the presence of technological issues, first among
all the limited autonomy of the power system, makes them not widely used
inside industry that prefers to rely on ROVs or on a combined use of both of
them [45, 32]. In case of missions which require manipulation tasks, e.g., turn-
ing a valve, the vehicle can be equipped with one or more manipulators. Then,
it is an Underwater Vehicle-Manipulator System (UVMS), as the system shown
in Fig. 1.3.

Figure 1.3: UVMS developed within the European Community funded
ROBUST Project.
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1.2 UVMS’s Control

Control of UVMSs is challenging since the underwater environment makes the
dynamics of a six Degrees of Freedom (DOFs) rigid body quite different from
industrial and service robotics. Indeed, when a rigid body is moving in a fluid
the latter is accelerated by its movement. Therefore, the additional inertia of
the fluid surrounding the body has to be considered. Nevertheless, this effect
can be neglected in the industrial and service robotics since the air density
is much lighter than the one of the moving mechanical system. However, in
underwater scenarios, the water density is comparable to the vehicle one.

The overall Control framework for a UVMS carrying a n-DOFs arm is rep-
resented in Fig. 1.4. In particular, the motion planner is the highest Control
level and it is in charge of planning the motion given a desired end-effector pose
ηee,d ∈ R6. The resulting trajectory r(t) is sent to the Kinematic layer which
tracks the desired reference generating the proper system velocities ζd ∈ R6+n .
The latter are sent to the Dynamic layer that is the lowest Control level which
computes the required torques τ c for the velocity tracking. Then, the resulting
torques are sent to the vehicle and applied to the motors. Every control layer
takes the vehicle pose η ∈ R6 and the arm joint positions q ∈ Rn as feedback.

DynamicKinematic
Control Control

Motion
Planner

ζd τ c η, qr(t)ηee,d

Figure 1.4: Overall control architecture for an UVMS.

1.3 Thesis outline and contribution

This thesis work focuses on the architecture control of an underwater vehicle-
manipulator system. Indeed, the three main control layers are analysed: the
dynamic control, the kinematic control and the motion planner. For each con-
trol layer the background is presented and new methods are proposed showing
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the numerical/experimental validation. In particular, this thesis is divided in
the following chapters:

• Chapter 2 - Background: this chapter focuses on the background and,
therefore, on the state of the art regarding the control of UVMSs. After a
brief introduction on the reference systems used in underwater robotics,
the dynamic model with the thruster allocation are presented. Then, the
major drawbacks of the state of the art dynamic control techniques are
described. Regarding the kinematic layer, the Multi-Task Priority (MTP)
inverse kinematics is presented putting in evidence its limit, namely the
possibility to control only equality-based tasks. Then, the motion planner
is introduced describing the drawbacks regarding both the global and local
planners.

• Chapter 3 - Dynamic Control: an adaptive control technique able to
properly compensate for hydrodynamic effects is proposed in this chap-
ter. Furthermore, a recursive adaptive approach is proposed to counter-
act the arm interactions. An analysis of thruster dynamics and its effects
on the control loop is conducted as well. Numerical simulations are re-
ported to validate the adaptive control taking into consideration both a
AUV and a UVMS. Furthermore, the EU funded ROBUST project is
presented reporting the comparison results between an adaptive and PI
(Proporional-Integral) control performed within this framework.

• Chapter 4 - Kinematic Control: this chapter focuses on the kinematic
control. More in detail, the Set-based Task-Priority Inverse Kinematics
(STPIK), that is a framework able to manage both equality-based and
set-based tasks, is presented. Furthermore, aimed at properly manage
kinematic singularities, a deep analysis on Damped Least Square (DLS)
Algorithms is conducted as well. The effectiveness of the proposed in-
verse kinematics controller is then shown in the simulation of an assistive
framework ROV piloting, which has been implemented taking into ac-
count needs of real ROV pilots, and proved by its application within
the EU funded DexROV project. Indeed, the DexROV system has re-
quired several safety-related tasks which have been performed through
the STPIK algorithm.
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• Chapter 5 - Motion Planner: the focus of this chapter is the mo-
tion planning. Indeed, an approach based on merging a global and local
planner, in an effort to preserve the features of both ones, is presented.
In particular, the STPIK is used as local planner, since it is a reactive
method able to fulfill the system and environment constraints. The effec-
tiveness of this approach is experimentally validated using as mockup a
7 DOFs fixed-based manipulator.

The activities described in this thesis work led to publication of the following
papers (ordered from the most recent to the oldest one):

• P. Di Lillo, D. Di Vito, G. Antonelli, "Set-Based Inverse Kinematics con-
trol of an UVMS within the DexROV project", OCEANS 2018 - Charleston,
IEEE, 2018;

• D. Di Vito, E. Cataldi, P. Di Lillo, G. Antonelli, "Vehicle Adaptive Con-
trol for Underwater Intervention Including Thrusters Dynamics", IEEE
Control Technology and Applications (CCTA), 2018.

• D. Di Vito, E. Cataldi, P. Di Lillo, G. Antonelli, "Assistive Control
Framework for Remotely Operated Vehicles", Mediterranean Conference
on Control and Automation (MED), IEEE, 2018;

• P. Di Lillo, D. Di Vito, E. Simetti, G. Casalino, G. Antonelli, "Satellite-
based tele-operation of an underwater vehicle-manipulator system. Pre-
liminary experimental results", IEEE International Conference on Robotics
and Automation (ICRA), 2018;

• D. Di Vito, G. Antonelli, "The effect of the ocean current in the thrusters
closed-loop performance for underwater intervention", OCEANS 2017 -
Anchorage, IEEE, 2017.

• D. Di Vito, C. Natale, G. Antonelli, "A Comparison of Damped Least
Squares Algorithms for Inverse Kinematics of Robot Manipulators", IFAC-
PapersOnLine, 2017;

and to the submission of the following one:
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• D. Di Vito, M. Bergeron, D. Meger, G. Dudek, G. Antonelli, S. Chi-
averini, "Dynamic planning of redundant robots within a framework of
set-basedtask-priority inverse kinematics", submitted to IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2020.

Furthermore, the kinematic control algorithm proposed in the present thesis
work has been applied in BCI-based assistive applications leading to the fol-
lowing publication:

• F. Arrichiello, P. Di Lillo, D. Di Vito, G. Antonelli, S. Chiaverini, "Assis-
tive Robot operated via a Brain-Computer Interface", IEEE International
Conference on Robotics and Automation (ICRA), 2017;

and to the following submissions:

• P. Di Lillo, F. Arrichiello, D. Di Vito, and G. Antonelli, "BCI-controlled
assistive manipulator: developed architecture and experimental results",
revise and re-submit, IEEE Transactions on Cognitive and Developmental
Systems, 2019.

• G. Gillini, P. Di Lillo, F. Arrichiello, D. Di Vito, A. Marino, G. Antonelli
and S. Chiaverini, "A dual arm mobile robot system performing assistive
tasks operated via P300-based Brain Computer Interface", revise and re-
submit, IEEE Robotics and Automation Magazine (RAM), 2019.
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Chapter 2

Background

2.1 Reference System

In underwater robotics the pose of a vehicle can be expressed with respect to
Earth-centered coordinate frames, such as the Earth-Centered-Inertial (ECI)
and the Earth-Centered-Earth-Fixed (ECEF) ones, or other geographic refer-
ence frames such as the North-East-Down (NED) one.

The ECI frame has its origin in the earth center with x, y axis on the equator
plane and z pointing to the north pole, respectively. It is assumed inertial since
it is not subject to accelerations.

The ECEF frame has its origin in the center of earth with x, y axis on the
equator and z towards north pole as well. However, differently from the ECI
one, the latter rotates together with the earth (see Fig. 2.1). Thus, the x axis
always points to the intersection between the equator and the prime meridian
(latitude 0◦, longitude 0◦).

The NED frame is obtained by defining a local plane tangent to the area of
interest. This plane has the x and the y-axis pointing to the north and east,
respectively. The z-axis completes the frame (see Fig. 2.2). It is worth noticing
that in this coordinate system the earth is approximated with an ellipsoid
according to the World Geodetic System standard. Then, the vector z does
not point to the earth center. Furthermore, the NED frame origin is fixed but
initialized by the user according to their needs.
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equatorx
y

z

prime meridian

north pole

ECEF

Figure 2.1: Earth-Centered-Earth-Fixed (ECEF) frame rotating together
the earth.

The GNSSs, e.g., the American Global Positioning System (GPS), can provide
coordinates both in ECEF frame and in the Universal Transverse Mercator
(UTM) system. The latter is a kind of NED frame system. In particular, it
provides the point localization on the earth surface projecting the latter on a
plane and therefore ignoring the altitude.

In underwater control, the most used coordinate system to express the vehicle
pose is the NED frame convention. Thus, henceforth the NED frame is referred
to as Inertial frame ΣI .

equator

north pole
x-north

y-east

z-down

plane

Figure 2.2: North-East-Down (NED) frame with the origin defined by
user.

The Body frame ΣB is fixed on the vehicle under study, as shown in Fig. 2.3.
The x axis is usually aligned with the vehicle forward direction (from aft to
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fore). The z axis points down and y axis completes the frame. Its origin can
be placed in any point of the vehicle depending on the specific needs. In most
of cases, it coincides with the Center of Gravity (CG).

ΣB

xB

yB zB

ΣI

xI
yI

zI

Figure 2.3: Inertial ΣI and Body ΣB frames representation.

2.1.1 SNAME Notation

The common notation used in underwater robotics according to the SNAME
notation [1] is reported in table 2.1. Figure 2.4 shows the reference frames and

Forces and
Moments velocity pose

Motion in the x-direction Surge X u x

Motion in the y-direction Sway Y v y

Motion in the z-direction Heave Z w y

Motion in the x-direction Roll K p φ

Motion in the y-direction Pitch M q θ

Motion in the z-direction Yaw N r ψ

Table 2.1: SNAME notation for Marine Robotics.

elementary motions according to this convention. In detail,

• [X Y Z]T are the forces in Newton ([N]);

• [K M N ]T are the moments/torques in Newton·meter ([Nm]);

• [u v w]T are the linear velocities in meter/second ([m/s]);

• [p q r]T are the angular velocities in radiant/second ([rad/s]) or de-
gree/second ([deg/s]);
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ΣB

xB

yB zB

ΣI

xI
yI

zI
(p)

(q)

(r)

φ

θ

ψ

(u)

(v)
(w)

Figure 2.4: Inertial ΣI and Body ΣB frames representation with elemen-
tary vehicle’s motion.

• [x y z]T are the position components in meter ([m]);

• [φ θ ψ]T are the orientation components (angles) in radiant ([rad]) or
degree ([deg]).

2.2 Vehicle Pose

An underwater vehicle can be considered as a rigid body. Thus, its pose with
respect to an inertial frame ΣI is defined as

η =
[
η1 η2

]T
∈ R6 (2.1)

where η1 =
[
x y z

]T
∈ R3 and η2 =

[
φ θ ψ

]T
∈ R3 are the position and

orientation vectors, respectively. In particular, the vehicle orientation can be
represented in several ways.

2.2.1 Roll-Pitch-Yaw attitude

One way to represent the vehicle attitude is the Euler Angle convention:

η2 =
[
φ θ ψ

]T
∈ R3 , (2.2)
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where φ, θ, ψ are the roll, pith and yaw angles, respectively. The corresponding
rotation matrix, following the zyx-convention in current frame, is

RI
B =

cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ

sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ

−sθ cθsφ cθcφ

 (2.3)

where c ∗ = cos(∗) and s ∗ = sin(∗). This kind of attitude representation
is affected by the so called singularity representation. This means that the
conversion from the rotation matrix to the RPY representation is not defined
for θ = ±π

2 rad. The representation singularity does not represent an issue for
underwater vehicles since the latters usually work with roll and pitch close to
zero especially for energetic reasons. However, taking into consideration the
UVMS, it is not possible to guarantee small values for pitch angles. Since the
representation singularity affects any three-parameters attitude representation,
it is necessary to use a non-minimal one such as the Unit Quaternion.

2.2.2 Unit Quaternion

The Unit Quaternion is a non minimal four parameters attitude representation.
More in detail, let the orientation between two frames with same origin be
defined as

Rk(α) = cosαI3×3 + (1− cosα)kkT − sinαS(k) (2.4)

where k is the unit vector identifying the axis which has to be rotated of the
α angle to align the two frames, I3×3 is the identity matrix and S is the skew
matrix performing the cross product between two (3 × 1) vectors. Then, the
unit quaternion is defined as

Q(η, ε) (2.5)

where
η = cos

α

2
, ε = ksin

α

2
(2.6)
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are the scalar and vector part, respectively, satisfying the following condition:

η2 + εTε = 1 . (2.7)

Furthermore, since the two quaternions Q(η, ε) and Q(−η,−ε) represent the
same orientation, aimed at guaranteeing the representation uniqueness, in Eq. (2.6)
it is assumed η ≥ 0 that corresponds to α ∈ [−π;π]. Given the Unit Quaternion
the corresponding rotation matrix is

R(Q) =

2
(
η2 + ε2x

)
− 1 2

(
εxεy − ηεz

)
2
(
εxεz + ηεy

)
2
(
εxεy + ηεz

)
2
(
η2 + ε2y

)
− 1 2

(
εyεz − ηεx

)
2
(
εxεz − ηεy

)
2
(
εyεz + ηεx

)
2
(
η2 + ε2z

)
− 1

 . (2.8)

2.2.3 Vehicle Velocities

The linear velocity of the body fixed frame ΣB with respect to inertial frame
ΣI expressed in ΣB is

ν1 = [u v w]T ∈ R3 (2.9)

where u, v, w are the velocities along the x, y, z-axis, respectively. In particular,
the following relation exists between ΣI and ΣB:

η̇1 = RI
Bν1 (2.10)

where η̇1 is the time derivative of the position vector η1 expressed in ΣI and
RI
B is the rotation matrix defined in Eq. (2.3).

The angular velocity of ΣB with respect to ΣI expressed in ΣB is

ν2 = [p q r]T ∈ R3 (2.11)

where p, q, r are the velocities around the x, y, z-axis, respectively. Differently
from the linear components, the time derivative of the orientation vector η2 as
defined in Eq. (2.2) does not have a physical meaning. For this reason a proper
transformation matrix T (η2) is necessary to express the relation between ΣB
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and ΣI . More in detail, T (η2) can be derived as

ν2 =

φ̇0
0

+RT
x,φ

0

θ̇

0

+RT
x,φR

T
y,θ

0

0

ψ̇

 = T−1(η2)η̇2 . (2.12)

Therefore, the following yields:

T−1(η2) =

1 0 −sθ
0 cφ cθsφ

0 −sφ cθcφ

 , T (η2) =

1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

 (2.13)

with c ∗ = cos(∗), s ∗ = sin(∗), t ∗ = tan(∗) and the following relation between
ΣI and ΣB exists:

η̇2 = T (η2)ν2 . (2.14)

2.2.4 UVMS Velocities

Aimed at studying also UVMSs, the following variable is defined:

ζ =
[
ν1 ν2 q̇

]T
, (2.15)

where q̇ ∈ Rn is the time derivative of the joint positions with n the number of
joints. Then, the relation between ΣB and ΣI is expressed asη̇1η̇2

q̇

 =

 R
I
B O3×3 O3×n

O3×3 T (η2) O3×n
On×3 On×3 In


ν1ν2
q̇

 . (2.16)

It is worth noticing that the velocity of the manipulator end-effector, defined
as

η̇ee =
[
η̇ee,1 η̇ee,2

]T
∈ R6 , (2.17)

is related to the body-fixed velocities by a proper Jacobian, as shown in Sec-
tion 2.4.1.
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2.3 Dynamics

The equations of motion can be derived by applying Newtonian mechanics.
The dynamic model is very important since it allows the system analysis and
in particular the design of model based control algorithms.

2.3.1 Dynamic Model

The dynamic model of a moving AUV in terms of body frame coordinates is [34]

Mν̇ +CRB(ν)ν +CA(ν)ν +D(ν)ν + g(RB
I ) = τ v (2.18)

where M ∈ R6×6 includes both the rigid body inertial matrix and the added
mass effects, CRB(ν) ∈ R6×6 is the rigid body Coriolis-centripetal matrix,
CA(ν) ∈ R6×6 is the hydrodynamic Coriolis-centripetal matrix due to the
added mass effects, D(ν) = D + Dn(ν) ∈ R6×6 is the damping matrix con-
taining, respectively, linear and quadratic terms, g(RB

I ) ∈ R6 is the vector of
gravitational and buoyant forces, τ v ∈ R6 is the vector of forces and moments
acting on the AUV and ν is the corresponding velocity vector in ΣB. Within
the aim to take into consideration the ocean current, the relative velocity is
introduced:

νr = ν −RB
I ν

I
c , (2.19)

with νIc the ocean current velocity in earth-fixed frame. Thus, the model in
Eq. (2.18) can be written as

Mν̇r +CRB(ν)ν +CA(νr)νr +D(νr)νr + g(RB
I ) = τ v . (2.20)

Furthermore, the dynamic model of a rigid body can be rewritten in regressor
form exploiting the linearity in the dynamic parameters:

Y v(R
I
B,ν, ν̇)θv = τ v , (2.21)

with Y v(R
I
B,ν, ν̇), θv the regressor matrix and the parameters vector of proper

dimensions, respectively.



2.3. Dynamics 17

Taking into consideration a UVMS, the dynamic model defined in Eq. (2.18) is
rewritten as

M(q)ζ̇ +C(q, ζ)ζ +D(q, ζ)ζ + g(RB
I ) = τ vq (2.22)

where

τ vq =

[
τ v

τ q

]
∈ R6+n (2.23)

with

τ q =


τ q,1
...
τ q,n

 ∈ Rn (2.24)

the manipulator joint torques. It is straightforward to observe from Eq. (2.22)
that each matrix and vector have dimensions (6+n)×(6+n) and (6+n), respec-
tively. Furthermore, the UVMS dynamic model can be rewritten in regressor
form as well:

Y vq(q,R
I
B, ζ, ζ̇)θvq = τ vq , (2.25)

where Y vq ∈ R(6+n)×nθ , with nθ the number of parameters.

2.3.2 Actuator allocation

The relationship between forces/moments acting on the vehicle τ v and the
control inputs to the thruster utr ∈ Rp, with p the number of propellers, is non-
linear. Indeed it depends on structural variables such as the vehicle velocity,
the water density, the hydrodynamic effects of the fluid around the propeller
and consequently the propeller features. However, in practice, the following
relation between the vector τ v and the control inputs utr is used [35]:

τ v = Bvutr ∈ R6 (2.26)

where Bv ∈ R6×p, is the Thruster Configuration Matrix (TCM). The TCM is
a known constant matrix which depends on the particular thruster allocation.
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For a UVMS the relation with the control inputs is rewritten as

τuvms =

[
τ v

τ q

]
=

[
Bv O6×n
On×6 In

]
u = Bu ∈ R6+n (2.27)

with u =
[
utr uq

]
∈ R6+n the thruster and joint control inputs, respectively.

As an example, the TCM, with respect to Fig. 2.5 which represents a typical
thruster configuration for a fully actuated and redundant vehicle, is:

Bv =



cθ1 cθ2 0 0 cθ5 cθ6 0 0

sθ1 sθ2 0 0 sθ5 sθ6 0 0

0 0 1 1 0 0 1 1

0 0 ry3 ry4 0 0 ry7 ry8
0 0 rx3 rx4 0 0 rx7 rx8
B61 B62 0 0 B65 B66 0 0


(2.28)

where

cθi = cos(θi), sθi = sin(θi) (2.29)

B6i = rxi sin(θi)− ryi cos(θi) (2.30)

with rxi , ryi and θi the i-th thruster position and orientation with respect to
the vehicle-fixed frame for i = {1, . . . , 8}, respectively.

2.3.3 Dynamic Control

UVMSs are systems aimed at performing tasks requiring some kind of inter-
action with the environment. Then, they have to be able to counteract the
interaction force with the arm itself. Therefore, it is necessary to control the
vehicle in 6 DOFs compensating the hydrodynamic effects. In particular, among
the several hydrodynamic effects, the restoring generalized forces (gravity and
buoyancy g

(
RB
I

)
) and the ocean current νc are of particular interest in de-

signing the control law for underwater vehicles. Indeed, the latter, if not well
compensated, can cause steady-state vehicle pose errors. These effects are more
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Figure 2.5: Top view of a fully actuated and redundant underwater vehicle
with 8 thrusters.

evident in large dimensions vehicle since small displacements of the centers of
gravity and buoyancy require major thrust efforts for compensating [50].

Several adaptive control laws are proposed in literature to compensate the
hydrodynamic effects (e.g., [77, 27]). However, only the restoring forces are
usually taken into consideration, whereas only few works consider the ocean
current effects [33, 39, 61, 8]. Furthermore, most of the adaptive control laws are
designed either in earth-fixed frame ΣI or in body-fixed frame ΣB. Therefore,
they are not able to compensate each hydrodynamic effect with respect to the
proper frame. Indeed, some effects are constant in ΣI , e.g., the restoring linear
forces, and other ones are constant in ΣB, e.g., the restoring moment. For
these reasons it is necessary a mixed earth/vehicle-fixed frame-based model-
based controller able to build the compensation action in the proper reference
frame as the control algorithm proposed in [6].

2.4 Kinematics

Differently from dynamics that considers forces causing the motion, kinematics
takes into consideration the geometrical aspect of motion.
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2.4.1 Differential Kinematics

Taking into consideration a UVMS, kinematics allows to establish the relation
between the vehicle/joints (η, q) variables and the end-effector pose ηee. In
particular, the direct kinematics

ηee = k(η, q) (2.31)

allows to determine the end-effector pose by vehicle/joints trajectories. Never-
theless, the end-effector trajectory ηee(t) is usually given. Then, it is necessary
the inverse kinematics. Since Eq. (2.31) is not linear, the differential kinematics
is considered: [

η̇ee1

ωee

]
= J(RI

B, q)ζ , (2.32)

that maps the (6 + n)-dimensional vehicle/joints velocities into m-dimensional
end-effector velocities by the Jacobian matrix defined as [9]

J(RI
B, q) =

[
Jpos(R

I
B, q) Jor(R

I
B, q)

]
∈ R6×6+n (2.33)

where

Jpos(R
I
B, q) =

[
RI
B −(S(RI

Br
B
B0) + S(RI

0η
0
0,ee))R

I
B Jpos,man

]
∈ R3×6+n

(2.34)

Jor(R
I
B, q) =

[
O3×3 RI

B Jor,man

]
∈ R3×6+n (2.35)

with S(·) the skew matrix performing the cross product, rBB0, η
0
0,ee the vectors

connecting ΣB (the body-fixed frame) to Σ0 (the manipulator base frame) and
Σ0 to ηee (the manipulator end-effector) as shown in Fig. 2.6, and Jpos,man,
Jor,man the manipulator position and orientation jacobian matrix, respectively.

2.4.2 Kinematic Redundancy

The UVMS is redundant if it has more DOFs than those necessary to perform
the specific task, e.g., (6 + n) > m. In this case, Eq. (2.32) admits infinite
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ΣB

Σ0

η0
0,ee

ηee

Figure 2.6: UVMS representation with in evidence the body-fixed frame
ΣB , the manipulator base frame Σ0 and the vector η0

0,ee connecting Σ0 to
ηee.

solutions. Therefore, the kinematic redundancy can be exploited to perform
other tasks. Indeed, the end-effector configuration is not the only variable of
interest, but other tasks can be accomplished simultaneously, i.e., vehicle/end-
effector obstacle avoidance, vehicle attitude and joint limits.

The generic task variable is defined as

σx = σx(η, q) ∈ Rm (2.36)

Its differential relation is given by

σ̇x = Jx(η, q)ζ , (2.37)
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where Jx(η, q) ∈ Rm×6+n is the corresponding Jacobian matrix relating its

time derivative σ̇ to the system velocity ζ =
[
ν1 ν2 q̇

]T
.

2.4.3 Differential Inverse Kinematics

The mapping defined in Eq. (2.37) needs to be inverted for computing the
system velocity corresponding to the specific task time derivative. However,
the matrix Jx is not invertible since it is not square. Then, the Moore-Penrose
pseudoinverse is used:

ζd = J†x(η, q)σ̇x (2.38)

with
J†x(η, q) = JT

x (η, q)
(
Jx(η, q)JT

x (η, q)
)−1 (2.39)

obtaining the solution corresponding to the minimization of the vehicle/joints
velocities in a least-square sense of the following quadratic cost function [66]:

g(ζ) =
1

2
ζTζ . (2.40)

It is possible to use a weighted pseudoinverse as well:

J†
x,W

(η, q) = W−1JT
x (η, q)

(
Jx(η, q)W−1JT

x (η, q)
)−1

. (2.41)

The latter is useful especially for a coordinated system, such as a UVMS, since
it allows to weight the vehicle and manipulator movement in a proper way.
Indeed, the vehicle movement should be avoided when it is unnecessary.

The digital implementation of Eq. (2.38) leads to a numerical drift since it is
based on a numerical integration procedure for obtaining vehicle/joints posi-
tions. For this reason, a closed loop version of the above equation is used, that
is the Closed-Loop Inverse Kinematics (CLIK) algorithm [23]. In particular,
the CLIK links the system velocity compute to the task error

σ̃x = σx,d − σx , (2.42)
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with σx,d the desired task value. Thus, Eq. (2.38) is rewritten as

ζd = J†x(η, q)
(
σ̇x,d +Kxσ̃x

)
(2.43)

where σ̇x,d is the desired task time derivative andKx is a positive definite gain
matrix.

Notice that the subscript d in ζd means “desired value” since it is the reference
velocity corresponding to the specific desired task which is sent to the system
low level, as shown in Fig. 1.4.

2.4.4 Kinematic Singularities

The manipulator joint configurations at which the matrix J is rank deficient,
e.g., rank(J) < m, are called kinematic singularities. When the system is close
to these particular configurations, a small increment in the task value can cause
high joint velocities [25]. Furthermore the structure mobility is reduced.

The kinematic singularities can be classified into 2 categories: at the boundary
and within the workspace. In the latter case, three singularity types can be
identified: shoulder, elbow and wrist respectively.

The kinematic singularity problem can be avoided resorting to the Damped
Least-Square (DLS) pseudoinverse [54] defined as

J†
λ

x (η, q) = JT
x (η, q)

(
Jx(η, q)JT

x (η, q) + λ2Im
)−1 (2.44)

where λ ∈ R is a damping factor and Im ∈ Rm×m is the identity matrix.

2.4.5 Task priority redundancy resolution

The kinematic redundancy can be exploited to perform multiple tasks. In
particular, given two tasks σa, σb these solutions follow:

ζa = J†a(η, q)
(
σ̇a,d +Kaσ̃a

)
(2.45)

ζb = J†b(η, q)
(
σ̇b,d +Kbσ̃b

)
. (2.46)
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Then, it is necessary to combine them in a single solution. In literature there
are several approaches for managing multiple tasks. This thesis focuses on the
Multi-Task Priority (MTP) inverse kinematics [47, 55] for which the velocity
vector for σa, σb is given by:

ζd = ζa +
(
J bNa

)†(
σ̇b,d +Kbσ̃b − J bζa

)
(2.47)

where Na ∈ R(6+n)×(6+n) is the null matrix projecting the system velocities
corresponding to the task σb in the null space of the Jacobian Ja. In this
way the motion related to σb does not affect the task space σa, which is then
defined task with higher priority (see Fig. 2.7).

q̇1

q̇2

q̇

θ̇1

θ̇2

low priority

high priority

Figure 2.7: Graphical representation of the solution computed by the
Multi-Task Priority (MTP) inverse kinematics for a 2 DOFs system with
two compatible tasks: the red and green line are the solutions sets fulfill-
ing the high and low-priority tasks, respectively; their intersection is the
solution satisfying both ones.

However, there is a drawback in case of tasks conflict. In particular, two tasks
σa and σb are in conflict if R(JTa ) ∩ R(JTb ) 6= ∅ (see Fig. 2.8). When this
occurs, the matrix J bNa loses rank even if Ja and J b are not rank-deficient.
Then, the solution is ill-conditioned and large joint velocities can result, as in
proximity of a kinematic singularity. For this reason, this event is referred to as
algorithmic singularity and it can be handled through the DLS pseudoinverse
as well as the kinematic singularity.
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θ̇1

θ̇2

low priority

high priority

Figure 2.8: Algorithmic singularity for a 2 DOFs system: the two tasks
are in conflict, therefore, the solution computed by the Multi-Task Prior-
ity (MTP) inverse kinematics is ill-conditioned and needs to be properly
handled (e.g. through the DLS pseudoinverse).

The MTP algorithm can be recursively applied to high redundant systems as
in [69]. More in detail, the reference system velocity can be computed as in the
following way:

ζd,h =
h∑
i=1

(J iN
A
i−1)

†(σ̇i,d +Kiσ̃i − J iζi−1) , (2.48)

where NA
i is the null space projector of the augmented Jacobian matrix, ob-

tained by stacking all the task Jacobian matrices from task 1 to i

JAi =
[
JT1 JT2 . . . JTi

]T
, (2.49)

defined as:
NA

i = I − (JAi )†JAi , (2.50)

with NA
0 = I, ζ0 = 0, and ζi is the solution at the i-th iteration, namely the

reference system velocity that fulfills all the tasks from the first one to the i-th
one.
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2.4.6 Set-based Control

Tasks can be classified in equality-based and set-based. Equality-based tasks
have an exact desired value as control objective, e.g., the end-effector pose. On
the other hand, set-based tasks, usually known as inequalities constraints, have
a set of possible values, e.g., the obstacle avoidance.

Set-based tasks are commonly handled by expressing the inverse kinematics
problem in a sequence of Quadratic Programming problems and solving the
latter through iterative algorithms [41, 48]. Therefore, this approach can result
slow since it is computationally heavy. In [67] set-based tasks are added to the
task priority framework using proper activation functions during task transition
to guarantee the smoothness of the output reference trajectory. Nevertheless,
during transitions the task priority is lost and, therefore, the safety constraints
could not be satisfied.

The MTP algorithm, introduced above, can handle only equality tasks. How-
ever, it has been extended in [51, 10, 30] to handle set-based tasks as well.
Thus the Set-based Task-Priority Inverse Kinematics (STPIK) has been imple-
mented.

2.5 Motion Planner

Unlike industrial environments which are structured and allow feed-forward
behaviour, daily life scenarios present a dynamic environment. They exhibit a
configuration which can change over time and can not be predicted because it
often depends on the actions of nearby participants, e.g., in the human-robot
cooperation and in the service robotics [65, 31]. The robotic systems obviously
need to be safe, first with respect to the humans and then to preserve the
machine integrity.

One possible method to accomplish the above mentioned control objectives is
to properly embed them into inverse kinematics frameworks. However, being
local methods, they are all prone to local minimum that can cause the specific
operation to fail.
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Methods based on task-constrained motion planning [44] are proposed to over-
come the local minimum problem of the above mentioned reactive control tech-
niques. Some proposed methods work in joint space [71] and they rely on par-
ticular projection approaches [13, 12] to find the system configuration which
satisfies the constraints. Therefore, a proper representation of the task con-
straints in the joint space is necessary. However, the latter is not straightfor-
ward since the mapping between the joint space and the task space is not linear.
Indeed, motion planners performing directly in the task space are proposed [64].
Furthermore, within the aim to take into consideration the closed-loop system
dynamics, a control-aware motion planning algorithm based on a strict coupling
between planning and control is presented in [74].

However, motion planners usually have a non-negligible computational load. In
particular, the generic motion planner could not be able to re-plan in time if
there is a configuration change of the environment during the system movement.
Therefore, the task constraints would not be fulfilled causing very low safety
conditions, especially in presence of obstacles.

For the above reasons, several methods aimed at performing fast re-plan are
proposed. A real-time Model Predictive Control (MPC) with proper handling
of various kind of constraints is proposed in [14]. In [52] an obstacle-avoidance
circuitry for a 6-DOF Jaco robot manufactured by Kinova is built allowing
its motion planning with 1ms time. The work [57] proposes a method which
plans in the task-constrained configuration space exploiting the redundancy
for robotic structures in order to achieve the given task path. In [20], [56]
further develops of this method allowing for planning safe cyclic motions under
repetitive task constraints are shown. Moreover, the same algorithm is properly
extended with the time dimension in [21], [19], in order to generate a trajectory
that is compatible with moving obstacles along a known single-task trajectory,
assuming to know the obstacles’ trajectory.

In this thesis an approach based on the combination of a global and local
planner taking advantage of both ones, aimed at performing fast re-planning,
is presented.
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Chapter 3

Dynamic Control

The dynamic control computes the necessary torques to perform trajectory
tracking compensating for model uncertainties and persistent dynamic effects.
Thus, a control law able to adapt to dynamic parameters and to consider dis-
turbances in the proper frame has higher performances.

3.1 AUV Adaptive Control

Defining the vehicle desired pose as ηd(t) ∈ R6 and the corresponding desired
velocity as νd(t) ∈ R6, respectively, the following is introduced:

νref = νd +

[
λpI3×3 O3×3
O3×3 λoI3×3

]
e (3.1)

where

e =

[
RB
I η̃1

ε̃

]
∈ R6 (3.2)

is the pose error, with the orientation expressed in unit quaternion, and λp, λo
are positive gains. Furthermore, the following variable is introduced:

s = νref − ν . (3.3)
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Thus, designing a PD-like action plus an adaptive compensation action, the
control law is given by [9]

τ c = Y θ̂ +Kss , (3.4)

where the vector of the estimated dynamic parameters θ̂ is updated according
to the following relation

˙̂
θ = K−1θ Y

Ts (3.5)

with Ks ∈ R6×6 and Kθ ∈ Rµ×µ positive definite design gain matrices.

3.1.1 Stability Analysis

The stability analysis proved in [8] is here reported. In detail, the vehicle
dynamic model is rewritten in such a way that the inertia matrix M is put in
evidence:

Mν + n(ν,RB
I ) = τ v (3.6)

with n(·) collecting all the other dynamic parameters in a 6× 1 generic vector
function of the system state.

Let consider the scalar function

V (s, θ̃) =
1

2
sTMs+

1

2
θ̃

T
Kθθ̃ (3.7)

which is positive since M and Kθ are positive definite, with θ̃ = θ − θ̂ the
dynamic parameter estimation error. Differentiating V with respect to time
yields

V̇ = sTM(ν̇ref − ν̇)− θ̃T
Kθ

˙̂
θ (3.8)

where the parameters have been considered constant, e.g., ˙̃
θ = − ˙̂

θ. Considering
Eq. (3.6) yields

V̇ = sT(Mν̇ref + n− τ v)− θ̃
T
Kθ

˙̂
θ (3.9)

that exploiting the linearity in the parameters is

V̇ = sT(Y θ̂ − τ v)− θ̃
T
Kθ

˙̂
θ (3.10)
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with Y defined in Eq. (2.25). Finally, taking into consideration Eq. (3.4, 3.5)
the following is obtained:

V̇ = −sTKss (3.11)

The system stability can be now proved in a Lyapunov-like sense using the
Barbălat’s Lemma [42]. In particular,

since

• V is lower bounded
• V̇ ≤ 0

• V is uniformly continuous
then V̇ → 0 as t→ 0 .

Therefore, s→ 0 as t→ 0. Taking into consideration Eq. (3.3), it is straightfor-
ward that s→ 0 implies νd − ν → 0 and e→ 0. Nevertheless, the asymptotic
stability of the whole state can not be proved, as usual in adaptive control
technique, since θ̃ is only guaranteed to be bounded.

3.1.2 AUV Reduced controller

The Adaptive Control law discussed in this thesis work focuses on the capac-
ity to compensate for persistent dynamic effects, e.g., the restoring forces and
the ocean current. Indeed, since underwater movements are characterized by
slow velocities and accelerations, it is appropriate to take into consideration
a reduced version able to achieve null steady state error under modelling un-
certainty and presence of ocean current with respect to a minimal number of
parameters.

Given the gravity and buoyancy forces

fG(RI
B) = RB

I

 0

0

W

 ,fB(RI
B) = −RB

I

 0

0

B

 (3.12)

in the center of mass rBG =
[
xG yG zG

]T
and buoyancy rBB =

[
xB yB zB

]T
,

respectively, with W,B the weight and the buoyancy of the submerged body,
the gravity-buoyancy force/moment vector in body-fixed frame ΣB is defined
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as:

g(RI
B) = −

[
fG(RI

B) + fB(RI
B)

rBG × fG(RI
B) + rBB × fB(RI

B)

]
. (3.13)

In terms of Euler angles it is expressed as

g(η2) =



(W −B)sθ

−(W −B)cθsφ

−(W −B)cθcφ

−(yGW − yBB)cθcφ + (zGW − zBB)cθsφ

(zGW − zBB)sθ + (xGW − xBB)cθcφ

−(xGW − xBB)cθsφ − (yGW − yBB)sθ


(3.14)

where it is noticeable that the linear force is constant in earth-fixed frame ΣI
and the moment of inertia are constant in the vehicle-fixed fame. Thus, g(η2)

is linear with respect to the following parameters

θGB =


−(W −B)

xGW − xBB
yGW − yBB
zGW − zBB

 , (3.15)

and it can be re-written in regressor form as

g(η2) = Y GB(RI
B)θGB (3.16)

where

Y GB =

[
RB
I z O3×3

03×1 S(RB
I z)

]
, (3.17)

with z =
[
0 0 1

]T
and S(·) the skew matrix performing the cross product.

The ocean current can be modelled as constant in ΣI frame and merged with
the restoring forces contribution obtaining the following regressor

Y =

[
O3×3 RB

I O3×3
S(RB

I z) O3×3 RB
I

]
∈ R6×9 , (3.18)
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that is the reduced regressor taking into consideration the dynamic persistent
effects. Thus, the AUV dynamic model can be written as

Mν̇ +C(ν)ν +D(ν)ν + Y θ = τ v , (3.19)

which considering the steady state is

Y θ = τ v , (3.20)

with θ the dynamic parameters vector defined as

θ =
[
GBx GBy GBz Fx Fy Fz Mx My Mz

]T
∈ R9×1 , (3.21)

with

GBx = xGW − xBB
GBy = yGW − yBB
GBz = zGW − zBB
Fz = −(W −B)

and Fx, Fy,Mx,My,Mz the linear forces and moments due to external distur-
bances. In particular, GB is expressed in ΣB while F ,M are expressed in
ΣI .

As known in adaptive control theory for robots [36], it is appropriate to further
investigate the identifiability of the parameters. By SVD (Singular Value De-
composition) analysis of the regressor it has been observed that changes in roll
and pitch are sufficient to excite all the parameters. On the other hand, if the
vehicle is completely still, linear combinations can arise causing issues of iden-
tifiability of the related parameters. In practice small movements of the vehicle
in hover are difficult to detect as singular case and they may cause numerical
issues that can be solved resorting to the following further reduced regressor

Y =

[
O RB

I

S(RB
I z) O

]
. (3.22)
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However, the latter does not ensure to compensate for the external moment
disturbances. For these reasons, the first reduced regressor in Eq. (3.18) is used
taking into account the possible phenomena of bursting [5]. Indeed, the presence
of issues of identifiability joint to the presence of sensor noisy measurements,
as usual in practice, may cause the system to burst into an oscillation which
then dies away. More in detail, the unidentifiable parameters drift according
to a random walk dynamics (see Fig. 3.1 for a numerical example). Then, a
small movement of the vehicle may excite the parameter under discussion and
inject the model-based compensation of the drifted parameter in the control
loop as a disturbance. Depending on the amplitude of the drift, and thus the
amplitude of the disturbance, the feedback may recover it by oscillating around
the desired value while correctly estimating the parameters, or it can become
unstable.

The overall effect of the bursting is difficult to predict for a generic mechanical
system and depends by several factors among which: the inertia, the sensor
noise, the duration of the non-exciting movement, etc.
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Figure 3.1: A drifting parameter example: the particular non-exciting
movement and the presence of sensor noise are causing the drift of the
gravity/buoyancy moment z-component.
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3.1.3 Thruster Dynamics within Adaptive Control

For underwater vehicles the most common propulsion system is represented
by thrusters. The latter is the lowest control level of the AUV. Differently
from, e.g., industrial robotics, its dynamic effect is not straightforward since
its performances are afflicted by several factors such as cross-flows and ocean
current [58] and, therefore, strictly depending on its allocation [40, 37, 58].
Furthermore, most of the off-the-shelf propellers lack of any sensor to read the
necessary feedback, e.g., the thrust and propeller speed rotation. However,
as shown in next Sections, it is not efficient to neglect the thruster dynamics
during the control design.

Thruster Dynamics

Figure 3.2 shows a scheme for a generic tunnel thruster aligned along the x
direction with the main variables that characterize it. In detail, up is the axial
flow velocity into the propeller, τm is the thruster motor torque, n represents the
rotation shaft speed and T is the produced axial thrust. Furthermore, most of
propellers are electrically driven. Thus, they present a DC-motor which receives
a voltage control input vm.

T
τm

up

n

Figure 3.2: Dynamic modelling variables of the propeller

Thruster modelling is quite complex since there are several hydrodynamic fac-
tors that need to be taken into consideration. Furthermore, in real systems the
measuring of all necessary quantities is not always available. For these reasons,
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in literature several analysis studies have been made proposing different mod-
els. In particular, within the aim to focus the attention on the intervention
case and therefore on the steady state, the model proposed by [75] has been
selected.

In detail, in the latter work, using an energy-based method, the following
lumped parameter model was proposed

ṅ = −αn|n|+ βvm (3.23)

T = Ctn|n| , (3.24)

where Eq. (3.23) represents the propellers dynamics with α and β constant
model parameters, and Eq. (3.24) is the mapping between the propeller thrust
and the rotation speed, with Ct a proportional constant that is experimentally
determined.

The above model is suitable for very low velocities. However, it does not take
into account any interaction with the ambient flow and thus with the eventual
ocean current νc. Indeed, the thruster performances are differently affected
by the ocean current depending on whether the vehicle is going against or in
the same direction, (see Fig. 3.3). In particular, according to the considered
scenarios, Eq. (3.24) is rewritten as

T = Ctn|n|k1 exp
(
k2[0 1 0]

(
RB

th
)T
νr

)
(3.25)

where k1, k2 are further terms depending on the relative velocity νr already
defined in Eq. (2.19), [0 1 0] is a selection vector andRB

th represents the thruster
orientation with respect to the body-fixed frame [58]. Therefore, different effects
on the produced thrust are obtained as shown in Fig. 3.4.

Force/moment-thruster mapping

As already introduced in Section 2.3.2, the mapping relation between forces /
moments acting on the vehicle and the thruster control inputs utr defined in
Eq. (2.26), is not linear. The relation, beyond the propeller dynamics, also
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Figure 3.3: Two possible scenarios: thrusting in the same direction (neg-
ative yaw angle) or against (positive yaw angle) the ocean current.

neglects further factors which can contribute to the produced thrust degrada-
tion such as the ocean current. Thus, within the aim to consider such effects
on the thrust and focusing on electrically driven propellers, Eq. (2.26) can be
rewritten as [37]

τ v = BKvm ∈ R6 , (3.26)

where vm is the vector collecting the voltage inputs andK is a diagonal matrix
defined as

K = diag
(
Ki(νr,R

B
I ,R

B
th)
)
∈ Rp×p (3.27)

withKi representing the i-th thruster dynamics. More in detail, each termKi is
a function of the relative velocity νr, necessary to take into account the ocean
current effects, the vehicle orientation RB

I and the thruster orientation RB
th

with respect to the body-fixed frame. It is worth noticing that the thruster
orientation RB

th does not represent a state variable. Hence, its presence in
Eq. (3.27), as a functional dependence, is not analytically correct. However,
this way results preferable to make the analysis more understandable to the
reader.
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Figure 3.4: Two different thruster models are shown varying the angle
formed by the thrust and ocean current directions in [−180◦; 180◦]: (a)
model with very low relative velocities; (b) model for an arbitrary motion
thrusting against or with the ocean current.

Thruster Dynamics inclusion

The controllers are usually designed neglecting the thruster dynamics. However,
since the thruster input is usually the voltage, the designer needs to estimate
the thruster gain at steady state as shown in Fig. 3.5. Let us define as K̂∞ ∈
Rp×p, the diagonal matrix collecting those gains. Merging Eq. (3.26) and the
controller in Eq. (3.4), the designer assumes the following relationship:

BK̂∞vm = τ c . (3.28)

If the thrusters are all equal to each other, the matrix K̂∞ is defined as a scalar
by an Identity matrix and the scalar gain is usually estimated in the lab or by
trial and error for one single thruster. The voltage input is thus computed as

vm = K̂
−1
∞ B

†τ c . (3.29)
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Figure 3.5: Control loop scheme: the proposed controller (in blue) and
the vehicle-thruster model (in red).

However, since K̂∞ is only an approximation ofK the real input to the dynamic
system is

τ v = BKK̂
−1
∞ B

†︸ ︷︷ ︸
Keq

τ c (3.30)

where, as discussed earlier

K = K(νr,R
B
i ,R

B
th) , (3.31)

i.e., each thruster reacts in a different manner depending on its location on the
vehicle with respect to the presence of the ocean current and the eventual error
in the steady state estimate. Thus, there exists a distortion effect on the rigid
body dynamics.

The mapping of the control action τ c to the physical wrench acting on the
vehicle τ v is distorted by the (6× 6) matrix:

Keq(νr,R
B
i ,Rth) = BKK̂

−1
∞ B

† (3.32)
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which is assumed to be Identity by the designer while it is, on the contrary,
constant at steady state and not even diagonal and couples the control direc-
tions.

With the risk to be redundant let us recopy eq. (3.4) merged with the relations
above:

τ v = KeqY θ̂ +KeqKss (3.33)

which clearly shows two distortion effects, first on the identified parameters and
then on the control gains. The latter has potentially a dramatic effect, i.e., that
the effective control gains are different from the ones tuned by trail-and-error
in the pool due to the different working conditions.

3.2 UVMS Adaptive Control

The Adaptive Control law can be applied to Underwater Vehicle Manipulator
Systems as well [7]. In particular, the vehicle control is designed within the aim
to compensate for the dynamic interactions due to the manipulator presence
resorting to an adaptive, recursive approach. Then, in the following, the system
dynamic model define in Eq. (2.22) is rewritten in such a way to remark the
interaction between consecutive rigid bodies of the serial chain.

Considering the convention according to which the superscript is the reference
frame Σi, that is dropped for quantities referring to the inertial frame, let
consider the velocity propagation along the chain

νi+1
i+1 = U iT

i+1ν
i
i + q̇i+1z

i+1
i i = 0, . . . , n− 1 (3.34)

where:

zii =


[
0 0 0 0 0 1

]T
if rotational joint[

0 0 1 0 0 0
]T

if prismatic joint
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and the matrix U i
i+1 ∈ R6×6 is defined as

U i
i+1 =

[
Ri
i+1 O3×3

S(rii,i+1)R
i
i+1 Ri

i+1

]
(3.35)

with Ri+1 the matrix expressing the rotation from frame Σi+1 to Σi, S(·) the
skew matrix operator and ri,i+1 the vector pointing from Σi to Σi+1 expressed
with respect to Σi. Thus, the total generalized force vector acting on the i-th
body is

hit,i = hii −U i
i+1h

i+1
i+1 i = 1, . . . , n− 1 (3.36)

hnt,n = hnn , (3.37)

where hii is the generalized force actuated by body i− 1 on body i. Therefore,
h0
0 = τ v since the vehicle is the first body of the chain. Then, Eq. (2.18) can

be rewritten in body frame Σi
i as

M iν̇
i
i +Ci(ν

i
i)ν

i
i +Di(ν

i
i)ν

i
i + gii(Ri) = hit,i (3.38)

that in regressor form is

Y (Ri,ν
i
i, ν̇

i
i)θi = hit,i . (3.39)

Within the aim to compensate for the vehicle while taking into account the
manipulator dynamic effects, the regressor can be achieved through an iterative
Newton-Euler-based approach. In detail, merging Eq. (3.36) and Eq. (3.38)
yields

τ v = h0
0 = Y 0θ0 +U0

1h
1
1 (3.40)

where Y 0,θ0 are the regressor and dynamic parameters vector, respectively, of
the corresponding rigid body (body 0 that is the vehicle in the specific case).
The latter relation can be rewritten substituting the force h1

1 for the first link
as

h0
0 = Y 0θ0 +U0

1

(
Y 1θ1 +U1

2h
2
2

)
(3.41)

= Y 0θ0 +U0
1Y 1θ1 +U0

1U
1
2h

2
2 . (3.42)
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Iterating the operation and rearranging the terms yields

h0
0 =

[
Y 0 U0

1Y 1 · · · U0
1U

1
2 · · · Un−1

n Y n

]
︸ ︷︷ ︸

Y



θ0

θ1

θ2
...
θn


︸ ︷︷ ︸
θ

(3.43)

that is computationally effective. Thus, the adaptive control law defined for
the AUV in Eq. (3.4) is now defined for a UVMS as

τ c = Y θ̂ +Kss (3.44)

with the update law
˙̂
θ = K−1θ Y

T
s (3.45)

where Ks ∈ R6×6 > O and Kθ ∈ Rµ×µ > O.

The stability analysis for this control law is not presented since it can be per-
formed in a way similar to the one reported in Section 3.1.1.

3.2.1 UVMS Reduced controller

Aimed at compensating for persistent dynamic effects guaranteeing the null
steady state error and in order to avoid the joint accelerations measurement,
since off-the-shelf manipulators are usually equipped only with low level position-
velocity control sensors, a reduced version of the controller is considered, as
done for the AUV. In particular, for the vehicle (body 0) the regressor already
defined in Eq. (3.18) can be used. For the manipulator, however, the regressor
in Eq. (3.22) has to be adopted, otherwise identifiability issues in linear com-
bination could arise in building the regressor Y . Therefore, the total UVMS
regressor is Y ∈ R6×9+6n.
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3.3 Adaptive Control Simulations

In the following the numerical validations of the adaptive control law are re-
ported.

3.3.1 AUV simulations

Numerical validations are performed taking into consideration the dynamic
model of the underwater vehicle developed within the European Project RO-
BUST, that is well described further on. In particular, several case studies are
presented doing a comparison with a PID controller.

In order to show the goodness of the adaptive control, the ocean current νc =[
0.2 0.2 0 0 0 0

]T
in [m/s] is considered. Furthermore, a preliminary

learning phase is performed to let the adaptive controller identify the dynamic
parameters, e.g., the force necessary to compensate νc. Indeed, thanks to its
parameters update law, which is based on the system state error, the controller
is able to identify the force components necessary for compensating the ocean
current disturbance with no need of sensors or particular navigation filters.

Figure 3.6 shows the force components identified during the learning phase.
It is noticeable that Fz is null since the vehicle has a neutral buoyancy. The
identified values are used in the next simulations to initialize the corresponding
components inside the dynamic parameters vector θ.

All simulations are performed with a sampling time Ts = 10 ms and a trape-
zoidal velocity profile is considered for the vehicle required movements.

The first case study considers a station keeping task. It allows to show the
effectiveness of the learning phase performed with the adaptive controller. In-
deed, as shown in Fig. 3.7, the position error norm of the adaptive control is
null whereas the PID has a non-null error due to its transient necessary to
compensate for the ocean current disturbance.

In the second case study a movement varying the pitch angle from 0 to π
12 rad

and then back to 0 is considered. As noticeable from Fig. 3.8, the PID error is
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Figure 3.6: Adaptive learning phase: dynamic parameters corresponding
to force components due to the ocean current compensation.

much higher than adaptive one. Indeed, the PID controllers performs in ΣB,
therefore, during the transient the integral action acts as disturbance on z-axis
and pitch moment in body frame until its discharge. On the other hand the
adaptive controller compensates for the dynamic effect in the proper frame and
thus considers the external disturbances in ΣI (see Forces and Moments plots
in Fig. 3.9) and the GB moments in ΣB (see GB plot in Fig. 3.9).

In the third case study a movement varying the yaw angle from 0 to π
2 rad

and then back to 0 is simulated. As in the previous case, the PID controller
has the drawback of waiting the integral discharge before to compensate in
the right direction. Indeed, the integral action compensating for the ocean
current in body frame are switched when the vehicle rotates with yaw ψ = π

2 ,
acting as disturbance during the transient (see Fig. 3.10) whereas the adaptive
controller compensates considering νc in the earth-fixed frame (see Fig. 3.11)
and therefore avoiding the PID transient drawback.

The fourth case study consists of a path-following on the xy plane with a fi-
nal descent (see Fig. 3.12). The corresponding position and orientation error
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Figure 3.7: Case 1 - Station keeping simulation: comparison between
adaptive and PID error norms.

norm are reported in Fig. 3.13 while Fig. 3.14 shows the dynamic parameters
identified by the adaptive controller.

AUV simulations with Thruster Dynamics inclusion

An open frame vehicle is considered for the case study whose dynamic param-
eters have been identified in [17]. The actuators, however, have been changed
according to the thruster configuration shown in Fig. 2.5 with the TCM defined
in Eq. (2.28). For the single thruster model, the parameters which have been
experimentally determined in [75], are used.

An intervention operation and thus a station-keeping task is considered as case
study. In particular, the vehicle is required to perform a small movement,
with a trapezoidal velocity profile, along the x-direction maintaining the own
orientation. More in detail, the case study is simulated with a sampling time
Ts = 10 ms in three different conditions: the ideal condition where the thruster
dynamics is neglected, the real one where the propeller dynamics with thruster
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Figure 3.8: Case 2 - Pitch movement simulation: comparison between
adaptive and PID error norms.

degradation is considered and the latter with the presence of the ocean current
which increases the thrust degradation. Indeed, in the most of cases the gain
tuning phase is performed in a water tank, therefore with no ocean current,
and, as mentioned above, neglecting the actuator dynamics due to the lack
of sensors. Then, the resulting values are also used offshore. However, the
controller performance deterioration has to be taken into account since the
different operative conditions and the presence of propellers change the plant
used to design the controller resulting in a Keq different from the identity
matrix.

Figures 3.15 and 3.16 show the pose error and vehicle force norm, respectively.
In particular, it is noticeable how the error increases from the Ideal condition
to the Real one with the presence of the ocean current. However, the controller
results stable with null steady state error.

Figure 3.17 represents the dynamic parameters corresponding to the linear com-
ponents for compensating the external disturbances and the gravity-buoyancy
effect. In detail, it is observable that the presence of the ocean current νc =
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Figure 3.9: Case 2 - Pitch movement simulation: adaptive controller
dynamic parameters.

[.2 .2 0 0 0 0]T influences the x, y components differently from the other two
conditions. Furthermore, the thruster dynamics included in Keq makes a clear
distortion on the gravity-buoyancy component (z-component) which looses in
this way its physical significance. To better understand, theKeq corresponding
to the last sample of the Real condition simulations without and with the ocean
current, respectively, are reported:

−.0755 0 0 0 0 0

0 −.0755 0 0 0 .0002

0 0 .5015 0 0 0

0 0 0 .5015 0 0

0 0 0 0 .5015 0

0 0 0 0 0 −.0755


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Figure 3.10: Case 3 - Yaw movement simulation: comparison between
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and 

.4756 −.0068 0 0 0 .0269

−.0068 .4756 0 0 0 −.0269

0 0 .5015 0 0 0

0 0 0 .5015 0 0

0 0 0 0 .5015 0

.0067 −.0067 0 0 0 .4756


.

From these values it is clear that, differently from the Ideal case where Keq

corresponds to the Identity matrix, in the Real condition the diagonal elements
(in blue) can vary according to the specific system and movement and further-
more there may be out-diagonal elements (in red) corresponding to direction
couplings that increase with the ocean current.

To further underline the effects of theKeq matrix, Fig. 3.18 shows a comparison
between the dynamic parameters identified in the previous simulation (case (a))
and the ones obtaining with a 50% overestimation of K̂∞ (case (b)). Thus, on
equal terms, the gain estimate also has a non-negligible effect.
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Figure 3.11: Case 3 - Yaw movement simulation: adaptive controller
dynamic parameters.

Another consideration finally comes out from numerical simulations. In partic-
ular, the Keq matrix presents some off-diagonal elements that are always null.
This means that some control directions can not be coupled by construction
and they depend on the specific TCM. In this work, given the chosen thruster
allocation, the following results:

Keq =



∗ ∗ 0 0 0 ∗
∗ ∗ 0 0 0 ∗
0 0 ∗ ∗ ∗ 0

0 0 ∗ ∗ ∗ 0

0 0 ∗ ∗ ∗ 0

∗ ∗ 0 0 0 ∗


, (3.46)

where the ∗ symbol represents the generic diagonal element which varies around
the value 1 and the generic out-diagonal element that varies around the value
0.
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3)

Figure 3.12: Case 4 - Path following simulation: view of the path followed
by the vehicle.

3.3.2 UVMS simulations

Aimed at showing the effectiveness of the adaptive control compensating for
dynamic interaction due to the manipulator movements, the dynamic model
identified in [17] is used (as for the thruster inclusion simulations) along with
the model of the 7 DOFs arm used in the TRIDENT project [68]. In this
configuration, the arm represents the 6% of the total dry weight.

The case study consists of a trajectory tracking given in terms of end-effector
position and orientation with a trapezoidal velocity profile. Furthermore, the
trajectory is generated through the task priority algorithm taking into con-
sideration as secondary task the vehicle null roll-pitch and the manipulator
manipulability. The desired position/orientation along with the corresponding
velocities are sent as reference to the adaptive controller and to the arm joint
low-level controller, a PID in the specific case. The adaptive reduced control is
used taking into consideration the regressor defined in Eq. (3.18) for the vehicle
and in Eq. (3.22) for each arm link. Therefore, 9 parameters for the vehicle
and 7 · 6 = 42 parameters for the arm are considered.
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Figure 3.13: Case 4 - Path following simulation:comparison between
adaptive and PID error norms.

Figure 3.19 reports the computed control forces, showing a difference in the
control moments whereas the control forces are approximately equal. The con-
troller with the arm knowledge compensates for the manipulator movement to
keep the vehicle null pitch-yaw and thus its control moment is higher. Fig-
ure 3.20 and 3.21 show the vehicle and end-effector position/orientation error
norms. In particular, the end-effector orientation error is expressed in quater-
nion convention. As noticeable, the controller with the arm knowledge has
better performances. Focusing on the vehicle orientation error norm, it is ob-
servable that the adaptive control with arm knowledge is 20% lower than the
peak error obtained by the other controller. Therefore, even if the arm is 6%

of the total system dry weight, the proposed control goodness is effective.

3.3.3 Conclusions

The simulations results have shown the goodness of the adaptive control which,
after a preliminary learning phase, is able to compensate for the gravity/buoyancy
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Figure 3.14: Case 4 - Path following simulation: adaptive controller
dynamic parameters.

effects and the ocean current disturbance in the proper frame with no drawbacks
during the transient time.

The full-dimensional adaptive control of an underwater vehicle, including the
thruster dynamics and the ocean current effects, has been investigated as well.
The performed analysis has shown that these effects cause the distortion of
the vehicle control input τ v and they make the dynamics parameters loose
their physical meaning. However the thruster dynamics inclusion is usually not
possible in real scenarios due to the lack of any feedback sensors in most of the
off-the-shelf propellers.

The effectiveness of an adaptive recursive control able to counteract for the
dynamic interaction caused by the arm has been also shown.
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3.4 The ROBUST project

Robotic subsea exploration technologies - ROBUST [3] is a research project
funded from the European Union’s Horizon 2020 research and innovation pro-
gramme. The system developed within this framework (see Fig. 3.22) has been
conceived for performing sea bed material identification, manganese nodules in
the specific case, merging the capabilities of an Autonomous Underwater Vehi-
cle (AUV) and a robotic manipulator equipped with a Laser Induced Breakdown
Spectroscopy (LIBS) sensor.

In particular, the envisioned mission of the ROBUST UVMS consists of four
steps:

• The UVMS initially performs a survey of the working area at a high
altitude (about 50 m) within the aim to collect Multi Beam Echo Sounder
(MBES) data.
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• The MBES data are automatically processed for creating bathymetric
maps of the area which are then used by the UVMS to autonomously
determine the subarea with the highest probability of manganese nodules
presence.

• The UVMS performs a low-altitude survey of the subarea to identify pos-
sible nodules in real-time using a color camera and a detection algorithm
based on a Convolutional Neural Network (CNN).

• When the detection algorithm identifies a possible nodule, the UVMS
lands on the seabed and the manipulator performs an analysis of the
mineral through the LIBS. This step is repeated until enough data are
acquired within the area of interest.

For the UVMS implementation a modular approach has been adopted. Indeed,
as noticeable from Fig. 3.22, the ROBUST Underwater Vehicle Manipulator
System (UVMS) consists of a rigid frame which connects three torpedo-shaped
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AUVs and a 7 DOFs manipulator manufactured by GraalTech, an Italian com-
pany that is one of the project partners. The overall system architecture is
shown in Fig. 3.23. From the latter it is noticeable how the control architecture
is based on the cascade of three main blocks:

1. The Mission Control Module is in charge of supervising the execution
of the current mission, and generates the corresponding actions to be
executed by the Kinematic Control Layer.

2. The Kinematic Control Layer (KCL) is in charge of reactively accomplish-
ing the control objectives that make up the current action to be executed,
generating the desired system velocity vector.

3. The Dynamic Control Layer (DCL) tracks the desired system velocity
vector by generating appropriate force/torques commands for the vehicle
and the manipulator.

The actions sent by the Mission Control are lists of prioritized control objectives
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Figure 3.18: Dynamic parameters corresponding to linear components:
in solid line the Real condition with the exact K̂∞; in dashed line the Real
condition with a 50% overestimation of K̂∞.

which allow to perform the different phases of the ROBUST mission. More in
detail, the following actions are considered:

• Aa: UVMS heading alignment to a target position, taking into consider-
ation some safety-related tasks, i.e., the minimum altitude and the hori-
zontal attitude task.

• Ag: UVMS movement towards a desired goal position, aligning the head-
ing to the direction of the generated linear velocity while considering the
safety-related tasks as defined for the previous action.

• Ap: UVMS positioning w.r.t. the nodule, performing the system distance
and the laser frame longitudinal alignment to the nodule tasks while tak-
ing into account the safety-related control objectives.

• Ad: UVMS landing, performing, in addition to nodule distance and ve-
hicle longitudinal alignment tasks, also an altitude task, simultaneously
fulfilling the safety control objectives except the minimum altitude since
the goal is to land on the seabed.
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Figure 3.19: UVMS simulation: comparison between the control
forces/moments by applying the adaptive control to the vehicle with (in
red) and without (in blue) the arm knowledge.

Aimed at sequencing the above mentioned actions, a control state machine
has been implemented, as shown in Fig. 3.24. In particular, when the system
is initialized, it is set to the HOLD state, meaning that the current vehicle
position is kept. When the Mission Control Module sends a specific action
then the system switches to the state with the control objectives corresponding
to the received action. It reverts to the HOLD state only when the required
action tasks are fulfilled.

Concerning the dynamic control layer, a Proportional-Integral (PI) controller
along with the adaptive control law proposed in Section 3.1 have been imple-
mented with the possibility to switch between them at run time. However, since
the framework dynamic layer receives only the velocity reference the adaptive
controller has been modified removing the pose reference from the error variable
s defined in Eq. (3.3) obtaining, therefore, only the velocity error:

s = νd − ν . (3.47)
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Figure 3.20: UVMS simulation: comparison between the vehicle posi-
tion/orientation error norms by applying the adaptive control to the vehicle
with (in red) and without (in blue) the arm knowledge.

3.4.1 Preliminary Experiments

Preliminary sea experiments have been conducted in La Spezia, at the base of
the Italian Navy. In particular, focusing on the dynamic control layer, some
tests performing theAg action, that is movement towards desired goal positions,
have been done under the effect of the ocean current.

More in detail, the following waypoints on the xy−plane with respect to the
NED frame system have been considered:

G1 → x = −8, y = 21,

G2 → x = −28, y = 28,

G3 → x = −35, y = 8,

G4 → x = −15, y = 1.

Furthermore, within the aim to make a comparison, experiments have been
performed both with the adaptive and PI control. The following gains have
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Figure 3.21: UVMS simulation: comparison between the end-effector
position/orientation error norms by applying the adaptive control to the
vehicle with (in red) and without (in blue) the arm knowledge.

been used for the adaptive control:

Ks = diag
( [

333.33 416 555 350 175 176
] )
∈ R6×6

Kθ = diag
( [

20 20 20 40 40 20 20 20 50
] )
∈ R9×9 ,

whereas the following ones have been used for the PI control:

KP = diag
( [

333.33 416 555 350 175 176
] )
∈ R6×6

KI = diag
( [

83 208 554 0 0 152
] )
∈ R6×6 .

Figure 3.25 reports the waypoint navigation obtained running both the con-
trollers with the corresponding control forces and moments shown in Fig. 3.26
and Fig. 3.27, respectively. From the plots, it is noticeable that the PI presents
a larger error when the UVMS changes its heading in proximity of the desired
goal positions. This difference of performance is observable also in the control
moments whereas the control linear effort is approximately the same. Thus, the
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Figure 3.22: UVMS developed within the EU funded ROBUST Project.

adaptive control has a better performance during the vehicle heading change
since it properly compensates for the effect of the ocean current.

Figure 3.28, 3.29 present the linear and angular velocity error norms, respec-
tively. As observed above, the linear components have almost the same trend
whereas the angular components present a slightly different behaviour. Finally
Fig. 3.30 shows the dynamic parameters identified by the adaptive control.
It is worth noticing that, since the vehicle movement is performed using the
distance error with respect to the desired goal position without imposing a tra-
jectory, the parameter identification is highly influenced by the integral action.
Then, the dynamic parameters actually loose their physical meaning during the
transient.

As further confirm of the slightly different performances between the two con-
trollers, the integral of the velocity error s as defined in Eq. (3.47) has been
computed according to the following relation:

e =
1

Tf

∫ Tf

0
‖s‖dt (3.48)

As noticeable, the error integral is normalized with respect to the final time Tf .
Since the two experiments have different time lengths, the adaptive final time
(the shortest) has been chosen. Thus, the following error integrals have been
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Figure 3.23: ROBUST system overall architecture: the Kinematic Con-
trol Layer implements a task priority based approach, executing the current
action scheduled by the Mission Control Module; the output of the Kine-
matic Control Layer are the system velocities, tracked by the underlying
Dynamic Control Layer.

obtained for the linear components

eAdp,l = 0.28, ePI,l = 0.30

and the angular ones

eAdp,a = 0.05, ePI,a = 0.07 .

Therefore, these results confirm the information noticeable from the above
plots. In particular,

ePI,l = kl · eAdp,l

ePI,a = ka · eAdp,a

with kl = 1.07 and ka = 1.4. Then, the adaptive control actually presents
a lower error thanks to its parameter adaption in the proper reference frame
whereas the PI control, compensating for the dynamic effects only in body
frame, is subject to the integral action discharge drawback during the transient
time.
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Figure 3.24: The control state machine implemented within the EU
funded ROBUST Project: the system exits from the HOLD state, that
is the default one, when an external action command is received; then,
it reverts to the HOLD state only when the action control objectives are
fulfilled.

3.4.2 Considerations

From the preliminary experiments the adaptive control results slightly better
than the PI control. However, to evidence the better performance a trajectory
in place of a set points should be used. Indeed, as already mentioned before, in
presence of large error, e.g., the distance between two way points, the dynamic
parameters are essentially integral actions loosing their physical meaning. Then
the adaptive control acts as a PI controller. Therefore, aimed at remarking
the goodness of the adaptive algorithm, other tests will be done applying a
trapezoidal velocity profile. Furthermore, the simulation case studies presented
in Section 3.3.1, e.g., movements varying the pitch and yaw angles, will be done
to put in evidence the PI drawback in these specific conditions.
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Chapter 4

Kinematic Control

4.1 Set-based Task-Priority Inverse Kinematics

The Set-based Task-Priority Inverse Kinematics (STPIK) allows to manage
a generic hierarchy H composed of both set-based and equality-based tasks.
In detail, a set-based task can be seen as an equality-based one that is acti-
vated/deactivated depending on its current value. The latter can take values
in a set which can have a lower and/or upper bound. For each bound several
thresholds have to be taken into consideration: activation (σa,l / σa,u), safety
(σs,l / σs,u) and physical (σm / σM ) thresholds, respectively (see Fig. 4.1). In

ActiveActive Inactive

εε

σm σMσs,l σs,uσa,l σa,u

Figure 4.1: Set-Based task thresholds: activation (σa,l / σa,u); safety
(σs,l / σs,u); physical (σm / σM )

particular, if the set-based task value is in the valid range it is not taken into
account. When its value reaches the activation threshold then it is added to
the priority hierarchy A, containing only enabled tasks, as an equality-based
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task with desired value equal to the safety threshold:

σd =

{
σs,u if σ ≥ σa,u
σs,l if σ ≤ σa,l

. (4.1)

The set-based task can be deactivated and then removed from the hierarchy
only when the solution ζ, computed taking into account all tasks except the
set-based one, pushes its value in the valid range. In detail, it is possible to
check whether a generic solution ζ makes a set-based task σA go beyond the
desired limit or not by evaluating its projection in the task space. Defining
JA as the Jacobian matrix of σA, if JAζ > 0 the solution would increase the
set-based task value, otherwise if JAζ < 0 the solution would decrease it. In
this way, σA can be deactivated if

σA ≥ σa,u ∧ JAζ < 0 (4.2)

or
σA ≤ σa,l ∧ JAζ > 0 . (4.3)

However, the solution is not known a priori and this implies that for each set-
based task it is necessary to compute the solution adding and removing the
task from the hierarchy. Thus, 2j solutions have to be computed and stored
in a set S at each algorithm iteration, with j the number of active set-based
tasks, as shown in Fig. 4.2.

equality-based

equality-based

set-based

ζs,1 ζs,2

ζa

ζa
ζa

ζb

ζc

Na

Na

Nab

ζa +Naζb

ζa +Naζc ζa +Naζb +Nabζc

Figure 4.2: Solution tree example: j = 1⇒ 21 solutions (ζs,1 , ζs,2) are
generated.
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Then, the solutions that satisfy conditions (4.2) or (4.3), among all the solutions
in S, have to be selected and stored in a set P . The procedure is described in
Algorithm 1.

Algorithm 1: Selection of the solutions that make all the set-based tasks stay
in their limits
Data: current Task Hierarchy A containing na set-based tasks, computed
solutions S
Result: P containing all the solutions that push away all the active set-based

tasks from their limits, while fulfilling all the equality-based tasks
initialize P = ∅, count=0
for all the q̇j ∈ S do

for all the set-based tasks σk ∈ A do
if Jkq̇j > 0 (Jkq̇j < 0) then

count++;
continue;

else
break;

end
end
if count==na then

P ← q̇j
count=0;

else
count=0;

end
end

The final step consists of choosing the highest-norm solution among all the
remaining ones in P , as it is the less conservative velocity-wise. The entire
algorithm workflow is shown in Fig. 4.3.

As shown in the next Sections, the STPIK algorithm has been used to develop
efficient control frameworks.
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Figure 4.3: Workflow of the algorithm. Red σi represents a generic set-
based task, while blue σi represents a generic equality-based task and si is a
generic solution. Starting from a generic task hierarchy, the algorithm leads
to a unique solution that accomplish simultaneously all the equality-based
and the active set-based tasks.

4.2 Analysis and Comparison of Damped Least Square
Algorithms

As already mentioned in Section 2.4.4, when the jacobian matrix J is rank
deficient the singularities problem arises. To better understand this problem,
the Singular Value Decomposition (SVD) of the J is helpful, that is

J = UΣV T =

r∑
i=1

σiuiv
T
i → J† =

r∑
i=1

1

σi
viu

T
i (4.4)
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where vi ∈ Rn and ui ∈ Rm are, respectively, the i-th input and output singular
vector, and σi is the i-th singular value, with r = rank(J) and σ ordered so
that σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

It is worth noticing that only in this Section the variable σ is the singular
value vector whereas in the other Sections is used to represent the generic task
variable.

Equation (4.4) allows to recognize that, when a singularity is approached, the
r-th singular value tends to zero and a fixed task velocity command along ur
requires joint-space velocities along vr that grow unboundedly in proportion
to the factor 1/σr. At the singular configuration, the ur direction becomes
unfeasible for the task variables and vr adds to the null-space velocities of the
arm.

A method to handle this problem is to use the damped least squares, that is a
formulation based on weighting the accuracy of tracking the end-effector error
with respect to the norm of the joint angle velocity:

‖ẋr − J(q)q̇‖2 + λ2 ‖q̇‖2 (4.5)

in which λ is the damping (or weight) factor and

ẋr = ẋd +Kx̃ ∈ Rm (4.6)

is the reference value vector with ẋd that is the time derivative of the desired
vector for the task function, K is a positive definite (usually diagonal) matrix
and x̃ = xd−x is the task error. The solution to (4.5) is the so called damped
pseudoinverse:

J†
λ

(q) = JT(q)
(
J(q)JT(q) + λ2I

)−1 (4.7)

that through the SVD can be rewritten as:

J†
λ

=

r∑
i=1

σi
σ2i + λ2

viu
T
i . (4.8)

From this last expression it’s noticeable that the components for which σi �
λ are little influenced by the damping factor. On the other hand, when a
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singularity is approached, the r-th singular value tends to zero and a fixed
task velocity command along ur requires joint-space velocities along vr that
progressively decrease in proportion to the factor σr/λ2. At the singularity,
Eq. (4.4) and (4.8) present a similar behaviour as long as the remaining singular
values are significantly larger than the damping factor.

A difficult problem in the use of the damped least squares is the choice of the
optimum damping factor λ in all configurations: it should be zero far from
singularity and high enough to attenuate joint velocities near singularity. The
following algorithms differentiates among them for the configuration in which
the damping factor is activated and its value.

Three of these algorithms are based on the singular region estimation by setting
a threshold σd using the minimum singular value σmin as singularity-closeness
measure as discussed in [24]. In these techniques it is noticeable that the value
of d is crucial because if it is too high with respect to values of σmin, the joint
angle velocities are always damped, instead if it is too low there is the risk of
high peak velocities close to singularities.

The first approach considered is the one proposed by [46]:

λ =

{
0 if σmin ≥ σd1√
σmin(σd1 − σmin) if σmin < σd1

(4.9)

where

σd1 =
1

‖q̇‖max

(4.10)

with
‖q̇‖max ≥

∥∥∥J†λẋr∥∥∥ . (4.11)

The threshold σd1 is set in function of ‖q̇‖max that is the boundary on the norm
of the solution q̇ and depends on the specific manipulator joint velocity limits.
Equation (4.9) is represented in Fig. 4.4 where it’s noticeable how λ becomes
null when σmin approaches zero.

The second method analysed is by Arati S.Deo and Ian D.Walker [28] that
is not based on any measure of close-to-singularity region. It is an iterative
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technique that computes the optimal damping factor when ‖q̇‖ > ‖q̇‖max

with the following iteration:

λk+1 = λk −
[ ∥∥q̇λk∥∥
‖q̇‖max

][
φ(λk)

φ′(λk)

]
, (4.12)

where
φ(λk) =

∥∥JT(JJT + λkI)−1ẋr
∥∥− ‖q̇‖max (4.13)

that using the SVD can be rewritten as:

φ(λk) =
∥∥ΣT(ΣΣT + λkI)−1UTẋr

∥∥− ‖q̇‖max (4.14)

and letting UTẋr = [γ1 γ2 . . . γr]
T it becomes

φ(λk) =

√√√√ r∑
i

σ2i γ
2
i

(σ2i + λk)2
− ‖q̇‖max . (4.15)

φ
′
(λk) is obtained differentiating φ(λk) with respect to λk:

φ
′
(λk) = − 1∥∥q̇λk∥∥

r∑
i

σ2i γ
2
i

(σ2i + λk)2
. (4.16)

Thus with this method the optimal λ∗ such that φ(λ∗) = 0

⇒ ‖q̇λ∗‖ = ‖q̇‖max is obtained.

The third method analysed is by F. Caccavale, S. Chiaverini and B. Siciliano
[16]:

λ2 =

 0 if σmin ≥ σd2[
1−

(
σmin
σd2

)2]
λ2M if σmin < σd2

(4.17)

where σd2, as σd1 in the Maciejewski algorithm, defines the size of the singular
region and λM is the final value for the damping factor that is when σmin = 0

then λ = λM . In this case the choice of σd2 and λM is not explicit: they
are heuristically chosen according to the specific manipulator used. From a
geometric point of view it is possible to observe that (4.17) represents a quarter
of ellipse as shown in Fig. 4.4.
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The fourth method analysed is the one by [11]:

λ =


0 if σmin ≥ σd3√
σmin(σd3 − σmin) if σd3/2 ≤ σmin < σd3

σd3/2 if σmin < σd3/2

(4.18)

where
σd3 =

‖ẋr‖
‖q̇‖max

(4.19)

with ‖q̇‖max already defined in Eq. (4.11). The threshold σd3 is now dependent
on both ẋr, that includes the error x̃, and ‖q̇‖max and so it is set dynamically.
Examining Eq. (4.18) shown in Fig. 4.4 it’s clear that, unlike Maciejewski, close
to a singular configuration the damping factor λ is set to σd3/2.

σd1 σd3 σd2

σd3

2

λM

0
σmin

λ

Maciejewski
Caccavale
Baerlocher

Figure 4.4: Choice of the damping factor λ according to Maciejewski’s,
Baerlocher’s and Caccavale’s algorithms.

A variant of Baerlocher’s algorithm is based on finding iteratively the optimal λ
for a given boundary bmax with Newton’s method. In details, for each sample,
when inside the singular region and then with λ non null, the following iterative
law is used:

λk+1 = λk + α(‖q̇‖max − ‖q̇k‖) (4.20)

where k represents the k-th iteration and α is a gain factor. The iterations
number and the gain α are 2 free parameters that need to be suitably set.
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The last method analysed is by [73] that is different from the previous ones
because it does not define a singular region where to apply the damping factor
but it proposes to use always small biasing values even if not close to a singular
configuration. In particular the following Jacobian pseudoinverse is applied:

J† =
(
JTWEJ + WN

)−1
JTWEẋr (4.21)

where WE ∈ Rm×m is the weighted matrix, that reflects the workspace com-
ponents priorities, and the matrix WN ∈ Rn×n represents the damping factor
defined as:

WN = EI +WN (4.22)

with E = 1
2 ẋ

T
rWEẋr, I ∈ Rn×n is the identity matrix and WN ∈ Rn×n

is a diagonal matrix of small biasing values wN . According to an empirical
knowledge it is proposed to set wN ' 1.0 × 10−2l2 ∼ 1.0 × 10−3l2 where l is
the length of a typical link, l = 0.1 ∼ 100m.

4.2.1 DLS Algorithms Simulation

All the algorithms previously shown have been evaluated for comparison. In de-
tails, considering physically achievable tasks and not taking into consideration
high tracking precision during the transient, each algorithm results satisfactory.
Anyway in this work the following metrics have been considered:

I chattering absence;

II high tracking precision;

III exact joint velocity saturation;

IV trajectory independence,

and the two following study cases have been determined:

Case 1: a boundary singularity obtained with a desired end-effector posi-
tion outside the workspace, that represents a desired task not physically
achievable;
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Case 2: an internal singularity obtained with a desired position inside the
workspace, that represents a physically achievable desired task.

The evaluation tests have been implemented using the 7 DOFs Kinova Jaco2

manipulator, the first version without the spherical wrist in the specific case
(Fig. 4.5).

1

Figure 4.5: Kinova Jaco2 manipulator.

The end-effector position control has been implemented for the comparison tests
through the CLIK scheme with gainK = diag{1, 1, 1}, assigning a trapezoidal
velocity profile with a trajectory time Tf = 10 s and using a sampling rate
Ts = 0.01 s. The boundary ‖q̇‖max has been set equal to the minimum joint
velocity limit to ensure that no other greater limit was passed, i.e., ‖q̇‖max =

0.6283 rad/s.

The Caccavale’s algorithm, which gives good results if properly calibrated, has
not been taken into consideration in simulations because it is based on pa-
rameters that strongly depend on the specific robot. Instead the present work
wants to focus on the algorithms that claim to be independent from the robotic
system.

Maciejewski Algorithm

In the first case (outside workspace) the joint velocities shown in Fig. 4.6(a)
were obtained. The resulting chattering is due to Eq. (4.9) because when σmin
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approaches zero also λ goes to zero (as shown in Fig. 4.6(d)) thus the damping
factor’s function fails. To better understand, the SVD of Eq. (4.11) can be
useful:

∥∥∥J†λẋr∥∥∥ =

∥∥∥∥∥
(

r∑
i=1

σi
σ2i + λ2

viu
T
i

)
ẋr

∥∥∥∥∥ ≤ bmax (4.23)

From this formulation it’s clear that if the error approaches zero the relative
joint velocity components go to zero too. Anyway if the error is not null, as in
our tests, a damping factor λ, that is much greater than the minimum singular
value σmin, is necessary to bring to zero the fraction σi

σ2
i+λ

2 and so the entire
expression in Eq. (4.23) and accordingly the relative joint velocity components.
Fig. 4.6(e) shows the end-effector position error norm.

In the second case (inside the workspace), since the error approaches zero,
joint velocities do not present chattering, as shown in Fig. 4.6(b). Anyway
the threshold σd1 is fixed and therefore the damping is present even if it is not
strictly necessary (observable in Fig. 4.6(d)). This causes a noticeable reduction
of the tracking precision as shown in Fig. 4.6(e).

Deo and Walker Algorithm

Simulation results obtained by applying Deo and Walker’s algorithm are shown
in Fig. 4.7. In particular it is noticeable that this method is not able to manage
the first case (outside the workspace). In fact joint velocities present chattering
as shown in Fig. 4.7(a). This is due to the computation of the optimal damping
factor which depends on φ(λ) defined in Eq. (4.13). This means that joint
velocities are damped only if their norm passes ‖q̇‖max without considering
other parameters, first of all the error.

In the second case (inside workspace), where the error approaches zero, the
algorithm is able to manage the singularity and to fill ‖q̇‖max giving a good
error tracking precision as shown in Fig. 4.7(c).
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Figure 4.6: Maciejewski’s algorithm: (a),(b) joint velocities; (c) joint
velocities norm; (d) damping factor λ; (e) end-effector position error norm.

Baerlocher Algorithm

Fig. 4.8 shows the results obtained by Baerlocher’s algorithm. Unlike Maciejew-
ski, it avoids the chattering in the joint velocities, as shown in Fig. 4.8(a), thanks
to the different damping factor in Eq. (4.18). Furthermore, using a dynamic
threshold σd3 linked to the task-error the joint velocity norm is able to fill more
the ‖q̇‖max with respect to Maciejewski. This means a better tracking error
during the trajectory. Anyway it is not sufficient since, as shown in Fig. 4.8(c)
and 4.8(d), the joint velocities norm never fills completely the ‖q̇‖max. This
issue underlines how the joint velocities norm does not generally represent the
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Figure 4.7: Deo and Waker’s algorithm: (a),(b) joint velocities; (c) joint
velocities norm; (d) damping factor λ; (e) end-effector position error norm.

real constraint to take into consideration for a robotic system. Thus there is
still the necessity to obtain a better error-tracking.

Another test has been executed putting in evidence a particular behaviour.
More in details this algorithm has been tested again considering the second case
(inside the workspace) setting the gain K = diag{50, 50, 50}. Fig. 4.9 shows
that joint velocities have a high growth in proximity of the close-to-singularity
configuration but even after. This is due to the tracking error (observable in
Fig. 4.9(d)) that influences the threshold σd3 (defined in Eq. (4.19)). In fact
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Figure 4.8: Baerlocher’s algorithm: (a), (b) joint velocities; (c) joint
velocities norm; (d) damping factor λ; (e) end-effector position error norm.

during the transition through the close-to-singularity region the error is accu-
mulated because of the damping (shown in Fig. 4.9(c) and 4.9(d)). Therefore
the CLIK dynamics tries to set to zero the error causing high joint velocities.
This puts in evidence how the CLIK gain influences the computation of the
damping factor in the Baerlocher’s algorithm.

Iterative Baerlocher Algorithm

Simulation results of the Baerlocher’s variant are shown in Fig. 4.10. This
variant requires to set the gain α and the iterations number. For both the cases
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Figure 4.9: Baerlocher’s algorithm with K = diag{50, 50, 50}: (a) joint
velocities; (b) joint velocities norm; (c) damping factor λ; (d) end-effector
position error norm.

(outside/inside) were set 40 iterations and α = 10−2. As Fig 4.10(c) shows, the
joint velocities norm is able to fill the ‖q̇‖max ensuring a better tracking error.
Anyway this algorithm requires an appropriate parameters setting to obtain
good results and it is also important to consider the computational payload,
because each sampling step a certain number of iterations is executed.

Other tests have been made on this variant of Baerlocher’s method showing its
task dependency. In details, starting by setting ‖q̇‖max = 1, the gain α = 10−2

and 40 iterations, Fig. 4.11(a) represents the joint velocity norm obtained with
desired position xd1 = [2.5, 0, 0.4] and the ones obtained with desired position
xd2 = [0, 0, 1.5]. Thus, this makes noticeable how the same parameters used
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Figure 4.10: Iterivative Baerlocher’s algorithm: (a),(b) joint velocities;
(c) joint velocities norm; (d) damping factor λ; (e) end-effector position
error norm.

in the first case then are not suitable in the second configuration. This means
that the algorithm is configuration-dependent and it can not be used with the
same parameters in general but it needs to be calibrated each time.

Sugihara Baerlocher Algorithm

Fig. 4.12 shows the simulation results obtained by Sugihara’s algorithm. More
in detail, it was tested setting the bias values wN = 10−2. As it’s possible to
observe from Fig. 4.12(c), the constant presence of the matrixWN in Eq. (4.22)
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Figure 4.11: Iterative Baerlocher’s algorithm with ‖q̇‖max = 1: (a) joint
velocities norm; (b) damping factor λ.

(that in this method represents the damping factor) even if the manipulator
is not in a close-to-singularity configuration, causes a higher error in tracking
trajectory with the impossibility to track the desired end-effector velocity sat-
isfactorily. Moreover, this method does not allow to set a ‖q̇‖ either and, as
stated previously, the setting of wN is left to an empirical knowledge.

DLS Algorithms Considerations

Taking into account the above simulation results, the following considerations
can be drawn:

• Maciejewski: because of Eq. (4.9) it is not able to manage cases where
the error x̃ is not null (for example outside workspace desired position)
causing chattering in the joint velocities. Furthermore the threshold d of
the close-singular region is fixed and therefore it results very conservative.

• Caccavale: it does not present a general way for setting the threshold d
and the maximum value of lambda λM but it requires heuristics.

• Baerlocher: it allows to set a maximum boundary (bmax) for the joint
velocities norm that is always respected. Anyway it presents a crucial
factor that drastically influences its performance: it is the threshold d. In
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Figure 4.12: Sugihara’s algorithm: (a),(b) joint velocities; (c) joint ve-
locities norm; (d) end-effector position error norm.

fact if d is too high, regardless of the cause, the damping factor is activated
too early even if it is not necessary, causing an increasing tracking error.
As consequence it is possible to have not null error and an user that
thinks to properly manage a singularity setting a high threshold, can
have bad results. Furthermore there is a link between the CLIK gain and
the algorithm performances that has to be taken into consideration.

• Iterative Baerlocher: its performance is linked to the iterations number
and the gain α. Good parameters for a specific configuration could not be
suitable for another one (as shown in tests). Furthermore the iterations
number increment the computational load and this can create delay on
the control loop frequency depending on the hardware.

• Sugihara: its limit is represented by the constant presence of the bias
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values causing a continuous damping. This issue can be solved increas-
ing the gain K. Anyway the impossibility to set a maximum boundary
(bmax) makes very easy to violate the joint velocities limits (that present
saturations and therefore don’t respect the desired velocities increasing
the tracking error).

• Deo and Walker: it is able to fill the bmax independently on any measure
of singularity-closeness and therefore to manage the singularity only if
the error approaches zero otherwise it provides velocities characterized
by chattering.

Furthermore all these algorithms present a common negative constraint: they
are based on the joint velocities norm. Instead, especially for anthropomor-
phous manipulators, the real constraint is on velocity of the single joints be-
cause they present different velocity limits, in general lower velocities to the
shoulder joints and higher velocities to the wrist ones are allowed.

Let us recall here the metrics previously defined: I chattering absence; II high
tracking precision; III exact joint velocity saturation; IV trajectory indepen-
dence. Then, considerations on all algorithms can be drawn:

Case I II III IV
Maciejewski 1 No No No -
Maciejewski 2 Yes No No -
Deo and Walker 1 No Yes Yes -
Deo and Walker 2 Yes Yes Yes -
Baerlocher 1 Yes No No -
Baerlocher 2 Yes No No -
Iter. Baerlocher 1 Yes Yes Yes No
Iter. Baerlocher 2 Yes Yes Yes No
Sugihara 1 Yes No No -
Sugihara 2 Yes No No -

Table 4.1: Table summarizing the algorithms’ performances

The trajectory independence has been verified only for the Iterative Baer-
locher’s algorithm because it has been the only one to satisfy the metrics I,
II and III.
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4.3 Assistive Control Framework for ROVs

ROV guidance and coordination requires a very high-experienced human op-
erator, and a concentration level that grows depending on the environmental
conditions, e.g., visibility and ocean currents [26]. On average, in case of bad
work conditions, an operator is able to drive the system for 30 minutes at most.
Contrarily, in case of good operative conditions, he can work without pauses
for one hour and half. Thus, the presence of automatism, e.g., station-keeping,
auto-heading, way-point navigation and auto-depth, that helps the operator
in performing some tasks, can improve the mission performances. Furthermore
control tasks as obstacle avoidance and auto-altitude can ensure to avoid vehicle
collisions even when, in case of bad operative conditions, the human operator
could fail.

On the basis of real needs that arose from a survey realized with different
professional ROV pilots, an assistive control framework has been developed. In
particular, the survey results remarked the following situations:

1) Unbalanced vehicle. In several ROV designs, the vehicle is under actuated
leaving roll and pitch to be stabilized by a proper weight distribution. However,
moving masses such as manipulators or a wrong payload positioning may cause
the vehicle to exhibit non-null roll and/or pitch at steady state. For example,
this is what has happened within the framework of the H2020 European Project
DexROV [29] where an existing under actuated vehicle has been customized,
and the presence of two manipulators and of the perception system has caused
the system to operate with a non-null pitch angle depending on the arm config-
uration. In such a case, in order to perform a movement along the earth-fixed
frame surge direction (the green dashed line in Fig. 4.13), the operator, hav-
ing control of the body-fixed variables, naturally follows a saw tooth shaped
path (the red dashed line in Fig. 4.13) by alternating velocity commands to
the horizontal and vertical thrusters respectively. In this sense, a control task
allowing the operator to send velocity commands along the effective desired
direction might improve the mission efficiency. Even when the vehicle is fully
actuated, it might be appropriate to leave the roll and pitch angles not actuated
to save energy during long missions. In such a case, the situation is analogous
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ΣB
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Figure 4.13: Vehicle with non-null pitch angle: the green dashed line
represents the desired path; the red dashed one is the path followed by an
operator acting on the body-fixed variables.

to the above and this feature might help the operator. Moreover, the possibility
to enable/disable the control task according to the operator needs during the
mission is required.

2) Altitude/depth control. Controlling depth and altitude is intrinsically a con-
flicting requirement. The operator is often required to travel at constant depth
(orange dashed line in Fig. 4.14), however, for safety reasons a minimum alti-
tude needs to be maintained. Auto-depth is an existing control feature in most
of the vehicles, however, the operator needs to keep track of the current alti-
tude to avoid of impacting the sea bottom. A required feature is an automatic
switching between auto-depth and auto-altitude without human intervention.

ΣB

I

Figure 4.14: The green dashed line is the path followed through an auto-
altitude task; the orange dashed one is the path followed through an auto-
depth task. Operators might be helped by an automatic switching between
the two tasks.

The need for this feature is emphasized also by considering again the unbalanced
vehicle case.

3) Reference Frames. Depending on the specific operation to perform, it could
be very helpful for the operator to have the possibility to choose to command
the ROV in inertial frame or in the body-fixed frame, e.g., for intervention
operation as manoeuvring valves of a panel (see Fig. 4.15).
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Figure 4.15: Reference frames: possibility for the operator to provide
commands in inertial or body-fixed frame depending on the manoeuvring
in front of the panel.

4.3.1 Implemented tasks

With the aim to support the operator in guiding and manoeuvring underwa-
ter vehicles, different tasks σi have been implemented with the corresponding
Jacobians J i ∈ Rm×6. In detail, tasks are divided into equality-based and
set-based, respectively. Starting from the equality-based ones there are:

• vehicle position (m = 3). It consists in the control of vehicle position. Thus
the task is defined as σi = η1 ∈ R3 and the relative Jacobian is J i = Jpos ∈
R3×6 where

Jpos =
[
RB

0 03×3
]
. (4.24)

• vehicle orientation (m = 3). The vehicle orientation control is expressed
by σi = η2 ∈ R3 with the Jacobian defined as J i = Jori ∈ R3×6 where

Jori =
[
03×3 Jo

]
. (4.25)

• vehicle pose (m = 6). This task allows to control the entire vehicle configu-
ration merging the previous two tasks. Therefore it is defined as σi = η ∈ R6

with

J i =
[
JT
pos JT

ori

]T
∈ R6×6 . (4.26)
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• vehicle attitude (m = 2). It consists in the control of two components of
orientation, in detail the roll and pitch ones. Thus σi = [φ θ]T ∈ R2 with the
Jacobian J i defined as the first two rows of the Jori matrix. It results very
useful if the operator needs to work with specific values of roll and pitch angles
or in case the ROV is not well balanced.

• vehicle relative field of view (m = 1). This task allows to direct the
vehicle towards a desired target pO, e.g., a panel on the seabed. Thus if the
human operator knows the target position a priori, he can activate this task
without manually manoeuvring the vehicle. From the control perspective, it
is not necessary to control all orientation DOFs but only the desired outgoing
vector [53]. In detail, the task function is defined as σi = σFoV with

σFoV = π/2− arccos
(
rEk /||rE ||

)
, (4.27)

where rE = RB
0

(
η1−pO

)
∈ R3 and rEk is the k-th component of rE correspond-

ing to the desired outgoing vector. The relative Jacobian is J i = JFoV ∈ R1×6

with

JFoV =
eT
k√

||rE ||2 − |rEk |2
[
P⊥r R

B
0 S(rE)

]
J , (4.28)

where P⊥r = I3−rE
(
rE
)T
/||rE ||2 ∈ R3×3, S(rE) is the skew-symmetric matrix

and ek is the k-th unit vector of the canonical base spanning R3.

• vehicle heading (m = 2). This task, contrarily to the vehicle attitude,
controls the pitch and yaw components allowing to maintain the ROV along
a desired straight trajectory. It is defined as σi = [θ ψ]T ∈ R2 and the
corresponding Jacobian J i is defined as the last two rows of the Jori matrix.

• vehicle depth (m = 1). Most of underwater vehicles is equipped with depth
sensors. Indeed they are pressure-based and therefore they are more reliable
than altitude ones that are instead based on acoustic systems. Thus a control
on ROV depth is implemented giving the possibility to the operator to set a
determined depth value. In detail, this task is defined as σi = z and its Jacobian
J i corresponds to the third row of the Jpos matrix.

The set-based tasks, on the other side, are the following:
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• vehicle roll, pitch and yaw limit, respectively (m = 1). ROVs generally
have small variance ranges for roll and pitch components. This is essentially
due to hardware that presents physical limits for the orientation. Contrarily,
the yaw component can present a large variance range or also it can have no
limits. Indeed, the only constraint is represented by the presence of the tether.
The limits can be set directly by the operator. The tasks and relative Jacobians
are defined as the first, the second and the third row of the η2 vector and Jori
matrix respectively.

• vehicle altitude limit (m = 1). The following task allows to set a minimum
altitude value from seabed and eventual objects preventing possible damages
to the vehicle. It is defined as σi = z with the corresponding Jacobian J i equal
to the third row of Jpos matrix.

• obstacle avoidance (m = 1). The obstacle avoidance ensures of avoiding
eventual obstacles along the trajectory without the operator intervention who
has just to set the safety distance. This task can be implemented controlling
the ROV distance from the obstacle position pob ∈ R3. In detail, it is defined
as

σi =
√

(pob − η1)T(pob − η1) ∈ R1 (4.29)

with the corresponding Jacobian

J i = −(pob − η1)T
||pob − η1||

Jpos ∈ R1×6 . (4.30)

All described tasks are dynamically combined through the priority hierarchy
resorting to the set-based task-priority inverse kinematics control.

4.3.2 Control Framework Architecture

The assistive control framework, shown in Fig. 4.16, has been developed inside
the well-known Robot Operating System (ROS). Thus, the implemented soft-
ware is structured in a graph architecture where processes are able to communi-
cate among them like nodes of the same network. In particular, the framework
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architecture is divided into two main blocks: the command station and the
vehicle simulator.

The Command Station is represented by the graphical user interface that allows
the operator to send commands by joystick and to enable/disable the different
tasks. It is worth noticing that the task enabling/disabling is different from the
set-based task activation/deactivation. Indeed, when a task is enabled/disabled
by the operator it is added/removed to/from the control task hierarchy. On
the other side, the task activation/deactivation, as described in section 4.1, is a
crucial step of the set-based control algorithm, and therefore it is not managed
by the operator.

The Vehicle Simulator block, developed in Gazebo environment, consists of the
implemented high and low level controllers, and the vehicle kinematic/dynamic
model.

Operator

COMMAND STATION

User
Interface

Assistive
Control

Low Level
Control

VEHICLE SIMULATOR

Figure 4.16: Assistive control framework architecture.

The simulations described in the following section have been performed using
the Gazebo 3D simulator for the visualization of the ROV motion and the
simulation of the needed sensors, while ROS has been used for interfacing it
with the control algorithm and the graphical user interface. The Girona 500
CAD model has been used, and it has been equipped with a number of sensors
provided by Gazebo:

• Frontal laser scanner: a standard planar laser-scanner pointing toward
the body-frame x axis of the ROV used for simulating the detection of
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potential obstacles that the ROV could encounter during the motion. The
obstacles positions are then exploited in the obstacle avoidance task.

• Bottom laser scanner: a laser scanner pointing toward the body-fixed
z axis exploited for computing the distance from the seabed. This mea-
surement is then rotated in inertial frame and used in the auto-altitude
task.

• Depth-meter: a simple software node simulating a depth-meter that
computes the distance between the ROV and the surface, and that is
used to perform the auto-depth task.

• Cameras: a front and a rear camera streaming the images on the graph-
ical user interface.

The ROV position and orientation are taken directly from the Gazebo ROS
topics, and they are exploited for the position/orientation task, the field of
view task and the roll/pitch limit tasks. Figure 4.17 shows a screenshot of the
ROV in the simulator where the frontal and bottom laser scanner are visible.

The motion controller has been developed as two nested control loops: the As-
sistive Control is kinematic and it implements the STPIK algorithm described
in section 4.1 giving as output the reference vehicle velocities that fulfill all
the tasks, while the Low Level Control computes the torque commands for the
motors. The latter has been developed as two interchangeable Gazebo plugins,
one kinematic and one dynamic. The kinematic one instantaneously applies
the desired velocity coming from the Assistive Control to the ROV in the sim-
ulator. It is useful to debug the high-level kinematic control. The dynamic
low-level controller is implemented as a standard PID that simulates a second
order dynamics on the ROV velocity, making the simulation more realistic.

Figure 4.18 shows the graphical interface that has been developed exploiting Qt,
which is a cross-platform application framework used for application software
development. The control panel is divided into two sub-block to increase the
readability. In detail, the interface displays the two videos taken from the cam-
eras on-board the vehicle and some important telemetry data, such as altitude,
depth and number of left/right spins of the ROV. Furthermore the operator can
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erator

Figure 4.17: Simulation scene: frontal laser scanner along body-fixed
frame x axis; bottom laser scanner along the body-fixed frame z axis.

enable/disable a series of tasks: obstacle avoidance (SB), auto-attitude (EB),
auto-heading (EB), field of view (EB), auto-altitude (EB or SB), and auto-
depth (EB), where EB and SB mean Equality-Based and Set-Based, respec-
tively. For the auto-depth (EB) and the auto-altitude (EB) the operator can
set the relative desired value; instead, for the auto-altitude (SB) he can set
the minimum altitude from the seabed which represents the safety distance to
prevent damages. It is worth noticing that the task enabling/disabling corre-
sponds to add/remove it to the task hierarchy of the inverse kinematics control
changing also the relative priorities. Indeed, the dynamic priority change is
managed by the high level controller. The interface gives the operator also the
possibility to switch between the inertial and body-frame, for the reasons ex-
plained above regarding the command reference frames. Within the objective
to help the operator as much as possible, he has the further option to switch
only the yaw components between the inertial and body-frame. Finally, the in-
terface presents other two options for the roll and pitch components that allow
to set the orientation convention clockwise or counter-clockwise.

4.3.3 ROVs Assistive Framework Simulations

A generic survey mission has been taken into account as simulation case study.
In particular, an underwater environment with a non uniform seabed has been
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erator

Figure 4.18: Graphical interface: vision panel (two cameras), control
panel (divided into two sub-blocks to increase the readability).

rendered adding the presence of a panel.

The validation is made by an operator that drives the vehicle, enabling/disabling
the tasks from the graphical interface as explained in the following. In particu-
lar, the control framework reduce the complexity of the operation, allowing the
operator to focus only on the operational tasks while the safety-related ones
are autonomously handled by the system.

The implemented task values and errors have been plotted in real-time during
the simulation. In particular, the equality-based task errors and the set-based
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task values with the corresponding activation thresholds (black lines) are shown
in Fig. 4.19, 4.20 and Fig. 4.21, respectively, where the green and pink plot
backgrounds represent the enabled and disabled states of the corresponding
task.

erator
Figure 4.19: Task error plots: attitude (m = 2), heading (m = 2) and
field of view (m = 1). The green and pink background represents the
enabled and disabled state, respectively, of the corresponding task.

In detail, aiming at testing the entire control framework, all tasks have been
enabled/disabled approaching the vehicle to the panel. First of all, a series of
rotations have been performed keeping still the vehicle to verify the roll and
pitch limits respect (σa,l = −π/4, σa,u = π/4 for both ones). This can be
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observed during the first 50 seconds in the third and fourth plot in Fig. 4.21.
Then the attitude task has been enabled just to set roll and pitch angles to zero
(see first plot in Fig. 4.19). With the aim of directing the camera (and therefore
also the vehicle) toward the panel, the field of view task has been enabled, as
observable in the third plot in Fig. 4.19 in the green range where the error
goes to zero. Furthermore, since both the attitude and field of view tasks are
fulfilled controlling the angular components their simultaneous enabling does
not make sense for guiding the vehicle. This is implemented in the graphical
interface in such a way that enabling one implies disabling the other one. At
the same time also the obstacle avoidance has been enabled. It becomes active
as soon as the vehicle is close to the panel (σa,l = 2m). Then the altitude
task has been enabled setting the desired value σi,d = 2m as noticeable from
the null error in the first plot in Fig. 4.20. Thus the depth task has been
enabled with σi,d = 100m. Altitude and depth tasks act on the same work
space component and therefore, for the same reasons mentioned above, they
can not be enabled simultaneously. Then the set-based altitude task has been
enabled setting σa,l = 5m. In particular, as it is noticeable in the second
plot in Fig. 4.21, there are values under the lower threshold. This is due to
the intentional decision to move the ROV over the panel, causing a temporary
violation of the minimum altitude. Finally the heading task has been enabled
to control the pitch and yaw angles, as shown in the second plot in Fig. 4.19. It
is worth noticing that spikes present in position and orientation errors, shown
in Fig. 4.20 (third and fourth plot), are due to the operator inputs. Indeed
he sends position commands that are constant increments with respect to the
current ROV pose.

Another aspect taken into consideration during the simulation is the number
of twistings. Indeed, within the assumption to have the tether and reading
the corresponding values from the graphical interface, the number of clockwise
spins has been compensated by the number of counter clockwise ones to prevent
twistings.

A video of the simulation with the implemented GUI and the rendered under-
water environment is available online at https://youtu.be/yPIaYOFRmwE.

https://youtu.be/yPIaYOFRmwE


4.3. Assistive Control Framework for ROVs 97

erator

Figure 4.20: Task error plots: altitude (m = 1), depth (m = 1), position
(m = 3) and orientation (m = 3). The green and pink background rep-
resents the enabled and disabled state, respectively, of the corresponding
task.

4.3.4 Conclusions

The proposed framework is focused in giving support to a human operator
in guiding and manoeuvring a ROV. All the implemented functionalities have
been specifically chosen to address real needs that arose after interviews with
professional ROV pilots. Simulation results including different task hierarchies
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erator

Figure 4.21: Task value plots: obstacle avoidance, auto-altitude, pitch
limit and roll limit. The green and pink background represents the enabled
and disabled state, respectively, and the black lines are the upper/lower
activation thresholds of the corresponding set-based task.

suitable for several kind of operations have been shown, proving the STPIK al-
gorithm effectiveness as well. Future works will be focused on the experimental
implementation of the designed control framework.
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4.4 The DexROV project

DexROV is an EC (European Commission) Horizon 2020 funded project [2]
that aims to develop a system able to perform underwater operations using a
novel paradigm that allows the far distance teleoperation of a ROV (Remotely
Operated Vehicle) via a satellite communication. This would lead to the us-
age of a smaller and cheaper support vessel, since a part of the crew would
be located in an onshore control center. Satellite communications introduce a
non-negligible delay that has to be properly handled by the system in order
to effectively perform the needed operations. The latency mitigation strategy
includes a simulation environment and a cognitive engine. The operator inter-
acts with the ROV in the simulation environment that receives 3D data from
the perception system, performing the desired movements with a force-feedback
exoskeleton without taking into account time latencies and instructing a cog-
nitive engine that generates motion and manipulation primitives to be sent to
the real ROV. Figure 4.22 represents the project’s concept.

Figure 4.22: DexROV project concept.

The perception system performs 3D data acquisition through a stereo camera,
doing processing of the needed information and sending them to the control
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center in real-time [15]. Furthermore the ROV is equipped with an AHRS
(Attitude and Heading reference System), a DVL (Doppler velocity log) and
a USBL (ultra-short baseline) that are concurrently used for its accurate pose
estimation [59]. The cognitive engine is split in two parts: on the onshore
side it recognizes the actions that the operator wants to perform learning from
demonstrations; on the offshore side it reconstructs the motion primitive despite
of the non homogeneous communication latency. This is achieved by exploiting
a task parametrized Gaussian Mixture Model that adapts the reference end-
effector trajectory to the dynamic environment in which the ROV operates
[18].

4.4.1 Vehicle-Manipulator System

The DexROV vehicle-manipulator system is composed by a commercial medium-
class 4 DOFs (x, y, z, yaw) ROV, the Sub-Atlantic Apache 2500, and a custom
skid mounted on the lower part carrying on the vision system and two arms,
a 6 DOFs manipulator and a 3 DOFs clamping arm, as shown in Fig 4.23. In

Figure 4.23: The DexROV system on board the Janus II vessel.

particular, the clamping arm allows to perform operations that require more
strength such as Oil&Gas industry related tasks. However, a structure to
clamp at is necessary. In the specific case, aimed at testing the system ma-
nipulation capabilities, a mock-up panel has been designed and built, shown in



4.4. The DexROV project 101

Fig. 4.24, including a set of standard ISO interfaces such as valves and connec-
tors commonly used in the Oil&Gas industry.

Figure 4.24: Mock-up panel designed for the trials on the left; flat valves
detail on the right.

4.4.2 Control Architecture

The overall control architecture is shown in Fig. 4.25. As noticeable, it is
composed by three nested loops:

• admittance filter. It is the outer loop designed to handle the interaction
between the end-effector and the panel as well as unexpected collisions
caused by eventual errors in the valve pose estimation or by external dis-
turbance such as the ocean current. It takes as input the requested tra-
jectory preq from the cognitive engine and the force/torque measurements
coming from the wrench sensor placed on the wrist of the manipulator.
Then, it computes the desired trajectory pdes for the set-based inverse
kinematics algorithm. In particular, pdes is computed in order to make
the manipulator compliant with respect to the external forces.

• set-based inverse kinematics algorithm. Taking as input the desired trajec-
tory, it computes the reference velocities ζdes for the vehicle-manipulator
system performing simultaneously safety related tasks as well.

• vehicle-arm dynamic controller. It applies the forces/moments and joint
torques necessary to make the system follow the input reference velocities.
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Figure 4.25: Implemented control architecture.

4.4.3 Implemented Control Tasks

Aimed at guaranteeing the DexROV system safety, the following set-based tasks
have been implemented:

• Joint Limits. Such a task can be expressed by the following inequality
for each one of the joints:

qi,m ≤ qi ≤ qi,M , (4.31)

where qm and qM are the minimum and the maximum position that the
joint will reach. The task Jacobian is a row vector filled with zeros and a
1 only at the i−th position:

J jl,i =

[
0 . . . 1︸︷︷︸

i

. . . 0
]
∈ R1×n . (4.32)

• Arm Manipulability. It consists of keeping the manipulator far from
singular configurations that would have undesirable effects on the joint
velocity computation. The control objective can be expressed as:

w ≥ wm (4.33)

where w is the measure of manipulability defined as [76]:

w =

√
det(JarmJ

T
arm) , (4.34)
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where

Jarm =

[
Jpos,arm

Jori,arm

]
(4.35)

is the matrix stacking the arm position and orientation Jacobian matrices.
The manipulability task Jacobian Jw is computed numerically following
the procedure outlined in [49].

• Virtual Wall. This task makes the end-effector stay always above a
minimum distance from a virtual plane has been implemented, in order
to avoid collisions between the arm and the vehicle itself. The constraint
can be expressed as:

d ≥ dm (4.36)

where dm is the desired minimum distance between the end-effector and
the plane and:

d = n̂T(pe − p1) , (4.37)

where pe is the end-effector position and n̂ is the outer normal unit vector
from the plane computed as:

n̂ =
(p2 − p1)× (p3 − p1)
||(p2 − p1)× (p3 − p1)||

(4.38)

and p1, p2 and p3 are three points belonging to the plane. The task
Jacobian is computed as:

Jvp = −n̂TJ0
pos,arm , (4.39)

where Jpos is the position Jacobian matrix.

The task priority order has been assigned taking into consideration the following
three categories with decreasing priority [22]:

1. Safety tasks: tasks such as mechanical joint limits and virtual walls are
necessary to assure the safety of the system, thus the highest priority level
needs to be assigned to them;

2. Operational tasks: the end-effector pose and configuration tasks are
necessary to perform the desired operation and they have to be executed
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in the null space of the safety tasks;

3. Optimization tasks: the manipulability task can be seen as an opti-
mization one, in which the objective is to maximize the manipulability
measure while performing all the higher-priority tasks. Nevertheless, it
can be used as a safety task as well, setting a minimum threshold that
the system does not have to exceed during the movement.

4.4.4 Admittance Control

An admittance control node has been implemented in order to make the sys-
tem compliant with respect to undesired external forces. Indeed unexpected
collisions could easily damage the panel or the arm itself, given the dimension
and the weight of the vehicle.

More in detail, the admittance control allows to design a specific dynamic
behaviour of the system in case of contact with the environment by setting three
parameters representing the inertiaKm, the dampingKd and the stiffnessKk

of a virtual mass-spring-damper mechanical system. The software control node
takes as input the requested position/quaternion xr, linear/angular velocity ẋr
and linear/angular acceleration ẍr for the end-effector coming from the proxy
cognitive engine and the measurements of the force/torque sensor and gives
as output a new desired trajectory (xd, ẋd, ẍd) that complies with the desired
mechanical impedance.

The acceleration output by the admittance filter is:

ẍd = K−1m
[
Kkx̃+Kd

˙̃x+Kmẍr + h0
ext,sel

]
, (4.40)

where x̃ = xr − x ∈ R6 is the vector stacking the position and the quaternion
error, ˙̃x = ẋr − ẋ ∈ R6 is the vector stacking the linear and angular velocity
error and h0

ext ∈ R6 is defined as:

h0
ext,sel = Kfh

0
ext , (4.41)
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where h0
ext are the measured external forces and torques expressed in the arm

base frame, and Kf is a selection diagonal matrix of 0 and 1 that is used to
decide whether or not the system has to be compliant in a certain direction.
The desired linear/angular velocity ẋd and position/quaternion xd are then
computed by numerical integration of the acceleration.

4.4.5 First Experimental Campaign

A first experimental campaign has been conducted in June 2017 with the on-
shore control center located in Brussels (Belgium) and the offshore operations
performed in Marseilles (France).

Several tests have been executed with the system in different configurations,
accepting the end-effector trajectories by different means, i.e., by local code
or joystick, by remote code or joystick and finally by remote exoskeleton. In
the remote configuration, the trajectory is generated in Brussels (Belgium)
and then transmitted via satellite communications to the vessel in Marseilles
(France) and then through the umbilical to the vehicle. In particular, regarding
the satellite communication, the nominal data bandwidth for the uplink from
the vessel was 768 Kb/s and the downlink to the vessel was 256 Kb/s, with a
nominal round-trip delay of 620 ms [78].

In the following two experiments are reported:

• Experiment 1. A position and orientation task is performed taking into
account a singular configuration;

• Experiment 2. A position and orientation task is performed fulfilling joint
limits.

Position and orientation, singular configuration

In the first test the end-effector position and orientation task is given. The
desired trajectory is a simple circle on the y-z plane in the arm base frame at a
constant velocity, while keeping the orientation at a constant value. It is worth
noticing that the manipulator intentionally reaches a singular configuration
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Figure 4.26: First experiment - position and orientation control: mini-
mum singular value of J over time. The arm intentionally reaches a singular
configuration during the trajectory.

during the trajectory, as the minimum singular value reaches very small values.
Figure 4.26 shows the minimum singular value of the J matrix over time.

Figures 4.27 and 4.28 show the position and orientation error together with
the joint positions during the experiment. The DLS pseudoinverse prevents the
chattering phenomenon on the joint velocities, generating a higher error on the
orientation while the position error remains sufficiently low during the whole
trajectory.

Mechanical joint limits

In the second experiment the system is asked to follow the same circular tra-
jectory without controlling the orientation while keeping the fifth joint below a
certain threshold. The prioritized task hierarchy imposed is:

1. Joint 5 maximum threshold

2. End-effector position
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Figure 4.27: First experiment - position and orientation control: position
and orientation error over time; the position error is kept low during the
entire trajectory, while the orientation error grows for the effect of the joint
velocities damping.
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Figure 4.28: First experiment - position and orientation control: joint
positions over time.
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Figure 4.29: Second experiment - 5th joint mechanical limit and position
control: joint positions and upper threshold on the fifth joint (in red). The
fifth joint position remains always below the chosen threshold.

Figures 4.29 and 4.30 show the position error and the joint values during the
experiment. The set-based inverse kinematics algorithm makes the joint posi-
tion stay below the chosen threshold (in red), while the trajectory is followed
with a low position error.

Then another joint limit has been added as control objective, giving the follow-
ing hierarchy:

1. Joint 3 maximum threshold

2. Joint 5 minimum threshold

3. End-effector position

Figure 4.31 shows the joint positions during the experiment, while Fig. 4.32
shows the position error. It is worth noticing that the third joint starting
position is above the chosen maximum threshold, but the control algorithm
quickly bring its value to the imposed limit. From that point, both the joint
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Figure 4.30: Second experiment - 5th joint mechanical limit and position
control: position error over time.

limits are satisfied during the entire trajectory. The position error grows with
respect to the other experiment because the combination of the third and fifth
joint mechanical limits, being at a higher priority level with respect to the
position task, reduces the end-effector operational workspace.

4.4.6 Second Experimental Campaign

A second experimental campaign has been conducted in June 2018. As for the
first campaign, the onshore control center was located in Brussels (Belgium)
and the offshore operations has been performed in Marseilles (France) at a
30m depth. The experiments have involved the entire DexROV pipeline in a
“turn the valve” operation: on the onshore side the operator has performed the
valve turning with the exoskeleton in the virtual reality environment, monitored
by the cognitive engine. On the offshore side the proxy cognitive engine has
generated the reference trajectory for the end-effector [38], while the vision
system was in charge of the valve poses estimation.
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Figure 4.31: Second experiment - 3rd and 5th joints mechanical limit
and position control: joint positions and minimum/maximum thresholds
(in red).
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From the admittance filter perspective, the “turn the valve” operation can be
divided into two phases: the “approach” and “rotating” phase, respectively.
During the “approach” phase the selection matrix Kf , defined in Eq. (4.41), is
set as the identity matrix, making the system compliant in all the directions and
angles. When the operation state switches to the “rotating” phase, the proxy
cognitive engine automatically triggers a signal to the admittance controller.
Then, the last element on the diagonal of the selection matrix is changed to
0, making the system stiff on the z angle and, therefore, allowing the valve
rotation while remaining compliant on the other directions.

The task hierarchy implemented for the trials was composed by 7 tasks:

1. set-based: joint limits for each actuator (6 tasks 1-dimensional each)

2. equality-based: end-effector configuration, (1 task 6-dimensional)

The joint limits have been chosen in order to match their actual mechanical
limits and to avoid collisions with the cameras and the buoyancy foam placed
between the two arms. It is worth noticing that, due to the fixed-based con-
figuration and the 6DOF arm structure, other equality-based tasks cannot be
achieved. Furthermore, due to the hard timing constraints during the opera-
tions at sea, it was not possible to carefully design virtual walls as additional
set-based tasks. However, these constraints have been taken into account by
properly designing more restrictive joint limits.

The manipulability task, even if implemented, has not been taken into account
since, during the “turn the valve” operation, the system is forced to operate in
configurations close to singularity due to the 6 DOFs kinematic structure and
the space constraints induced by the buoyancy foam. Thus, in such situation
the manipulability task would be active for most of the time preventing the
operation accomplishment.

In the following, the results of two experiments are shown:

• Experiment 1. A “turn the valve” operation, in which the vision sys-
tem estimated almost perfectly the valve poses, preventing any undesired
interaction with the panel, has been performed;
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• Experiment 2. A “turn the valve” operation has been performed, how-
ever, differently form the previous test, the visibility of the scene was not
perfect, generating a wrong valve pose estimation and, therefore, causing
unexpected collisions.

Turn the valve operation without unexpected collisions

In the first experiment a “turn the valve” operation has been performed in the
condition that the vision system almost perfectly estimated the valve position.
Indeed, as observable from Fig. 4.33, the force and torque measured by the
wrench sensor are both very low. Then, it means that the admittance filter has
no effects on the requested trajectory (see Fig. 4.34).

More in detail, the entire operation is split into four steps:

• step1 - The end-effector reaches a pre-grasp configuration aligned with
the valve at around t = 60 s.

• step2 - At t = 90 s the “rotating” phase starts, turning the valve 90

degrees clockwise.

• step3 - After turning 90 degrees clockwise, the same amount is performed
anti-clockwise.

• step4 - The end-effector disengages the valve and reaches a rest position.

During these steps the set inverse kinematics controller in addition to the end-
effector configuration task (see Fig. 4.35, and Fig. 4.36), fulfills the constraints
on all the six joints, as shown in Fig. 4.37.

A video of this experiment taken on board the support vessel is available online
at https://youtu.be/6vU6qcOmTKM.

Turn the valve operation with unexpected collisions

In the second experiment a “turn the valve” operation has been performed again.
However, differently from the previous experiment, a wrong estimation of the
valve panel by the vision system due to poor scene visibility has been taken into

https://youtu.be/6vU6qcOmTKM
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Figure 4.33: Turn valve without unexpected collisions: a) measured force;
b) measured torque.
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Figure 4.34: Turn valve without unexpected collisions: a) requested
(blue) and desired (red) x, y and z coordinates; b) requested (blue) and
desired (red) roll, pitch and yaw angles.
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Figure 4.35: Turn valve without unexpected collisions: a) desired (blue)
and actual (red) x, y and z coordinates; b) desired (blue) and actual (red)
roll, pitch and yaw angles.
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Figure 4.36: Turn valve without unexpected collisions: a) position error
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consideration. Indeed, as shown in Fig. 4.38.a, at t = 240s the end-effector hits
unexpectedly the panel reaching a sensed force of 12N and torque of 1.5Nm.
Nevertheless, the admittance filter successfully handles the unexpected collision
modifying the requested trajectory (see Fig. 4.39).

The desired trajectory and the actual end-effector trajectory are reported in
Fig. 4.40, while the position and orientation errors are reported in Fig. 4.41. As
in the previous experiments the mission is divided in four steps. Thus, the end-
effector has first to approach the target valve and to turn it 90 degrees clockwise
and then again by the same value anticlockwise going finally to the rest position.
During these steps the joint limits are fulfilled as shown in Fig. 4.42.

4.4.7 Conclusions

The DexROV project is another proof of the effectiveness of the Set-based Task-
Priority Inverse Kinematics (STPIK) algorithm. Indeed, it has been success-
fully applied to the DexROV vehicle-manipulator system to perform a “turn
the valve” operation, composing the task hierarchy with several safety-tasks
in addition to the end-effector configuration. Furthermore, it has been also
combined with an admittance control within the aim to manage unexpected
collisions between the end-effector and the mock-up panel.
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Figure 4.38: Turn valve with unexpected collisions: a) measured force;
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Figure 4.39: Turn valve with unexpected collisions: c) requested (blue)
and desired (red) x, y and z coordinates; d) requested (blue) and desired
(red) roll, pitch and yaw angles.
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Figure 4.40: Turn valve with unexpected collisions: a) desired (blue) and
actual (red) x, y and z coordinates; b) desired (blue) and actual (red) roll,
pitch and yaw angles.
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Chapter 5

Motion Planner

5.1 Set-Based Task Constrained Motion Planning

In this thesis work a method based on merging a global planner and a local
one is proposed. In detail, the global planner is structured into two steps. The
first step is represented by the motion planner. It is a sampling-based algorithm
which samples directly in the more intuitive and low dimension Cartesian space
taking into account only the obstacle constraints. In this way the constraint
representation is simpler and the search-space dimension is lower. The second
step is represented by the simulation of the motion controller tracking the can-
didate trajectory from the motion planner. This action allows us to verify if
the controller is able to track the generated reference trajectory fulfilling not
only the task trajectory as in [56], [19] but also all the other equality/set-based
task constraints and, in general, exploiting the redundancy. Indeed, the kine-
matic controller used in the global and local planner is the same. In this way,
the real-time trajectory tracking by the local controller is guaranteed in case of
static and perfectly known environment. Furthermore, during the movement
the global planner is performed in background such that it can optimize the
path or re-plan if a change in the environment occurs. The combination of
these two planners allows us to take advantage from both ones. Indeed, the lo-
cal minimum problem typical of local methods is overcome thanks to the global
motion planner. On the other hand, the presence of a reactive local planner
guarantees the task constraints are fulfilled while re-planning in real-time. In
particular, as shown in the presented experiments, the proposed method allows
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the system to run in real time with a realistic end-effector trajectory speed for
a daily life scenario, with no need of specific circuitry.

5.1.1 Overall Control Algorithm Architecture

The control algorithm architecture is represented by the combination of a global
and local planner, respectively, as shown in Fig. 5.1.

PlannerPlanner

LocalGlobal

Perception environment
knowledge
a priori

ηee,d r(t) ζd η, q

Figure 5.1: Overall control algorithm architecture. Given a desired 3D
target ηee,d, the Global Planner outputs a new trajectory r(t) fulfilling all
tasks constraints each time a path optimization or a mismatch between the
a-priori knowledge and the information by the perception module is found
(therefore it is not synchronous with the control architecture). Then the
Local Planner computes the reference velocity ζd for the system.

In particular, the global planner receives a 3D space desired target ηee,d as
input. Then, it has to find a feasible trajectory r(t) from the initial point to
the desired one fulfilling both the Cartesian and joint-space task constraints.
The local planner receives r(t) as input and computes the system reference
velocity ζd to make the system follow the desired trajectory while guaranteeing
the constraints fulfillment.

Furthermore, during the system movement, the global planner runs in back-
ground taking into account the sensors feedback and continuously trying to
optimize the path. Therefore, a new trajectory is sent to the local planner each
time a path optimization is found or a re-planning is necessary because of mis-
match between the a-priori information and the one acquired by the perception
module, meaning that the global planner adapts to environment changes, e.g.,
obstacles and human presence.



5.1. Set-Based Task Constrained Motion Planning 127

It is worth noticing that the proposed architecture is modular and it can be
easily applied to any robotic system.

5.1.2 Local planner

The local planner takes the output trajectory from the global one and it gener-
ates the reference system velocity taking into account several task constraints,
e.g., obstacle avoidance, joint limits and virtual walls. In particular, it is repre-
sented by the Set-Based Task-Priority Inverse Kinematics (STPIK) algorithm,
well described in Section 4.1. Therefore, taking into consideration a generic
robotic system with n DOFs, there are several tasks that can be controlled in
addition to its pose, e.g., the safety related tasks. Furthermore, several different
task hierarchies can be composed according to the mission to perform.

5.1.3 Global planner

The global planner receives the 3D space desired pose ηee,d as input and it
computes a feasible trajectory r(t) satisfying all task constraints as output.
More in detail, it is structured in two steps: the motion planner and the IK-
check (inverse kinematics check) step, respectively (see Fig. 5.2).

The motion planner is a sampling-based algorithm which samples directly in
the Cartesian space. Thus, the constraint representation is simplified and the
computational load is much lower. In particular, the Rapidly-exploring Ran-
dom Tree (RRT) Connect [43], based on building two trees from the start ηee,0
and goal point ηee,d, respectively, is used in this work. Nevertheless, other
planning algorithms could be used. The motion planner performs taking into
consideration the a-priori knowledge of the environment configuration and the
information from the perception module. When a path spath, connecting ηee,0
to ηee,d fulfilling the environment constraints and obstacles free, is found by
the exploring algorithm, it is processed to obtain the trajectory r(t). In de-
tail, a short-cutting iterative operation is performed on spath between both
consecutive and non-consecutive way-points. Thus, a check on the resulting
path is performed to verify that the obstacle and environment constraints are
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r(t)Motion
Planner

Global Planner

r(t)ηee,d

Perception
knowledge
a priori

FAIL

IK
check

Figure 5.2: Global Planner structured in two steps: 1) the motion planner
is a sampling-based algorithm which computes the trajectory r(t) to reach
the desired target ηee,d taking into consideration the a priori knowledge and
the information from the perception module; 2) the IK-check, through the
set-based task-prioirty inverse kinematics framework, verifies the trajectory
tracking and the Cartesian/joint-space constraints fulfillment.

not violated. If they are not respected, the corresponding states are recovered.
Finally a smoothing process is performed with B splines. Therefore, an interpo-
lation operation is made on the resulting smoothed path with a specific desired
sampling time Ts.

The output trajectory r(t) from the motion planner is sent to the IK-check
which is the second step of the global planner. In this phase, the same control
algorithm used for the local planner, that is the STPIK, is simulated taking
r(t) as reference trajectory. It allows to verify not only the trajectory tracking
but also the fulfillment of all the other Cartesian and joint space task con-
straints. Indeed, if some constraint is violated then the IK-check fails and
the motion planner has to plan again. In this way, it is guaranteed that the
constrained trajectory can be actually accomplished by the local controller in
real-time. Nevertheless, if an environment change occurs, e.g., human presence,
re-planning is necessary.
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5.1.4 Re-plan details

The global planner, more specifically the motion planner, runs in background
continuously trying to optimize the path and checking if the current trajectory
r(t), together with the current information coming from the perception node,
satisfies all the environment constraints.

When a violation is detected at, e.g., t = tA, a re-plan is needed. Based on
the algorithm and environmental parameters as well as a statistical survey,
we known that a plan needs, in average, ∆T s. The planned robot state at
tB = tA + ∆T is used by the motion planner in order to smoothly deviate
from the current trajectory. It is worth noticing that, being the current trajec-
tory verified by the IK-check, the state at tB is consistent with the dynamic
capability of the robot by construction.

The parameter ∆T may be also computed based on the position of the cur-
rent violation, thus allowing a more conservative estimate and providing more
computational time to the global planner.

There is not mathematical guarantee that the system is able to re-plan in time.
This is rather obvious in case, e.g., an obstacle so far unknown to the perception
node suddenly appears at a distance ε << 1 from any of the constraints.
The comment above is rather obvious and physically consistent. However, by
properly tuning the end-effector velocity with the bandwidth of the perception
system and the CPU capability and by further assuming a maximum velocity to
the moving obstacles this occurrence never happens. Nevertheless, if a proper
tuning is not done, the local planner can guarantee the obstacle avoidance
thanks to its reactive behaviour.

Algorithm 2 shows the pseudo-code of the proposed re-planning algorithm.

5.2 Numerical and Experimental Validations

Aimed at validating via numerical simulations ans real experiments the pro-
posed approach, a ROS-based architecure has been developed. ROS [60], as
already mentioned, is a popular middle-ware based on the publish-subscribe
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Algorithm 2: Global_Planner(ηee,d, perception, a-priori_knowledge)

while goal_not_reached do
FAIL = true;
while FAIL do

[r(t), replan] = motion_planner(ηee,d, perception);
FAIL = IKcheck(r(t),perception);

goal_not_reached = SystemState_check();
if goal_not_reached then

if replan then
output(r(t));

else
optimized = path_optimiziation(r(t));
if optimized then

output(r(t));

else
continue;

paradigm that simplifies software testing, debug and integration for robotic
applications.

For the perceptual feedback a Microsoft Kinect v2 that is a RGB-D sensor has
been used. In particular, since the perception is not the focus of this work
and being interested in the environment configuration, the distance from the
objects has been computed through the ArUco library [62]. The latter is an
Open Source library written in C++ for camera pose estimation using squared
markers.

The robotic system used in the experimental setup is the Kinova Jaco2 7 DOFs
with spherical wrist available in the Robotics Laboratory. It has been used as
mockup in place of a UVMS since, from a kinematic point of view, the only
significant difference is the fixed based. The latter makes the planing more
complex because the arm is more subject to self-hits and kinematic singularities.
The Kinova Jaco kinematic structure is represented in Fig. 5.3 and its Denavit-
Hartenberg parameters are reported in Table 5.1. Being a 7 DOF robot, it
is intrinsically redundant for any end-effector motion. It can be controlled
via Universal Serial Bus (USB) or Ethernet link. In the specific case it is
linked via Ethernet to a local network which allows to connect all the required
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Figure 5.3: Kinova Jaco2 7 DOFs Spherical Wrist scheme with reference
frames in Denavit-Hartenberg convention.

processes via both Ethernet and Wi-Fi. The presence of a local network shared
by all the processes and devices allows to have a distributed system taking
full advantage of the ROS framework and, thus, to run the perception and
global/local planners on different hardware. In the specific case, the global and
local planners are performed on a laptop with 4-core Intel i7-4510U processor
clocked at 2.00 GHz and 8 GB of RAM.

The motion planner has been developed using the Open Motion Planning
Library (OMPL) [72]. OMPL is a library containing many state-of-the-art
sampling-based motion planning algorithms. It is also open source. Therefore,
it has been possible to customize the existing functions to develop our own
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joint a α d θ
[m] [deg] [m] [deg]

1 0 +90◦ 0.2755 +90◦

2 0 +90◦ 0 0◦

3 0 +90◦ −0.410 0◦

4 0 +90◦ −0.0098 +180◦

5 0 +90◦ −0.3111 0◦

6 0 +90◦ 0 0◦

7 0 0◦ 0.2638 0◦

Table 5.1: Denavit-Hartenberg parameters of the Kinova Jaco2 7 DOFs
Spherical Wrist Manipulator.

version of motion planner.

A library of control objectives has been developed in order to be available to
the user that can compose them according to the specific mission:

• End-effector configuration control, equality-based task with required DOF
typically m = 3 or m = 6;

• Distance of user-defined points of the robotic structure from any Cartesian
point. Typically the user controls the distance of the end-effector the
wrist and the elbow from obstacles acquired in the scene. Each task is a
set-based task with m = 1;

• Cartesian virtual walls. Used to artificially confine the robot by restricting
its movement. Each virtual wall is a set-based task with m = 1;

• Mechanical joint limits. Each task is a set-based task with m = 1. It
is worth noticing that, for the Jaco2, rotation of q1, q3, q5 and q7 is not
restricted;

• Robot self-hit. A set-based task that prevent the robot to touch its own
structure. There are several possible implementation, for the Jaco2 we
implemented a simple joint-space mapping. The task is a set-based one
with m = 1;
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• Optimization tasks such as manipulability, field of fiew or other direc-
tion sensor. They can be implemented as equality, set-based or gradient
technique. Typically they are the lowest in priority.

In an intensive numerical simulation campaign all the tasks above have been
combined in various ways in order to stress the robustness and generalization of
the algorithm. Typically the priority follows the importance of the tasks, being
the safety-tasks of higher priority, the middle are the mission-related tasks and
the optimization the lowest.

Due to the selected ROS-based architecture and the properties of any kine-
matic controller, it is worth noticing that the sole difference from the numerical
simulation and the experiment is given by the virtual of the perception node
and the (limited) tracking error of the low level dynamic controller. All the
code developed for the work at hand, thus, is invariant in the simulation and
the experiment. The numerical simulation campaign is thus crucial to achieve
some statistical information about the algorithm. Given the environment’s di-
mension, equal to the robot workspace, an average distance of start to target
point of 100 cm, the sampling time of 10ms, the end-effector cruise velocity of
0.1m/s, the number of DOFs n = 7 with a number of tasks varying from the
sole end-effector configuration to the whole suite presented above, the global
planning time was, in average, of 250 ms.

The number of re-planning strongly depends on the assumptions made on the
perception system and the obstacle movement. It is somehow a condition that
can be controlled and that we intentionally injected into the validation by, e.g.,
adding an obstacle at runtime unknown at the beginning of the movement.
The re-planning time is affected by the same variable as the initial one but it
is obviously lower as much as it is closer to the target.

In addition to numerical simulations, several real tests have been performed.
The reported experiment consists of planning from an initial point to a desired
one with obstacles configuration changes in the workspace during the movement
(see Fig. 5.4). More in detail, the global planner initially plans taking into
account an initial workspace configuration. Then, two of the four obstacles are
moved in real-time along the manipulator path. Thus, it is necessary to re-plan
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1) 2)

3) 4)

Figure 5.4: Frames of the experiment.

to find new feasible paths that are collisions free. In the meantime, the local
planner, which is a reactive behaviour algorithm, ensures that all Cartesian
and joint-space constraints are fulfilled and, therefore, no collision happens.
When the re-planning is successful, the global planner continues to run trying
to optimize the path.

Figure 5.5 and Fig. 5.6.a show the end-effector, wrist and elbow, respectively,
distance values from the four obstacles present in the scene. Figure 5.6.b reports
the joint limits and Fig. 5.7 shows the end-effector and wrist distances from the
second and third joint, namely the self-hits. In particular, despite the changes
in the workspace during the system movement, it is noticeable how the several
constraints in the joint and Cartesian space are fulfilled thanks to the set-
based task-priority inverse kinematics control algorithm which guarantees the
feasibility of the trajectory from the global planner without the risk to get
trapped in local minimum.

Graphical renderings of some numerical simulations along with the video of the
proposed experiment are available at www.danieledivitoengineering.it.

http://www.danieledivitoengineering.it/video/planIK
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Figure 5.5: Experiment results - safety related (set-based) tasks: a) end-
effector distance from obstacles; b) wrist distances from obstacles.
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Figure 5.6: Experiment results - safety related (set-based) tasks: a) elbow
distance from obstacles; b) joints limits.
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5.2.1 Conclusions

A method based on merging a global and local planner for redundant robots
has been proposed. The key idea is to combine the properties of both methods
compensating their limits: the computational payload for the global planner
and the local minimum problem for the local planner. The proposed approach
has been validated experimentally with a Kinova Jaco2 7 DOFs.

The approach is currently being extended to structures with higher DOFs, such
as the Kinova Movos available in the lab and floating-base structures such as
aerial and underwater. Furthermore, a formal proof, guaranteeing convergence
under a stochastic framework will be addressed next.

It is worth remarking that the current approach uses all the DOFs of the redun-
dant robot in a task-priority approach. As possible future activity it is worth
investigating the use of the null-space to explore self-motion in case a trajectory
is unfeasible similar to what done in [56], [19].
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Conclusions and future work

This thesis work has focused on the whole control architecture of a UVMS,
taking into analysis the following control layers:

• Dynamic Control - it is the lowest control level which is has to compute
the forces/torques necessary to compensate the hydrodynamic effects and
external disturbances in order to make the system follow the reference
velocity.

• Kinematic Control - it is the middle level control that computes the ref-
erence velocities that make the system follow the desired trajectory.

• Motion Planner - it is the highest control level is in charge of planning
the motion given a desired pose taking into consideration the system and
environment constraints.

Regarding the dynamic layer, aimed at compensating the persistent dynamic
effect, e.g., the system gravity/buoyancy and the ocean current, in the proper
reference frame, an adaptive control algorithm has been proposed. Further-
more, considering a UVMS, the manipulator movements cause disturbance on
the vehicle. Then, a recursive adaptive algorithm able to counteract for the ma-
nipulator interactions has been presented. A deep investigation of the thruster
dynamics effects on the control loop has been conducted as well, showing the
distortion effects that can have on the identified parameters and the control
gains. The adaptive control has been validated through numerical simulations
taking into account AUV and UVMS. Moreover, it has been experimentally
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validated within the ROBUST project doing a comparison with a PI controller
which resulted in a better performance of the adaptive control.

A future work would be to split the dynamic parameters, identified during
the learning phase, from the actual integral action such that to not make the
parameters loose their physical meaning during the transient time as in the way
points navigation with no imposed trajectory.

Within the aim to take into account safety related tasks, the Set-based Task-
Priority Inverse Kinematics (STPIK) control algorithm has been presented.
Indeed, this algorithm allows to manage directly in the kinematic layer not
only the operation tasks but also all the safety-related tasks fulfilling the joint
and Cartesian space constraints. Furthermore, a detailed analysis on DLS al-
gorithms for managing kinematic singularities has been conducted as well. The
effectiveness of the STPIK algorithm has been proved through its application
in the simulation of an assistive control framework for ROV piloting and within
the DexROV project. In the latter case, the inverse kinematics algorithm has
been also combined with an admittance control resulting in a safe control ar-
chitecture for the semi-autonomous vehicle-manipulator system.

The proposed STPIK algorithm has a major drawback represented by the sud-
den activation/deactivation of the set-based tasks. Indeed, the latter induces
a discontinuity of the joint velocities in output of the algorithm, that may
ask for high joint acceleration. Thus, a future work would be to implement
a method for smoothly managing the task activation/deactivation transitions
while maintaining the strict priority among the tasks.

The inverse kinematics controller is a local method and, therefore, it is subject
to local minimum. One possible solution is represented by the use of a global
planner. However, the latter requires a high computational load and, thus,
it is usually not able to perform fast re-plan in real-time. Thus, aimed at
performing trajectories with no local minimum and at guaranteeing the system
and workspace safety, a method based on merging the global planner with the
local one, that is the STPIK, has been proposed. The effectiveness of this
approach has been experimentally proved using a 7 DOFs Kinova manipulator
as mockup.
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Future work about the proposed Motion planner approach will consist in its
application to mobile robots with higher DOFs and, then, taking into consider-
ation a larger workspace. Furthermore, a deep comparison with other state of
the art planners will be performed and a formal proof, guaranteeing convergence
under a stochastic framework will be addressed as well.





143

Bibliography

[1] SNAME, Nomenclature for treating the motion of a submerged body
through a fluid. Technical and Research Bulletin, pages 1–5, 1950.

[2] DexROV website. http://www.dexrov.eu/, 2015. [Online; accessed 20-
January-2020].

[3] ROBUST website. http://eu-robust.eu, 2016. [Online; accessed 20-
January-2020].

[4] The efficiencies of low logistics, man-portable auvs for shallow water survey
operations. http://www.subseauk.com/documents/ncs%20survey.pdf,
2017.

[5] B.D. Anderson. Failures of adaptive control theory and their resolution.
Communications in Information & Systems, 5(1):1–20, 2005.

[6] G. Antonelli. On the use of adaptive/integral actions for six-degrees-of-
freedom control of autonomous underwater vehicles. IEEE Journal of
Oceanic Engineering, 32(2):300–312, April 2007.

[7] G. Antonelli and E. Cataldi. Recursive adaptive control for an underwater
vehicle carrying a manipulator. In 22nd Mediterranean Conference on
Control and Automation, pages 847–852, June 2014.

[8] G. Antonelli, S. Chiaverini, N. Sarkar, and M. West. Adaptive control of
an autonomous underwater vehicle: experimental results on odin. IEEE
Transactions on Control Systems Technology, 9(5):756–765, Sep. 2001.

[9] Gianluca Antonelli and G Antonelli. Underwater robots, volume 4.
Springer, 2018.

http://www.dexrov.eu/
http://eu-robust.eu
http://www.subseauk.com/documents/ncs%20survey.pdf


144 BIBLIOGRAPHY

[10] Filippo Arrichiello, Paolo Di Lillo, Daniele Di Vito, Gianluca Antonelli,
and Stefano Chiaverini. Assistive robot operated via p300-based brain
computer interface. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 6032–6037. IEEE, 2017.

[11] P. Baerlocher. Inverse kinematics techniques for the interactive posture
control of articulated figures. PhD thesis, École Polytechnique Fédéral De
Lausanne, 2001.

[12] Dmitry Berenson, Siddhartha Srinivasa, and James Kuffner. Task space
regions: A framework for pose-constrained manipulation planning. The
International Journal of Robotics Research, 30(12):1435–1460, 2011.

[13] Dmitry Berenson, Siddhartha S Srinivasa, Dave Ferguson, and James J
Kuffner. Manipulation planning on constraint manifolds. In Proceedings
of IEEE International Conference on Robotics and Automation, pages 625–
632, 2009.

[14] G. Buizza Avanzini, A. Zanchettin, and P. Rocco. Constrained model
predictive control for mobile robotic manipulators. Robotica, 36(1):19–38,
2018.

[15] Heiko Bülow and Andreas Birk. Spectral 6dof registration of noisy 3d
range data with partial overlap. IEEE transactions on pattern analysis
and machine intelligence, 35(4):954–969, 2013.

[16] F. Caccavale, S. Chiaverini, and B. Siciliano. Second-order kinematic con-
trol of robot manipulators with jacobian damped least-squares inverse:
theory and experiments. IEEE/ASME Transactions on Mechatronics,
2(3):188–194, Sep 1997.

[17] M. Caccia, G. Indiveri, and G. Veruggio. Modeling and identification of
open-frame variable configuration unmanned underwater vehicles. Oceanic
Engineering, IEEE Journal of, 25(2):227–240, 2000.

[18] Sylvain Calinon, Danilo Bruno, and Darwin G Caldwell. A task-
parameterized probabilistic model with minimal intervention control. In
Robotics and Automation (ICRA), 2014 IEEE International Conference
on, pages 3339–3344. IEEE, 2014.



BIBLIOGRAPHY 145

[19] M. Cefalo and G. Oriolo. A general framework for task-constrained motion
planning with moving obstacles. Robotica, 37(3):575–598, 2019.

[20] M. Cefalo, G. Oriolo, and M. Vendittelli. Planning safe cyclic motions
under repetitive task constraints. In 2013 IEEE International Conference
on Robotics and Automation, pages 3807–3812, May 2013.

[21] M. Cefalo, G. Oriolo, and M. Vendittelli. Task-constrained motion plan-
ning with moving obstacles. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 5758–5763, Nov 2013.

[22] N. M. Ceriani, A. M. Zanchettin, P. Rocco, A. Stolt, and A. Robertsson.
Reactive task adaptation based on hierarchical constraints classification
for safe industrial robots. IEEE/ASME Transactions on Mechatronics,
20(6):2935–2949, 2015.

[23] S. Chiaverini. Singularity-robust task-priority redundancy resolution for
real-time kinematic control of robot manipulators. IEEE Transactions on
Robotics and Automation, 13(3):398–410, June 1997.

[24] S. Chiaverini, G. Oriolo, and I. D. Walker. Springer Handbook of Robotics,
chapter Kinematically Redundant Manipulators, pages 245–268. B. Sicil-
iano, O. Khatib, (Eds.), Springer-Verlag, Heidelberg, D, 2008.

[25] S. Chiaverini, B. Siciliano, and O. Egeland. Review of the damped least-
squares inverse kinematics with experiments on an industrial robot manip-
ulator. IEEE Transactions on Control Systems Technology, 2(2):123–134,
June 1994.

[26] Nancy J Cooke. Human factors of remotely operated vehicles. In Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting,
volume 50, pages 166–169, 2006.

[27] M. L. Corradini and G. Orlando. A discrete adaptive variable-structure
controller for mimo systems, and its application to an underwater rov.
IEEE Transactions on Control Systems Technology, 5(3):349–359, May
1997.



146 BIBLIOGRAPHY

[28] Arati S. Deo and Ian D. Walker. Overview of damped least-squares meth-
ods for inverse kinematics of robot manipulators. Journal of Intelligent
and Robotic Systems, 14(1):43–68, 1995.

[29] P. Di Lillo, E. Simetti, D. De Palma, E. Cataldi, G. Indiveri, G. Antonelli,
and G. Casalino. Advanced ROV autonomy for efficient remote control
in the DexROV project. Marine Technology Society Journal, 50(4):67–80,
2016.

[30] Paolo Di Lillo, Filippo Arrichiello, Gianluca Antonelli, and Stefano Chi-
averini. Safety-related tasks within the set-based task-priority inverse kine-
matics framework. In 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 6130–6135. IEEE, 2018.

[31] Gregory Dudek and Michael Jenkin. Computational principles of mobile
robotics. Cambridge university press, 2010.

[32] J. C. Evans, K. M. Keller, J. S. Smith, P. Marty, and O. V. Rigaud. Dock-
ing techniques and evaluation trials of the swimmer auv: an autonomous
deployment auv for work-class rovs. In Proceedings of MTS/IEEE Oceans
2001, volume 1, pages 520–528, 2001.

[33] T. I. Fossen and J. G. Balchen. The nerov autonomous underwater vehicle.
In OCEANS 91 Proceedings, pages 1414–1420, Oct 1991.

[34] Thor I. Fossen. Marine Control Systems: Guidance, Navigation, and Con-
trol of Ships, Rigs and Underwater Vehicles. 2002.

[35] T.I. Fossen. Marine Control Systems: Guidance, Navigation and Control
of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, Trondheim,
Norway, 2002.

[36] M. Gautier and W. Khalil. Direct calculation of minimum set of inertial
parameters of serial robots. IEEE Transactions on Robotics and Automa-
tion, 6:368–373, 1990.

[37] John-Morten Godhavn, Thor I Fossen, and Svein P Berge. Non-linear and
adaptive backstepping designs for tracking control of ships. International
Journal of Adaptive Control and Signal Processing, 12(8):649–670, 1998.



BIBLIOGRAPHY 147

[38] Ioannis Havoutis and Sylvain Calinon. Learning from demonstration for
semi-autonomous teleoperation. Autonomous Robots, 43(3):713–726, Mar
2019.

[39] Anthony J Healey and David Lienard. Multivariable sliding mode con-
trol for autonomous diving and steering of unmanned underwater vehicles.
IEEE journal of Oceanic Engineering, 18(3):327–339, 1993.

[40] G. Indiveri and G. Parlangeli. On thruster allocation, fault detection and
accomodation issues for underwater robotic vehicles. In Proc. Int. Symp.
Communications, Control and Signal Processing, Marrakech, 2006.

[41] Oussama Kanoun, Florent Lamiraux, and Pierre-Brice Wieber. Kinematic
control of redundant manipulators: Generalizing the task-priority frame-
work to inequality task. IEEE Transactions on Robotics, 27(4):785–792,
2011.

[42] Hassan K Khalil. Nonlinear systems. Upper Saddle River, 2002.

[43] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach
to single-query path planning. In Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065), volume 2, pages 995–1001
vol.2, April 2000.

[44] S. La Valle. Planning Algorithms. Cambridge University Press, 2006.

[45] Martin Ludvigsen, Geir Johnsen, Asgeir J Sørensen, Petter A Lågstad,
and Øyvind Ødegård. Scientific operations combining rov and auv in the
trondheim fjord. Marine Technology Society Journal, 48(2):59–71, 2014.

[46] A.A. Maciejewski. Numerical filtering for the operation of robotic manip-
ulators through kinematically singular configurations. Journal of Robotic
Systems, 5(6):527–552, 1988.

[47] Anthony A Maciejewski and Charles A Klein. Obstacle avoidance for kine-
matically redundant manipulators in dynamically varying environments.
The international journal of robotics research, 4(3):109–117, 1985.



148 BIBLIOGRAPHY

[48] N. Mansard, O. Khatib, and A. Kheddar. A unified approach to integrate
unilateral constraints in the stack of tasks. IEEE Transactions on Robotics,
25(3):670–685, June 2009.

[49] G. Marani, Jinhyun Kim, Junku Yuh, and Wan Kyun Chung. A real-
time approach for singularity avoidance in resolved motion rate control of
robotic manipulators. In Proc. IEEE International Conference on Robotics
and Automation ICRA ’02, volume 2, pages 1973–1978, 2002.

[50] Giacomo Marani, Song K Choi, and Junku Yuh. Real-time center of buoy-
ancy identification for optimal hovering in autonomous underwater inter-
vention. Intelligent Service Robotics, 3(3):175–182, 2010.

[51] Signe Moe, Gianluca Antonelli, Andrew R Teel, Kristin Y Pettersen, and
Johannes Schrimpf. Set-based tasks within the singularity-robust multiple
task-priority inverse kinematics framework: General formulation, stability
analysis, and experimental results. Frontiers in Robotics and AI, 3:16,
2016.

[52] S. Murray, W. Floyd-Jones, , Y. Qi, D.J. Sorin, and G. Konidaris. Robot
motion planning on a chip. In Robotics: Science and Systems, 2016.

[53] Giuseppe Muscio, Francesco Pierri, Miguel Angel Trujillo, Elisabetta
Cataldi, G Giglio, Gianluca Antonelli, Fabrizio Caccavale, Antidio Vig-
uria, Stefano Chiaverini, and Aníbal Ollero. Experiments on coordinated
motion of aerial robotic manipulators. In Proceedings IEEE International
Conference onRobotics and Automation, pages 1224–1229, 2016.

[54] Yoshihiko Nakamura and Hideo Hanafusa. Inverse kinematic solutions with
singularity robustness for robot manipulator control. Journal of dynamic
systems, measurement, and control, 108(3):163–171, 1986.

[55] Yoshihiko Nakamura, Hideo Hanafusa, and Tsuneo Yoshikawa. Task-
priority based redundancy control of robot manipulators. The Interna-
tional Journal of Robotics Research, 6(2):3–15, 1987.

[56] G. Oriolo, M. Cefalo, and M. Vendittelli. Repeatable motion planning
for redundant robots over cyclic tasks. IEEE Transactions on Robotics,
33(5):1170–1183, Oct 2017.



BIBLIOGRAPHY 149

[57] G. Oriolo and M. Vendittelli. A control-based approach to task-constrained
motion planning. In 2009 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 297–302, Oct 2009.

[58] Alistair Palmer, Grant E. Hearn, and Peter Stevenson. Modelling tunnel
thrusters for autonomous underwater vehicles. IFAC Proceedings Volumes,
41(1):91 – 96, 2008.

[59] Max Pfingsthorn, Andreas Birk, and Heiko Buelow. Uncertainty estima-
tion for a 6-dof spectral registration method as basis for sonar-based un-
derwater 3d slam. In Robotics and Automation (ICRA), 2012 IEEE Inter-
national Conference on, pages 3049–3054. IEEE, 2012.

[60] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software, vol-
ume 3, page 5. Kobe, Japan, 2009.

[61] JS Riedel. Shallow water stationkeeping of an autonomous underwater ve-
hicle: the experimental results of a disturbance compensation controller. In
OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Pro-
ceedings (Cat. No. 00CH37158), volume 2, pages 1017–1028. IEEE, 2000.

[62] Francisco J. Romero-Ramirez, Rafael Muñoz-Salinas, and Rafael Medina-
Carnicer. Speeded up detection of squared fiducial markers. Image and
Vision Computing, 76:38 – 47, 2018.

[63] A. Saunders and M. Nahon. The effect of forward vehicle velocity
on through-body auv tunnel thruster performance. In OCEANS ’02
MTS/IEEE, volume 1, pages 250–259 vol.1, Oct 2002.

[64] A. Shkolnik and R. Tedrake. High-dimensional underactuated motion plan-
ning via task space control. In 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3762–3768, Sept 2008.

[65] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics.
Springer, 2016.



150 BIBLIOGRAPHY

[66] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo.
Robotics: modelling, planning and control. Springer Science & Business
Media, 2010.

[67] Enrico Simetti and Giuseppe Casalino. A novel practical technique to
integrate inequality control objectives and task transitions in priority based
control. Journal of Intelligent & Robotic Systems, 84(1-4):877–902, 2016.

[68] Enrico Simetti, Giuseppe Casalino, Sandro Torelli, Alessandro Sperinde,
and Alessio Turetta. Floating underwater manipulation: Developed con-
trol methodology and experimental validation within the trident project.
Journal of Field Robotics, 31(3):364–385, 2014.

[69] Siciliano B Slotine. A general framework for managing multiple tasks
in highly redundant robotic systems. In proceeding of 5th International
Conference on Advanced Robotics, volume 2, pages 1211–1216, 1991.

[70] Ø. N. Smogeli. Control of Marine Propellers - From Normal to Extreme
Conditions. PhD thesis, Department of Marine Technology, NTNU, Trond-
heim, Norway, 2006.

[71] M. Stilman. Global manipulation planning in robot joint space with task
constraints. IEEE Transactions on Robotics, 26(3):576–584, June 2010.

[72] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion
Planning Library. IEEE Robotics & Automation Magazine, 19(4):72–82,
December 2012. http://ompl.kavrakilab.org.

[73] T. Sugihara. Solvability-unconcerned inverse kinematics by the levenberg
marquardt method. IEEE Transactions on Robotics, 27(5):984–991, Oct
2011.

[74] M. Tognon, E. Cataldi, H.A. Tello Chávez, G. Antonelli, J. Cortes, and
A. Franchi. Control-aware motion planning for task-constrained aerial
manipulation. IEEE Robotics and Automation Letters, 3(3):2478–2484,
2018.

http://ompl.kavrakilab.org


BIBLIOGRAPHY 151

[75] D. R. Yoerger, J. G. Cooke, and J. J. E. Slotine. The influence of thruster
dynamics on underwater vehicle behavior and their incorporation into con-
trol system design. IEEE Journal of Oceanic Engineering, 15(3):167–178,
Jul 1990.

[76] T. Yoshikawa. Manipulability and redundancy control of robotic mech-
anisms. In IEEE International Conference on Robotics and Automation,
volume 2, pages 1004–1009. IEEE, 1985.

[77] J. Yuh. Learning control for underwater robotic vehicles. IEEE Control
Systems Magazine, 14(2):39–46, April 1994.

[78] Tomasz Łuczyński, Tobias Doernbach, Shashank Govindaraj, Christian
Mueller, and Andreas Birk. 3d grid map transmission for underwater map-
ping and visualization under bandwidth constraints. In OCEANS 2017-
Anchorage, 09 2017.


	Abstract
	Introduction
	Motivation
	UVMS's Control
	Thesis outline and contribution

	Background
	Reference System
	SNAME Notation

	Vehicle Pose
	Roll-Pitch-Yaw attitude
	Unit Quaternion
	Vehicle Velocities
	UVMS Velocities

	Dynamics
	Dynamic Model
	Actuator allocation
	Dynamic Control

	Kinematics
	Differential Kinematics
	Kinematic Redundancy
	Differential Inverse Kinematics
	Kinematic Singularities
	Task priority redundancy resolution
	Set-based Control

	Motion Planner

	Dynamic Control
	AUV Adaptive Control
	Stability Analysis
	AUV Reduced controller
	Thruster Dynamics within Adaptive Control
	Thruster Dynamics
	Force/moment-thruster mapping
	Thruster Dynamics inclusion


	UVMS Adaptive Control
	UVMS Reduced controller

	Adaptive Control Simulations
	AUV simulations
	AUV simulations with Thruster Dynamics inclusion

	UVMS simulations
	Conclusions

	The ROBUST project
	Preliminary Experiments
	Considerations


	Kinematic Control
	Set-based Task-Priority Inverse Kinematics
	Analysis and Comparison of Damped Least Square Algorithms
	DLS Algorithms Simulation
	Maciejewski Algorithm
	Deo and Walker Algorithm
	Baerlocher Algorithm
	Iterative Baerlocher Algorithm
	Sugihara Baerlocher Algorithm
	DLS Algorithms Considerations


	Assistive Control Framework for ROVs
	Implemented tasks
	Control Framework Architecture
	ROVs Assistive Framework Simulations
	Conclusions

	The DexROV project
	Vehicle-Manipulator System
	Control Architecture
	Implemented Control Tasks
	Admittance Control
	First Experimental Campaign
	Position and orientation, singular configuration
	Mechanical joint limits

	Second Experimental Campaign
	Turn the valve operation without unexpected collisions
	Turn the valve operation with unexpected collisions

	Conclusions


	Motion Planner
	Set-Based Task Constrained Motion Planning
	Overall Control Algorithm Architecture
	Local planner
	Global planner
	Re-plan details

	Numerical and Experimental Validations
	Conclusions


	Conclusions and future work

