61,857 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Security in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) pose a new challenge to network designers in the area of developing better and secure routing protocols. Many sensor networks have mission-critical tasks, so it is clear that security needs to be taken into account at design time. However, sensor networks are not traditional computing devices, and as a result, existing security models and methods are ill suited. The security issues posed by sensor networks represent a rich field of research problems. Improving network hardware and software may address many of the issues, but others will require new supporting technologies. With the recent surge in the use of sensor networks, for example, in ubiquitous computing and body sensor networks (BSNs) the need for security mechanisms has a more important role. Recently proposed solutions address but a small subset of current sensor network attacks. Also because of the special battery requirements for such networks, normal cryptographic network solutions are irrelevant. New mechanisms need to be developed to address this type of network

    Data aggregation in wireless sensor networks with minimum delay and minimum use of energy: A comparative study

    Get PDF
    Electronic Workshops in Computing (eWiC), 2015. First published in the Electronic Workshops in Computing series at http://dx.doi.org/10.14236/ewic/bcsme2014.2The prime objective of deploying large- scale wireless sensor networks is to collect information from to control systems associated with these networks. Wireless sensor networks are widely used in application domains such as security and inspection, environmental monitoring, warfare, and other situations especially where immediate responses are required such as disasters and medical emergency. Whenever there is a growth there are challenges and to cope with these challenges strategies and solutions must be developed. This paper discusses the recently addressed issues of data aggregation through presenting a comparative study of different research work done on minimizing delay in different structures of wireless sensor networks. Finally we introduce our proposed method to minimize both delay and power consumption using a tree based clustering scheme with partial data aggregation

    Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey

    Get PDF
    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs

    Framework of trusted wireless sensor node platform for Wireless Sensor Network / Yusnani Mohd Yussoff

    Get PDF
    Wireless Sensor Networks (WSNs) have shown great promise as the emerging technology for data gathering from unattended or hostile environment. The advancement in micro-electro-mechanical sensor technology, wireless communication technology and the recent scavenging energy have gradually expanding the acceptance of WSN related applications. The design of sensors that are small, low cost, low power and combined with its unattended nature has made it more viable and indirectly promotes its popularity for future solutions in various real-life challenges. One of the most challenging yet important security issues in Wireless Sensor Network is in establishing trusted and secured communication between sensor node and base station. While the term trusted has been widely used referring to valid nodes in the group, this thesis refer the term trusted based on Trusted Computing Group (TCG) specifications. With limitations in the present solutions such as late discovery of invalid nodes such in Trust Management System and high energy consumption with external security chip due to the used of Trusted Platform Module chip; a Framework of a Trusted Wireless Sensor Node is presented

    Implementation Aspects of a Transmitted-Reference UWB Receiver

    Get PDF
    In this paper, we discuss the design issues of an ultra wide band (UWB) receiver targeting a single-chip CMOS implementation for low data-rate applications like ad hoc wireless sensor networks. A non-coherent transmitted reference (TR) receiver is chosen because of its small complexity compared to other architectures. After a brief recapitulation of the UWB fundamentals and a short discussion on the major differences between coherent and non-coherent receivers, we discuss issues, challenges and possible design solutions. Several simulation results obtained by means of a behavioral model are presented, together with an analysis of the trade-off between performance and complexity in an integrated circuit implementation

    Wireless Sensor Networks (WSNs): Security and Privacy Issues and Solutions

    Get PDF
    Wireless sensor networks (WSNs) have become one of the current research areas, and it proves to be a very supportive technology for various applications such as environmental-, military-, health-, home-, and office-based applications. WSN can either be mobile wireless sensor network (MWSN) or static wireless sensor network (SWSN). MWSN is a specialized wireless network consisting of considerable number of mobile sensors, however the instability of its topology introduces several performance issues during data routing. SWSNs consisting of static nodes with static topology also share some of the security challenges of MWSNs due to some constraints associated with the sensor nodes. Security, privacy, computation and energy constraints, and reliability issues are the major challenges facing WSNs, especially during routing. To solve these challenges, WSN routing protocols must ensure confidentiality, integrity, privacy preservation, and reliability in the network. Thus, efficient and energy-aware countermeasures have to be designed to prevent intrusion in the network. In this chapter, we describe different forms of WSNs, challenges, solutions, and a point-to-point multi-hop-based secure solution for effective routing in WSNs

    Deployment, Coverage And Network Optimization In Wireless Video Sensor Networks For 3D Indoor Monitoring

    Get PDF
    As a result of extensive research over the past decade or so, wireless sensor networks (wsns) have evolved into a well established technology for industry, environmental and medical applications. However, traditional wsns employ such sensors as thermal or photo light resistors that are often modeled with simple omni-directional sensing ranges, which focus only on scalar data within the sensing environment. In contrast, the sensing range of a wireless video sensor is directional and capable of providing more detailed video information about the sensing field. Additionally, with the introduction of modern features in non-fixed focus cameras such as the pan, tilt and zoom (ptz), the sensing range of a video sensor can be further regarded as a fan-shape in 2d and pyramid-shape in 3d. Such uniqueness attributed to wireless video sensors and the challenges associated with deployment restrictions of indoor monitoring make the traditional sensor coverage, deployment and networked solutions in 2d sensing model environments for wsns ineffective and inapplicable in solving the wireless video sensor network (wvsn) issues for 3d indoor space, thus calling for novel solutions. In this dissertation, we propose optimization techniques and develop solutions that will address the coverage, deployment and network issues associated within wireless video sensor networks for a 3d indoor environment. We first model the general problem in a continuous 3d space to minimize the total number of required video sensors to monitor a given 3d indoor region. We then convert it into a discrete version problem by incorporating 3d grids, which can achieve arbitrary approximation precision by adjusting the grid granularity. Due in part to the uniqueness of the visual sensor directional sensing range, we propose to exploit the directional feature to determine the optimal angular-coverage of each deployed visual sensor. Thus, we propose to deploy the visual sensors from divergent directional angles and further extend k-coverage to ``k-angular-coverage\u27\u27, while ensuring connectivity within the network. We then propose a series of mechanisms to handle obstacles in the 3d environment. We develop efficient greedy heuristic solutions that integrate all these aforementioned considerations one by one and can yield high quality results. Based on this, we also propose enhanced depth first search (dfs) algorithms that can not only further improve the solution quality, but also return optimal results if given enough time. Our extensive simulations demonstrate the superiority of both our greedy heuristic and enhanced dfs solutions. Finally, this dissertation discusses some future research directions such as in-network traffic routing and scheduling issues

    A State of Art Concept in Contriving of Underwater Networks

    Get PDF
    the underwater ocean environment is widely considered as one of the most difficult communications channels. Underwater acoustic networks have recently emerged as a new area of research in wireless networking. Underwater networks are generally formed by acoustically connected ocean - bottom sensors, underwater gateways and a surfa ce station, which provides a link to an on - shore control center. In recent years, there has been substantial work on protocol design for these networks with most efforts focusing on MAC and network layer protocols. Low communication bandwidth, large propag ation delay, floating node mobility, and high error probability are the challenges of building mobile underwater wireless sensor networks (WSN) for aquatic applications. Underwater sensor networks (WSNs) are the enabling technology for wide range of appl ications like monitoring the strong influences and impact of climate regulation, nutrient production, oil retrieval and transportation, man y scientific, environmental, commercial, safety, and military applications. This paper first introduces the concept o f UWSN, operation, applications and then reviews some recent developments within this research area and proposes an adaptive push system for dissemination of data in underwater wireless sensor networks. The goal of this paper is to survey the existing net w ork technology and its applicability to underwater acoustic channels. In this paper we provide an overview of recent medium acces s control, routing, transport, and cross - layer networking protocols. It examines the main approaches and challenges in the desi gn and implementation of underwater wireless sensor networks. Finally, some suggestions and promising solutions are given for th ese issues
    • …
    corecore