562 research outputs found

    Time-Frequency Packing for High Capacity Coherent Optical Links

    Full text link
    We consider realistic long-haul optical links, with linear and nonlinear impairments, and investigate the application of time-frequency packing with low-order constellations as a possible solution to increase the spectral efficiency. A detailed comparison with available techniques from the literature will be also performed. We will see that this technique represents a feasible solution to overcome the relevant theoretical and technological issues related to this spectral efficiency increase and could be more effective than the simple adoption of high-order modulation formats.Comment: 10 pages, 9 figures. arXiv admin note: text overlap with arXiv:1406.5685 by other author

    Spectral Efficiency Optimization in Flexi-Grid Long-Haul Optical Systems

    Full text link
    Flexible grid optical networks allow a better exploitation of fiber capacity, by enabling a denser frequency allocation. A tighter channel spacing, however, requires narrower filters, which increase linear intersymbol interference (ISI), and may dramatically reduce system reach. Commercial coherent receivers are based on symbol by symbol detectors, which are quite sensitive to ISI. In this context, Nyquist spacing is considered as the ultimate limit to wavelength-division multiplexing (WDM) packing. In this paper, we show that by introducing a limited-complexity trellis processing at the receiver, either the reach of Nyquist WDM flexi-grid networks can be significantly extended, or a denser-than-Nyquist channel packing (i.e., a higher spectral efficiency (SE)) is possible at equal reach. By adopting well-known information-theoretic techniques, we design a limited-complexity trellis processing and quantify its SE gain in flexi-grid architectures where wavelength selective switches over a frequency grid of 12.5GHz are employed.Comment: 7 pages, 9 figure

    Nonbinary Spatially-Coupled LDPC Codes on the Binary Erasure Channel

    Get PDF
    We analyze the asymptotic performance of nonbinary spatially-coupled low-density parity-check (SC-LDPC) codes built on the general linear group, when the transmission takes place over the binary erasure channel. We propose an efficient method to derive an upper bound to the maximum a posteriori probability (MAP) threshold for nonbinary LDPC codes, and observe that the MAP performance of regular LDPC codes improves with the alphabet size. We then consider nonbinary SC-LDPC codes. We show that the same threshold saturation effect experienced by binary SC-LDPC codes occurs for the nonbinary codes, hence we conjecture that the BP threshold for large termination length approaches the MAP threshold of the underlying regular ensemble.Comment: Submitted to IEEE International Conference on Communications 201

    Spectral Efficiency of MIMO Millimeter-Wave Links with Single-Carrier Modulation for 5G Networks

    Full text link
    Future wireless networks will extensively rely upon bandwidths centered on carrier frequencies larger than 10GHz. Indeed, recent research has shown that, despite the large path-loss, millimeter wave (mmWave) frequencies can be successfully exploited to transmit very large data-rates over short distances to slowly moving users. Due to hardware complexity and cost constraints, single-carrier modulation schemes, as opposed to the popular multi-carrier schemes, are being considered for use at mmWave frequencies. This paper presents preliminary studies on the achievable spectral efficiency on a wireless MIMO link operating at mmWave in a typical 5G scenario. Two different single-carrier modem schemes are considered, i.e. a traditional modulation scheme with linear equalization at the receiver, and a single-carrier modulation with cyclic prefix, frequency-domain equalization and FFT-based processing at the receiver. Our results show that the former achieves a larger spectral efficiency than the latter. Results also confirm that the spectral efficiency increases with the dimension of the antenna array, as well as that performance gets severely degraded when the link length exceeds 100 meters and the transmit power falls below 0dBW. Nonetheless, mmWave appear to be very suited for providing very large data-rates over short distances.Comment: 8 pages, 8 figures, to appear in Proc. 20th International ITG Workshop on Smart Antennas (WSA2016

    Improving the Spectral Efficiency of Nonlinear Satellite Systems through Time-Frequency Packing and Advanced Processing

    Full text link
    We consider realistic satellite communications systems for broadband and broadcasting applications, based on frequency-division-multiplexed linear modulations, where spectral efficiency is one of the main figures of merit. For these systems, we investigate their ultimate performance limits by using a framework to compute the spectral efficiency when suboptimal receivers are adopted and evaluating the performance improvements that can be obtained through the adoption of the time-frequency packing technique. Our analysis reveals that introducing controlled interference can significantly increase the efficiency of these systems. Moreover, if a receiver which is able to account for the interference and the nonlinear impairments is adopted, rather than a classical predistorter at the transmitter coupled with a simpler receiver, the benefits in terms of spectral efficiency can be even larger. Finally, we consider practical coded schemes and show the potential advantages of the optimized signaling formats when combined with iterative detection/decoding.Comment: 8 pages, 8 figure

    Constellation Optimization in the Presence of Strong Phase Noise

    Full text link
    In this paper, we address the problem of optimizing signal constellations for strong phase noise. The problem is investigated by considering three optimization formulations, which provide an analytical framework for constellation design. In the first formulation, we seek to design constellations that minimize the symbol error probability (SEP) for an approximate ML detector in the presence of phase noise. In the second formulation, we optimize constellations in terms of mutual information (MI) for the effective discrete channel consisting of phase noise, additive white Gaussian noise, and the approximate ML detector. To this end, we derive the MI of this discrete channel. Finally, we optimize constellations in terms of the MI for the phase noise channel. We give two analytical characterizations of the MI of this channel, which are shown to be accurate for a wide range of signal-to-noise ratios and phase noise variances. For each formulation, we present a detailed analysis of the optimal constellations and their performance in the presence of strong phase noise. We show that the optimal constellations significantly outperform conventional constellations and those proposed in the literature in terms of SEP, error floors, and MI.Comment: 10 page, 10 figures, Accepted to IEEE Trans. Commu

    Single-Carrier Modulation versus OFDM for Millimeter-Wave Wireless MIMO

    Full text link
    This paper presents results on the achievable spectral efficiency and on the energy efficiency for a wireless multiple-input-multiple-output (MIMO) link operating at millimeter wave frequencies (mmWave) in a typical 5G scenario. Two different single-carrier modem schemes are considered, i.e., a traditional modulation scheme with linear equalization at the receiver, and a single-carrier modulation with cyclic prefix, frequency-domain equalization and FFT-based processing at the receiver; these two schemes are compared with a conventional MIMO-OFDM transceiver structure. Our analysis jointly takes into account the peculiar characteristics of MIMO channels at mmWave frequencies, the use of hybrid (analog-digital) pre-coding and post-coding beamformers, the finite cardinality of the modulation structure, and the non-linear behavior of the transmitter power amplifiers. Our results show that the best performance is achieved by single-carrier modulation with time-domain equalization, which exhibits the smallest loss due to the non-linear distortion, and whose performance can be further improved by using advanced equalization schemes. Results also confirm that performance gets severely degraded when the link length exceeds 90-100 meters and the transmit power falls below 0 dBW.Comment: accepted for publication on IEEE Transactions on Communication

    High spectral efficiency for long-haul optical links: time-frequency packing vs high-order constellations

    Get PDF
    We investigate the time-frequency packing technique on long-haul optical links in order to increase the spectral efficiency. This solution is compared to high-order formats at equal bit or baud rate, demonstrating that higher spectral efficiency can be more effectively reached
    corecore