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ABSTRACT

As a result of extensive research over the past decade or so, Wireless Sensor Networks

(WSNs) have evolved into a well established technology for industry, environmental and

medical applications. However, traditional WSNs employ such sensors as thermal or photo

light resistors that are often modeled with simple omni-directional sensing ranges, which

focus only on scalar data within the sensing environment. In contrast, the sensing range of a

wireless video sensor is directional and capable of providing more detailed video information

about the sensing field. Additionally, with the introduction of modern features in non-fixed

focus cameras such as the Pan, Tilt and Zoom (PTZ), the sensing range of a video sensor

can be further regarded as a fan-shape in 2D and pyramid-shape in 3D. Such uniqueness

attributed to wireless video sensors and the challenges associated with deployment restric-

tions of indoor monitoring make the traditional sensor coverage, deployment and networked

solutions in 2D sensing model environments for WSNs ineffective and inapplicable in solving

the Wireless Video Sensor Network (WVSN) issues for 3D indoor space, thus calling for

novel solutions.

In this dissertation, we propose optimization techniques and develop solutions that

will address the coverage, deployment and network issues associated within Wireless Video

Sensor Networks for a 3D indoor environment. We first model the general problem in a con-

tinuous 3D space to minimize the total number of required video sensors to monitor a given

3D indoor region. We then convert it into a discrete version problem by incorporating 3D

grids, which can achieve arbitrary approximation precision by adjusting the grid granularity.

Due in part to the uniqueness of the visual sensor directional sensing range, we propose to

exploit the directional feature to determine the optimal angular-coverage of each deployed

visual sensor. Thus, we propose to deploy the visual sensors from divergent directional angles
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and further extend k-coverage to “k-angular-coverage”, while ensuring connectivity within

the network. We then propose a series of mechanisms to handle obstacles in the 3D environ-

ment. We develop efficient greedy heuristic solutions that integrate all these aforementioned

considerations one by one and can yield high quality results. Based on this, we also pro-

pose enhanced Depth First Search (DFS) algorithms that can not only further improve the

solution quality, but also return optimal results if given enough time. Our extensive simula-

tions demonstrate the superiority of both our greedy heuristic and enhanced DFS solutions.

Finally, this dissertation discusses some future research directions such as in-network traffic

routing and scheduling issues.
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CHAPTER 1

INTRODUCTION

Today’s wireless sensor networks (WSNs) are a far cry from the earlier types of

wired sensors, which have been transformed into state of the art devices that provide a new

generation of features to offer to consumers [7]. Historically, WSNs were first established in

the 1950s by the United States government to provide the military and other government

agencies with a new form of advance technology which enabled surveillance of foreign entities

and allowed for secure communication among our government [8]. After the success of WSNs

in that role an effort began to explore the capabilities of WSNs, specifically how WSNs could

be improved by: reducing the cost of the sensors, reducing the energy consumption of sensors

and enabling deployment in commercial applications [9]. In some cases sensor costs have

declined by as much as ten fold over the past decade. Following the initiative to solve the

aforementioned challenges associated with the growing WSN technology, the propagation of

the technology expanded to include a myriad of WSNs subcategories that included: mobile

[10], underground [11], underwater[12], terrestrial [13] and multimedia WSNs [14].

Consequently, due in part to the growth of WSNs, economical cost and versatility of

complementary metal-oxide-semiconductor (CMOS) image sensors, Wireless Video Sensor

Networks (WVSNs) have emerged as a prominent technology capable of integrating into

numerous applications including: industrial automation, home security, environmental mon-

itoring and traffic surveillance [15]. This visual data and surveillance driven approach is

currently at the forefront of industry innovations and research interests. Within the moni-

toring environment, the video sensor nodes are interconnected with each other over wireless

connections which allow them to collaboratively accomplish tasks such as compression, re-

trieval and correlation of video data [16], to name a few. These factors make WVSNs very

1



different from traditional wireless sensor networks (WSNs), where scalar nodes such as ther-

mal or light sensors are often considered in 2D and with omni-directional sensing range [17],

i.e., usually a circular disc with a defined radius. On the other hand, WVSNs utilize video

sensors that normally have a sensing range with a directional field of view (FoV), where the

perspective is often modeled as a fan-shape in 2D and a cone-shape or a pyramid-shape in

3D [18]. Therefore, not only does the deployment location affect the area a video sensor

covers but also the direction of the video sensor is important to its sensing ability. This

challenge often renders the traditional deployment solutions for WSNs and 2D environments

infeasible to be applied to solve the WVSN deployment problem [19] [20] [21].

Furthermore, there are also challenges directly coming from monitoring the indoor

environment [22] [23]. For example, there are often obstacles such as ceiling lamps and

furniture inside the indoor space, which, if not carefully considered, can easily block the

line-of-sight of deployed video sensors and reduce their sensing capability. Another challenge

is that when incorporating video sensors surveillance into a normal WIFI network, one

has to take into account the large amount of data traffic collected by the video sensors.

This may cause the WVSN to encounter interference or interruptions to the normal use of

the WIFI communication within the building (e.g., an office area). Therefore, the WVSN

is often required to have its own separate communication network to connect the entire

monitoring system. On the other hand, although there are recent studies on the WVSN

coverage and deployment problem, most of them were inapplicable to 3D indoor monitoring,

either due to less practical assumptions such as video sensors that only face certain directions

or still considering a 2D scenario, or because of simply negating the impact in which the

angular direction of the video sensor affects the sensing capability, or failing to incorporate

important issues such as obstacle awareness and network connectivity [24] [25] [26] [27]

[28]. Moreover, we envision the use of this research in applications where monitoring is

provided to cover spaces requiring strict specialized coverage constraints (e.g., target coverage

in jewelry stores and museums to prevent theft and public areas to improve the quality of
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face/identity detecting via area angular coverage) implemented to detect obstructions within

the monitoring space, provide specialized facial recognition and determine sensor placement

for optimal coverage in scenarios where human estimation is not accurate.

Therefore, this dissertation proposes optimization techniques and algorithmic solu-

tions for the deployment problem of wireless video sensor networks in a 3-D indoor space.

Herein, deployment is concerned with the placement and dispatching of sensors in a simu-

lated 3D real-world environment. Beyond this general deployment problem, there are several

issues that are considered as well, such as 1) incorporating connectivity which ensures that

the entire network is fully connected using a separate wireless communication among the

video sensor nodes to a base station, 2) implementing “2 -angular-coverage” where at least

two video sensors monitor a region within the coverage area from different angles, and 3)

demonstrating mechanisms to provide obstacle awareness within the monitored space. Fur-

thermore, a discussion is given to identify future research directions including addressing

traffic issues in WVSNs to maximize the throughput and minimize the delay of the traffic

built up within the network. The subsection below summaries each issue to be addressed in

our research and its significance.

1.1 Research Challenges

There are countless studies available that explore the deployment problem in WSNs

[21] [22] [25]. However, there are major differences in WSNs and WVSNs, which prevent

the use of techniques that are currently well developed for WSNs to be applied in WVSNs

[26]. Introducing WVSNs into an environment presents additional challenges that are not

often attributed to WSNs such as the quality of coverage in WVSNs that depend on the

orientation of the video sensor. Another differentiating aspect of WVSNs versus that of

WSNs is the sensing range of sensor nodes which is a function of the sensor’s field of view

(FoV), aspect ratio and near/far fields. In this section, we will explore the research challenges

in addressing the deployment, coverage and networked issues that arise in WVSNs for 3D
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indoor monitoring.

One of the critical issues in WVSNs is the deployment problem. Dissimilar from

traditional scalar sensors such as heat or light sensors that have omni-directional sensing

ranges, the deployment of a visual sensor must consider the directional aspect of the sensor.

This additional criterion can increase the cost associated with deploying sensors nodes. As an

example, a scenario can happen where multiple nodes are deployed and cover the same area

redundantly which increases the resource overhead, resulting in an inefficient deployment

scheme. Additionally, deployment can affect the communication among nodes in the sensor

network. Even though existing works explore the deployment problem in WSNs there is still

a substantial need to address the issues for WVSNs in totality with concern given to the

angular sensing field.

Another critical issue in WVSNs in contrast to WSNs is the support of high rate video

streamed traffic. Due to the large amount of data that travels in WVSNs, a connectivity

scheme to ensure communication among the nodes is desired. Connectivity in WVSNs for a

monitored space is a necessity. For example, if a WVSN within a monitored space relies only

on existing WIFI availability, there are circumstances that may occur where the system fails

or become unavailable (i.e., power outage). In this scenario the bandwidth overhead increases

and can interfere with the existing system (i.e., CS department WIFI) causing signal delays.

Moreover, such consideration provides an advantage in developing separate communication

platforms that are not reliant upon the existing connectivity systems to handle the impact

of processing the large amount of data traffic collected by the video sensors.

In WVSNs a fault tolerant scheme is desired. Often times due to poor energy conser-

vation (battery life) of wireless video sensor nodes within a network, a scenario can happen

where one or more nodes can go offline resulting in the failure of a node to cover a specific re-

gion if only one node is responsible for that coverage area. There is thus a need to implement

k-coverage in the network. k-coverage ensures that at least k sensors will be able to cover

a specific region. Implementing k-coverage drastically improves the overall performance of
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the WVSN. Often times existing studies primarily touch upon the deployment problem for

1-coverage, and only consider the 2D aspect of the sensing range coverage. If implemented

as such, the deployment scheme would lack practical real world application. Also, in an

indoor environment, deployment area restrictions further render the solutions for traditional

scalar sensors and 2D sensing field incapable of solving the WVSNs aspect. Thus, it is more

appropriate to consider k-coverage for WVSNs in 3D indoor space monitoring. To maximize

the information that can be captured by visual sensors covering a 3D location, a scheme

to deploy the visual sensors from different directional angles and further extend k-coverage

to “k-angular-coverage” to denote such unique requirement in WVSNs is befitting. In this

dissertation, we take the first step to study the 2-angular-coverage.

Obstacle awareness in WVSNs is another challenging factor. In indoor spaces, ob-

stacles such as decorative fittings, furniture and ceiling lights are staples of modern design

in commercial and residential living spaces. However, these furnishings can easily block

the line-of-sight of a video sensor. Works considering indoor 3D space coverage but failing

to incorporate an obstacle-aware strategy for obstacles existing in the monitored space can

produce results that are not feasible in real world scenarios.

1.2 Research Contributions

In this dissertation, we thoroughly investigated the aforementioned challenges asso-

ciated within the general deployment problem of WVSNs that are not readily addressed in

numerous well defined solutions for WSNs. Different from previous studies, we proposed so-

lutions for the deployment problem in WVSNs for 3D indoor spaces with the consideration to

ensuring coverage, connectivity, obstacle-awareness and reliability. Our work derives a more

precise network model that takes into account the angular aspect and significant impact this

parameter has on the deployment within the network. In particular, this dissertation has

made the following contributions.

• Model the general problem in a continuous space, striving to minimize the number of
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required video sensors to cover the given 3D regions. We then address the problem

by converting it into a discrete version where we incorporate 3D grids for our discrete

model, which can achieve arbitrary approximation precision by adjusting the grid gran-

ularity. Consequently, by using the discrete model we can get more precise and realistic

coverage space for each wireless video sensor.

• We design two strategies to tackle the additional challenges caused by obstacles, which

are Divide and Conquer Detection Strategy and Accurate Detection Strategy. We

demonstrate how both strategies can detect obstacles within the monitored space and

can improve the performance of our solution by avoiding covering particles inside the

shaded area caused by obstacles when we deploy the wireless video sensors into 3D

indoor space. Consequently, we can get very precise and realistic coverage space for

each wireless video sensor.

• Propose a mechanism to address k-coverage whereby we extend the discrete model by

implementing a constraint for 2-angular coverage, so that each point within the area

of interest is covered by at least two video sensors at opposing angles of a pre-defined

value.

• Propose a scheme to ensure connectivity in the network among all sensor node contin-

uously using a path protocol and a base station.

• Develop a Greedy-Heuristic algorithm that can achieve complete area coverage of the

3D regions by determining the candidate locations and directional angles to cover the

maximum number of lattice points, thus deploying the locally optimal video sensor

within the monitored area.

• Develop an enhanced Depth First Search algorithm that consists of an enhanced graph

traversal method that searches the lattice of local candidate sites for optimal sensor

node placement and angular direction. An area coverage function with a greedy heuris-
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tic, a derived lower bound for search branch pruning and a simulated frustum culling

method are also utilized to increase the efficiency of the algorithm and can produce

optimal results if given enough time.

• Develop a customized Java Script 3D environment simulator to compare the proposed

solutions. The results demonstrate the reduction in the number of required video

sensors by the greedy heuristics achieves up to 50% over a baseline algorithm. Our

enhanced DFS can achieve an additional reduction on the number of video sensors up

to 37%.

1.3 Dissertation Organization

The remainder of the dissertation is organized as outlined below.

• Chapter 2 details an extensive overview of WSNs, the classification of WSNs deploy-

ment techniques, explores the significant impact of its evolution on WVSNs and dis-

cusses the current challenges associated with WVSN deployment.

• Chapter 3 discusses in more details the recent works related to the research conducted

in this dissertation.

• Chapter 4 discusses the general deployment problem. The continuous and discrete

space network models are defined in our problem formulation. Then, both the Greedy

Heuristic and enhanced Depth First Search algorithms are proposed, where we present

a detailed discussion on the pruning method to reduce the solution search space. The

simulation environment is presented, where we introduce our Java Script 3D environ-

ment. A performance evaluation of each solution is provided.

• Chapter 5 presents an extension of both network models to include obstacle awareness

and connectivity constraints. We explore both the Greedy Heuristic algorithm as

well as the enhanced Depth First Search algorithm solution, whereby we discuss how
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incorporating obstacles and connectivity into the 3D space impacted the solutions

performance.

• Chapter 6 formally introduce the angular coverage problem. We discuss both the

continuous space and discrete lattice based models revisions to include the 2-angular-

coverage constraint in our approach to constructing the problem. The performance

evaluation of both the revised Greedy Heuristic and enhanced Depth First Search

algorithms are provided.

• Chapter 7 concludes the dissertation with additional discussions on the overall perfor-

mance of the aforementioned algorithms, with some future directions for our work.
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CHAPTER 2

BACKGROUND

A general overview is presented in this chapter for Wireless Sensor Networks (WSNs)

and Wireless Video Sensor Networks (WVSNs). Section 2.1 will introduce the historical

aspects of WSNs and discuss the current implications of the technology on the topic area.

Building upon the general description of wireless sensor networks in practice, Section 2.2

will explore the evolution of the technology and present the different types of wireless sensor

networks. In Section 2.3, an in-depth discussion of wireless multimedia networks is presented,

addressing the broader concept of the networks in practice and some classifications of the

category. WVSNs are reviewed with example applications in Section 2.4, where a comparison

of traditional and non-traditional sensors is given. The history and current issues surrounding

WVSNs are provided in Section 2.4.1 and 2.4.2, respectively. Finally, in Section 2.4.3 a

description of common strategies for WVSNs deployment, connectivity and network issues

is presented.

2.1 Wireless Sensor Networks

Although WSNs have a long and rich history, it only emerged as a prominent tech-

nology in recent years. Nowadays, this technology is easily integrated into many aspects

of our daily lives. The proliferation of this technology can be seen in mobile, home utility

(i.e, garage openers, television remote, etc.), commercial and medical products [29]. The

technology is now more compact, affordable, portable and powerful (i.e. processing ability)

than ever. This is a far cry of wireless sensors from days of old.

The origin of WSNs is heavily rooted in the development of technologies for gov-

ernment surveillance and military espionage in the 1950s. However, research as we are
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accustomed to now using networks historically dates back to the late 1960s. During this

time, a select number of universities within the United States begin to establish Advanced

Research Projects Agency Network (ARPANET) programs to collaborate with government

researchers and to develop internal projects [30]. In the early stages of this project re-

searchers developed a packet switching network that was the first network to implement

the transmission control protocol and internet protocol (TCP/IP) suite. The initial flagship

institutions that participated in the ARPANET project consisted of the University of Cal-

ifornia -Los Angeles (UCLA), University of California - Santa Barbara (UCSB), Stanford

Research Institute (SRI) and the University of Utah as illustrated in Figure 2.1, where the

first successful attempt to send a message was established between UCLA and SRI.

WSNs are formally defined as a network of spatially distributed devices that are

equipped with sensors to monitor large geographical regions or remote coverage areas (i.e.

outdoor spaces) and environmental conditions [31]. These devices were established to work

autonomously and are capable of self organization by logical linkages using sinks . Wireless

Sensor Networks are categorized into a class of wireless ad hoc networks, where the wireless

ad hoc network is a collection of wireless nodes [32]. The nodes have the ability to commu-

nicate directly over a shared wireless channel. There is no additional infrastructure that is

required for ad hoc networks. So, every node within the network is equipped with a wireless

transceiver that can process data packets and guide them to their destinations. As a result

of these features, the use of wireless sensor networks in research grew exponentially, and

extensive research has been conducted in the area of Wireless Sensor Networks (WSNs) to

provide many beneficial techniques. WSNs are now applicable in numerous areas including:

industry, medical, networking, environmental and transportation fields. There are many

advantages associated with the use of WSNs such as the economical cost to setup a network

and scalability within the network. As a result, WSNs have expanded into several other

categories of sensor node networks.
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Figure 2.1. The Beginning of ARPANET [1]

2.2 Evolution of Wireless Sensor Networks

In the late 1980s, the high rate of demand for Wireless Sensors Networks was at

an unprecedented level. Initially, the use of WSNs was primarily for private industrial

applications, government entities and military science. The true potential and capabilities

of Wireless Sensor Networks began to be explored more in the 1990s when joint efforts among

academia and industry initiated efforts to solve challenges within Wireless Sensor Networks.

The challenges associated with growing the technology were centered on the bulkiness, high

cost and patented protocols of the sensors. This all changed due in part to the advancement

of fields such as material science, networking and embedded processors. Initiatives among
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universities and commercial industries such as University of California-Los Angles (UCLA),

University of California-Berkeley, National Aeronautics and Space Administration (NASA)

and ZigBEE assisted in the identification of core functional problems within the network

that included: reducing the cost per sensor, extending the energy of sensors and enabling

deployment in commercial applications.

Wireless Sensor Networks have played an integral role in countless technological areas.

The sensors of yesterday have been transformed into state of the art devices that provide

Wireless Sensor Networks a new generation of features to offer to consumers. In some cases,

sensor costs have declined by as much as 100X times over the past decade as seen in Figure

2.2, where a chart illustrates the decrease in cost of sensors over the decades (1950s-2000s)

in various application fields.
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Figure 2.2. Evolution of Sensor Cost [2]

Additionally, Figure 2.3 provides a bar graph that showcases the gradual market

gains in consumer applications as compared to military, science and industry over the past

decades (1950s-2000s) as reported by Silicon Labs [2]. Additionally, the chart outlines the
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transitional change from the core military applications in the past to the increase in industry

and consumer applications more recently.
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Consequently, with the popularity of WSNs many subcategories of Wireless Sensor

Networks have emerged. Some of the subcategories identified as a type of Wireless Sensor

Networks include: mobile, underground, underwater, terrestrial and multimedia WSNs [17]

[33], as illustrated in Figure 2.4. The following provides a overview description of each WSNs

type mentioned above.

• Wireless Mobile Sensor Networks (WMSNs) are compact portable sensors that can

move with their carriers to patrol and monitor any environment. These sensors are

suitable for scenarios where traditional deployment techniques such as manual or air

drops are inapplicable. WMNs play a critical role in security applications and are often

used in emergency first responders scenarios (e.g., policemen, fire fighters, medics) [34].

• Wireless Underground Sensor Networks (WUSNs) provide an efficient wireless commu-
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nication in the underground medium. The propagation medium consists of sand, soil

and rock. This type of sensor network is useful for applications that include soil con-

dition monitoring, earthquake prediction and border patrol. Magneto-inductive (MI)

waveguide techniques are commonly proposed to cope with the very harsh propagation

conditions in WUSNs [35].

• Wireless Underwater Sensor Networks (UWSNs) are essential to numerous underwa-

ter applications, including underwater tracking and tactical surveillance for endangered

sea life. Under water acoustics sensors are used primary to estimate the long dynamic

propagation delays in data transmissions. UWSNs are beneficial in a wide range of ap-

plications including: wide range of aquatic diving, coastal-line surveillance, underwater

exploration and tsunami prevention [36].

• Wireless Terrestrial Sensor Networks (WTSNs) are multifaceted sensors that allow

for use above as well as underground. WTSNs use solar cells and low duty cycles to

conserve energy. The sensors are deployed usually in an ad-hoc manner. The sensors

play an active role is applications involving surface exploration, environmental and

industrial monitoring [37].

2.3 Multimedia Wireless Sensor Networks

Multimedia Wireless Sensor Networks (MWSNs) are a category of WSNs that allow

for the monitoring of events in a multimedia format, such as images, videos, and/or audios

[38]. The MWSN consists of low-cost sensor nodes equipped with microphones and cameras.

The nodes are often interconnected with each other over a wireless connection, which allows

for compression, retrieval and correlation of multimedia data. In contrast, wireless sensor

networks are deployed for physical phenomenons such as temperature, pressure, humidity

or the object’s location which is essentially numeric data [39] . These general applications

provide low bandwidth demands and are normally delay tolerant. However, Wireless Mul-
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Figure 2.4. Types of Wireless Sensor Networks

timedia Sensor Networks pose a greater challenge in terms of deployment but can provide

enhancements to the existing sensor network applications which includes: tracking, home

automation and surveillance monitoring. Traditionally, WSNs allow sensor nodes to retrieve

information from the environment with a predefined sensing range, i.e., a circular disc with a

range defined by the type of specified sensor. Figure 2.5 highlights an example of the tradi-

tional sensing range models of WSNs. In these models, the sensing range is omnidirectional

with 360◦ sensing capabilities. On the other hand, multimedia sensors primarily have larger

sensing ranges and are also sensitive to the directional angle of the sensor’s position. In

particular, cameras can capture images of objects or parts of regions that are not necessarily

close to the camera. These unique features identified within MWSNs are beneficial in 3D

indoor environments because of the practical and real world applications that can be im-

proved upon including: campus, industrial, medical and security monitoring. Furthermore,
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with the introduction of these techniques the efficiency of MWSNs can become independent

of the existing network infrastructure (i.e., building’s indoor network infrastructure) allowing

direct connectivity among the deployed indoor video sensors.

Rs

Rs

(a) (b)

Figure 2.5. Traditional WSN sensing range models. (a) 2D directional sector coverage model;
(b) 2D omnidirectional sensing range model

2.4 Wireless Video Sensor Networks

Over the course of a decade or so, WVSNs have emerged as a leading technology

applicable among many fields in government, academia and industry, due to the economi-

cal cost of complementary metal-oxide-semiconductor (CMOS) and the versatility of signal

processors [40]. A wireless video sensor network is a type of wireless multimedia sensor net-

work that has cameras mounted on distributed sensor nodes that allow for the recording of

digital images [41]. This technology has unlimited potential for numerous application fields.

However, wireless video sensor networks have introduced new research challenges to the field

of WSNs. Wireless Video Sensor Networks are comprised of a set of nodes where each node

typically consists of four major components: a micro-controller, sensor, power supply and a
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wireless communication device. In this instance the sensor utilizes a camera as an interface

attached to the node to view the physical world [42].

Figure 2.6. Components of a Wireless Video Sensor Node

A sensor node within the wireless video sensor network is capable of carrying out

such tasks as: processing data, communicating with other nodes within the network and

collecting sensory data from the environment [43]. These types of sensors can range from

a simple camera with location and position properties to a high resolution image sensor

that can perform facial recognition. The basic components of a video sensor network are

shown in Figure 2.6. Every component of the sensory board serves a specific purpose. The

micro-controller is essentially the “brains” of the unit in the node. The primary purpose of

the micro-controller is to control the sensor and gather information. It is also responsible

for processing the collected information. The micro-controller is normally equipped with

external or internal memory storage to collect and process information. Also, the micro-

controller controls the wireless communication device and decides when and where to send

information. It can also receive data from other nodes and decide what to do based on the

content of the received data. The power source for the sensor is often an external battery

that is connected to the board. The antenna serves as a communication extension to provide
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Figure 2.7. Sensor Node Comparison [3]

access between individual sensor nodes. Figure 2.7 illustrates the components of a traditional

sensor node versus that of a video sensor node that has a camera attached as seen in [44]. The

sensors in general have very limited resources in terms of energy, coverage and connectivity.

2.4.1 History of WVSNs

Wireless Video Sensor Networks(WVSNs) fit into a category of network platforms

similar to the technology acknowledged in Wireless Sensor Networks. The early concept of

WVSNs originated in the 1960s. The primary usage was to serve as a monitoring application

for Closed Circuit Televisions (CCTV). These types of networks were controlled by the

government and other proprietary organizations. Currently, WVSNs have transitioned into a

more practical consumer minded approach where smaller network devices are used to capture

and monitor home or office spaces using standard IP based platforms. The surveillance driven
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market is now at the forefront of corporate innovation and social media research interests

[45]. The majority of the market caters to tech surveillance companies and the millennial

generation that crave documenting and over-sharing detailed events of their lives. The large

amount of video data poses a QoS (Quality of Service) issue during transmission due to

traffic delays within the network.

2.4.2 Issues in WVSNs

Wireless Video Sensor Networks are capable of delivering many positive features,

though there are issues and trade-offs that are associated with the development of a reliable

WVSN. In this section we discuss some of the factors surrounding the challenges that exist in

the deployment of wireless video sensor networks. Some of the factors were mentioned earlier

in previous sections of this chapter, however, what proceeds will touch specifically upon

sensor deployment issues and other inherited limitations of WVSNs. A deployment scheme

addresses the placement or arrangement of sensors within a network that can influence several

performance metrics, including coverage, connectivity, obstacles and network traffic [46] [47].

One of the central issues associated within WSNs and WVSNs is the coverage prob-

lem. In WVSNs, coverage can have numerous meanings and can be explored using different

methods. In general, Deif and Gadallah [19] posed it in a question to determine ”How well

do the deployed sensors observe the physical space?”. When classifying coverage in WSNs

it is divided into three types as seen in Figure 2.8: area (blanket) coverage, point cover-

age (covering a set of finite points in a region of interest) and barrier coverage ( detecting

movement across a barrier of sensors) [48] [19].

The coverage problem focuses on two components: (1) maximizing the number of

points in the monitored region covered by the sensor’s sensing range, and (2) minimizing the

number of sensors required to cover the entire monitored area. This is a major factor that

contributes to the performance optimization of the network and is a highly regarded research

area in WSNs. Likewise the deployment problem is a major issue in wireless video sensor
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Figure 2.8. Coverage Classifications (a) Target Coverage (b) Area Coverage (c) Barrier
Coverage using pointillism of discrete points [4]

networks. In previous studies, a general model of the problem is given where several sets of

points within a monitored region are defined as a cover-able set. A sensor is then deployed

(placed) in the space with parameters such as a sensing range, position (sensor location)

and orientation. A point is considered to be covered if it is within the sensing range of any

of the video sensor. Additionally, a deployment scheme is considered efficient if it reduces

the number of video sensors deployed in the monitored space required to completely observe

(cover) the region.

However, other factors that weigh heavily on the performance of the WVSN are often

overlooked such as the quality of the deployment scheme. When analyzing the quality of

coverage within wireless video sensors networks a different metric is needed to measure the

quality of the deployment in terms of coverage. Often times the k-coverage (i.e., every point

is covered by at least k sensors) metric is applied.

Another important factor in WVSNs is the assurance of connectivity within the net-
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work. The sensors’ ability to communicate with each other is of high priority. Many networks

try to support 1-connectivity or 1-hop approach property where the data can be routed to

one node and reach its destination (i.e.,the sink) within the network. This is based on the

assumption that the WVSN connectivity is primarily determined by the sensors deploy-

ment locations and the communication ranges. The objective is to develop a communication

model where the sensors are relatively clustered promoting the rationale of each sensor being

within the communication range of its neighbor. Many related works reviewed formulated

the problem of wireless sensor connectivity modeled as a directed graph. In the terms of

directed graphs, there are three types of connectivity as stated in [49]. Figure 2.9 illustrates

a representation of a strongly and weakly connected graph as defined below.

• Weakly connected - if replacing all of its directed edges with undirected edges produces

a connected (undirected) graph.

• Regularly connected - contains a directed path from distinct vertices u to v OR a

directed path from distinct vertices v to u for every pair of vertices u, v.

• Strongly connected - contains a directed path from distinct vertices u to v AND a

directed path from distinct vertices v to u for every pair of vertices u, v.

One of the fundamental and most commonly addressed factors in WVSNs is that of

traffic delay. Due to the immense amount of video data retrieved and transmitted within

the WVSN, traffic flow within the network is a major issue. The avoidance of traffic delay

in the network, where a scheme to relay data in an optimal path increases the performance

is crucial. QoS-aware networks where end to end delivery protocols are introduced into the

system to provide management and scheduling algorithms are desired [50].

Finally, the issue of addressing obstacles within the monitored area in WVSNs is a

critical factor. In an indoor environment, there are often obstacles such as desks or furni-

ture, which introduce additional challenges and further render the deployment solutions for
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traditional sensors and 2D sensing fields obsolete. For example, considering obstacles within

the monitored region helps to reduce the allocation of sensor resources that may be deployed

for areas (monitored points) that are blocked by obstacles. The ability to avoid these points

that are of no consequence to the improvement of the network coverage will improve the

overall performance.

2.4.3 Strategies

In this subsection, discussion is provided on some of the common strategies used to

solve deployment, connectivity and networked issues in WVSNs.

Wireless deployment strategies are either considered to be planned or random de-
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ployment. The random deployment approach is the most commonly used tactic to deploy

sensors because it is easier and less expensive for large wireless sensor networks [51]. Most

of the works in literature are focused on randomly deployed video-based wireless sensor

networks. However, in a 3D indoor space, it is more reasonable to adopt planned deploy-

ment (i.e., deterministic deployment), which is what we will focus on in this dissertation.

The WVSNs that we are currently undertaking involves sensor nodes that have the ability

to sense its environment and communicate with each other. In this section, we consider

commonly used deployment strategies. The three categories that are often used to deploy

sensors are computational-geometry, force, and grid based [52] as shown in Figure 2.10. In

force based strategies deployment is dependent upon the mobility of the sensors, specifically

noting where energy forces can repel or attract the sensors within the network. This ap-

proach assumes a virtual force theory proposed by Khatib [53], where nodes have a virtual

force property which can attract sensor nodes to each other and transmit data. Often times

the sensor node is considered a mass and using a formula, the virtual force of each node

can be calculated [54]. This approach is attempted when full coverage is needed within

the network. The computational-geometry based approach is employed often times when

optimization is desired in the deployment scheme. In the computational geometry based

approach, geometry is used to evaluate the problem and define an algorithm. Using this

approach, the algorithm is designed to efficiently solve the problem using data structures

and basic geometric objects such as: line segments, points and polygons. Methods based

on computational geometry include: “Relative Neighbor Graph, Gabriel Graph, Voronoi

Diagram and Delaunay Triangulation” [6]. Using these techniques every node is assigned

enough power so that each node can reach its neighbor in one hop.

Grid based approaches are implemented in sensor deployment to assist in the sensor

positional tracking and as a way to determine the coverage efficiency using point allocation.

To apply this approach, the grid can represent the layout of the monitored area and then

the problem will be modeled and formulated as the area of a grid. An algorithm is then
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(a) (b) (c)

Figure 2.10. Common Deployment Strategies (a) Computational Geometry-based; as shown
using Delaunay Triangulation (b) Grid-based (c) Force-based as shown using Virtual Force
theory [5; 6]

based on the modeled grid. Essentially, the coverage area of a sensor is represented by a set

of intersection points of the grid.

After the deployment of wireless video sensors, several studies [55] [51] suggested the

implementation of coverage metrics to measure the quality of the calculated coverage in the

network. Within the survey [51], the authors identified three reasonable metrics to measure

the deployment with consideration to coverage. The first metric is referred to as the Network

Coverage Area (NCA). Using NCA, the node’s area is defined and the relevant sensing area

of a node is denoted as a sector of a circle. This sector represents the intersection of the

sensor node field of view and node area. Using a function termed Deployment Coverage

quality (DCQ), shown in equation 6.2, the ratio of total relevant sensing areas (NCA) and

the collective sum of all relevant sensing areas (NRSA) are evaluated.
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DCQ =
NRSA

NCA
(2.1)

Another widely proposed coverage metric is k-coverage. The k-coverage problem

generally states that any point within the monitored area must be located in the sensing

range of at least k-sensors. As an example, if the deployment area is defined as 4-coverage,

every point within the area is covered by at least four sensors. This means that up to three

of the fours nodes sensing the same monitored region can fail and the area will still be

covered (monitored) by one of the four nodes. Full k-coverage denotes that every point is

covered by all k-sensors and where k is usually defined by users as greater than or equal

to one. It is often suggested that guaranteeing 100% coverage in WVSNs is very difficult

in a random deployment scenario. So the authors in [56] proposed a directional k-coverage

metric (DKC). DKC demonstrates the coverage quality measured in terms of a probability

guarantee. It utilizes a summation function to calculate the probability of coverage for a

target by a camera considering the video sensor’s field of view, deployed nodes and sensors

covering the same region.

The following paragraph below explores some common connectivity strategies utilized

in Wireless Video Sensor Networks. Coverage in a WSN is intertwined with the connectivity

in the network as advised in [19]. Consequently, the same can be assumed for the coverage-

connectivity relationship in WVSNs. Connectivity among sensor nodes can be established

using direct or indirect pathways. As seen in traditional coverage approaches, the con-

nectivity topologies for WVSNs are often modeled using graphs. Given a graph G, where

G = (V,E). We can denote V as a set of sensor vertices and E as set of communication links

connecting neighboring sensors. Given this formal definition, the strategies for communica-

tion among sensors can be divided into two types: node connectivity and edge connectivity.

The node connectivity method outlines the connection directly using node pairs. If a path

exists between the node pairs in a single or multi-hop scenario, the graph is connected; oth-

erwise the graph is not connected [57]. Similarly, when there are at least k edge disjoint
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paths between every pair of nodes, there exist a path to communicate among the nodes.

Once the connectivity of a network is established, factors such as path losses, capacity and

link-quality need to be considered. These metrics allow for the analysis of the signal strength

between sensor nodes measured as Signal-to-Noise Ratio (SNR) or Received Signal Strength

Indicator (RSSI) [58]. In a directed graph, an edge connects two vertices. If the vertex is

removed from the graph, all of the edges associated with that vertex must also be removed.

These edges can not arbitrarily be connected to other vertices.

The author in [59], investigates the connectivity problem for wireless multihop net-

works considering homogeneous random node distribution. In the study, the author proposes

a geometric random graph model for the network to represent the wireless communication

links (i.e., edges). The work focuses on identifying the graphs minimum node degree and its

k–connectivity. The derived analytical expression can determine the the required transmis-

sion range rO. For the given node density parameter, an adequately k–connected network

is ensured using the edge connectivity. The problem evaluation utilized simulation in var-

ious scenarios, with and without border effects. Hence, the node and edge issues become

increasingly important for the overall performance of a WVSN monitoring infrastructure.
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CHAPTER 3

RELATED WORK

This chapter provides an overview of research related to this dissertation. More

specifically, Sections 3.1.1, 3.1.2 and 3.1.3 provide a review of related studies for WSNs

considering deployment, coverage and connectivity, respectively. Also included is an overview

of past and existing research studies on WVSNs for deployment, coverage, connectivity and

obstacle detection in spatial environments to provide a reference point outlining the gradual

progression in techniques used to resolve the aforementioned issues. Several studies have

addressed the deployment problem in WVSNs by proposing solutions regarding the coverage

and connectivity issues in 3D environments. Based on these studies, we address the related

works classified into two categories for 2D and 3D WVSNs. Section 3.2.1 discuss current

studies that address the deployment problem for WVSNs. Section 3.2.2 presents existing

research studies that address the coverage problem in WVSNs. In Section 3.2.3 a summary

of related studies that address the connectivity problem for WVSNs is detailed. Finally, a

review of work considering obstacles awareness in WVSNs is provided in 3.2.4.

3.1 Wireless Sensor Networks

The term sensing is formally defined as the ability to perceive or gather information

about a physical phenomena [60]. The device performing the sensing is referred to as a sen-

sor. In WSNs, sensors have the unique ability to not only monitor numerous environment

phenomena but also provide information about the physical properties of that environment

including: pressure, temperature, humidity and light; without significant human interven-

tion. However, there are several metrics that are crucial to improving the overall performance
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of the network. A review of related work on deployment, coverage and connectivity in WSNs

is presented in the following subsections.

3.1.1 Deployment

The deployment problem has been widely explored in WSNs for 2D environments [61]

[62] [63] [64] [65] [66]. Here, deployment is concerned with the placement or positioning of a

sensor network for effective action in a real-world environment. Often times, deployment is

a labor intensive task as environmental hazards (i.e., bugs, wind, rain) can degrade perfor-

mance in outdoor environments and indoor restrictions (i.e., wall, ceiling space constraints)

can factor into placement of sensors [67]. Hence, effective deployment strategies are useful in

maintaining the functionality of the sensor and obtaining high quality performance within

the WSN.

Traditional approaches for WSNs are categorized as 1) random and 2) deterministic

schemes. A key determining factor in selecting the type of approach for deployment is the

deployment area. In a scenario where random deployment is used, often times factors such

as scalability for large-scale open regional monitoring is emphasized. However, in small-scale

deployments a deterministic strategy is usually chosen for the placement of wireless sensor

nodes [68].

In [69], the authors proposed an approach where a 2D model is implemented for the

planned deployment of sensors. Utilizing a linear hierarchical network the authors propose a

scheme to minimize the number of nodes needed to construct an efficient network by devel-

oping optimization algorithms where the greedy solution considers distance to the sink from

the nodes. Presented in [70] is a control-based sensor deployment algorithm for detection

and surveillance in WSNs. Authors address the deployment problem by determining the

locations in order to satisfy the detection requirements for a squared error. The problem

is modeled as a dynamic system and formulated as an optimal linear quadratic regulator

control problem. Two solutions are given, namely an optimal control based and Max Defi-
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ciency algorithms, both of which only offer nominal gains, the former being computationally

demanding due to the implementation of a sweeping method.

As previously stated, the number of sensor nodes deployed within an environment

has a direct impact on the cost and the performance of the network where a robust and

fault tolerant environment is desired. As a result, authors in [71] evaluated several sensor

deployment techniques to determine the efficiency (i.e., determine the pattern that requires

the least number of sensors with the smallest overlapping occurence to cover the monitored

space) of each based on a coverage area ratio. The work focused on geometric pattern

deployment within a grid, specifically evaluating triangular, square and hexagonal lattices.

Objectively, the focus of many studies which employ geometric deployment propose to max-

imize the coverage percentage and ratio of area covered by at least one sensor relative to the

total area of the region of interest (ROI). The study concluded the triangular lattice pattern

performed the best among the other deployment options.

As is common practice in many previous studies, WSNs are traditionally formulated

to use 2D models for scalar sensors, all the studies highlighted above follow that mold. This

is typical of previous studies because of the inherent difficulty in studying the deployment

problem for 3D coverage and connectivity. The problem is considered to be NP-hard even

without integrating obstacles into the monitoring environment. In a rare attempt to address

the 3D deployment problem for WSNs, the authors in [72] propose a deployment planning

tool to minimize the cost to achieve full coverage and node connectivity in a 3D target area

with obstacles. A 3D model is formulated for the deployment space with point and cost

variables. A heuristic algorithm for computing a near optimal solution is proposed. A smart

space simulator UbiREAL, is presented to implement an interface module for configuring the

sensor deployment within the space. However, there is no quantitative data or benchmark

testing presented to verify the performance of the solution. A figure of the simulator test is

simply given.

A relatively new technique proposed for sensor deployment is clever swarm intelligence
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where algorithms are implemented using the collective behavior patterns of self-organized

systems, natural or artificial such as ant colonies, animal herds schooling fish or even bacteria

growth [73]. Authors in [74] propose an Artificial Bee Colony (ABC) algorithm for the dy-

namic deployment problem in WSNs. A probabilistic detection model integrates a scenario

of mobile and stationary sensors. The ABC algorithm is a swarm intelligent technique based

on the foraging behavior of honey bees. The algorithm utilizes food sources which corre-

spond to placement positions and the nectar amount of the food source represents the quality

fitness of a candidate solution. The evaluation of the ABC algorithm is compared with a

baseline particle swarm optimization algorithm (PSO), also another well-known swarm based

optimization technique.

Similarly, authors in [75] propose an Ant Colony Optimization algorithm to solve

the deployment problem for a WSNs. Using a colony of artificial ants behavioral patterns

a mathematical formula is proposed. These cooperative agents then search a simulated

environment to find optimal paths. The environment is represented as a simple graph.

Highlighted in the ACO algorithm is a max-min ant system (MMAS) where the parameter

uses a fixed upper and lower bound of pheromone trails to prevent the redundancy of traveled

ant pathway solution sets.

3.1.2 Coverage

Coverage is a fundamental issue in improving the performance of WSNs. The coverage

metric is an indicator of how well each sensor deployed within the network can monitor the

coverage area. Several studies have surveyed the deployment problem in WSNs proposing

solutions regarding the coverage metric in 2D environments [76] [77] [78]. Typically, sensor

node models for coverage are categorized into three different types including: index, binary

and probabilistic models [79]. An extensive survey of the coverage problem for WSNs is

presented in [80]. The authors explored various aspects and challenges that exist for WSNs

coverage, including: classifications of coverage, types of network deployment, node models,
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target characteristics, applications attributes and types of monitoring space. Accordingly,

the related works discussed below are classified by the 1) type of monitored area that will be

covered (i.e., barrier, point, regional) and 2) the type of deployment employed (i.e., random

or planned/deterministic) for 2D WSN. Presented below is a review of related work for the

coverage problem as it pertains to barrier, point and regional coverage.

The concept of barrier coverage was first introduced in the context of robotics sensors.

The idea behind barrier coverage is essentially to detect a breach or intrusion attempt in

a region for the entire coverage area. In [81], Liu et. al study the strong barrier coverage

problem using a randomly-deployed sensor network. Contrary to previous works that high-

light the critical conditions of weak barrier coverage, this study focuses on ensuring that

intruders can not breach or cross the barrier strip undetected independent of the method

chosen for path crossing. The authors propose theoretical foundations and a practical divide

and conquer algorithm that divides the barrier strip into small segments. The algorithm can

then compute the vertical barriers into vertical strips. In the next phase of the algorithm

the horizontal barriers are computed in each segment connected by the vertical barriers into

the neighboring vertical strips. A width-to-length ratio (i.e., the logarithm of the length)

beyond which strong barriers start to emerge in the strip is calculated. An efficient dis-

tributed algorithm is also proposed to construct disjoint barriers in the sensor network. The

strategy for weak barrier coverage is commonly used because of it guaranteeing the detection

of intrusion for crossing the barrier strip only along an orthogonal path, an easier implemen-

tation method for detection. However, in the case of strong barrier coverage, a guarantee for

intrusion detection is given no matter the path followed by the target (i.e., intruder), which

requires a more complex approach.

Point coverage is a method used to model the coverage problem using a discrete ap-

proach. Point coverage for WSNs has been extensively explored [82] [83] [84]. Point coverage

states, given a point P in a monitored space, it is covered if it is within the sensing range

of a sensor. In Yang et. al [85], authors argue the case for guaranteed area coverage (i.e.,
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regional coverage) by approximating point coverage for a WSN. The model in the study

assumes the network is densely populated, thus the point coverage can simulate full area

coverage. The objective of the study is to minimize the energy cost in the network while

maintaining k-coverage. The proposed solutions include the construction of a dominate set

based on the traditional graph theory. The authors propose several solutions, one global

and two non-global algorithms. The global solution implements a cluster-based approach

to select backbone nodes to form the dominate set. The non-global solutions use a pruning

algorithm based on 2-hop neighborhood information. To evaluate the performance the au-

thors employ both theoretical analysis and simulations. In [86], authors explore the coverage

problem modeled as grid points for sensor detection. An effective full area coverage (i.e., re-

gional coverage) and communication protocol is given. The authors use homogeneous scalar

sensors to model the problem in 2D environments which can result in the solutions not being

applicable to real world coverage issues. The coverage problem is indeed a fundamental issue

in WSNs, so a comparison study to understand its metric and the independent impact of

both regional and point coverage is addressed in [87]. Additionally, a current patent [88] is

pending for a system that generates virtual interest points in an image, accordingly to detect

points of interest in an image detected by an interest point detector using point coverage.

In [89], the authors proposed a scheduling method which addressed the k-coverage problem

to extend the network lifetime of WSNs. In their approach a simple 2D model with an

omni-directional sensing field is employed.

3.1.3 Connectivity

Connectivity in WSNs provide a gateway for wireless communication back into the

wired world [21]. The concept of connectivity in WSNs can be simply defined using a commu-

nication topology modeled as a graph for a WSN where the graph is denoted by G = (V,E)

and V is defined as a set of sensor vertices whereby E is denoted as a set of wireless com-

munication links. A sensor pair is then considered to be neighbors of each others if and
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only if their distance is at most the communication range cr, considering the disk commu-

nication model. Theoretically, the concept of WSNs is easily stated. However, the true

implementation of full connectivity is a challenging and lengthy process though a necessary

one. For example, if a WSN within a monitored space relies only on existing WIFI availabil-

ity, there are circumstances that may occur where the system fails or become unavailable

(i.e., power outage). So, the handling of large amounts of scalar data (i.e., temperature,

humidity and pressure readings) that are transferred frequently by each sensor node is of

great importance. One of the most significant questions regarding the connectivity of WSN

applications is the paramount concern to address the need for continuous connectivity that

provide communication links among all the sensor nodes. Additionally, many WSN appli-

cations are continuously dependent on the reliability of their connectivity schemes. Natural

environments in sparse regions like tropical jungles where researchers have a WSN deployed

to monitor the habits of primate monkeys, desert land deployment to monitor shifting sand

storms and oceanic seabed monitoring of coral reefs growth environments are sample cases

of scenarios where frequent disconnections can cause the loss of critical data collections or

even miss notifications of an impending disaster warning. Based on these concerns, related

work is presented which discuss the impact of connectivity in communication dependent

environments.

As an example, environmental monitoring often requires continuous operation for

months [90]. Infrastructure monitoring (i.e., highways and bridges) requires an operational

lifetime of months or several years. Authors in [91], investigate how the placement of relay

nodes in a forestry environment of WSNs will impact the connectivity of the network. The

authors identify a concept using algebraic graph connectivity to indicate the minimum num-

ber of relay nodes and links whose removal would result in a weakly connected graph. The

goal of the study is to minimize the weighed link cost for each of the communication path-

ways in the graph and provide continuous communication to the base station. A proposed

O3DwLC solution minimize the required number of relay nodes and links in the disjointed
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pathways between adjacent nodes in the graph. The result evaluations conclude that a more

reliable and robust WSN for monitored wildlife environment can be achieved.

An approach presented in [92], seeks to select a topology for mobile WSNs which

improve the network connectivity considering the energy consumption among all of the

nodes in the mobile network. The primary approach that the authors discuss in the paper is

a clustered hierarchical topology which enables the possible leveraging of energy consumed

among all the nodes in the network, in addition to allowing the network to reconfigure

itself to prevent threats such as isolated nodes which may interfere with the overall network

connectivity. The proposed solution consists of a hierarchical arrangement of the nodes in a

clustered preferred topology and the use of a link metric parameter to assist the organization

to measure the network connectivity. The outcome is a topology that can essentially reduce

the unnecessary communication of nodes that are grouped into levels and clusters that

restrict communication. The topology can deploy the nodes in different levels and connect

them based on a predefined condition calculated by a proposed link metric. The defined

parameter provides balanced energy consumption among nodes, which prolongs the network

lifetime.

Often times, the use of the percolation theory for porous media is well suited for

application in network models. A network model provides a representation of a porous

medium that generally incorporates pore-scale descriptions of the medium and evaluates the

physics of pore-scale events [93]. Network models and percolation theory are complementary

to each other where network models have yielded insight into behavior at the pore scale.

Additionally, the percolation theory has shed light on the natural effects of randomness in

porous mediums.

Authors in [94], study the connectivity problem in WSNs for sandstorm monitoring

giving consideration to the percolation theory. Sandstorm forecasting systems are deployed

to serve different regions in sand rich middle eastern countries. The authors discuss distinct

channel characteristics for four types of channels used in sandstorms monitoring and detec-
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tion. The four channel types addressed include: air-to-air (AA) channel, air-to-sand (AS)

channel, sand-to-air (SA) channel, and sand-to-sand (SS) channel. With the diverse sam-

pling of channel protocols, the percolation-based theory is used to analyze the connectivity

in shallow burial depths. The use of multiple types of channels is proposed to improve the

performance of connectivity in the network. Accordingly, it is shown that smaller sensor

density is sufficient to achieve the same connectivity performance when compared to the

case of a single communication medium, i.e., terrestrial air channel. The studies above show

the immense impact of connectivity reliability for environmental monitoring applications.

As presented in each of the sections above, extensive research have been conducted

in the area of wireless sensor networks to provide techniques that can optimize sensor de-

ployment, coverage and connectivity while minimizing the number of sensor nodes required

to completely monitor the area [95] [21] [96]. However, the major focus of these papers only

give consideration to the video sensor camera placement utilizing simple 2D sensing field

coverage. In contrast, our model employs a pan-tilt directional D perspective, where the

visual sensor has vertical and horizontal freedom. The ineffectiveness of these solutions for

similar use in WVSNs is addressed below.

3.2 Wireless Video Sensor Networks

Over the past decade alone, WSNs have denominated many research areas by provid-

ing reliable and scalable technology. As a result there is now a growing interest in WVSNs

[97]. There are considerable differences between WSNs and WVSNs that prevent the use of

techniques that are already well developed for WSNs to be applied in WVSNs. Introducing

WVSNs into an environment presents additional challenges that are not often attributed

to WSNs such as the quality of coverage in WVSNs that depend on the orientation of the

video sensor. Another differentiating aspect of WVSNs versus that of WSNs is the sensing

range of sensor nodes which are a function of the sensor’s field of view (FoV), aspect ratio

and near/far fields. In this section, a discussion of related studies that explore the distinct
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challenges of WVSNs is explored.

3.2.1 Deployment

Within this section, current studies relating to video sensor node deployment in

WVSNs is discussed. The antagonistic relationship between the rigid requirements of vi-

sual data transmission and the constrained indoor placement restrictions of sensor networks

warrants the need for an optimal deployment scheme in WVSNs. Several of these works

evaluate various contexts of the aforementioned problem. In the paper featuring Chow et

al. [98], the authors use a simple model to provide maximum angle coverage in a Visual

Sensor Network to generate a minimum set of sensors to cover all objects of interest. Using

a distributed algorithm they are able to achieve minimum cover with an image resolution

constraint. In contrast, most WSN models employ simple 2D sensing fields, where the sensor

has omni-directional freedom negating the impact in which the angular direction of the video

sensor can affect the network. A novel approach to sensor deployment is considered in [99]

where a Pan Tilt Zoom (PTZ) camera is used in a WVSN. The authors highlight how a

PTZ WVSN differs from a traditional WVSN in that there are extended FoV coverages and

semi-structured data source nodes that allow for irregular or incomplete data transmission.

A PTZA heuristic is employed to account for the adjustment time the sensor requires to

capture the visual data. The research discussed in [100] explores the deployment problem

for WVSNs while considering the coverage of the monitored environment. A mathemati-

cal model is then used to define the problem of complete coverage using a greedy heuristic

algorithm FoVIC where the objective is to cover the largest number of uncovered nodes

within the area. However, both papers formulate models using a 2D approach (i.e. the

latter emphasizing a mathematical model) and use quantitative analysis to evaluate their

solutions.

While some works on the deployment problem isolate and focus only on the issue of

video sensor placement, there are others who consider coverage in identifying optimal de-
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ployment solutions. As seen in [55], a computational-geometry based approach is employed

often times when optimization is desired in the deployment scheme. In the computational

geometry based approach, geometry is used to evaluate the problem and define the algo-

rithm. Using this approach, the algorithm is designed to efficiently solve the problem using

data structures and basic geometric objects such as: line segments, points and polygons. A

directional sensor network is implemented in [101] to maximize the area coverage of randomly

deployed sensors using a greedy algorithm. The study in [102] provides a very detailed 3D

practical model of the outlined problem for coverage rate optimization. Using a Greedy It-

eration Scheduling based algorithm, their solution allows for overlapping of the sensing field

for two nodes which can have greater overhead. In [103], the objective of the proposed work

is essentially to provide target coverage for directed sensors with consideration to rotatable

angles. Both use similar greedy approaches to solve the deployment problem.

The study in [104], investigates placement strategies of camera deployments to achieve

the maximum amount of visibility in designing camera network arrangements. Fu et. al tack-

les the camera network deployment problem defined as “How to place the cameras in the

appropriate places to maximize the coverage of the camera network under some constraints?”.

The authors identify three types of constraints: 1) task constraints (e.g., continuous tracking

and complete coverage) 2) camera constraints (e.g., camera network types and camera param-

eters) and 3) scene constraints (e.g., monitoring area configuration and candidate placement

location restrictions). To solve the homogeneous camera network placement problem, the

authors propose a binary Particle Swarm Optimization (PI-BPSO) algorithm. In an effort

to suggest real world application, this study models the problem in a 3D space while the

surveillance area is restricted to a 2D ground plane. The solution presented is first simulated

and then incorporates real cameras for the experimental testing. The evaluation results show

nominal improvement in the deployment numbers for sensors, however the 2D aspect of the

monitored areas may limit its application in real-world scenarios.
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3.2.2 Angular Coverage

Conventionally, sensor redundancy is considered to have negative impacts on the

performance of the network. Authors in [105], argue that redundancy should depend on the

nature of the monitoring applications. Essentially, within WVSNs the concept of redundancy

relates to the coverage metric where the job of a sensor is to provide the required information

for the application. As an example, coverage in WVSNs may call for sensors to cover

equivalent (e.g. redundant point sets) areas ensuring full coverage and fault tolerance in the

event of node failures.

The k-coverage problem generally states that any point within the monitored area

must be located in the sensing range of at least k-sensors [106]. For example, if the de-

ployment area is defined as 4-coverage, every point within the area is covered by at least

four sensors. This means that up to three of the four nodes sensing the same monitored

region can fail and the area will still be covered (monitored) by one of the four nodes. Full

k-coverage denotes that every point is covered by all k-sensors. However, it is often suggested

that guaranteeing 100% coverage in WVSNs is very difficult in a random deployment sce-

nario. The authors in [56] employ a directional k-coverage metric (DKC) demonstrating the

coverage quality measured in terms of a probability guarantee. Discussed below are schemes

identified in related works addressing the traditional coverage problem for WVSNs.

The research conducted in [51] [107] [56], all provide detailed analysis of the coverage

problem with consideration to 3D coverage in Costa et al., optimal angular placement in

Yildiz et al. and directional k coverage in Liu et al. These solutions offer elegant 3D sensing

models for the problem specified. However, when applied using real world constraints the

solutions inadequacies are evident. Several studies have explored the issue of the coverage

problem with some specifically addressing k-coverage. However, introducing video sensors

into the narrative requires a different approach for optimal coverage.

It has been stated that video sensors collect data in a different way than sensors

in WSNs. The sensing range of sensors in WSNs can be approximated and allow for an
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omni-directional sensing model. However, for video sensors the sensing range in wireless

video sensor networks equates to the FoV and is directional. Hence, the network concept of

sensing uniformity is only valid for communication ranges (i.e., disk sensing model), which

are omni-directional. A contrasting narrative is needed, where consideration is given to the

angular direction for deployed visual sensors within the coverage area.

The work in [98] directly studies the angle coverage problem in visual sensor networks.

In their work, the authors modeled the Minimum Cover problem and developed a distributed

algorithm to determine the minimum set of sensors using an omni-directional sensing field.

In [108], the authors address the k-coverage problem in dense sensor networks. The work

formulated the k-coverage problem as an optimal hitting set problem. The proposed dis-

tributed algorithm in their work ensured k-coverage of the monitored area without requiring

the location of the sensor node deployment. All papers highlighted above implement simple

2D models with 360 ◦ sensing fields within a WSN, resulting in impractical real world appli-

cation settings and thus incurring inconsistencies. Another work implements the k-coverage

problem as seen in [109], which addresses the problem in a three dimensional aspect but

the sensing field range is modeled as an omni-directional sphere and the authors focus on

solutions for wireless sensor networks which is inapplicable to the general coverage problem.

As highlighted previously, introducing WVSNs into an environment presents additional chal-

lenges that are not often attributed to WSNs such as coverage quality that depends on the

orientation of the visual sensor. In our work, we use the minimum number of visual sensors

to achieve 2-angular-coverage from different directional perspectives to monitor 3D areas of

interest.

3.2.3 Connectivity

Generally, many video monitoring applications require reliable continuous communi-

cations in scenarios where packet reconstruction of the original data is necessary. Moreover,

some video sensors may transfer vital information for the application, where connectivity
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interruptions can have devastating consequences. Therefore, the issue of connectivity in

WVSNs is a critical factor in improving and maintaining high quality network performance.

Many studies evaluate the connectivity problem in addition to other factors (e.g. cov-

erage, traffic, network lifetime) that affect WVSN performance. Though in WVSNs, one is

not dependent upon the other and can in-fact be separate problems. When coupled with

other existing factors in WVSNs such as the coverage problem, connectivity is often times

only vaguely addressed or studies give assumptions for the connectivity metric [51] [42] [25].

As seen in several studies, implementation of a Wireless Local Area Network (WLAN) mesh

system is used to construct multi-radio, multi-hop wireless mesh networks (WMNs). WMNs

use multiple radios at each node location and provide multiple directional antennas to pro-

vide communication channels. The technology is applicable in commercial and government

organizations for use in the deployment of WVSNs for surveillance in battle zones, profes-

sional sporting and concert events. The main design of the system is to fully exploit link

layer characteristics to enhance configuration flexibility and network performance.

The study in [110] investigates the challenging issue of network bandwidth optimiza-

tion for connectivity improvement. The authors propose a novel approach to multi-channel

Wireless Mesh Network (WMN) architectures. The goal of the paper is to provide an effec-

tive solution to address the bandwidth problem by exploiting non-overlapping radio channels

available through implementation of the IEEE 802.11 standards. In [111], authors highlight

the current challenges of Visual Sensor Networks (VSNs). A current overview of the major

research issues of VSNs is explored. Specifically, addressing coverage optimization, network

architecture and power consumption for data communication. However, the issue of connec-

tivity for VSNs is mentioned in passing when the authors address the coverage metric. This

is a common occurrence of vague and ambiguous dialogue in the approach to connectivity.

Interestingly, an approach for a separate WIFI framework is presented in [45], the work

proposes a wireless video sensor network protocol for commercial and public safety. The

proposed network platform develops a high-resolution (HS) surveillance system and wireless
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networking platform with smart functioning parameters. The developed system can handle

and capture high-resolution images. The images are then transmitted via a high speed wire-

less network (e.g., Wi-Fi Mesh). In an attempt to promote energy efficiency, the network

system is divided into two categories: 1) a low-powered sleep wake cycle and 2) a high active

cycle performance state. A master sub-system is comprised of an ARM Cortex A9 processor

and implements a OpenWRT to manage the system. Then a slave sub-system is utilized

to handle the topology management and allow for low-power maintenance of the entire sys-

tem. The proposed system can be used for separate infrastructures in wireless video sensor

networks.

3.2.4 Obstacle-Awareness

In real-world environments, such as home and office spaces, obstacles (e.g., furni-

ture, lightning and miscellaneous decor items) are prevalent. These “obstacles” play an

integral role in everyday life, facilitating daily chores, work assignments and providing er-

gonomical comfort. However, obstacles can potentially degrade the functionality of WVSN

performance. Several studies have addressed obstacle detection for WSNs [112] [113].

Specifically, Wang et.al [112] proposes an estimation scheme for detecting obstacles

in WSNs. The scheme identifies the obstacles using sensor node indicator markers around

the obstacle boundaries. The scheme does not require the precise positional location for

each individual nodes in the sensing field, however, a ratio function is implemented. The

efficiency of the scheme then is evaluated using the network simulator ns-2.

A robot-deployment algorithm is proposed in [114] to handle obstacle detection in

WSNs. The authors assert that the proposed study is to extend network lifetime and achieve

full coverage by minimizing the number of required sensors. The robot-deployment algorithm

consists of two states: 1) steady and 2) obstacle cycles. The concept of the solution is to per-

ceive sensors that are deployed in the obstacle state as virtual obstacles. During the steady

cycle, a spiral movement and node placement policy is given. When an obstacle is encoun-
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tered, the obstacle cycle is activated. The algorithm then switches to the obstacle state,

wherein the robot implements the surrounding movement policy to move and deploy sen-

sors which reduce the impact of obstacles on deployment. The algorithm is evaluated using

simulations. The authors in [115], proposed a computational geometry based approach for

deterministic full coverage in WSNs with consideration to arbitrary boundaries and obstacle

detection. An Optimal Regular Pattern Deployment (ORPD) scheme is used for plane cov-

ering within monitoring regions. The algorithm then determines the uncovered holes (e.g.,

subareas uncovered near obstacles and the region boundary) and places sensors for both

regular and irregular obstacles. All of these studies use simple 2D models to formulate the

deployment problem with consideration to obstacles, costing significant resource (i.e., sensor

nodes) allocations and impractical solutions for WVSNs.

The majority of studies regarding multimedia sensor coverage consider an obstacle-

free sensing environment [116] [117] [118] [119] [120]. All of the studies mentioned above

address various performance metrics for WVSNs, where Munishwar et al. in [120] presents

an overview of coverage algorithms, Costa et al. and Neishaboori et al. in [116; 118] focus

specifically on target coverage respectively, Guo et al. [117] tackles area coverage and Yap

et al. [119] evaluates both coverage and data transmission. None of the studies discussed

above propose network models with consideration given to obstacles within the monitored

environment, resulting in naive solution models and compatibility issues in real-world appli-

cations.

The study in [121] considers obstacle avoidance by finding the orientation for each

of the video sensors that have rotational sensing abilities. The deployment scheme deploys

a large number of low-cost multimedia sensors equipped with miniaturized cameras. The

objective of the study is to minimize overlapping areas by exploiting FoVs converging regions

in order to construct cover sets. A scheduling algorithm is proposed to ensure the maximum

coverage of the areas between the video node and the subset of its neighbors.

Though, this study considers obstacles within its problem formulation model, the
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proposed solution is limited by the incorporation of the following assumptions, where it

assumes only three different rotational facing directions for the sensors and target regions

within a two-dimensional plane model. Furthermore, this approach does not provide an

optimal solution. However, our work addresses obstacle awareness with WVSNs where we

can perceive and track obstacles within a 3D indoor space.
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CHAPTER 4

OPTIMAL DEPLOYMENT

The chapter starts by introducing key terms and concepts in Section 4.1 that are

prudent to understanding the formulation of the general deployment problem as it relates

to WVSNs. An overview of key characteristics for 2D and 3D models is then provided to

highlight the differences in each and to emphasize the trade-offs of using each model for the

WVSN deployment problem in Section 4.2. Section 4.3 presents an in-depth discussion of

the deployment problem where the problem is modeled using both continuous and discrete

approaches. The proposed Greedy Heuristic and enhanced Depth First Search solutions are

outlined in Section 4.4. Finally, an evaluation of both algorithms performance is presented

in Section 4.5.

4.1 Introduction

In order to adequately grasp the intent of the identified deployment problem issue

presented within this chapter, a basic understanding of core network jargon and sensor

deployment concepts is required. Presented below are the definitions of commonly used

terms mentioned throughout Chapter 4 and upcoming chapters.

• 2D - is a term used for two-dimensional planar surfaces having only width and height

(where both are in the same plane) but no depth aspect of positioning for a spatial

environment ( i.e., a building).

• 3D - is an abbreviation used for three-dimensional spaces where both width, height

and depth (where not all three are in the same plane) are considered for locational

positioning denoted by axes x, y and z in the Cartesian coordinate system.
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• deployment - is a planned or random approach to distribute sensors within a spa-

tial environment (i.e., indoor or outdoor areas) considering constraints for detection,

monitoring or surveillance applications.

• depth first search - is a traversal or search algorithm for tree and graph (graphs may

contain cycles) data structures where initially a root node (i.e. start node) is selected

arbitrarily from other node candidates and then explores as far as possible tracking

and updating visited nodes along each branch before backtracking and only exits when

the search node has been found or the structure has been fully explored.

• greedy approach - is an intuitive algorithm that selects the locally optimum choice

in each iterative decision step in an attempt to find the globally optimum solution.

• heuristic - is an algorithmic paradigm or technique for solving common optimization

problems in a feasible time frame using an approximate solution when traditional

methods are not suitable.

• relay node - are a class of messenger nodes that may have longer battery life and com-

putational power to provide communication ranges that exceeds that of other sensors

within the network to facilitate the transfer of data.

• WiFi - a technology using radio waves that allow sensors and other devices to connect

to the Internet or communicate with one another wirelessly within a particular area

under the 802.11 standard for WLANs.

4.2 Model Comparison

The proliferation of WVSNs into virtually every aspect of our daily life has resulted

in the exploration of methods to improve the technology as it relates to deployment and its

sensing ability. In order to adequately study the deployment problem in WVSNs, a suitable

model is required for proper representation of the environment to determine the position
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and orientation within the monitored space. In existing literature, it is commonly assumed

that the environment can be monitored in one of two ways, using either a 2D or 3D model.

A presentation of the characteristics and limitations of each type of model is noted in Table

4.1 below.

Two-dimensional (2D) and three-dimensional (3D) models are a representation of

actual dimensions corresponding to the physical structural environment that are mapped

within a projected cognitized virtual workspace. The tradition of representing space as a 2D

model theoretically and conceptually can be dated back to the early 1940s where researchers

used them for operational research implementation [122]. In 2D models, a real world spatial

environment is represented as a bi-dimensional space. The 2D geometric model provides pla-

nar projections of the physical monitored area. The two dimensions are commonly measured

using length and width, where both directions must lie within the same plane. A sequence

of n real numbers are adapted as a location in n-dimensional space. Thus, a two dimensional

space can be denoted as n dimensional, where n = 2 and the set of all such locations is de-

picted as two-dimensional in a Euclidean space. The traditional characteristics of 2D models

include representing the distances in the plane using Cartesian coordinates defined on x and

y axis as shown in Figure 4.1a. Accordingly, Figure 4.1b illustrates sensor deployment within

a flat planar space characteristic of most 2D network models.

However, in 3D models, real world spatial environments are represented as tri-dimensional

spaces. Also within 3D environments, geometric models provide a graphical (i.e., perspective)

projection of the physical monitored area. There are four parameters that can be adapted

for 3D spaces, these include: height, width, depth and breadth. Three out of the four possi-

ble dimensions are commonly used for measurements in the space (i.e., using length, width

and depth) where only two of the three directions can lie within the same plane. As stated

previously, given a sequence of n real numbers adapted as a location in n-dimensional spaces.

A three dimensional space can be formally defined as n dimensional, where n = 3 and the set

of all such locations is depicted as a three-dimensional environment in an Euclidean space
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Figure 4.1. 2D Deployment Model

with coordinates x, y and z as presented in Figure 4.2.

After an extensive review of existing models utilized by numerous studies for WVSN

deployment, our assessment revealed that many only assumed a very simple coverage model

with no consideration to the orientation of the camera position (angular direction) [48]. In

many instances, the studies lacked realistic models when defining the deployment problem

and overlooked other performance metrics for the network deployment models[21].

Though optimization deployment techniques in 2D continuous mediums are well de-

veloped, it can be gleaned from the discussion above that there are in fact many challenges

in directly utilizing 2D deployment methods for 3D indoor environments, where deployment

area restrictions further render the solutions for traditional scalar sensors and 2D sensing

fields incapable of solving the WVSN deployment problem for 3D indoor space monitoring.

In the section below, the initial steps are presented to tackle this challenging deployment

problem for WVSNs in 3D indoor space monitoring.
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Figure 4.2. 3D Sensor Deployment Environment
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Network Model Comparison
Types 2D 3D
Aspects Length and height Length,width and depth
Data Scalar Visual
Representation Flat planar Graphical perspective
Coordinates x,y x,y z
Examples Rectangle, square, triangle Cylinder, sphere, cube, pyramid,

prism
Application Health Monitoring, Home Tem-

perature Monitoring
Security, Environmental Monitor-
ing, Medical, Virtual Gaming

Advantages Well studied, numerous imple-
mentation techniques, cost effec-
tive

Applicable to real-world scenar-
ios, diverse in application use

Limitations Incompatible with real world ap-
plications

Cost, requires continuous connec-
tivity

Implementation Simple Complex

Table 4.1. Comparison of 2D and 3D Models

4.3 Problem Formulation

The section above highlighted some of the advantages in utilizing a 3D model to tackle

the deployment problem for WVSNs in a 3D indoor space. The following section will outline

the steps taken to solve the problem. We start by first modeling the general deployment

problem in a continuous space (i.e. infinitely divisible space), where we implement techniques

to minimize the number of required video sensors to cover the given 3D regions. We then

address the problem by converting it into a discrete version (e., distinct set of values) where

we incorporate 3D grids for our discrete model, which can achieve arbitrary approximation

precision by adjusting the grid granularity. Consequently, by using the discrete model we

can get very precise and realistic coverage space for each wireless video sensor. Next, we

developed an enhanced Depth First Search algorithm that consists of an enhanced graph

traversal method that searches the lattice of local candidate sites for optimal sensor node

placement and angular direction. An area coverage function with a greedy heuristic, a

derived lower bound for search branch pruning and a simulated frustum culling method

are also utilized to increase the efficiency of the algorithm. A thorough analysis on the
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Figure 4.3. 3D Environment

experimental result follows.

The directional feature of WVSNs greatly impacts the deployment tactics imple-

mented for coverage and other metrics as well. Essentially, coverage areas will vary due to

the angular direction of the video sensor. Moreover, based on the hardware features of video

sensors, the sensing range is often described as fan-shaped in 2D and cone or pyramid-shaped

in 3D . Therefore, not only does the location of a video sensor affect its coverage area but

the direction can affect the area it covers.

Hence, our network model considers a 3D space as illustrated in 4.3 (e.g., one floor

area of a building), where some 3D regions (e.g., corridors) are required to be fully covered

by a number of video sensors. The possible deployment locations are areas such as walls and

ceilings that can be used to place video sensors. When a video sensor is deployed, its facing

direction is adjusted to some certain position and then will not change during the whole

monitoring period. Our goal is thus to optimize the placement and facing direction of each
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video sensor, so as to minimize the number of video sensors required to fully cover all the

required 3D regions.

Table 4.2. Parameter Notation Chart

Notation Definition
S Video Sensor
A 3D indoor monitored space
L Deployable location in A
gA Granularity of grids in A
gL Granularity of grids in L
gD Granularity of facing sphere
(L,D) location and direction of S
C(L,D,RS) Cover function
FOV Video sensor field of view
F Grid points in A
FC Covered grid points in A
CL Set of deployable location in A
D Direction of sensor
RS Sensing range
best Locally optium solution
depth Search branch distance from root

4.3.1 Continuous Space Model

Given a 3D indoor area, let A denote the 3D region that must be fully covered by

the video sensors and L denote the areas that can be used to deploy the video sensors. We

define a tuple (L,D) to denote the location and direction of a video sensor. For a 3D space,

the location L is represented by 3D coordinates (x, y, z) and the direction D = (x′, y′, z′)

is a point on the surface of a unit sphere (which we call a facing direction sphere) with its

radius equal to 1 and centered at (0, 0, 0). We use face to denote that the facing direction

is the vector from (0, 0, 0) to (x′, y′, z′), as shown in Figure 4.4, where surface area points

are mapped to the spatial sphere. Additionally, we use a to denote the spatial coordinates

(interest areas) specifically within the 3D regions in A that we want to cover. RS is used

to denote the maximum sensing range of the video sensor and we assume that it is the

same for all the wireless video sensor nodes in the network. Let C(L,D,RS) denote the
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area that a video sensor can cover, which is thus a function of the location, direction and

maximum sensing range of the video sensor. The video sensors in this study are modeled

after a perspective camera as shown in Figure 4.5 which has static parameters: farfield,

nearfield 1, field of view (FOV) and aspect ratio.

Thus, the problem is formulated as to find a set of locations and directions of video

sensor nodes S = {(L1, D1), (L2, D2), . . . , (Ln, Dn)}, subject to the following constraints:

(1) Sensor Location Constraint:

∀(L,D) ∈ S, L ∈ L ;

(2) Area Coverage Constraint:

∀a ∈ A, ∃(L,D) ∈ S, such that a ∈ C(L,D,RS) ;

Our objective is thus to minimize |S| = n.

4.3.2 Discrete Space Model

In discrete models data can be characterized as a countable set of values (i.e., integers)

which are not infinitely divisible and can be empirically analyzed. Thus, for the discrete based

approach we focused on two specific parameters within the 3D model: a set of candidate

locations (positions) of the sensor nodes to identify the optimal location and the directional

angle (orientation) of a video sensor node. In the continuous space model an infinite number

of points exist, so we implemented a discrete lattice based grid model to approximate the

continuous space model as in [42]. Specifically, we divided each region that must be fully

1For ease of exposition, here we assume the nearfield is 1 and the farfield is RS . A listing of important
notations is provided in Table 4.2. As we will demonstrate in the discrete model, our model and solution
can be easily adapted to other settings.
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Figure 4.4. Facing direction sphere of video sensor with granularity of direction gD

covered into discrete 3D grids as shown in Figure 4.6. The Bravais lattice structure was the

inspiration for our model representing the 3D monitored environment. In geometry, a Bravais

Lattice is a non-finite array of discrete points. The model is comprised of simple cubic unit

cells which serve as the projected 3D Euclidean space. The simple cubic unit cell consists

of 8 vertices, 12 edges and 6 planes. Given a 3D lattice cubic unit cell (i.e., the simplest

repeating unit in a simple cubic structure) specifically the simple cubic (SC) with volume v3

where v is the number of edges in one unit cell. We defined the length of v as one unit cell.

Within A there are areas of interest (subsections) denoted as AOI = q(v3) where q is the

number of unit cells possible in a 3D space. Based on our modeling the ability to define AOI

for specific target coverage is also available. The lattice points within the AOI that need
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Figure 4.5. Video Sensor Parameters

to be covered by a video sensor are denoted by F (i.e. cover-able points within the grid).

Additionally, we use FC to denote the points that have been covered by a video sensor. A unit

cell lattice point is completely covered if and only if the point that lies within the unit cell

is covered by at least one video sensor. The set of possible location points for video sensor

placement within L is denoted as a discrete set CL = ((c1, c1, c1), (c2, c2, c2), ...(cn, cn, cn)

which is the set of candidate locations where a sensor can be attached (i.e., wall and ceiling

locations considering the sensor location constraint). We utilized a similar method to divide

each area that can be used to deploy the video sensors, where we assume that a node can

only be deployed on a grid point within the area. The tuple (CL, D) is used to denote the
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Figure 4.6. 3D Lattice Model

candidate location and direction of a video sensor. We use gA to denote the granularity (i.e.,

the distance between two neighboring grid points) of the grids used in A and gL to denote

the granularity of the grids used in L. In addition, we also divide the surface of the facing

direction sphere into grids (like the longitudes and latitudes divide the surface of the earth)

and use gD to denote the granularity. We assume that a wireless video sensor can only face

to a direction where its D falls on a grid point.

4.4 Experimental Methodology

In the section below, we tackle the deployment problem by developing a greedy heuris-

tic algorithm. We then proposed an enhanced DFS algorithm with pruning, which can yield

high quality results efficiently and if given enough time can actually find the optimal solution.

4.4.1 Greedy Heuristic Algorithm

We now detail the design of our Greedy Heuristic algorithm where we can garner

locally optimal candidate locations and then expand on this approach to improve our en-

hanced secondary solution. The objective of the greedy heuristic algorithm is to achieve

complete area coverage of the 3D regions A by determining the candidate locations CL and

directional angle D to cover the maximum number of lattice points, where each point is
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Algorithm 1 Greedy Heuristic Algorithm

Input: A, D and L
Output: Set of S with max F in descending order

Initialize : List of A ,D, L and final.
1: while L >0 and A >0 do
2: for each CL in L do
3: if CL ∈ locally optimal video sensor list then
4: Compute all face ∈ D for CL

5: Select face with max F .
6: if CL(F )∗ >CL(F ) then
7: Update CL;
8: end if
9: end if

10: end for
11: record CL with max F into final
12: remove CL from L and update A
13: end while
14: return final

covered by at most one video sensor. The detailed algorithm is presented in Algorithm 1.

A while loop is implemented to check if there are coverable 3D regions and video sensor

placement locations available to continue (line 1). Within the loop, we compute the face

for all candidate locations CL and sort the list of candidate locations based on the number

of points that are covered (line 2-4). Instead of randomly choosing a location in L to deploy

a video sensor, in each iteration, the greedy heuristic algorithm strives to choose among the

candidate locations in L and find the location where the deployed video sensor can cover

the maximum number of lattice points F (lines 5-7). Note that after a location is chosen by

the greedy heuristic algorithm, since a video sensor is deployed at that location and covers

a number of fresh points, the number of fresh points (i.e., points within the monitored area

that have not been covered a video sensor yet) remaining to be covered by each remaining

candidate location in L needs to be recalculated (line 11). The one that maximizes the

number of covered fresh points after recalculation will then be chosen as the next location

to deploy a video sensor (line 12). A list of S = (L,D) that will completely cover the 3D

region is then returned (line 14).
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4.4.2 Enhanced Depth First Search Algorithm

In the greedy algorithm, we exploited the inherent attribute of selecting local optimal

camera coverings for the monitored area. Based on this, we use this number as our baseline

for the enhanced DFS algorithm. The scheme of our enhanced DFS algorithm uses a traversal

method to explore the branch paths within the deployment network whereby given enough

time can improve the search performance. Traditional DFS algorithms often evaluate search

branches redundantly resulting in an exponential run time because of expanded solution

space in our case, considering the size of L.

In a standard Depth First Search algorithm, we would need to explore each search

branch that picks a location in L and a facing direction. Since the solution space can expand

quickly with the size of L, this makes the algorithm very inefficient. In our design, we

use pruning which can cut off most of the solution space and thus significantly improve

the efficiency of our enhanced DFS algorithm, as presented in Algorithm 2. To achieve

this, the first enhancement is that instead of starting the search from scratch, we use our

greedy heuristic algorithm results as the currently found best solution2, so that all the search

branches (depth) that have already used equal or more number of video sensors compared

to the currently found best solution can be safely pruned (lines 1-4).

The second enhancement is the selection of the location in each search step, instead

of choosing the next location by the default order, we sort all the candidate locations by the

decreasing order based on the maximum number of fresh points that a video sensor at these

locations can cover and then choose by the sorted order (lines 10-14). This approach allows

our algorithm to quickly find high quality solutions and skip as many low quality solutions

as possible. Also, we apply a similar enhancement when we choose the facing direction of

a video sensor. Another enhancement is that we derive a tight lower bound to estimate

the number of video sensors that we still need to deploy to cover all the remaining fresh

2From the greedy algorithm, we calculate a number of cameras for covering. We use this number as our
baseline for the enhanced DFS algorithm. At the first iteration, the “best” term equals to baseline.
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Algorithm 2 Enhanced-DFS Algorithm

Input: A, L and D
Output: Minimized set of |S| = n, where S is optimal

Initialize : List of A ,D, L and optimal
1: DFS(depth)
2: if depth ≥ best then
3: return
4: end if
5: if A == 0 then
6: Update best;
7: Record optimal;
8: else
9: for each CL in L do

10: Compute all face ∈ D for CL

11: Select face with max F .
12: Store CL with max F .
13: end for
14: Sort L by descending order of F ;
15: Store CL∗ → Queue;
16: while Queue 6= Ø do
17: CL∗ ← Dequeue;
18: if CL ∈ final sensor S list then
19: if (lowerBound(CL(F )∗) + depth ≥ optimal) then
20: break;
21: end if
22: Record C∗L and F ∗

23: Remove C∗L from L and F ∗ from A;
24: DFS(depth+ 1)
25: Add F ∗ back to A;
26: end if
27: end while
28: Add all removed C∗L back to L
29: end if
30: return optimal

points (lines 16-18). The lower bound is calculated based on the sorted candidate locations

and directions in the previous two enhancements, where we keep choosing the location and

direction from the front of the sorted results and add the number of fresh points covered

by the chosen location and direction together until the sum is equal to or greater than the

total number of fresh points that actually need to be covered (line 19). A recursive call to
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the enhanced DFS search is implemented in line 24. When a search branch is cut off or fully

explored the search will revert to its previous status (line 25-28). A minimized set of |S| =

n, where S is optimal is returned as shown in line 30. The lower bound for the enhanced

DFS algorithm is defined by the following equations:

n∑
i=1

(CL, D)iFc
≥ FR, and n+ depth ≥ best (4.1)

where n is incremented by one until this constraint is satisfied. The number of video sensors

(i.e., (CL, D)iF c) used to fully cover a region is tracked for 100 runs. We then use the

smallest number of the total required to cover monitored region during this process as the

lower bound. A lower bound is a metric to determine the minimum number of wireless video

sensors required by the algorithm to cover the entire 3D indoor space (best case scenario).

Given a subset S of some partially ordered set (D, ≤) , the lower bound is an element of D

which is less than or equal to every element of S [123]. Dually, the upper bound is a metric to

determine the maximum number of wireless video sensors required by an algorithm to cover

the entire 3D indoor space (worst case scenario). Given a subset S of an ordered set (D, ≥)

, it is an element of D which is greater than or equal to every element of S. In each search

step, if this lower bound plus the number of video sensors that we have already deployed is

equal to or greater than the currently found best solution, the search branch can be safely

prune (line 4).

Theorem 1. The enhanced DFS algorithm with pruning can return the optimal solution to

solve the discrete version problem given enough time.

Proof. The enhanced DFS algorithm incorporates three enhancements which improve the

performance of the algorithm. The first enhanced approach that we apply is to prune some

of the branches as the graph is traversed based on a greedy heuristic. Traditionally, a

DFS algorithm searches a structure by selecting a root node and explores each branch then

backtracks. A generalization of the traditional DFS algorithm is considered to be a brute
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force approach where you search each branch until an optimal solution is returned. We can

deem our solution to be a brute force approach with some of the infeasible solution space

reduced. Thus, we will prove that our pruning feature in the enhanced DFS algorithm will

not eliminate optimal solutions. We select and expand on search branches by determining

the maximum number of fresh points covered by the chosen location and direction. In each

iteration, we check how many new candidate locations n we need to cover the remaining

fresh points FR, which depends on the sorted order from the highest to lowest (i.e., best

and worst case scenario) as a tight lower bound. We use the non-negative equation to check

whether we need to prune it or not as considering the following formula: n+depth ≥ best. If

this non-negative equation is satisfied, we can cut the branch. Specifically, since the number

of FR is recalculated after each iteration of the search, the cost function is non-decreasing as

the search step traverses the graph for a feasible solution.

4.5 Experimental Results

We conducted extensive simulations to evaluate our solutions using a customized

simulator implemented by Java Script, which can emulate the 3D deployment of wireless

video sensor nodes in a virtual environment as illustrated in Figure 4.7.

In our evaluation we used three algorithms: random, greedy heuristic and enhanced

DFS. The enhanced DFS algorithm was allowed to run up to a time limit of 30 minutes

to return the currently found best solution and it was successful in returning the optimal

solution considering completion within the set time limit3 For our baseline approach we de-

signed a random algorithm, which also served as a baseline to evaluate our solutions. In

the random algorithm, we randomly chose a location in L and deployed a video sensor at

that position. We then adjusted the video sensor’s facing direction so that it could cover a

maximum number of fresh points in A. After that, we continued to select another random

location and deployed a video sensor there until all the grid points in A were covered. It is

3A maximum time limit of 30 minutes is imposed on the enhanced DFS algorithm during the simulation
phase to deem the solution feasible.
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Figure 4.7. Network Simulation Environment

worth noting that during this process, if the video sensor at the randomly chosen location

are unable to cover any new fresh points, we would remove the video sensor from that loca-

tion and select another random location. Additionally, most deployment baseline methods

presented in existing literature do not require heuristic methods to be implemented within

random algorithms, for our presented approach, a heuristic is utilized and discussed above

for enhancement during the comparison evaluations. The summarized standard settings for

our simulations are displayed in Table: 4.3 4. For each setting, we run the baseline algorithm

100 times and show the average of the results with an error bar to indicate the minimum

and maximum values.

In our performance evaluations, the optimization of the video sensor deployment was

considered where we looked at how varying the length for the 3D indoor space, candidate

location positions, field of view of the sensor, near fields, far fields, granularity of the mon-

itoring area gA, gL (candidate locations), and gD(direction of S) in the space would affect

4The asterisk* within Table: 4.3 denotes that there are no abbreviated terms used for the parameters.
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Table 4.3: Default Parameters for Simulation Execution

Parameter Denotation Default Value Dynamic (D) or Static (S)?

3D Indoor Space L Length X 60 X 100 D
Monitored Area A Same as 3D Indoor Space D
Deployment Area Tuple(L,D) Top half of walls and ceiling D
Granularity of A gA 20 D
Granularity of L gL 25 D
Granularity of D gD 45◦ D
Field of View FOV 50◦ D
Max Sensing Range Rmax 100 D
Aspect Ratio ∗ 1.778 S
Near Field ∗ 1 S
Far Field ∗ 100 S

Table 4.3. Deployment Problem: Simulation Parameters

the performance of all three algorithms. We discuss some of the more interesting findings

discovered in the testing using the figures below.

Depicted in Figure 4.8 are the results from our evaluation analyzing the impact of

varying space lengths within the indoor monitored environment (which can be deemed as

the corridors of various length). The greedy heuristic algorithm out performed the random

algorithm for each length interval increase (in requiring a smaller number of video sensors

to cover the monitored area) and the enhanced DFS required less video sensors compared to

the baseline and greedy approach for two testing interval cycles, 250 and 300, respectively.

There is a comparable reduction in the number of video sensors for both the greedy heuristic

and enhanced-DFS algorithm. This can be attributed to the time limit restriction placed on

the enhanced DFS.

When varying the granularity of the monitored points A (distance between cover-

able points) within the 3D region as shown in Figure 4.9 there is better performance for the

enhanced-DFS which required less sensors to fully monitor the indoor space.

The granularity of the grids in D and L are evaluated in Figure 4.10 and Figure 4.11,

respectively. The performance of the enhanced DFS is stable and continues to reduce the
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Figure 4.8. Dimensional 3D Indoor Space
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Figure 4.9. Varying gA impact

15 30 45 60

Granularity of D (g
D

)

5

6

7

8

9

10

11

12

13

14

N
u

m
b

e
r
 o

f 
V

id
e

o
 S

e
n

s
o

r
s

Random

Greedy

Enhanced DFS

Figure 4.10. Varying granularity for gD
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Figure 4.11. Varying granularity for gL

amount of S for optimal coverage in the 3D regions. The performance testing for the near

field (shown in Figure 4.12 variations resulted in a 50% reduction of video sensors compared

to the random algorithm and it also fared better than the greedy heuristic algorithm.

Figure 4.13 showcases similar results for the reduction of required video sensors to
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Figure 4.12. Impact of varying near fields
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Figure 4.13. Varying field of views (FoVs)

cover the space when varying the FOV for S. The overall performance of the enhanced DFS

is stable and continues to reduce the amount of S for optimal coverage in the 3D regions. The

enhanced DFS algorithm can further reduce the number of video sensors by up to 20% over

our greedy heuristic algorithm. In Figure 4.14, the performance for far field variations are

explored. The enhanced DFS requires 50% less S than the random algorithm and performs

better than the greedy heuristic algorithm.

For Figure 4.15, we evaluated the different domain variations of candidate locations

(i.e limit the deployable area to smaller sections of the wall or ceiling). The enhanced DFS

used less S to fully cover the area. After evaluating the initial results, it is clear to see that

both our greedy heuristic algorithm and enhanced DFS algorithm outperform the random

algorithm. In particular, compared to the random algorithm, the number of required video

sensors can be reduced up to 50% by our greedy heuristic algorithm, and our enhanced DFS

algorithm can further reduce the number of video sensors by up to 20% over our greedy

heuristic algorithm. Based solely on these encouraging results, we continue on to investigate

the coverage problem for WVSNs.
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Figure 4.14. Impact of varying far fields
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Figure 4.15. Impact of candidate domain size
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CHAPTER 5

CONNECTIVITY AND OBSTACLE-AWARENESS

Extending the theme from Chapter 4, where we proposed schemes to optimize the

performance of a fundamental issue in WVSNs by addressing the deployment metric, we now

extend our focus to additional issues as it relates to connectivity and obstacle awareness in

WVSNs. In Chapter 5, we address these new challenges by ensuring connectivity and provid-

ing mechanisms to handle obstacles within the 3D indoor environment. The chapter begins

with an introduction on the motivation and key challenges in reference to the connectivity

and obstacle awareness problem for WVSNs, in addition to defining key terms for the chap-

ter in Section 5.1. Section 5.2, provides a brief discussion on the intrinsic properties of our

model in comparison to more traditional models from existing literature. Next, we present

the revised network model and formulate the problem considering additional constraints in

Section 5.3. Section 5.4 presents an in-depth discussion of the connectivity and obstacle

awareness problem where the proposed Greedy Heuristic and enhanced Depth First Search

algorithms are given. Section 5.5 provides the performance evaluation for both algorithms.

5.1 Introduction

Connectivity is an essential asset within WVSNs, as it facilitates communication

among the wireless sensor nodes. Connectivity provides “pathways” for each video sensor

to not only communicate but also transfer data packets between each “connected” node to

a sink (i.e., base station). A system network that fails to provide communication is greatly

limited in its functionality. Also, when incorporating video sensor surveillance into a normal

WIFI network, one has to consider the large amount of data traffic collected by the video

sensors. This may cause the WVSN as well as normal users of the WIFI network to encounter
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interference or interruptions in communication. Therefore, the WVSN is often required to

have its own separate communication network to connect the entire monitoring system [124].

Thus, ensuring optimal connectivity is a valid and core issue in WVSNs, however, the solution

is less than straight forward.

Another pressing issue in WVSNs, is obstacle awareness. Obstacles are a constant

phenomena, especially in indoor 3D environments. Such factors have a direct correlation

with an indoor environment setting (e.g., there are often obstacles such as ceiling lamps and

furniture inside the indoor space), which, if not carefully considered, can easily block the

line-of-sight of deployed video sensors reducing their sensing capabilities and thus the overall

performance of the WVSN.

Therefore, not only are connectivity and the quality of the video sensor sensing ability

affected by the communication range of a video sensor but also obstacle awareness, as well.

Though there are recent studies available on the connectivity and obstacle detection metrics

in WVSNs, however, they are considered separately instead of jointly [125; 126; 127; 128; 129].

The aforementioned issues highlighted above provides the motivation behind our exploration

of the connectivity and obstacle awareness problem in this chapter.

Throughout Chapter 5, we will be using additional terminology to precisely describe

our revised network model and formulate our problem. Presented below are the definitions

of commonly used terms mentioned throughout Chapter 5.

• connectivity - is the ability of a network to establish communications pathways for

every pair of nodes to allow the transferring of data among each sensor.

• obstacle awareness - refers to the capability of our algorithm to perceive or have

knowledge of a object and the ability to avoid such points which are occluded by the

object.

• obstacle - is a three dimensional object modeled within the network using predefined

parameters to represent a more realistic environment.
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• base station - refers to one or more sink nodes that have additional energy, compu-

tational and communication resources within the network that serves as a interface

gateway capable of forwarding data between the video sensor nodes and the end user.

• intersection point - denotes the location where two intersecting lines cross paths

(i.e., point of intersection), the term is used as a parameter in our obstacle detection

strategy.

• line of sight - this term is associated with the visibility of the video sensor’s field of

view as it relates to the view frustum within the network.

• communication pathway - is an established link between a set of nodes beginning

with a root node within the network to a base station, implemented using a model

paradigm.

• view frustum - is the perceived volume in the three-dimensional indoor space that is

visible to the video sensor, modeled as a perspective camera (i.e, refer to Figure 4.5).

• segment - this term refers to the line segment between the location of a video sensor

and a specific monitoring point, whereby it is bounded by two distinct end points,

containing the set P which is every point on the line between its two endpoints.

5.2 Model Comparison

The two types of models prevalent in existing literature as it relates to network

connectivity include: deterministic and probabilistic (i.e., stochastic) paradigms.

Deterministic models require the use of tangible, factual data. In terms of a network

model it corresponds to the communication model (i.e, communication range for the video

sensor).In traditional models, a deterministic geometric disk model is used where nodes are

connected if they are within a certain communication range from each other. The reason

behind this model’s popularity is its ability to easily determine if the data is true or false,
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in our case the approach can determine if a sensor is within communication range of a

neighboring sensor or not.

For example, in a network model where sensors are randomly deployment within the

network, when implementing this paradigm two nodes are considered to be connected and

form a pair if they are within a certain distance (i.e., communication range Cr) from each

other [130]. This model can easily determine if the nodes are connected or not based on the

Cr parameter.

Probabilistic models are meant to give a relative distribution of possible outcomes.

This model is more complex in the way it determines the communication of a network,

where it relies heavily on probability. The data is generated through collecting data points

measurements from the probabilistic disk model and comparing it to the deterministic data

points. Probabilistic communication models express the quality of communication between

nodes by comparing it with a known connection pattern with similar behavior [131]. The

likelihood of the measurement is given by probabilistic comparison (i.e., changes over time

described by past patterns in addition to probabilities for successive change that are semi-

predictable) of the actual communication paths within the expected sampled measurements

[132] . An advantage of probabilistic models is its scalability .

In this dissertation, we implement the deterministic approach as a circular disk model

whereby it is considered to be a stable approach, sufficient enough when modeling distance-

dependent wireless pathways.

5.3 Problem Formulation

In this section, we build on the knowledge gained from Chapter 4 where we exclusively

considered the deployment problem. In an attempt to closely model the reality of a real world

environment within our 3D indoor space model, we reformulate our problem to consider both

connectivity and obstacle awareness simultaneously.

The objectives for the connectivity and obstacle awareness problem is to provide qual-
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ity sensor connectivity that is resilient to building communication infrastructure failures and

can detect obstacles (i.e., to address the line-of-sight blockage of a video sensor) within the

monitored space. The introduction of these additional metrics into our initial problem where

the objective is to 1) optimize the placement and facing direction of each video sensor and

2) minimize the number of video sensors required to fully cover all the required 3D regions,

greatly increases the complexity of the problem. To this extent, we explicitly developed both

a connectivity constraint so that each deployed sensor has a path, composed of connected

sensors, to reach the base station (i.e., sink) and an obstacle awareness constraint that im-

proves the efficiency of the network by removing grid points (i.e., reduce search space) from

the search space that are blocked by obstacles with in the monitored space. Traditionally,

this problem is investigated via utilizing 2D grids. However, our problem is considered in a

3D space.

5.3.1 Continuous Space Model

The continuous space model is extended from the prior chapter to include additional

parameters for the inclusion of the connectivity and obstacle constraints. We consider a 3D

indoor space, where some 3D regions (i.e., A) are required to be fully covered by a number

of video sensors. Also, there are some areas such as walls and ceilings that can be used to

deploy video sensors (i.e., L). When a video sensor is deployed, its facing direction is also

adjusted to some certain position and then does not change anymore. Also within the indoor

environment, there are often obstacles which introduce additional challenges as obstacles can

block the line-of-sight of video sensors and reduce their sensing capability. Our goal is thus

to optimize the placement and facing direction of each video sensor with consideration of

obstacles and connectivity, so as to minimize the number of video sensors required to fully

cover all the required 3D regions. The table below provides a list of important notations for

reference (see Table 5.1).

We assume Rmax is the maximum communication range achievable for a video sensor.
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Table 5.1. Parameter Notation Chart II

Notation Definition
S Video Sensor
A 3D indoor monitored space
L Deployable location in A
LO Base station location A
gA Granularity of grids in A
gL Granularity of grids in L
gD Granularity of facing sphere
(L,D) location and direction of S
C(L,D,RS) Cover function
Ai Area of interest in A
F Grid points in A
FC Covered grid points in A
O Set of obstacles
Path Communication path from (L,D) to LO

O Single obstacle in O
Rmax Communication range of S
SegmentLa Line segment between L and a
a Specific monitored grid point

We use O to denote a set of obstacles that may block the line of sight for video sensors and

Segment(La) to denote the line segment between the location L of a video sensor and a

specific monitoring point a ∈ A.

Our general problem thus can be formulated as to find a set of locations and direc-

tions of video sensor nodes S = {(L1, D1), (L2, D2), . . . , (Ln, Dn)}, subject to the following

constraints:

(1) Sensor Location Constraint:

∀(L,D) ∈ S, L ∈ L ;
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(2) Area Coverage Constraint:

∀a ∈ A, ∃(L,D) ∈ S, such that

a ∈ Cover(L,D,RS) and

∀O ∈ O, Segment(La) ∩O = ∅ ;

(3) Network Connectivity Constraint:

∀(L,D) ∈ S ;

∃Path = {(Lp1 , Dp1), (Lp2 , Dp2), . . . , (Lpk , Dpk)},

such that Path ⊆ S,Lp1 = L,

|LpiLpi+1 | ≤ Rmax for i = 1 . . . (|Path| − 1) ;

|LpkL0| ≤ Rmax ;

where Path = {(Lp1 , Dp1), (Lp2 , Dp2 , . . . , (Lpk , Dpk)} denotes the communication path from

a video sensor deployed at (L,D) to the base station at L0. Our objective is thus to minimize

|S| = n.

5.3.2 Discrete Space Model

As stated previously, the monitored region A is divided into grid points to approxi-

mate the continuous model as illustrated in Figure 5.1. As long as all the grid points in the

region are covered, we consider the region is fully covered. The areas of interest within

A is denoted as Ai. For a more precise model, we further define lattice points within Ai

denoted as F to be the remaining coverable points within the discrete grid model, Fc is

denoted as the points that are covered. Similar symmetric division of the grid points is

also employed to L, where video sensors can be deployed at candidate locations, defined as

CL = ((cx1 , cy1 , cz1), (cx2 , cy2 , cz2), . . . (cxm , cym , czm)). We assume that a video sensor can only

be deployed on a grid point within L. To allow more flexibility within our discrete model,
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Figure 5.1. 3D Lattice Grid Model

the neighboring grid point distances can be adjusted using granularity denoted as gA for A.

Similarly, gL is used to denote the granularity of the grids used in L. The discrete spherical

model referenced in Chapter 4 is used (similar to the longitude and latitude coordinates used

on the Earth’s surface) to address the facing direction D’s granularity denoted by gD, (see

Figure 4.4.)

5.3.3 Strategies for Obstacle Detection and Connectivity

Real world indoor settings include furniture, ceiling lights, as well as other types

of obstacles. So our next objective is to provide a strategy to handle this scenario in our

discrete model. We consider the scenario where some obstacles exist inside the indoor 3D

space and can obstruct the line-of-sight of wireless video sensors. For example, furniture,

lighting and other decor are staples for indoor environments. In this dissertation, we focus

on stationary obstacles as seen in Figure 5.2. When we embed wireless video sensors to cover

the monitored space with existing stationary obstacles, we need to design several solutions

to detect these obstacles and then make sure whether grid points near the obstacles are

obstructed or not when being considered for coverage during deployment of a video sensor.

The obstacle constraint within the area coverage constraint denotes that a monitored point
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(a) (b)

Figure 5.2. Representation of Lamp Obstacle (a) Actual Purchasable Lamp (b) Cuboid
Lamp representation

a is within the covered frustum of Cover(L,D,RS), however it is not in the shaded area of

any obstacle, which is denoted as Shadow(CL, O) and Segment(La) does not intersect with

any obstacle O ∈ O.

The Divide and Conquer detection strategy allows for an efficient but incomplete

detection of the obstacles and Accurate detection produces complete detection of the obstacle

within the 3D space. We define the single obstacle O(xl, xh, yl, yh, zl, zh) where “xl, yl, zl”

and “xh, yh, zh” represent the low boundary and high boundary in X axis, Y axis, and Z

axis for each obstacle, respectively.1 For the Divide and Conquer detection we consider two

1 For the obstacles with irregular shapes, multiple smaller cubes can be used to approximate the obstacle
with arbitrary accuracy by adjusting the cube size.
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Figure 5.3. Representation for Divide and Conquer Detection strategy

parameters: CL the location of a deployed video sensor and a monitored particle a in A as

illustrated in Figure 5.3.

Since we know point CL and point a, we can check the middle point M0 between

CL and a, to test if it resides within an obstacle, if yes the algorithm exits. Otherwise, we

divide the Segment(CLa) into two sub-segments and then check the middle points of these

two sub-segments. If any one of the two middle points is in an obstacle, then the algorithm

stops. Otherwise, the algorithm will continue to divide and conquer, until we have completed

this step n times where no middle points are located in any obstacles. For the size of n,

we have to choose it wisely since there is a trade-off between efficiency and accuracy for the

program. For an example, if the size of n is too big, increasing the detecting accuracy can

lead to an increase in the overhead of the program performance. However, if the size of n is

too small, the results may also lead to an inaccurate detection (missed obstacle detection)

of smaller size obstacles in the monitored area.

The Accurate Detection strategy is a complete detection method which uses the

points CL and a to calculate the straight line equation Segment(CLa) in 3D space based on

coordinates of these two points as seen in Figure 5.4. Using Segment(CLa) and obstacle O ∈

O we check whether there exist an intersection point between CL and a. If an intersection

point exists we can conclude that the monitored point a is obstructed by the obstacle within

the 3D indoor space. The calculation procedure is shown below. Assume the coordinate of

CL = (x1, y1, z1), and the coordinate of a = (x2, y2, z2), we can get Segment(CLa) as:
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Figure 5.4. Accurate Detetection Model


(x− x1) = t(x2 − x1)

(y − y1) = t(y2 − y1)

(z − z1) = t(z2 − z1)

(5.1)

where t is an intermediate value, and (x, y, z) denotes any point on the straight line (CL, a).

We use a cuboid shape to represent the obstacle, so each obstacle contains six surfaces. Next,

we examine that if the straight line Segment(CLa) intersects with one of these six planes of

each single obstacle, i.e., if Segment(CLa) ∩ O 6= ∅, the monitoring point is obstructed by

the obstacle. Since the obstacle is cuboid, each plane is actually a rectangular. To simplify

the problem, we assume that all the cuboids used to represent the obstacles are formal, which

means that there exists an unchanged axis in the surface coordinate. In other words, all the

points on this plane have one same axis value.

In Figure 5.4, we illustrate an example where the X axis dimension is fixed for surface

76



EFGH with value x0, we can then calculate the value of y0 and z0 as:


y0 = (y2 − y1)(x0 − x1)/(x2 − x1) + y1

z0 = (z2 − z1)(x0 − x1)/(x2 − x1) + z1

(5.2)

where x2 6= x1. The constraint below is also implemented to test whether the line segment

intersects with the plane as:


x1 ≥ x0 ≥ x2, x1 ≥ x2

yh ≥ y0 ≥ yl, yh ≥ yl

zh ≥ z0 ≥ zl, zh ≥ zl

(5.3)

Only if these constraints are satisfied, then the straight line Segment(CLa) intersects

with plane EFGH at point I, which means that point a is obstructed by the obstacle. When

x2 = x1, either the straight line Segment(CLa) is in parallel with plane EFGH (if x0 6= x1)

or part of the straight line Segment(CLa) is inside plane EFGH (if x0 = x1), where the

latter case also indicates that point a is obstructed by the obstacle. This strategy guarantees

that our result is correct. Figure 5.5 provides a representation of actual model obstacles in

the 3D setting. One drawback is this strategy is slightly slower than the Divide and Conquer

Detection strategy (i.e., where we divide the line segment in sub-segments at its midpoints)

since more calculations are needed to accomplish it. We can use the accurate strategy in a

scenario to check when the size of an obstacle is very small i.e, less than the granularities

defined in the scenario.

Our next step for the proposed problem is to establish connectivity for the deployed

sensor nodes in the network. We outlined our requirements in our network connectivity con-

straint. Traditional connectivity constraints employ paradigms whereby a connected com-

munication path is formed by any number of arbitrarily paired of sensor nodes to establish

connectivity. However, this constraint is to broad and tedious to implement. In our model,
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Figure 5.5. Simulated Indoor Obstacles

the approach we use employs a practical and realistic scheme, where instead of establishing

a communication path between all of the nodes deployed, we determine a path to the base

station (i.e., sink), this method is sufficient enough to ensure connectivity. A second layer of

reliable connection can be established by utilizing a relay node to connect to a sink, however

this approach was not implemented in our model.

5.4 Experimental Methodology

In the subsections below we discuss the algorithms used to tackle our problem. The

main ideas of the algorithms used in the methodology herein are similar to those discussed in

Chapter 4, however, we revised both the Greedy Heuristic and enhanced Depth First Search

to include the consideration of connectivity and obstacle awareness constraints.

5.4.1 Greedy Heuristic

As shown in Algorithm 3, we propose a Greedy Heuristic approach to cover the

maximum number of grid points within our monitored space A. A while loop is implemented

to check if any cover-ble 3D regions and candidate placement locations are available (line 1).
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In the for loop we evaluate each candidate location CL in L, checking to see if it is within

the communication range, Rmax (line 3). This is implemented to ensure the connectivity

withing the network and follows our constraint requirement. For each face, we check each

monitoring point which is within the covered field by current candidate location CL to see

whether it is obstructed by any obstacle in O or not using the Accurate Detection method

as seen in Figure 5.4. We compute all the face directions for the candidate locations CL

and pick the face direction which covers the maximum number of monitoring points F (line

4-5). After the for loop, we record the CL which covers the maximum number of monitoring

points in L. Instead of arbitrarily choosing a location in L to deploy a video sensor, in

each iteration of the while loop, the greedy heuristic algorithm strives to choose among the

candidate locations in L and find the location where the deployed video sensor can cover

the maximum number of lattice points F (lines 11). After the candidate location is chosen

by the greedy heuristic algorithm and a video sensor is deployed at that location to cover a

number of grid points that have not been covered by any video sensor, the remaining points

that need to be covered by a CL is recalculated iteratively. The next candidate location

CL to be selected will cover the maximum number of coverable grid points. The final list

of S = {(Lp1 , Dp1), (Lp2 , Dp2), ...(Lpn , Dpn)} that will fully cover the 3D monitored space is

then returned (line 14).

5.4.2 Enhanced Depth First Search

Similar to our initial approach in the deployment problem, we attempt to reduce the

search space in L, (i.e., lattice grid ) as seen in Algorithm 4, by using branch pruning to cut

the candidate location CL options that will not produce feasible branches that can improve

the solution. Let depth be defined as the search branches that require equal or more number

of video sensors to cover the space than best i.e., the final list of (CL, D) sets from our

greedy heuristic algorithm which is the first enhancement. We determine its feasibility by

comparing the current search branch to our best found solution, (line 2). We next check to
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Algorithm 3 Greedy Heuristic Algorithm for Connectivity and Obstacle Awareness

Input: A, D and L
Output: Set of S with max F in descending order

Initialize : List of A ,D, L and final.
1: while L >0 and A >0 do
2: for each CL in L do
3: if CL ∈ connected final video list then
4: Compute all face ∈ D for CL considering O
5: Select face with max F .
6: if CL(F )∗ >CL(F ) then
7: Update CL;
8: end if
9: end if

10: end for
11: record CL with max F into final
12: remove CL from L and update A
13: end while
14: return final

see if there are remaining points to be covered in A, if no we return the optimal and exit

the program; otherwise we continue (line 5-7).

To further improve the solution our second enhancement selects the location in each

iteration by sorting all of CL in descending order based on the maximum number of grid

points that the video sensor placed at the specific deployment position can cover and then

produces the facing direction face for the set (CL, D) with consideration to the obstacles

(lines 9-14). The advantage of this strategy is we can reduce the infeasible solution options

to quickly find better quality candidate location options and avoid overhead cost of memory

and other resources. A similar enhancement approach is used when selecting the facing

direction of a video sensor. We ensure for Algorithm 4, that all the candidate location in

the list have a communication path to the base-station L0 (line 18). A tight lower bound

enhancement is provided to approximate the number of video sensors required with relative

certainty that we need to fully cover all remaining grid points with S. The new estimates for

the number of required sensors S is recorded and stored for processing in the algorithm. An

update is done where we remove the candidate position in L where video sensors have already
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Algorithm 4 Enhanced-DFS Algorithm for Connectivity and Obstacle Awareness

Input: A, L and D
Output: Minimized set of |S| = n, where S is optimal

Initialize : List of A ,D, L and optimal.
1: DFS(depth)
2: if depth ≥ best then
3: return
4: end if
5: if A == 0 then
6: Update best;
7: Record optimal;
8: else
9: for each CL in L do

10: Compute all face ∈ D for CL considering O
11: Select face with max F .
12: Store CL with max F .
13: end for
14: Sort L by descending order of F ;
15: Store CL∗ → Queue;
16: while Queue 6= Ø do
17: CL∗ ← Dequeue;
18: if CL ∈ connected final camera list then
19: if (lowerBound(CL(F )∗) + depth ≥ optimal) then
20: break;
21: end if
22: Record C∗L and F ∗

23: Remove C∗L from L and F ∗ from A;
24: DFS(depth+ 1)
25: Add F ∗ back to A;
26: end if
27: end while
28: Add all removed C∗L back to L
29: end if
30: return optimal
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been deployed and remove the covered points from A (lines 19-23). Next, we recursively call

the enhanced DFS search to explore the remaining search branches (line 24). Our proof

is revised to include the area of interest within A considering both the connectivity and

obstacle constraint. The lower bound for the enhanced DFS algorithm is defined by the

following constraint:

n∑
i=1

(CL, D)F c ≥ 0, and n+ depth ≥ best (5.4)

where n is incremented by one until this constraint is satisfied. A minimized set of |S| = n,

where S is optimal is returned as shown in line 30.

Theorem 2. Given enough time, the enhanced DFS algorithm can return the optimal solu-

tion for the discrete version problem.

Proof. We generalize the traditional DFS algorithm as a brute force approach that searches

each branch until an optimal solution is returned. We assume our discrete version problem to

be a brute force approach with some of the infeasible solution space reduced. Thus, we will

prove that our pruning feature in the enhanced DFS algorithm will not eliminate optimal

solutions. We select and expand on search branches by determining the maximum number

of fresh points covered by the chosen location and direction. Given that (CL, D)Fc is non-

negative where FC ≥ 0 and if current n + depth ≥ best, we do not need to check it further.

As a result, we can cut the branch. Specifically, since the number of F is recalculated after

each iteration of the search, the cost function is non-decreasing as the search step traverses

the graph for a feasible solution.

5.5 Experimental Results

We conduct extensive simulations to evaluate our solutions using the customized

simulator implemented by Java Script. Table 5.2 outlines the default parameter settings

that are utilized in the performance evaluation. For comparison, we extend the random
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Table: 5.2 Simulation Default Parameters II

Parameter Denotation Default Value

3D Indoor Space L Length X 60 X 100
Monitored Area A Same as 3D Indoor Space
Obstacle O 20×20× 30
Deployment Area Tuple(L,D) Top half of walls and ceiling
Granularity of A gA 20
Granularity of L gL 25
Granularity of D gD 45◦

Field of View FOV 50◦

Max Sensing Range RS 100
Max Communication Range Rmax 100
Aspect Ratio ∗ 1.778
Near Field ∗ 1
Far Field ∗ 100

Table 5.2. Connectivity and Obstacle Awareness: Simulation Parameters

algorithm used in Chapter 4 to support connectivity and obstacle awareness, which is used

as the baseline approach. The baseline algorithm will select an initial location, then the

facing direction of the video sensor is adjusted to greedily cover the maximum number of

fresh grid points (i.e. those points that have not been covered by previously deployed video

sensors). If the video sensor cannot cover any fresh points, it will be removed and another

random location will be selected. This process will continue until all the grid points in A

have been covered. An example of the testing environment is simulated in Figure 5.17, where

an optimal deployment scenario is shown. For each setting, we run the baseline algorithm

100 times and show the average of the results with an error bar to indicate the minimum

and maximum values.

We first examine how our solutions perform with different lengths of the 3D indoor

space. The results are shown in Figure 5.6. As expected, with the dimension of the 3D

indoor space increasing, more wireless video sensors are required to cover the indoor space.

However, our greedy heuristic algorithm produced a 38% reduction in the number of video

sensors required to cover the monitoring area. It is worth noting that although we run
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Figure 5.6. Variations of Indoor Space
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Figure 5.7. Varying Obstacle Dimensions

the simulation on a standard PC with configurations listed as: i7 processor, 16GB RAM,

1TB SSD and set a short time limitation (1 hour) for the enhanced DFS solution in our

evaluation, it can still successfully return the optimal results for the cases with the length of

3D indoor space equal to 100 and 200. We thus conjecture that our enhanced DFS solution

can return optimal results for more cases if it is run on a local or cloud server that has much

more computation power and more time is allowed. We next investigate how obstacles can

affect the performance of our solutions, which is illustrated in Figure 5.7 and Figure 5.8.

It is easy to see that in Figure 5.7, as the dimension of obstacles increases, the line-

of-sight of a video sensor is more easily blocked, requiring more video sensors needed to

fully cover the 3D indoor monitoring space. On the other hand, Figure 5.8 shows that more

distance between neighboring obstacles indicates less chance to block the line-of-sight of

video sensors (i.e, in terms of length, for example, every 50 unit of length has one obstacle)

making the number of required video sensors become smaller. Nevertheless, in both figures,

the number of required video sensors by our greedy and enhanced DFS solutions is much

smaller than that of the baseline algorithm. In particular, the reduction over the baseline is
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Figure 5.8. Obstacle per Unit Length
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Figure 5.9. Varying Connectivity Range

up to 44% for the greedy solution and the enhanced DFS solution can further reduce up to

another 18%.

Figure 5.9 shows the impact of the maximum communication range on the deployment

of video sensors. When the maximum communication range is smaller, more video sensors

are required to maintain the network connectivity, which can make for densely deployed

sensors in terms of coverage. On the other hand, when the maximum communication range

is larger, its impact to the deployment becomes limited, where the coverage affects more.

As illustrated in both Figure 5.10 and Figure 5.11, a dependency relationship is evident in

both cases. It is easy to see that the number of sensors increase with the rising of the near

field and decreases with a larger FOV setting. Figure 5.12 shows the reduction of video

sensors required to cover the space as the distance among neighboring grid increases, this

occurs because it takes less grid points to fill the space as the distance grows between them.

Figure 5.13 shows the stable performance of both the enhanced DFS and greedy heuristic,

where improvements in reducing S over the greedy is achieved.

Finally, in the testing environment that evaluated the domain variance of the candi-
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Figure 5.10. Impact of Near Field
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Figure 5.11. Variation of Field of View

date location as seen in Figure 5.14 and granularity of L in Figure 5.15, an optimal solution

for the enhanced DFS algorithm was returned before the 1 hour time limit restriction for the

simulation ended. Moreover, the number of required video sensors for both our greedy and

enhanced DFS solutions is much less than that of the baseline solution, where our greedy

solution can reduce the required video sensors by up to 50% over the baseline algorithm

as seen in Figure 5.14, and our enhanced DFS solution can further achieve an additional

reduction on the number of required video sensors by up to 21% over the greedy solution as

shown in Figure 5.11. Figure 5.16 shows the obstacle awareness aspect of the model in action,

where only points within the sensing range are covered and the points within the shadow

of the obstacles are uncovered.Additionally, Figure 5.17 presents an aerial perspective of a

completed deployment.
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Figure 5.12. Varying gA
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Figure 5.13. Varying gD
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Figure 5.14. Varying Impact of CL
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Figure 5.15. Varying Impact of gL
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Figure 5.16. Simulated Deployment Scenario considering Single Obstacle

Figure 5.17. Simulated Deployment Scenario considering Multiple Obstacles

88



CHAPTER 6

2-ANGULAR-COVERAGE

In this chapter, we discuss the coverage problem for WVSNs. The coverage problem

can be formulated as an optimization problem, thus different optimization techniques can

be employed to solve it. Additionally, the generalized “coverage problem” term can be

interpreted in multiple ways and in different contexts (i.e., full, target and k-coverage).

Herein, we compare the aforementioned categories of different coverage approaches and the

motivation of our proposed angular coverage problem in Section 6.2. Section 6.3.1 and

Section 6.3.2 will introduce our network models extended from Chpater 5 to consider the

additional coverage constraint imposed in the continuous and discrete space for 2-angular

coverage. A detailed discussion of the solutions is presented in Section 6.4, where we identify

our distinct methodology from existing approaches. The performance evaluation of both the

greedy heuristic and enhanced depth first search algorithms are presented in Section in 6.5.

6.1 Introduction

Wireless Video Sensor Networks are prominently featured in countless technological

applications including: image processing, site monitoring and intruder detection systems.

These video sensor nodes are established to work autonomously and have the ability to com-

municate directly over a shared wireless channel. Given these features, the use of wireless

video sensor networks in many industrial sectors have grown exponentially [133]. Further-

more, wireless video sensor networks have a niche within this field because of the uniqueness

attributed to its directional sensing range [105]. Such factors makes the integration of this

technology quite an interesting research topic. One of the fundamental research issues for

WVSNs is the coverage problem in wireless video sensor networks. Coverage in wireless
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video sensor networks is an indicator used to measure how well and for how long the sensors

are able to monitor the physical space. Though, extensive research has been conducted in

the area of WVSNs to provide techniques that will optimize sensor coverage, existing lit-

erature studies heavily focus on only three types of coverage schemes, namely area (i.e., a

full coverage model) , target (i.e., a point coverage models) and k-coverage (i.e., a degree of

coverage model). A detailed review of each is presented in the next section.

6.2 Coverage Comparison

In this section, we discuss some of the commonly utilized WVSN coverage models

and identify problematic factors that can arise when directly applying strategies already

well developed for the general coverage problem (i.e., traditional disk sensing models do not

consider the intrinsic directional property of video sensors), to a scenario where consideration

to angular coverage is required. We discuss the potential design conflicts that are problematic

for each scheme in depth.

Area coverage in WVSNs is an approach utilized, where video sensor nodes are de-

ployed in such a way that the area “covered” by the network is maximized [54]. In area

coverage models, the objective is essentially define as “Given the sensing range R of sensors,

how to place the sensors so that the entire monitored area will be fully covered?” as illus-

trated in Figure 6.1b, while the deployment problem is to address how to place sensors so

that the the number of sensors N needed to cover the monitoring area is minimized. [76].

In this scenario, an issue can arise when multiple sensors are deployed to cover a monitored

space where it is assumed that all sensors will have the same omnidirectional sensing ranges.

This can produce overlapping of covered spaces (i.e., redundant spaces) occurring due to

densely deployed sensor within the monitored region as seen in [134; 135]. This is a con-

tributing factor to network in-efficiency and excessive resource allocation where the trade-off

is a fully covered monitored space but with high resource overhead. Consequently, this ap-

proach implements a scheme that can only provide area coverage of the monitored space but
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does not fully ensure fault tolerance and optimally within the WVSN. Several of the stud-

ies discussed above utilize onmidirectional 2D network models. However, the work in [136]

studies the full-coverage problem for three dimensional sensor networks. Their approach

designed a set of patterns to achieve area coverage in additional to one other sensor network

metric. The goal of the work was to prove the optimality of the deployment strategy among

all of the regular lattice deployment patterns presented (i.e., right parallelepiped, basic and

body centered lattices). Though, the deployment strategy considered the three dimensional

aspect of the deployment region, the work did not employ a realistic approach to the sensing

range as it utilized an omnidirectional model.

s

Rs

Rs
Discrete
Points

(a)

T1

T2

T3

(b) (c)

Figure 6.1. Coverage Model Comparison (a) Target Coverage (b) Area Coverage (c) Barrier
Coverage using pointillism of discrete points [4]

The objective of the target coverage problem is to employ a technique to monitor a

target set T such that all the targets within T will be covered, if it is covered by at least one

sensor node [137]. In target coverage, targets are often modeled as a set of discrete space

points within the sensing field as shown in Figure 6.1a. The points are then used to represent
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a physical target or static event [4].

Traditional schemes for this problem often utilize a disk sensing method. Within

this method, it is assumed that a target within the sensing disk range is always detected

within a probability of one, however, if the target (i.e., points) is outside the disk, it is not

detected. The implementation of this approach strategy is based on an unrealistic sensing

model that assumes near perfect coverage within the circular disc. However, in real-world

applications, the sensing properties of sensors are greatly affected by environmental factors

(i.e., walls and other obstacles) and physical phenomenons (i.e., distance and interference).

Thus, there is a need for more accurate coverage models which can characterize the properties

attributed to more practical deployment environments such as those found within buildings

and other personal spaces. Furthermore, the limited orientation angles of target sensing

models can render coverage effective only from certain view points producing restricted

viewpoints, occlusion of other elements in the environment including other targets and an

inadequate coverage model for larger targets [138]. Hence, we take into consideration the

angular aspect of the video sensor and consider both the connectivity and obstacles as it

relates to 3D indoor settings.

Over the years, there have been several studies that have proposed solutions to specif-

ically address the k-coverage problem, such as works in [139] and [140]. Though, not as

extensively explored in comparison to target and area coverage, existing literature highlights

the importance of evaluating the problem. The k-coverage metric allows for a more tailored,

practical and concise approach to monitor and measure the performance of the network en-

vironment, whereby a region is minimally k-covered by a set of sensors S, such that each

point in the given region is “monitored” by at least k distinct sensors. Figure 6.1c presents

k-covered discrete points using the pointillism method (i.e, covering in which small, distinct

points in various colors are applied in patterns) where different colors are assigned to point

coverings within the network, identifying the specific (i.e., distinct) sensor that covers it. The

nature of this proposed design promotes fault-tolerance within the network as presented in
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[141]. However, majority of the existing literature employ simple 2D models, fails to support

fault tolerance while promoting network efficiency (i.e., strives to deploy distinct sensors for

k-coverage). As a result, their applications may not be practical in real world settings and

thus incur inconsistencies.

As stated previously, k-coverage is a unique coverage metric, capable of demonstrat-

ing the coverage quality measured in terms of coverage ratios or a probability guarantee.

However, other factors weigh heavily on the performance of the WVSN. Such metrics are

often overlooked when analyzing the quality of coverage within wireless video sensors net-

works. A different metric is needed to measure the quality of the deployment in terms of

coverage.

Video sensor nodes are established to work autonomously and have the ability to

communicate directly over a shared wireless channel in WVSNs [142]. Given these features,

the use of wireless video sensor networks has expanded into many fields. Furthermore, the

Internet of Things (IoT) is an emerging research area centered on smart physical devices

which communicate, coordinate and collect data utilizing the Internet [133]. Wireless video

sensor networks have a niche within this field because of the uniqueness attributed to its

directional sensing range [105]. Potential areas of extension includes providing an outlet

to incorporate control of networks vital to business, home and intruder monitoring [143].

Coupled with the economical cost of video sensors, this preliminary area within the IoT will

allow for immediate integration into systems for personal surveillance via mobile and online

applications. This is our motivation for the the work. In particular, the development of new

trends which facilitate the monitoring of indoor spaces utilizing the Internet of Things (IoT)

paradigm coupled with the integration of WVSNs is needed to advance the field of video

surveillance applications. Consequently, this approach requires a scheme that will provide

not only optimal coverage of the monitored area but additionally ensures fault tolerance

within the system.

Due in part to the uniqueness of the video sensor directional sensing range, we propose
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to exploit the directional feature to determine the optimal angular-coverage of each deployed

video sensor. In this chapter, we study this challenging problem by considering 2-coverage

for WVSNs in 3D indoor space monitoring building on the work from Chapter 4 (i.e., optimal

deployment) and Chapter 5 (i.e., connectivity and obstacle awareness). Moreover, we propose

to deploy the video sensors from divergent directional angles and further extend 2-coverage to

“2-angular-coverage” to imply such unique requirements in WVSNs. To solve this problem,

we propose bilateral solutions namely a greedy heuristic and an enhanced Depth First Search

approach (E-DFS). Initially, by formulating the problem into a continuous space and then

formulating the problem into a discrete model where we partition the surveillance region into

grid subareas. Additionally, we develop a strategy to determine the degree of coverage for

the WVSN, where a given location needs to be covered by at least 2 video sensors and fulfill

the angular-coverage requirement. In the sections below, we present the problem formulation

and both the continuous space and discrete space models for the 2-angular coverage problem.

6.3 Problem Formulation

The monitoring area is assumed to be a three dimensional indoor space (e.g., a depart-

mental floor of a building). Also, within the indoor environment, there are often restrictions

for prime deployable locations (e.g., ceilings, wall space not obstructed by furniture place-

ment) which introduce additional challenges. Our goal is thus to optimize the placement and

facing direction of each video sensor so as to minimize the number of video sensors required

to fully monitor all the required 3D areas. Below, we address the WVSN coverage problem

for 3D indoor space with consideration of 2-angular coverage for video sensor deployment.

6.3.1 Continuous Space Model

As highlighted previously, introducing WVSNs into an environment presents addi-

tional challenges that are not often attributed to WSNs such as coverage quality and the

resolution of the image which depends on the orientation of the video sensor. Our work,

differs from the existing literature by considering the unique angular coverage feature and
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real world 3D modeling for WVSNs indoor monitoring. Moreover, we create a scheme to

determine the minimum number of video sensors to achieve 2-angular coverage (i.e., adapted

from 2-coverage) from different directional perspectives. Presented below is our continuous

space model extend to consider 2-angular coverage.

To recall, we let A denote the 3D areas that must be continuously monitored (i.e.,

covered) by the video sensor, S. Now, let L denote the deployable positions within the

monitored area that can be used to deploy (i.e., place video sensor at the specified location)

the video sensors. The location and direction of the video sensor is defined as a tuple (L,D).

We assume for a 3D indoor space, the location L is represented as a three dimensional

coordinate for the video sensor placement (x, y, z) and the direction D = (x′, y′, z′) is a

point on the surface of a unit sphere (which throughout the paper will be referred to as the

facing direction sphere) with its radius equal to 1 and centered at (0, 0, 0). We denote face

to represent the facing direction vector from (0, 0, 0) to (x′, y′, z′). As mentioned earlier,

the interest areas specifically within the 3D area in A that we want to monitor is denoted

as a. Additionally, we assume RS is the maximum sensing range of the video sensor and

Rmax denotes the maximum communication range of the video sensor. We model the view

frustum of the video sensor with parameters: farfield, nearfield , field of view (FOV)

and aspect ratio. Thus, we formulate our problem as to find a set of locations and directions

of video sensor nodes where, S = {(L1, D1), (L2, D2), .., (Ln, Dn)}, subject to the following

additional constraints:

(1) Sensor Location Constraint:

∀(L,D) ∈ S, L ∈ L ;
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(2) Area Coverage Constraint:

∀a ∈ A, ∃(L,D) ∈ S, such that,

a ∈ Cover(L,D,RS) and

∀O ∈ O, Segment(La) ∩O = ∅ ;

(3) Network Connectivity Constraint:

∃Path = {(Lp1 , Dp1), (Lp2 , Dp2), . . . , (Lpk , Dpk)},

such that Path ⊆ S, Lp1 = L,

|LpiLpi+1
| ≤ Rmax for i = 1 . . . (|Path| − 1) ;

|LpkL0| ≤ Rmax ;

(4) Region Angular 2-Coverage Constraint:

∀a ∈ A;

∃(Li, Di), (Lj, Dj) ∈ S (i 6= j) ; such that,

a ∈ C(Li, Di, RS) ∩C(Lj, Dj, RS) and

](
−−−−−−−→
aL1 → Li,

−−−−−−→
aL2 → Lj) ≥ θ

, where θ is a predefined angle 1. The regional angular 2-coverage constraint specifies that

the monitoring point a is in the covered frustum of video sensors deployed at both Li and

Lj to allow for 2-angular coverage. The concept model for the 2-angular coverage constraint

is illustrated in Figure 6.2. This constraint will allow for fault tolerance within the network,

where if one sensor fails another sensor will be available to continue to monitor the space.

Moreover, when two video sensors work simultaneously, the 2-angular coverage can greatly

1For this work, the angle θ default value was equivalent to 120◦.
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(Li,Di) (Lj,Dj)

aLi
aLj

a

Figure 6.2. Concept Model for 2-angular-coverage

enrich the captured video information if an object presents at a. Our objective is thus to

minimize |S| = n, where n is the number of video sensors deployed to cover the monitored

area.

As formulated in the angular 2-coverage constraint, there must exist at least 2 video

sensors that can monitor a given point to provide varied angular coverage. This feature

will allow for potential applications in tracking of a target and facial recognition analysis

(i.e., facial tracking) by providing image captures from a 2-angular perspective. Consider

this scenario where the requirement is to provide some type of facial tracking in a given

monitored space. The monitored space can be defined into regions within a video sensor

network, where the camera placement should provide different angles of the tracked target.

Though overlapped visible objects may occur with the WVSN target tracking, the image
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can provide completely different scenes considering the angle. Based on this assumption we

propose to consider if the video sensor captures the point from different viewing directions

for which the angle between their direction is at least greater than or equal to 120 ◦ a

predefined difference in the coverage angle. A representation of 2-coverage with the video

sensor direction constraint for a point in the monitored area is shown in Figure 6.2 vectors

−→
aLi and

−→
aLj.

6.3.2 Discrete Space Model

A revised network lattice model is used to approximate the continuous space model

by dividing the monitored space A that must be fully covered into discrete 3D grids. We

require that all grid points in the region are at least 2− angular covered. This technique is

also used for the deployable positions in L to divide each area that can be used to deploy the

video sensors. Let LC denote the candidate locations where a video sensor can be deployed

in the 3D monitored space. The tuple (LC , D) is used to denote the candidate location and

direction of a video sensor. The distance between two neighboring grid points is denoted

as gA, which is used to quantify the granularity of the grids used in the monitored space A

and gL denotes the granularity of the grids used in L. In addition, we also divide the surface

of the facing direction sphere into grids (like the longitudes and latitudes divide the surface

of the earth) and use gD to denote the granularity. We assume that a wireless video sensor

can only face a direction where its D falls on a grid point, which represents the deployment

of a sensors with consideration given to the facing direction sphere techniques. It is easy to

see that by adjusting the three granularity parameters, we can easily achieve the required

accuracy for approximating the continuous space model.

6.4 Experimental Methodology

In this section, we tackle the 2-angular coverage problem for 3D indoor monitoring

by extending the greedy heuristic and enhanced Depth First Search algorithm proposed in

the previous chapters.
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6.4.1 Greedy Heuristic Algorithm

The greedy algorithm works in an iterative manner to deploy video sensors as seen

in Algorithm 5. In each iteration, the algorithm strives to choose among the available

locations in L and find the location where the deployed video sensor can cover a maximum

(i.e., greedy approach) number of fresh points. Next, we then update whether the points

that are covered can be categorized as: 1-coverage, 2-angular-coverage or no coverage. This

is implemented by recalculating the point coverage for each video sensor at a deployable

location in the monitored area. By continuously tracking and updating the points covered,

we determine the minimum number of remaining location in L to place the deployable video

sensor. Additionally, we then consider those points that are only covered by one video sensor

and check if by placing a video sensor at a location, which deployment achieves the maximum

conversion of points from 1-coverage to 2-coverage by an opposing video sensor and via an

angle different from the previous coverage (as required by the 2-angular-coverage)2. The

one that can maximally cover the most points considering the 2-angular coverage constraint

after recalculation will then be chosen as the next location to deploy a video sensor.

6.4.2 Enhanced Depth First Algorithm

In Algorithm 6, we provide our enhanced DFS algorithm to further improve the

quality of our solution. In a traditional depth first search approach, the exploration of each

branch within our solution set will need to be searched to pick a location in L and a facing

direction D. However, this is not ideal since the solution space can quickly expand with the

size of L. In this solution, a pruning technique is implemented which can exploit the search

by cutting off and removing most of the solution space that does not include high-quality

solutions. We are able to efficiently reduce the size of the candidate location LC options by

starting the search from the result of our greedy heuristic algorithm as the currently found

best solution. The search branches (depth) that already have used equal or more number of

2 We additionally consider the obstacle constraint in line 4 of Algorithm 5, however we emphasize angular
coverage in this chapter. The connectivity constraint is upheld in line 3.
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Algorithm 5 Greedy Heuristic Algorithm for 2-Angular Coverage

Input: A , D and L
Output: Set of S with max F in descending order

Initialize : List of A, D, L and list.
1: while L >0 and A >0 do
2: for each LC in L do
3: if LC ∈ connected video sensor list then
4: Compute all face ∈ D for LC considering 2-angular coverage
5: Select face with max F .
6: if LC(F )∗ >LC(F ) then
7: Update LC ;
8: end if
9: end if

10: end for
11: record LC with max F
12: remove LC from L and update A
13: end while
14: return list

video sensors compared to the currently found best solution can be pruned (lines 1-4).

When a branch is searched incrementally where it is either fully explored or pruned,

the search will revert back to its previous status to be popped from the stack. Additionally,

the selection of the location in each iteration is chosen by using the default order (e.g., sort

all LC by decreasing order) based on the maximum number of points that a video sensor at a

deployable location can convert a point from non-coverage to 1-coverage and from 1-coverage

to 2-angular-coverage and then choose the first element in the sorted list (lines 8-14). This

approach allows our algorithm to quickly find high quality solutions and skip as many low

quality solutions as possible. When a search branch is pruned or explored fully, the search

will update all the parameters and will continue the search using its previous status (lines

18-22). The search will halt after all points in the 3D indoor space is 2-angular-covered. An

optimal set of video sensor deployment locations is then returned (line 26).

The lower bound for the enhanced DFS algorithm is defined as:

lowerbound = min(S1, . . . , Sn) (6.1)
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Algorithm 6 Enhanced-DFS Algorithm for 2-Angular Coverage

Input: A, L and D
Output: Minimized set of |S| = n, ensuring 2-angular-coverage

Initialize : list of A ,D, L and list.
1: DFS(depth)
2: if depth ≥ best then
3: return
4: end if
5: if A == 0 then
6: Update best;
7: else
8: for each LC in L do
9: Compute face for LC .

10: Select face with 2-coverage.
11: Store LC selected.
12: end for
13: Sort L by descending order;
14: Store LC → Queue;
15: while Queue 6= Ø do
16: LC ← Dequeue;
17: if LC ∈ list then
18: if (lowerBound(LC) + depth ≥ list) then
19: break;
20: end if
21: DFS(depth+ 1)
22: Add removed undeployed LC back to L
23: end if
24: end while
25: end if
26: return list

, where n is incremented by one until f(x) ≤ min. We then use the minimum number of

the video sensors that we have chosen during this process as the lower bound, where f(x) is

calculated:

f(min) =
n∑

S∈S

(x)SF (6.2)

In each search step, if this lower bound plus the number of video sensors that we have

already deployed is equal to or greater than the currently found best (i.e., In the greedy
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algorithm, we calculate a number of cameras for the covering. We use this number as our

baseline for the enhanced DFS algorithm. At the first iteration, the “best” term equals the

baseline ) solution, the search branch can be safely prune (line 2).

We utilize the following theorem.

Theorem 3. The enhanced-Depth First Search (e-DFS) proposed in Algorithm 6 returns the

optimal solution for the 2-angular coverage for the discrete version of the general problem.

Proof. To prove the statement, we assume that if the search branches are not pruned, the

solution will continue to search exhaustively and return the optimal solution. The proof is

thus proved by showing that the branch pruning in-fact does not miss the optimal deployment

placement, since the number of the locations that we have chosen during this process F is

the lower bound, those paths will contain the most current search branch. Additionally, if

the lower bound plus the number of video sensors that we have already deployed is greater

than or equal to (i.e. ≥ ) the currently found best solution, the search branch can be safely

pruned.

6.5 Experimental Results

The efficiency and validity of our algorithms are evaluated by extensive simulations.

The simulation settings are provided in Table 6.1. We use a similar simulation environment

to the previous chapters. However, the random baseline algorithm used in both of the

previous chapters failed to return a solution in a feasible time frame for this study. We

hypothesize that the random deployment approach may have lead to an uneven distribution

of video sensor nodes within the monitored region.

Due to this factor, coupled by the rigorous additional constraints implemented in

Chapter 5 where the video sensor nodes deployed must have a path to the sink and not be

obstructed by an obstacle resulted in a greatly reduced solution space. The solution space

(i.e., available deployable sensors compliant with all constraints ) was further reduced when
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Table: 6.1 Simulation Default Parameters III

Parameter Denotation Default Value

3D Indoor Space L Length X 60 X 100
Monitored Area A Same as 3D Indoor Space
Obstacle O Size of O ∈ O = 20× 20× 30
Deployment Area Tuple(L,D) Top half of walls and ceiling
Coverage Angle 2− angular − coverage ≥ 120◦

Granularity of A gA 20
Granularity of L gL 25
Granularity of D gD 45◦

Field of View FOV 50◦

Max Sensing Range RS 100
Max Communication Range Rmax 100
Aspect Ratio ∗ 1.778
Near Field ∗ 1
Far Field ∗ 100

Table 6.1. 2-Angular Coverage: Simulation Parameters

the constraint of the sensor pairings for opposing angles of greater than or equal to 120◦ was

added. Thus, the initial uneven distribution produced a scenario where none or a limited

number of sensors where in enough proximity of each other to fit into the 2-angular coverage

constraint. After fulfilling the prior three constraints from our previous models, no feasible

solution could be produced using the baseline algorithm.

We now present a discussion on the performance evaluation of our algorithms. Figure

6.3 shows how the number of video sensors required to fully cover a space decrease as the

domain variations of the 3D indoor space deployable regions increase (i.e., the allowable

regions for deployment on the walls and ceilings are increased by a factor of .20), which

highlights the flexibility of the system. The greedy heuristic and enhanced-DFS algorithms

produce similar results initially, then the enhanced-DFS algorithm outperforms the greedy

heuristic algorithm, specifically when the domain of the indoor space reaches the .80 interval.

In Figure 6.4, we evaluated how varying the field of view for the video sensor impacts

the performance of both algorithms. As expected, the required number of video sensor to
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Figure 6.3. Variation of Deployment Domain
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Figure 6.4. Varying Field of View

cover the space steadily decreases as the field of view angle is increased (i.e, angle of view

expanded), this is seen in both the greedy heuristic and enhanced DFS, in this instance the

enhanced DFS out performs the greedy approach.

We evaluate how varying the near field impacts our algorithmic solutions in Figure

6.5. Initially, both algorithms require the same amount of required video sensors to cover

the 3D indoor space. This changes as the near field parameter is increased. We can see

that both algorithms require an increase amount of sensors to fully cover the 3D area as the

near field distance is increased. The increase is intuitively expected because of the near field

parameter properties. The near field corresponds to the distance to the near clipping plane

of the video sensor’s viewing frustum. As the near field distance increases, the eye of the

video sensor moves further away from the viewing frustum near plane. This results in an

angular and volume reduction for the sensor viewing frustum which results in a decrease in

sensing ability thus requiring more sensors to monitor the area. This is shown in the figure

by the unstable (i.e., non -linear ) results. However, both algorithms were able to generate

feasible results.
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Figure 6.5. Varying Near Field
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Figure 6.6. Varying 3D Indoor Space

Figure 6.6 presents an evaluation on how varying the 3D indoor space sizes impact

the performance of both the greedy heuristic and enhanced depth first search algorithms.

As the monitoring space increases the number of video sensors required to cover the space is

relatively similar. Additionally, as the size of the required space grows, so does the number

of sensors (i.e., the number of sensors required to cover a larger space is expected) . Overall,

the enhanced DFS algorithm requires less video sensors in comparison to the greedy solution.

Granularity is the extent to which data is broken down into smaller parts. For the

evaluation of the granularity of deployable location points in L within the discrete grid model,

we evaluated how gL impacts the greedy heuristic and enhanced depth first search algorithms.

The enhanced DFS algorithm appears to out perform the greedy heuristic algorithm in the

beginning portion of performance evaluation as seen in Figure 6.7, however, as the granularity

of the locations for candidate deployments LC increases, so does the number of video sensors

that are required to fully cover the 3D indoor space, this is true for both algorithms where

both have similar results. We know that due to the increase in possible deployable locations,

the solution space is now larger. In this case, a scenario may happen where our implemented
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Figure 6.7. Impact of Varying gL
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Figure 6.8. Varying Impact of gA

method for both algorithms continuously checks to see if a new deployable location can better

(i.e., cover more new fresh points) cover the deployment region considering the constraints.

We thus expected the number of sensors required to fully cover the area would decrease due

to the increase in number of deployable locations(i.e., more options for sensor deployment).

In Figure 6.8, we look at how the granularity of A affects the performance of our algorithms.

The results show that as the granularity of A increases, the number of video sensors required

to cover the region decreases. Both algorithms perform relatively similar but at the ending

parameter interval of 30, the enhanced DFS performs better. In this case, initially in the

evaluation the grid points to be covered in A are sparsely placed in the environment requiring

more sensors to fully cover the area. However, once the grid points are densely distributed

(i.e., an increase in gA) through out the monitored space, a fewer number of sensors are

required to fully cover the area.

We now look at how varying the far field impacts the performance of the algorithmic

solutions as presented in Figure 6.9. Both algorithms have comparable performances as it

relates to the number of video sensors required to monitor the coverage area. The figure shows
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Figure 6.9. Impact on Varying the Far Field
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Figure 6.10. Impact of Varying gD

that as the far field parameter increases, the number of required sensors in fact decreases.

This is opposite of what we experienced in the performance evaluation for the near field

parameter. This is due to the reversal of projected view as it corresponds to sensor view

frustum. When the far field parameter is increased, the volume and viewing angle of the view

frustum increases (i.e., far clipping plane expands to a larger viewing capacity), too. This

allows for increase sensing and the ability to cover a larger area within the video sensor’s

view frustum. Thus, reducing the number of sensors required to cover the 3D space. Next,

we evaluated how varying gD would impact our solutions. The granularity of D refers to

the facing direction sphere (i.e., granularity of the longitude and latitude lines on the facing

sphere) for the video sensor. In Figure 6.10, the greedy heuristic algorithm requires more

sensors to cover the space while considering 2-angular coverage.

Additional testing was conducted to evaluate both algorithms. Overall, the greedy

algorithm results were analyzed and the number of required video sensors was comparable to

our enhanced DFS algorithm. However, in several instances the enhanced DFS out performed

the greedy heuristic algorithm and in one scenario the enhanced DFS was able to reduce the
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Figure 6.11. Running Time

number of video sensors by up to 22% over our greedy algorithm.

In Figure 6.11, we further evaluated the running time performance of the greedy

heuristic and enhanced depth first search algorithms. The greedy heuristic algorithm was

able to successfully complete with running times of .948, 3.722, 6.676, 9.424 and 16.398 (i.e.,

in seconds for the case lengths of 100, 200, 300, 400 and 500, respectively) with relatively

stable performance. We hypothesize that the algorithm was able to return in the allotted

time, given its selection of locally optimal solutions. As seen in Figure 6.11, the enhanced

DFS algorithm returned an optimal solution in case interval 100 with a running time of 48.058

seconds. However, during the run time evaluation cases of 200, 300, 400 and 500, respectively,

the algorithm did not finish within the set 30 minute time limit. We hypothesize that due to

the gradual increase in the length of space for monitoring cases 200-500, our enhanced depth

first algorithm was not able to finish within the allotted time frame. Though the algorithm

did not return the optimal solution for the aforementioned cases above, the enhanced DFS

algorithm was able to improve the solution of the greedy heuristic algorithm most of the

time for a practical real world monitoring setting as shown in Figure 6.6. Overall, the

108



greedy heuristic algorithm was able to return a solution more efficiently with the trade-off

of optimality. In reference to the running time of the enhanced DFS, the rapid growth of n

(i.e., input size) increased the search space exponentially in some cases resulting in a longer

running time.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Wireless Video Sensor Networks have real world implications in many important

fields. This is seen in the increased development of practical applications for areas such as

campus, industrial, medical and environmental monitoring, which greatly benefit from the

technology. Many existing studies offer optimization techniques to improve the functionality

of the network as it relates to deployment. However, most existing literature on the topic

often model the deployment environment with two dimensional aspects and assign omnidi-

rectional sensing ranges to the sensor, without giving consideration to the 3D aspects of true

deployment environments for real world applications.

This dissertation, studied the deployment problem for 3D indoor space monitoring

in WVSNs with the considerations to connectivity, obstacle awareness and 2-angular cov-

erage. For the basic deployment problem discussed in Chapter 4, we presented techniques

to optimize the placement and angular direction of each video sensor in a continuous space,

and then converted the model into a discrete version where a grid model was presented to

replicate a more precise real world indoor environment, allowing a fine grained approach to

achieve arbitrary approximation precision in the models. The greedy heuristic algorithm we

proposed computed locally optimal solutions and our enhanced DFS algorithm was further

proposed to improve the coverage of all regions in the monitored space whereby it mini-

mized the number of video sensors and can used branch pruning to efficiently return optimal

solutions for the locational position and directional angle of the video sensors.

Based on the high quality solutions yielded from the deployment problem perfor-
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mance evaluation, the discrete space model was extended to include constraints to consider

jointly the connectivity and obstacle metrics for WVSNs, discussed in Chapter 5. To ensure

connectivity within the deployed video sensor network a communication path is established

between a start node to the base station, which is sufficient enough to supply connectivity

with WVSN. Two strategies are proposed to account for obstacles within the monitored en-

vironment. The Divide and Conquer scheme utilized a straight line equation which resulted

in some obstacles not being detected. So, the Accurate Detection strategy was developed to

provide improved obstacle awareness within the monitored environment. This technique used

a more precise model to fully detect all obstacles within the monitored environment. The

Accurate Detection model was then implemented in both the greedy heuristic and enhanced

depth first search algorithms. Extensive performance evaluations were then conducted using

the custom simulation environment. The enhanced DFS algorithm significantly reduced the

number of video sensors required to fully cover the 3D indoor monitoring space, returning

optimal solutions, given a reasonable amount of time (i.e., 30 minutes).

We studied the 2-angular-coverage problem for WVSNs in Chapter 6, where we de-

veloped a scheme to effectively monitor a 3D indoor space from different perspectives using

visual sensor networks. For each perspective, we ensured that all the points inside the in-

terest areas were covered. In each candidate location for a visual sensor, we discretize the

area to effectively deploy 2-angular-coverage visual sensors. By iteratively selecting the fac-

ing direction choices for each visual sensor our enhanced-DFS algorithm further improved

the coverage of the space and provided feasible solutions for networks beyond the greedy

heuristic algorithm.

7.2 Future Work

In an attempt to develop future enhancements to our formulated solutions, alterna-

tive techniques can be utilized for the deployment optimization methods. One example of an

alternative technique is the development of an optimization algorithm based on the “intelli-
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gent” foraging behaviour of different swarm insects (i.e., such as the honey bee) [144] [145]

[146] [147]. The Artificial Bee Colony algorithm is applied to many optimization problems

by converting the problem into an objective function which determines the best parameter

vector. Then, the artificial bee solution randomly discovers a population of initial solution

vectors and then iterative improves upon them by employing various strategies that select

improved solution spaces by searching neighboring locations while abandoning poor solu-

tions. It is thus very interesting to further investigate how such optimization techniques can

be applied to the problems in our scenario to improve the performance.

Another future research trend is to consider the traffic dynamics that may be com-

monly seen in WVSNs. Traffic modeling in WVSNs is dependent upon the type of data

patterns that are presented to the particular application within the network. Past research

on the topic suggests that the traffic patterns are categorized as event driven or periodic

burst throughout the network. In the case of the periodic bursts of data, the use of constant

bit rate (CBR) is used to model the arrival of data. However, if the data within the network

arrives at a variable time frame, a Poisson process can be used to model the data traffic.

As for the scenario of event driven data, a more tailored approach is needed. Some of the

more common strategies include: Pareto Distribution Process, Weibull Distribution Process,

Regression and Transform-expand-sample (TES) models [148]. In the Pareto approach the

inter-arrival times of data are calculated independently and identically distributed (IID).

The Weibull Distribution Process uses an ON/OFF model to monitor the burst patterns in

the source data traffic. The TES model can capture the correlated sequences and marginal

distribution of data within the network. Within a Regression Model, predictors and re-

sponse parameters are introduced where the relationship among the variables are analyzed

and characterization of the outcome (prediction) is developed. An extension to this work

may consist of incorporating in-network data traffic models to provide more practical traffic

routing and scheduling solutions.

Additionally, in Chapter 5, we discussed the use of different models for the connectiv-
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ity metric as it relates to WVSNs. During the discussion, we explored both the deterministic

and probabilistic models. Ultimately, we used a deterministic model for the network connec-

tivity constraints. To extend the model, a potential extension would be to use a probabilistic

communication model for our problem, which can make the model more practical. The afore-

mentioned topics above and their application in the improvement of WVSNs is the subject

of future work.

7.3 Research Publications

The following publications resulted from the work studied in this dissertation.

1. Brown, T., Wang, Z., Shan, T., Wang, F. and Xue, J., 2016, March. On wireless video

sensor network deployment for 3D indoor space coverage. In SoutheastCon, 2016 (pp.

1-8). IEEE [149]

2. Brown, T., Wang, Z., Shan, T., Wang, F., and Xue, J. 2017. Obstacle and Con-

nectivity Aware Wireless Video Sensor Deployment for 3D Indoor Monitoring: Poster

Abstract. In Proceedings of the Second International Conference on Internet-of-Things

Design and Implementation (IoTDI ’17). ACM, New York, NY, USA, 305-306. DOI:

https://doi.org/10.1145/3054977.3057924 [150]

3. Wang, Z., T. Brown, T. Shan, F. Wang, and J. Xue. ”On 2-Angular-Coverage in Wire-

less Visual Sensor Network Deployment for 3D Indoor Monitoring.” In Proceedings of

the SouthEast Conference, pp. 145-148. ACM, 2017. [151]

4. Brown, T., Wang, Z., Shan, T., Wang, F., and Xue, J., Obstacle Aware Wireless Visual

Sensor Network Deployment for 3D Indoor Space Monitoring, Submitted for Review

to IEEE Globecom ’17.

5. Brown, T., Wang, Z., Shan, T., Wang, F., and Xue, J. Obstacle Aware Analysis of

k-Coverage, Connectivity and Traffic in Wireless Visual Sensor Network Deployment
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Network Coverage: From Theory to Practice (SI: Network Coverage) (Journal)’18.
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Appendix A

Greedy Heuristic Algorithm Complexity Analysis

The section below will discuss the implementation of the constraints modeled in the

discrete version of our formulated problem for the greedy heuristic algorithm.

A greedy algorithm builds a solution in small incremental steps, selecting a decision

to optimize some underlying criterion. In our case, the greedy heuristic algorithm identifies

the locally optimal choice at each iteration phase of the algorithm, where it selects the video

sensors that covers the maximum number of points that still need to be covered. This greedy

strategy is utilized to yield a local optimal solution to approximate a global optimal solution

in a feasible time. Moreover, this approach will provide significant benefits to our latter

solutions by reducing the deployment candidate locations and additionally can provide a

relative approximate solution to the optimization problem.

Herein, we are interested in the performance of the algorithm as the size of the input

(i.e., n) becomes large, which is generally determined by the number of deployment locations

for the video sensors within the monitored area. The algorithm also sorts the deployment

location based on the number of fresh points that will be covered if placed at that locations.

In both algorithms, we use quick-sort to sort the locations. The worst case for a quick sort

algorithm is n2. Given these factors, the number of operations required by our algorithm is

O(n3), (i.e., there are n iterations for the input size times each iteration n2 for quick sorting

for worst case and with quick sorting on average, it may be O (n2logn). However, if in each

iteration instead of sorting the candidate locations, we can directly select the video sensor

that covers the maximum number of fresh points, then the overall complexity can be reduced

to O (n2).
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Appendix B

Enhanced DFS Algorithm Complexity Analysis

The section below will discuss the implementation of the constraints modeled in the

discrete version of our formulated problem for our enhanced depth first search algorithm.

In the enhanced depth first search algorithm, we implement some enhancements to

improve the greedy solution. We start the search with the current best found solution list

from the greedy search approach discussed above. The strategy assist the enhanced DFS

algorithm in removing the search branches that have already used equal or more number

of video sensors compared to the currently found best solution and can safely prune them.

We then sort the candidate locations for video sensor deployment based on the maximum

number of fresh point particles that it can cover. With respect to the sensor angle direction,

we derive a lower bound. Finally, we return a list with location and direction for camera

sensor. Traditional depth first search algorithms often do not utilize a pruning technique.

Traditional depth first search algorithm are used to traverse an entire search graph,

where the time complexity of the algorithm is O (V + E) ,(i.e., worst case where V denotes

the vertices and E denotes the edges within the graph). For the implementation of our

enhanced DFS as it relates to the discrete 3D grid, the search is performed on a reduced

solution space set (i.e., currently found best solution list from the greedy heuristic algorithm).

Furthermore, we use a pruning technique to limit the depth space that must be explored.

Given, these factors, in the worst case the time complexity of the algorithm can reach O(n!),

considering the candidate location and facing direction. However, on average our algorithm

is not near the worst case scenario. For example, to start the search with the current best

found solution list from the greedy search approach and use pruning, the complexity can be
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reduced to O (
∏

n
i=n−n′+1i), where n′ is the number of required video sensors found by the

greedy search approach.
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Appendix C

Code Listing: Obstacle Constraint

/∗ Sample coding o f the obs tac l e−awareness c on s t r a i n t ∗/

/∗ Var iab l e s to i t e r a t e through the p a r t i c l e s in space ∗/

i n t innerCounter = 0 ;

f o r ( i n t po intIndex=0; pointIndex<c loudPoints . s i z e ( ) ; po intIndex++) {

/∗ Boolean parameter f o r ob s t a c l e d e t e c t i on ∗/

boolean obstac leCheck = f a l s e ;

/∗ Var iab l e s to hold video senso r l o c a t i o n ∗/

Vector3 localTemp = cameras . get ( camIndex ) . cpy ( ) ;

/∗ I t e r a t e through a l l o b s t a c l e s ∗/

f o r ( i n t i i =0; i i<ob s t a c l e . s i z e ( ) ; i i ++){

i f ( obstac leCheck ) {

break ;

} e l s e {

f l o a t t = 0 ;

f l o a t tempX = 0 ;

f l o a t tempY = 0 ;

f l o a t tempZ = 0 ;

/∗ Check i f po in t s are obst ructed by the f a c e ( i . e . , ob s t a c l e p lanes ) o f the ob s t a c l e ∗/

i f ( ( localTemp . x<=obs t a c l e . get ( i i ) [0]&& obs t a c l e . get ( i i ) [0]<=cloudPoints . get ( po intIndex ) . x ) | | (

localTemp . x>=obs t a c l e . get ( i i ) [0]&& obs t a c l e . get ( i i ) [0]>=cloudPoints . get ( po intIndex ) . x ) ) {
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t = ( ob s t a c l e . get ( i i ) [ 0 ] − localTemp . x ) / ( c loudPoints . get ( po intIndex ) . x − localTemp . x ) ;

tempY = t ∗ ( c loudPoints . get ( po intIndex ) . y − localTemp . y ) + localTemp . y ;

tempZ = t ∗ ( c loudPoints . get ( po intIndex ) . z − localTemp . z ) + localTemp . z ;

i f ( tempY >= obs t a c l e . get ( i i ) [ 4 ] && tempY <= obs t a c l e . get ( i i ) [ 5 ] && tempZ >= obs t a c l e . get (

i i ) [ 2 ] && tempZ <= obs t a c l e . get ( i i ) [ 3 ] ) {

obstac leCheck = true ;

break ;

}

}

i f ( ( localTemp . x<=obs t a c l e . get ( i i ) [1]&& obs t a c l e . get ( i i ) [1]<=cloudPoints . get ( po intIndex ) . x ) | | (

localTemp . x>=obs t a c l e . get ( i i ) [1]&& obs t a c l e . get ( i i ) [1]>=cloudPoints . get ( po intIndex ) . x ) ) {

t = ( ob s t a c l e . get ( i i ) [ 1 ] − localTemp . x ) / ( c loudPoints . get ( po intIndex ) . x − localTemp . x ) ;

tempY = t ∗ ( c loudPoints . get ( po intIndex ) . y − localTemp . y ) + localTemp . y ;

tempZ = t ∗ ( c loudPoints . get ( po intIndex ) . z − localTemp . z ) + localTemp . z ;

i f ( tempY >= obs t a c l e . get ( i i ) [ 4 ] && tempY <= obs t a c l e . get ( i i ) [ 5 ] && tempZ >= obs t a c l e . get (

i i ) [ 2 ] && tempZ <= obs t a c l e . get ( i i ) [ 3 ] ) {

obstac leCheck = true ;

break ;

}

}

i f ( ( localTemp . z<=obs t a c l e . get ( i i ) [2]&& obs t a c l e . get ( i i ) [2]<=cloudPoints . get ( po intIndex ) . z ) | | (

localTemp . z>=obs t a c l e . get ( i i ) [2]&& obs t a c l e . get ( i i ) [2]>=cloudPoints . get ( po intIndex ) . z ) ) {

t = ( ob s t a c l e . get ( i i ) [ 2 ] − localTemp . z ) / ( c loudPoints . get ( po intIndex ) . z − localTemp . z ) ;

tempY = t ∗ ( c loudPoints . get ( po intIndex ) . y − localTemp . y ) + localTemp . y ;

tempX = t ∗ ( c loudPoints . get ( po intIndex ) . x − localTemp . x ) + localTemp . x ;

i f (tempY >= obs t a c l e . get ( i i ) [ 4 ] && tempY <= obs t a c l e . get ( i i ) [ 5 ] && tempX >= obs t a c l e . get (

i i ) [ 0 ] && tempX <= obs t a c l e . get ( i i ) [ 1 ] ) {

obstac leCheck = true ;

break ;

}

}

i f ( ( localTemp . z<=obs t a c l e . get ( i i ) [3]&& obs t a c l e . get ( i i ) [3]<=cloudPoints . get ( po intIndex ) . z ) | | (

localTemp . z>=obs t a c l e . get ( i i ) [3]&& obs t a c l e . get ( i i ) [3]>=cloudPoints . get ( po intIndex ) . z ) ) {

t = ( ob s t a c l e . get ( i i ) [ 3 ] − localTemp . z ) / ( c loudPoints . get ( po intIndex ) . z − localTemp . z ) ;

tempY = t ∗ ( c loudPoints . get ( po intIndex ) . y − localTemp . y ) + localTemp . y ;

tempX = t ∗ ( c loudPoints . get ( po intIndex ) . x − localTemp . x ) + localTemp . x ;
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i f ( tempY >= obs t a c l e . get ( i i ) [ 4 ] && tempY <= obs t a c l e . get ( i i ) [ 5 ] && tempX >= obs t a c l e .

get ( i i ) [ 0 ] && tempX <= obs t a c l e . get ( i i ) [ 1 ] ) {

obstac leCheck = true ;

break ;

}

}

i f ( ( localTemp . y<=obs t a c l e . get ( i i ) [4]&& obs t a c l e . get ( i i ) [4]<=cloudPoints . get ( po intIndex ) . y ) | | (

localTemp . y>=obs t a c l e . get ( i i ) [4]&& obs t a c l e . get ( i i ) [4]>=cloudPoints . get ( po intIndex ) . y ) ) {

t = ( ob s t a c l e . get ( i i ) [ 4 ] − localTemp . y ) / ( c loudPoints . get ( po intIndex ) . y − localTemp . y ) ;

tempZ = t ∗ ( c loudPoints . get ( po intIndex ) . z − localTemp . z ) + localTemp . z ;

tempX = t ∗ ( c loudPoints . get ( po intIndex ) . x − localTemp . x ) + localTemp . x ;

i f ( tempZ >= obs t a c l e . get ( i i ) [ 2 ] && tempZ <= obs t a c l e . get ( i i ) [ 3 ] && tempX >= obs t a c l e . get (

i i ) [ 0 ] && tempX <= obs t a c l e . get ( i i ) [ 1 ] ) {

obstac leCheck = true ;

break ;

}

}

i f ( ( localTemp . y<=obs t a c l e . get ( i i ) [5]&& obs t a c l e . get ( i i ) [5]<=cloudPoints . get ( po intIndex ) . y ) | | (

localTemp . y>=obs t a c l e . get ( i i ) [5]&& obs t a c l e . get ( i i ) [5]>=cloudPoints . get ( po intIndex ) . y ) ) {

t = ( ob s t a c l e . get ( i i ) [ 5 ] − localTemp . y ) / ( c loudPoints . get ( po intIndex ) . y − localTemp . y ) ;

tempZ = t ∗ ( c loudPoints . get ( po intIndex ) . z − localTemp . z ) + localTemp . z ;

tempX = t ∗ ( c loudPoints . get ( po intIndex ) . x − localTemp . x ) + localTemp . x ;

i f ( tempZ >= obs t a c l e . get ( i i ) [ 2 ] && tempZ <= obs t a c l e . get ( i i ) [ 3 ] && tempX >= obs t a c l e . get (

i i ) [ 0 ] && tempX <= obs t a c l e . get ( i i ) [ 1 ] ) {

obstac leCheck = true ;

break ;

}

}

}

}
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Appendix D

Code Listing: Connectivity Constraint

/∗ Sample coding o f the c onne c t i v i t y c on s t r a i n t ∗/

/∗ Var iab l e s to check video senso r communication range ∗/

boolean connect iv i tyCheckFlag = f a l s e ;

double rangeCheckFlag = 0 ;

/∗ I t e r a t e through video senso r l i s t ∗/

f o r ( i n t f i n a l I =0; f i n a l I <f i n a l L i s t . s i z e ( ) ; f i n a l I++) {

/∗ Calcu la te d i s t ance between video senso r nodes ∗/

rangeCheckFlag = Math . s q r t (Math . pow(Math . abs ( f i n a l L i s t . get ( f i n a l I ) . p o s i t i o n . x−

cand idateLocat ions . get ( i ) . x ) ,2 )+Math . s q r t (Math . pow(Math . abs ( f i n a l L i s t . get ( f i n a l I ) .

p o s i t i o n . x−cand idateLocat ions . get ( i ) . y ) ,2 )+Math . s q r t (Math . pow(Math . abs ( f i n a l L i s t . get (

f i n a l I ) . p o s i t i o n . x−cand idateLocat ions . get ( i ) . z ) , 2 ) ) ;

/∗ Check i f v ideo senso r i s with in communication range ∗/

i f ( rangeCheckFlag<=100){

connect iv i tyCheckFlag=true ;

break ;

}

}

/∗ Continue i f v ideo senso r i s with in range ∗/

i f ( ! connect iv i tyCheckFlag ) {

cont inue ;

}

}
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Appendix E

Code Listing: Angular Coverage Constraint

/∗ Sample code o f the angular−coverage c on s t r a i n t ∗/

/∗ Check i f p a r t i c l e s are covered by any video senso r ∗/

i f ( p a r t i c l e s . get (n) . coverCount==0) {

p a r t i c l e s . get (n) . camera1=camera . p o s i t i o n ;

p a r t i c l e s . get (n) . coverCount++;

/∗ Pa r t i c l e s are covered by at l e a s t one video senso r ( i . e . , 1−coverage ) , next t e s t to s ee

i f they can ach ieve 2−coverage ∗/

} e l s e i f ( p a r t i c l e s . get (n) . coverCount==1) {

double cosAngle=p a r t i c l e s . get (n) . camera1 . x−p a r t i c l e s . get (n) . p a r t i c l e . x ) ∗( p a r t i c l e s . get (n) .

p a r t i c l e s . x−camera . p o s i t i o n . x )+p a r t i c l e s . get (n) . camera . 1 y−p a r t i c l e s . get (n) . p a r t i c l e . y ) ∗(

p a r t i c l e s . get (n) . p a r t i c l e s . y−camera . p o s i t i o n . y )+p a r t i c l e s . get (n) . camera1 . z−p a r t i c l e s . get

(n) . p a r t i c l e . z ) ∗( p a r t i c l e s . get (n) . p a r t i c l e s . z−camera . p o s i t i o n . z ) ) /(Math . s q r t (Math . pow( (

p a r t i c l e s . get (n) . camera1 . x−p a r t i c l e s . get (n) . p a r t i c l e . x ) , 2 )+Math . pow( ( p a r t i c l e s . get (n) .

camera1 . y−p a r t i c l e s . get (n) . p a r t i c l e . y ) , 2 )+Math . pow( ( p a r t i c l e s . get (n) . camera1 . z−p a r t i c l e s

. get (n) . p a r t i c l e . z ) , 2 ) ) ∗(Math . s q r t (Math . pow( ( p a r t i c l e s . get (n) . p a r t i c l e . x−camera . p o s i t i o n

. x ) ,2 )+Math . pow( ( p a r t i c l e s . get (n) . p a r t i c l e . y−camera . p o s i t i o n . y ) ,2 )+Math . pow( ( p a r t i c l e s .

get (n) . p a r t i c l e . z−camera . p o s i t i o n . z ) , 2 ) ) ;

/∗ Var iab le to check video senso r communication range i s g r e a t e r or equal to 120 ˆ\ c i r c ∗/

i f ( cosAngle<=−0.5) {

innerCounter++;

}

}
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