975 research outputs found

    The Mechanism of Low Levels of Nitrogen Dioxide Reaction With Unsaturated Fatty Acid Esters.

    Get PDF
    Nitrogen Dioxide is a toxic air pollutant that exists at less than 0.5 ppm in the atmosphere. This toxic compound is known to initiate autoxidation of unsaturated fatty acids both in vivo and in vitro. When autoxidation occurs in vivo, membrane damage that can lead to cell death can occur. Low concentrations of nitrogen dioxide were shown to react with the polyunsaturated fatty acid esters, methyl linoleate and methyl linolenate, by a H-abstraction mechanism. However, methyl oleate, an unsaturated fatty acid ester, was demonstrated to react with a low concentration of nitrogen dioxide by only an addition mechanism. Although methyl oleate reacts by an addition mechanism, a 50:50 molar solution of methyl oleate and methyl linoleate reacted with a low level of nitrogen dioxide exclusively by a H-abstraction mechanism. Therefore, low levels of nitrogen dioxide will probably react with polyunsaturated fatty acid components of pulmonary lipids by a H-abstraction mechanism forming nitrous acid directly in the cell membrane. Vitamin E was demonstrated to be able to act as a preventative antioxidant in the nitrogen dioxide and methyl linoleate reactions; but vitamin C could not prevent nitrogen dioxide from reacting with methyl linoleate by a H-abstraction mechanism. These results suggest that low levels of nitrogen dioxide will react with polyunsaturated fatty acids by a H-abstraction mechanism and that vitamin E can be used to prevent the reaction from occurring

    Palladium–mediated organofluorine chemistry

    Get PDF
    Producción CientíficaThe substitution of fluorine for hydrogen in a molecule may result in profound changes in its properties and behaviour. Fluorine does not introduce special steric constraints since the F atom has a small size. However, the changes in bond polarity and the possibility of forming hydrogen bonds with other hydrogen donor fragments in the same or other molecules, may change the solubility and physical properties of the fluorinated compound when compared to the non-fluorinated one. Fluorine forms strong bonds to other elements and this ensures a good chemical stability. Altogether, fluorinated compounds are very attractive in materials chemistry and in medicinal chemistry, where many biologically active molecules and pharmaceuticals do contain fluorine in their structure and this has been shown to be essential for their activityJunta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA302U13)Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA256U13

    Studies of reactions of aryl acid chlorides with substituted benzenes in the presence of iron pentacarbonyl.

    Get PDF
    Lee Kim-sze.Thesis (M.Phil.)--Chinese University of Hong Kong, 1979.Bibliography: leaves 84-86

    Sextettumlagerungen als Solvens-Polaritätssonde

    Get PDF
    corecore