225 research outputs found

    Novel Strategies for Drug Discovery Based on Intrinsically Disordered Proteins (IDPs)

    Get PDF
    Intrinsically disordered proteins (IDPs) are proteins that usually do not adopt well-defined native structures when isolated in solution under physiological conditions. Numerous IDPs have close relationships with human diseases such as tumor, Parkinson disease, Alzheimer disease, diabetes, and so on. These disease-associated IDPs commonly play principal roles in the disease-associated protein-protein interaction networks. Most of them in the disease datasets have more interactants and hence the size of the disease-associated IDPs interaction network is simultaneously increased. For example, the tumor suppressor protein p53 is an intrinsically disordered protein and also a hub protein in the p53 interaction network; α-synuclein, an intrinsically disordered protein involved in Parkinson diseases, is also a hub of the protein network. The disease-associated IDPs may provide potential targets for drugs modulating protein-protein interaction networks. Therefore, novel strategies for drug discovery based on IDPs are in the ascendant. It is dependent on the features of IDPs to develop the novel strategies. It is found out that IDPs have unique structural features such as high flexibility and random coil-like conformations which enable them to participate in both the “one to many” and “many to one” interaction. Accordingly, in order to promote novel strategies for drug discovery, it is essential that more and more features of IDPs are revealed by experimental and computing methods

    Prediction of Intrinsic Disorder in MERS-CoV/HCoV-EMC Supports a High Oral-Fecal Transmission

    Get PDF
    A novel coronavirus, MERS-CoV (NCoV, HCoV-EMC/2012), originating from the Middle-East, has been discovered. Incoming data reveal that the virus is highly virulent to humans. A model that categorizes coronaviuses according to the hardness of their shells was developed before the discovery of MERS-CoV. Using protein intrinsic disorder prediction, coronaviruses were categorized into three groups that can be linked to the levels of oral-fecal and respiratory transmission regardless of genetic proximity. Using this model, MERS-CoV is placed into disorder group C, which consists of coronaviruses that have relatively hard inner and outer shells. The members of this group are likely to persist in the environment for a longer period of time and possess the highest oral-fecal components but relatively low respiratory transmission components. Oral-urine and saliva transmission are also highly possible since both require harder protective shells. Results show that disorder prediction can be used as a tool that suggests clues to look for in further epidemiological investigations

    Changes in predicted protein disorder tendency may contribute to disease risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies suggest that many proteins or regions of proteins lack 3D structure. Defined as intrinsically disordered proteins, these proteins/peptides are functionally important. Recent advances in next generation sequencing technologies enable genome-wide identification of novel nucleotide variations in a specific population or cohort.</p> <p>Results</p> <p>Using the exonic single nucleotide variations (SNVs) identified in the 1,000 Genomes Project and distributed by the Genetic Analysis Workshop 17, we systematically analysed the genetic and predicted disorder potential features of the non-synonymous variations. The result of experiments suggests that a significant change in the tendency of a protein region to be structured or disordered caused by SNVs may lead to malfunction of such a protein and contribute to disease risk.</p> <p>Conclusions</p> <p>After validation with functional SNVs on the traits distributed by GAW17, we conclude that it is valuable to consider structure/disorder tendencies while prioritizing and predicting mechanistic effects arising from novel genetic variations.</p

    In silico drug repositioning of FDA-approved drugs to predict new inhibitors for alpha-synuclein aggregation

    Get PDF
    One of the hallmarks of Parkinson's disease (PD), a long-term neurodegenerative syndrome, is the accumulation of alpha-synuclein (α-syn) fibrils. Despite numerous studies and efforts, inhibition of α-syn protein aggregation is still a challenge. To overcome this issue, we propose an in silico pharmacophore-based repositioning strategy, to find a pharmaceutical drug that, in addition to their defined role, can be used to prevent aggregation of the α-syn protein. Ligand-based pharmacophore modeling was developed and the best model was selected with validation parameters including 72 % sensitivity, 98 % specificity and goodness score about 0.7. The optimal model has three groups of hydrogen bond donor (HBD), three groups of hydrogen bond acceptor (HBA), and two aromatic rings (AR). The FDA-Approved reports in the ZINC15 database were screened with the pharmacophore model taken from inhibitor compounds. The model identified 22 hits, as promising candidate drugs for Parkinson's therapy. It is noteworthy that among these, 10 drugs have been reported to inhibition of α-syn aggregation or treat/reduce Parkinson's pathogenesis. This model was used to virtual screen ZINC, NCI databases, and natural products from the pomegranate. The results of this screen were filtered for their inability to cross the blood-brain barrier, poor oral bioavailability, etc. Finally, the selected compounds of two ZINC and NCI databases were combined and structurally clustered. Remained compounds were clustered in 28 different clusters, and the 17 compounds were introduced as final candidates

    DisCons: a novel tool to quantify and classify evolutionary conservation of intrinsic protein disorder

    Get PDF
    BACKGROUND: Analyzing the amino acid sequence of an intrinsically disordered protein (IDP) in an evolutionary context can yield novel insights on the functional role of disordered regions and sequence element(s). However, in the case of many IDPs, the lack of evolutionary conservation of the primary sequence can hamper the study of functionality, because the conservation of their disorder profile and ensuing function(s) may not appear in a traditional analysis of the evolutionary history of the protein. RESULTS: Here we present DisCons (Disorder Conservation), a novel pipelined tool that combines the quantification of sequence- and disorder conservation to classify disordered residue positions. According to this scheme, the most interesting categories (for functional purposes) are constrained disordered residues and flexible disordered residues. The former residues show conservation of both the sequence and the property of disorder and are associated mainly with specific binding functionalities (e.g., short, linear motifs, SLiMs), whereas the latter class correspond to segments where disorder as a feature is important for function as opposed to the identity of the underlying sequence (e.g., entropic chains and linkers). DisCons therefore helps with elucidating the function(s) arising from the disordered state by analyzing individual proteins as well as large-scale proteomics datasets. CONCLUSIONS: DisCons is an openly accessible sequence analysis tool that identifies and highlights structurally disordered segments of proteins where the conformational flexibility is conserved across homologs, and therefore potentially functional. The tool is freely available both as a web application and as stand-alone source code hosted at http://pedb.vib.be/discons

    Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family

    Get PDF
    Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al

    Order without design

    Get PDF
    Experimental reality in molecular and cell biology, as revealed by advanced research technologies and methods, is manifestly inconsistent with the design perspective on the cell, thus creating an apparent paradox: where do order and reproducibility in living systems come from if not from design
    corecore