65 research outputs found

    Performance of image guided navigation in laparoscopic liver surgery – A systematic review

    Get PDF
    Background: Compared to open surgery, minimally invasive liver resection has improved short term outcomes. It is however technically more challenging. Navigated image guidance systems (IGS) are being developed to overcome these challenges. The aim of this systematic review is to provide an overview of their current capabilities and limitations. Methods: Medline, Embase and Cochrane databases were searched using free text terms and corresponding controlled vocabulary. Titles and abstracts of retrieved articles were screened for inclusion criteria. Due to the heterogeneity of the retrieved data it was not possible to conduct a meta-analysis. Therefore results are presented in tabulated and narrative format. Results: Out of 2015 articles, 17 pre-clinical and 33 clinical papers met inclusion criteria. Data from 24 articles that reported on accuracy indicates that in recent years navigation accuracy has been in the range of 8–15 mm. Due to discrepancies in evaluation methods it is difficult to compare accuracy metrics between different systems. Surgeon feedback suggests that current state of the art IGS may be useful as a supplementary navigation tool, especially in small liver lesions that are difficult to locate. They are however not able to reliably localise all relevant anatomical structures. Only one article investigated IGS impact on clinical outcomes. Conclusions: Further improvements in navigation accuracy are needed to enable reliable visualisation of tumour margins with the precision required for oncological resections. To enhance comparability between different IGS it is crucial to find a consensus on the assessment of navigation accuracy as a minimum reporting standard

    NaRALap: augmented reality system for navigation in laparoscopic surgery

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11548-011-0579-z.The AR system has a good resolution and currently is used for the placement of the trocars. Possible improvements will be performed to make the system independent of the camera position or to use natural marks. The biomechanical model and the AR algorithms will be combined with a tracker, for tracking the surgical instruments, in order to implement a valid system for liver biopsies. It will take into account the deformation due to the pneumoperitoneum and due to the breath of the patient. To develop the navigator that will guide the laparoscopic interventions, both AR system and biomechanical model will be combined with the laparoscopic camera in order to make an easier environment with only one vision in a 2D monitor.This work has been supported by the project MITYC (ref. TSI020100-2009-189). We would like to express our deep gratitude to the Hospital Clínica Benidorm for its participation in this project.López-Mir, F.; Martínez Martínez, F.; Fuertes Cebrián, JJ.; Lago, MA.; Rupérez Moreno, MJ.; Naranjo Ornedo, V.; Monserrat Aranda, C. (2011). NaRALap: augmented reality system for navigation in laparoscopic surgery. International Journal of Computer Assisted Radiology and Surgery. 6:98-99. https://doi.org/10.0.3.239/s11548-011-0579-zS9899

    Automatic registration of 3D models to laparoscopic video images for guidance during liver surgery

    Get PDF
    Laparoscopic liver interventions offer significant advantages over open surgery, such as less pain and trauma, and shorter recovery time for the patient. However, they also bring challenges for the surgeons such as the lack of tactile feedback, limited field of view and occluded anatomy. Augmented reality (AR) can potentially help during laparoscopic liver interventions by displaying sub-surface structures (such as tumours or vasculature). The initial registration between the 3D model extracted from the CT scan and the laparoscopic video feed is essential for an AR system which should be efficient, robust, intuitive to use and with minimal disruption to the surgical procedure. Several challenges of registration methods in laparoscopic interventions include the deformation of the liver due to gas insufflation in the abdomen, partial visibility of the organ and lack of prominent geometrical or texture-wise landmarks. These challenges are discussed in detail and an overview of the state of the art is provided. This research project aims to provide the tools to move towards a completely automatic registration. Firstly, the importance of pre-operative planning is discussed along with the characteristics of the liver that can be used in order to constrain a registration method. Secondly, maximising the amount of information obtained before the surgery, a semi-automatic surface based method is proposed to recover the initial rigid registration irrespective of the position of the shapes. Finally, a fully automatic 3D-2D rigid global registration is proposed which estimates a global alignment of the pre-operative 3D model using a single intra-operative image. Moving towards incorporating the different liver contours can help constrain the registration, especially for partial surfaces. Having a robust, efficient AR system which requires no manual interaction from the surgeon will aid in the translation of such approaches to the clinics

    Mastering Endo-Laparoscopic and Thoracoscopic Surgery

    Get PDF
    This is an open access book. The book focuses mainly on the surgical technique, OR setup, equipments and devices necessary in minimally invasive surgery (MIS). It serves as a compendium of endolaparoscopic surgical procedures. It is an official publication of the Endoscopic and Laparoscopic Surgeons of Asia (ELSA). The book includes various sections covering basic skills set, devices, equipments, OR setup, procedures by area. Each chapter cover introduction, indications and contraindications, pre-operative patient’s assessment and preparation, OT setup (instrumentation required, patient’s position, etc.), step by step description of surgical procedures, management of complications, post-operative care. It includes original illustrations for better understanding and visualization of specific procedures. The book serves as a practical guide for surgical residents, surgical trainees, surgical fellows, junior surgeons, surgical consultants and anyone interested in MIS. It covers most of the basic and advanced laparoscopic and thoracoscopic surgery procedures meeting the curriculum and examination requirements of the residents

    Mastering Endo-Laparoscopic and Thoracoscopic Surgery

    Get PDF
    This is an open access book. The book focuses mainly on the surgical technique, OR setup, equipments and devices necessary in minimally invasive surgery (MIS). It serves as a compendium of endolaparoscopic surgical procedures. It is an official publication of the Endoscopic and Laparoscopic Surgeons of Asia (ELSA). The book includes various sections covering basic skills set, devices, equipments, OR setup, procedures by area. Each chapter cover introduction, indications and contraindications, pre-operative patient’s assessment and preparation, OT setup (instrumentation required, patient’s position, etc.), step by step description of surgical procedures, management of complications, post-operative care. It includes original illustrations for better understanding and visualization of specific procedures. The book serves as a practical guide for surgical residents, surgical trainees, surgical fellows, junior surgeons, surgical consultants and anyone interested in MIS. It covers most of the basic and advanced laparoscopic and thoracoscopic surgery procedures meeting the curriculum and examination requirements of the residents

    Localización del punto de trócar basada en análisis de vídeo laparoscópico

    Get PDF
    Los sistemas de navegación quirúrgica ayudan a solventar las limitaciones de las técnicas quirúrgicas de mínima invasión, dotando al cirujano de una orientación intuitiva y cómoda. El análisis del vídeo laparoscópico es una solución novedosa para llevar a cabo el seguimiento del instrumental quirúrgico, la reconstrucción de la información de profundidad y el registro intraoperatorio. El presente trabajo de investigación propone una solución para la obtención de la posición de los trócares a partir del análisis de las secuencias de vídeo endoscópico, posición que sirva de punto de referencia para el registro intraoperatorio. El método se basa en determinar el punto donde pivota la herramienta analizando parejas de fotogramas, y emplea un umbral de calidad de la posición basada en la ortogonalidad de las recta

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Framework for augmented reality in Minimally Invasive laparoscopic surgery

    Get PDF
    International audienceThis article presents a framework for fusing pre-operative data and intra-operative data for surgery guidance. This framework is employed in the context of Minimally Invasive Surgery (MIS) of the liver. From stereoscopic images a three dimensional point cloud is reconstructed in real-time. This point cloud is then used to register a patient-specific biomechanical model derived from Computed Tomography images onto the laparoscopic view. In this way internal structures such as vessels and tumors can be visualized to help the surgeon during the procedure. This is particularly relevant since abdominal organs undergo large deformations in the course of the surgery, making it difficult for surgeons to correlate the laparoscopic view with the pre-operative images. Our method has the potential to reduce the duration of the operation as the biomechanical model makes it possible to estimate the in-depth position of tumors and vessels at any time of the surgery, which is essential to the surgical decision process. Results show that our method can be successfully applied during laparoscopic procedure without interfering with the surgical work flow
    • …
    corecore