203 research outputs found

    TU1208 open database of radargrams. the dataset of the IFSTTAR geophysical test site

    Get PDF
    This paper aims to present a wide dataset of ground penetrating radar (GPR) profiles recorded on a full-size geophysical test site, in Nantes (France). The geophysical test site was conceived to reproduce objects and obstacles commonly met in the urban subsurface, in a completely controlled environment; since the design phase, the site was especially adapted to the context of radar-based techniques. After a detailed description of the test site and its building process, the GPR profiles included in the dataset are presented and commented on. Overall, 67 profiles were recorded along eleven parallel lines crossing the test site in the transverse direction; three pulsed radar systems were used to perform the measurements, manufactured by different producers and equipped with various antennas having central frequencies from 200 MHz to 900 MHz. An archive containing all profiles (raw data) is enclosed to this paper as supplementary material. This dataset is the core part of the Open Database of Radargrams initiative of COST (European Cooperation in Science and Technology) Action TU1208 “Civil engineering applications of Ground Penetrating Radar”. The idea beyond such initiative is to share with the scientific community a selection of interesting and reliable GPR responses, to enable an effective benchmark for direct and inverse electromagnetic approaches, imaging methods and signal processing algorithms. We hope that the dataset presented in this paper will be enriched by the contributions of further users in the future, who will visit the test site and acquire new data with their GPR systems. Moreover, we hope that the dataset will be made alive by researchers who will perform advanced analyses of the profiles, measure the electromagnetic characteristics of the host materials, contribute with synthetic radargrams obtained by modeling the site with electromagnetic simulators, and more in general share results achieved by applying their techniques on the available profiles

    GPR applications across Engineering and Geosciences disciplines in Italy: a review

    Get PDF
    In this paper, a review of the main ground-penetrating radar (GPR) applications, technologies, and methodologies used in Italy is given. The discussion has been organized in accordance with the field of application, and the use of this technology has been contextualized with cultural and territorial peculiarities, as well as with social, economic, and infrastructure requirements, which make the Italian territory a comprehensive large-scale study case to analyze. First, an overview on the use of GPR worldwide compared to its usage in Italy over the history is provided. Subsequently, the state of the art about the main GPR activities in Italy is deepened and divided according to the field of application. Notwithstanding a slight delay in delivering recognized literature studies with respect to other forefront countries, it has been shown how the Italian contribution is now aligned with the highest world standards of research and innovation in the field of GPR. Finally, possible research perspectives on the usage of GPR in Italy are briefly discussed

    Soil Characterization Using Textural Features Extracted from GPR Data

    Get PDF
    Soils can be non-intrusively mapped by observing similar patterns within ground-penetrating radar (GPR) profiles. We observed that the intricate and often indiscernible textural variability found within a complex GPR image possesses important parameters that help delineate regions of similar soil characteristics. Therefore, in this study, we examined the feasibility of using textural features extracted from GPR data to automate soil characterizations. The textural features were matched to a fingerprint database of previous soil classifications of GPR textural features and the corresponding ground truths of soil conditions. Four textural features (energy, contrast, entropy, and homogeneity) were selected for inputs into a neural-network classifier. This classifier was tested and verified using GPR data obtained from two distinctly different field sites. The first data set contained features that indicate the presence or lack of sandstone bedrock in the upper 2 m of a shallow soil profile of fine sandy loan and loam. The second data set contained columnar patterns that correspond to the presence or the lack of vertical preferential-flow paths within a deep loess soil. The classifier automatically grouped each of these data sets into one of the two categories. Comparing the results of classification using extracted textural features to the results obtained by visual interpretation found 93.6% of the sections that lack sandstone bedrock correctly classified in the first set of data, and 90% of the sections that contain pronounced columnar patterns correctly classified in the second set of data. The classified profile sections were mapped using integrated GPR and GPS data to show surface boundaries of different soil categories. These results indicate that extracted textural features can be utilized for automatic characterization of soils using GPR data

    Detection of Buried Non-Metallic (Plastic and FRP Composite) Pipes Using GPR and IRT

    Get PDF
    This research investigated alternative strategies for making buried non-metallic pipes (CFRP, GFRP, and PVC) easily locatable using Ground Penetrating Radar (GPR). Pipe diameters up to 12 and buried with up to 4 ft. of soil cover were investigated. The findings of this study will help address the detection problem of non-metallic pipelines and speed the adoption of composite pipes by the petroleum and natural gas industry. The research also investigated the possibility of locating buried pipes transporting hot fluids using Infrared Thermography (IRT). Results from the study have shown that, using carbon fabric and aluminum tape overlay on non‑metallic pipes (GFRP or PVC for this study) before burying significantly increases the reflected GPR signal amplitude, thereby making it easier to locate such pipelines using GPR. The reflected GPR signal amplitude for pipe sections with carbon fabric or aluminum foil overlays was found to have increased by a factor of up to 4.52 times, and 2.02 times on average across all the pipe sections tested, from the baseline (unwrapped) pipe sections. The research also highlights the importance of using the correct antenna frequency for detecting buried pipes in wet soil conditions. Wet soils with high electrical conductivity and dielectric constants have higher radar signal attenuations that significantly affect the penetration depth and returned signal amplitudes from buried objects. A 200 MHz frequency antenna was found in this study to be ideal for locating the buried pipes in all soil moisture conditions. The 200 MHz antenna was able to detect buried pipes up to the maximum 4 ft. depth of soil cover that was studied experimentally. Numerical estimation using the same soil from the experiment shows that this antenna can penetrate up to a depth of at least 5.5 ft. in very wet clay soils with volumetric water content of 0.473. After evaluating the attenuation characteristics of different radar antennae, it was found that material/ohmic attenuation is constant across a range of antenna frequencies; the increase in GPR signal attenuation associated with higher antenna frequencies was found to be a result of scattering attenuation from subsurface inhomogeneity/clutter. Scattering attenuation is however usually ignored in literature, resulting in erroneous estimation of radar signal attenuation. Finally, laboratory study proved that, heat from a buried pipeline transporting hot fluid can propagate through the soil to the surface and be detected using IRT. Additionally, a 6 diameter steam pipe with a 6 minimum insulation and buried with 2.5 – 3 ft. of soil cover was easily detected in varying soil moisture conditions during different seasons throughout the year using IRT in the field environment. The successful application of IRT in detecting this pipe proves the potential for using this technique in locating buried pipes transporting hot fluids such as steam or petroleum products from production wells or refinery plants

    A new WebGIS approach to support ground penetrating radar deployment

    Get PDF
    En raison de l’agglomération complexe des infrastructures souterraines dans les grandes zones urbaines et des préoccupations accrues des municipalités ou des gouvernements qui déploient des systèmes d’information foncière ou des industries qui souhaitent construire ou creuser, il devient de plus en plus impératif de localiser et de cartographier avec précision les pipelines, les câbles d’énergie hydroélectrique, les réseaux de communication ou les conduites d’eau potable et d’égout. Le géoradar (Ground Penetrating Radar ou GPR) est un outil en géophysique qui permet de produire des images en coupe du sous-sol desquelles de l’information utile sur les infrastructures souterraines peut être tirée. Des expériences antérieures et une analyse documentaire approfondie ont révélé que les logiciels disponibles pour réaliser des levés GPR qui sont utilisés directement sur le terrain et hors site ne reposent pas ou très peu sur des fonctionnalités géospatiales. En outre, l’intégration de données telles que la visualisation de données GPR dans des espaces géoréférencés avec des orthophotos, des cartes, des points d’intérêt, des plans CAO, etc., est impossible. Lorsque disponible, l’ajout d’annotations ou l’interrogation d’objets géospatiaux susceptibles d’améliorer ou d’accélérer les investigations ne proposent pas des interfaces conviviales. Dans ce projet de recherche, une nouvelle approche est proposée pour déployer le GPR et elle est basée sur quatre fonctionnalités issues du Web et des systèmes d’information géographique (WebGIS) jugées essentielles pour faciliter la réalisation de levés GPR sur le terrain. Pour démontrer la faisabilité de cette nouvelle approche, une extension de la plate-forme logicielle existante GVX (conçue et vendue par Geovoxel) appelée GVX-GPR a été développée. GVX-GPR propose aux utilisateurs d’instruments GPR quatre fonctionnalités soit 1) intégration de cartes, 2) géo-annotations et points d’intérêt, 3) géoréférencement et visualisation de radargrammes et 4) visualisation de sections GPR géoréférencées. Afin de tester l’approche WebGIS et GPXGPR, deux sites d’étude ont été relevés par deux professionnels différents, un expert et un non-expert en géophysique, ont été sélectionnés. Une première expérimentation réalisée sur le campus de l’Université Laval à Québec prévoyait l’identification de trois objets enterrés soit un câble électrique, une fibre optique et un tunnel dont leur position XYZ était connue. Le deuxième essai s’est passé à l’Universidade Federal do Rio de Janeiro (Rio de Janeiro, Brésil), avec un professionnel expert en géophysique. Ce 2e site cherchait à reproduire un environnent plus réaliste avec une quantité inconnue d’objets enterrés. Les quatre fonctionnalités proposées par GVX-GPR ont donc été testées et leur intérêt discuté par les deux utilisateurs GPR. Les deux utilisateurs GPR se sont dits très intéressés par l’outil GVX-GPR et ses nouvelles fonctionnalités et ils aimeraient pouvoir l’intégrer à leur travail quotidien car ils y voient des avantages. En particulier, l’approche et GVX-GPR les a aidés à découvrir de nouvelles cibles, à délimiter le territoire à couvrir, à interpréter les données GPR brutes en permettant l’interaction entre les données géospatiales (en ligne) et les profils de données GPR, et finalement pour la cartographie à produire tout en respectant la norme CityGML (donc utile au partage éventuel des données). De même, une fois le système maitrisé, GVX-GPR a permis d’optimiser la durée du levé. Ce projet de maitrise a donc permis d’élaborer une nouvelle approche pour effectuer des levés GPR et proposer un outil logiciel pour tester la faisabilité de celle-ci. Une première étape de validation de la faisabilité et de l’utilité a été réalisée grâce aux deux tests effectués. Évidemment, ces deux tests sont des premiers pas dans une phase plus large de validation qui pourrait s’effectuer, et ils ont ouvert la porte à des ajustements ou l’ajout d’autres fonctionnalités, comme la manipulation des outils de visualisation 3D et l’ajout de filtres et traitement de signal. Nous estimons néanmoins ces premiers tests concluant pour ce projet de maîtrise, et surtout ils démontrent que les instruments GPR gagneraient à davantage intégrer les données et fonctionnalités géospatiales. Nous pensons également que nos travaux vont permettre à des communautés de non spécialistes en géophysique de s’intéresser aux instruments de type GPR pour les levés d’objets enfouis. Notre approche pourra les aider à préparer les données géospatiales utiles à la planification, à effectuer le levé terrain et à produire les cartes associéesDue to the complex agglomeration of underground infrastructures in large urban areas and accordingly increased concerns by municipalities or government who deploy land information systems or industries who want to construct or excavate, it is imperative to accurately locate and suitability map existing underground utility networks (UUN) such as pipelines, hydroelectric power cables, communication networks, or drinking water and sewage conduits. One emerging category of instrument in geophysics for collecting and extracting data from the underground is the ground penetrating radar (GPR). Previous experiments and a thorough literature review revealed that GPR software used in and off the field do not take advantage of geospatial features and data integration such as visualization of GPR data in a georeferenced space with orthophotographies, map, point of interest, CAD plans, etc. Also missing is the capability to add annotation or querying geospatial objects that may improve or expedite the investigations. These functions are long-lived in the geospatial domain, such as in geographic information system (GIS). In this research project, a new approach is proposed to deploy GPR based on four core WebGIS-enabled features, used to support field investigations with GPR. This WebGIS is based on an existing platform called GVX, designed and sold by Geovoxel as a risk management tool for civil engineering projects. In this proposed approach, a generic guideline based on GVX-GPR was developed which users can follow when deploying GPR. This approach is based on four core features which are missing on most GPR software, (1) map integration, (2) geo-annotations and points of interest, (3) radargram georeferencing and visualization, and (4) georeferenced slice visualization. In order to test the designed WebGIS-based approach, two different professionals, an expert in geophysics and a person without any background in geophysics, used the proposed approach in their day-to-day professional practice. The first experiment was conducted at Université Laval (Québec – Canada) when the subject undertook an area to a survey in order to identify 3 possible targets premapped. The second, with a Geophysics-specialist, took place in Rio de Janeiro, at Universidade Federal do Rio de Janeiro’s campus. This study covered an area counting on an unknown number of buried objects, aiming at reproducing a realistic survey scenario. Four new feature were added and discussed with GPR practitioners. Both GPR user declared to be very interested by the proposed by the tool GVX-GPR and its features, being willing to apply this software on their daily basis due to the added advantages. Particularly, this approach has aided these professionals to find new buried objects, delimit the survey area, interpret raw GPR data by allowing geospatial data interaction and GPR profiles, and, finally, to produce new maps compliant with standards such as CityGML. Also, once mastered, the technology allowed the optimization of survey time. This project enabled the development of a new approach to leverage GPR surveys and proposed a new tool in order to test the approach’s feasibility. A first step into the validation of this proposal has been taken towards a feasibility and utility evaluation with two tests accomplished. Unmistakably, these are the first steps of a likely larger validation process, opening up new possibilities for the continuity of the project such as the addition of signal processing techniques and 3D data handling. We nevertheless consider these conclusive for this master’s project, above all demonstrating the value add by geospatial data integration and functions to GPR instruments. This work is also intended to the community of newcomers, or interested in GPR, to further explore this technology, since this approach shall facilitate the preparation, execution, and post-processing phases of a GPR survey

    Mapping of agricultural subsurface drainage systems using a frequency-domain ground penetrating radar and evaluating its performance using a single-frequency multi-receiver electromagnetic induction instrument

    Get PDF
    Subsurface drainage systems are commonly used to remove surplus water from the soil profile of a poorly drained farmland. Traditional methods for drainage mapping involve the use of tile probes and trenching equipment that are time-consuming, labor-intensive, and invasive, thereby entailing an inherent risk of damaging the drainpipes. Effective and efficient methods are needed in order to map the buried drain lines: (1) to comprehend the processes of leaching and offsite release of nutrients and pesticides and (2) for the installation of a new set of drain lines between the old ones to enhance the soil water removal. Non-invasive geophysical soil sensors provide a potential alternative solution. Previous research has mainly showcased the use of time-domain ground penetrating radar, with variable success, depending on local soil and hydrological conditions and the central frequency of the specific equipment used. The objectives of this study were: (1) to test the use of a stepped-frequency continuous wave three-dimensional ground penetrating radar (3D-GPR) with a wide antenna array for subsurface drainage mapping and (2) to evaluate its performance with the use of a single-frequency multi-receiver electromagnetic induction (EMI) sensor in-combination. This sensor combination was evaluated on twelve different study sites with various soil types with textures ranging from sand to clay till. While the 3D-GPR showed a high success rate in finding the drainpipes at five sites (sandy, sandy loam, loamy sand, and organic topsoils), the results at the other seven sites were less successful due to the limited penetration depth of the 3D-GPR signal. The results suggest that the electrical conductivity estimates produced by the inversion of apparent electrical conductivity data measured by the EMI sensor could be a useful proxy for explaining the success achieved by the 3D-GPR in finding the drain lines

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    Subsurface Characterization Using Textural Features Extracted From GPR Data

    Get PDF
    Subsurface conditions can be non-intrusively mapped by observing and grouping patterns of similarity within ground-penetrating radar (GPR) profiles. We have observed that the intricate and often visually indiscernible textural variability found within a complex GPR image possesses important parameters that help delineate regions of similar subsurface characteristics. In this study, we therefore examined the feasibility of using textural features extracted from GPR data to automate subsurface characterization. The textural features were matched to a “fingerprint” database of previous subsurface classifications of GPR textural features and the corresponding physical probings of subsurface conditions. Four textural features (energy, contrast, entropy, and homogeneity) were selected as inputs into a neural-network classifier. This classifier was tested and verified using GPR data obtained from two distinctly different field sites. The first data set contained features that indicate the presence or lack of sandstone bedrock in the upper 2 m of a shallow soil profile of fine sandy loam and loam. The second data set contained columnar patterns that correspond to the presence or the lack of vertical preferential flow paths within a deep loessial soil. The classifier automatically grouped each data set into one of the two categories. Comparing the results of classification using extracted textural features to the results obtained by visual interpretation found 93.6% of the sections that lack sandstone bedrock correctly classified in the first set of data, and 90% of the sections that contain pronounced columnar patterns correctly classified in the second set of data. The classified profile sections were mapped using integrated GPR and GPS data to show ground surface boundaries of different subsurface conditions. These results indicate that textural features extracted from GPR data can be utilized as inputs in a neural network classifier to rapidly characterize and map the subsurface into categories associated with known conditions with acceptable levels of accuracy. This approach of GPR imagery classification is to be considered as an alternative method to traditional human interpretation only in the classification of voluminous data sets, wherein the extensive time requirement would make the traditional human interpretation impractical
    • …
    corecore