
THE UNIVERSITY 
of LIVERPOOL 

Automatic Detection and Characterisation of Cylindrical 

Objects Using Ground Penetrating Radar 

Sufyan Shihab 

Thesis submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

at 

The University of Liverpool 

March 2005 



Abstract 

In a typical CPR survey, a great amount of data is collected, while only a small 

percentage of this amount represents useful data (i.e target data). The targets of 

interest sought in this study are extended cylindrical objects such as pipes, cables, 

and tanks. The data processing which rely heavily on a skilled operator, involve a 

number of stages starting with pre-processing of the data followed by detecting the 

areas that are thought to contain targets, and then making a final interpretation of 

these targets and their related information such as depth, dimensions, orientation, and 

dielectric constant of the medium. Each one of these stages consumes considerable 

amounts of time and effort, apart from the fact that the existence of the human factor 

is a source for inconsistency and error. This study automates these stages to a large 

extent via presenting a robust and consistent processing regime that would meet the 

increasing pace in the CPR industry. 

The detection stage constitutes a consistent, highly accurate, and rapid procedure, 

which is based on a multi-stage neural classifier that uses a combination of first-order 

statistics and regional features to distinguish between the desired targets and other 

redundant data. As a result, the collected data is highly reduced and hence the 

processing domain is crucially narrowed for the subsequent stages. Image processing 

techniques are used to extract enhance the detected data and prepare it for further 

processing. 

Furthermore, a novel general equation which models the CPR hyperbolic reflec

tions resulting from buried cylinders is presented. It combines the effect of the radius, 

depth, and vertical and horizontal orientations of the buried cylinder, in addition to 

the dielectric constant of the medium. This overcomes the weakness of the existing 
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procedures followed to define such targets where broad assumptions are made. This 

model is used in conjunction with the a modified hyperbola-specific fitting procedure 

to accurately calculate target-related values of the radius, depth, vertical inclination 

and azimuthal orientation, in addition to the dielectric constant of the host medium. 

In the final stage of the presented system, the information extracted from various 

cues from within the data are combined in a manner that minimises the reliance on 

ready-made assumptions, rules of thumb and conjecture. This stage combines the 

information extracted from individual radar images, in a novel and effective man

ner in which aligned points are sought in three-dimensional space via adaptive non

accumulative Hough Transform (ANHT). As a result, the orientations of the detected 

lines are found and used to correct for target information, from the previous stages, 

in an iterative procedure. Each stage of the presented system is successfully applied 

on field data and the results are presented and shown to correspond to the interpre

tation of a human expert. Furthermore, The full automatic procedure is applied to a 

synthetic site specially built for this purpose with all its parameters controlled, and 

the application result shows a high efficiency and accuracy in retrieving the original 

target-parameters in addition to the relative permittivity of the medium. The pro

posed system in this study constitutes the first comprehensive automatic procedure 

for buried cylinders detection and interpretation, and hence effectively contributes to 

the development of GPR industry. 
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Chapter 1 

Introduction 

Despite the rapid growth in the ground-penetrating radar (CPR) sector of the geo

physical industry and the increasing demand for its use as a successful non-destructive 

testing tool, the post-processing procedures leading to the final interpretation are still 

plagued by major shortcomings. These shortcomings mainly emanate from factors 

such as the excessive reliance on human intervention, the scan-by-scan processing and 

interpretation of site data, and the host of broad assumptions that are often made 

regarding the nature and geometry of the targets. 

In order to bring the GPR displays into a better condition that is suitable for 

interpretation, some pre-processing as well as post processing operations are carried 

out. Usually, these operations are manually handled by human operators, and con

sequently these would consume considerable amounts of time and effort. In addition, 

those operations are exposed to human inconsistency and error factor. To resolve 

this issue, it became necessary to find an automatic mechanism to carry out all the 

processing on the path of presenting the desired operation. 

This study has the aim of producing an automated system that is capable of 

1 
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detecting, characterising, mapping, and interpreting GPR data in near real-time. For 

this purpose, an automatic system is produced; it contains several stages in which 

pre-processed radar data are sUbjected to different processes leading towards the 

achievement of the goal of presenting a final interpretation report about the site 

under investigation and the related information to the detected targets. 

1.1 Ground-Penetrating Radar (GPR) 

Ground Penetrating Radar (GPR) provides an effective way to image the first 

few meters of the subsurface. The GPR is an electromagnetic technique ranging 

in the radio frequencies from 30 MHz to 2 GHz, its source is composed by a surface 

transmitter antenna emitting a series of electromagnetic pulses which propagate in the 

ground, then reflections of these pulses from the subsurface anomalies will be recorded 

by a receiving antenna. GPR has the potential of detecting a variety of metallic and 

non-metallic buried objects of different shapes. In addition, GPR provides reasonable 

resolution of the scanned-areas under various environmental conditions. As the GPR 

is advanced in the direction of travel, a 2-dimensional image of the scanned subsurface 

is generated (referred to as B-scan) with vertical and horizontal axes representing the 

two-way travel time and scan number. The radar returns that indicate the existence 

of objects are often overshadowed by artifacts due to the effects of the unwanted 

signals. The aim of object detection processes is to emphasise, detect, and recognise 

the desired signal while skipping unwanted signals. 

These B-Scans or mdargmms are complex and difficult to realise, thus these re

quire expert interpretation. Much of the skill of the successful operator comes from 

combining observations drawn from the radar images, with knowledge of the host 
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medium, and the nature of the targets. Although this manual processing and in

terpreting of the scanned data is accompanied by limited automated processes, it 

consumes considerable amounts of time and effort, in addition to the problem of in

consistency resulted from human error factor specially when large volumes of data 

are involved. 

Data processing implies separating out clutter, and accounting for various envi

ronmental, system and subsurface effects in order to perform the necessary analysis 

and arrive at the final interpretation. The processing aids which are used to aid in 

data interpretation typically involve either complex geophysical inversion algorithms, 

image processing, forward modelling or iterative migration, resulting in awkward and 

computationally expensive systems inadequate for on-site application. 

In the particular case of buried cylindrical targets, this processing is normally 

based on making broad assumptions with regard to the radii of the cylinders, and 

both their horizontal and vertical orientations, in addition to the dielectric constant 

of the host medium. Consequently, this would result in an inaccurate system that 

cannot be trusted specially when the desired information requires high precision. 

1.2 System Outline 

The basic concept behind ground penetrating radar is that a transmitter is used to 

send electromagnetic energy into the ground that then reflects from geologic interfaces 

where a dielectric contrast exists. The reflected energy is recorded by a receiver ann 

produces a picture of the reflected waves. Traces from adjacent source locations are 

generally plotted side-by-side to form a time-depth profile. GPR can be used with 

different antenna providing different frequencies, varying between 30 and 2000 MHz. 
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A lower frequency antenna provides greater penetration depths but lower resolution. 

A higher frequency antenna provides less depth penetration but has better resolution. 

GPR has an enormously wide range of applications, ranging from planetary ex

ploration to the detection of buried cylinders such as pipes and tanks. The selection 

of a range of frequency operations, a particular modulation scheme, and the type of 

antenna and its polarisation depends on a number of factors, including the size and 

shape of the target, the transmission properties of the intervening mediuIIl, and the 

operational requirements defined by the economics of the survey operation, as well 

as the characteristics of the surface. The specification of a particular type of system 

can be prepared by examining the various factors which influence detectibility and 

resolution. 

To operate successfully, ground penetrating radar must achieve: 

• Adequate signal to clutter ratio 

• Adequate signal to noise ratio 

• Adequate spatial resolution of the target, and 

• Adequate depth resolution of the target 

The radar system used in this study is the Geophysical Survey Systems Inc Surface 

Impulse Radar®System-2 shown in Figure 1.1 (see Appendix A for detailed specifi

cations). The system comprises a digital control unit, the antennae mounted in a 

partially-shielded casing, a portable battery and a co-axial cable connecting the con

trol unit and the antennae. The control unit is usually stationary and contains the 

transmitting and reception circuitry, and the computer which performs the on-line 

processing, display and storage. 
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The transmitter generates a low power « 100 III W) 150 V pulse with a rise time 

of less than 2 ns [1]. The pulse repetition frequency is between 25 and 50 kHz, and 

the received waveform is sampled with a strobing or coherent sampling procedure 

whereby a single sample is taken from each waveform. It is therefore necessary to 

transmit an equivalent number of pulses as the number of samples per waveform to 

fully reconstruct the reflected signal. 

The antennae used are typically twin dipole or bow-tie antennae with fractional 

bandwidth in the region of 100 %, i.e. possessing a centre frequency equal to the 

half-peak power bandwidth. The angular width of the main radiation lobe beneath 

the surface is approximately 900 from back to front (along the direction of move

ment) and 60° from side to side. The physical dimensions of the antenna casing and 

shielding vary; the 400 MHz antenna casing shown in Figure 1.1 is cuboid in shape, 

approximately 25 cm high and 40 cm each side. The 100 MHz antenna is larger, with 

the largest dimension 95 cm. 

Figure 1.2 depicts a typical site survey scene with the SIR-2 digital control unit 

in the back of the van. Shown are the radar operator operating the digital control 

unit and recording relevant site information, and the survey practitioner towing the 

antenna along the survey lines delineated by painted grid markers. The radar survey 

is interrupted at certain stages and the partial digital data sets downloaded onto a 

portable computer. Interpretation experts are shown at the front of the van exam

ining the results of preliminary on-site processing of this data, in order to obtain an 

immediate assessment of the subsurface environment. The success and effectiveness 

of the survey depends to a considerable extent on the speed and robustness of this 

on-site interpretation software, the two factors which form the focus of this study. 
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marker switch 

Figure 1.1: The eSSI Surface Impulse Radar System-2 

Figure 1.2: Data acquisition with the SIR-2 at a former service station 
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1.2.1 Data Acquisition 

Most commercial GPR systems are time-domain impulse systems. A train of 

pulses typically of amplitude 100 to 1000 V and of duration between 1 and 10 ns is 

applied to the terminals of an antenna and launched into the transmission medium. 

In accordance with the laws of classical electromagnetism, as the pulses propagate 

downwards through the ground, they interact with subsurface materials in a variety 

of ways, including attenuation, reflection, refraction, diffraction and scattering. How

ever, the two most important physical conditions which impact on the behaviour of 

radar waves are the material dielectric properties and conductivity. 

The most common antenna arrangement is with the electric fields of the transmit

ter and receiver antennas aligned in parallel with each other, parallel with the earth, 

and towed in a traverse direction perpendicular to the magnetic field direction. This 

results in a wave propagating perpendicular to the surface of the earth, into the earth. 

If such an arrangement is pulled across a buried metallic pipe (or wire or rebar) with 

the electric fields aligned parallel to the length of the pipe, the pipe appears in the 

ground penetrating radar data as an excellent reflector, with a hyperbolic shape (the 

shape is the result of the antenna pattern and geometry of traverse motion). If the 

antennas are rotated 90 degrees, so they cross the pipe with the electric field direction 

at right angles to the long axis of the pipe, the pipe disappears (it's still there, but 

very tough to see). In general, three sets of measurements are required with antennas 

oriented (relative to the electric fields) parallel to the surface of the earth and: 

1. Parallel to each other and perpendicular to traverse direction, 

2. Parallel to each other and parallel to traverse direction, and 
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3. Perpendicular to each other (cross-polarised) 

The dielectric constant of the medium determines the speed of the electromagnetic 

wave; the lower the value of this coefficient the faster the propagation of the wavc. 

A sudden reduction in the relative permittivity such as might occur at a geological 

boundary, will lead to a corresponding increase in the speed of the wave and a consc

quent reflection of some of the energy back to the surface. Slowing of the wave also 

results in a concomitant energy loss. 

The conductivity of the substrata is the most important factor determining the 

rate of signal attenuation. Materials with high conductivities will cause rapid dissemi

nation of the transmitted pulse through the transformation of the electromagnetic en

ergy into heat as ions within the medium become excited. Signal loss is consequently 

greater in clayey soils. Signal loss can also result from scatter of the transmitted pulse 

during interaction with large inhomogeneities within the subsurface, such as cobbles 

or bricks. 

The reflected energy is gathered by a receiving antenna (as shown in Figure 1.4), 

which is usually similar to the transmitting antenna. The antennae used in a GPR 

survey are selected on the basis of the depth of interest and the size of the target. 

Penetration depth varies inversely with frequency and the higher the central frequency 

of the antenna, the smaller the size of the objects that can be resolved. Although some 

older radar systems store the data in analogue form, most modern systems digitise 

the data for subsequent display and storage. As few available analogue-to-digital 

converters would be able to keep up with the received signal in the high MHz region, 

the received waveforms are first coherently sampled (typically into 512 or 1024 time 

intervals) and then quantised before being digitised (usually to 8 or 16 bits). This 
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signal, an example of which is shown in Figure 1.3 is referred to as an A-scan, or 

simply a scan. 

150r-------~--------~--------~--------~ 

100 

-100 

-150
0
'------------------'10=----------'-20---------3.J...

0
---------..J

40 
time (ns) 

Figure 1.3: Example of a single A-scan 

In most commercial GPR systems, this "raw" digital data is recorded onto mag-

netic storage media for future recovery and off-line processing. In the GSSI SIR ® 

System-2 system used in the present study however, on-site processing is performed 

before storage, as shown in Figure 1.4. 

1.2.2 Acquisition parameters 

The SIR-2 system provides a data acquisition setup facility allowing the user to 

select a number of parameters. These settings determine the operation of the receiver 

(such as the levels of quantisation and the range), and control the on-board signal 

processing operations (such as the filtering and range-gain functions), and are stored 

in a setup file, with the former also included in the radargram file header. The 

structure of GSSI's dzt radar data format is detailed in Appendix D, and in addition 

to the system setup information, contains field information such as the acquisition 
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date, site location and direction of the survey lines. This information can he retrieved 

at a later stage to further process the data or to generate reports. Some of the more 

important of these settings are described below. 

Signal conditioning parameters 

The form of the digitised signal is selected by setting the number of sam

ples_peLBcan and the number of bi ts_peLsample. The former is typically set to 

512, and depending on the volume of the survey data and the storage limitations, the 

latter, which determines the resolution of the data, can be set to either 8 or 16. 

The range is a time setting, measured in nanoseconds, which determines the 

length of the time series to be recorded, and the A-scans last only as long as this two

way travel-time. The range will also directly determine the depth of penetration, and 

a typical value for 400 MHz operation in an urban environment is 60 ns corresponding 

to an approximate penetration of 3 m. 

The horizontal sampling rate along the ground is controlled by the 

scans_per _second value, establishing the density of the scans. This is determined to 

a large extent by the speed at which the practitioner wishes to conduct the survey, 

and for on-foot surveying 32 scans/second is usually adequate. 

Pre-processing parameters 

The digital data is band-pass filtered by the combination of an internal low-pass 

and high-pass filter, both of which are three-pole IIR (infinite impulse response) 

filters which operate on each incoming "vertical" A-scan. The low-pass filter is used 

to eliminate high frequency noise (appearing as "snow") from the data, and is defincd 

by setting t.he cutoff frequency, in MHz. The higher this frequency, the less the data 
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removed by the filter. The setting recommended by the manufacturer CSSI [1] is 

twice the antenna centre frequency. The high-pass filter is used to eliminate low

frequency noise and some of the system ringing from the data, and is also defined in 

terms of the cutoff frequency in MHz, and the recommended setting is one sixth of 

the antenna centre frequency. 

Attenuation caused by the propagation medium and by the path and spreading 

losses causes the received signal to be significantly diminished in amplitUde compared 

with the transmitted signal. A digital range-gain function is available to process 

the A-scans to make the signal strength independent of depth or travel-time, thus 

improving the detect ability of deeper reflections. This is achieved by multiplication 

of the sampled signal in time by a time-varying gain function. Figure 1.5 illustrates 

the effect of this range-gain function. The function is defined on a logarithmic scale 

by linear segments between uniformly-spaced (in time) gain points. The number of 

these nodes is decided by the radar operator, and their values in decibels can either 

be adjusted manually, or automatically by the acquisition software. These are stored 

in the . dzt file header so that the gain can be later compensated for and modified 

off-line. 

1.2.3 Range 

The range of a CPR can be simply defined as the maximum depth from which 

a reflection can be detected by the receiving antenna. Range is mainly governed 

by the total path loss which is mainly caused by material loss, spreading loss, and 

target reflection loss or scattering loss [2]. The signal that is detected by the receiver 

undergoes various losses in its propagation path from the transmitter to the receiver 
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Figure 1.4: SIR-2 ground penetrating radar system components 
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as this can be seen in Figure 1.6. 
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Figure 1.6: Exaggerated illustration of multi-path propagation 
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It is these loses which limit the detectibility rage of a ground penetrating radar. 

Furthermore, the desirable demand of a high resolution data-images would strongly 

participate into this limitation, as it requires higher frequencies and hence shallower 

penetration depths. In the cases where automatic detection of certain shaped targets 

(such as pipes or landmines) is involved, high resolution images are a crucial demand 

as the automatic processing of data relies to a high extent on the clarity of the 

reflections obtained from such targets. This is of course achieved at the expense 

of a very limited depth of no more than few meters. In other applications where 

the detection process is not highly dependent on the clarity of the obtained image, 

then high resolution can be compromised for the sake of a de per detect ability range. 

Examples for such applications are soil disturbances, voids, and cavities. 
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1.2.4 Speed of Propagation 

The propagation speed is an absolute measure of the depth of a buried object. For 

homogenous and uniform host media, the speed of propagation 'L'S can be calculated 

from 

A C 
VS=-

Fr 
Accordingly, the depth can be derived from 

d = vsi 
2 

(1.1 ) 

(1.2) 

where here c is the speed of electromagnetic propagation in free space l , Er is the 

relative permittivity of the medium,while i is the two-way travelling time, to and 

from the target. 

In most practical situations the relative permittivity will be unknown. The normal 

procedure for estimating Vs is done either by means of direct measurement of the depth 

to a physical interface or target (i.e. by trail holing), calculation by meanH of multiple 

measurements, or broadly estimating it depending on the knowledge of the medium 

type. 

An alternative method of calculating the depth of a single planar reflector is by 

means of the common depth point method. If both transmitting and receiving antennae 

are moved equal distance from the common centre point the same apparent reflection 

position will be maintained [2]. 

The variation of permittivity with frequency in wet dielectrics implies that there 

will be some variation in the speed of the propagation with frequency. A dielectric 

1 The speed of light is approximately 0.299792458 mns-I. 
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exhibiting this characteristic is said to be 'dispersive'. Where the material has diff{'r

ent propagation characteristics in different directions it is said to be anisotropic, and 

an example is coal in the seams prior to excavation, where the propagation character

istics normal to the bedding plane are different from those parallel to the plane. In 

sub-surface radar work the elapsed time between the transmitted and received pulses 

is measured in nanoseconds because of the short travel path lengths involved. It could 

be seen from Equation 1.1 that lJs is inversely proportional to the square-root of the 

relative permittivity. 

The uncertainty about the value Vs could lead to disastrous consequences when 

application such as mines detection or major utility pipes and cables detection are 

involved, as a wrongly estimated Vs directly affects the calculation of th{' depth of 

target as this will be shown in Chapter 3. 

1.2.5 Clutter 

The clutter that affects CPR data scans can be defined as the set of signals that 

are not related to the target though they have similar spectral characteristics to 

target reflections. Clutter can be caused by breakthrough between the transmitting 

and receiving antennae as well as multiple reflections from the ground surface to the 

receiving antennae. Local variations in the characteristic impedance of the ground 

can also cause clutter, as can inclusions of groups of small reflection sources within 

the material. In addition, reflections from targets (which could be above the surface) 

in the side lobes of the antenna can be another source for clutter. The effect of clutter 

is more significant to the near-range CPR performance while it decreases at longer 

ranges. This problem can be overcome by careful antenna design and incorporating 
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radar absorbing material to attenuate the side and back lobe radiation from the 

antenna [2]. 

1.2.6 Data presentation 

The objective of CPR data presentation is to provide a display of the processed 

data that closely approximates an image of the subsurface, with the anomalies that 

are associated with the objects of interest located in their proper spatial positions. 

Data display is central to data interpretation. In fact, producing a good display is an 

integral part of interpretation. 

There are three of displays of surface CPR data, including: 

• One-dimensional trace 

• Two dimensional cross-section, and 

• Three-dimensional display 

The raw data acquired from the above CPR configuration is in the form of a two

dimensional image consisting of a lateral ensemble of sampled time series with hori

zontal and vertical dimensions of scans and two-way travel-time respectively. These 

waveforms can either be plotted side-by-side in the form of a "waterfall" or "wig

gle" plot, or colour-coded by representing each waveform by a vertical line with the 

amplitude of each sample represented by a pixel intensity level or colour. This two

dimensional image display is called a radargram or B-scan profile. To enhance the 

visibility of certain features, a number of options may be customised, such as the 

density of the waterfall traces, the number of colours and the colour table. A con

tour plot showing points of equal amplitude is also commonly used on monochrome 
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displays. To emphasise or de-emphasise certain features, arithmetic transformations 

such as the square root or absolute value are often applied. The square root for in

stance, assigns low amplitude samples a larger range of colours than higher amplitude 

samples, enhancing the sensitivity of the display to lesser reflections. 

Three dimensional displays are fundamentally block views of CPR traces that are 

recorded at different positions on the surface. Data are usually recorded along profile 

lines, in the case of a continuous recording system, or at discrete points on the surface 

in fixed-mode recording. In either case, the accurate location of each trace is critical 

to producing accurate 3D displays. Normally, 3D block views are constructed, then 

they may be viewed in a variety of ways, including as a solid block or as block slices. 

Figures 1.7 and 1.8 show the radargram of two pipes buried in soil (see Ap

pendix B) presented with a variety of display options. 
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(a) "waterfall" display (close-up) (b) contour display 

,.' 
. ' \ " . 

'" . 
(c) colour-amplitude format (128 colours) 

(d) 8 colour display 

(e) absolute value 
(f) square root 

Figure 1.7: Effects of various B-scan display options 
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Figure 1.8: Three-dimensional display of part of an orthogonal grid of B-scans 
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1.3 Off-line Processing 

Although the visual radargram display can often give the operator an initial OIl

site impression of the subsurface environment, only in very rare situations such infor

mation is sufficient for an adequate assessment of subsurface features. The recorded 

digital radar files are subsequently downloaded from the radar system onto a personal 

computer and subjected to further analysis and processing to accurately locate, char

acterise and map the relevant subsurface features. In order for this data to be utilised 

properly, some processes (usually referred to as pre-processing) are carried out to re

move unwanted environmental, operator and system effects. In this study only two 

of preprocessing operations are considered; distance normalisation and background 

removal as they are considered crucial for the study. 

1.3.1 Distance normalisation 

In contrast to conventional radar systems, in subsurface radar the targets and 

clutter are spatially stationary and the antennae are moved with respect to their sur

roundings. Furthermore, while in conventional atmospheric radar the targ(~t position 

is sought relative to the transmitting and/or receiving antenna, in ground-probing 

radar the positions must be given in relation to surrounding objects or to a reference 

grid on the ground surface. Thus in order for the acquired data to be of any practical 

use, there must exist enough spatial positioning information in the data to correlate 

any detected features with these surface co-ordinates. With the radar operating in 

continuous mode, the most common method for incorporating this spatial position

ing information into the radar file is by placing fiducial event markers in the data 

whenever the antenna covers a given lateral distance. 
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In practice, these markers are often introduced by a manual switch or button con

trolled by the radar operator, with the distance calibrated by means of a measuring 

tape, regularly-spaced survey pegs or spray markers, or in certain circumstances by 

human estimation. Alternatively, a wheel odometer or other dynamic distance mea

surement device can simplify this task; its electrical readout is used to place fiducial 

marks in the record in place of the operator's button. 

The SIR-2 system records these fiducial markers as spikes of amplitude 90 % of 

the maximum dynamic acquisition range, positioned at the second sample of the 

time series. The spacing between consecutive markers is governed by the speed of the 

movement of the transducer, and the uncertainties of the survey environment rarely 

permit uniform radar movement. Interpretation is most effective when the spatial 

axis of an image is linear and data is of uniform spatial density. 

To remove the distortions created by the variations of speed, a process of distance 

normalisation is developed to locally compress or stretch the image segments between 

markers resulting in a linear array of markers corresponding to the true survey co

ordinates. This normalisation is often referred to as "rubber band" processing or 

"rubber sheeting". The scans between each two fiducial markers separated in an 

array of scans 11 by 81, are either stacked or interpolated to render a regular spacing 

of 82 scans. In this and all subsequent flowcharts, the default direction of flow is 

downwards. 

The marker spikes are then removed from the data, and the modified file informa

tion is logged in the file header for future reference. If the distance in meters between 

the markers is known (metres_per ..mark in the header), then the corresponding header 

entry for scans_per ..metre is calculated directly as 
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scans_per .JIlark 
scans_per .JIletre = ------

metres_per .JIlark 
(1.3) 

In addition to attaining spatial uniformity, the distance normalisation procedure 

can also used to reduce the size of the radar files to facilitate processing and storage. 

Furthermore, stacking has the desirable effect of reducing the effects of random noise 

by averaging several radar signal returns over the same point. 

1.3.2 Background clutter removal 

Very often the radargram interpretation problem involves the extraction of a 10-

cali sed wavelet function from data with very similar time domain characteristics to 

the wavelet. These spurious reflections can be caused by breakthrough between the 

transmitting and receiving antennae, poor coupling with the ground, reflection from 

the surface, layered geology, antenna ring-down or system effects within the radar 

system. Removal of horizontal commonalties facilitates extracting useful information 

from the signals, and has the effect of a high-pass filter. This is apparent in Fig-

ure 1.9, where the high contrast of the coupling pulse causes the lesser reflections to 

be obscured. This situation is referred to as blanking. 

When the characteristic impedance of the transmitting antenna is not matched 

to that of the medium, some of the energy is stored in standing waves within the 

antenna elements and radiated over an extended period of time, causing the antenna 

to "ring". This ring-down effect is made worse by the limited fractional bandwidth 

of the antenna, and combined with the pulse breakthrough, coupling and surface 

reflections, often completely obscures less intense reflections from shallow targets. 

It is possible to remove this "background" banding or clutter by subtracting from 
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each scan an ensemble average of the stack of A-scans over the region of interest. 

Here it is assumed that the material properties vary randomly about a location-

independent mean, and that the target indications are present in a relatively small 

number of measurements. Thus the mean of a large number of measurements can be 

considered to be a measure of system clutter. The image is divided into vertical strips 

of approximately 60 scans (or the equivalent of three meters), and then the ensemble 

mean of each row of pixel intensities across each strip is subtracted. Using the same 

notations as before, with s(i) the unprocessed A-scan and win the width of the strip 

of scans starting from scan number jbg, the processed A-scan s(i) is calculated using 

1 jbg+win - 1 

s(i) = s(i) - -. L s(j) 
W'Ln .. 

(1.4) 
J =Jbg 

Clutter associated with a particular region may be removed by specifying the 

corresponding values of jbg and win. This technique is particularly well-suited for 

instances where the targets are well-separated. 

1.3.3 Post-Processing 

The notion post-processing usually refers to the set of processes that take place 

after the collected data is processed to remove unwanted environmental, operator 

and system effects. These processes usually start with pointing out the targets of 

interest (manually or automatically) throughout the whole collected data scans, then 

comes the crucial stage of interpreting the detected data in terms of their types, 

dimensions, and depth. Until now, this interpreting stage is still highly dependent on 

the experience of a professional operator and subjected to broad assumptions in the 

majority of cases where the lack of ground truth is the standard case. 
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Target Detection 

A common procedure in the target detection stage is for a human operator to go 

through the collected radargrams to point out any target of interest. This procedure is 

still widely followed despite being subjected to the human slowness, error-judgments, 

and inconsistency. There could be few reasons for this, among them is the lack 

of confidence in machine-decisions specially when critical applications involved such 

as mine detection, the expensive computational demands and limited accuracy of 

many automatic detection procedures. Although human interference is still heavily 

involved, yet semi-automated procedures are applied to rapid up data-processing with 

human operator intervention. Many GPR data-processing softwares include a variety 

of options regarding off-line procedures, data-enhancement procedures, in addition to 

signal processing, image processing procedures to help the operator to optimism his 

wor k in terms of speed and consistency. 

The collected data could be looked at as B-scans or in three dimensional slices, 

whereas A-scans are not suitable for human-eye detection. Simplifying the image, 

by eliminating the noise and clutter, is the most important factor for optimising the 

detection. Image simplification may be achieved by: 

• Assigning the amplitude-colour ranges. 

• Displaying only one polarity of the GPR signals. 

• Using a limited number of colours. 

• Decreasing the size of the data set that is displayed as the complexity of the 

target increases. 

• Displaying a limited range (finite-thickness time slice) and 
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• Selecting the viewing angle (in case of 3-dimensional processing) 

Some of these image simplification methods are used in Figures 1.7 and 1.8 re

sulting in different views for the collected data. 

Interpretation 

The interpretation stage is the last and most important stage among the GPR 

data-processing procedures, as it brings out the final decision regarding the data 

under investigation. This interpretation process is often characterised by uncertainty, 

subjectivity, inconsistency, assumptions and rules-of-thumb. This is mainly due to the 

existence of the human-factor and the many unknowns with regard to the investigated 

site. The interpretation stage usually involves connecting the detection information 

from individual radargrams and accompany them with broad assumptions and rules 

of thumb or ground truth (which is very rarely available). This could be achieved 

with the aid of a computer software. 

The available softwares for GPR data processing deal with the acquired data on 

either one-dimensional signals (A-scans) basis, or two-dimensional date (B-scans) ba

sis. For the A-scans case, several methods may be included such as inverse filtration, 

wavelet-correlation, and auto-correlation processing. Methods of signals require cal

ibrating signals, measured in advance. Correlation and auto-correlation processing 

enable to compare measured reflected signals and calibrating signals, reflected from 

various objects, and choose the best suite waveform [2J. In case of the B-scans based 

processing, the problem is dealt with as an image processing one and hence a variety 

of image processing techniques can be applied such as features extraction and seg

mentation and edge detection and processing. Three-dimension image of objects can 
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be obtained by migration. Different GPR researchers have different opinions about 

which approach is more adequate. 

Despite the variety of commercial softwares for processing GPR data and the 

continuous developments of these softwares, the human-factor is still heavily involved 

in almost every stage. Moreover, all the crucial decisions regarding the detection 

and interpretation are made by human operators. This process consumes significant 

amount of time (and hence money) and this often delay detracts from the desirability 

of GPR as a rapid non-invasive site-investigation tool. This problem is compounded 

by the added problems of inconsistency and human error. 

When the accuracy is critical in mapping buried services and plant, there is added 

premium on the need for reliable accurate interpretation of this data, exploiting the 

knowledge of the data-acquisition geometry. This necessitates the need for a complete 

data-processing automatic system that requires minimum human intervention. This 

system has to be able to detect the desired targets, analyse them, and present a final 

interpretation report rapidly and consistently. 

1.4 Previous Work 

The interests of GPR researchers are usually divided between the areas of radar 

system and technology, problem inversion and modelling, and data processing, vision, 

and analysis. A general review of ground penetrating radar background, theory, and 

implementation considerations as well as a description of various available system 

approaches and equipment is presented by Daniels [3, 4, 2J. 

Sai and Ligthart [5J present a comprehensive two-dimensional technique for pre

processing the data acquired by a continuously moving ultra wideband impulse ground 
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penetrating radar. The operations include DC-offset removal, frequency filtering, 

background removal, gain compensation, and data interpolation. The results showed 

enhanced CPR images suitable for further detection and interpretation processes. 

Merwe et al. [6] present a clutter-reduction technique for GPR data from mine 

like targets. The basic concept of this technique lies in treating the clutter as an 

unknown deterministic component. An equation derivation is made that represents 

the GPR desired target contributions, as well as the clutter contributions, then it wa.'l 

applied in an iterative technique to eliminate the clutter effect, without taking into 

consideration the effect of the subsurface inhomogeneities. This suggested technique 

has two main disadvantages: it is time-consuming, and is based on estimating values 

for the desired signals, and neglecting the clutter effects. 

Carevic [7] presents a method for simultaneous clutter suppression and signal 

detection in GPR data. It computes a running estimate of the background signal 

and detects abrupt changes from the estimated signal, assumed to correspond to 

the returns from a buried object, using a translation invariant (TI) wavelet packet 

decomposition. This paper lacks any results of applying the method on real GPR data. 

While Carevic et al. [8] present a Gaussian mixture modelling procedure for target

specific feature extraction from GPR signatures along with a Bayseian classification 

technique to identify mine-like targets. 

Ulug et al. [9] describe the application of radial basis function (RBF) classifiers 

to feature-based automatic target recognition using Synthetic Aperture Radar data. 

They produce a performance comparison between the RBF and several other clas

sifiers, and make a conclusion that the RBF network performs better and is more 

robust to this type of noise when compared to the other feature-based classifiers they 

considered. The paper does not show a quantitative measure for the obtained results, 
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besides the crucial issue of time-cost is not addressed. 

Gamba and Lossani [10] present a simple feed-forward neural network, that has the 

job of detecting the hyperbolic shapes within the pre-processed images and according 

to a certain thresholding arrangement, the network would decide whether the certain 

shape represents a part of a pipe or not. Lotlikar and Kothri [11] present a simple 

dimensionality reduction criteria, which is based on using a neural network classifier 

to produce a reduced image containing the data of interest, and applying this criteria 

to some feature extraction techniques to make a comparison between them. The 

efficiencies of the proposed neural networks are not quantified and the time-cost issue 

is not addressed. 

Al-Nuaimy et a1. [12J present an automatic detection regime for buried utilities and 

solid objects combining artificial neural network-based classifier and pattern recog

nition technique. Furthermore, the authors in [13] present a novel multi-resolution 

texture discrimination technique based on unsupervised neural network and capable 

of identifying four types of classes. A main limitation for these techniques is their 

high time cost. 

Grandjean et a1. [14J present a computer software package with a modelling routine 

that generates synthetic hyperbolae to compare with GPR-resulted hyperbolic shapes, 

with the possibility of a number of iterations to achieve a match. The program is 

for off-line processing and requires human involvement, and hence unsuitable for an 

automatic near real-time requirement. The way by which the program deals with 

data files and the iterative method leads to a limitation in dealing with large volumes 

of radar data, and makes it rather slow. It is also noticed that there was no specific 

examples indicating the efficiency of the proposed program in dealing with real data. 

AI-Nuaimy et a1. [15J present an interesting automatic technique for mapping 
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of linear structures in 3-dimensional space in GPR usmg a 3-dimensional Hough 

Transform. This technique is applied in the final stage of the automatic system 

presented in this study. 

Capineri et al. [16] present a theoretical development and application of a data 

visualisation method that uses Hough Transform for locating straight lines and hy

perbolic arcs in 2-dimensional images. They have used this method to locate buried 

objects in GPR images. The technique requires human operator intervention and has 

a high computational cost. 

In [17] the authors produce a multi-component imaging algorithm that takes into 

account the properties of the vectorial character of the electromagnetic field and 

the radiation characteristics of the source and the receiver. This imaging algorithm 

employs four source-receiver configurations to obtain a bounded imaging operator. 

Smith and Brown (18] present a data analysis and visualization software to process 

directional borehole radar data. It consists of a suite of signal and image processing 

routines written in Interactive Data Language (IDL). Examples are presented oflabo

ratory data acquired with the prototype tool from two different experimental settings. 

The first experiment imaged plastic pipes in a macro-scale sand tank. The second 

experiment monitored the progress of an invasion front resulting from oil injection. 

Roberts and Cits [19] present a method of GPR data- imaging using orthogonal 

profile line data. A 3-D image generated from a migrated and concatenated data-file 

is manipulated to detect linear and finite-size targets. Moreover, they present com

parisons of the data visualization capabilities between one-direction and orthogonal 

profile line data. A major problem with migration techniques is their high time

consumption which makes them less attractive for on-site processing requirements. 

Scheers et al. [20] proposes a migration method for GPR data that integrates the 
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time domain model of the GPR in the migration scheme. The method suggests the 

calculation of a synthetic 3-dimensional point spread function of the G PR by forward 

modelling. They show the results of this migration method on real data obtained 

reconstruct the top contour of small targets, in some cases even with the correct 

dimensions. 

Binningbo et al. [21 J present results obtained from applying a 3-dimensional migra

tion algorithm to ground penetrating radar data collected with a switched antenna 

array. They use the Stolt wavenumber migration algorithm for 3-dimensional pro

cessing of the radar data. The migration is performed in the wavenumber domain, 

assuming constant wave velocity for waves travelling in the soil, and this assumption 

limits the efficiency of this method. With the signal antenna pair, the system could 

resolve the si2e and location of buried objects to within 5 cm in dry sand, while using 

the antenna array, the resolution was fully maintained, but with an increased noise 

level. 

Despite the fact that Hayakawa et al. [22J do not present any theoretical or math

ematical background to their work, they show some interesting results. They present 

a position measurements method to determine the position of GPR on the road by 

measuring the distance and direction in which it has moved, where survey data can 

be obtained by operating the GPR in arbitrary directions, while maintaining a survey 

speed corresponding to normal walking speed. In addition to that, the paper shows 

the results of a 3-dimensional visualization software to compile data of cross section 

and reconstruct the structure of buried objects based on a time-costing migration 

process. The results are not quantified and there is no mention of the time cost or 

the degree of human intervention. 

Kruk and Slob [23J propose a method to deal with wavelets via introducing an 
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effective wavelet that incorporates the influence of the finite-Iengt.h ant.ennae, where, 

knowledge of the wavelet has the potential to improve the imaging and interpretation 

of GPR dat.a. To obtain effective wavelet, the impulse response for a point. source

receiver antenna system is calculated using the medium properties, that arc obtained 

from the isolated air- and ground-waves observed on the actual common midpoint 

data. The deconvolution of this impulse response with the actual common midpoint 

data, yields an effective wavelet. They conclude that properties of the shallow sub

surface can be extracted from the ground-wave with reasonable accuracy. 

In [24J, Lee examines the structure of an image reconstruction algorithm for 

synthetic-aperture GPR systems operating with pulse-echo and step-FMCW (fre

quency modulated continuous wave) illumination schemes. The main structure of the 

image formatioIl algorithms is based on the framework of the backward propagation 

image formation technique. The paper includes mathematical modelling, theoretical 

analysis, and results form full-scale experiments. 

Barkat et al. [25] show that the processing of image data under varying assump

tions can be used to adaptively determine the ground permittivity, which determines 

the propagation speed through the medium. Then they suggest that by considering 

the permittivity to be an unknown scalar parameter, several images can be formed 

as a function of the unknown parameter leading to a choice which maximises the 

sensitivity and resolution of the resulting image. After GPR image is segmented, the 

above concept is used to assign a relative permittivity value for each segment so that 

the range and cross-range location of a given scatterer are matched, then a single 

image is formed using adaptive permittivity values applied to each data segment. 

Stolte and Nick [26] investigate the relationship between cylinder radius and hy

perbola eccentricity for the purpose of migration, while Olhoeft attempts in [27J to 
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derive radius information from the curvature of the hyperbola apex with human in

tervention. 

Despite the large number of site investigations and case studies relating to the 

detection and interpretation of buried cylinders, yet the attempts to automate these 

detection and interpretation processes are still limited and not been adequately sat

isfied. Moreover, the problem of making broad assumptions with regard to buried 

cylinders information and the host medium dose not seem to be thoroughly addressed, 

not to mention solving it. For these reasons, further research is needed in order to 

provide robust and reliable automatic data processing system based on a scientific 

foundation. This system provides a full description of the detected targets and the 

medium, in addition to eliminating any unnecessary assumptions. 

1.5 Objectives and Scope of Work 

This study addresses the problem of lacking a comprehensive and rapid auto

matic procedure for processing collected CPR data to detect cylindrical objects and 

present an interpretation report about the detected targets and their corresponding 

information such as depths, dimensions, and orientations. 

To cover this subject, various image and signal processing techniques are investi

gated for detection and segmentation of reflections from cylindrical targets. Further

more, a detailed modelling and characterisation procedure of buried cylinders rep

resentations in CPR images is presented for individual and collective images. This 

constitutes, in addition to the detection stage, a robust automatic detection and in

terpretation system with minimum human-interference requirement and can be used 

effectively by untrained radar operators for on-site data-processing purposes. The 



Chapter 1. Introduction 34 

main objectives achieved by this study can be summarised as follows: 

1. Highlighting of feature zones using unsupervised segmentation of radar data. 

2. Unsupervised estimation of diameter and orientation of cylindrical targets. 

3. Unsupervised discrimination of number and geometry of clustered features. 

4. Automatic combination of multiple data scans. 

5. Unsupervised mapping of features and utilities in three dimensions incorporat

ing site data and ground truth. 

6. On-site applications in near real-time. 

The input to the completed system would be a set of radar files covering a partic

ular site along with the necessary information about the scanning grid, and present a 

reliable interpretation map of the detected subsurface anomalies, indicating the spa

tial extent, depth, dimensions information in addition to a dielectric constant profile 

map of the investigated site. This information is required within a short period of 

time, preferably on-site. The requirements thus stress a high degree of automation, 

robustness and computational efficiency. 

These issues are addressed in the following four chapters of this thesis. Chapter 2 

discusses detection and segmentation techniques that are used to discriminat.e t.he de

sired targets from other unwanted data. A few classification procedures are discussed 

in det.ail highlighting their points of strength and weakness. In Chapter 3, target 

reflect.ions resulting from buried cylinders are modelled in a novel general equation. 

Furthermore, the derivation of a novel hyperbola-specific fitter is det.ailed and the 

combination of this fit.ter and t.he present.ed model for t.arget.s is used to calculate 
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crucial target parameters from individual radargrams. Chapter 4 discusses the pro

cessing of multiple radargrams to find linear cylindrical targets via the application 

of an adaptive non-accumulative 3D Hough Transform. Moreover, it is shown how 

this information is combined with information obtained from individual radargrams 

in an iterative manner to correct for target parameters and find further linear tar

gets. Furthermore, a novel technique is discussed for creating a 3-dimensional profile 

of the dielectric constant of the site under investigation. Finally, Chapter 5 covers 

the overall conclusions of the project and the accomplished work in addition to some 

recommendations regarding any future work. 

1.5.1 Published Work 

Since this study was started, a number of journal and conference papers were pub

lished in scientific journals and proceedings of national and international conferences. 

These papers are listed below: 

1. W. Al-Nuaimy, H. Lu, S. Shihab, and A. Eriksen. Automatic mapping of linear 

structures in 3-dimensional space in ground penetrating radar data. Proceedings 

of IEEEjISPRS Joint Workshop on Remote Sensing and Data Fusion Over 

Urban Areas, Rome, 2001 [28J. 

2. S. Shihab, W. Al-Nuaimy, Y. Huang, and A. Eriksen. Neural network target 

identifier based on statistical features of CPR signals. in Ninth International 

Conference on Ground Penetrating Radar, Steven K. Koppenjan and Hua Lee, 

Editors, Proceedings of SPIE, 4758: 135-138, 2002 [29]. 

3. S. Shihab, W. Al-Nuaimy, and A. Eriksen. Image processing and neural net

work techniques for automatic detection and interpretation of ground penetrat-
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ing radar data. Proceedings of 6th WSEAS International Multi-conference on 

Circuits, Systems, Communications and Computers, Crete, 2002 [30]. 

4. S. Shihab, W. Al-Nuaimy, and A. Eriksen. Image processing and neural network 

techniques for automatic detection and interpretation of ground penetrating 

radar data. WSEAS Advances in Circuits, Systems and Signal Processing, 

pages 360-363, 2002 [31J. 

5. S. Shihab, W. Al-Nuaimy, Y. Huang, and A. Eriksen. Neural networks classifier 

for detecting subsurface objects. Proceedings of IEE/EPSRC Joint National 

Conference PREP2002, Nottingham, 2002 [32J. 

6. W. Al-Nuaimy, H. Lu, S. Shihab, and A. Eriksen. Automatic 3-dimensional 

mapping of features using GPR. in Ninth International Conference on Ground 

Penetrating Radar, Steven K. Koppenjan and Hua Lee, Editors, Proceedings of 

SPIE, 4758:121-124, 2002 [33J. 

7. W. Al-Nuaimy, Y. Huang, S. Shihab, and A. Eriksen. Automatic target de

tection in GPR data. in Ninth International Conference on Ground Penetrat

ing Radar, Steven K. Koppenjan and Hua Lee, Editors, Proceedings of SPIE, 

4758:139-143, 2002 [34J. 

8. W. Al-Nuaimy, Y. Huang, S. Shihab, and A. Eriksen. Unsupervised segmenta

tion of subsurface radar images. in Ninth International Conference on Ground 

Penetrating Radar, Steven K. Koppenjan and Hua Lee, Editors, Proceedings of 

SPIE, 4758:635-638, 2002 [35J. 

9. S. Shihab, O. Zahran, and W. Al-Nuaimy. Time-frequency characteristics of 

ground penetrating radar reflections from railway ballast and plant. Proceed-
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ings IEEE 2002 High Frequency Postgraduate Student Colloquium, Imperial 

College, London, U.K, IEEE catalogue no.: 02TH8642, 2002 [36J. 

10. O. Zahran, S. Shihab, and W. Al-Nuaimy. Comparison between surface impulse 

ground penetrating radar signals and ultrasonic time-of-flight diffraction signals. 

Proceedings IEEE 2002 High Frequency Postgraduate Student Colloquium, Im

perial College, London, UK, IEEE catalogue no.: 02TH8642, 2002 [37J. 

11. O. Zahran, S. Shihab, and W. Al-Nuaimy. Recent developments in ultrasonic 

techniques for rail-track inspection. Proceedings of the annual conference of the 

British Institute of Non-Destructing Testing NDT 2002, Southport, UK, pages 

55-60, 2002 [38J. 

12. S. Shihab, W. Al-Nuaimy, Y. Huang, and A. Eriksen. Automatic region-based 

shape discrimination of ground penetrating radar signatures. Proceedings of the 

Symposium on the Application of Geophysics to Environmental and Engineering 

problems SAGEEP2003, San Antonio, USA, 2003 [39J. 

13. S. Shihab, W. Al-Nuaimy, Y. Huang, and A. Eriksen. A comparison of seg

mentation techniques for targets extraction in ground penetrating radar data. 

Proceedings of the 2nd International Workshop on Advanced Ground Penetrat

ing Radar (IWAGPR), Delft, Netherlands, 2003 [40J. 

14. W. Al-Nuaimy, Y. Huang, and S. Shihab. Multi-channel Filtering approach 

for unsupervised segmentation of subsurface radar images. Environmental and 

Engineering Geophysics, 8:93-101, 2003 [41J. 

15. O. Zahran, S. Shihab, and W. Al-Nuaimy. Time-frequency techniques applied 

to TOFD for the automation of rail-track inspection. Railway Engineering 2003 
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conference proceedings, UK, 2003 [42]. 

16. S. Shihab and W. Al-Nuaimy. A comparison of segmentation techniques for 

targets extraction in ground penetrating radar data. Near-Surface Geophysics, 

2(1):49-57, 2004 [43J. 

17. O. Zahran, S. Shihab, and W. AI-Nuaimy. Discussion of the ability of defect 

classification in weld inspection using ultrasonic time-of-fiight-diffraction tech

nique. Proceedings of the IEE/EPSRC joint national conference PREP2004, 

UK, 2004 [44]. 

18. S. Shihab, W. AI-Nuaimy, and A. Eriksen. Radius estimation for subsurface 

cylindrical objects detected by ground penetrating radar. Proceedings of the 

Tenth International Conference on Ground Penetrating Radar, 1:319-322, Delft, 

Netherlands, 2004 [45]. 

19. W. AI-Nuaimy, S. Shihab, and A. Eriksen. Data fusion for accurate characteri

sation of buried cylindrical objects using gpr. Proceedings of the Tenth Interna

tional Conference on Ground Penetrating Radar, 1:359-362, Delft, Netherlands, 

2004 [46]. 

20. S. Shihab and W. Al-Nuaimy. Radius estimation for subsurface cylindrical ob

jects detected by ground penetrating radar. Journal Subsurface Sensing Tech

nologies and Applications, 6(1):1-16, 2005 [47J. 

21. W. AI-Nuaimy and S. Shihab. Data fusion for accurate characterisation of 

buried cylindrical objects using gpr. Submitted paper to the IEEE Transactions 

on Geoscience and Remote Sensing, 2005 [48]. 
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1.6 Conel usions 

This chapter described a basic time-domain impulse CPR system, its data ac

quisition procedure and the associated acquisition and processing parameters. Some 

off-line processes are described which are applied to compensate for system, operator 

and environmental effects, and the main post-processing procedure is discussed with 

the areas of weaknesses pointed out. Furthermore, a representative survey over the 

published literature was presented and discussed. The objectives for this study are 

outlined, in addition to a list of the author's published work. This chapter sets the 

framework for the problem this study is addressing as to be seen in following chapters. 
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Chapter 2 

Target Detection 

The techniques developed in this study for the automated detection of desired tar

gets in GPR radargrams involve a considerable degree of signal and image processing 

techniques combined with artificial intelligence classification techniques. Artificial 

neural networks have been chosen in particular to replace the role of expert operators 

in recognising potential targets and rejecting unwanted data. In the following sections, 

a detailed description is presented of all the targets discrimination and classification 

techniques that were tested. 

2.1 Introduction 

In order to bring the GPR displays into a better condition that is suitable for 

interpretation, some pre-processing as well as post processing operations are carried 

out. Usually, these operations are manually handled by human operators, and con

sequently they would consume considerable amounts of time and effort. In addition, 

those operations are exposed to human inconsistency and error factor. To resolve 

this issue, it became necessary to find an automatic mechanism to carry out all the 
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processing on the path of presenting the desired operation. 

Typically CPR data is processed off-line by a combination of manual and auto

mated processing stages. Separating out genuine targets from background clutter and 

accounting for various environmental, system and subsurface effects require operator 

skill, experience and, most significantly, time. The analysis and interpretation of the 

large volumes of data generated by practical CPR surveys are extremely challenging 

and often presents an implementation bottleneck influencing the cost-effectiveness 

and applicability of the technique. 

CPR images are unlike conventional images in that they can be treated both as 

images and as ensembles of time series, thus both signal processing and certain image 

processing procedures can be applied to them. It is important to know that a very 

small percentage of a typical CPR survey contains useful reflections, and thus these 

techniques often impose a prohibitive computational burden. Automatic selection 

of these anomalous zones can significantly reduce the dimensions of the data set 

with which one must deal, hence alleviating the computational burden during later 

processing and pattern recognition stages. 

The work outlined in this chapter overcomes this problem by reducing the di

mensionality of the data by outlining two-dimensional and three-dimensional regions 

wi thin the data containing target reflections based on specific properties of the signal 

(A-scan) or image (B-scan). Through the analysis of these attributes, only those 

segments with specific characteristics of the radargram sought are retained, while the 

remainder of that radar gram is discarded. This reduction permits more exhaustive 

image processing to be applied to the image, and results in improved computational 

efficiency in estimating target position and geometry. 

In order to automate this selection process, attributes must be identified that 
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characterise the sought signals or images and distinguish them from other undesirable 

reflections. Figure 2.1 shows the stages which constitute an automatic detection and 

interpretation system for GPR data. Later in Chapter 4, it will be shown how this 

system is enhanced by combining information from multiple radargrams across the 

site in order to accurately determine the pipe parameters. 
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Figure 2.1: Block diagram of the automatic detection and interpretation system 

2.2 Feature Extraction 

In the ideal case, a signal received by the receiving antenna at a particular point 

should correspond to an anomaly that is located right beneath that point. In reality, 

the transmitted signal propagates along more than one path before being captured by 

the receiving antenna due to the nature of the antennae and the geometry of the data 

acquisition arrangement. Consequently, the received signal would be a combination 

of the different reflections along the different paths as was illustrated in Figure 1.6. 

The target detection process thus aims at distinguishing between the real targets and 

other undesired reflections. 
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Figure 2.2 shows a typical radargram collected at a controlled geophysical te t 

site [49J, at a location where two pipes are buried at a known depth within an uniform 

clayey soil (see Appendix B). It can be seen clearly that the region of interest is that 

where the hyperbolic signatures exist, as they represent the pipe, while the rest of 

the radargram is redundant. Hence, the first and most important step towards a 

robust and rapid automatic detection, characterisation, and interpretation system is 

to successfully identify the target related data and reject the rest in order to reduce the 

amount of the data set with which the subsequent stages would deal, and this would 

inevitably limit further computation cost to the useful data during later processing 

stages. 
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Figure 2.2: Typical ground-penetrating radar image 

Based on the way in which the data are considered (i.e either A-scans or B-scans), 

the investigated segmentation-techniques can be divided into two major categories; 
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1. Time-series features and 

2. Spatial features 

With regard to the time-series features, after investigating several features of 

the reflected signals and examining the corresponding results, the following A-scan 

manifestations are considered 

1. Statistical features 

2. Spectral features 

a) Periodogram 

b) Time-frequency 

As for the spatial features case, a similar procedure to the one that is followed in 

the time-series case leading to the following B-scan manifestations 

1. Statistical features 

2. Regional features 

Theses features will be discussed independently in the forthcoming sections. 

2.2.1 Time-Series Features 

Although human operators find it easier and more convenient to deal with CPR 

data in the form of B-scans, it is interesting to mention that all subsurface information 

about the scanned areas are contained within individual reflections (A-scans). Despite 

this fact, it is almost impossible for an operator to differentiate between genuine 

reflections representing targets and other non-useful reflections. The reason can be 
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clearly seen in Figure 2.3 below, where both the target and non-target signals (which 

are drawn to the same scale) look much alike. Based on this, it becomes crucial to find 

the features of these A-scans that can provide good discrimination between targets 

and non-targets. 
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Figure 2.3: Two GPR scans, one of a target and other of a non-target 

The selection process of suitable descriptors for a signal is one of the most critical 

and important tasks. There are two points one should keep in mind when searching 

for such descriptors. The first point is the nature of the signal, as some descriptors 

may be useful in some applications and not in others. The second is that the selected 

descriptor should, in some manner, emphasise a feature of a signal which is almost 

unique to that class of signals, so it can be discriminated from other classes. In 

addition to the above two factors, a third one of concern in this study is the time 

consumption. 

During the recent years, many attempts were made by a number of researchers 

to produce automatic segmentation techniques (for example [12J and [13]), and these 
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techniques vary from one to another in many aspects such as accuracy, reliability, and 

speed. 

Statistical features 

Statistical features of signals are always tempting for providing unique information 

about different types of signals, either individually or collectively. 

Here, an important question is raised; which features are to be selected? The 

answer to that depends on the type of the signal and the ability of each feature to 

provide discriminating basis for that particular type of signals from other types. In 

addition, and as mentioned before, the time-consumption issue is of a great impor

tance here, and this might mean a tradeoff in the process of choosing the most suitable 

features between efficiency and complexity. 

Based on the above, some statistical features are extracted from radar reflections 

to present discrimination basis between reflections generated from genuine targets and 

those representing clutter and noise. A number of statistical features are investigated 

on a data set that is specially built for this purpose. The data set consists of an equal 

number of different targets non-targets reflections that represent real data collected 

from a number of different sites. 

A data set was built, in order to investigate the statistical descriptors properly. It 

consists of 50 target and 50 non-target signal-segments. It was noticed from various 

GPR data that effective data-content of targets and non-targets existed in an average 

64-pixels of the A-scans. Consequently, the collected data set segments were chosen 

to be 64-pixels long each, and were collected from different sites and represented 

different kinds of targets such as pipes, reinforced concrete, tanks, and voids. Non

target scans, on the other hand represented different non-useful data such as clutter, 
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shallow reflections, noise, and attenuation. 

The investigation of a variety of features [50], and [51] has led to the selection of 

three main descriptors, as they have proven to produce a good discrimination between 

signals returned from targets and other reflections. These three features are 

1. Variance (second moment) 

1 n 

(J = -- ~(Si - 8)2 
n-1L-.-

i=l 

(2.1 ) 

where Si is the ith element in the vector S of length n, and 5 is the mean value 

of s. 

2. Mean absolute deviation 

1 n 

MAD = - L lSi - 8/ 
n 

(2.2) 
i=l 

3. Fourth moment 

(2.3) 

The selected features then were investigated for unsupervised clustering to tt~st 

their ability to produce distinguishable clusters; targets, and non-targets. A hierar-

chical tree is used as a unsupervised clustering measure for the collected data set. 

This hierarchical tree is shown in Figure 2.4 and was formed as follows 

• Calculation of feature matrix for the data-set, where each value in the matrix 

is considered an observation. 
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• Calculation of Euclidean distances between observations, which is given by 

(2.4) 

where PI and P2 are two observations in the matrix and = (Xl, yd and (X2' Y2) 

are their corresponding coordinates. 

• Linking pairs of observations (using the n-shape connections) that have the 

nearest distances then linking the linked pairs with nearest distances to each 

other and so on. 

• Forming clusters using linkage trees. 
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Figure 2.4: Hierarchical tree test showing targets and non-targets clusters 

It is expected that the there should be 50 clusters corresponding to targets and 50 

corresponding to non-targets, but this is not the result shown in Figure 2.4. This is 
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because the classification is unsupervised and was done without using an intelligent 

tool (such as artificial neural networks). Nevertheless, the obtained tree has shown 

good classification rates when mapped-back to the data set, and consequently, the 

classification accuracy will rise when a neural network classifier is used. 

Spectral features 

Pattern recognition techniques are used to discriminate between reflections from 

buried targets and other spurious ones. Different frequency-domain representations 

of the time-series data facilitate the pattern recognition task by extracting different 

features of the signal. As it is not known which features are directly relevant to the 

above discrimination, various spectral representations are investigated. 

Periodogram 

The two scans shown in Figure 2.3 are representatives of the two categories we 

wish to distinguish; one contains a target reflection and one contains only spurious 

clutter and noise. A sequence of samples may be represented by a set of spectral 

coefficients called the power spectral density (PSD), which provides a meaningful 

measure of the distribution of the average power in a time-series. One PSD estimate 

called the periodogram is defined by 

P( c) = S( c)S* (c) 
B 

B 
c=Ol .. · -

" '2 
(2.5) 

where S( c) is the B-bin Discrete Fourier Transform (DFT) of the b-sample time-series 

s(n), and is given by 
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b-l 
2 ~2tr 

S(c) = b ~ s(n)e-J8 
B 

c=Ol··· -
" '2 

(2.6) 
n=O 

where the global domain is that of frequency and (*) indicates the complex conjugate. 

It has been found [52] that retaining the first 12 spectra.! bins of a 64-bin DFT is 

sufficient to capture the most significant spectral information in these signals. Each 

512-sample scan is thus transformed into a 12-point PSD estimate. 

The vertical uncertainty of the results is reduced by localising the detected reftec-

tions along the time axis. this is achieved by segmenting the scan into sections, and 

extract spectral information of only those sections containing legitimate target reftec-

tions. Each scan is sectioned into eight contiguous 64-sample segments, as illustrated 

in Figure 2.5. For each signal segment, the logarithm of the 64-point windowed power 

spectral density is extracted as a discriminating feature, and only the first 12 spectral 

samples are retained. The chosen window for this application is the Hanning window 

given by 

w(n) = 
1 (1 + cos mr) Inl:::; win 2 .J 

(2.7) 

o Inl > win 

where win is the length of the window. 

The periodogram suffers from several drawbacks [53J, among them an excessive 

variance. Bartlett [54] suggested that the variance would be reduced if the time-

series segment is divided into subsets, with the periodogram then computed for each 

subset and the average energy density obtained for each frequency in order to obtain 

a greater reduction in variance. This was implemented on the radar data, and a.q a 

result, the segmentation has become more sensitive to the presence and the location 

of the target. 
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v 
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Figure 2.5: Illustration of an A-scan sectioned into eight 54-sample segments 

Time-frequency techniques 

The Wigner-Ville distribution (WVD) is a widely-applied time-frequency tech-

nique in a variety of applications. It is defined as 

(2.8) 

Knowing that the instantaneous autocorrelation function Rs (T, t) of a signal s( t) 

is given by 

Rs( T, t) = s(t + T /2)s*(t - T /2) (2.9) 

The Fourier transform of Rs (T, t) provides the instantaneous spectral density fnnc-

tion 

(2.10) 

It can be seen that the Wigner-Ville distribution function of a signal can be viewed 

as an instantaneous spectral density. 
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The reason that makes the WVD so special in many signal-processing applications 

is that it better characterises a signal's frequency changes than any other schemes 

[55]. In addition, the WVD possesses many useful properties for signal processing, 

many of which are related to the average of the WVD. One of the major deficiencies 

of the \VVD is the cross-term interference. This was reduced by using the so called 

analytic signal (or pre-envelope) associated with the real signal. Let u(t) be a real 

square-integrable signal in time, then the corresponding analytic signal is defined as 

s(t) = u(t) + jh(t) (2.11) 

where h(t) is Hilbert Transform of u(t). 

This method would reduce the cross-term interference but on the expense of losing 

useful properties. Figure 2.6 shows two distributions, one of a cylindrical target-signal 

and the other of a non-target signal. 

After the WVD-distribution is found for a certain GPR reflection, the magnitude 

of the peak corresponding to each instant of time is taken as one feature. A second 

feature is extracted, which represents the magnitude of the peak corresponding to the 

maximum frequency value in the WVD. Figure 2.7 shows plots of these two features 

for signals reflected from target and non-target objects. Because of the high time-cost 

of the WVD, each signal is divided into 64-bit segments (similar to the periodogram 

case) and the chosen features were extracted correspondingly. 

A major drawback in the WVD method is its extremely-high time cost when 

compared to other methods presented in this study (as this will be shown later in 

this chapter), which makes it unsuitable for the automatic detection system as it 

eliminates the crucial objective of near-real time performance. 
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F igure 2.6: Wigner-Ville distribution for A-scans with and without target 
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Another widely-applied time-frequency distribution is the short-time-fourier-

transform (STFT). Although Fourier analysis allows passage from the time domain 

to the frequency domain, its use is concerned mainly with stationary signals whose 

properties do not evolve with time. It docs not allow a combination of the two do-

mains, and in particular, most temporal information is not easily accessible in the 

frequency domain. While the spectrum shows the overall strength with which each 

frequency is contained in the signal, it does not generally provide information about 

the time localisation of spectral components [56]. Any abrupt change in time in a non-

stationary signal is spread out over the whole frequency axis of the Fourier transform. 

Fourier analysis is based on global information which is not adequate for the study of 

compact or local patterns. Therefore an analysis adapted to non-stationary signals 

requires more than the Fourier transform [55]. The STFT is one of the commonly 

used time-frequency techniques for this purpose. It is defined by 

(2.12) 

T 

and in discrete form for a time-series s (n) consisting of b sam pIes, 

b 

STFT w (i,p) = L: s(n)w(i _ n)e-j2~Ci 
s n==O 

(2.13) 

where i, p = 0,1,2, ... ,b - 1 

The STFT or windowed Fourier transform introduces a frequency dependence , 

with time by filtering a signal "at all times" with a band-pass filter centred at each 

individual frequency and whose impulse response is that of the window function 

w(i - n). This produces a "local spectrum" of the signal s(n) around the analysis 
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time i. The ensemble of the corresponding power spectra for all times produces a two 

dimensional time-frequency representation known as a spectrogram. 

W / W /2 SPEC s (i,p) = STFT s (i,p) (2.14) 

which is a very common tool in signal analysis because it provides a distribution of 

the energy of the signal in the time-frequency plane. 

The choice of window length is critical in this form of spectral analysis. As sta-

tionarity is assumed within the window. The smaller the window size, the better 

the time resolution. However the smaller the window size also, the more the number 

of discrete frequencies which can be represented in the frequency domain will be re-

duced, and therefore the more weakened will be the discrimination-potential between 

frequencies. The choice of window thus leads to an uncertainty trade-off. Figure 2.8 

shows the effect of different window sizes on the time and frequency resolutions when 

STFT is applied to a typical A-scan reflected from a buried cylinder using an 400MHz 

radar. 

There are two values that are retrieved from the radar file header (see Ap-

pendix D), one relating to the acquisition hardware, while the other is concerned with 

the radar acquisition settings. These are the transmitting antenna centre frequency 

antenna~ame (in MHz) and the range (in ns). From these values, and knowledge 

of b, the number of samples in each scan (equivalent to samples_per _scan in the file 

header), the optimum window length can be computed as shown below 
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Figure 2.8: Effect of choice of window length on the spectogram time and frequency 

resolutions 
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1 
Tant(ns) = ----

antenna..name 
(2.15) 

1 b 
Tant(samples) = ----- x --

antenna_name range 
(2.16) 

win = 2 Tant (2.17) 

2 samples_peLscan 
(2.18) 

antenna_name x range 

For the radar data shown in Figure 2.2, with antenna frequency 400 MHz, range 

40 ns and 512 samples per scan, the window length is computed as 64 samples. 

The spectrogram surfaces are analysed at every time step in order to quantify 

the time series characteristic features. The features extracted are the frequency and 

magnitude of the largest peak of the spectrum at each point on the time axis. This 

is achieved by examining the profile of the spectrogram along the time and frequency 

axes, as shown in Figure 2.9. This analysis, applied to each scan, associates two 

quantities with each point in the radargram, and the effect is the generation of two 

images: a "magnitude image" and a "frequency image". The value of each point in 

the frequency image represents the frequency of the spectrogram peak at that point, 

and the corresponding value in the magnitude image represents the value of this peak. 

2.2.2 Spatial Features 

Although in origin GPR radargrams consist of an ensemble of time-series, the 

manner in which they are displayed using intensity-mapped raster images lends itself 

naturally to visual interpretation whereby the trained operator would manually point 

out regions of interest from the two-dimensional images relying on certain visual cues 

in order to issue a judgement. He inspects the image and associates regions of similar 
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"appearance" with certain labels, in order to distinguish them from others. 

It has been shown [57], that visual texture is the most important visual cue llsed 

to manually identify such types of homogeneous regions. Studies in psychophysics 

[58] have investigated the visual processes that allow humans to separate features 

in images using texture cues. This has lead to a greater interest in identifying and 

quantifying the perceived qualities of texture in an effort towards automatic image 

interpretation. It is important here to mention that the term "texture" is used to 

represent the visual texture of the radar images, and not the physical texture of the 

soil. 

The considerable differences in the definitions available for texture [51], [59], in 

terms of the concepts, applications and approaches has lead to a diversity of methods 

for utilising and interpreting texture. Among the most successful [60], [?], and [51] 

texture analysis techniques are the statistical and regional methods. 

Statistical features 

Statistical texture analysis computes local features at each point in the image

segment, and calculates a set of statistics from the distributions of the intensity 

levels. The local feature is defined by the combinations of intensities at specified 

positions relative to each point in the image. According to the number of points 

which define the local feature, statistics are classified into first-order, second-order, 

and higher-order statistics. 

The decision whether to use first-order or higher-order statistics is governed by 

few factors such as the type of texture, the number of classes to distinguish between, 

the minimum required accuracy, and the system-complexity. Consequently, it is im

portant to make the right choice corresponding to the required task. 
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Statistical descriptors are computed from the local pixel statistics of the intensity 

histogram (probability of occurrence). In this case of B-scans, the problem is viewed 

as an image-processing one. In fact statistical analysis computes local features at each 

point in the image-segment, and calculates a set of statistics from the distributions 

of the intensity levels. 

The technique works on the basis of a rectangular window that scans the radar-

gram vertically and horizontally, then the histogram of each windowed-segment is 

characterised using statistical descriptors which are functions of the pixel intensity 

distribution h(i) within the windowed region centered at an arbitrary point (x, y). 

These descriptors are 

1. Variance (second moment): 

g 

a~ = L(i - J-Lh)2 h(i) (2.19) 

i=l 

2. Skewness (third moment): 

g 

2)i - J-Lh)3 h(i) (2.20) 

i=l 

3. Kurtosis (fourth moment): 

g 

L(i - J-Lh)4 h(i) (2.21 ) 

i=l 

4. Entropy: 

g 

- I: h(i) log h(i) (2.22) 

i=l 
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where 9 is the number of data points (pixels) in the scanning window, and JLh is the 

mean of the pixel intensity distribution in the window. 

The discrimination capability between targets and non-targets is tested by per-

forming a hierarchical tree unsupervised clustering (as described before) for a data set 

specially built for this purpose, which contains windowed segments of data represent-

ing targets and non-targets. The selected features were extracted for each window in 

the data set then the unsupervised clustering was applied. The resulting hierarchical 

tree can be seen in Figure 2.10. 
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Figure 2.10: Unsupervised hierarchical tree test showing discrimination capability of the 
chosen descriptors for B-scans 

A window overlapping was used in order to further reduce any unnecessary regions 

that do not contain target data. It involves setting vertical and horizontal overlap 

percentages for the segment window so that it can be used in the subsequent neural 

network classification stage, where each region is classified more than once, and this 
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will make the selected regions include only the targets of interest as the overlapping 

percentages increase. As a result to this, the time cost would increase as the number 

of loops, calculations and memory size increase. Consequently, a right choice of the 

overlapping percentage must be made in a manner that balances between non-useful 

data reduction and the spent time. To make this process easier, one can derive a 

mathematical relationship that combines time, and degree of overlap so that the user 

can chose whether he wants to spend some extra time on targets shaping or not. For 

an image data of size n x m, the number of horizontal windows Nh of size x x y across 

the image is given by 

while the number of vertical windows Nv down the image is given by 

hence the total number of windows is given by 

Then time function in seconds can be written as 

t = (N - 1) + 1 
kxp 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

where p is the fractional degree of overlap, while k is a constant and it is estimated 

to be 200. 



Chapter 2. Target Detection 64 

Regional features 

Until now, all the methods which have been described in the previous sections are 

concerned with detecting a single reflection or a band of reflections that correspond to 

the reflections from buried cylinders while rejecting the others. In this section, a new 

approach is presented that aims at selecting the hyperbolic shapes that result from 

buried cylinders. The main idea behind this approach is to consider the radargrams as 

whole images containing different-shaped regions, then the hyperbolic-shaped regions 

are to be distinguished from other ones in these images. This process is referred to 

as image segmentation. Automatic segmentation techniques can be put into one of 

four categories 

1. Thresholding techniques 

2. Boundary-based techniques 

3. Region-based techniques, and 

4. Hybrid techniques 

In this study, the used technique is a hybrid one that combines the region-based 

and thresholding categories. It relies on the assumption that adjacent pixels in the 

same region have similar visual features such as gray level, colour value, or texture 

based on which, the image is searched for boundaries and discontinuities. 

Detecting discontinuities 

There are many approaches that are used to detect meaningful discontinuities. 

One of the most popular among those is edge detection [51], as edges represent the 
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most frequently appearing boundaries within images in comparison to point and line

boundaries. 

Another popular technique is thresholding, as it provides an easy and convenient 

way to perform the required segmentation on the basis of the different intensities or 

colours between the regions of an image. 

In our case, a simple thresholding was required where the output should be a 

binary image with the resulted segments. Black pixels correspond to background and 

white pixels correspond to foreground (or vice versa). The segmentation is determined 

by a single parameter known as the intensity threshold. The value of this threshold is 

set in a manner so that the lowest 15% of the pixel intensity values within the whole 

image are considered redundant. In a single pass, each pixel in the image is compared 

with this threshold; if the pixel's intensity is higher than the threshold, the pixel is 

set to one in the output, and if it is less than the threshold, it is set to zero. 

The next step is to assign a unique label to each detected region via assigning a 

single yet distinctive value for all the pixels in each region, as follows 

k = 1,2,3,···,lV (2.27) 

where Rk is the kth region in an image that contains N regions. Figure 2.11 shows 

the result of thresholding a typical radargram. To this point, an image which consists 

of lV regions is obtained and is ready for the following features extraction process for 

each one of these regions. 

Chosen features 

The process of deciding which features are most adequate in distinguishiIlg 

hyperbolic-shaped regions from other ones, requires that different regional descriptors 
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are investigated separately and collectively, then the ones which are best capable of 

discriminating between the above-mentioned two classes, are to be chosen. 

A data set that contains samples represent each of the two classes was collected. 

Because of the nature of the selected features, each sample contained only one of 

either classes; hyperbolic or a non-hyperbolic segments (as in the samples shown 

in Figure 2. 12). To overcome the problem of different sizes of data, th collected 

segments were resized to fi t with other segments which may differ in size. 

(a) Hyperbolic signature of a pipe (b) Non-hyperbolic signature 

Figure 2.12: Resized data representing hyperbolic and non-hyperbolic signatures 

As a result for features investigation , the following features are found to best 

distinguish between hyperbolic and non-hyperbolic-shaped regions: 

1. Area: represents the actual number of pixels in the region , and is given by 

n m 

AR = LLR(i, j) (2.28) 
j 
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2. Equivalent Diameter: represents the diameter of a circle with the same area as 

the region, and is given by 

rx; 
EDR = 2V-;- (2.29) 

3. Extent: represents the area of the region divided by the area of the smallest 

rectangle containing that region, and is given by 

where Arectangle is given by 

An 
ExtentR = ---

Arectangle 
(2.30) 

(2.31 ) 

4. Major Axis Length: represents the length of the major axis of the ellipse that 

has the same second moment as the region. 

5. Minor Axis Length: represents the length of the minor axis of the ellipse that 

has the same second moment as the region. 

6. Convex Area: represents the area of the smallest convex polygon containing the 

regIOn. 

7. Solidity: the area of the region divided by the area of the smallest convex 

polygon containing that region. 
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This method has a good property that it considers all the regions to be classified 

in GPR radargram of same weight, i.e once the global thresholding is applied, all 

thresholded regions are set to ones. The choice of a certain region will then depend 

on the features of that region. Consequently, the probability of missing weak targets 

would be reduced to a high extent. 

Tables 2.1 and 2.2 summarise the features which have been used for each one of 

the methods described in the previous sections. 



Table 2.1: Time-series (A-scans) feature selection subsets 

Statistical Features Spectral Features 

Periodogram \ WVD 

Variance Magnitude of the largest peak 

Mean absolute deviation Logarithm of the windowed periodogram at each time instant 

Fourth moment Frequency at which spectrum 

magnitude is largest 

STFT I 

Magnitude of the largest peak 

at each time instant 

Frequency at which spectrum 

magnitude is largest 
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Table 2.2: Spatial (B-scans) feature selection subsets 

II Statistical Features Regional Features 

Area 

Variance 

Skewness 

Kurtosis 

Entropy 

2.3 Classification 

Equivalent Diameter 

Extent 

Major axis length 

Minor axis length 

Convex Area 

Solidity 
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In order for the automatic segmentation process to be complete, the selected fea-

tures need to be employed into a classification mechanism. One of the most successful 

approaches in this field is artificial neural networks. They have proven to be rapid, 

accurate, and most importantly consistent in classifying and simplifying complex 

data. 

2.3.1 Neural Networks 

Neural networks, with their ability to derive meaning from complicated or impre-

cise data, can be used to extract patterns and detect trends that are too complex to 

be noticed by either humans or other computer techniques. A trained neural network 

can be thought of as an "expert" in the category of information it has been given to 

analyse. This expert can then be used to provide projections given new situations of 

interest, a property called "generalisation". 

All artificial neural networks take numeric input and produce numeric output. 

To capture the essence of biological neural systems, an artificial neuron receives a 
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weighted number of inputs (either from original data, or from the output of other 

neurons), and responds by producing an activation signal. The activation signal is 

passed through a transfer function (also known as an activation function) to produce 

the output of the neuron. This is based on the original model for the neuron proposed 

by McCulloch and Pitts [61]. 

To illustrate this, consider a neuron with n inputs inI, in2, ... ,inn and corre-

sponding weights WI, W2, ... ,Wn . The activation signal is given by 

n 

= LWiini 
i=I 

(2.32) 

(2.33) 

This activation is subjected to a (usually) nonlinear activation function, and the 

result is the output of the neuron. This transfer function is selected so as to accept 

input of an unlimited range, and produce output on a restricted range. One common 

such saturating nonlinearity is the logistic S-shaped (sigmoidal) function shown in 

Figure 2.13. 

1 
out = fsig(net) = 1 t + e- ne 

(2.34) 

In addition to being bounded, it also has the desirable properties of being both 

smooth and easily differentiable. The hyperbolic tangent function is very similar to 

this but with an output range of -1 to 1. Indeed fsig and ftan arc related thus 

ftan (net) = 2 !sig (2net) - 1 (2.35) 
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There are two main types of learning strategies used with neural networks , with 

different types of network using different types of training. These are supervised and 

unsupervised learning. In supervised or associative learning the network is trained 

by providing it with matching output patterns, whereas in unsupervised learning 

or self-organisation the system discovers statistically salient features of the input 

population with no a priori set of classification categories. Figure 2.14 shows a 

typical feedforward network (similar to the one used in this study), where neurons 

are arranged in a distinct layered topology. 

Hidden Layer 

Figure 2.14: Feedforward multi-layer percept ron neural network with one hidden layer 
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This stage provides subsequent stages with a continuous measure of confidencc 

as to whether a particular radargram section is the result of reflection from a target 

or not. By rejecting radargram portions with measures below a certain threshold, a 

data reduction may be achieved, significantly reducing the computational burdcn for 

further stages. 

Supervised neural networks 

In a supervised neural network, the network user assembles a set of training data 

consisting of vector training pairs. Each training pair is composed of an input (pat

tern) vector and a target (class) vector. The target vector represents the set of values 

desired of the network when the input vector is applied. The training set must provide 

a full and accurate representative sample of the problem domain. 

The neural network is then trained using one of the supervised learning algorithms 

(backpropagation in this case), which uses the data to adjust the network's weights 

and thresholds so as to minimise the error in its predictions on the training set. If 

the network is properly trained, it has then learned to model the (unknown) function 

which relates the input variables to the output variables, and can subsequently be 

used to make predictions where the output is not known. 

The presented supervised-neural-networks are three-layer fcedforward neural net

works that are trained using the backpropagation algorithm. They tend to use the 

features extracted by each of the methods described in the previous sections to make 

a decision whether these features represent targets or non-targets. This applics to 

the time-series methods, the spatial statistics, and regional features methods. 

Three different data sets were used to train the networks: 
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1. Signal-based data set, which contains A-scans representing targets and non

targets. 

2. B-scans based data set, which contains windowed radargram-scgments repre

senting targets and non-targets. 

3. Region-based data set, which contains hyperbolic-shaped and non-hyperbolic

shaped regions. 

The data contained in these sets is randomly-selected from a variety of radar

grams. This ensures the resulting segmentation takes into account a wide spectrum 

of radargrams to maintain a degree of consistency in classification. All data sets were 

divided into training, validating, and testing sets; 20% of each data set was assigned 

for training, 40% was assigned for validation, and 40% for testing. The number of 

input neurons for each network is equal to the number of features extracted in each 

method. For all the feature sets, the network parameters were set to the values in 

Table 2.3. 

The trained and calibrated neural classifier is then applied to the features derived 

from the data sets using each of the techniques discussed, outlining regions of interest 

corresponding to specific localised targets, in this case buried utility pipes. 



Table 2.3: Configuration parameters for neural network classifiers 

Parameter Values 

A-scan Statistics I WVD I B-scan Statistics I Regional Features 

Number of input neurons 3 2 4 7 

N umber of hidden neurons 7 5 15 27 

Number of output neurons 2 2 2 2 

Input data normalisation [-1,1] [-1,1] [-1,1] [-1,1] 

Input layer transfer function sigmoid sigmoid sigmoid sigmoid 

Hidden layer transfer function sigmoid sigmoid sigmoid sigmoid 

Output layer transfer function linear linear linear linear 

Learning rate 'T7lr 0.02 0.02 0.02 0.02 

Learning rate increase 1Jup 1.05 1.05 1.05 1.05 

Learning rate decrease 1Jdown 0.7 0.7 0.7 0.7 

Maximum error ratio 1Jer 1.04 1.04 1.04 1.04 

Momentum constant G mom 0.9 0.9 0.9 0.9 

Samples retained for training 20% 20% 20% 20% 

Samples retained for validation 40% 40% 40% 40% 

Samples retained for testing 40% 40% 40% 40% 

Recall output threshold value ±0.7 ±0.8 ±0.7 ±0.6 
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2.4 Results 

As it i impractical to show classification results for all radargrams within a site, 

a single representative radargram is chosen to show these results. This radargram 

represents file 47 taken from a controlled test site [49] is shown in Figure 2.2, and 

it contains two hyperbolic signatures representing two buried pipes. Figure 2.15 shows 

the classification result achieved by the A-scan statistical-featur s based method. The 

re ults of spectral features techniques are shown in Figures 2.16 and 2.17. It is to 

be said h re that the good results achieved by these techniques were at the expense 

of a significantly increased computational cost. It is noted that the masked-STFT 

features give better result than the WVD features with respect to accuracy and data 

reduction, as seen when comparing Figures 2.17 and 2.18. 
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Figure 2.15: Classification resul t using A-scans statistical features 

For the B-scans statistics method, a voting procedure is used, because the overlap-

ping procedure discussed in Section 2.2.2 would result in each windowed segment in 
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the radargram being scanned more than once. This voting involves setting a threshold 

on decision if a certain segment is considered as a target or not, and it depends on how 

many times each segment has been classified as target-containing. Figure 2.19 shows 

the result of applying this voting, where the darker areas represent higher votes. 

The overlapping-voting procedure would add certainty to the process of selecting 

targets, where only areas classified for three times are chosen while others are rejected. 

The B-scan statistics technique was particularly successful in differentiating between 

targets and non-targets in terms of speed, accuracy, and consistency, as shown in 

Figure 2.20. 

Unlike the previous techniques, the region features technique identifies the targets 

as regions according to their shapes, and this is where the robustness of this technique 

lies, as only the desired shapes are chosen without the surrounding unwanted regions 

being selected (as in the other techniques). This can be seen in Figure 2.21. 

2.4.1 Double-Stage Classification 

A double-stage classification can be applied to GPR radargrams via cascading 

two of the classification techniques presented in the previous sections, namely the 

B-scan statistics and the regional features techniques in order to combine the points 

of strength of each technique. 

This is achieved via subjecting the radargram to the classification process twice, 

first by using the B-scans statistics method, and then by using the regional-features 

method. Then the resulting masks from both methods are compared so that only the 

regions that are detected by both methods are kept, whereas others are considered 

redundant, as this can be seen in Figure 2.22. Here another file (f ile 31) was 
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Table 2.4: Time consumption for detection methods 

II Method I Consumed Time (sec) 1/ 

A-scans statistics 9.44 
Windowed periodogram 85.37 

WVD Features 153.21 
Masked STFT 93.40 

B-scans statistics 5.36 
Regional Features 3.52 

Double stage classifier 9.29 

used, because as the classifier was successful in identifying only the three hyperbolae 

in file 47 without any regions falsely detected, so the benefit of the double-stage 

classification will not be seen in file 47. Although this cascaded classifier would 

result in a higher time consumption compared to when using only one method, but 

this additional time is still acceptable due to the low time costs of the above two 

techniques. The robustness of this technique would be in further reducing falsely 

detected regions, while confirming detected targets. Figure 2.23 shows file 31 before 

and after the double-stage classification. 

The applied classifiers consumed different amounts of time depending on the 

feature-extraction method used. Table 2.4 shows the time consumed by each method 

when classifying file 47, where all times are obtained by a Matlab 6.5 running on a 

PC with a dual-Pentium® III 1000 MHz processor and 768 MB RAM. It can be seen 

that the windowed-periodogram, the WVD features, and the masked-STFT methods 

have consumed much more time than the rest four methods, which makes them not 

suitable for near-real time applications. 
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2.5 Image Reduction 

The region selection techniques described in this chapter aim at segmenting the 

input image into regions of interest suspected to be resulted from genuine targets, and 

other regions that do not contain useful information. In most practical cases, these 

selected regions constitute only small percentage of the overall images, whereas t.he 

majority of each image is redundant. As a result, a large proportion of the GPR dat.a 

collected during a survey is discarded, while only small zones of interest. are visually 

identified by the operator. 

The task of image reduction follows naturally the region selection stage by isolating 

the regions highlighted as targets from others. This is performed in several steps, as 

described below. The basis for the image reduction is the binary ma.'3k which result 

from the classification process and used to outline the regions, such as the one shown 

in Figure 2.24. All the pixels in each detected area in the mask are set to ones, while 

the rest of the pixels in the image are set to zeros. When multiplying the mask by 

the original image, then only the detected regions will remain, whereas all others are 

set to zeros. By using the labels of the detected areas, then each area can be further 

processed in the subsequent stages. Figure 2.25 shows the multiplication result and 

how the processing area is highly reduced and limited to only three hyperbolic regions. 

When time-series features techniques are involved, then the process of image re

duction would not be as easy as in the spatial features techniques. AI-Nuaimy [52] 

presents an effective procedure for reducing images when time-series features are 

used. The procedure involves using the number of non-zero pixels in each column of 

the mask to locate and exclude isolated specks and clusters of spurious points not. 

originating from genuine targets, by retaining only those scans whose pixel profile is 
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Figure 2.24: Binary mask resulted from regional-features classification method 

non-zero for a certain number of scans or certain distance along the surface. 

2.5.1 Edge detection 

In order to for further detection and characterisation of the desired shapes in an 

image to take place, then the boundaries of these shapes must be detected. This 

boundary-detection problem is carried-out via edge detection. The goal behind edge 

detection procedures is to detect changes in intensity associated with the envelope 

edges of reflection wavefronts. Several edge detection techniques are available in the 

image processing literature (e.g. [51 J) for this purpose. In the field of GPR most 

researchers however tend to use less sophisticated techniques for hyperbolic shapes 

detection, and hence their techniques lack efficiency and suffer from the drawbacks 

caused by noise and the spurious effects that are often encountered in subsurface sur-

veys. N agashima [62], for instance simply assigns values of + 1 and -1 to all the peaks 

B7 



Cllapter 2. Target Detection 

(a) Region 1 

(b) Region 2 

(c) Region 3 

Figure 2.25: Original image is reduced to only three regions for further proce sing 
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and troughs in the image, while Sato [63] takes this one step further and "extrapo

lates" in the vicinity of each local maximum in order to locate continuous edge peaks 

corresponding to wavefront crests. AI-Nuaimy [52] tries to fill this gap by suggesting 

more sophisticated processing tools to refine and automate the edge detection pro

cess, however additional processing is required to detect hyperbolic anomalies, which 

would lead to additional time cost. 

These edge detection processes are necessary to identify hyperbolic signatures 

within a highlighted area that contains a target or more besides some other regions, 

as illustrated in Figure 2.20. This means that the highlighted areas are still requiring 

further processing to extract the desired hyperbolae. 

In this study, the presented regional features technique would shortcut these steps 

by a large extent, as this technique would only result in separated regions and not 

windowed areas of mixed regions, as shown in Figure 2.21. As a result, the already 

detected edges need only edge processing that includes region completion and skele

tonisation. 

In the case where other detection methods are used, then various processing tools 

are required to refine and automate the edge detection process, such as image con

trast enhancement, differentiation, skeletonisation and edge processing with the goal 

of detecting the abrupt changes in intensity associated with the envelope edges of 

refiection wavefronts. 

Region completion 

The reason behind developing this region completion process is that in some inci

dents, only part of a hyperbolic region is detected and hence this region may not be 

ready for further processing (such as hyperbola fitting) aiming at extracting target 
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information. Consequently, such partial regions need to be completed in order for 

further processing to take place. 

The procedure for this process starts with scanning a detected hyperbolic area 

for symmetry and if that symmetry does not exist, then a horizontal search for the 

shortest side of the hyperbola is run, this would decide the point where asymmetry 

starts. Then, a part from the longer side which starts at that same horizontal poiut is 

copied. In the last stage, the copied region is mirrored and pasted to the incomplete 

half. Figure 2.26 shows this region-completion process. 

Skeletonisation 

A skeletonisation algorithm was developed specifically for the purpose of extract

ing one-pixel thick segments out of the detected hyperbolic blocks. This is dOll(~ on 

a single region basis and takes place after this region passes the region completion 

stage. The procedure is as follows: 

• The completed region (with all its pixels values equal to one) is multiplied by 

the original radargram to retrieve original pixels values for that region. 

• A vertical search from left to right is run through the columns forming the 

region to obtain pixels values of each column . 

• The pixels values in each column are replaced by a single value representing the 

mean of these values. 

This skeletonisation algorithm has proven to be very successful when applied to 

gradient images, as shown in Figure 2.27(c). 
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(a) Incomplete hyperbolic region 

(b) Completed region 

Figure 2.26: Region completion process 
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(a) Detected region 

(b) Retrieving original pixels values 
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(c) Skeletonisation result 

Figure 2.27: Skeletonisation process 
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2.6 Performance Quantification 

The process of quantifying the performance of a neural network classifier needs 

to be done in a manner that shows both its robust features and weakness points (if 

any). In this manner, the decision whether or not to use this classifier in a particular 

application can be based on accurate measures. 

The classifier presented here produces two classes; targets and non-targets. The 

classification process which is taking place is a mapping of a fixed finite set of input 

parameters into an output set of two classes. This classifier produces a discrete class 

label indicating only the predicted class for the each input. 

When the classification process is taking place, then there are four possible out

comes: 

1. '!rue Positive (Tp): This is when the input is positive and it is classified as 

positive. It is also referred to as hit rate or recall. 

2. False Negative (Fn): This is when the input is positive and it is classified as 

negative. It is also referred to as false dismissal. 

3. False Positive (Fp): This is when the input is negative and it is classified as 

positive. It is also referred to as false alarm. 

4. '!rue Negative (Tn): This is when the input is negative and it is classified as 

negative. 

A confusion matrix (or a contingency table) is commonly used as a metric for 

performance. It is a 2 x 2 matrix representing the dispositions of the set of input 

(testing set) when this set is applied to the classifier (such a matrix is shown in 

Figure 2.28). 
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Figure 2.28: A confusion matrix suited for GPR classification 

Below are some useful relations that can be used as measures for performance: 

1. The true positive rate (also called hit rate or recall) of a classifier is given by: 

Tp (}1 

Tp Rate = 1: Po X 10010 
P + n 

(2.36) 

2. The false positive rate (also known as false alarm rate) of a classifier is given 

by: 

D R Fp x 100070 rp ate = D rp IC 
rp + l. n 

(2.37) 

3. The false negative rate (also known as false dismissal rate) of a classifier is given 

by: 

Fn 07 
Fn Rate = T, Po x 10010 

P + n 

(2.38) 
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4. Accuracy is given by; 

T. + T. Accuracy Rate = p n X 100% 
Tp + Tn + Fp + Fn 

(2.39) 

5. Error rate is given by: 

Error Rate = 100 - Accuracy (2.40) 

6. Precision is given by; 

P .. Tp Of 
reCISIOn = x 100/0 

Tp+Fp 
(2.41) 

7. Score is given by; 

Score = Precision x Tp Rate (2.42) 

Furthermore, it can be understood that 

Tp Rate + Fn Rate = 100% (2.43) 

Fp Rate + Tn Rate = 100% (2.44) 

With the diversity range of segmentation techniques, it is essential to provide an 

adequate quantitative measure to present an effective comparison. A bach testing 
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for Area 3 of the controlled test site [49] was performed. Only four techniques were 

chosen for this test: A-scans statistics, B-scans statistics, regional features, and the 

double-stage classifier. As near-real time performance is an essential objective in this 

study, the reason behind this choice was mainly the low computational time that the 

chosen methods require when compared to others (as shown in Table 2.4). The trained 

and calibrated neural classifier is applied to the features derived from the raciargrams 

using these four techniques, outlining regions of interest corresponding to specific 

localised targets, in this case buried utility pipes. The aim of the testing process is to 

assess the performance of the on real data and extract the associated mea..'lures. The 

performance assessment was based on comparison with human operator interpretation 

and available ground truth data. There were 56 targets identified within the 32 

radargrams. The results were compared based on some of the quantification measures 

described above in addition to time-cost, as illustrated shown in Table 2.5. 

It can be seen that all of the four techniques have successfully identified all of the 

56 targets, with a noticeably low false alarm rate for all of them. The main difference 

that can be noticed between these techniques is in the time cost. It can be seen that 

while it took the A-scan statistics classifier about three and a half hours to complete 

the classification, this time was reduced to about 15 minutes for the B-scan classifier, 

and to about 7 minutes for the new regional-features classifier. The relatively low 

precision rates are due to the fact that the total of true positives is compared to only 

the total of false positives and not all the positives and negatives. It can be seen as 

well how the precision rate has increased when the double stage classifier was used 

indication the efficiency of this classifier in reducing the false positive rate. 

Furthermore, the most important feature of the regional-features classifier is its 

ability to detect hyperbolic regions without the need for edge detection techniqnes as 



Table 2.5: Quantitative comparison between the performances of different segmentation techniques 

Method 'frue Positive Rate False Positive Rate Accuracy Precision Total Time 
(%) (%) (%) (%) (mins) 

Regional Features 100 0.7915 99.21 41.01 6.57 
A-scans statistics 100 0.0604 99.94 26.62 196.2 
B-scans statistics 100 0.5070 99.50 37.32 14.49 
Double stage classifier 100 0.090 99.91 66.91 21.46 
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the rest of techniques do. This feature makes it much easier to further process the 

detected hyperbolae and extract interpretation information from them. 

The double-stage classifier is a hybrid combination of the regional-feat'ures tech

nique and the B-scans statistics technique. Although this technique has a higher 

time consumption compared to each one alone (about 22 minutes), but this addi

tional time would be acceptable when high accuracy is sought. Moreover, it was 

successful in further reducing falsely detected regions. 

2.7 Conclusions 

This chapter has addressed the task of automatic segmentation of CPR radar

grams, as a necessary step in the automatic processing and interpretation of such 

data for situations where near real-time interpretation of large volumes of data is 

crucial. A number of segmentation techniques were investigated and compared based 

on their efficiency and classification accuracy. These included techniques based on 

time-series discrimination and B-scan pattern recognition. 

Spatial features have proven to be better suited to high speed segmentation of 

image data, particularly where medium variability is an issue. The use of simple 

statistical descriptors was particularly successful in differentiating between targets 

and non-targets in terms of speed, accuracy, and consistency. While this is true for 

data exhibiting two main visual categories, it would not suite segmenting demands 

when that data has greater variability and where targets 'zones' may have more 

subtle properties. In this case, higher order statistics would better suite this purpose, 

but again at the expense of an increased computational cost. The region features 

technique in particular represents a big improvement to the automatic segmentation 
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of GPR data specially where hyperbolic-shaped signatures are sought. Its ahility 

to rapidly detect hyperbolic regions has reduced the extra time required by other 

techniques for detecting hyperbolic edges. This added speed, combined with the extra 

flexibility, robustness, accuracy and noise-immunity gives this technique considerable 

advantages over existing techniques for cylindrical target detection. 

It was shown in this chapter that it is not necessary to use complicated combina

tions of features for detection purposes, where simple time-series and spatial features 

have shown high efficiency in distinguishing between target and non-target signatures. 

The progressive data reduction approach has had a considerable effect on the 

overall computation time, allowing the automated system to operate in near real

time and making it adequate for on-site survey. A Comparison between the selected 

techniques in terms of detection capability and time consumption is presented in this 

chapter as well. 
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Chapter 3 

Modelling Targets and Parameters 

Estimation 

The task of describing the hyperbolic reflections resulting from buried cylindrical 

objects is addressed here, and a novel general equation that models such reflections is 

presented. The model takes into consideration the effect of the radius, depth, azimuth 

orientation, and vertical inclination of buried cylinders in addition to the dielectric 

constant of the host medium. 

Furthermore, a developed hyperbola-specific fitting technique is discussed, which 

has the ability of calculating some target parameters when combined with the pre

sented model. 

3.1 Introduction 

An important stage towards automating the interpretation of CPR data involves 

processing the detected and segmented data in a manner that results in as much 

information as possible about the segmented data, and hence the target. To a large 
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extent, reliance on human intervention and broad assumptions are the most outstand

ing shortcomings that have not been satisfactory resolved. 

Recent research (e.g. [12] and [27]) has addressed some of these problems and 

has been successful to some extent at addressing and automating the interpretation 

process, and introducing a degree of robustness and consistency in the estimation 

of the dielectric properties of the host medium, but still falls short of removing or 

even minimising the uncertainty associated with the interpretation results. This un

certainty is mainly due to the fact that visually indistinguishable radar signatures 

can often result from subsurface configurations that are very different. This known 

problem is invariably overcome by making broad assumptions about the nature and 

geometry of the targets, the radar system and the medium. These assumptions are 

often made out of convenience rather than being informed by a priori knowledge, and 

hence their validity is at best questionable. 

The class of targets under consideration in this chapter consists of cylindrical 

reflective objects such as pipes, tanks, and cables. Conventional processing and in

terpretation of the signatures of such objects relies on five underlying assumptions: 

• that the dielectric constant in the volume above the object is homogenous and 

uniform [25], 

• that the antenna radiation is two dimensional, i.e. out-of-plane effects arc ig-

nored [12], 

• that the buried cylinder is normal to the plane containing this 2D radiation 

pattern [10], 

• that the buried cylinder is parallel to the ground surface [10], and 
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• that the buried cylinder has negligible radius [14J. 

While the first two assumptions can be defended in most cases, the latter tlm~e 

are very rarely valid; indeed it is the accurate location and orientation of these cylin

ders that is the desired result of the interpretation. This has been one of the main 

obstacles preventing mainstream automation of CPR data processing in situations 

where accuracy is paramount, and it is this obstacle that is addressed in this chapter 

in a novel manner. 

The hyperbolic signatures of cylinders detected by GPR are influenced by a num

ber of parameters, some of which are environmental such as the dielectric properties 

of the medium, and some are system-related such as the antenna radiation pattern 

and polarisation, while other parameters are target-dependent such as the depth, ra

dius, and orientation of the target relative to the scan path. Unreliable or incorrect 

information about these parameters, be it due to invalid assumptions or due to misin

formation, would lead to inaccurate interpretations with possibly serious consequences 

when excavation or construction work is involved. 

This chapter demonstrates how these inaccuracies are to a large extent avoidable, 

by presenting an outline of a procedure whereby these issues can be taken into ac

count in the underlying geometrical model, attempting to iteratively estimate the 

parameters related to buried cylinders either directly or indirectly, thereby improving 

the accuracy of the interpretation of the radar returns. The effect of ignoring these 

parameters is also addressed and quantified. 
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3.2 Standard Signature Model 

The poor directivity of ground-penetrating radar antenna..'l has the effect of spa-

tially smearing the resulting image, leading to the formation of downward-opening 

hyperbolic shapes in the radargram. GPR operators have long been familiar with 

these hyperbolic signatures associated with localised and extended reflecting targets, 

but it is only recently that the relationship between the shapes of these hyperbolae 

and the underlying geometric configuration has been investigated. Rather than being 

treated as a nuisance or a necessary evil associated with this geophysical technique, 

it is becoming apparent that studying the characteristics of these hyperbolae can 

provide valuable information about the exact nature of the targets in question. It 

is generally accepted [12] that the detected two-way travel time t is related to the 

horizontal position x, and the velocity of propagation of the electromagnetic waves v 

as follows 

(i)2 (X-;xo)2 =1 
to 2" to 

(3.1) 

where (xo, to) are the coordinates of the apex of the hyperbola in the image (space

time) plane. The assumed configuration is one of an infinitely long cylinder buried in 

a homogenous medium, in a plane perpendicular to the linear direction of movement 

of a co-located bistatic antenna pair. 

This is similar to the equation of a generalised vertically-opening hyperbola pair 

centred at point (xo, Yo), and represented by 

(3.2) 
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When Equations 3.1 and 3.2 are compared, then values of a, and b are given by 

a = to 

v 
b = -to 

2 

(3.3) 

(3.4) 

Stolte and Nick [26J investigated the relationship between cylinder radius and 

hyperbola eccentricity for the purpose of migration, and later Olhoeft [27J attempted 

to derive radius information from the curvature of the hyperbola apex. 

In this chapter, the problem of making broad assumptions is overcome, when it 

is shown that Equation 3.1 can be modified to incorporate the radius, depth, hori-

zontal orientation, and vertical orientation of buried cylinders as well as the relative 

permittivity of the medium. 

3.2.1 Effect of Cylinder Radius 

The hyperbola model presented by [12] for example, relates the two-way travel 

time t to the horizontal position x and the velocity of propagation v as it was shown 

in Equation 3.1 above. This model relies on the assumption that the hyperbolic 

signatures result from point reflectors, and hence the radius is assumed to be zero. 

This is clearly a special case with a limited benefit, as in most of the cases the 

targets of interest are cylindrical objects with finite radii such as pipes and tanks, 

and using this model to characterise the signatures of such targets leads to erroneous 

information, as will be shown. 

This problem would be solved if a more generalised equation is presented, that 

takes into account the possibility of a finite radius R. Figure 3.1 shows a generated 
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hyperbola due to change in position of the CPR and the possibility of that hyperbola 

being the result of a cylindrical object of radius R. It can be seen that 

(3.5) 

where Zo is the depth to the top of the cylinder, z is the apparent depth of the 

reflection from the cylinder at a position x displaced from the position of the cylinder 

xo, and R is the radius of cylinder. 

Substituting z with ~ and Zo with ~ in Equation 3.5 and manipulating it gives 

( 
t + 2v

R 
) 2 ( X _ Xo ) 2 

-~2=-R - = 1 
to + v ~to + R 

(3.6) 

This is similar to the equation of a generalised vertically-opening hyperbola pair 

of Equation 3.2 and with an eccentricityl of )1 + ~~, as illustrated in Figure 3.2 and 

mathematically as in Equation 3.l. Equation 3.6 is thus an equation of a hyperbola 

centred around (xo, - 2v
R

). It can also be seen that if the radius was zero (i.e. a point 

reflector) then Equation 3.6 becomes the same as Equation 3.1. 

Figure 3.3 shows the effect of changing the radius on the shape of the resulting 

hyperbolae. It can be seen that when R is estimated to be zero, then this would lead 

the assumption that the spread of the hyperbola is caused by a higher value of the 

velocity of propagation v. Consequently, incorrect calculations of both the depth of 

the object and the dielectric constant of the medium will result. 

By comparing this with Equation 3.6, then values of a, and b are given by 

1 The eccentricity of a hyperbola is the ratio between the focal length and the (listance from the 
apex to the origin. 
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Figure 3.1: Effect of changing the value of R on the resulting hyperbola 
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Figure 3.3: Effect of changing the radius of a buried cylinder on the resulting hyperbolae 

and corresponding asymptotes 
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2R 
a = to +

v 
(3.7) 

v 
b = -to + R 

2 (3.8) 

The eccentricity of a hyperbola is the ratio between the focal length and the 

distance from the apex to the origin is given by 

g 2 g2 
e= 1+-= 1+-

a2 4 (3.9) 

Since v is taken in the image plane, then effectively it is unitless and hence the 

resulting eccentricity is unitless as well. The result of Equation 3.9 refutes what Stolte 

and Nick [26] have claimed that for the hyperbolae resulting from point reffectors, 

the eccentricity is always constant and equals to V2, whereas for cylindrical-shaped 

objects e < J2. They also make the conclusion that the eccentricity is a function of 

the diameter and independent from the speed of propagation. Equation 3.9 demon-

strates that the eccentricity is unrelated to the diameter of the buried cylinder; rather 

it solely depends of the speed of propagation v and hence the dielectric constant of 

the medium. 

The importance of knowing the value of the radius emanates from the fact it gives 

a more accurate realisation of the nature and location of the target. As can be seen 

from Equation 3.6 that when R is zero then the resulting hyperbola is centered around 

the point (xo, 0), whereas if R has a finite value then this point will be shifted ill time 

by a value of - 2:;, as shown in Figure 3.3. It can be seen also that the asymptotes 
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of the hyperbola with a finite radius have been shifted by - 2t~~ without a change in 

their inclination as the angle between the asymptotes is related to the velocity of 

propagation in the medium. 

Figure 3.4 shows the effect of changing v on the resulting hyperbola. Unlike the 

case of changing R it can be seen that as the speed changes, the point around which 

the hyperbola is centered remains the same, while the inclination of the a,.<.;ymptotes 

changes. 
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Figure 3.4: Effect of changing the speed of propagation on the resulting hyperbolae and 

corresponding asymptotes 

Up to this date, the models that have been presented for hyperbolic signatures 

resulted from cylindrical objects are based on the assumption of zero radius. COll

sequently, any change in the shape of a hyperbola would be assumed to have ariS(~1l 

from a change in the dielectric constant of the medium which would, in turn, affect 
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the speed with which the radar signals penetrate through that medium. 

Conventional polynomial fitters such as that presented in [28] which are normally 

used to fit hyperbolae resulting from buried cylinders, have two major shortcomings; 

they do not result in values for the parameters a and b, nor do take into account the 

effect of the radius R. Rather, they provide an inaccurate estimate of v when faced 

with a finite value of R. 

Figure 3.5 shows the difference between a conventional polynomial fitter model 

and the novel conic-fitter-model combinations presented here. This difference is shown 

via the change in the inclination of the hyperbolae asymptotes. In the case of a 

conventional fitter, it would tend to artificially increase the speed of propagation v' 

(and hence the inclination of the corresponding asymptotes would increase as well) 

when there is a finite value for R, while the conic fitter would move the point where 

the two asymptotes intersect upwards by a value of 2:;. From Figure 3.5 

b' nb 
tanw = I = 2R 

a na-
v 

(3.10) 

where n is a constant representing the ratio between the horizontal offset part where 

the asymptotes of the two models intersect and the depth of the target. 

This exaggerated speed v' can be found from 

, 2b' 
v =

a' 

and the percentage error in this estimate for the speed value is given by 

v'-v R 
e = -- x 100% = x 100% 

v v nb - R 

(3.11) 

(3.12) 
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to a finite radius signature 
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As depth is proportional to speed, this is also the percentage error in dept.h cst.i-

mate. 

The value of n can be obtained from Figure 3.5 and is given by 

R 
Ii' n = ------~-----

(tan 0 tanw - 1) 
(:~.1~~) 

Figure 3.6 represents a plot of percentage depth error versus the radius-to-dcpth-

to-centre ratio ~ and was generated numerically by computing the 'best-fit.' hyper

bolae using a non-conic fitter and without taking R into account in the hyperbola 

model. It shows how error percentage increases sharply as the diameter of a buried 

cylinder goes higher, and even for modest ~ ratios, the error can be very significant.. 

The cylinders will thus be assumed to be at a depth greater' than they are ill rea.lity, 

and this could cause disastrous consequences during excavation. 
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Figure 3.6: Percentage error in depth with respect to Rib ratio which result from COIlVCll

tional fitters 



Chapter 3. Modelling Targets and Parameters Estimation 114 

This error can be significant, even for relatively small radius-to-depth ratios, and 

can lead to disastrous consequences if digging or excavation is involved. It is possible 

to avoid this error simply by using the model in Equation 3.6 in conjunction with the 

presented least-square-hyperbola-fitter which capable of computing the parameters a 

and b, as opposed to just computing v as with conventional fitters [12J. However if 

the cylinder is not normal to the vertical plane directly beneath the radar scan line, 

this model will no longer hold and further errors will result. 

3.2.2 Effect of Cylinder Orientation 

The first direct reflection received by the CPR antenna from a smooth reflective 

cylinder of constant curvature will be that along a ray-path normal to the cylinder sur-

face. The orientation of the cylinder relative to the radar scan direction will therefore 

influence the shape of the detected signature, and what follows is the first (published) 

attempt to quantify this relationship, in order to further refine the signature model 

given in Equation 3.6. 

It is shown in Appendix C that the normal distance between the antenna and a 

cylinder oriented at an angle I is reduced by a factor of sin I compared to the normal 

case above. The signature will still be hyperbolic, but Equation 3.6 must now be 

modified as follows 

( 
t + ¥! ) 2 _ ((X - xo) Sill'Y) 2 = 1 
t + 2R '!!.to + R o v 2 

(3.14) 

The value of a will still the same, while the value of b will hence be modified by 

a factor _.1_ which will in turn influence the eccentricity of the hyperbola and tlw 
sm",;' 

inclination of its asymptotes. The values of a, and b are given by 
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2R 
a = to +

v 

b = ~to + R 
sin, 
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(3.15) 

(3.16) 

It can be seen here that if only one value of R, v, or , is known, the other two 

values can be accurately calculated. For example, if the dielectric constant of th(~ 

host medium is known, and hence the value of v is known, then the value of R call 

then be calculated from 

or 

v 
R = -(a - to) 

2 

v 
R = bsin,- '2to 

Then , can be calculated from 

(
!i.to + R) 

, = arcsin 2 b 

(3.17) 

(3.18) 

As in the case of the finite radius above, ignoring this , will result in an over-

estimate of the interpreted value of the velocity, in turn resulting in an over-estimate 

of the depth to the top of the target. From Equation 3.19 above, then v is given by 

bsin,- R 
v" =2---

to 
(:3.20) 
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Here, we use the term 1', just to distinguish the value of v with the presence of, 

from that when ~( is not taken into account, which is 

b-R 
v=2-

to 
(3.21) 

In order to show t he effect of , alone, then R is assumed to be zero in Equa

tions 3.20 and 3.21. The percentage error in depth (or velocity) can then be calculated 

to be 

hence 

v-v 
err = ' 

v, 

1 - sill'/, 
err, = --

sm, 

(3.22) 

(3.23) 

Figure 3.7 illustrates how this error rises dramatically with small values of ,. 

Again, this error can be avoided by incorporating sin, into the hyperbolic signature 

model as in Equation 3.14. 

Azimuthal and vertical orientations 

It is convenient to think of the orientation of buried cylinders in terms of inclina-

tion angle and azimuthal orientation, rather than just the angle between the cylinder 

axis and the radar scan line. By decomposing, into two such angles, further infor-

mation about the geometry and configuration of the buried target can be derived. 

The azimuth orientation is defined here as the acute angle between projection of 

the buried cylinder onto the ground (radar) plane and the direction of scanning of 
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Figure 3.7: Effect of ignoring the angle 'Y on the interpretcd depth 

the G PR, and will be referred to here as a, whereas the inclination angle (3 is the 

acute angle between the cylinder and its projection onto the ground plane. Figure 3.8 

shows two signatures taken over the same part of a pipe but with a changing n. It 

can be seen obviously how the shape of the hyperbola has changed in (b) from the 

one in (a). If the value of a is not known, then it will be assumed to be 900 and hence 

the flatness in the shape of the hyperbola would explained as being resulting from a 

higher velocity. 

Looking at the data acquisition configuration from two different perspectives ill 

Figures 3.9 and 3.10, one can appreciate that each of these angles has a separat(~ and 

identifiable effect on the ray-path, and hence on the shape of the hyperbolic signatuw. 

Referring to Figure 3.11, the relationship between the three angles can be derived. 

Assuming the radar scan direction to be along the x-axis, and assuming z = 1, the 
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Figure 3.8: Effect of changing the azimuthal orientation of pip on th corr sponding 

signature 
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Figure 3.9: Effect of an arbitrary azimuthal orientation a on the ray-path 
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Figure 3.10: Effect of an arbitrary inclination angle (3 on the ray-path 
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length of the side h which is common to two triangles can be expres:-;ed a.'i 

where x = ~ y = sina and p = _1_. 
tan {3 , tan {3 , Sill {3 

Substituting in Equation 3.24 gives 

sin2 a cos2 f3 1 cosa COS
2 f3 2 1 0 

----n--=--- + 1 - -- - - --x cos r = 
sin 2 f3 sin 2 f3 sin 2 f3 sin f3 

Manipulating the above leads to 

sin2 a cos2 f3 + sin2 13 - 1 - cos2 a cos2 13 + 2 cos a cos f3 cos r = 0 

sin2 f3 

sin2 a cos2 f3 + sin2 j3 - 1 - cos2 a cos2 f3 + 2 cos a cos f3 cos r = 0 

sin 2 a cos2 13 - cos2 f3 - cos2 a cos2 j3 + 2 cos a cos f3 cos r = 0 

- cos2 13(1 - sin2 a + cos2 a) + 2 cos a cos (3 cos r = 0 

-2 cos2 f3 cos2 a + 2 cos a cos {3 cos r = 0 

This will result in the following final compact relation 

121 

(:3.24 ) 

(3.25 ) 

(3.26) 

(3.27) 

(3.28) 

(:3.2!J) 

(:3.30 ) 
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Figure 3.11: Geometric relationship between the angles a, (3 and I 
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cos 'Y = cos a cos {3 (3.31) 

Figure 3.12 illustrates how 'Y varies with a and {3, with the square box and the 

circle representing the limits of detect ability. Thus Equation 3.14 can be modified to 

include both components a and {3. 

( t+~)2 _ ((X_XO)~1-COS2acos2{3)2 =1 
to + - -to + R v 2 

.. . ... : ...... ... . -: .. , . . ..... . . 
· . 

.------------.-., . .......... ....... .. 

... .. ... ... . . .. . " 

... : .. .. .. .... .. .. . . ... . ; . 
· . · . · . 

-90 
. , ...•............ L--__ -----~-----' .......••. , ........ . 

· . .. ...... . .... ...... . .. ... .. . .... . . · . · . -1 35 

90 135 
-90 -45 0 45 

orientation angle a. 
-1 80 

-180 -135 

(3.32) 

180 
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:-

90 ~ 
c 
co 

Figure 3.12: Graphical illustration of the numeric angles 0, /3 and Ii the region of de

teet ability is between the circle and the square 

This demonstrates that the signature of a buried cylinder is unique to a single 

geometrical configuration consisting of a finite radius R, and angle 'Y, buried in a 
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medium of constant dielectric constant cr (~)2 where c is the speed of light III 

vacuum. 

Figures 3.9 and 3.13 demonstrate that despite the above there is still some ambigu-

ity in determining the exact geometry, as an orientation of a cannot be distinguished 

from -a, neither can an inclination of f3 be distinguished from -fJ. This highlights 

the limits of what information can be derived from a single radargrarn, although it is 

envisaged that even this limitation could be overcome if the antenna radiation pattern 

was asymmetrical. Using multiple-radargrams and further data from across the Hitc, 

this uncertainty can be removed, as will be discussed in Chapter 4. 

~-~y 
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. .... . .. . 
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... "......... ." _ ............ " .. 

.... , ..... : 
• • I ----{~, -~.,:"" ----
'.' 

Figure 3.13: The ambiguity caused by a possible vertical inclination angle II 

It was shown in Figure 3.7 how incorrectly assuming a configuration where t.he 

pipe is normal to the scan direction (i.e. I = 900
) leads to significant errors ill 
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the estimation of the propagation velocity (and hence the target d(~pth). Figure 3.14 

illustrates how a and f3 each contribute to this error. Note how the error is asymptot.ic 

as both angles approach zero. It is also notable from Figures 3.7 and 3.14 that at a.ll 

orientation or inclination of 30°, the resulting error in the depth will be 100%, i.e. 

the target will be 'seen' to be at twice the actual depth. 

150% 
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a> 
~ 0 
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orientation a 
90 90 

Figure 3.14: Effect of ignoring the angles 0: and/or (3 on the interpreted depth 

3.2.3 Hyperbola fitting 

-90 

Despite the variety of fitting procedures available, yet they arc eit.her Hough 

transform-based approaches which are computationally expensive, or least-squa.re fit-

ting methods to a general conic and rejecting non-hyperbolic fits. These la.tter llwth

ods are fast and of good performance when the given data belong to a hyperbolic-

shaped arc, and they use iterative refinement procedures when t.he dat.a arc more 
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noisy [64], however this is achieved at the expense of computational cost. Moreover, 

the latter methods do not adequately characterise the hyperbolae in terms of a and h, 

and hence fall short of providing the necessary information for target identification. 

The new fitting technique presented in this work was developed from Fitzgihbon's 

ellipse-specific direct least-square fitting technique [64]. It uses constrained lcast

square method for specifically fitting hyperbolae. The most important feature of 

the technique is its ability to calculate certain parameters of the fitted hyperbolae. 

These parameters are used to calculate target information and hence minimising the 

inaccuracy of weak estimations. 

This fitter has the following advantages: 

1. Hyperbola-specificity 

2. Makes it possible to calculate depth, propagation speed, radius, vertical incli

nation, and azimuth orientation 

3. High robustness in cases of non-ideal data, and 

4. High computational efficiency 

A general conic can be represented by an implicit second order polynomial 

(3.:t3) 

where m = [ae be Ce de ee fe]T and x = [x2 xy y2 X y IF'· F(m; xd is called t,lw 

algebraic distance of a point (x, y) to the conic F(m; x) = O. The fitting of slIch a 

general conic can be achieved via minimizing the sum of squared algebraic distallccs 
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N 

DA(m) = L F(XJ2 (3.:31) 
i=l 

of the curve to the N data points Xi [65]. The parameter vector m is required to 

be constrained in a manner that avoids solution of m = 06 , and recognises that any 

mUltiple solutions of m represents the same conic [64]. 

It was shown by Bookstein [66J that if a quadratic constraint is set on the param-

eters, then Equation 3.34 can be solved by the rank-deficient generalised eigenvaluf' 

system 

(3.35) 

where D = [XIX2°o.Xn]T is called design matrix, S = DTD is called scatter' matri.'L' and 

C is the matrix that expresses the constraint. 

In order to fit a hyperbola specifically to produce a highly efficient solution of 

the linear least- squares problem of Equation 3.34, the parameter vector m is to be 

constrained so that the conic it represents is forced to be a hyperbola. This cOIlst.mint. 

happens to be the discriminant be
2 

- 4acce . 

It is very difficult to solve this constraint inequality problem in general as there is 

no guaranteed solution. In stead the parameters can be scaled arbitrarily via imposiug 

the equality constraint be 
2 

- 4aece = 1. 

This constraint may be expressed in the matrix of the form rn Tern = 1 H,.'-j 
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0 0 -2 0 0 0 

0 1 0 0 0 0 

m T -2 0 0 0 0 0 
m= 1 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

minimizing 

E= //DmI/2 (3.37) 

subject to the constraint 

mTCm = 1 (3.38) 

This system was solved by calculating the generalized eigenvectors of Equa

tion 3.35 and thus the parameters of the hyperbolae are obtained. 

Using this hyperbola-specific conic section least squares fitter, the values of a and 

b can be extracted, as the angle between the two asymptotes is 2 arctan ~. This 

angle, in conjunction with either the focal length or the distance from the centre to 

the apex, together uniquely characterise a hyperbola. From the two parameters a and 

b, the remaining parameters xo, to, v and R can thus be computed, subject to tlw 

above assumptions, provided that either a = 90° and fJ = 0°, or both their values are 

known. When a and fJ are unknown, then the fitter would calclculate a ami b based 

on the assumption that I = 90°. The consequences of making such an a.ssulllption 

will be discussed in detail in Chapter 4. 
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3.3 Image scaling 

In order for meaningful quantities to be extracted from the radargrams for real-life 

interpretation and mapping. then the units must be converted to physical dimensions. 

Knowledge of the radar parameters and data acquisition settings stored in the raw 

data file header (see Appendix D) facilitates this process of conversion. Using the 

header parameters scans_peLmetre, samples_per-Bcan and range, the routes necessary 

for such unit conversions can be seen to be: 

scans ----> metres 

samples ----> second 

scan metre 
--- ----> ---
sample second 

metre 
scan x-

scan 
second 

samples x 1 
sampe 

scan second 
samples x 1 x 

samp e scan 

scan metre sample 
--- x -- x ---
sample scan second 

scan metre sample sample 
---x--x x---
sample scan scan second 

and so by defining unit conversion constants 

1 
E,x = scans_per .JIletre 

range 
E,t = samples_per_scan 

and 

E,l' = scans_per .JIletre x range 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

where Vs is the velocity of propagation of GPR electromagnetic waves. The quantities 

xo, to and Vs can be converted to physical 81 dimensions using 
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x = ~x Xo (3.47) 

(3.48) 

(3.4D) 

The velocity of propagation is primarily governed by the relative permittivity of 

the propagation medium. Assuming the magnetic permeability to be equal to that of 

free space, the dielectric constant, or relative permittivity of the soil t.~ can then be 

calculated directly from the velocity Vs 

(3.50) 

where c is the speed of electromagnetic propagation in free space. 

The medium through which the radiation propagates is not expected to contain 

materials with relative permittivities outside the range 2 to 40 (see Appendix E). 

Nevertheless, as there exists the possibility of performing radar surveys above targets 

immersed in water, the upper limit is set at 81, the permittivity of salt water. Using 

Equations 3.46 and 3.50, the lower and upper limits for Vs can be shown t.o be 

c c ---<v<--
~vvErmin - - ~vVErmax 

where Ermin = 2 and f rmax = 81. 

(3.51 ) 

The vertical axis is then re-scaled to represent dept.h information instead of travd-

time by multiplying the turnaround time by vs /2. 
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3.4 Radius Calculation 

In order to make it possible to extract information from the hyperbolic signatures 

detected in GPR radargrams, both the hyperbola model in Equation 3.6 and the 

least-square-fitting technique are combined. The resulting technique represents the 

stage that follows the detection and segmentation stage. 

As the regional-features technique (described in Chapter 2) is used for detectillg 

and segmenting hyperbolic signatures prior to hyperbola-fitting and targets informa

tion extraction, since it has proven to be the best technique for hyperbolic signatures 

detection. 

Here, file 31 obtained from Area 3 in the controlled test site [49], is used ct.'> a 

sample file. This file is shown in Figure 3.15 and it contains two hyperbolic signatures 

resulted from two pipes buried at 70 centimeters depths. 

The range of 40 ns in this example now becomes 2.4 m. This re-scaling converts 

the radargram into a spatial image which can be subjected to GPR time dOlllain 

processing. 

Figure 3.16 shows the segmentation result and the identified hyperbolic sigllatllf(~S 

after applying the double-stage classification method. It is to be mentioned here that. 

if there are vertically adjacent hyperbolae then if the difference in depth between each 

two hyperbola is less than 1.5,\ then the second hyperbola is not considered another 

cylinder, but it is still used to improve the accuracy of the top cylinder. Each 0l1P 

of the two hyperbolic regions was subjected to region-completion and skeletonisation 

processes to extract the related sets of points (as shown in Figure 3.17), then t,lw 

fitting-technique was applied to each one of these sets. Fitting results can 1)(' seen ill 

Table 3.1 and Figure 3.18. It can be seen that the relative permittivity it-! calc1llated 
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Figure 3.15: Typical ground-penetrating radar image exhibiting two hyperbolic regions 
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to be 11 .9 which is typical for damp clayey soil at the test site [2], and [49J . As £ r th e 

radius and depth, it can be seen that they are calculated within low error percentag -.s, 

while the radius calculated from a conventional fitter is almost 50% different from 

the original value. The "True value" in the table are obtain d from the ground truth 

provided with the site maps [49J. 
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Figure 3.16: Classification result using the double-stage classifier 

Table 3.1: Pipe parameters resulted from fitting 

Paramet er s depth! depth2 RI R2 depth tr J 

(em) (em) (em) (em) (em) 
(R = 0) 

True Values 70 70 5 5 70 unknown 
Calcula t ed Value 72.3 65.55 5.56 5.64 101.98 11.9 
Error (%) 3.29 6.36 11.2 12.8 45.69 

C1'2 

unknown 
11.9 

In both examples, the fit ter returns values for a, b, and to· From thes values, both 
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(a) Region 1 (b) Region 2 

Figure 3.17: Detected hyperbolae after region-completion process 

R, and v are calculated as in Equations 3.7 and 3.8. By using the GPR-scan header 

parameters, namely range, scans_per .JIleter, and samples_per _scan, then the values 

of R, v, and to are converted to physical dimensions as shown in Section 3.3. The 

depth is found from 

d = vsi 
2 

(~3.52) 

It can be seen from the obtained results that the differences in error betwe(,ll the 

new model and the conventional model (where R is assumed zero) is a clear indicatioll 

in favor of this new technique. When applying the new technique to synthetic data, 

however, the error is negligible as one would expect. 
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(b) Fitting result for points of region 2 

Figure 3.18: Fitting results for the extracted hyperbola-points 
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3.5 Conclusions 

This chapter has attempted to refine the 'art' of interpreting radargrams origi

nating from buried cylindrical reflectors, by presenting a mathematical model tha.t 

incorporates not only the depth, velocity and radius information, but also the incli

nation and azimuthal orientation of the cylinder in question. The dangers of ignoring 

these parameters in the resulting interpretation have been quantified and illustratf'd 

with respect to each of these parameters. 

By combining information extracted from various cues from within the data in 

a manner that minimises the reliance on ready-made assumptions, rules of thumb 

and conjecture, it is possible to improve the reliability and accuracy of the final 

interpretation result. These procedures are to be used to develop guidelines and 

recommendations for GPR data acquisition and interpretation. 

The overall quantification of speed for the processing stages including detection, 

segmentation, edge-processing, and characterisation, has shown a high performance 

speed which serves the aim of an adequate and reliable near-real time system. 
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Chapter 4 

Site Data Processing 

This chapter presents a novel iterative parameter-correction method which COlIl

bines the individual target information derived from the hyperbolic signatures to 

detect the orientation and and inclination of extended cylinders and correct their 

geometrical parameters derived from the individual radargrams. 

4.1 Data Fusion for 3D Pipe Detection 

In Chapters 2 and 3 the stages of target-detection, segmentation, and characteri

sation where discussed. Figure 4.1 shows these stages which are curried out automat

ically and in near real-time. In an ideal case, when a priori knowledge about both 

vertical and azimuthal orientations of the buried targets exists, then these stages a.re 

quite adequate for accurate target detection and characterisation. 

Despite the amount of information that can be derived from a single radargralll, 

this information is nevertheless limited in most cases, and without additiollal knowl

edge about the site or the buried objects it will not be possible to uniquely locate a 

detected pipe or cylinder as it may be subject to either a vertical or azimuth Ori(~ll-
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tation (or both), and this makes the procedure illustrated in Figure 4.1 incomplete. 

Considering the relationship derived earlier in Equation 3.14, and repeated here, 

( 
t + ;:) 2 _ ((X ~ xo) sin ') 2 = 1 
to + - -to + R v 2 

( 4.1) 

it can be seen that a given hyperbola can originate only from a single set of parameters 

xo, to, R, v, and ~(. As a reminder, , is a function of the azimuthal orientation of a 

buried cylinder with respect to the direction of scanning a, and the vertical inclination 

of that cylinder with respect to the plane that contains the ground surface;3. However 

it was shown earlier in Equation 3.31 and Figure 3.12 that there exists an infinite 

number of possible combinations of a and ;3 for any given value of ,. Even if a was 

known, there still remain the uncertainty as to the relative orientation of the pipe as 

a is a scalar positive value. Furthermore, there is no way to determine both, and v 

uniquely from a single hyperbola. 

Hence to make the best use of the signature model presented in Chapter 3 and to 

remove this uncertainty. further information is required. This can either be site-

intelligence information, or further information extracted from other radargrams 

across the site. Suggested methods for deriving this information are as follows: 

• Radargrams often contain spurious hyperbolae from point reflectors, which will 

generally exhibit the correct velocity (and hence the correct permittivity). This 

can be detected automatically when multiple hyperbolae that are spatially not 

far apart exhibit a range of velocities; the lowest velocity should generally be 

accepted as accurate based on the fact (mentioned in Section 3.2.2) that the 

lower the apparent velocity, the closer the angle, is to 90°. 
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• Occasionally site information is available to suggest that pipes or cylinders are 

buried parallel to the radar scan plane, or at a given inclination angle; manholes 

and other means are often available to verify this information. This can exclude 

f3 from the model, leaving us with a direct relationship (from Equation 3.31 

between rand Cl:. 

• Provided the radar scan lines are sufficiently close together, pipes can generally 

be tracked between adjacent radargrams. This will provide a fairly accurate 

estimate for Cl:; in conjunction with the above, this information may be sufficient 

to uniquely identify the parameters of the target. 

• 3D line detection algorithms such as the Adaptive Non-accumulative Hough 

Transform (ANHT) presented in [15] may be used to estimate Cl: and f3 simul

taneously from the available information about the hyperbola apices. 

• If a reliable estimate of the dielectric constant of the upper layer of the medium 

is known, then r can be calculated and hence the rest of target parameters can 

be identified. 

All available information should be exploited in the interpretation of any given 

reflection, as a single hyperbola will rarely expose the reality of the situation, while 

there are often valuable cues within the data that are overlooked. 

The procedure normally followed for interpreting is based on processing individ

ual radargrams to extract information from detected hyperbolae, such as depth and 

relative permittivity, while the radius and the orientations of a target are considered 

negligible. It was shown in Chapter 3 the inaccuracy of such considerations. However, 

even when these parameters are considered the uncertainty problem with regard to 
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these parameters will still be standing. 

When the value of the relative permittivity of the host medium is unknown, it 

is estimated in order to calculate other parameters. One way for doing this is by 

assuming the minimum calculated velocity of propagation within all radargrams to 

be that resulted from a point reflector, and consequently the relative permittivity will 

be calculated and considered to be the same for the whole site. A more accurate way 

may involve dividing the site into subareas and calculate the permittivity for each 

area in the same manner. This method may work if the relative permittivity for the 

investigated site is constant or subjected to slight changes, while when drastic changes 

are involved the results would be totally different from reality when targets are not 

detected (completely or partially) as it will be shown in the subsequent sections. 

In this study, the automatic detection and interpretation system presented III 

Chapters 2 and 3, is completed by combining it with the Adaptive Non-accumulative 

Hough 'Ifansform in an iterative manner to provide accurate values for the azimuthal 

orientation () and the vertical inclination q;, so they can be used in turn to correct any 

inaccurate estimations of the radius R and the velocity v resulting from processing 

individual radargrams. The information obtained from processing individual radar

grams needs to be combined in order to completely locate the buried cylinders ill 

terms of their dimensions and orientations. The basis for this combination is to find 

aligned detected hyperbola apices within the whole site radargrams, and this menus 

searching for lines in 3D space. 
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4.1.1 Detecting Lines in 3D Space 

A straight line in 3D space passing through an arbitrary point and having the 

direction vector -r may be expressed by 

T = (x, y, z) = TI + k-r (4.2) 

where r is the position vector relative to the origin 0, TI is a given point on the 

line and k is a scalar dependent on the position of the point on the line. Since 

TI = (XI,YI,zd and l = (a,b,c), then Equation 4.2 can be rewritten as 

(4.3) 

For any value of k there is a unique point P(x, y, z) on the line and a direction 

vector that can fully describe that line in 3-D space. A special point may be identified 

to describe a line. For a given line in 3-D space, there is only one plane IT through 

the origin perpendicular to it, and the intersection of that line and the plane can be 

treated as the special point. Assume there is a line l = (x, y, z) = (Xl, Yl, zd+k(a, b, c) 

in 3D space, and a plane n that passes through the origin 0 and perpendicular to I. 

Let n be a vector normal to IT, B a fixed point on II, and P(Xb Yk, Zk) any point on 

the plane. Let OB = TI, OP = r, then BPn = O. Since BP = T - TI, then 

(r - Td· n = 0 ( 4.4) 

Since the plane II passes through the origin, then the point (0,0,0) can be assumed 

to be the fixed point B. Therefore, OB = TI = (0,0,0), now Equation 4.4 can be 

written as 
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r· n = 0 (4.5) 

. --+ . --+ 
Smce I is peqH'll<ii(,llbr to II. tlll'1l tlw direction-Yector of l is the normal-vector 

to II. Assumini!, P to 1)(' tIlt' inter:o;('ctioll of I and n. we have 

[,.". 'II. =,1 + k(a.l>. el] . (a. b. c) ~ a 

Solving this ('quat iOIl icad:o; t() 

then P can be obt ail\l'd from 

It = -(IU'\.bYl.czd 
(/2 + b2 + c2 

1'= (.I'\.y\.z\)+k(a,b,c) 

(4.6) 

(4.7) 

(4.8) 

For simplicit~·. t ht' direct iOIl-H'ctor T can be assumed to be a unit vector, giving 

us 

(/ = si 11 <) cos e (4.9) 

b = sill osine (4.10) 

c = cos (> (4.11 ) 
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where fJ and ¢ are the orientations of [ in spherical coordinates. Suhstituting for (1, 

b, and c in Equation 4.8 then 

P = (Xl, YI, zJ) + k(sin ¢ cos fJ, sin ¢ sin, cos ¢) ( 4.12) 

z 

c 

l 
¢ 

y 

Figure 4.2: Vector representation in spherical coordinates 

A straight line in 3D space can be described by the five parameters: Xk, Yk, Zk, 

¢, and fJ. When applying the Hough Transform, then each point (:r, y, z) in 3D .spae£) 

generates a hyper-surface (Xkl Yk, Zk, ¢, fJ) in the 5D parameter space. 
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4.1.2 Adaptive Non-Accumulative Hough Transform 

The standard implementation of the Hough Transform involves accuIllulating tlw 

votes of a parameter space in a finely quantised accumulator array. The fineness 

of quantisation is a measure of the accuracy in determining individual parameters. 

However a fine quantisation means a large accumulator array, specially when t,h(' 

standard 2D HT is employed to detect patterns in 3D. As mentioned in the previous 

section, a unique 3D line is defined by five parameters: Xk, Yk, Zk, </J, and o. This 

means that the accumulator array used to detect 3D linear objects has five dimensions, 

hence, it requires a huge amount of computer memory. Furthermore a searching of 

peaks in such a big accumulator array is impractical and time-consuming. Each 3D 

point when mapped into parameter space produces a parameter hyper-surface, and 

the parameter hyper-surfaces produced by aligned points in 3D intersect at It common 

point in parameter space. The coordinates of this parameter point characterises the 

straight line connecting the 3D points [67J. The HT mechanism is ba'led on generating 

these hyper-surfaces and identifying the parameter point where they intersect. 

When noisy data is involved, then not all of the hyper-surfaces produced hy 

collinear points intersect at the same point but in the vicinity of the true intersection. 

Consequently, a cluster is formed with a barycentre with coordinates very close to 

the true parameter point. The number of clusters in parameter space indicates tlw 

number of possible instances of linear objects in 3D space. Detecting hyper-surfa.ce 

intersection can therefore be approximated by detecting the barycentres in a III 1 Illhm· 

of clusters. By using the ANHT, a competitive learning neural network is llsed to 

perform the detection of barycentres, instead of using a finely-quanti sed acculIlula

tor. The densest cluster will be treated as a group of the input vectors for the neural 
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network, and the number of neurons is set to one, hence this neuron will win all Ow 

time and its weight vector tends towards the barycentre of the input vect.ors. TIIP 

number of the epochs is a user-defined parameter; the larger this number is, the rnon' 

accurate will be the result and the more computational time is required. 

Furthermore, the ANHT involves an intelligent iterative "coarse to fine" cakula

tion strategy for finding only the points that are in the vicinity of the bary('cntres of 

clusters. The properties of the ANHT method can be summarised by the following: 

• It uses a competitive learning neural network for finding the intersection point.s 

in the parameter space, which avoids the time-consuming finely quantized ac

cumulator 

• It intelligently redefines the parameter range for the next computation so that all 

interesting area can be further investigated and the use of a small parameter size 

becomes possible, which considerably reduces the computer storage rcquirement 

• A filtering process for the parameter space is applied to reduce thc effect of 

outliers 

• It automatically estimates the number of significant clusters in parametcr spa,(;(~ 

The ANHT is used in an iterative manner to search for aligned apices and to 

calculate their corresponding lengths and orientations. Figure 4.3 shows a block 

diagram of the complete automatic detection-interpretation procedure for subsurfacp 

cylindrical targets and indicating the ANHT. 

This procedure can be summarised in the following steps: 

1. Mapping the detected apices into 3D space 
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Save information of the 
found extended targets 

No 

Figure 4.3: Block diagram of the complete automatic detection and interpretation systl'llI 
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2. Searching for aligned points in 3D space by applying the 3D ANHT 

3. The orientations () and cP of a detected line are used to correct for the valtws of 

a and (3. 

4. Correcting for the values of R and v, which were calculated from individual 

radargrams when hyperbola-fitting was applied. These values are thcll saved 

along with the corresponding apices-coordinates. From these saved coordiIlates, 

it is to be decided to which detected-cylinder a certain apex belongs. VVhCll JiIlcS 

are detected by the ANHT, their corresponding orientations are used to correct 

for the values R, v, and Er for each detected cylinder via 

where 

R = b( a - to) sill'/, 
a 

2bsin 'Y 
V= 

a 

~ v x samples_per _scan 
Vs = scans_per .JI1eter X range 

( 4.13) 

C1.14 ) 

(4.15) 

5. Using the new values of R, v, and Er to re-map the detected apices accordiIlg 

to the calculated orientations. 
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The procedure described above is repeated as long as a significant challge ill t!H' 

values of (j or ¢ is taking place, otherwise it is stopped. Another stopping cOllditioll 

could be a preset number of iterations when reached, the procedure is st()pp(~d. 

After the system settles, the final values of the relative permittivit.y at ()adl de

tected apex are used to generate the permittivity profile of the whole investigat.ed site 

via fitting a surface of the form Cr = f(x, y) to the dielectric constant vallH~s obtairwd 

at the detected target points. This fitting is based on Delaunay triangulation [(i~l, 

which represents a set of triangles connecting the points to satisfy an "empty circle" 

property: the circumcircle of each triangle does not contain any of the points. It 

is used to construct an approximation to a function fr (x, y) whose values are only 

known for a finite set of points (x, y). 

4.1.3 Synthetic Site Data 

In order to test the proposed system and quantify its performance, a synthetic site 

was built which models a real site of 20 x 30 meters. It contains four pipes and a tank 

in addition to fifteen randomly-distributed point-reflectors. The corresponding target 

information is detailed in Table 4.1. The site was surveyed using an orthogonal grid 

of survey-lines spaced one-meter apart and the hyperbolic responses (whether frolll 

point-reflectors or cylinders) were modelled on the basis of 512 samples_pcLsCI1ll, 100 

scans_peLmeter, and 40 ns range. 

The dielectric profile across the site was allowed to vary as if part of the site had 

been recently excavated and backfilled, and an artificial 'pool' of wet soil ('wal<'d 

as if to model a source of water. The resulting relative permittivity distribution is 

shown in Figure 4.4. Figures 4.5 and 4.6 illustrate the presented site in two ami 
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Table 4.1: Synthetic test site target details 

Target type Length R () ¢ depth to top~ 
(m) (em) (degrees) (degrees) (em) 

Pipe 1 10 10 0 0 50 
Tank 2 5 125 90 0 80 

--~-----

Pipe 3 14.87 50 45 10 30 
'~------. 

Pipe 4 10.63 20 45 0 60 
Pipe 5 13 20 90 0 70 

three-dimensional views with the dielectric profile superimposed in contour forlll. 
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4.2 Application Results 

In this section, the results of applying the suggested procedure to the synthetic

site are presented. Furthermore, Pipes 1, 3, and 4 were taken as examples for thwe 

possible scenarios, as samples of the pipe-parameters obtained from individual radar

gram processing and using the proposed 3D-iterative method, are shown in Tables 4.2 

and 4.3. The three scenarios are: 

1. Q: = 900 and;3 = 00: In this example, Pipe 1 is considered and it represents the 

"ideal" case of a pipe buried parallel to the surface and normal to the direction 

od scanning. As stated in Section 3.2.3 if Q: = 900 and f3 = 00 then the values 

of R and v can be calculated directly from fitting the detected hyperbolae 

in individual radargrams without the need for further processing. When the 

iterative system was applied, the correct values were obtained from the first 

iteration with negligible error. 

2. Q: i=- 900 and j3 = 00: This case is represented by Pipe 4, where the pipe is 

parallel to the surface, but at a 45° to the direction of scanning. The .stopping 

condition was fulfilled in the first iteration, when accurate values for the pipe 

parameters were found with error rates dramatically reduced for the values of 

Cr , R, and () in comparison to the values obtained from individual radargrams. 

Based on the calculated values of Cr, and R from individual radargrams, the 

pipe's depth was calculated to be 26% deeper than its true depth which may 

result in disa.<;trous consequences in some of the cases, for example when oil, or 

utility pipes are involved. 

3. Q: =j:. 900 and /1 =f 0°: In this case, Pipe 3 is represented as it is neither parallel 
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to the surface nor normal to the direction of scanning. It can be SP(~Il fwm 

Figures 4.5 and 4.6 that Pipe 3 lies in the heart of the area were the huw~st 

variation in the values of fr takes place and represents a good exalllpl(~ of t1H' 

information-uncertainty problem with regard to both target and host medil\lli. 

In this case, the pipe was located 40% deeper than its true depth. 

When comparing Pipe 3 and Pipe 4 corresponding values Tablp 4.2 shows tIl(' 

errors in targets parameters and Er obtained from the hyperbola-fitting stage priori 

to applying the iterative procedure, while Table 4.3 shows these errors after only OlH' 

iteration of the suggested procedure. It can be seen the dangerous consequences of 

relying on broad assumptions, specially with regard to the locations of the targets ill 

terms of their depths and orientations. In the second and third cases, the negligence 

about Q and j3 has led to wrong estimates about the depths of the pipes, where they 

were located deeper than they were in reality. 

Table 4.2: Errors in target parameters obtained from hyperbola-fitting stage 

Error in Error in Error in Error in Error in 
Depth (em) Er R (ern) () (degrees) ¢; (degrees) 

--

Pipe 1 0 0 a 0 0 
.-~--. 

Pipe 4 10 6.5 10 45 0 

Pipe 3 10 9 20 45 10 
-- --

The proposed procedure was successfully applied to the synthetic site and all Ow 

five targets were identified and characterised with high accuracy, as shown ill Fig

ure 4.7. The above three cases are indications of three different situations where t 1\1' 

accuracy of the proposed system can be seen in detecting the targets and extracting 

full information regarding their radii, depths and orientations. 

Furthermore the dielectric constant was calculated with high accuracy at each d('-

tee ted target-apex and the resulting permittivity profile of the whole site was ploll,'<1 



Table 4.3: Errors in target parameters obtained from the automatic 3D-detection procedure 

Number of Error in Error in Error in Error in Error in \ 
iterations Depth (em) Er R (em) () (degrees) ¢ (degrees) 

Pipe 1 1 0 0 0.0001 0.0 0.04 I 
Pipe 4 1 0 0.02 0.001 0.02 0.04 I 

Pipe 3 2 1 2 0.001 0.02 0.66 
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via fitting a surface to these values of tTl as was described in the prcviow.; s(-ct.ioll. 

This is shown in Figure 4.8, where it shows a great similarity to the original profih

shown in Figure 4.4. 

The obtained shape is the result of surface-fitting to 65 values of t r· obtained frolll 

the detected apices, and this is the reason why the shape does not look a.s SIIloot.h 

as the original profile which is resulted from 60000 values for Er . moreover, it can he 

seen that the obtained profile only covers the area where targets exist, while the r('st. 

of the site is not covered, but it can be expected that the values of fr will be within 

the range of values for the obtained profile. Finding the dielectric profile of the sit(

by itself is a great achievement, where a robust and accurate method is suggest(~d for 

solving the standing problem of unknown dielectric constant of the host mediulIl. 
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4.3 Advantages of Site Data Fusion 

It was mentioned in Section 4.1 that relying on individual radargrams to char

acterise detected targets may lead to incorrect results with regard to target locatioll 

and dimensions, and even missing existing targets when a non-homogeneous profil!' 

of the relative permittivity exists. This can be seen when comparing Tables 4.2 and 

4.3, besides that Figure 4.9 shows parameter convergence vs iterations plots for fl" 

0, and ¢ for case 3, where these parameters rapidly converge towards the correct 

values after only one iteration of the new procedure. Moreover, Figure 4.10 shows a 

plot comparing between the points mapped using conventional procedure and those 

mapped using the multiple radargram procedure, while Figure 4.11 shows a compar

ison between the multiple radargram procedure mapping result and the true values. 

It can be seen from these figures the accuracy and robustness of the new procedun' 

on one hand, and on the other hand they show how conventional procedure may 

miscalculate target parameters, in this case some targets and points were shown to 

be deeper than they are in reality, while points of pipe 3 are shown as a curvature 

which means they may be considered redundant. 

This shows clearly that the presented procedure represents a robust solution to 

the uncertainty problem about targets parameters and medium type, which results 

from making broad assumptions and relying on individual-scan processing. 
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4.4 Computational demands 

As mentioned in Section 1.5, one of the main objectives are set in this stndy is 

to achieve an on-site application in near-real-time. Hence the overall pmforrnancc 

of the presented system needs to be quantified from the time-cost prospective. It is 

expected that the target-detection stage is a high-time costing stage of the automatic 

system, as it involves searching the collected data for targets via extracting features 

that makes the automatic-detection of these targets possible. The test images used 

for this purpose are collected from Area 3 in the test site [49] which is described in 

Appendix B. This area is 20 x 12 meter, and it is covered by 32 radargram.s with an 

average number of scans of about 2000 scans per radargram. The sample radargram 

shown in Figure 3.15 represents file 31, and it is a 512 x 1800 pixel image. This file 

was subjected to detection (using the regional-features method), segmentation, and 

hyperbola-fitting and target-information calculation stages, and the total time cost 

was about 17 seconds. It is to be stated here that this cost varies from one radargram 

to another depending on the number of detected targets as well as the size of the 

image, so when these operations were applied to the whole 32 radargrams of Area 3, 

the total time cost was 21 minutes which is an excellent result. 

When the multiple radargram procedure was applied to the synthetic site, the total 

time required for detecting the five targets in 3D space was 3:40 hours, which is the 

time that the ANHTI consumed to detect these targets. Despite this relatively high 

cost, the procedure is considered essential for accurate characterisation of cylindrical 

targets and for the outstanding achievement of finding the permittivity profile for the 

investigated site. 

1 the neural network used by the ANHT was set to 3000 epochs 
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Finally, it is to be mentioned here that the PC used for this operation is a dual

Pentium® III 1000 MHz processor and 768 MB RAM running Matlab 6.5. It is ex

pected that the computational time would drop enormously when the Matlab code 

is compiled to C-language, which achieves the objective of on-site near real-time pro

cessing. 

4.5 Conclusions 

This chapter presents a novel procedure for processing target-points which are 

detected in individual radargrams from the previous stages. The procedure involves 

mapping the detected points into 3-dimensional space and applying Adaptive Non

accumulative Hough Transform (ANHT) in an iterative manner to detect aligned 

points in 3D and find their corresponding azimuth and vertical orientations. The 

calculated angles are then used to correct for the radius and permittivity values 

obtained from individual radargrams. 

Furthermore, a synthetic test site is built with a number of point reflectors and 

cylindrical targets arranged at different depths and orientations, and a varying relative 

permittivity profile is set to cover the site. When applied to the site, the automatic 

procedure has shown high accuracy in detecting the aligned points and correcting for 

their corresponding parameters with a low percentage error. 

When the detected aligned-points resulted from this procedure and those detectlxl 

using conventional method were compared to true values, the difference in accuracy 

was quite clear in favour of the new procedure. Moreover, the permittivity profile for 

the site was found using this procedure with a high accuracy in comparison to the 

true profile. 
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The only limiting factor with the ANHT procedure is its relatively high tinw 

consumption, though it is considered crucial for the target interpretation process 

when information about the investigated site is not available, while this final sta.ge 

will not be needed when orientations of the buried cylinders a.re known and there is 

no demand on the dielectric constant profile. In this case a considerable amount of 

time will be saved. 

This system of combining information from individual and multiple radargrams to 

correct for calculated cylindrical-targets' data and find a dielectric-constant profile of 

the investigated site, is the first published automatic procedure for this purpm;e, and 

the achieved results proves it to be highly efficient and reliable for rapid detection 

and interpretation of subsurface cylindrical objects. 
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Chapter 5 

Conclusions and Recommendations 

This study addressed the tasks of automatic detection and interpretation of sub

surface objects, particularly localised point reflectors and linearly extended cylinders. 

Novel processing techniques were developed that treated the radar data both as en

sembles of time series and as images, combining signal and image processing to yield 

detailed interpretations ofradar data in time-scales suitable for on-site near-real time 

operation. 

A variety of features-extraction techniques were presented and used along wi th 

artificial neural networks as pattern recognition and classification tool with detail

ing complete feature classification routines based on supervised neural networks. A 

robust pattern recognition technique was presented, based on selected regional fea

tures to enable the detection of hyperbolic shapes in the data with extremely reduced 

computation time. Combining this with a novel hyperbola-specific least square fitter 

resulted in high accuracy estimates of buried targets information with a degree of 

tolerance to the effects of noise and clutter. 

A variety of approaches were presented and implemented at each intermediate 
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stage for the above tasks, and the results compared as appropriate, in terms of fea

sibility, computational costs, quality of results, Classification rates, and false alarm 

rates. A brief discussion of the merits and drawbacks of several of the.se approaches 

follows. 

5.1 Conclusions 

It must be stressed that GPR can never produce definitive geometrical results 

given the diversity of the subterraneous environment and the nature of the electro

magnetic configuration, but its convenience as a rapid non-invasive site investigation 

tool has lead to a degree of over-reliance on this particular geophysical technique. This 

in turn has cultivated a culture of quasi-scientific interpretation of these radargrams, 

with the inevitable errors often reflecting negatively and unfairly on the technique 

itself. 

In the light of the objectives set for this work in Section 1.5, it can be stated here 

that all these objectives are met with high efficiency. 

The first objective of highlighting of feature zones was covered in Chapter 2, where 

the aim of all the target detection techniques presented is to discriminate between 

two classes of GPR reflections; targets (such as pipes, tanks, cables, and voids), and 

non-targets (such as clutter and noise). Typically, this stage acts as a bottleneck in 

any automatic detection-interpretation system, as it is computationally expensive. 

In all aspects, the regional features technique have proven to be the most effective 

among all supervised neural network region selection approaches described ill Chap

ter 2 as it has the unique capability of selecting hyperbolic-shaped regions without 

further edge detection procedure needed. Moreover, this technique has the lowest 
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time cost among all other techniques, which has overcome the problem of computa

tional cost that typically the detection stage suffers from. Although this techniqne 

points the relatively highest proportion of false alarms, yet the recorded figure is very 

low. The B-scan statistics technique has a much lower false alarm rate with a almost 

twice the time-cost of that of the regional features approach. The A-scans statistics 

technique has achieved the lowest false alarm rate on the expense of a relatively big 

increase in the computational cost. A double-stage classifier is suggested to combine 

the hyperbolic-shapes detection property of the regional-features technique and the 

ignorable false alarm rate of the B-scan statistics technique. The low time cost of both 

techniques has kept this technique within the desired near-real time performance, and 

the result was a more robust and accurate classifier. 

The regional-features technique has reduced the edge-detection routines by a great 

extent, with only region-completion and skeletonisation procedures involved. The 

aim behind them was to produce a hyperbolae points ready for the following target

information extraction stage. With the greatly reduced radargrams data resulted 

from the previous target detection stage, the time cost of the edge detection stage is 

very low. 

The objective of estimating the diameter and orientations of cylindrical targets 

was covered in Chapters 3 and 4. Presenting a comprehensive model for hyperbolic 

signatures resulted from buried cylinders, has filled the gap caused by the lack of 

information and led to making broad assumptions about the radius and orientations 

of such cylinders, in addition to the velocity of propagation. it was shown how wrong 

assumptions may lead to disastrous consequences especially in applications where 

targets need to by localised with high accuracy. 

The least-square-hyperbola-specific fitter produced in this work has overcome the 
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shortcoming which the conventional polynomial fitters suffer from, where they depend 

on accurate estimates of velocity which in turn not always readily available. The 

ability of the novel fitter to produce numerical information about the fitted points, 

has made it possible to produce accurate calculations of target-related information, 

when combined with the derived hyperbolic-signature model. This fitter suffers from 

the limitation that it is only capable of calculating two parameters if the third is 

known; the radius, the combined orientations angle, or the velocity of propagation. 

Chapter 4 also covered the fourth and fifth objectives, where The shortcoming of 

inaccurate estimation for the cylinder orientations was overcome via using multiple 

scans in a novel iterative routine which combines information extracted from vari

ous cues from within the data and applying 3-dimensional non-accumulative Hough 

transform to find extended cylinders in the investigated site and calculate both their 

azimuth and vertical orientations. These orientations are then used to correct for the 

values of target radius and depth which were calculated from individual radargrams. 

The only limitation of this technique lies in its relatively high time consumption which 

makes it the most time-costing stage of the presented system. Moreover, the infor

mation obtained from the iterative routine are used to map the detected targets in 

3D. 

Furthermore, the presented procedure was also used to produce a dielectric COll

stant profile for the whole site based on fitting a plane to the values of the relat.ive 

permittivity obtained from detected points. This strongly pushes t.owards a more ac

curate interpretation for the collected data and a better understanding for the nature 

of the investigated site. 

As for the important objective of on-site near-real time processing, it was shown 

in Section 4.4 how the presented procedure was quit fast in processing site data and 
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producing final interpretation results. Hence, the presented system can be applied 

on-site to produce a final interpretation report in a relatively short time. 

5.2 Recommendations 

In order to enhance the quality of the raw GPR data by increasing the content of 

relevant site information, following are some recommendations regarding data acqui

sition: 

• For maximum feature detect ability a multichannel GPR would enable to gather 

signals from the antennae with different bandwidths or from antenna's arrays. 

By summing the signals in channels with different weights would be used to 

control the antenna patterns and change the direction of the main lobe. The 

main destination of the named systems is their using as a tool for processing of 

the mine searching algorithms. Results of experiments are cited in the report . 

• Cross-polarised antennae can be used to make them more sensitive to cylindrical 

objects (like pipes), independent of alignment of such objects with regard to the 

antennae. The antennae need to be configured with one antenna electric field 

perpendicular to the other. 

5.3 Further Work 

A major achievement of this study is overcoming the relative bottleneck caused 

by the region selection stage, yet the presented regional-features technique could be 

improved to reduce its false alarm rate. This could be achieved via further investi-



Chapter 5. Conclusions and Recommendations 172 

gating region descriptors and combining one or more region segmentatioIl tcclmiql1eH, 

with time-cost issue kept in mind. 

This system could be expanded to cover other types of targets such as land-mines 

and other unexploded ordinance, where modelling and analysing procedures (similar 

to the ones presented by this study) could be applied to develop this field. 

The dielectric constant profile-calculation procedure could be developed to cover 

the possibility of different medium layers. This could be used, along with the iter

ative 3D Hough transform algorithm, to correct for targets points which lost their 

alignments due to the change in relative permittivity. 
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Appendix A 

GSSI SIR® -2 Specifications 

Following are the detailed specifications of Geophysical Survey Systcllli; Inc, Sur-

face Impulse Radar System 2 [1]: 

Hardware 
Radar Processor 

Display 

CPU 
Memory 

Hard Drive 

Input I Output 

Printer 

Motorola DSP 56002 

21cm 640x480 Color Active Matrix LCD VGA for J'(~aJ

time display 
80486 DX 

16 Mbyte RAM 

Up to 450 Mbyte internal IDE 

Antenna Input (including survey wheel) 
Fiber Optic Transmit Trigger 
Parallel: 

12 V DC Input, 3 LED Indicators, 
Multi-Function Connector: RS-232, VGA, 
Keyboard, NTSCIPAL Video (optional) 

Optional thermal plotter for wal-tilllC or playback hard 
copy of wiggle plot or gray scale lirlP scan data 
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Electrical 

Antennae 

Dynamic Range 

AID Conversion 

Input Power 

Mechanical 

Dimensions 

Operational 

Temperature 

Humidity 

Environmental 

Operates all GSSI surface and air-couphl l1J1t('llww: 

DIPOLES: 

Unshielded: 15, 20, 30, 40,80, 120 MHz 
Shielded: 100, 200, 300, 400, 500, 900, 1000 l'vl Hz 
Monostatic: 80, 100, 120, 300, 500, 900, WOO 
MHz 
Bistatic: 15, 20, 30, 40, 80, 100, 120, 300 1'\'1111', 
TEM HORNS: 

1.0 GHz, 2.5 GHz (bistatic, ullshiddl'd) 

24 hit (144 dB unstacked) 

8 or 16 hit 

12 VDC (3 Amp or 36 Watts) 

29 x 27 x 14 em WEIGHT: 6.3 kg 

00 C to +400 C (operating), _25 0 C to +600 C (st,orap;<,) 

0-100% (RH) 

Radar control unit is environmentally seakd. 
Can be used in inclement weather. 

2()1 
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Software 

Data Collection 

Display Mode 

Range Gain 

Filters 

Stacking 

Transmit Rate 

Scan Rate 

Sampling 

Range 

Data Transfer 

Post Processing 

Continuous profiling with manually or survey 
wheel-emplaced horizontal reference marks. Point 
stacking either during continuous collection by stacking 
sequential scans or in stationary point collection mode 

User selected: color/gray scale line scan, wiggle plot or 
oscilloscope formats 

100 dB automatic or user selected; range gain prior to 
digitisation for maximum system dynamic range 

Automatic or user selected vertical and horizontal 
filtering in real-time or post-acquisition processing 

Automatic or user selected 

A utomatic or user selected up to 64 KHz 

Automatic or user selected, 8 to 64 scans per second 

Automatic or user selected, 128, 256, 512, 1024, 2048 
samples/scan 

Automatic or user selected: 5 to 2000 nanoseconds 

Through parallel port to PC with bi-directional 
parallel port 

Optional RADAN software can be installed for 
additional post processing and color printing 
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Appendix B 

Geophysical Test Site Description 

The EIGG, a fully constituted Specialist Group of the Geological Society of Lon

don, maintains a Shallow Geophysics test site at Leicester, in conjunction with th 

Geology Department at the University of Leicester. It 's purpose is to provid a fa iJ

ity for training, demonstrations, calibration and research for many aspects of shall w 

geophysical surveys and methods. Following is the description of the t st si te provid d 

by the Geology Department on their web page [49]. 

D escription 

The test site lies on the summit of a gentle hill-top. Th surfa e Jay r f top il is 

about 0.3 meters thick, grading down into Boulder Clay. The Bould r Jay i uni[ nil 

throughout the site, containing clasts up to 200 mm set in a lay matrix. This uni t is 

16 to 18 meters thick, and underlain by Liassic clays and lim ston . ffs t Wenn r 
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resistivit.\, soundings confirm the depth to the boundary, and give a bulk resist.ivity 

of the Boulder Clay of 23 Ohm.m and 25 Ohm.m. for the Liassic Clay and limestone 

sequence. TIl(' water table is shallow, but the clay is of low permeability. During 

exca\,atiolls water seeped slowly into most pits at depths of about 2 meters below the 

surfaef'. 

TIl(' contpllt and disposition of the test structures was discussed in detail by the 

EIGG committee. with the resulting plan being as shown in Figure B.1. Each struc

ture is defined in detail with plan and section drawings as necessary. Major com.,id

erations in t hr design were: 

• To provide targets suitable for most shallow geophysical methods such as mag

netics. electromagnetics, radar, resistivity and possibly gravity and seismics . 

• To provide some simple targets for training purposes . 

• To provide a series of more challenging targets which would test the limits of 

present equipment resolution and field techniques . 

• To provide a variety of targets whkh are of practical importance, but are cur

rently undetectable by geophysical methods, e.g. plastic pipes. 

The targets comprise a variety of different shapes and sizes of objects made from 

different materials. Tubes or beams, sheets, spheres and cubes, made of metal, C011-

crete, brickwork and plastic are the major targets. Sizes range from 0.3 meters to 2 

meters. 

The disturbance to the area caused by constructing the site was minimised. Burial 

holes were as small as possible, and back-filled with the extracted materials and COlll

pacted with a "Wacker". It is important that we can be sure that our Il1()aSUJ'(~IIl(,IIt. 
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responses come from the buried objects, and not from the ground disturballC(~ callsed 

around them. To this end some trenches are back-filled with different materials (~.p;. 

graveL mixed ((homogenised) extracted subsoil)) to act as controls. For practical rea

sons as well as to contain disturbance no excavation was deeper than 3 meters. SOIlW 

soil compaction has occurred due to movement of plant. Continued maintenance llIay 

be necessary to level any further subsidence and ensure a uniform level surface with 

even grass cover .. 

Technical Description of Target Objects 

Brief details of the objects present at the site. Actual users of the site call obtain 

detailed drawings of the areas on which they have worked. No objects are buried t.o 

depths of greater than 2 meters to their top surface. 

Area 1 Metal Drums Simulation of buried waste drums. Metal waste disposal (,Oll

tainers, and other similar objects buried from 0.5 to 2.0 meters, infilled with air 

or water. 

Area 2 Plastic Pipes Simulation of Gas and water mains. Standard high-prcssllw 

pipes laid in trenches with back-fill of aggregates as standard for actual pipps. 

A real 2 inch Asbestos main also crosses this area. 

Area 3 Metal and Clay Pipes Buried in cut trenches backfilled with excavat.ed ma

terials, not aggregates. Details of the buried pipes and their oricntatiolls 1II1ly 

be found in Figure B.2 and Table B. 

Area 4 Buried Walls and Trenches Simulation of various wall foundations alld t,n~l}('h 

fills consisting of: modern concrete, corbelled brick, stonc, aggregate, sand, and 
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peat. 

Area 5 Voids Simulation of air-filled voids underground. These consist of plastic 

waste disposal canisters filled as appropriate and sealed. Metal clips for the' lids 

were not fitted. 

Area 6 Area 6. Simulated Piles This area has not been constructed to date. It will 

be built when a drill-rig comes on site to drill the control boreholes. As yet 

there is no definite date for this. 

Area 7 Area 7. Concrete in pits Simulation of isolated blocks in trench. Concrde 

blocks cast in situ in a battered trench with aggregate infill. 

Area 8 Area 8. Metal plates in pits. Determination of resolution of multiple imripd 

metal objects. 6 metal plates buried in a stair-case pattern along the axis of all 

aggregate-filled trench 6 m long, 2 m wide and 2 m deep. 

Area 9 Voids under concrete ground slab Rectangular void spaces (lined with plastic 

casing) underlying concrete slab, partly reinforced with standard re-bar net. 

Area 10 Simulated rail track A small section of light railway track consistiug of ou(' 

rail and two sleepers 



Table B.1: Metal, plastic and clay pipes 

t LD 1 lJepth to 
top (m) 

Ulam \ Length-
(m) (m) Object type 

1 0.7 0.10 6.0 Cast iron or steel pipe 6m long 
2 0.7 0.05 6.0 Cast iron or steel pipe 6m long 
3 0.7 0.10 6.0 Cast iron or steel pipe 6m long 
4 0.7 0.05 6.0 Cast iron or steel pipe 6m long 
5 0.7 0.10 9.0 Clay pipes gm long, socketed but not sealed 
6 0.7 0.100 6.4 Plastic gas main sealed end-caps 
7 0.7 0.05 6.0 Plastic gas supply pipe sealed 

~ 

I Filling I Orientation II 
Any Horizontal 
Any Horizontal 
Any Horizontal 
Any Horizontal 
Any Horizontal 
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Figure B.2: Site plan of Area 3 showing layout of pipes 
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Appendix C 

Effect of Orientations on 

Hyperbolic Signature 

o A B 

.. A1 .... 

:~~~=:-~;~~~~:::-~~--------------- -----. 
----------- --- .. 

Figure C.l: 3D presentation of a buried cylinder with azimuth and vertical orientati 11 

Figure 0.1 shows a subsurface cylinder of radiu R in 3D-spac with an azimu th 

orientation angle a and vertical inclination angle (3. 

From Figures C.1 and 0.2 , from the right-angl d triangl AA1A2 : 
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(C.l) 

where 

AAI = Z+R (G2) 

(C.:3) 

since Z = T then: 

vt 
AAI = 2+R (CA) 

and 

001 = vto + R 
2 

(C.!J) 

and 

A1A2 = (x - xo)sin'Y (G(i) 

Substituting Equations G4, C.4, and C.4 into Equation C.l tog get: 

vt vto . 2 

) 2 ( )2 ("2+ R = T+R + ((X-Xo)SlIl'Y) (C,7) 

Manipulating Equation C.7 leads to: 

( 
t + ;!) 2 _ ((X; xo) sin 'Y) 2 = 1 

to + -;- 2 to + R 
(ex) 
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It was shown in Chapter 4 that the relation between a, tl, and, iH: 

cos, = cos a cos {3 (C.D) 

In the special case when a = 0, then this means that the three pointH: A, AI, 

and A2 are aligned do not form a triangle anymore. Consequently, the relat.ion ill 

Equation C.l is not valid. Instead the new assumption will be: 

Substituting for the values of AAJ, AA2, and AJA2 leads to: 

vt vto . - + R = - + R + (x - xo) sm , 
2 2 

Since a = 0 then, = {3, with manipulation, then Equation C.lI becomes: 

2 
t = -(x - xo) sin{3 + to 

v 

(C.lO) 

(C.lI) 

(C.12) 

It can be seen that Equation C.12 is of a straight line, which meallS that thl' 

resulting signature will not be hyperbolic and hence will not be detected H."i a targpt. 
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Figure C.2: Side view of the buried cylinder in Figure C.2 
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Appendix D 

GSSI SIR ® File Format 

GSSI radar systems are stored in binary as a binary block of data preceded by it 

file header containing information about the site, the data acquisition settings, the 

system configuration and on-board processing parameters. The detailed format of the 

header structure for these files, which are given the extension . dzt, is given below 

in Tables D.I and D.2, as published by GSSI in the RADAN®proccssing HOftWClW 

manual [1]. If tightly packed, the header portion will occupy 1024 bytes (1 kilobyte) 

of memory. 

Table D.l: DZT Date Structure 

Data type Field name Description 
unsigned sec2 5 Second/2 (0-29) 
unsigned min 6 Minute (0-59) 
unsigned hour 5 Hour/2 (0-23) 
unsigned month 5 Day/2 (1-31) 
unsigned year 4 Year-1980(O-127) 
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Table D.2: DZT Header Structure 

~ Data type I Field name ! Description ] 
unsigned short dztJldr _id OxOOFF if header 
unsigned short offset_to_data Offset to data in bytes (1024) 
unsigned short samples_per _scan Samples per scan 
ullsigned short bits_per _sample Bits per data word 
unsigned short amp--ID.idpoint Offset to data mid-point 
ftoat scans_per _second Scans per second 
float scnas_per --ID.etre Scans per meter 
float metres-per --ID.ark meters per mark 
float starLtime_offset Position (ns) 
ftoat totaLtime_range Range (ns) 
unsigned short number-passes Number of passes for 2D files 
long create_date Creation date and time 
long modified_date Last modification date and time 
unsigned short offset_to_gain Offset to range gain function 
unsigned short sizeof _rgain Size of range-gain function 

unsigned short offset-to-text Offset to text 
unsigned short sizeoLtext Size of text 
unsigned short offset_proc-hist Offset to processing history 
unsigned short sizeof _proc~ist Size of processing history 
unsigned short number-oLchannels Number of channels 
float ave_reLdieLperm Average dielectric constant 
float top_in..llletres Top position in metres 
float range_in..llletres Range in metres 
char reserved Reserved 
unsigned short scans_per-pass Scans per pass 
unsigned short line-Ilum line number 
unsigned short starLx Initial line number 
unsigned short start-y Initial station number 
unsigned short end_x Final line number 
unsigned short end_y Final station number 

character dtype Data type 
character antenna Antenna name 
unsigned short channel..mask Active channel mask 
integer checksum Checksum for header l character I variable I Range gain, comments & history 
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Appendix E 

Dielectric Characteristics 

The velocity of electromagnetic wave propagation is governed by the electrical 

permittivity of the medium material, which depends primarily upon its water coJ]

tent. Over the range of frequencies over which GPR operates, water has a relative 

permittivity Er of approximately 80, while the solid constituents of most soils have 

dry relative permittivities between 2 and 9. Although these permittivities vary to an 

extent with frequency, they remain relatively constant for most materials in the mi

crowave frequency range. Table E.l shows the conductivity and relative permittivity 

of a number of common materials, measured at 100 MHz [2, 115]. 
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Table E.l: Typical range of dielectric characteristics of various materials 

II Material type Conductivity (S/m) Relative permittivityrI] 

Air 0 1 

Asphalt, dry 10-3 _ 10-2 2-4 

Asphalt, wet 10-2 _ 10-1 6 - 12 

Clay, dry 10-3 _ 10-2 2-6 

Clay, saturated 10- 1 - 1 15 - 40 

Coal, dry 10-2 3.5 

Coal, wet 10-1 8 

Concrete, dry 10-3 _ 10-2 4 -10 

Concrete, wet 10-2 _ 10-1 10 - 20 

Freshwater 10-4 _ 10-2 81 

Freshwater ice 10-3 4 

Granite, dry 10-8 _ 10-6 5 

Granite, wet 
10-3 _ 10-2 7 

Limestone, dry 10-9 _ 10-6 7 

Limestone, wet 10-2 _10- 1 8 

Permafrost 
10-5 _ 10-2 4-8 

Rock salt, dry 10-4 4-7 

Sand, dry 
10-7 _10-3 4-6 

Sand, saturated 10-4 _ 10-2 10 - 30 

Sandstone, dry 10-9 _ 10-6 2-3 

Sandstone, wet 10-5 _ 10-6 5 -10 

Seawater 4 81 

Seawater ice 10-2 _ 10-1 4-8 

Shale, saturated 10-2 _ 10-1 6-9 

Snow, firm 10-6 _ 10-5 8 - 12 

Soil, sandy, dry 10-4 _ 10-2 4-6 

Soil, sandy, wet 10-2 _ 10-1 15 - 30 

Soil, loamy, dry 
10-4 _ 10-3 4-6 

Soil, loamy, wet 
10-2 _ 10-1 10 - 20 

Soil, clayey, dry 
10-4 _ 10-1 4-6 

I Soil, clayey, wet I 
10-1 - 1 10 -15 

I 

§ The permittivity of free-space, EO = 8.854 X 10-
12 

Fm-
1 
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