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Abstract. Soils can be non-intrusively mapped by observing similar patterns within ground-penetrating 
radar (GPR) profiles. We observed that the intricate and often indiscernible textural variability found within 
a complex GPR image possesses important parameters that help delineate regions of similar soil 
characteristics. Therefore, in this study, we examined the feasibility of using textural features extracted 
from GPR data to automate soil characterizations. The textural features were matched to a "fingerprint" 
database of previous soil classifications of GPR textural features and the corresponding ground truths of 
soil conditions. Four textural features (energy, contrast, entropy, and homogeneity) were selected for 
inputs into a neural-network classifier. This classifier was tested and verified using GPR data obtained 
from two distinctly different field sites. The first data set contained features that indicate the presence or 
lack of sandstone bedrock in the upper 2 m of a shallow soil profile of fine sandy loan and loam. The 
second data set contained columnar patterns that correspond to the presence or the lack of vertical 
preferential-flow paths within a deep loess soil. The classifier automatically grouped each of these data 
sets into one of the two categories. Comparing the results of classification using extracted textural 
features to the results obtained by visual interpretation found 93.6% of the sections that lack sandstone 
bedrock correctly classified in the first set of data, and 90% of the sections that contain pronounced 
columnar patterns correctly classified in the second set of data. The classified profile sections were 
mapped using integrated GPR and GPS data to show surface boundaries of different soil categories. 
These results indicate that extracted textural features can be utilized for automatic characterization of 
soils using GPR data. 
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Introduction 

Subjective interpretation of ground-penetration radar (GPR) patterns, followed by ground-

truth corroboration, is a common method by which one can noninvasively delineate and identify 

subsurface features. Examples are: (1) Identifying preferential subsurface flow pathways 

through which pollutant loaded water may flow (Freeland et al., 2002 a; Gish et al., 2002); (2) 

Detecting water table depths, variations of soil water content, and wetting front (Freeland et al., 

1998; Huisman et al., 2002; Schmaltz et al., 2002; Smith et al., 1992); (3) Estimating the 

thickness and volume of organic materials in soils (Doolittle et al., 1990); (4) Characterizing 

landfill sites (Doolittle et al., 1997; Orlando and Marchesi 2001; Porsani et al., 2004); and (5) 

Mapping tree root systems (Butmor et al., 2003; Hruska et al., 1999; Stokes et al., 2002). 

A few studies report on employing automated methods, rather than subjective visual 

interpretation, for the rapid characterization of GPR data. Al-Nuaimy et al. (2000) developed a 

system of automated targeting of buried utilities and solid objects within GPR patterns. The 

system consisted of a neural-network classifier, a pattern-recognition stage, and pre-processing, 

feature extraction, and image processing stages. They tested the system on GPR patterns 

containing pipes, cables, and anti-personnel landmines. Their results indicated that effective 

automated mapping is possible for such structures. Scott et al. (2000) also proposed a 

procedure that uses image processing and pattern recognition methods to automate 

characterization of GPR data to detect distress on bridge decks, with preliminary testing 

providing good results. Shihab et al. (2002) developed a neural network target identifier based 

on statistical features extracted from GPR patterns. The neural network discriminated between 

signals and other spurious sources of reflections such as clutter. They applied this classifier to a 

variety of GPR data sets gathered from a number of sites and the results showed that the 

classifier was capable of outlining regions of extended targets such as disturbed soil or storage 

tanks, and was able to pinpoint the location of localized targets such as landmines and pipes. In 

a previous study, the authors (Odhiambo et al., 2004) investigated an application of a fuzzy-

neural network (F-NN) classifier for unsupervised clustering and classification of soil profiles 

using GPR imagery, and found that F-NN can supply accurate soil clustering and classification 

based on both the arrangement and properties of individual soil horizons. 

The need for an automated classification system becomes apparent whenever one attempts 

visual interpretation, as GPR data sets collected during a routine field-scale survey are massive. 

The difficulties associated with visual interpretation often limit the use of GPR as a practical, 

widespread tool for soil investigations. A technique that provides automatic characterization of 
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vast quantities of GPR data to classify soils into categories associated with known 

environmental conditions would greatly enhance the usefulness of GPR for environmental 

management, not only by saving time, but also by reducing the probability of misclassification. 

Objectives 
In this study, four textural features (energy, contrast, entropy, and homogeneity) based on a 

co-occurrence matrix, were extracted and used as inputs to a neural network classifier. The 

classifier was used to partition soil profile regions into categories and the results matched to a 

database of previous soil classification that relates textural parameters to known soil 

characteristics. We examined the applicability of such features to automate characterization and 

mapping of soil sections into categories associated with known environmental conditions. The 

method was tested and verified using GPR data sets from two sites. 

Methods and Materials 

Data Collection 
The data used in this study were collected at two sites using a GSSI Subsurface Interface 

Radar (SIR) System 10-A and 200-MHz antenna (Model 3105) (Geophysical Survey Systems, 

Inc., New Salem, NH). This system measures the time that it takes electromagnetic energy to 

travel from the antenna to an interface and back. The control settings used on the SIR 10-A unit 

were as shown in table 1. The first site is located at the University of Tennessee Agricultural 

Experiment Station (Plateau Experiment Station), near Crossville, TN. The soils at this site are 

 
 
 
 

Parameter Site 1 Site 2 
 
Antenna Model 1 
Range 
Samples/Scan 
Bits/Sample 
Scans/Second 
# Gain points 
Horizontal IIR Running Average 
Vertical IIR High Pass 
Vertical IIR Low Pass 
 

 
3105 
60 ns 
512 
16 
50 
5 
5 
#poles=2, Freq=65 
#poles=2, Freq=600 

 
3105 
75 ns 
512 
16 
50 
5 
5 
#poles=2, Freq=130 
#poles=2, Freq=1065 

 
 

Table 1. Control settings used on SIR 10-A unit 
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fine sandy loam and loam, and are underlain by sandstone bedrock in the upper 2 m of the soil 

profile. The second site is located at the Ames Plantation near Grand Junction, TN. The soils at 

this site consist of loess overlying alluvium deposits underlain by tertiary-aged sand deposits. 

This site was specially prepared for a study of the preferential flow paths by applying water into 

a large ring infiltrometer constructed at the center of the site, and taking GPR surveys in a spiral 

path around the infiltrometer at intervals after water application. 

Feature Extraction 

Ground penetration radar data sets are typically very large and contain a lot of information 

that is redundant and superfluous for soil characterization. The purpose of feature extraction is 

to reduce the dimensionality of the data and convert it to variables that are more suitable for 

discrimination between soil categories. The GPR data are displayed as a two-dimensional array 

of numbers, where each value in the array represents the reflective intensity of multivariate soil 

properties in the soil profile. The vertical direction of such a display is time, which can be 

converted to depth once the signal velocities are known, and the horizontal direction is linear 

distance on the ground surface. The reflective intensities are represented in the data by values 

that range from 0 to 65535, where 0 and 65535 represents the maximum limits of reflection, and 

the value 32768 represents no reflection as shown in figure 1. For computational efficiency, the 

data were normalized to the range 1 to 256.  

 

 

 

 

 

 

 

 

 

 

 

 

0 32768 65535 

Amplitude 

Tim
e in ns 

Figure 1. A typical single waveform showing the maximum limits of reflection to the
left and right side. 
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We have observed that the intricate and often indiscernible textural variability found within a 

complex GPR image possesses important parameters that help delineate regions of similar soil 

characteristics. Several methods have been used to extract textural features from digital images 

for use in image classification. Haralick et al. (1973) developed a conceptual framework of 

measures from which textural features are derived. The framework is based on the co-

occurrence matrices, which define the spatial relationship of pairs of values of pixels in a digital 

image. The co-occurrence matrix of a GPR data set, P(i,j,d,θ), is the frequency of occurrence in 

the data set of pairs of reflective intensity levels (i and j), that are separated by a certain 

distance (d) and lie along a certain direction (angle θ). When the GPR data set is read through a 

classifier window passed along the linear distance of the GPR display, the frequencies for 

angles quantized to 45o intervals for each window are expressed as follows:  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ){ }jnmIilkIdnlmkNMNMnmlkdjiP o ===−=−×××∈== ,,,,,0,,,#0,,, θ   (1) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ){ }jnmIilkIdnldmkNMNMnmlkdjiP o ===−=−×××∈== ,,,,,,,,#45,,, θ  (2) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ){ }jnmIilkInldmkNMNMnmlkdjiP o ===−=−×××∈== ,,,,0,,,,#90,,, θ  (3) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ){ }jnmIilkIdnldmkNMNMnmlkdjiP o ===−=−×××∈== ,,,,,,,,#135,,, θ  (4) 

where # denotes the number of elements in the set, M×N is the size of the classifier window, i,j 

= 1…256 (number of possible of reflective intensity levels), k,m = 1…M (image width), and l,n 

=1…N (image height). The frequencies of occurrence are inherently not invariant under 

rotations. To alleviate these directional biases, the frequencies were summed as follows: 

( ) ( ) ( ) ( )oooo
ij djiPdjiPdjiPdjiPP 135,,,90,,,45,,,0,,, +++=  (5) 

Haralick et al. (1973) proposed 14 measures of textural features, which are derived from the 

co-occurrence matrices, and each represents certain image properties such as coarseness, 

contrast, homogeneity, and texture complexity. For this study four commonly used textural 

features (equations 7 to 8), were extracted and used as inputs to the neural network classifier. 

1. Energy: ∑=
ij

ijPf 2
1  (7) 

2. Entropy: ∑=
ij

ijij PPf log2  (8) 
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3. Homogeneity: ∑ −
=
ij

ij

ji
P

f3  (9) 

4. Contrast: 2
4 ij

ij
Pjif ∑ −=   (10) 

where Pij is the sum of frequency of occurrence in the data set of pairs of reflective intensity 

levels (i and j) calculated in equation (5).  

Relational Database 
A relational database of previous soil classifications of GPR textural patterns, soil 

conditions, and corresponding ground-truths was constructed. The textural features were 

extracted from representative sections of GPR data sets that contain patterns associated with 

known environmental conditions. At Plateau Experiment Station, textural features were 

extracted from representative sections of the GPR data that are associated with the absence of 

sandstone bedrock (see figure 2). At Ames Plantation, textural features were extracted from 

representative sections of the GPR data that show pronounced columnar patterns occurring in 

and around the alluvium/Tertiary sand interface (see figure 3). Freeland et al., (2002 a) found 

these columnar patterns to be associated with vertical preferential flow paths.  

 

 

 

 

 

 

 

 

 

 

 

The database items were organized into two tables from which data can be accessed and 

reassembled to determine soil categories. Table 2 contains the extracted textural parameters 

and the assigned class. Each row contains a unique instance of data for the categories defined 

by parameters in the columns. The textural parameters in table 2 are defined in equations (7) to 

  

  

  

A   B   C   D   A   B   C   D   

Figure 2. Examples of GPR profile sections
at site 1. A and B represent conditions with
solid bedrock, C represents conditions with
fractured bedrock, and D represents
conditions with no bedrock.  

Figure 3. Examples of GPR profile sections
at site 2. A and B represent conditions with
pronounced columnar patterns associated
with vertical preferential flow paths.  C and
D represent conditions with few or no
columnar patterns. 
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(10). Table 3 contains ground-truth information on soil condition at the sites and the assigned 

category. The two tables relate through the class fields in table 2 and the category field in table 

3. The soil condition is determined from GPR data by using the relationship between tables 2 

and 3. The relational database has the important advantage of being easy to extend when new 

data on soil categories becomes available. 

Table 2. Extracted textural parameters and the assigned classes 
 
 
 
 
 
 
 
 
 
 
* Class 2 is not a unique category. It represents a conglomeration of different bedrock depths, 
thickness, and state, i.e., solid and/or fractured. 
 
 
 
Table 3. Ground-truth information on soil conditions and the assigned categories 
 

Soil Conditions Category

Site # 1 
Sandstone-bedrock absent 
Sandstone-bedrock present 

Site #2 
Preferential flow paths 
No preferential flow path 

 
 
1 
2 
 
 
 
3 
4 
 

 
 
Neural Network Classifier 

Neural networks have become popular in classifying complex data sets because of 

their adaptive, accurate, and rapid processing properties. Several types of neural 

network classifiers have been used in characterization and classification of digital data. 

These include the multi-layer perceptron (MLP), the learning vector quantization (LVQ), 

the self-organizing feature maps, and the radial basis function classifiers (Looney, 

Class Textural Parameters 
 f1 f2 f3 f4 
 
1 
2 
3 
4 

 
0.8675

* 
0.0239
0.0949

 
0.0065

* 
0.0039
0.0444

 
0.0879

* 
1.5812
2.2415

 
0.0065

* 
0.0470
0.0397
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f2 

f3 

f4 

f1 

C2

Cn 

C1 

Figure 4. Neural network classifier 

1997). In this study we used a two–layer perceptron (figure 4) that performs supervised 

classification of soil profile strips by comparing each strip’s textural features to samples 

in the database (C1, C2, …, Cn) that represent known soil conditions. The four textural 

features (f1, f2, f3, and f4) extracted from each strip are used as inputs to the network, 

and the number of output nodes is equal to the number of pre-determined soil 

categories (n). The classification of a soil profile strip into the categories existing in the 

database uses the concept of maximum likelihood. We define a function D(X,C), called 

the degree of difference, to represent the difference between a profile strip X and a 

category C. This function maps two given vectors (X and C) to a real number (D). The 

patterns of each soil category are stored in the links (weights) of the neural network 

during the classification process. A threshold value φ is predefined as a crossover 

value. The implementation scheme is as follows: Calculate the degree of difference, 

D(X,C), between the profile strip, X, and each category, C, in the database. The function 

D(X,C) is defined as the Euclidean distance represented by: 

( )
2/1

1

2),( 







−= ∑

=

M

j
jj cxCXD   (11) 

where, xj and cj are elements in the column vectors representing patterns for X and C, and j is 

the row number, and M is the total number of rows. Next the smallest degree of difference, Dmin, 

is found and compared with a predefined crossover value φ. If the degree of difference between 

a given profile strip, X, and a category, C, is less than the crossover value, the strip belongs to 
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the category C. Otherwise, the strip does not belong to the category and is rejected. The 

procedure is repeated for each of the unique categories in the database. 

Implementation and Results 

The method was implemented using a MATLAB program developed for extracting textural 

features from GPR data, characterization of soil profile strips using the neural network classifier 

and a relational database, and mapping using an integrated GPR and GPS data sets to show 

surface boundaries of different soil categories. The method was tested and verified using GPR 

data collected from the study sites at Plateau Experiment Station and Ames Plantation. The 

crossover parameter (φ) was optimized for each site based on texture type. The database of the 

two study sites consisted of GPR images having different types of texture, and therefore, a 

common φ value was rather difficult to find. At the Plateau Experiment Station, the data show 

underlying bedrock, which contains features that are associated with three known environmental 

conditions: solid bedrock, fractured bedrock, and no bedrock. The data for this site was divided 

into 604 profile strips (510-pixels depth by 100-pixel width), which were classified to identify 

areas with no bedrock in the 2 m depth from the rest of the area using a φ value of 1.2. The 

results are shown in figure 5 (a-c). Figure 5(a) shows how the program separated the soil profile 

into two categories (areas without bedrock and areas with bedrock). Out of the 604 profile strips, 

47 were classified as having no bedrock in the 2 m depth. Careful visual interpretation of the 

data found 44 profile strips indicating the absence of bedrock in the 2 m depth. Comparing the 

results of classification using extracted textural features to visual interpretation found 93.6% of 

the profile strips lacking sandstone bedrock correctly classified and 6.4% misclassified. Figure 

5(b) shows how markers on the GPR data were assigned to the different categories and surface 

plotted. Figure 5(c) is a surface map showing areas without and with sandstone bedrock in the 

2 m depth. The locations of the areas identified as having no bedrock matched closely to the 

locations identified as having the bedrock at a depth greater than 1.5 m by Freeland et al. (2002 

b) through a study, which used physical probing to determine the depth to bedrock. The areas 

with depth to bedrock greater than 1.5 m included areas without bedrock in the 2 m depth. 

At the Ames Plantation site, sections of the GPR data shows pronounced columnar patterns 

occurring in and around the alluvium/Tertiary sand interface. These columnar patterns have 

been associated with vertical preferential flow paths (Freeland et al., 2002 a). The data for this 

site was divided into 305 soil profile strips (510-pixel depth by 100-pixel width), which were 

classified to identify areas with pronounced columnar patterns from the rest of the area using a 

φ value of 0.5. The results are shown in figure 6(a-c). Figure 6(a) shows how the program 
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separated the soil profile into two categories (areas that exhibited pronounced columnar 

patterns and areas that exhibited few or no columnar patterns). Out of the 305 profile strips, 126 

were classified as exhibiting pronounced columnar patterns, while careful visual interpretation 

identified 140 as exhibiting pronounced columnar patterns. Comparing the results of 

classification using extracted textural features to visual interpretation found 90.0% of the profile 

strips having pronounced columnar patterns correctly classified and 10.0% misclassified. Figure 

6(b) shows how markers on the GPR data were assigned to the different categories and surface 

plotted, and figures 6(c) is a surface map showing areas with pronounced columnar patterns 

and hence high soil water content, and areas with few or no columnar patterns and hence low 

soil water content. 

Conclusions 

The results of this study indicate that textural features extracted from GPR data can be used 

to automate soil characterization. The method was demonstrated using fairly simple GPR data 

obtained from two distinctly different field sites. The soil conditions were determined by 

matching the extracted textural features to "fingerprints" in a relational database of previous soil 

classifications of GPR textural features and the corresponding ground truths of soil conditions. 

Only four textural parameters were used in this study, but the effects of additional textural 

parameters on the accuracy of prediction could be investigated in future studies. The relational 

database can be expanded when new data on soil categories become available. A neural 

network classifier was used to assign data to the known soil categories. The φ values are 

optimized based on the type of texture, and hence no single φ value is applicable to all types of 

GPR data. The results of soil characterization using extracted textural features was found to be 

in close agreement with results obtained by careful visual interpretation of the data (93.6% 

correct classified for site 1 and 90% correct classified for site 2.) The classified soil profile 

sections were mapped using an integrated GPR and GIS data to show surface boundaries of 

different soil categories. 
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Figure 5. (a) Shows how the program separated the soil profile into two categories (areas
without bedrock and areas with bedrock), (b) shows how markers on the GPR data were
assigned to the different categories and surface plotted, and (c) is a surface map showing areas
without and with sandstone bedrock. 
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Figure 6. (a) Shows how the program separated the soil profile into two categories: areas which
exhibited pronounced columnar patterns as class 1, and areas which exhibited few or no
columnar patterns as class 2, (b) shows how markers on the GPR data were assigned to the
different categories and surface plotted, and (c) is a surface map showing areas with
pronounced columnar patterns and hence high soil water content, and areas with few or no
columnar patterns and hence low soil water content. 
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