58 research outputs found

    Economic aspects of FPGA technology

    Full text link
    En este PFC se ha recogido y analizado diversa información acerca de la tecnología de Xilinx. Incluyendo los datasheets de Xilinx notas del E.E. Times, informes financieros, y artículos de internet. Todos los datos se han unificado en unas ciento cincuenta figuras y tablas. Además, se han revisado los proceedings de la conferencia FPL desde 1991 (la primera en Oxford) hasta 2013 (el último en Porto).In this PFC, diverse information about Xilinx technology has been collected and analyzed. It includes Xilinx datasheets, notes on E.E. Times, financial reports, and Internet articles. All the data have been unified in around one hundred and fifty figures and tables. In addition, FPL proceedings from 1991 (the first in Oxford) to 2013 (the last in Porto) have been revised

    Operating System Concepts for Reconfigurable Computing: Review and Survey

    Get PDF
    One of the key future challenges for reconfigurable computing is to enable higher design productivity and a more easy way to use reconfigurable computing systems for users that are unfamiliar with the underlying concepts. One way of doing this is to provide standardization and abstraction, usually supported and enforced by an operating system. This article gives historical review and a summary on ideas and key concepts to include reconfigurable computing aspects in operating systems. The article also presents an overview on published and available operating systems targeting the area of reconfigurable computing. The purpose of this article is to identify and summarize common patterns among those systems that can be seen as de facto standard. Furthermore, open problems, not covered by these already available systems, are identified

    SRAM-Based FPGA Systems for Safety-Critical Applications: A Survey on Design Standards and Proposed Methodologies

    Get PDF
    As the ASIC design cost becomes affordable only for very large-scale productions, the FPGA technology is currently becoming the leading technology for those applications that require a small-scale production. FPGAs can be considered as a technology crossing between hardware and software. Only a small-number of standards for the design of safety-critical systems give guidelines and recommendations that take the peculiarities of the FPGA technology into consideration. The main contribution of this paper is an overview of the existing design standards that regulate the design and verification of FPGA-based systems in safety-critical application fields. Moreover, the paper proposes a survey of significant published research proposals and existing industrial guidelines about the topic, and collects and reports about some lessons learned from industrial and research projects involving the use of FPGA devices

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria

    OLT(RE)2: an On-Line on-demand Testing approach for permanent Radiation Effects in REconfigurable systems

    Get PDF
    Reconfigurable systems gained great interest in a wide range of application fields, including aerospace, where electronic devices are exposed to a very harsh working environment. Commercial SRAM-based FPGA devices represent an extremely interesting hardware platform for this kind of systems since they combine low cost with the possibility to utilize state-of-the-art processing power as well as the flexibility of reconfigurable hardware. In this paper we present OLT(RE)2: an on-line on-demand approach to test permanent faults induced by radiation in reconfigurable systems used in space missions. The proposed approach relies on a test circuit and on custom place-and-route algorithms. OLT(RE)2 exploits partial dynamic reconfigurability offered by today’s SRAM-based FPGAs to place the test circuits at run-time. The goal of OLT(RE)2 is to test unprogrammed areas of the FPGA before using them, thus preventing functional modules of the reconfigurable system to be placed on areas with faulty resources. Experimental results have shown that (i) it is possible to generate, place and route the test circuits needed to detect on average more than 99 % of the physical wires and on average about 97 % of the programmable interconnection points of an arbitrary large region of the FPGA in a reasonable time and that (ii) it is possible to download and run the whole test suite on the target device without interfering with the normal functioning of the system

    Unified Compact ECC-AES Co-Processor with Group-Key Support for IoT Devices in Wireless Sensor Networks

    Get PDF
    Security is a critical challenge for the effective expansion of all new emerging applications in the Internet of Things paradigm. Therefore, it is necessary to define and implement different mechanisms for guaranteeing security and privacy of data interchanged within the multiple wireless sensor networks being part of the Internet of Things. However, in this context, low power and low area are required, limiting the resources available for security and thus hindering the implementation of adequate security protocols. Group keys can save resources and communications bandwidth, but should be combined with public key cryptography to be really secure. In this paper, a compact and unified co-processor for enabling Elliptic Curve Cryptography along to Advanced Encryption Standard with low area requirements and Group-Key support is presented. The designed co-processor allows securing wireless sensor networks with independence of the communications protocols used. With an area occupancy of only 2101 LUTs over Spartan 6 devices from Xilinx, it requires 15% less area while achieving near 490% better performance when compared to cryptoprocessors with similar features in the literature

    Optically Powered Highly Energy-efficient Sensor Networks

    Get PDF
    In optically powered networks, both, communication signals and power for remotely located sensor nodes, are transmitted over an optical fiber. Key features of optically powered networks are node operation without local power supplies or batteries as well as operation with negligible susceptibility to electro-magnetic interference and to lightning. In this book, different kinds of optically powered devices and networks are investigated, and selected applications are demonstrated

    A real-time capable dynamic partial reconfiguration system for an applicationspecific soft-core processor

    Get PDF
    Modern FPGAs (Field Programmable Gate Arrays) are becoming increasingly important when it comes to embedded system development. Within these FPGAs, soft-core processors are often used to solve a wide range of different tasks. Soft-core processors are a cost-effective and time-efficient way to realize embedded systems. When using the full potential of FPGAs, it is possible to dynamically reconfigure parts of them during run time without the need to stop the device. This feature is called dynamic partial reconfiguration (DPR). If the DPR approach is to be applied in a real-time application-specific soft-core processor, an architecture must be created that ensures strict compliance with the real-time constraint at all times. In this paper, a novel method that addresses this problem is introduced, and its realization is described. In the first step, an application-specializable soft-core processor is presented that is capable of solving problems while adhering to hard real-time deadlines. This is achieved by the full design time analyzability of the soft-core processor. Its special architecture and other necessary features are discussed. Furthermore, a method for the optimized generation of partial bitstreams for the DPR as well as its practical implementation in a tool is presented. This tool is able to minimize given bitstreams with the help of a differential frame bitmap. Experiments that realize the DPR within the soft-core framework are presented, with respect to the need for hard real-time capability. Those experiments show a significant resource reduction of about 40% compared to a functionally equivalent non-DPR design

    Optically Powered Highly Energy-efficient Sensor Networks

    Get PDF
    In optically powered networks, both, communication signals and power for remotely located sensor nodes, are transmitted over an optical fiber. Key features of optically powered networks are node operation without local power supplies or batteries as well as operation with negligible susceptibility to electro-magnetic interference and to lightning. In this book, different kinds of optically powered devices and networks are investigated, and selected applications are demonstrated

    Evaluation of Large Integer Multiplication Methods on Hardware

    Get PDF
    corecore