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One of the key future challenges for reconfigurable computing is to enable higher design productivity and a more easy way to use
reconfigurable computing systems for users that are unfamiliar with the underlying concepts. One way of doing this is to provide
standardization and abstraction, usually supported and enforced by an operating system. This article gives historical review and a
summary on ideas and key concepts to include reconfigurable computing aspects in operating systems. The article also presents an
overview on published and available operating systems targeting the area of reconfigurable computing. The purpose of this article
is to identify and summarize common patterns among those systems that can be seen as de facto standard. Furthermore, open

problems, not covered by these already available systems, are identified.

1. Introduction

Reconfigurable computing is a rapidly emerging computing
paradigm, not only in research but yet also in real applica-
tions. This is indicated by the following facts: Intel recently
bought Altera, several companies including AMD, ARM,
Huawei, IBM, Mellanox, Qualcomm, and Xilinx have joined
into consortiums to define Cache Coherent Interconnect for
Accelerators (CCIX [1]) or to harmonize the industry around
heterogeneous computing (HSA Foundation [2]).

Reconfigurable computing allows introducing new flex-
ible computing architectures but also contains some chal-
lenges. The first of all is the productivity gap: designing prob-
lem specific hardware is something different than writing
software, targeting a conventional computer architecture. The
differences arise from the underlying methodologies and the
required time to perform a design iteration step; software is
compiled very fast whereas hardware synthesis is a very time
consuming process.

This productivity gap hinders reconfigurable computing
to spread faster. Fortunately, several approaches are emerging
to tackle the gap: High-Level-Synthesis is an approach to raise
the level of abstraction, at which hardware is designed. It is
comparable with the paradigm shift in software design, when

the first high level languages were introduced to overcome the
task of implementing software entirely in assembler.

Another approach to overcome the productivity gap is
standardization. By providing a well-defined set of interfaces
and protocols, it will be easier to enable more developers to
design hardware against these unified models. Standardiza-
tion can be done at different levels; the lowest one is defining
a standardized set of interfaces and protocols at the hardware
level (see CCIX consortium [1]). Another important level
is the operating system level. By providing standardized
interfaces at the level of the operating system, a unified view is
made available not only for developers but also for the users.
The user does not need to care about the details; everything
is just working out of the box.

Related to reconfigurable computing, the idea of integrat-
ing reconfigurable components into the operating system is
as nearly as old as reconfigurable computing itself, starting
at the end of the 1990s. This article will provide an overview
on the different aspects, needed to care about, when inte-
grating reconfigurable computing into an operating system.
Furthermore, this article will also present an overview and
a summary on different operating system implementations
that have been published in the past. The purpose of this
retrospective analysis is to understand common patterns



currently used and identify open or remaining problems that
need further or maybe renewed research interest. Therefore
a detailed analysis and benchmark driven comparison of the
presented system are not within the scope of this article.

2. Reconfigurable Computing:
Challenges for Operating Systems

According to [3], one of the major tasks of an operating
system is to hide the hardware and present programs (and
their programmers) with nice, clean, elegant, and consistent
abstractions to work with instead. In other words, the two
main tasks of an operating system are abstraction and resource
management.

Abstraction is a powerful mechanism to handle complex
and different tasks (hardware) in a well-defined and common
fashion. One of the most elementary OS abstractions is
a process. A process is a running application that has the
perception (provided by the OS) that it is running on its
own on the underlying virtual hardware. This can be relaxed
by the concept of threads, allowing different tasks to run
concurrently on this virtual hardware to exploit task level
parallelism. To allow different processes and threads to
coordinate their work, communication and synchronization
methods have to be provided by the OS.

In addition to abstraction, resource management of the
underlying hardware components is necessary because the
virtual computers, provided to the processes and threads
by the operating system, need to share available physical
resources (processors, memory, and devices) spatially and
temporarily.

With the introduction of run-time reconfigurable FPGAs
in the late 1990s, the idea of integrating and supporting
them in operating systems was developed and rapidly gained
research interest. One of the first papers is [4] (1996): The
overall intention is to make the FPGA hardware available as
an extra resource to operating systems. In doing so, the FPGA
hardware can be viewed variously as having the nature of pro-
cessors, memory or input/output devices, or some combination
of these. The above-mentioned paper also stated two general
usage scenarios for reconfigurable logic, which are in use till
today:

(i) Usage as accelerator to support a general purpose
processor by performing computational functions
(sea of accelerators).

(ii) Usage as cooperating parallel processing elements,
interacting with their neighbors (parallel harness
model).

For these usage models, Wigley and Kearney ([5] (2001) and
[6] (2002)) identified key OS services to support reconfig-
urable computing within an operating system:

(a) Application loading
(b) Partitioning

(c) Memory management
(d) Scheduling

(e) Protection and I/O
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As time evolved and thereby size and speed of FPGAs
increased an additional usage model was proposed (around
mid-2000s):

(iii) Usage as additional but independent processing ele-
ment that is capable of not only performing com-
putational functions, but also executing usage of the
FPGAS’ own tasks.

The above identified key OS services are also required for
this usage model, but another was identified to be important,
especially for calculation performance reasons:

(f) Communication and synchronization

The remainder of this section presents the different ideas
and proposal for integrating reconfigurable computing into
operating systems according to the above OS services related
taxonomy.

2.1. Partitioning. The problem of partitioning reconfigurable
logic can be solved as a resource management task inside the
operating system. FPGAs consist of numerous small config-
urable blocks (so called Configurable Logic Block (CLB), to
implement logic functions and registers) and a configurable
routing network between them. Nowadays, FPGAs also
contain dedicated functional elements (DSPs, BlockRAM) to
save CLBs to instantiate such frequently used elements. In
the following, CLBs, BlockRAMs, DSPs are summarized as
functional resources and the configurable routing network ele-
ments are summarized as routing resources. At the operating
systems level, reconfigurable logic is usually not managed
on the fine grained level of CLBs. At operating system
level reconfigurable areas are managed at the granularity
level of reconfigurable modules. The reconfigurable areas are
constituted by a number of adjacent functional and associated
routing resources. Instantiating a reconfigurable module
inside a reconfigurable area means configuring the functional
and routing resources so that the reconfigurable area pro-
vides the functionality of the reconfigure module. Different
models, how those reconfigurable areas are manageable by
an operating system and how reconfigurable modules can
be instantiated on them, were proposed. Care has to be
taken on terminology when comparing different systems.
Different systems of different authors sometimes use the same
terms for different architecture styles which might lead to
misunderstanding. For the reason the following definitions
are given (based on [7]) and used within this article.

As a first solution the reconfigurable logic is divided into
several reconfigurable areas, called islands. A reconfigurable
module can be instantiated inside such a reconfigurable area.
It is not intended to allocate one reconfigurable module
across more than one reconfigurable area.

This solution is commonly used in research proposals
today because it is supported by partial reconfiguration
design flows of commercial tools. The number of reconfig-
urable resources inside a reconfigurable area has to satisfy the
footprint of the “largest” reconfigurable module that might
be instantiated in it. Based on this worst case dimensioning
of the reconfigurable area, for all “smaller” reconfigurable
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modules there will be unused reconfigurable resources. This
is called internal fragmentation and it is one of the main
disadvantages of the “Island” solution.

The islands solution can be applied in several ways, first
by taking advantage of dynamic partial reconfiguration or
second by using several FPGAs, where each FPGA represents
an entire island [8].

In opposition to the island solution, ID slots and 2D grids
architectures were proposed. In these solutions, reconfig-
urable areas are placed on a one-dimensional array of the so
called slots or a two-dimensional grid. Reconfigurable mod-
ules can be instantiated over adjacent reconfigurable areas
according to their reconfigurable resources requirements.
This solution helps to reduce the effects of internal frag-
mentation but requires defragmentation techniques based on
relocation to reduce external fragmentation.

The 1D slot solution (discussed in [7, 9,10]) is not natively
integrated in conventional commercial synthesis tools. How-
ever, as most FPGAs are configured on a column or row based
mechanism, it is possible to adopt those synthesis tools for
1D slot solutions, as available partial reconfiguration design
flows generate configuration files for columns of an FPGA.
The relocation of reconfigurable modules remains a problem.

The 2D grid solution was examined and discussed in
several early publications, [5, 11, 12] (around 2000). However,
as this approach is not supported by commercial design flows
for FPGAs, the islands style solution is dominant in current
publications. Nevertheless, “newer” publications based on the
2D grid solutions can be found occasionally ([13] (2008) and
[14] (2011)).

2.2. Application Loading/Abstraction. The intention behind
reconfigurable computing is to use reconfigurable resources
to gain an increase in computational performance, reduce
power consumption, or minimize hardware costs. These
gains are achieved by transferring parts of or even an entire
application from a software solution to a dedicated hardware
solution. For the operating system, it is necessary to have
an internal representation for these hardware supported
functionalities that allows controlling them and also provides
the possibility of integrating/using them in conventional
software applications.

If the reconfigurable module acts as a slave of the main
processing units (CPUs) of an architecture and therefore is
fully dependent and controlled by a CPU it is called an accel-
erator unit. The usage of accelerator units is a common way of
using reconfigurable logic to improve applications computa-
tional performance and/or power consumption today and is
supported by toolchains of commercial FPGA vendors. Inside
the operating system, the accelerator unit is controlled like
a conventional device with the abstraction mechanisms of a
device driver. Several publications exist on how to define a
standardized interface for those accelerator units and how
they can be handled in a standardized way by providing
libraries, for example, HybridOS (2007) [15] and LEAP (2011)
(16, 17].

If the reconfigurable module acts as processor equivalent
which is interacting with the CPUs by means of communica-
tion and synchronization it is called hw-application. The usage

of hw-applications is a hot topic in current research issues
regarding operating systems and reconfigurable computing.
Depending on the application area and memory coupling
mechanisms, the terms hw-task, hw-process, and hw-thread
can be found in publications, emphasizing the application
area or method. The term hw-task can be found in several
real time oriented proposals. If hw-application is strictly
separated from its software counterparts and communication
is usually implemented by message passing mechanisms it
is called hw-process (BORPH (2007) [8]). On the contrary,
hw-application is called hw-thread, if the hw-application is
memory coupled and directly interacts with its software
counterparts. This requires sophisticated communication
and synchronization methods. Several publications using
this abstraction for hw-applications extend the well-known
POSIX thread model.

As the hw-application solution was and still is in focus of
current reconfigurable computing operating systems research
publications, the remainder of this article will focus on this
solution.

2.3. Placement, Scheduling, and Preemption. In conventional
operating systems, a task (or process or thread) is subject to
scheduling and placement. This task involves the questions:
when (scheduling) and where (placement) is a task executed?
Can a started task be preempted by the operating system?
is a schedule calculated at system creation time or can it be
adapted at run-time?

In the scope of reconfigurable computing, placement
answers the question, onto which reconfigurable area(s)
hw-application is configured. Depending on the underlying
architecture (islands or slots/grids) the possibilities differ. For
island based architectures, the only important aspect is as
follows: does the hw-application fit into all or only some
reconfigurable areas and which of those areas are available
(not occupied by other hw-applications)? For slots/grids
based architecture another degree of freedom is available: As
the hw-application can cover some adjacent reconfigurable
areas, a rearrangement of the new hw-application is needed
and/or the currently configured hw-applications need to be
replaced and rerouted, due to external fragmentation issues.
Examples for placement and scheduling strategies targeting
slot/grid based architectures can be found in Bazargan et
al. (2000) [18], Teich et al. (2001) [19], Steiger et al. [20],
Pellizzoni and Caccamo (2007) [21], Koch et al. (2009) [22],
and Ahmadinia et al. (2010) [23]. However most of these
works either are theoretical or evaluated their proposals by
simulation only.

The question when hw-application is configured into
the reconfigurable area(s) is subject of the operating system
task scheduling. An important aspect to consider here is to
take into account the required reconfiguration time. It might
be beneficial to delay the instantiation of hw-application:
an island might be available in the future, due to another
hw-application finishing its execution and the afterwards
available island allows reducing internal fragmentation. In
other words, in the future, an island might be available, where
the needed hw-application (resource footprint) “fits” better in
terms of unused reconfigurable resources.



The above discussion focused on executing hw-appli-
cation in hw. However, some publications propose the idea to
allow an application to be executed either as sw on a CPU or
in hw. The idea is to extend the executable file format to even
hold configuration data and give the scheduler the freedom to
execute an application in HW or SW. OS4RS, BORPH, CAP-
OS, and RTSM are examples implementing this approach.

The first operating systems for conventional computer
architectures implemented a single-tasking strategy. Once
a single task was started, it held the processing element
(CPU) until it finished. As an enhancement, multitasking was
developed to allow the temporal sharing of the processor, first
by cooperative multitasking where a task has to release the
processor voluntarily and finally by preemptive multitasking,
where a task is forced to release the processor after a given
time, coordinated by the schedule of the operating system. In
a multitasking environment, when releasing and assigning a
task from the processor, a context switch occurs.

A reconfigurable area can, in theory, also be used by hw-
applications in those three ways. To allow multitasking, the
“context” of hw-applications needs to be extracted, saved, and
restored. The context of a software application is given by
the contents of its memory and processor registers. For hw-
application the context is given by its memory contents and
all storing elements (flip-flops, block RAMs, and FIFOs) of
the occupied reconfigurable area(s). As extracting the current
content of all memory elements of a reconfigurable area
is not that easy on commercial FPGAs, the single-tasking
approach is commonly used. However, some publications
provide a dedicated mechanism for “context” extraction
and restoration of their reconfigurable modules to allow
multitasking (cooperative (ReconOS [24], OS4RS [25]) or
preemptive (RTSM [26])) approaches. Further discussions
of details on possible hw-context switching strategies can be
found in [27, 28].

A schedule can be calculated statically at compiling/
synthesis time. This is only applicable, when the number,
execution, and reconfiguration time and occurrence of hw-
applications are known before execution, which might be
given for real time applications. A more dynamic schedul-
ing is also possible and several hw-application scheduling
strategies have been summarized, compared, and evaluated
in [29, 30].

2.4. Communication and Synchronization. In conventional
operating systems the applications (tasks, processes, and
threads) can communicate with each other by means of
shared memory or message passing methods. However, mes-
sage passing is an operating system abstraction usually imple-
mented on the basis of shared memory, where the operating
system handles synchronization issues for the applications.

When operating systems have to support reconfigurable
computing things get more complicated. Communication
between sw- and hw-applications has to be provided, and also
dedicated hw-to-hw-application communication might be
required or is beneficial for performance, because it bypasses
a time consuming hw-to-sw-to-hw communication.

How communication is enabled mainly depends on the
underlying architecture (bus based versus NoC-based, one
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channel for all or dedicated point-to-point channels, message
passing based versus shared memory based). However the
operating system is in charge of managing and control-
ling those communication possibilities and providing sw-
developers with unified abstraction.

Furthermore, synchronization mechanisms need to be
extended onto reconfigurable hw. This requires providing
mutexes or semaphores in hardware.

To provide a standardized communication and synchro-
nization scheme is a requirement for higher productivity at
design phase and computational performance at run-time.
Therefore, several publications focus on this topic, without
providing full operating system capabilities. Hence, some of
these frameworks are summarized in Section 3.2.

2.5. Protection and I/0. Operating systems provide mech-
anisms to separate applications against each other, so that
applications cannot influence others or even the operating
system itself. This is supported by the hardware, firstly
by implementing different privilege levels and secondly by
memory management units. In conventional architectures
the memory management protection mechanism is extended
to I/O with IOMMUs. The reason is the possibility of an
intelligent 1/0O device (embedded systems inside another
system) to access main memory by means of DMA and
therefore corrupt the memory contents of an application
or the OS. Following the same argumentation, the MMU
mechanism has also to be applied to hw-applications.

Another important aspect related to protection is mal-
ware. sw-applications can be infected by malware. In recon-
figurable computing, malware can also be part of hw-
application. This problem has already been identified by
Wigley and Kearney in 2002 [6]. However, only little research
effort has been spent on this issue in the past.

3. Proposed and Published Systems

In the following several frameworks and operating system
extensions targeting issues for reconfigurable computing
(as discussed in the previous section) are presented. For
each system, the underlying hardware architecture and
used/proposed operating system concept is given. A detailed
comparison of the systems is beyond the scope of this article.
However, it is highlighted in the systems short summary
when one of the systems references provides a qualitative
comparison of selected systems.

3.1. Early Ancestors. 'The systems discussed in this subsection
present some of the first implementations and ideas on
operating system support for reconfigurable computing.

3.1.1. Brebner (1996). Based on Xilinx XC6200 FPGA Brebner
[4] was one of the first to present the idea of an operating sys-
tem supporting reconfigurable computing. Brebner coined
the term “virtual hardware” to compare the exchange pos-
sibilities of reconfigurable hardware with “virtual memory.”
Therefore he also named reconfigurable areas as Swappable
Logic Unit (SLU) and identified the allocation of the required
SLUs as the operating systems main responsibility.
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3.1.2. Compton et al. (2000). Compton et al. [11, 31] provided
ideas on 2D grid partitioning including reallocation and
defragmentation targeting Xilinx XC6200 FPGA. Compton
also discussed several scheduling algorithms to reduce the
reconfiguration time overhead.

3.1.3. OS4RC (2001). Diessel, Wigley, and Kearny (University
of South Australia) published several articles on operating
systems for reconfigurable computing [5, 6, 12, 32, 33]. In
the later ones, they mention developing operating system for
reconfigurable computing (OS4RC). Unfortunately, only the
intention to implement this operating system is extensively
discussed and simulated ideas can be found.

3.2. Accelerator API Frameworks. In this section, some
frameworks are presented that define standardized interface
and/or provide APIs to provide convenient access to recon-
figurable computing to the software developer.

3.2.1. HybridOS (2007). HybridOS was developed at Univer-
sity of Illinois (USA). HybridOS specifically targets the appli-
cation integration, data movement, and communication over-
heads for a CPU/accelerator model when running a commodity
operating system [15]. HybridOS extends Linux with a num-
ber of standardized APIs and therefore provides accelerator
virtualization. The discussed mechanisms to interact with the
accelerator hardware are character device driver access, DM A
access method, and accelerator direct mapping [34]. The pro-
posed access mechanisms are evaluated against each other,
based on an example application for JPEG-compression.

3.2.2. LEAP (2011). Latency-intensitive Environment for App-
lication Programming (LEAP) was developed in corporation
of Intel and the Massachusetts Institute of Technology. It is
presented in [16, 17].

LEAP provides both basic device abstractions for FPGAs
and a collection of standard 1/O and memory management
services. LEAP’s fundamental abstraction is communication.
By combining communications and memory primitives with an
extensible compilation infrastructure, LEAP is able to provide
libraries that rival software in their scope and simplicity [17].
Leap builds upon the theory of a latency insensitive design.
The key idea behind latency insensitive design is separating
communication and computation. Communication is governed
by an abstract protocol, whose main characteristic is to be
insensitive to latencies from the underlying channel [35].

In summary, the standardized design elements of LEAP
are intended to increase design productivity.

3.2.3. RIFFA (2012). Reusable Integration Framework For
FPGA Accelerators (RIFFA) was developed at University of
California (USA) and its first version is presented in [36]. A
second version, removing restraints of the initial version, is
presented in [37].

RIFFA provides communication and synchronization for
FPGA accelerated applications using simple and self-defined
C/C++ interfaces serving as a standardized API for both
hardware and software.

3.3. Applications in Hardware: Operating Systems. In the
following, several proposed operating systems targeting
reconfigurable computing are presented on their own by a
short summary. Relevant references for the dedicated systems
are also included. As opposed to the previous section these
systems are true operating systems and not only API frame-
works. Finally, Table 1 gives a summary of these operating
systems and a discussion of the implemented concepts is
given at the end of this section.

3.3.1. OS4RS (2003). The most recent publications on oper-
ating system for reconfigurable systems (OS4RS) are Mignolet
et al. [25] and Nollet et al. [38] and were developed at
KU Leuven (Belgium). OS4RS extends a real time operating
system extension for Linux (RTAI). The operating system
extensions are targeting an equally sized multi-island recon-
figurable architecture (a reconfigurable island is called tile
by the authors), which additionally provide communication
channels among those islands based on a Network-on-Chip
(NoC).

OS4RS allows dynamically scheduling tasks to a general
purpose processor (ISP-instruction set architecture proces-
sor) or a reconfigurable island. The authors propose a 2-
level scheduler and also present the possibility of relocating
tasks, based on a check-pointing mechanism. The OS4RS
authors extend the format of executable files to allow the
execution of a task both on a general purpose processor and
on reconfigurable hardware.

Evaluation is done on the basis of video-processing
examples.

3.3.2. HThreads (2005). HThreads was developed at the
University of Kansas (USA). The initial ideas are described
in [39, 40]. Implementation details are given in [41, 42].
Several further publications not given here present individual
aspects of HThreads in more detail. According to the authors,
HThreads is a computational architecture which aims to
bridge the gap between regular programmers and powerful but
complex reconfigurable devices. It therefore allows compiling
C-code to hw-thread.

The developed operating system targets real time appli-
cations and provides a standardized API for accessing hw-
applications. This APIis based on a thread model. The under-
lying hardware provides static hw-threads, connected to the
system bus. So HThreads does not use dynamic and partial
reconfiguration. Communication is based on a memory
mapped register interface. The HThreads authors identified
three major tasks for their operating system: management,
scheduling, and synchronization. HThreads implements all of
them in hardware. The operating system implements preemp-
tive priority, round robin, and FIFP scheduling algorithms
[41]; it also provides hw-based mutexes and semaphores.

3.3.3. BORPH (2007). Berkley Operating system for RePro-
grammable Hardware (BORPH) was developed at University
of California at Berkeley (USA). It was presented as disserta-
tion [8].

BORPH builds upon an island style architecture, where
each island is represented by an entire FPGA. In BORPH
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hw-application follows the Unix-process model and therefore
no implicit shared memory among software-processes and/or
hardware-processes exists. As most of the other reconfig-
urable computing operating systems it is a Linux extension.
BORPH OS kernel provides standard Unix services, such as
file system access, to the hardware-processes.

Application loading is implemented on the basis of a
new executable file format (BOF: BORPH object file). A BOF
extends the conventional .elf format by adding the required
configuration information for the possible reconfigurable
areas it can be executed on. BORPH therefore provides the
option to choose where to execute a process (allocation
on a conventional processor or in one of the available
reconfigurable areas.) However, BORPH does not provide a
mechanism to swap (preempt) a running hw-process. sw-to-
hw communication is enabled by a dedicated hybrid message
passing system call interface. Example applications include
signal and video processing.

3.3.4. ReconOS (2007). ReconOS has been developed at
University of Paderborn (Germany) and is presented in [43].
Despite the fact that its first version was already presented in
2007 it is still under development as version 3 is presented in
(24, 44] (2014).

ReconOS (version 1) builds on top of eCos, a widely
used real time operating system. Beginning with version 2
of ReconOS, Linux support is also available. The underlying
architecture is island style based, where CPU and recon-
figurable areas (called slots in ReconOS terminology) are
interconnected via a bus. One of the latest publications [24]
introduced an ReconOS extension that uses a 2D grid style
architecture. Each hw-thread is handled via a standardized
hw-interface (OSIF: operating system interface) at physical
level and by usage of a delegate sw-thread in the operating
system. ReconOS does not require any change to the host
OS. Hence, from the OS kernel’s point of view, only software
threads exist and interact, while the hardware threads are
completely hidden behind their respective delegate threads.
From the application programmers point of view, however,
the delegate threads are hidden by the ReconOS run-time
environment, and only the applications hardware and soft-
ware threads exist. ReconOS includes hw-to-sw and hw-to-
hw communication and synchronization.

As presented in a recent publication [45], ReconOS also
implements a preemptive multitasking mechanism. Schedule
creation is dynamically done and adoptable at run-time in
ReconOS.

In [44] a video object tracking application is presented as
evaluation example for ReconOS.

3.3.5. CAP-OS (2010). Configuration Access Port Operating
System (CAP-OS) was developed by Fraunhofer IOSB (Ger-
many) and Karlsruhe Institute of Technology (Germany)
and is presented in several publications by Goehringer et al.
[46-49]. The CAP-OS is used for run-time scheduling, task
mapping, and resource management on a Run-time Adaptive
Multiprocessor System-on-Chip (RAMPSoC) [50]. Task graphs
and partial bitstreams (island style based architecture with
an interconnecting NoC) are created at design time for a

RAMPSoC. CAP-OS and RAMPSoC are targeting real time
applications and try to ease the design tool flow. CAP-OS
thereby hides the complexity of the underlying RAMPSoC.
The scheduling algorithm included in CAP-OS takes into
account the time required for reconfiguring a module and
real time demands of the tasks. CAP-OS key functionalities
are run-time scheduling of the tasks, resource allocation,
and configuration management. These functionalities are
realized based on the task graph and the corresponding
partial bitstreams, generated at design time with the software
toolchain. The hw-tasks are not preemptive. hw-to-hw and
hw-to-sw communication is managed by CAP-OS on the
basis of the NoC provided by the underlying RAMPSoC. A
task can be executed either in software on a processor or in
hardware as a hardware accelerator.
Evaluation is based on image processing tasks.

3.3.6.R3TOS (2010). Reliable Reconfigurable Real Time Oper-
ating System (R3TOS) was developed in cooperation of
the University of Edinburgh (UK) and the IKERLAN-
IK4 Research Alliance (Spain). As the name implies this
reconfigurable computing operating system is targeting real
time applications with focus on reliability. R3TOS idea is
briefly presented in [51] and the resulting implementation
is examined in [52] in detail. Task definitions and their
interactions are described using parallel software program-
ming syntax (e.g., POSIX threads), but the body of some of
the tasks (hardware tasks) is implemented in hardware. The
underlying architecture is based on a 2D grid. Grid tiles are
named computation regions which are interconnected by a
NoC to allow intertask communication and synchronization.
Reliability is achieved by identifying defective hardware
regions and rearranging affected reconfigurable modules so
that they do not further use these malfunctional regions.
R3TOS uses a nonpreemptive earliest deadline first (EDF)
policy to schedule, named finishing-aware EDF (FAEDEF),
and takes into account required reconfiguration times.

The proposed operating system is evaluated with a
Software Defined Radio application for video transmitting
(JPEG-compression).

3.3.7. FUSE (2011). Front-end USEr framework (FUSE) was
developed at Simon Fraser University in Burnaby (Canada)
and is presented in [53]. FUSE uses an API based on the
POSIX thread standard and integrates it with PetaLinux OS.
It is based on an island style architecture. The reconfigurable
areas are attached to the system bus. According to the authors,
FUSE objective is to provide a framework for OS abstraction
of the underlying architectural configuration to run hardware
tasks, as opposed to a new scheduling algorithm. The OS
abstraction is provided by applying a loadable kernel module
with each reconfigurable module which provides a stan-
dardized sw-interface to the corresponding sw-task which
interacts with the hw-accelerator. Therefore, in FUSE there
is no need for a standardized interface for the accelerators at
the hardware level.

Example applications for evaluation of FUSE are JPEG-
compression, 3DES encoding/decoding, and image filtering
(Sobel based edge detection).



3.3.8. SPREAD (2012). SPREAD is based on an island style
architecture with a well-defined interface at the hw-level.
It is presented in [30, 54]. The reconfigurable areas are
connected to the system bus, but also have DMA chan-
nels. The well-defined interface not only covers control
but also communication (dedicated data-streams between
reconfigurable areas are available), as the system is targeting
streaming applications. It adopts the PThreads model and
uses sw-thread counterparts (stubs) for managing the hw-
task inside the operating system. SPREAD also allows for
switching a thread between its hw and sw implementation
at run-time and therefore implements hw-context switching
mechanisms. Evaluation is done on the basis of several crypto
algorithms (AES, DES, and 3DES) and compares FUSE,
BORPH, ReconOS, and SPREAD.

3.3.9. RTSM (2015). Run-Time System Manager (RTSM) was
developed at the Technical University of Crete (Greece) and
is presented in [26]. The RTSM manages physical resources
employing scheduling and placement algorithms to select
the appropriate hw processing element (PE), that is, a
reconfigurable area, to load and execute a particular hw-
task, or to activate a software-processing element (CPU) for
executing the SW version of a task. hw-tasks are implemented
as reconfigurable modules, stored in a bitstream repository.

RTSM is based on an differently sized island style archi-
tecture. The reconfigurable areas are connected to the system
bus. RTSM allows relocating hw-task among the reconfig-
urable areas by context switching techniques. The proposed
scheduling algorithm allows including tasks with deadlines
and tries to minimize internal fragmentation. A further
approach for minimizing internal fragmentation is to put
more than one reconfigurable module into a reconfigurable
area.

Evaluation is based on an edge detection algorithm.

3.4. Discussion. Table1 gives a summary of the above pre-
sented operating systems targeting reconfigurable comput-
ing.
Roughly all of the presented systems use islands style
based hardware architecture. The only exception is R3TOS
which uses a 2D grid style architecture. The interconnection
of the hw-applications is based on either NoC or bus struc-
ture. One exception is BORPH which uses a P2P connection
scheme, due to the fact that its islands are separate FPGAs.
Another exception is RTSM which primarily uses a bus
structure for control but also provides dedicated streaming
communication channels between the hw-applications to
speed up streaming applications.

With the exception of BORPH, which uses a process
abstraction for the hw-applications, all other presented sys-
tems rely on a PThread-based abstraction or, when focusing
on real time applications, a task (OS4RS and CAP-OS)
abstraction. Some of the systems allow the operating system
to either start an application as sw or instantiate and execute
it in hw. Preemptive multitasking is only fully supported
and implemented by SPREAD, RTSM, and recently ReconOS.
However, OS4RS provides some kind of cooperative multi-
tasking.
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Unfortunately, the task resource management was dis-
cussed mostly theoretically and experimentally by simulation
(see Early Ancestors). The reason for this is simple: current
design flows only allow easily defining island style archi-
tectures (partitioning problem). Furthermore, sophisticated
mechanisms to suspend and resume hw-applications in
form of exchangeable/preemptive hardware are very hard
to implement (scheduling/placement problem). The resource
management therefore simply decreases to the following
question for the available operating systems: “Is there an
unused island? If one is available, then occupy it till the
application finishes.”

Managing the available reconfigurable areas inside the
operating system is an argument for taking advantage of
dynamic and partial reconfiguration, as the 2D grid partition-
ing solution would allow minimizing internal and external
fragmentation. This will only work efficiently by the usage of
dynamic and partial reconfiguration.

According to the presented systems, a limited number
of typical benchmark applications exist: image and video
processing, data encryption and decryption, and data com-
pression and decompression. What is still missing is some
kind of a standardized benchmarking suite to evaluate the
reconfigurable computing operating systems and their under-
lying architecture in a more comparable way. Currently, the
dedicated evaluations focus on the targeted application area
of the proposed systems.

One important mechanism of operating systems is secu-
rity. Within the current and passed research proposals secu-
rity issues were not discussed. The reason for this might be the
focus of the presented systems, embedded real time systems.
In this domain, security is not that big issue compared to
system targeting more general purpose computing areas.
However, more efforts have to be spent into security problems
for reconfigurable computing, as the hardware itself now also
can be subject to infection with malware.

Another still open problem is standardization, which
would allow for a faster development and a better portability
and (re)usability of hardware applications. However, as the
big industrial players are starting to cooperate in defining
standards (CCIX [1] or HSA Foundation [2]) we might see
enhancements in the near future.

4. Conclusion

In this article we presented a summary of ideas to integrate
reconfigurable computing into an operating system. Further-
more, several implemented systems are presented. Based on
these systems summary and discussion on the implemented
concepts are given.

Several common patterns are identified. hw-applications
usually use a PThread-based abstraction model; the hw-
applications themselves are presented as delegate (sw-)thre-
ads inside operating system; preemptive multitasking is used
by the newest systems; partitioning is usually implemented
on top of islands style based architecture; typical benchmarks
include image and video processing, data encryption and
decryption, and data compression and decompression.
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However, there is still room for improvement, especially
to exploit the possibilities of dynamic and partial recon-
figuration. Furthermore some concepts, like security, were
rarely discussed/investigated in the past but should gain more
interest in the future.
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