112 research outputs found

    NEIGHBOURHOOD LOAD ROUTING AND MULTI-CHANNELS IN WIRELESS MESH NETWORKS

    Get PDF
    As an emerging technology, wireless mesh networks are making significant progress in the area of wireless networks in recent years. Routing in Wireless Mesh Network (WMN) is challenging because of the unpredictable variations of the wireless environment. Traditional mechanisms have been proved that the routing performance would get deteriorated and ideal metrics must be explored. Most wireless routing protocols that are currently available are designed to use a single channel. The available network capacity can be increased by using multiple channels, but this requires the development of new protocols specifically designed for multi-channel operation. In this paper, we propose Neighbourhood load routing metric in single channel mesh networks and also present the technique to utilize multiple channels and multiple interfaces between routers for communication. The traditional routing metrics Hop Count and Weighted Cumulative Expected Transmission Time (WCETT) are used in routing. We compare performance of AODV-HOP, WCETT and NLR routing metrics in singlechannel and multichannel environment by considering throughput and end to end delay performance metrics. Our results show that NLR performs better in singlechannel environment

    Enhanced multichannel routing protocols in MANET

    Get PDF
    Utilising multiple non-overlapping channels in MANET networking can improve performance and capacity. Most multichannel MAC and routing protocols rely on an extra radio interface, a common control channel or time synchronisation to support channel selection and routing, but only at the expense of hardware and power consumption costs. This thesis considers an alternative type of multichannel wireless network where each node has a single half-duplex radio interface and does not rely on a common control channel or time synchronisation. Multichannel MAC and routing protocols that adopt the Receiver Directed Transmission (RDT) communication scheme are investigated to assess their ability to implement a multichannel MANET. A novel multipath multichannel routing protocol called RMMMC is proposed to enhance reliability and fault-tolerance in the MANET. RMMMC introduces new route discovery and recovery processes. The former establishes multiple node and channel disjointed paths in different channels and accumulates them to acquire a full multi-hop path to each destination. The latter detects broken links and repairs them using pre-discovered backup routes. To enhance communication reliability, a novel cross-layer multichannel MAC mechanism called RIVC is proposed. It mitigates transmitting/rerouting data packets to a node that does not have an updated route information towards a destination and only allows data packets with valid routes to occupy the medium. The optional access mode in the MAC protocol is modified to early detect invalid routes at intermediate nodes and switchover to an alternative path. A new cross-layer multichannel MAC mechanism called MB is proposed to reduce contention in a busy channel and enhance load balancing. MB modifies the MAC back-off algorithm to let a transmitter node invoke an alternative path in the alternative channel when the retry count threshold is reached. The proposed multichannel protocols are implemented and evaluated by extensive NS2 simulation studies

    An evaluation of segregate network compared to GRID technology

    Get PDF

    Efficiency and benefits of wireless network segregation

    Get PDF
    corecore