17,734 research outputs found

    Energetski učinkovita proizvodnja – interdisciplinarni, sistemski pristup kroz integralnu simulaciju

    Get PDF
    If the main concern of manufacturing companies was increasing the productivity, reliability, flexibility, and quality of the industrial process, more recently the energy efficiency of the production process and facilities has come under scrutiny. To enhance the energy-efficiency of production facilities, detailed information regarding the production processes, heat emissions from machines, operation level and occupancy analysis are necessary. In this context, the present paper describes an ongoing research effort that aims to develop a systemically integrated model of an energy efficient production facility. In this context we demonstrate the initial results of the implementation of an integrated simulation approach for a specific industrial facility. On the case study of an existing facility the different levels of energy in-and outputs were analysed; starting from machines and production systems, user behaviour and building services related requirements, to the building envelope of the facility. The collected information was further processed to develop a new building design. This layout provides the basis of an initial building performance simulation model. The generated model is part of the integrated simulation approach and used as a starting point to address the impact of different design and building operation options on the indoor climate and energy performance of the industrial facility. The goal of the integrated simulation approach is to evaluate a production facility not separately for individual mandates pertaining to production process, building envelope, and systems, but in a coupled and integrated fashion. Based on the results of thermal simulation, a first life-cycle costs model is developed, upon which the crucial points for the decision-making process in the planning of an energy-efficient industrial facility can be identified.Među glavnim interesima proizvodnih poduzeća do sada su bili povećanje produktivnosti, pouzdanosti, fleksibilnosti i kvalitete industrijskog procesa, a nedavno se pod povećalom naĆĄla i energetska učinkovitost proizvodnog procesa i pogona. U cilju poboljĆĄanja energetske učinkovitosti proizvodnih pogona potrebne su detaljnije informacije o procesu proizvodnje, izmjeni topline u strojevima i analiza učinka i zastupljenosti pogona u radu. U tom kontekstu, ovaj rad opisuje istraĆŸivanje koje je u tijeku i teĆŸi razvoju sustavno integriranog modela energetski učinkovite proizvodnje u pogonu. U tom kontekstu prikazani su početni rezultati provedbe integriranog simulacijskog pristupa za određeni industrijski pogon. U početnoj studiji slučaja postojećeg pogona analizirane su različite razine ulaznih i izlaznih podataka o energiji; uključujući strojeve i proizvodne sustave, ponaĆĄanja korisnika, učinkovitosti kućne tehnike te ovojnice zgrade pogona. Prikupljeni podaci dodatno su obrađeni u cilju razvoja novog građevinskog projekta. Prijedlog koncepcije novog pogona pruĆŸa osnovu za prikaz početnog učinka simulacijskog modela na zgradi. Razvijeni model je dio integriranog simulacijskog pristupa te se koristi kao početna točka u simulaciji utjecaja različitih koncepata organizacije prostora i volumena zgrade, kvalitete ovojnice zgrade i kućne tehnike na energetsku učinkovitost industrijskog pogona. Cilj integriranog simulacijskog pristupa je procijeniti energetske performanse proizvodnog pogona, ali ne za pojedine zadaće koje se odnose na proces proizvodnje, ovojnicu zgrade i sustave, nego na povezani i integrirani način. Razvijen je prvi modela troĆĄka vijeka trajanja koji se temelji na toplinskim simulacijama, koji je presudan u procesu donoĆĄenja odluka u planiranju energetske učinkovitosti industrijskog pogona

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    Agent based modeling of energy networks

    Get PDF
    Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed

    Hybrid Building Performance Simulation Models for Industrial Energy Efficiency Applications

    Get PDF
    In the challenge of achieving environmental sustainability, industrial production plants, as large contributors to the overall energy demand of a country, are prime candidates for applying energy efficiency measures. A modelling approach using cubes is used to decompose a production facility into manageable modules. All aspects of the facility are considered, classified into the building, energy system, production and logistics. This approach leads to specific challenges for building performance simulations since all parts of the facility are highly interconnected. To meet this challenge, models for the building, thermal zones, energy converters and energy grids are presented and the interfaces to the production and logistics equipment are illustrated. The advantages and limitations of the chosen approach are discussed. In an example implementation, the feasibility of the approach and models is shown. Different scenarios are simulated to highlight the models and the results are compared

    Learning in Context with Horizontally & Vertically Integrated Curriculum

    Get PDF

    Final Report of the ModSysC2020 Working Group - Data, Models and Theories for Complex Systems: new challenges and opportunities

    Get PDF
    Final Report of the ModSysC2020 Working Group at University Montpellier 2At University Montpellier 2, the modeling and simulation of complex systems has been identified as a major scientific challenge and one of the priority axes in interdisciplinary research, with major potential impact on training, economy and society. Many research groups and laboratories in Montpellier are already working in that direction, but typically in isolation within their own scientific discipline. Several local actions have been initiated in order to structure the scientific community with interdisciplinary projects, but with little coordination among the actions. The goal of the ModSysC2020 (modeling and simulation of complex systems in 2020) working group was to analyze the local situation (forces and weaknesses, current projects), identify the critical research directions and propose concrete actions in terms of research projects, equipment facilities, human resources and training to be encouraged. To guide this perspective, we decomposed the scientific challenge into four main themes, for which there is strong background in Montpellier: (1) modeling and simulation of complex systems; (2) algorithms and computing; (3) scientific data management; (4) production, storage and archiving of data from the observation of the natural and biological media. In this report, for each theme, we introduce the context and motivations, analyze the situation in Montpellier, identify research directions and propose specific actions in terms of interdisciplinary research projects and training. We also provide an analysis of the socio-economical aspects of modeling and simulation through use cases in various domains such as life science and healthcare, environmental science and energy. Finally, we discuss the importance of revisiting students training in fundamental domains such as modeling, computer programming and database which are typically taught too late, in specialized masters

    Project-based pedagogy in interdisciplinary building design adopting BIM

    Get PDF
    Purpose – This study aims to present a pedagogical practice in the project-based assessment of AEC students’ interdisciplinary building design work adopting BIM. This pedagogical practice emphasizes the impacts of BIM, as the digital collaboration platform, on the cross-disciplinary teamwork design through information sharing. This study also focuses on collecting students’ perceptions of BIM effects in integrated project design. Challenges in BIM adoption from AEC students’ perspective were identified and discussed, and could spark further research needs. Design/Methodology/Approach – Based on a thorough review of previous pedagogical practices of applying BIM in multiple AEC disciplines, this study adopted a case study of the Solar Decathlon residential building design as the group project for AEC students to deliver the design work and construction planning. In total 13 different teams within the University of Nottingham Ningbo China, each group consisting of final year undergraduate students with backgrounds in architecture, civil engineering, and architectural environmental engineering, worked to deliver the detailed design of the solar-powered residential house meeting pre-specified project objectives in terms of architectural aesthetics, structural integrity, energy efficiency, prefabrication construction techniques, and other issues such as budget and scheduling. Each team presented the cross-disciplinary design plan with cost estimate and construction scheduling together with group reports. This pedagogical study collected students’ reflective thinking on how BIM affected their design work, and compared their feedback on BIM to that from AEC industry professionals in previous studies. Findings – The case study of the Solar Decathlon building project showed the capacity of BIM in enabling interdisciplinary collaboration through information exchange and in enhancing communication across different AEC fields. More sustainable design options were considered in the early architectural design stages through the cross-disciplinary cooperation between architecture and building services engineering. BIM motivated AEC student teams to have a more comprehensive design and construction plan by considering multiple criteria including energy efficiency, budget, and construction activities. Students’ reflections indicated both positive effects of BIM (e.g., facilitating information sharing) as well as challenges for further BIM implementation, such as some architecture students’ resistance to BIM, and the lack of existing family types in the BIM library, etc. Research limitations/implications – Some limitations of the current BIM pedagogy were identified through the student group work. For example, students revealed the problem of interoperability between BIM (i.e., Autodesk Revit) and building energy simulation tools. To further integrate the university education and AEC industry practice, future BIM pedagogical work could recruit professionals and project stakeholders in the adopted case studies, for the purpose of providing professional advice on improving the constructability of the BIM-based design from student work. Originality/value – This work provides insights into the information technology applied in the AEC interdisciplinary pedagogy. Students gained the experience of a project-based collaboration and were equipped with BIM capabilities for future employment within the AEC job market. The integrated design approach was embedded throughout the team project process. Overall, this BIM pedagogical practice emphasized the link between academic activities and real-world industrial practice. The pedagogical experience gained in this BIM course could be expanded to future BIM education and research in other themes such as interoperability of building information exchange among different digital tools

    Interdisciplinary design methodology for systems of mechatronic systems focus on highly dynamic environmental applications

    Get PDF
    This paper discusses a series of research challenges in the design of systems of mechatronic systems. A focus is given to environmental mechatronic applications within the chain “Renewable energy production - Smart grids - Electric vehicles”. For the considered mechatronic systems, the main design targets are formulated, the relations to state and parameter estimation, disturbance observation and rejection as well as control algorithms are highlighted. Finally, the study introduces an interdisciplinary design approach based on the intersectoral transfer of knowledge and collaborative experimental activities
    • 

    corecore