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Abstract 

Generally, industry includes various sectors like manufacturing, energy, materials & mining, and transportation. 

Industry consumes about one half of the world’s total delivered energy, and manufacturing is one of the energy-

intensive industrial sectors. With the rising energy price, the energy cost is becoming a controllable expenditure in 

manufacturing. In this paper, a generic method has been proposed to minimize the energy cost and improve the 

energy efficiency of manufacturing unit processes. Finite state machines have been used to build the transitional 

state-based energy model of a single machine. A mixed-integer linear programming mathematical model has been 

formulated for energy-cost-aware job order scheduling on a single machine. A generic algorithm has been 

implemented to search for an energy-cost-effective schedule at volatile energy prices with the constraint of due dates. 

As a result, plant managers can have an energy-cost-effective job order schedule which is associated with machine 

energy states along time, and can also get time-indexed energy simulation of the schedule. In comparison to most of 

the static scheduling approaches, stochasticity has been further handled through a cyclic interaction between the 

scheduler and the energy model, which facilitates to investigate how stochasticity on a shop floor affects the 

performance of energy-cost-aware scheduling. Empirical data have been used in the case study, including the power 

measured from a grinding machine, and the real-time pricing and time-of-use pricing tariffs. The proposed method 

has been demonstrated to be both energy-efficient and energy-cost-efficient even at the presence of stochasticity. As 

a joint effort of energy efficiency and demand response within demand side management, this method shows its 

effectiveness for contributing to the reduction of greenhouse gas emissions during peak periods, and for leading to 

energy-efficient, demand-responsive, and cost-effective manufacturing processes.  
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1. Introduction 

Traditionally, utilities called upon peak power generation to meet rising demand from energy consumers in a 

real-time manner. Those peak power generators were usually thermal power plants in high emissions of greenhouse 

gas (GHG). As a consequence, the stability of the power grid was threatened and the environment was seriously 

polluted. The demand side management (DSM) (Gelazanskas and Gamage, 2014), a set of interconnected and 

flexible programs including energy efficiency (EE) and demand response (DR), enables energy users of all types to 

highly take their own initiatives in maintaining the stability of the power grid. Environmental sustainability and 

economic saving are thus both achieved. As to industrial energy users, EE seeks approaches to reduce their energy 

consumption without declining the production outputs, while DR encourages a temporary change in their electricity 

consumption in response to market or supply conditions (Hadera et al., 2015). In summary, EE can be seen as load 

reduction, and DR can be viewed as load shift (Davito et al., 2010). Both EE and DR are among the major roadmaps 

to implement Smart Grid (Cardenas et al., 2014). 

In order to make a balance between the power supply and demand during time, various energy charging policies 

are given in different countries, e.g., time-of-use pricing (ToUP), real-time pricing (RTP), and critical peak pricing 

(CPP). In ToUP tariff, two types of periods are generally defined: “on-peak” and “off-peak”. The kWh energy 
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charge during on-peak periods can be evidently higher than that during off-peak periods, such as more than twice 

(Babu and Ashok, 2008). RTP can be commonly found in countries whose energy market is highly developed. For 

instance, on “Belpex”, the electricity spot market in Belgium (Belpex, 2014), users can buy a certain amount of 

electricity in two different submarkets, namely the day-ahead market (DAM) and the continuous intraday market 

(CIM). The DAM enables users to purchase electricity whose price is different every hour, and which will be 

delivered the day after. The CIM provides the industry with hourly-dynamic or multi-hourly-dynamic electricity up 

to five minutes before delivery. With an increasing amount of energy provision by volatile energy sources such as 

wind turbines, the RTP complies with the principle of demand and response. Time periods with surpluses of energy 

and low grid demands, result in low energy prices, while periods with only little energy from renewable energy 

sources and high grid demands, lead to high energy prices (Küster et al., 2013). Besides the non-event days during 

which the default ToUP is applied, CPP has mid-peak and critical periods on critical event days. During the two 

types of peak periods, the electricity price is set much higher, in order to reflect the marginal cost of electricity 

generation. For instance, in the Korean CPP pilot, the critical peak price and the mid-peak price are about 4.8 times 

and 3 times higher than the peak price and the off-peak price on non-event days, respectively (Jang et al., 2015). 

The industry plays a key role in the society’s overall energy consumption and GHG emissions. It thus exhibits a 

high potential for reducing both energy and GHG. For example, in Taiwan, the industrial energy consumption and 

GHG emissions account for approximately 53.8% and 48.3% by taking the entire country as a whole. The total 

energy saving in Taiwan’s industry is assessed as 5.3% of the national energy use per year. The maximal GHG 

emissions reduction of Taiwan’s six most energy-intensive industrial sectors is estimated as 6.4% of the national 

GHG emissions (Lu et al., 2013). Production activities are widely seen in the manufacturing industry (Chiarini, 

2014). Therefore, it remains meaningful to investigate the energy consumption of production processes, in order to 

achieve better energy efficiency and energy cost (EC) efficiency in industry. 

Under the scope of EE, the energy modeling of unit production processes does not consider the impact of 

volatile energy prices (see Section 2.1). In the scope of DR, the limited energy-cost-aware production scheduling 

researches tend to have weak capacities of modeling the energy consumption and of performing an effective 

scheduling according to dynamic energy prices (see Section 2.2). The conversion from energy consumption amount 

in kWh to energy consumption cost should be more explicit for decision-makers to get clear conscious of the 

economic benefit brought by energy consumption improvement measures. Therefore, a more advanced production 

scheduling algorithm should be developed, which is both energy aware and EC aware corresponding to EE and DR, 

respectively. Consequently, the industry is able to take advantage of lower-priced periods for extensive production 

or for storing energy for subsequent use during higher-priced periods. 

In this paper, a generic method is proposed to perform energy modeling, simulation, and optimization for a unit 

manufacturing process. The novelty includes: (1) a joint connection of EE and DR is carried out to fully explore the 

industrial energy saving potentials within the DSM; (2) built on finite state machines (FSMs), the energy model is 

extensible and enables detailed energy simulation; (3) by using a genetic algorithm (GA), the energy-cost-aware 

scheduler assigns the job sequence such that electricity pricing peaks are avoided and valleys are took advantage of; 

(4) the power measurement on a surface grinding machine and two real dynamic electric tariffs fully demonstrate the 

applicability and effectiveness of the proposed method; (5) the energy consumption of a unit process can be 

forecasted according to the energy-cost-aware scheduling solution. 

The rest of this paper is organized as follows. Section 2 provides a literature review revealing the problem. 

Section 3 proposes a generic method to solve the problem, which covers energy modeling and simulation, energy-

cost-aware job scheduling, and GA-based EC minimization. Section 4 describes the implementation of this method 

in the case study of a surface grinding machine. Section 5 finally draws the related conclusions. 

 

 

2. Literature review 

The studied issues in this paper include energy modeling for a unit manufacturing process and energy-cost-

aware scheduling of a single machine. The former research investigates how to increase the transparency of machine 
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energy consumption, which paves the way for reducing energy consumption. Thereby, it is within the scope of EE. 

The latter takes variable energy prices into consideration and shifts the production along the time course such that 

low energy prices are made use of as many as possible. This is part of the principal measures taken by industrial 

end-users to implement DR. The rest of this section will discuss the state of the art in these two fields. 

 

2.1 Energy modeling for unit processes 
Prior to energy modeling, electrical energy metering in complex manufacturing facilities is necessary to provide 

industrial enterprises higher levels of quantification and visibility in their energy consumption. Both voltage and 

current need to be measured at either low or high sampling rates, in order to calculate power consumption and to 

produce more complex power quality statistics such as sags, peaks, and harmonics (O'Driscoll and O'Donnell, 2013; 

Shrouf and Miragliotta, 2015). An energy management framework can be further established to promote energy 

awareness in manufacturing processes (Vikhorev et al., 2013). On the basis of the measured power, empirical energy 

models can be built for estimating the energy consumption related to the production. The rest of this sub-section 

focuses on energy modeling at the level of unit process. 

Gutowski et al. (2006) used an exergy framework to examine the energy requirement for a wide range of unit 

processes such as milling, injection molding, and grinding. Specific energy consumption (SEC) was defined to 

describe the energy needed for processing one unit of material. The process rate was demonstrated through empirical 

experiments as the key variable influencing the energy requirement of a unit process. This relatively early finding 

pointed out the complexity of industrial energy consumption, but there was no systematic approach to energy 

modeling and simulation. 

Dietmair and Verl (2009b) built an energy model for single machines via discrete state chart and transitions 

between states. In their model, operational states are defined by the functionality a specific machine has, and each 

state is associated with an energy consumption profile. A stochastic extension of the model is further provided to 

complement its stochastic simulation capacity. To achieve a global energy consumption optimization, they proposed 

to adjust the process parameters related to each state, but they did not further demonstrate this proposition.  

Diaz et al. (2011) conducted characterization on the energy consumption of milling machine tools during their 

use stage. The best fitted model is found with a 95% confidence level. It could then be used to estimate the total 

energy consumed during cutting. The effect of workpiece material on power demand was also studied. However, 

this empirical energy model was specifically for milling processes and no concrete energy saving measures were 

given. 

In the framework of CO2PE! Initiative, the two energy estimation methodologies for unit processes proposed by 

Kellens et al. (2012a, 2012b) are screening approach and in-depth approach, respectively. The screening approach 

relies on publicly available data and engineering calculations for energy use. In the in-depth approach, different 

production modes are identified by the time study, and the power consumption for each mode is measured during the 

power study. The energy consumption of a unit process can then be estimated through multiplying the power by the 

duration of an operation. Energy or EC optimization is out of their scope. 

An empirical energy modeling method was developed by Li et al. (2013) to predict energy consumption of unit 

processes. This industrial environment oriented method comprises four stages, namely design of experiments (DoE), 

physical experiments, statistical analysis, and model validation. The case study on an extrusion process proved its 

ability to accurately predict energy consumption of unit processes. Briefly, their work also focuses on energy 

modeling. 

In the approach of Abele et al. (2012), power measurements are not necessarily needed. A single machine tool 

is described by several functional modules which further consist of various components. Within their Hardware-in-

the-Loop-Simulation (HiL-Simulation), a physical machine controller is connected to the simulation model so that 

the programmable logic control (PLC) or numerical control (NC) signals, which contain power-on states, axis 

speeds, machine tool movement path, process operations, etc., are coupled with the functional modules and 

components to enable continuous energy simulation of a machine tool. In their case study of a coolant pump, various 

component configurations were tried to gain higher energy efficiency. 
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In addition to estimating the machine energy requirement within the work of Abele et al. described above, 

Eberspächer et al. (2014) further developed the HiL-Simulation model for real-time monitoring of the energy 

demand of a machine and its functional modules in production environments. This energy monitoring system is 

claimed to raise the awareness of machine tool manufacturers and operators with regard to the machine energy 

consumption and to clearly show the consequences of their actions towards energy efficiency. Energy optimization 

measures based on components and operating states were finally discussed but not fully demonstrated.  

 

2.2 Energy-cost-aware production scheduling 

The traditional manual production schedule continuously becomes difficult in modern factories, where the 

production environment gets increasingly complicated. For instance, in semiconductor manufacturing, the dynamic 

job arrival, job re-circulation, shift bottlenecks, and lenghy fabrication process are all involed. A wafer brabrication 

process typically contains over 500 processing steps (Chien et al., 2012). Besides, multiple products can be 

produced by the same line (Ajorlou and Shams, 2013). The product variety is even increasing in order to satisfy the 

rapid changes at marketplaces (Huang et al., 2014). Furthermore, the volatile electricity price implies the need of 

frequent and short-term scheduling of plant operations, such as at a day-to-day time frame (Hadera et al., 2015). 

Therefore, it turns evident to foresee that an automated production scheduling is widely deployed in modern or 

future factories. 

With energy monitoring systems increasingly implemented on shop floors, the transparency of production 

activities’ energy consumption behaviors is improved. It is then feasible to add energy awareness to the conventional 

production schedulers which are part of manufacturing execution systems (MESs). The energy price can be further 

input into the scheduler, in order to facilitate its EC awareness. 

Pechmann et al. (2012) developed production planning control (PPC) software that schedules the production on 

the basis of not only the usual planning criteria, i.e., deliver date, short lead-time, high resource utilization, and low 

inventory, but also their newly introduced objective of reducing peak power. The energy price was not explicitely 

considered, but a decrease of peak consumption was calculated to implicitely bring a cost reduction. As one of the 

key results given by this software, the 24-hour power load forecast for a plant has a 15-minute time step, which can 

only give a coarse estimation of energy consumption.  

Küster et al. (2013) used multi-agent based distributed evolutionary algorithm to search for a multi-process 

schedule with an optimal EC. This approach makes use of the potential for rearranging process steps to shift loads to 

low-priced periods. However, they did not mention the details on machine energy consumption, i.e., the variable 

energy consumption along time, and the detailed machine startup/shutdown operations when encountering machine 

idle periods. 

Fang and Lin (2013) combined energy consumption and tardiness as performance criteria for multi-machine 

scheduling. They proposed two heuristics respectively based on earliest due date (EDD) rule and weighted shortest 

processing time (WSPT) rule, and developed a particle swarm optimization (PSO). Nevertheless, both the energy 

consumption and EC were not clearly described. They simply assumed a higher machine speed would bring a 

shorter job makespan, while the corresponding energy consumption and EC would increase.  

Luo et al. (2013) proposed a new ant colony optimization (MOACO) meta-heuristic taking into acount both 

makespan and electric cost to carry out hybrid flow shop scheduling. The ToUP mechanism and different machine 

processing speeds were considered. However, all the test data were randomly generated including the ToUP price 

and machine power consumption values. In addition, only two machine energy consumption states were assumed, 

i.e., processing and standby. The time aspect of scheduling results was unclearly described either. 

Wang and Li (2013) tried to minimize respectively the electricity consumption and the electricity cost of 

manufacturing systems while respecting the production target. This problem was formulated and its near-optimal 

solution was searched by particle swarm optimization (PSO). The effects of the summer and winter ToUP pricing 

profiles on the scheduling result were also investigated. Nevertheless, machine transition states between off and 

producing, i.e., startup and shutdown, were ignored, and the power consumption value was theoretically assumed. 

Zhang et al. (2014) adoped the ToUP tariff in their time-indexed integer programming formulation to conduct 

production scheduling. This scheduling minimizes electric cost while maintaining reasonable tradeoffs with 
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production throughput and CO2 emission reduction, respetively. However, the concerned machines had only on and 

off modes, which turns out to be too simple for energy modeling. Furhermore, both energy profiles and ToUP tariff 

values were theoretically supposed. 

Liu et al. (2014) built a bi-objective model and used Non-dominant Sorting Genertic Algorithm (NSGA-II) to 

minimize total energy consumption and total weighted tardiness on shop floors. However, only limited energy states 

were introduced in their energy model, i.e., idle, runtime, and cutting. Besides, the energy price was not considered 

to convert energy consumption into a more meaningful EC. He et al. (2015) optimized machine tool selection and 

operation sequence in job shops, in order to save energy consumption following the trade-off with makespan. 

Nonetheless, the volatile energy price was not taken into account, either. Liu et al. (2015) further formalized a 

mathematical model for the tri-objective job shop scheduling. By using NSGA, it reduces electricity consumption 

and cost while keeping good performance in total weighted tardiness, when the Rolling Blackout policy is applied. 

A trade-off was found between total weighted tardiness and total electricity cost. Nevertheless, both the involved 

energy model was simplified and the energy price was theretical. 

Shrouf et al. (2014) used a GA to optimize the production scheduling of a single machine. Their schedule takes 

into account the dynamic electricity price to minimize the related electric cost. However, they only focused on 

determining when each job would start, and ignored scheduling the actual job sequence, which caused the job 

sequence on the same machine to be always fixed. Besides, they used a limited number of machine states, i.e., idle, 

processing, and shutdown, as well as presumed power values to model the energy consumption of a machine. This, 

together with the theoretical values for electricity price, caused a gap between their work and the industrial 

application. 

Besides, stochasticity is a practical issue on a shop floor. Its occurrence can be and should be handled by the 

scheduler. Stochastic events (SEs) on a shop floor include machine failures (MFs), starvation or blockage of a 

production unit, cancellation or change of a customer order, etc. Each event has its corresponding statistical 

distribution to occur. For instance, a machine breakdown is often modeled by following the Weibull distribution (see 

Section 4.4). These events are seen as disturbance to a production schedule, since they interrupt the execution of the 

original schedule. A right-shift rescheduling policy (Cui et al., 2014; Liu et al., 2015), is often used to deal with 

similar situations: the originally scheduled job sequence stays unchanged, and the queuing jobs are postponed for an 

amount of time to just accommodate the SE duration.  

 

2.3 Summary 

Within the scope of EE, the energy models described in section 2.1 mainly aimed at estimating the power 

consumption profile of a machine. Very few efforts have been carried out to link energy modeling to energy-aware 

or energy-cost-aware production scheduling, for the purpose of effectively optimizing energy or cost consumption of 

a single machine. Within the scope of DR, according to the literature research in Section 2.2, there are currently 

limited studies on the optimization of manufacturing processes by considering variable energy prices. Very few 

energy aware or energy-cost-aware scheduling models have been built upon detailed energy models, in order to have 

an accurate estimation of energy or EC consumption. Furthermore, the aspect of energy modeling and simulation in 

those limited studies was weakly demonstrated.  

 

 

3. Method description 

The proposed method is described within the framework of DSM. It combines EE and DR, in comparison to 

most of the research which focuses on only one of the two domains. A generic energy modeling heuristic is 

introduced for EE in Section 3.1. Built on the generic energy model, an energy-cost-aware job scheduler and a GA 

optimization are proposed for DR, in Section 3.2 and Section 3.3, respectively. Section 3.4 further introduces a 

heuristic to generally handle stochasticity in the scheduling, in order to make the proposed method more adapted to 

the real factory environment. 
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3.1 Generic energy model 

The generic energy model for a single machine is described by the finite state machine (FSM). The FSM is 

commonly used to represent discrete events and logic systems. It comprises five basic elements: a set of states, state 

transitions, external inputs, initial state, and final state. It can be depicted by either formulas or graphs. The graphical 

representation is preferred herein, since it is more intuitive.  

Only the normal energy consumption mode is considered in this generic model. The energy saving mode is out 

of scope, as there are currently a rather limited number of machines supporting this functionality (Weinert and Mose, 

2014). As presented in Figure 1, the generic FSM energy model consists of four main states: (1) Off, (2) Startup, (3) 

Unowned, and (4) Shutdown. The composite state Unowned indicates that no energy management policy is owned 

by the machine. It further contains two sub-states: Ready and Production.  

The initial state of each simulation is Off. It indicates the machine is powered off and consumes no energy. 

Upon receiving the event “Power on”, the state transition is triggered from Off to Startup. At Startup, the turn-on of 

machine sub-units is carried out in a consecutive manner instead of turning on all sub-units at one time. This 

complies with the measured startup energy profiles of different production machines (Devoldere et al., 2008; 

Dietmair and Verl, 2009a). Following the completion of turn-on operation, the machine updates its status list, which 

contains the power on/off state of each sub-unit. This self-transition continues until all the sub-units are turned on 

and the Boolean signal “Ready” becomes true. 

 
Figure 1  Industrial energy model at machine layer 

 

Triggered by the “Ready” signal which turns true, the machine passes to the composite state Unowned. The 

entrance sub-state of Unowned is Ready, signifying that the machine is ready for production. The signal event 

“Common services” triggers a self-transition at Ready. The self-transition terminates by updating the machine status. 

“Common services” are to be defined according to the case study, e.g., to check the input material’s availability. 

Once a production schedule is given, the Boolean signal “Product” changes from false to true. This then triggers the 

state transition to Production. The machine stays at this state until it completes the current production. When the 

signal event “ProductionOver” becomes true, it triggers the state transition back to Ready.  

The signal event “Turn off” occurring at Ready triggers the state transition towards Shutdown. At Shutdown, the 

machine turns off its sub-units also in a consecutive manner. This continues until the machine updates its status list 

such that all the sub-units are powered off and the Boolean signal “AllOff” becomes true. This finally drives the 

machine back to Off. The final state of each simulation is by default set as Off. Upon a SE, a simulation run 

terminates at any one of the states (see Section 3.4). 

Based on the measured power consumption, different energy consumption states can be identified. The state 

identification method is similar to the time study of the in-depth approach proposed by Kellens, Dewulf, Overcash, 

Hauschild and Duflou (2012a). So the time span of each state can be determined. Exceptionally, the duration of 

Ready can be arbitrary, as it is a state for staying idle. In the model proposed by this paper, two types of Ready 

durations are thus defined, i.e., default duration and customized duration. The default duration for Ready stands for 

the necessary internal machine time for an immediate transition from Startup to Production, or from Production to 

Off Startup

Shutdown

Power on 

Turn on [ Ready==false ] / Update status

Turn off [ AllOff==false ] / Update status

Unowned

Ready ProductionReady Production

Power off 

When(Ready==true) Common services / Update status

When(Product==true) 

When(ProductOver==false) 

When(ProductOver==true) 

Start simulation

When(AllOff==true) 
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Shutdown. In comparison, the customized duration is fixed by the production schedule, which can be an arbitrary 

value not less than the default duration.  

Furthermore, a mean power is associated with each machine state. The machine energy consumption 𝐸 during a 

simulation can thus be estimated by Equation (1): 

𝐸 = ∑ ∑ 𝑃𝑠 ∙ 𝑡𝑡∈𝑇𝑠𝑠∈𝑆       (1) 

where s is a machine state, S is the set of machine states, t is a time period during which the machine stays at the 

state s, Ts is the set of periods during which the machine stays at the state s, and Ps is the mean power consumption 

of the state s. This complies with the energy modeling approach of Mechs et al. (2012). This general mapping 

enables a quick denotation of the fundamental energetic performance. Moreover, based on the identified energy 

profiles of machine states, the energy model can be further developed to provide machine energy KPIs and energy 

consumption details.  

 

3.2 Energy-cost-aware job scheduler 

With the consideration of the volatile electricity price, the proposed scheduler aims to assign the job sequence 

and machine states, such that all the jobs allocated to this machine contribute to a minimal electric cost without 

missing the same required due time. No interdependence is assumed to exist among jobs so an arbitrary job 

sequence can be generated. This job scheduler is a discrete-time system, since it is built upon the FSM energy model. 

Its basic time step is quite flexible depending on the applied case, especially on the frequency of the measured 

energy data injected into the energy model. The inputs of this scheduler are variable electricity prices, job IDs and 

production durations, a pre-fixed due time, and the energy model introduced in Section 3.1. The outputs include the 

job sequence, the start time and end time of each job, the machine operation following the completion of each job, 

and also a detailed energy and cost audit for the current scheduling solution. The machine operation can be 

“immediately start the next job”, “shut down”, or “stay idle”.  

 

Table 1  Numeration for machine states 

Machine state s Index 

Off 

Startup 

Ready 

Production 

Shutdown 

Others 

1 

2 

3 

4 

5 

… 

 

A mathematical model is formulated below for this problem. The concerned parameters are first introduced. 

Then the objective function is given, followed by a bunch of relations or constraints. For the sake of conciseness, 

each machine state is assigned a unique integer index. As shown in Table 1, the last item “others” is specially 

retained for any case study that needs to extend the generic FSM energy model.  

Equation (2) is the objective function which sets machine states and the job sequence along time such that the 

electric cost for conducting all the jobs within the concerned work shifts is minimal. Equation (3) calculates the 

electric cost for completing a scheduled job. Equation (4) calculates the electric cost for the machine to stay at 

Ready between job j and the next scheduled job. Equation (5) obtains the electric cost for the machine to be shut 

down between job j and the next scheduled job. The concerned cost can be further cut into three parts: cost for 

staying at Ready during a default duration, cost for shutting down, and cost for starting up the machine after staying 

powered off and just before the beginning of the next scheduled job. Equation (6) determines the machine to stay at 

Ready if there is not enough time between two adjacent scheduled jobs for the machine to be shut down, as the 

durations of powering off and powering on again the machine are implicitly included, or if the cost for powering off 

is more expensive. 

Equation (7) requires the duration of the first scheduled job comprises the time for the machine to start up, pass 

by Ready for the default duration, and execute the job. Equation (8) defines that the duration of an intermediate job 

should consist of a default duration of Ready at the beginning and then the job execution time. The default Ready 
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duration before the actual job execution is considered as necessary machine time to receive and read the next 

production schedule. Equation (9) ensures the duration of the last scheduled job to include the default duration of 

Ready, the job execution time, the default duration for the machine to pass by Ready, and finally the time span for 

shutting down. Equation (10) guarantees each job is scheduled only once and thus all the jobs can be scheduled. 

Equation (11) limits the machine can have only one state at one point of time. Equation (12) uses the flooring 

function to decide at which pricing slot the discrete time is located. Equation (13) calculates the duration for staying 

powered off between two jobs. Equation (14) makes sure that only one job is executed at one time on respecting the 

scheduled job sequence, and pre-emption is prohibited. Equation (15) shows the requirement that there is enough 

time to fulfill all the jobs and the machine shutdown before the due time. 

 

Parameters 

Cj: electric cost for the jth scheduled job, j ϵ [1, 2, …, NJ]. 

CRj: electric cost for the machine to stay at Ready state after the completion of the jth job, j ϵ [1, 2, …, NJ-1]. 

CSDj: electric cost for the machine to be shut down after the completion of the jth job, j ϵ [1, 2, …, NJ-1]. 

D: time duration of one pricing slot. 

Dj: processing duration in seconds for the job with ID j, j ϵ [1, 2, …, NJ]. 

𝐷𝑗
𝑖: processing duration in seconds for the job with ID j at the ith scheduling position, i and j ϵ [1, 2, …, NJ]. A 

job ID never changes once assigned, whereas the scheduling position of a job can be variable in different job 

schedules. 

DT: due time for all the jobs in the concerned work shifts. 

EPts: electricity price during the tsth pricing time slot. 

ETj: end time for the jth scheduled job, j ϵ [1, 2, …, NJ]. 

ETSj: end time in slots for the jth scheduled job, j ϵ [1, 2, …, NJ]. 

NJ: total number of jobs in the concerned work shifts.  

Ns: total number of machine states. 

Ps: power consumption of the machine state s. 

𝑃𝑠
𝑡: power consumption of machine state s at time t. It equals to Ps when the machine state at t is s; otherwise 

zero. 

STj: start time for the jth scheduled job, j ϵ [1, 2, …, NJ]. 

STSj: start time in slots for the jth scheduled job, j ϵ [1, 2, …, NJ]. 

Ts: start time of the concerned work shifts. 

TO: time duration for the machine to stay off.  

TR: default time duration for the machine to stay ready. Compared to the duration to stay idle during which the 

machine is also at Ready state, it is viewed as internal machine time to receive and read the next job 

schedule. 

TSD: time duration to shut down the machine.  

TSU: time duration to start up the machine.  

s: machine state, s ϵ [1, 2, …, Ns]. 

t: time in the defined basic unit, t ϵ [0, …, DT]. 

ts: time in electric pricing slots, ts ϵ [1, 2, …, ceil(DT/D)]. The function ceil() rounds the value toward positive 

infinity. 

αj: machine operation indicator. When the current job is completed, if the machine is set to stay at Ready state, 

αj is one; if the machine is set to be shut down, αj is zero, j ϵ [1, 2, …, NJ-1]. 

βts: time reference factor. If t is in the tsth time slot, βts equals to one; otherwise zero. 

 

min
𝑠,𝑡

{∑ 𝐶𝑗 + ∑ [𝛼𝑗 ∙ 𝐶𝑅𝑗 + (1 − 𝛼𝑗) ∙ 𝐶𝑆𝐷𝑗]
𝑁𝐽−1

𝑗=1

𝑁𝐽

𝑗=1
}    (2) 

Subject to: 
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𝐶𝑗 = ∑ 𝐸𝑃𝑡𝑠 ∙ (𝛽𝑡𝑠 ∙ ∑ ∑ 𝑃𝑠
𝑡 ∙ 𝑡

𝑁𝑠
𝑠=1

𝐸𝑇𝑗

𝑡=𝑆𝑇𝑗
)

𝐸𝑇𝑆𝑗

𝑡𝑠=𝑆𝑇𝑆𝑗
, 𝑗 ∈ [1,2, … , 𝑁𝐽]  (3) 

𝐶𝑅𝑗 = ∑ 𝐸𝑃𝑡𝑠 ∙ (𝛽𝑡𝑠 ∙ ∑ 𝑃3 ∙ 𝑡
𝑆𝑇𝑗+1

𝑡=𝐸𝑇𝑗
)

𝑆𝑇𝑆𝑗+1

𝑡𝑠=𝐸𝑇𝑆𝑗
, 𝑗 ∈ [1,2, … , 𝑁𝐽 − 1]  (4) 

𝐶𝑆𝐷𝑗 = ∑ 𝐸𝑃𝑡𝑠 ∙ (𝛽𝑡𝑠 ∙ ∑ 𝑃3 ∙ 𝑡
𝐸𝑇𝑗+𝐷3

𝑡=𝐸𝑇𝑗
)

⌊(𝐸𝑇𝑗+𝐷3−𝑇𝑠) 𝐷⁄ ⌋

𝑡𝑠=𝐸𝑇𝑆𝑗
+ ∑ 𝐸𝑃𝑡𝑠 ∙ (𝛽𝑡𝑠 ∙ ∑ 𝑃5 ∙ 𝑡

𝐸𝑇𝑗+𝐷3+𝐷5

𝑡=𝐸𝑇𝑗+𝐷3
)

⌊(𝐸𝑇𝑗+𝐷3+𝐷5−𝑇𝑠) 𝐷⁄ ⌋

𝑡𝑠=⌊(𝐸𝑇𝑗+𝐷3−𝑇𝑠) 𝐷⁄ ⌋
+

∑ 𝐸𝑃𝑡𝑠 ∙ (𝛽𝑡𝑠 ∙ ∑ 𝑃2 ∙ 𝑡
𝐸𝑇𝑗+𝐷3+𝐷5+𝑇𝑂+𝐷2

𝑡=𝐸𝑇𝑗+𝐷3+𝐷5+𝑇𝑂 )
⌊(𝐸𝑇𝑗+𝐷3+𝐷5+𝑇𝑂+𝐷2−𝑇𝑠) 𝐷⁄ ⌋

𝑡𝑠=⌊(𝐸𝑇𝑗+𝐷3+𝐷5+𝑇𝑂−𝑇𝑠) 𝐷⁄ ⌋
, 𝑗 ∈ [1,2, … , 𝑁𝐽 − 1]             (5) 

𝛼𝑗 = {
1, if (𝑆𝑇𝑗+1 − 𝐸𝑇𝑗) ≤ (𝐷3 + 𝐷5 + 𝐷2) or 𝐶𝑅𝑗 ≤ 𝐶𝑆𝐷𝑗

0, otherwise                                                                          
, 𝑗 ∈ [1,2, … , 𝑁𝐽 − 1]  (6) 

𝐸𝑇1 = 𝑆𝑇1 + 𝑇𝑆𝑈 + 𝑇𝑅 + 𝐷𝑗
1, 𝑗 ∈ [1,2, … , 𝑁𝐽]      (7) 

𝐸𝑇𝑖 = 𝑆𝑇𝑖 + 𝑇𝑅 + 𝐷𝑗
𝑖 , 𝑖 ∈ [2,3, … , 𝑁𝐽 − 1], 𝑗 ∈ [1,2, … , 𝑁𝐽]     (8) 

𝐸𝑇𝑁𝐽
= 𝑆𝑇𝑁𝐽

+ 𝑇𝑅 + 𝐷
𝑗

𝑁𝐽 + 𝑇𝑅 + 𝑇𝑆𝐷, 𝑗 ∈ [1,2, … , 𝑁𝐽]      (9) 

𝐷𝑗 = ∑ 𝐷𝑗
𝑘𝑁𝐽

𝑘=1 , 𝑗 ∈ [1,2, … , 𝑁𝐽]      (10) 

𝑃𝑠
𝑡 = 𝑃𝑠 = ∑ 𝑃𝑘

𝑡𝑁𝑠
𝑘=1 , 𝑠 ∈ [1,2, … , 𝑁𝑠]      (11) 

𝑡𝑠 = ⌊(𝑡 − 𝑇𝑠)/𝐷⌋       (12) 

𝑇𝑂 = {
0, if 𝑆𝑇𝑗+1 − 𝐸𝑇𝑗 ≤ 𝐷3 + 𝐷5 + 𝐷2                

𝑆𝑇𝑗+1 − (𝐸𝑇𝑗 + 𝐷3 + 𝐷5 + 𝐷2), otherwise
, 𝑗 ∈ [1,2, … , 𝑁𝐽 − 1] (13) 

𝑆𝑇𝑗 < 𝐸𝑇𝑗 , 𝐸𝑇𝑖 + 𝑇𝑅 ≤ 𝑆𝑇𝑖+1, 𝑗 ∈ [1,2, … , 𝑁𝐽], 𝑖 ∈ [1,2, … , 𝑁𝐽 − 1]   (14) 

𝐸𝑇𝑁𝐽
+ 𝑇𝑅 + 𝑇𝑆𝐷 ≤ 𝐷𝑇       (15) 

3.3 Electric cost minimization with a genetic algorithm (GA) 
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Figure 2  Implementation of a GA in the proposed method 
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As presented in Figure 2, a genetic algorithm (GA) is used in the proposed method to search for the optimal 

solution to the scheduling problem formulated above, i.e., Equation (2) – (15). A gene contains the information of a 

certain job including job ID, job duration, workpiece number, job start time, EC for executing this job, and idle/off 

machine operation after the completion of this job. A chromosome is a complete scheduling solution including the 

job sequence, all the jobs with their detailed information, and the machine operation following each job. The 

crossover and mutation are two important operations on genes in a GA, on which the GA performance largely 

depends. The crossover creates child solutions from parent chromosomes. The mutation prevents falling all solutions 

into a local optimum of the solved problem. Besides, the elitism is implemented to ensure the best solutions of a 

generation can be always retained into the next generation. The fitness function (see Figure 2) containing the energy 

model evaluates each solution within a population. Therefore, a solution is the input of the energy model. The output 

is the electric cost for the input solution, which is further stored as the solution’s fitness. When the maximal iteration 

number is reached, the best solution is selected and simulated which finally provides detailed energy simulation 

information. 

 

3.4 Stochasticity handling in energy-cost-aware scheduling 

 

 
Figure 3  General handling of stochasticity in the scheduling 

The proposed heuristic to handle stochasticity in the scheduling is presented in Figure 3. The key operations are 

indicated by different numbers. (1) The fresh schedule operation decides whether the next scheduling is run on the 

basis of a former schedule. In the case of stochasticity, a former schedule is the one that is interrupted by a SE. (2) If 

a former schedule is involved, the interrupted schedule is taken into consideration for the next scheduling. The 

considered information includes a) the time when the former schedule is interrupted by a SE (i.e., the start time of 

the SE), b) the duration of the SE, c) the already executed jobs in the former schedule, or the non-executed jobs that 

need to be reconsidered in the next scheduling, and d) the job that is being executed, but is not yet accomplished, 

upon the occurrence of the last SE.  

(3) The next scheduling (i.e., rescheduling) can be started from the time when the last SE terminates (i.e., the 

start time plus the duration of the SE). The right-shift operation postpones all the upcoming jobs after the 

termination of the SE. Depending on the specific production, an interrupted job has to be totally reproduced (i.e., a 

non-resumable job), or only its non-executed part remains to be produced during the next schedule (i.e., a resumable 

job). So for an interrupted non-resumable job, its whole part is right-shifted. For an interrupted resumable job, its 

non-executed part is right-shifted. In comparison to the existing right-shift policy, rescheduling of job orders with 

the volatile energy price is involved in the following steps, in order to remain energy-cost-effective. 

(4) Input information is updated and loaded in the scheduler, e.g., the energy price, input jobs, the start time, the 

due time, GA configurations, etc. (5) The scheduling is carried out by using the GA. (6) For the output optimal 
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schedule, an energy simulation is conducted to have a detailed energy report of this schedule. (7) If stochasticity is 

involved, it will invoke another rescheduling. Otherwise, the whole procedure terminates. 

The energy model is coupled with operation5 (O5) and O6 to make the scheduling and modeling energy-aware. 

It is also associated with O7 to incorporate stochasticity into its time progression. The sequential steps “Start-O1-

O4-O5-O6-O7-End” form up a conventional scheduling procedure, which is static. The cyclic steps “O2-O3-O4-O5-

O6-O7-O2-O3…” set up a dynamic scheduling procedure to deal with SEs. 

 

4. Case study 

The proposed method was implemented in a case study of a surface grinding machine (Paragon RC-18CNC) 

under two real electric pricing mechanisms (RTP and ToUP). The stochasticity handling in energy-cost aware 

scheduling was also investigated. 

 

4.1 Energy modeling of a single machine 

The power measurement on this grinder was performed with a clamp-on power meter (Yokogawa CW240). 

Connected between the power supply and the grinder, the power meter records the grinder’s overall power 

consumption every second. The grinder’s main energy consumers are listed in Table 2. 

 

Table 2  Energy consumers of the grinding machine RC-18CNC 

Energy consuming units Function 

Grinding wheel Grind the workpiece (Each grain of abrasive on the grinding wheel’s surface cuts 

a small chip from the workpiece via shear deformation) 

Regulating wheel Rotate the workpiece and pull it through the operation so as to control workpiece 

rotational speed and feed rate 

Hydraulic pump Transport the liquid press to subsystems for mechanical control 

Coolant pump Move coolant for cooling the workpiece, grinding wheel and regulating wheel 

Others (computer, light, 

hydraulic oil cooler, 

automatic lubricator etc.) 

Different functionalities 
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Figure 4  A complete energy consumption profile of the investigated grinding machine 

 

This grinder’s complete energy profile is illustrated in Figure 4. At Startup state, its power consumption first 

has sharp peaks at around 15 kW, and then experiences a periodic drop-down and rise-up between 4.8 kW and 2 kW, 

which should be due to the power-off and power-on of the first coolant pump. At Ready state, the grinding wheel 

rotates at a fixed peripheral speed of 2000 m/min without the touch of a workpiece or the dresser, which results a 
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nearly constant power consumption of 6 kW. The Production state is further divided into Grinding and Dressing 

sub-states. Dressing is responsible for sharpening and regularizing the grinding wheel shape, and cleaning the 

impurities coming from the chips. The second coolant pump should turn on when the state transitions from Ready to 

Grinding. At Grinding, each evident peak corresponds to grinding one workpiece. The grinder passes from Grinding 

to Dressing about every 350 seconds. The second coolant pump should be turned off during the dressing cycle. At 

Shutdown, the main power consumers are powered off rapidly, which leads to the chute of the power curve; then the 

grinder stays in a constant power level for more than five minutes (see Figure 4). As the grinder is computer-

numerically controlled, this is interpreted as a compulsory duration for the numerical system to perform shutdown 

work, e.g., storing data to non-volatile memory. The energy audit for the grinder states is listed in Table 3. Some 

states have an obvious difference between their maximum and average powers, e.g., Startup and Shutdown, while 

others have steady power profiles, e.g., Ready. 

 

Table 3  Energy audit for the grinder states 

Machine state 

(one cycle) 

Maximum power 

(kW) 

Average power 

(kW) 

Duration (s) Average energy 

consumed (kWh) 

Startup 16.90 3.55 652 0.64 

Ready 6.10 5.93 25 (default) 0.04 (default) 

Grinding 12.07 9.49 25 0.07 

Dressing 8.95 6.72 125 0.23 

Shutdown 5.30 1.00 362 0.10 

 

Based on the identified states, the general energy model proposed in Section 3.1 was extended to be applied to 

this specific case, as shown in Figure 5. It was implemented in Java. Compared to the generic model, the Production 

state further contains Grinding and Dressing. Although the actual grinding operation has to be interrupted 

periodically, the dressing operation should be carried out not only to avoid the occurrence of abnormalities on the 

grinding wheel’s surface but also to guarantee high product quality. The dresser is assumed to be in good condition 

when the grinder starts a new job. So when the machine stays at Ready, its next state is either Grinding or Shutdown. 

 
Figure 5  Specific energy model for surface grinding process 

 

4.2 Single-machine job scheduling under real-time pricing (RTP) 

The energy-cost-aware job scheduling model is expected to work such that the total electricity cost for the 

scheduled production is minimized under the dynamic pricing mechanism. It is coupled with the energy model built 

in Section 4.1. Therefore, it can not only get full knowledge of the energy-related information, but also output a 

scheduling solution for the energy-related simulation. 

 

4.2.1 Genetic algorithm (GA) optimization 

A number of assumptions were first made. (1) The concerned work shifts last from 8 am on March-3-2014 to 2 

pm on March-4-2014. (2) At Belpex, since the exchanged power volume on DAM is significantly greater than that 

on CIM (Belpex, 2013), the RTP data is taken from DAM (see Figure 6). (3) The concerned steel workpieces are of 

the same type as that in the measurement. (4) The grinder runs the same numerical control (NC) program, which 

means it keeps the same energy consumption behavior as that identified in Section 4.1. Moreover, the machine 
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always grinds 14 workpieces then conducts one cycle of dressing operation during a continuous grinding process. (5) 

If the machine grinds less than 14 workpieces just before it fulfills the current job, it will grind another 14 

workpieces for the next job before it carries out another dressing operation. This is denoted as “non-memory 

dressing”. (6) If the grinder stays idle or off before the start of one job, the start time of this job is always set at the 

very start of a certain hour, e.g., 9 am and 11 pm. (7) The grinding jobs are shown in Table 4. Totally five jobs are 

considered to take an example. An extension to a larger number of jobs is possible. 

 

Table 4  Grinding jobs for scheduling 

Job ID 1 2 3 4 5 

Number of steel workpieces 100 200 300 400 500 

Required production time in 

seconds (grinding + dressing) 

3375 

(56m15s) 

6750 

(1h52m30s) 

10125 

(2h48m45s) 

13500 

(3h45m) 

16875 

(4h41m15s) 

 

Concerning the genetic algorithm (GA) implementation in Java, permutation encoding was used for crossover 

and mutation. Supposing there are two solutions represented by different orders of job IDs, i.e., solution1 is (2, 4, 1, 

3, 5) and solution2 is (5, 1, 4, 2, 3), the single-point crossover and mutation are then defined in Table 5 and Table 6, 

respectively. Different to the conventional crossover rules, genes of two chromosomes are herein exchanged while 

ensuring that there is no job ID repetition in each chromosome (i.e., solution). For instance, in the possible case 1 in 

Table 5, job2 in child solution1 comes from solution1, and the rest jobs in child solution1 come from solution2 by 

following the job order in solution2 while skipping job2 in solution2. The population size was set as 80. This means 

that each generation has 80 individuals. The elitism rate was 0.15, which means the top 15% of individuals were 

retained from one generation to the next. The crossover and mutation rates were fixed at 95% and 3%, respectively. 

The maximal iteration was 100. 

 

Table 5  Defined crossover  

Possible case Solution1 Solution2 Crossover point Child solution1 Child solution2 

1 (2, 4, 1, 3, 5) (5, 1, 4, 2, 3) 1 (2, 5, 1, 4, 3) (5, 2, 4, 1, 3) 

2 (2, 4, 1, 3, 5) (5, 1, 4, 2, 3) 2 (2, 4, 5, 1, 3) (5, 1, 2, 4, 3) 

3 (2, 4, 1, 3, 5) (5, 1, 4, 2, 3) 3 (2, 4, 1, 5, 3) (5, 1, 4, 2, 3) 

4 (2, 4, 1, 3, 5) (5, 1, 4, 2, 3) 4 (2, 4, 1, 3, 5) (5, 1, 4, 2, 3) 

 

Table 6  Defined mutation 

Possible case Solution Mutated solution 

1 (2, 4, 1, 3, 5) (1, 4, 2, 3, 5) 

2 (2, 4, 1, 3, 5) (2, 5, 1, 3, 4) 

Others … … 

 

Table 7  Optimal job schedule for electric cost minimization 

Job ID Job start time   

(March 2014) 

Job end time  

(March 2014) 

Machine operation following 

the current job 

Machine states following the 

current job 

3 3d:15h:0m:0s 3d:18h:0m:2s Immediately start the next job Ready, Grinding + Dressing 

1 3d:18h:0m:2s 3d:18h:56m:42s Shut down Ready, Shutdown, Off 

4 3d:21h:0m:0s 4d:0h:45m:25s Immediately start the next job Ready, Grinding + Dressing 

5 4d:0h:45m:25s 4d:5h:27m:5s Immediately start the next job Ready, Grinding + Dressing 

2 4d:5h:27m:5s 4d:7h:26m:27s Shut down Ready, Shutdown, Off 

 

The optimal job schedule found by the GA is shown in Table 7. The time step in this schedule is one second, 

since the measured power data has a frequency of one hertz. The scheduler’s stability is proven by the fact that there 
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is no time overlap between jobs, and in the case of consecutive jobs, the next job strictly starts from the end time 

point of its precedent job. The machine operation is also given to indicate the machine behavior following each job.  

This schedule is depicted in Figure 6, which evidently demonstrates its high effectiveness. The electricity price 

changes at different hours, but stays the same within one hour. The highest pricing peak appears in the evening from 

7pm to 9pm on March-3, while the lowest pricing valley falls in the early morning from 3am to 7am on March-4. 

This scheduling solution can not only effectively avoid high-priced periods, e.g., the aforementioned highest pricing 

peak, but also allocate the jobs to low-priced periods as many as possible, e.g., from 4pm to 7pm on March-3 and 

the aforementioned pricing valley.  

 

 
Figure 6  RTP electricity price from Belpex and the optimal job schedule (the scheduling step is 1 second)  

 

This optimal schedule is further compared with some other cases (see Table 8). The maximum pricing takes the 

highest electricity price during the studied period and the maximal number of machine startup and shutdown. 

Similarly, the average pricing takes the mean values. As a classical production schedule, the as-early-as-possible 

schedule drives the machine to grind all the jobs consecutively from the beginning of the work shifts without staying 

idle or powered off between any jobs. In comparison, the backward schedule plans the start time of jobs from the 

due time. This leads to the as-late-as-possible schedule. These cases all follow the same job sequence of the optimal 

schedule. As is shown by Table 8, the cost reduction effect of the optimal schedule is obvious with the cost saving 

rates varying from 7% to 52%. 

 

Table 8  Comparison between the optimal job schedule and some theoretical cases 

Case Electricity price 

(€/mWh) 

Number of machine 

startup and shutdown 

Cost (€) Percentage of cost 

saving 

Maximum pricing 80.69 5 10.7 52% 

Average pricing 48.24 3 6.3 19% 

As-early-as-possible schedule Hourly dynamic 1 5.8 12% 

As-late-as-possible schedule Hourly dynamic 1 5.5 7% 

The optimal schedule Hourly dynamic 2 5.1 - 

 

4.2.2 Energy simulation of the scheduling solution 

As the scheduler is coupled with the energy model (see Section 4.1), detailed energy related statistics can be 

further given by the energy simulation of the optimal schedule, including the accumulated time duration, the electric 

consumption, and the cost at the level of machine states, and also the aggregated information at the machine level 

(see Table 9). The main electricity consumer among states can be identified as Grinding, which takes up nearly 80% 

of the total electric consumption and cost, followed by Dressing at nearly 20%. This type of table enables machine 

operators and decision-makers to have a clear view over the energy related details of the machine. 
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Table 9  Energy consumption details at levels of the machine and machine states for the optimal schedule 

Grinder 

state 

Time consumption Electric consumption Electric cost 

Amount (s) Percentagea  Amount (kWh) Percentagea Amount (€) Percentagea 

Off 55172 

1304 

51.1% 0 

1.29 

0 0 

0.08 

0 

Startup 1.2% 1.0% 1.6% 

Ready 175 0.2% 0.29 0.2% 0.01 0.2% 

Grinding 37500 34.7% 98.85 79.0% 3.97 78.5% 

Dressing 13125 12.2% 24.50 19.6% 0.98 19.4% 

Unowned 50800 47.0% 123.64 98.8% 4.96 98.0% 

Shutdown 724 0.7% 0.20 0.2% 0.01 0.2% 

Grinder  108000 (30h) - 125.13 - 5.06 - 
a“Percentage” means the percentage of each state taken from total. 

 

In addition, the power consumption of this grinder during the simulation can be represented along the time 

course, as shown in Figure 7. The grinder’s energy consumption states are correspondingly indicated above the 

power curve. Figure 7 is a high-precision visualization, since the presentation can be zoomed at one second, which is 

illustrated by the left arrow. There are in fact two power consumption curves: the green one indicates the a priori 

estimation, which externally draws a prediction curve only according to the given job schedule independent of the 

simulation environment, while the dark blue one is the a posteriori display based on the power data collected during 

the simulation. The perfect overlap of the two curves demonstrates the excellent functionality of the proposed model 

to conduct energy modeling and simulation. Given the production schedule and the electricity price in the coming 

days, this representation can also serve as an accurate power consumption prediction. Besides, the accurate power 

consumption behavior can be stored and compared with unrecognized power consumption patterns. This facilitates 

MFs to be detected in the early stage of abnormal events on a shop floor. 

 

 
Figure 7  Visualization of the grinder’s power consumption (the modeling step is 1 second) 

 

4.3 Single-machine job scheduling under time-of-use pricing (ToUP)  

The ToUP tariff was taken from a Belgian plastic bottle manufacturer, which buys energy from the spot market 

once a month. All the other assumptions are the same as those in the above case. In order to further demonstrate the 

effectiveness of the proposed energy-cost-aware scheduler, the investigated period is extended to one week, i.e., 

from 8am on March-3-2014 to 8am on March-10-2014. The job number rises to 35, by raising to 7 times, compared 

to the number of each job in Table 4. The scheduling step is one second, which is similar to the former case.  

As depicted in Figure 8, this electricity price has two levels: on-peak and off-peak within every 24 hours, at 

61.1 €/mWh and 39.6 €/mWh, respectively. The off-peak period lasts from 9 pm to 6 am of the next day, which has 
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only nine hours within a day. Hence, the obtained job schedule makes use of these periods as many as possible, 

while keeping energy-related overheads as small as possible. The energy-related overheads can be extra energy 

consumed by a frequent machine switch on/off, or/and by a long-term machine idle state. In this obtained schedule, 

there are some short off-peak slots that are allocated for the idle state, instead of the production-related states, i.e., 

Grinding and Dressing, which are more energy intensive. This can be illustrated by the idle periods of 14m35s 

between Job9 and Job11 during the Wednesday off-peak, and 1h3m20s between Job6 and Job34 during the 

Thursday off-peak. In total, 90% of the off-peak periods are allocated for production-related states. Besides, the 

machine operation, which is scheduled to follow each job, is indicated next to each job in the legend of Figure 8. 

This is similar to Table 7 in the RTP case. The machine operation will invoke the corresponding machine state 

transition in the state-based energy model. Coupled with the energy model, the scheduler thus assigns the proper 

machine states along with jobs.   

 
Figure 8  ToUP electricity price and the optimal job scheduling over one week 

 

Therefore, the obtained schedule is revealed as a near-optimal solution, instead of the optimal solution. One key 

reason is that there are totally 604800 time slots in this demonstration. This turns out to be a large number for 

scheduling, in comparison with maximum dozens or hundreds of time slots in similar work (Liu et al., 2014; Shrouf 

et al., 2014). This near-optimal schedule is obtained after a 2593-second GA search. Figure 9 depicts this GA search 

trend. In the first 20 generations, the total electricity cost of the best scheduling solution decreases rapidly from 

45.18 € to 42.86 €. Then from the 21st generation to the 67th generation, the cost experiences a steady decrease down 

to 42.63 €. After that, the cost stays quite stable with only a slight decrease, and reaches 42.61 € at the 250th 

generation. Besides, Figure 8 and Figure 9 jointly demonstrate that the GA search approaches to the actual optimum.  

Based on the energy simulation of the optimal job schedules in the two electric tariffs, a comparison is further 

conducted between their energy consumption efficiency EFcnpt, EC efficiency EFct, and productive energy rate Rp 

(see Table 10). EFcnpt indicates that, for producing one workpiece, the two optimal schedules consume almost the 

same amount of energy under RTP and ToUP, respectively. EFct shows that, for one workpiece, it consumes a lower 

electric cost (17%) under RTP than under ToUP. Rp reveals the percentage of the consumed electricity which 

directly contributes to the added value of workpieces. It stays at the same rate (79%) in the two cases, although the 

time duration and job quantity are different. This can be explained by two raisons. First, the grinder is scheduled to 

be powered off during most time periods when there is no need for grinding. Second, the dressing operation is 

accompanied with the grinding operation periodically. So the energy consumed by grinding and dressing increases 

proportionately along with the growth of job number. This type of table can not only provide machine energy related 
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KPIs to decision-makers, but also help them to get an accurate insight into the effect of different electric tariffs on 

the energy related KPIs. Therefore, the knowledge of the energy consumption and EC contributes to a more 

informed decision on production activities at a shop floor.  

 
Figure 9  GA search trend 

Table 10  Energy KPIs at different electric tariffs 

 RTP tariff ToUP tariff 

𝐸𝐹𝑐𝑛𝑝𝑡 

(𝐸𝐹𝑐𝑛𝑝𝑡 = 𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠⁄ ) 
0.0834 kWh/piece 0.0833 kWh/piece 

𝐸𝐹𝑐𝑡 

(𝐸𝐹𝑐𝑡 = 𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡 𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠)⁄  
0.0034  €/piece 0.0041  €/piece 

𝑅𝑝 

(𝑅𝑝 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣e energy 𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦⁄ ) 
79% 79% 

 

4.4 Stochasticity 

Two types of SEs were implemented to demonstrate the effectiveness of stochasticity handling in the energy-

cost-aware scheduling (see Section 3.4), and further to enable the analysis of how stochasticity affects the energy-

cost-effective performance of the proposed method. The case of scheduling under RTP in Section 4.2 was taken as a 

baseline case. The first investigated type of SE is a random MF. The time for a MF follows the Weibull distribution, 

with the following probability density function (Johnson et al., 1994): 
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In this investigation, the shape parameter α equals one, meaning that the MF rate is constant along time; the scale 

parameter β equals 10000 in order to adapt the time generation interval to the investigated period (30h, i.e., 

108000s). There is one MF during an energy simulation of a complete schedule. The duration of each MF is one 

hour. The machine stays powered off during the MF period. At the presence of a MF, the interrupted job is 

resumable, and the rest of it should be place in the first place in the reschedule. Otherwise, it is not possible to 

separate the jobs. 

As the baseline case is a fresh schedule, the scheduler has the same configuration, e.g., the job number and 

duration, RTP energy price, etc. It first goes through the heuristic steps “Start-O1-O4-O5” (see Figure 3) to get the 

original optimal schedule (see Figure 10). This optimal schedule is then simulated in O6. Upon the MF which occurs 

at 15h29m35s on March-3-2014, the energy simulation terminates, and the scheduler continues to go through the 

steps “O7-O2-O3-O4-O5” (see Figure 3) to reschedule the order and start time of the upcoming jobs (i.e., Job5, Job1, 

Job2, and Job4, see Figure 10), and also to reschedule the start time of the non-executed part of Job3. As shown by 
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Figure 10, the jobs are successfully rescheduled by making use of the low-priced periods and avoiding the high-

priced periods. The total EC (5.2€) is then comprised of the cost for producing Job3’s executed part in the original 

schedule, and the cost for running the whole reschedule. It slightly increases by 2% in comparison to the EC of the 

baseline case. The reason is that the MF takes up some low-priced periods, such that there is not fully sufficient low-

priced periods to accommodate the reschedule after the MF (e.g., the last part of Job3 after 19h on March-3-2014). 

The EC rising rate caused by the MF will get higher, if the EC consumed by the maintenance activity during the MF 

is considered.  

 
Figure 10 Handling of a random machine failure (MF) in the energy-cost-aware scheduling 

The second considered type of SE is a random increase of a customer order. Five new small jobs (see Table 11) 

arrive at 17h on March-4, which is during the execution of Job3 in the original schedule. They have the same due 

time as the original jobs (i.e., 2 pm on March-4-2014). The reschedule is thus triggered. Job3 continues to be 

executed, while all the upcoming jobs (the non-executed original jobs plus the new jobs numbered from 6 to 10) are 

rescheduled by going through the steps “O7-O2-O3-O4-O5-O6” (see Figure 3). The start time of the reschedule is 

the time when Job3 is finished. As presented by Figure 11, the rescheduled jobs effectively make use of the low-

priced periods, while avoiding the high-priced periods (i.e., 19h to 21h on March-3, and 9h to 11h on March-4). The 

total EC for all the jobs is 6.35€. Compared to the baseline case, it rises 25%, while the number of workpieces 

increases 20%. The reason why the EC has a higher increasing rate is that some higher-priced periods have to be 

used to accommodate the rising job volume. However, the difference between the two rising rates is relatively small 

(i.e., 5%), in comparison to the large variation of the energy price around its mean level (i.e., 16%). This further 

indicates the energy-cost-effectiveness of the proposed method.  

The above two cases and any other SE handling in scheduling can be viewed as an online scheduling problem. 

In this problem, some of the information around the upcoming jobs is unknown when running the scheduler. This is 

illustrated by a random MF, which occurs during the original schedule. Information needs to be updated that the 

original jobs need to be scheduled outside the period of a MF. This is additionally illustrated by a later arrival of 

new jobs, which necessitates an update of the number and processing time of the upcoming jobs, even the type of 

jobs which may have different power consumption. Once a SE takes place, the cyclic steps “O7-O2-O3-O4-O5-O6” 

in Figure 3 actually serve as an effective approach to revise the original schedule, of which the part is not yet 

executed by the machine. The frequency to start the reschedule depends on the occurrence frequency of a SE. Since 

a shop floor is generally well maintained, the frequency should be low. Furthermore, the proposed method rapidly 

achieves a near-optimal scheduling solution (see Figure 9). As a result, computation time is not a critical factor to 
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limit the scheduling performance. However, the propose method aims at a unit process. If it extends to multiple 

machines, multiple lines, and even multiple factories, computation time will impose increasingly evident constraints. 

Table 11 New grinding jobs for scheduling 

Job ID 6 7 8 9 10 

Number of steel workpieces 80 70 60 50 40 

Required production time in 

seconds (grinding + dressing) 

2625 

(43m45s) 

2375 

(39m35s) 

2000 

(33m20s) 

1625 

(27m5s) 

1250 

(20m50s) 

 

 
Figure 11 Handling of new jobs in the energy-cost-aware scheduling 

 

5. Conclusions 

A novel method has been proposed in this study to conduct energy-cost-aware job scheduling on a machine. 

Finite state machines (FSMs) are used to build the energy model of a machine, and to run the energy simulation 

which has an interface to dynamic energy prices. Coupled with the energy model, a mixed-integer linear 

programming (MILP) model is formulated for scheduling jobs on a single machine. A genetic algorithm (GA) is 

implemented in Java, in order to search for the optimal or near-optimal scheduling solution at volatile energy prices. 

By coupling the energy modeling and the energy-aware scheduling, this method jointly combines the energy 

efficiency and demand response efforts within the demand side management (DSM) framework. This fills the gap in 

the literature which simultaneously encompasses energy modeling, simulation, and optimization of single 

production processes at the level of machine states. 

This method was successfully applied to a numeric control grinding machine (Paragon RC-18CNC). First, a 

state-based energy model was built with the power data measured from this machine. It was validated by means of 

simulation. With regard to industrial applications, it is an effective way to use the large amount of energy data, 

which is collected either by temporal measurement setups or by long-term monitoring systems. It can provide energy 

managers with energy and cost information at levels of machine states and a single machine. It thus unveils the 

energy consumption behaviors of machines, and facilitates measures for enhancing machine energy efficiency. 

Second, the effectiveness of the scheduler was demonstrated under real-time pricing (RTP) and time-of-use 

pricing (ToUP) tariffs, over different time periods (i.e., 30 hours and 7 days), and at a time step of one second. This 

scheduler allocates jobs to lower-priced periods without causing energy overheads, and assigns complete machine 

states over time, in order to minimize the involving energy cost (EC) within a given due time. On the one hand, 
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obvious economic savings may be thus achieved for the industry. On the other hand, this may help power generators 

to take advantage of sustainable energy systems by keeping industrial energy demand within the provision capacity 

of renewable energy sources, which stimulates the reduction of the carbon footprint in the environment. 

Third, the proposed scheduler highly interacts with the state-based energy model. Therefore, the scheduler can 

not only get detailed energy information as its input, but also output the searched schedule for detailed energy 

simulation. As the schedule plans for the future production, the energy consumption of a single machine can be 

further forecasted based on the optimal production schedule. The forecasted energy information at levels of states 

and a machine under different electric tariffs may facilitate an enterprise to carry on an improved energy contact 

negotiation with the utility. As a result, the utility can calculate a more accurate demand prognosis, meanwhile the 

enterprise will have the possibility to get from the utility a more customizable energy provision and a lower EC.  

Fourth, stochasticity is generally considered in the proposed method. According to the investigation, a random 

machine failure tends to be harmful. It not only impedes the normal production activity, but also forms up a 

competitive relationship with the energy-cost-aware scheduler in regard to taking up low-priced periods. 

Nevertheless, stochasticity is demonstrated to be well handled by the proposed method, such that its harmful 

influence on the EC effectiveness can be minimized. Besides, new jobs, which arrive during an ongoing execution 

of a schedule, may have an influence on the scheduling of all the upcoming jobs along the volatile energy price. The 

upcoming jobs are demonstrated to be effectively rescheduled, such that the total EC is minimized. 

Future work will include an extension to a multi-criteria scheduler coupled with the energy model. This 

scheduler considers optimizing several important performance indicators of a machine, such as makespan, energy 

consumption, carbon emissions etc. A more flexible energy modeling can also be considered with more machine 

parameters and measurements to widely cover the energy consumption behaviors of a machine. If the proposed 

approach extends to a larger scale, e.g., multiple machines, lines, and factories, a meaningful solution is envisioned 

to be obtained for energy-efficient and energy-cost-effective production in a general sense. 
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