1,686 research outputs found

    Efficient Culling Techniques for Interactive Deformable NURBS Surfaces on GPU

    Get PDF
    [Abstrtact] InfoValue: NURBS (Non-uniform rational B-splines) surfaces are the standard freeform representation in Computer-Aided Design (CAD) applications. Rendering NURBS surfaces accurately while they are interactively manipulated and deformed is a challenging task. In order to achieve it, the elimination from pipeline in early stages of back-facing surfaces or surface pieces is a key advantage. Furthermore, an effective interactive manipulation implies that all the culling computations should be performed for each frame, facing the possibility of fast changes in occlusion information. In this paper, different interactive culling strategies for NURBS surfaces are presented and analyzed. These culling techniques are based on the exploitation of the geometric properties presented in a NURBS surface, that allow easily to find bounds for it in screen space for each frame. Furthermore, the culling overhead for our proposals is small compared to the computational saving, outperforming a proposal without culling. An implementation of these strategies using current GPUs is presented, achieving real-time and interactive rendering rates of complex parametric models.Xunta de Galicia y fondos FEDER; GRC2013/055Ministerio de EconomĂ­a y Competitividad y fondos FEDER; TIN2013-42148-

    Appearance Preserving Rendering of Out-of-Core Polygon and NURBS Models

    Get PDF
    In Computer Aided Design (CAD) trimmed NURBS surfaces are widely used due to their flexibility. For rendering and simulation however, piecewise linear representations of these objects are required. A relatively new field in CAD is the analysis of long-term strain tests. After such a test the object is scanned with a 3d laser scanner for further processing on a PC. In all these areas of CAD the number of primitives as well as their complexity has grown constantly in the recent years. This growth is exceeding the increase of processor speed and memory size by far and posing the need for fast out-of-core algorithms. This thesis describes a processing pipeline from the input data in the form of triangular or trimmed NURBS models until the interactive rendering of these models at high visual quality. After discussing the motivation for this work and introducing basic concepts on complex polygon and NURBS models, the second part of this thesis starts with a review of existing simplification and tessellation algorithms. Additionally, an improved stitching algorithm to generate a consistent model after tessellation of a trimmed NURBS model is presented. Since surfaces need to be modified interactively during the design phase, a novel trimmed NURBS rendering algorithm is presented. This algorithm removes the bottleneck of generating and transmitting a new tessellation to the graphics card after each modification of a surface by evaluating and trimming the surface on the GPU. To achieve high visual quality, the appearance of a surface can be preserved using texture mapping. Therefore, a texture mapping algorithm for trimmed NURBS surfaces is presented. To reduce the memory requirements for the textures, the algorithm is modified to generate compressed normal maps to preserve the shading of the original surface. Since texturing is only possible, when a parametric mapping of the surface - requiring additional memory - is available, a new simplification and tessellation error measure is introduced that preserves the appearance of the original surface by controlling the deviation of normal vectors. The preservation of normals and possibly other surface attributes allows interactive visualization for quality control applications (e.g. isophotes and reflection lines). In the last part out-of-core techniques for processing and rendering of gigabyte-sized polygonal and trimmed NURBS models are presented. Then the modifications necessary to support streaming of simplified geometry from a central server are discussed and finally and LOD selection algorithm to support interactive rendering of hard and soft shadows is described

    Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations

    Get PDF
    Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und FlĂ€chen, in den meisten FĂ€llen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und PrĂ€sentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verstĂ€ndliche Visualisierung der Simulationsergebnisse, wĂ€hrend eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschrĂ€nkten HardwareunterstĂŒtzung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue FĂ€higkeiten aktueller Grafikkarten aus, um den Stand der Technik bezĂŒglich QualitĂ€t, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwĂ€ndige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-FlĂ€chen und einen interaktiven Ray-Casting-Algorithmus fĂŒr die IsoflĂ€chenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz fĂŒr illustrative und verstĂ€ndliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation fĂŒr die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten AnsĂ€tze basieren auf rasterisierter Geometrie und sind somit ebenfalls fĂŒr normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen RealitĂ€t darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-DatensĂ€tzen durchgefĂŒhrt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer QualitĂ€t möglich ist. Die EinfĂŒhrung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken fĂŒr die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verstĂ€ndliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare fĂŒr die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study

    Multi-scale space-variant FRep cellular structures

    Get PDF
    Existing mesh and voxel based modeling methods encounter difficulties when dealing with objects containing cellular structures on several scale levels and varying their parameters in space. We describe an alternative approach based on using real functions evaluated procedurally at any given point. This allows for modeling fully parameterized, nested and multi-scale cellular structures with dynamic variations in geometric and cellular properties. The geometry of a base unit cell is defined using Function Representation (FRep) based primitives and operations. The unit cell is then replicated in space using periodic space mappings such as sawtooth and triangle waves. While being replicated, the unit cell can vary its geometry and topology due to the use of dynamic parameterization. We illustrate this approach by several examples of microstructure generation within a given volume or along a given surface. We also outline some methods for direct rendering and fabrication not involving auxiliary mesh and voxel representations

    Culling Techniques for Deformable NURBS Surfaces

    Get PDF
    [Resumo]: As superficies NURBS son unha representaciĂłn estĂĄndar de modelos que se usan normalmente en deseño asistido por ordenador (CAD), enxeñarĂ­a naval, enxeñarĂ­a de automĂłbiles ou imaxes procesadas para uso mĂ©dico. Adicionalmente estas ofrecen moitas vantaxes, debido a que con pequenas modificaciĂłns nalgĂșns puntos de control resultan en modelos moi complexos. No entanto, non hai garantĂ­a de obter un nivel suficientemente alto de teselaciĂłn para evitar modelos con redes toscas, polo que no seguinte proxecto describiranse o uso de diferentes tĂ©cnicas de culling, que axudarĂĄn a reducir o cĂłmputo innecesario de superficies non visibles e en consecuencia a obter un mellor rendemento con menos artefactos.[Abstract]: NURBS surfaces are a standard representation of models typically used in computer-assisted design (CAD), naval engineering, car engineering, or medical-processed images. Furthermore, NURBS surfaces have many advantages, a small modification on some control points result in highly complex models. However there is no guarantee of obtaining an high enough level of tessellation in order to avoid coarse models, which is why in the following project it will be described the use of different culling techniques that might help to reduce the unnecessary computation of no visible surfaces and in consequence the achievement of a better performance with fewer artefacts.Traballo fin de grao (UDC.FIC). EnxeñarĂ­a InformĂĄtica. Curso 2022/202

    A survey of partial differential equations in geometric design

    Get PDF
    YesComputer aided geometric design is an area where the improvement of surface generation techniques is an everlasting demand since faster and more accurate geometric models are required. Traditional methods for generating surfaces were initially mainly based upon interpolation algorithms. Recently, partial differential equations (PDE) were introduced as a valuable tool for geometric modelling since they offer a number of features from which these areas can benefit. This work summarises the uses given to PDE surfaces as a surface generation technique togethe
    • 

    corecore