
Facultade de Informática

TRABALLO FIN DE GRAO
GRAO EN ENXEÑARÍA INFORMÁTICA

MENCIÓN EN TECNOLOXÍAS DA INFORMACIÓN

Culling Techniques for Deformable NURBS
Surfaces

Estudante: David Lema Núñez

Dirección: Margarita Amor López

Raquel Concheiro Figueroa

A Coruña, February de 2023.

Dedicado á constante busca do coñecemento

Acknowledgements

Gustaríame agradecer á miña familia polo seu apoio durante esta carreira, así como
aos amigos e compañeiros que me axudaron durante a súa realización.

Tamén me gustaría agradecer o tempo e esforzo prestado polas miñas titoras para o
desenvolvemento deste traballo.

3

Abstract

NURBS surfaces are a standard representation of models typically used in computer-assisted
design (CAD), naval engineering, car engineering, or medical-processed images. Further-
more, NURBS surfaces have many advantages, a small modification on some control points
result in highly complex models. However there is no guarantee of obtaining an high enough
level of tessellation in order to avoid coarse models, which is why in the following project
it will be described the use of different culling techniques that might help to reduce the un-
necessary computation of no visible surfaces and in consequence the achievement of a better
performance with fewer artefacts.

Resumo

As superficies NURBS son unha representación estándar de modelos que se usan normal-
mente en deseño asistido por ordenador (CAD), enxeñaría naval, enxeñaría de automóbiles
ou imaxes procesadas para uso médico. Adicionalmente estas ofrecen moitas vantaxes, de-
bido a que con pequenas modificacións nalgúns puntos de control resultan en modelos moi
complexos. No entanto, non hai garantía de obter un nivel suficientemente alto de teselación
para evitar modelos con redes toscas, polo que no seguinte proxecto describiranse o uso de
diferentes técnicas de culling, que axudarán a reducir o cómputo innecesario de superficies
non visibles e en consecuencia a obter un mellor rendemento con menos artefactos.

Keywords:

• Nurbs

• Culling

• Tessellation

• DirectX

• KSQuad

• Meshing Shading

Palabras chave:

• Nurbs

• Culling

• Teselación

• DirectX

• KSQuad

• Meshing Shading

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Memory structure . 2

2 Tessellation of parametric surfaces 3
2.1 NURBS surfaces . 3

2.1.1 NURBS curves . 4
2.1.2 NURBS surfaces . 5

2.2 GPU Tessellation . 7
2.2.1 DirectX11 and the traditional pipeline 7
2.2.2 DirectX12 and Meshing Shading . 9

2.3 Related Work . 9

3 Methodology and Planification 11
3.1 Methodology . 11
3.2 Planification . 11

3.2.1 Increment 1 . 12
3.2.2 Increment 2 . 12
3.2.3 Increment 3 . 12
3.2.4 Increment 4 . 12
3.2.5 Increment 5 . 12
3.2.6 Increment 6 . 13
3.2.7 Increment 7 . 13
3.2.8 Gantt Diagram . 13

3.3 Project Costs . 15

i

CONTENTS

4 Culling Techniques for NURBS surfaces using Meshing Shading 17
4.1 Rendering of NURBS surfaces using KSQuad 17
4.2 Culling Techniques on Rendering Pipeline for NURBS Surfaces 22
4.3 Culling Techniques Implementation in DirectX12 using Meshing Shading . . . 22

4.3.1 KSQuad Level Culling . 23
4.3.2 Surface Level Culling . 26

5 Experimental Results 28
5.1 Test Environment . 28
5.2 Performance results . 29

6 Conclusions and Future Works 32
6.1 Future works . 32

A Code Access 35

Bibliography 37

ii

List of Figures

2.1 Cubic curve represented as (a) a group of Bézier or (b) a NURBS curve [1, 2] . 4
2.2 Bi-quadratic NURBS surface example [1] . 6
2.3 DirectX 11 pipeline stages [1] . 7
2.4 Tessellation structure on DirectX11 pipeline [1] 8
2.5 DirectX12 pipeline using Meshing Shading . 9

3.1 Gantt diagram . 13
3.2 Detail of each task in the Gantt digram . 14

4.1 Levels of tessellation . 18
4.2 Threading group schema example of anyDirectX shaderwith 4×3×2 SV_Groups

and a number of 10× 3× 2 threads. 19
4.3 KSQuad position of surface depending of the number of knots at U and V . . . 19
4.4 KSQuad primitive defined by a knot span [1] 22
4.5 Back-face culling example with two surfaces, Surface a facing the camera and

Surface b not facing the camera . 23

5.1 Test model (Head) . 29
5.2 Speed up of culling techniques in relation to No Culling Approach (a) GS plat-

form and (b) PL platform . 30
5.3 Comparison of the Head model (a) using [3] proposal and our (b) proposal . . 30

iii

List of Tables

3.1 Human costs . 15
3.2 Cost and time details of the resources used . 15
3.3 Total costs of the project . 16

5.1 Description of the test platforms . 28
5.2 Performance comparison . 29

iv

Chapter 1

Introduction

The capability of this NURBS (Non-Uniform Rational B-Spline) surfaces to render highly
detailed models has led to its use in areas such as computer graphics, CAD (Computer-

Aided Design) or medicine. However, such level of realism has originated performance issues,
specially on particularly complex models. Thus to overcome this issues the use of culling
techniques would be a way of regaining performance while preserving the advantages of
NURBS surfaces.

1.1 Motivation

The DirectX11’s pipeline is able to render NURBS surfaces, even though it has limitations to
directly render them, furthermore as article [4] shows culling as a way to reduce the overhead
is harder to archive at the start of this pipeline. Thus, as DirectX12 introduced the concept of
Meshing Shading with the objective to overcome said limitations and as at [3] project many
aspects of tessellation were implemented at DirectX12 new pipeline, this project continues
the exploration for a more optimal way of rendering the widely used NURBS surfaces.

1.2 Objectives

The objective of this project is the analysis and comparison of different culling tech-
niques using DirectX12 API, which allows an interactive and realistic representation of big
deformable models. This analysis is based in the surface rendering and culling of NURBS sur-
faces on RPNS (Rendering Pipeline for NURBS surfaces) [4] in DirectX11. The main subgoals
are:

• Understanding of NURBS surfaces and their properties, so the proposed culling tech-
niques are able to use the required properties to properly identify the regions on the
same plane in the surfaces.

1

CHAPTER 1. INTRODUCTION

• Analysis of the different culling techniques to determine the measures needed to adapt
them to this project, considering the additional complexity from acting over a plane
rather than over specific triangles.

• Study of the main function of DirectX12 API [5], the interface used to program the GPU
(Graphical Processing Unit) and develop the propositions.

• Code analysis of RPNS (Rendering Pipeline For NURBS Surfaces) [4], developed by the
Computer Architecture Group (GAC).

• Reimplementation of theMesh Shader to archive KSQuad [4] level rendering, archiving
a higher level of tessellation an quality of image.

• Analysis, design and implementation of the different culling techniques via the Ampli-

fication Shader.

• Performance analysis of the introduced changes via FPS (Frames Per Second) and speed
up comparison on different architectures per each culling technique.

1.3 Memory structure

This memory is organized with an introduction chapter 1 exposing the project theme, its
motivation and its objectives. Chapter 2 is an explanation about the NURBS surfaces char-
acteristics, a standard on CAD (Computer Aided Design) as they are flexible and compact.
Moreover, GPU tessellation and different DirectX pipelines are also detailed.

Chapter 3 details the followed methodology with the cost estimations that might have
occurred to determine the viability of our proposals. These proposals are exposed in chapter
4, detailing the modifications applied to increase the tessellation factor in the used test models
(see 5.1) and detailing the Back-face based culling techniques implemented.

In chapter 5 the results from testing our propositions on differentmodels and architectures
are exposed and contrasted with previous propositions. In addition, our conclusions about the
data are detailed and in chapter 6 a project conclusion is exposed with possible continuations
for this line of investigation.

2

Chapter 2

Tessellation of parametric surfaces

The need of real-time rendering of complexmodels in different areas has led to awidespread
use of parametric surfaces based objects [1] in contrast to the traditional approach ori-

ented to triangle rendering. DirectX11 (released in 2009) was specifically design to render
parametric surfaces on real time, but as NURBS surfaces rendering is not straightforward dif-
ferent proposals were develop to overcome the issue, such as NURBS surface decompositions
into Bézier surfaces [1] and surface subdivision techniques [6, 7]. Nevertheless, the attain
quality is not enough with the complexity demand, as Bézier surfaces have limitations for
models like spheres [8].

The remaining chapter is organized as follows: Section 2.1 presents the basic characteris-
tics of NURBS surfaces, section 2.2 explains the evolution of the tessellation process via the
DirectX traditional and new pipeline.

2.1 NURBS surfaces

On this section, there is a brief explanation about NURBS surfaces and their properties, it is
important to note that the following statements are a summary of references [1] and [9].

To start with, NURBS surfaces have become the the facto standard onCAD/CAM (Computer-

Aided Design/Computer-Aided Manufacturing) due to their ability to represent high complex
curves, in combination with their design flexibility and their easy modifiable shape by chang-
ing their control points and weights [1].

In Figure 2.1 is easy to appreciate the superiority of NURBS surfaces to represent a curve.
Figure 2.1a requires more control points and subdivisions into groups to render the same
curve of 2.1b, which with a reduced number of control points is able to produce the same
result.

3

CHAPTER 2. TESSELLATION OF PARAMETRIC SURFACES

(a)
(b)

Figure 2.1: Cubic curve represented as (a) a group of Bézier or (b) a NURBS curve [1, 2]

The explanation of how NURBS are able to attain this result is divided into two subsec-
tions, which explain the properties at representing the curves at subsection 2.1.1 and surfaces
at subsection 2.1.2.

2.1.1 NURBS curves

First of all the mathematical definition of a NURBS curve is the following expression:

C(u) =

n∑
i=0

Ni,p(u) wiBi

n∑
i=0

Ni,p(u) wi

, a ≤ u ≤ b (2.1)

where n+1 is the number of control points, Bi are the control points, wi are the weights
and Ni,p are the pth-degree B-spline basis function defined on the knot vector.

A knot vector is a sequence of real number coordinates representing the parametric do-
main of a knot span and stored in an increasing order.

The mathematical expression of it is:

U = {0, ..., 0︸ ︷︷ ︸
p+1

, xp+i, ..., xm−p−1, 1, ..., 1︸ ︷︷ ︸
p+1

} (2.2)

where m = n + p + 1, wi > 0 for all i and a and b are usually defined as 0 and 1

respectively, but depending on the desired properties this values might vary.

4

CHAPTER 2. TESSELLATION OF PARAMETRIC SURFACES

The basis function Ni,p of degree p is defined for the parametric u axis as:

Ni,p(u) =
u− xi

xi+p − xi
Ni,p−1(u) +

xi+p+1 − u

xi+p+1 − xi+1
Ni+1,p−1(u) (2.3)

Ni,0(u) =

1 if xi ≤ u ≤ xi+1

0 otherwise
(2.4)

NURBS curves have many properties advantageous for a high quality render, being the
ones of more interest for this project:

1. Strong convex hull property: if u ∈ [xi, xi+1), then C(u) lies within the convex hull
of the control points Bi−p, ..., Bi.

2. Local approximation: if the control point Bi is moved, or the weight wi is changed, it
is constrained to the specific region defined by the interval [xi, xi+p+1). This property
provide the NURBS curvewith a great flexibility, due to its easymodifiable and localized
shape with a small change on a control point or the weight of it.

It is important to note that the previously described properties are also inherited by the
NURBS surfaces.

2.1.2 NURBS surfaces

A NURBS surface (see Figure 2.2) is obtained by a tensor product of two NURBS curves, and
it is defined by its degrees, a set of weighted control points, and two knot vectors. It also has
two independent parameters (u, v) of degrees (p, q):

The formula that define a surface is:

S(u, v) =

n∑
i=0

m∑
j=0

Ni,p(u) Nj,q(v)wi,jBi,j

n∑
i=0

m∑
j=0

Ni,p(u) Nj,q(v)wi,j

, 0 ≤ u, v ≤ 1 (2.5)

where Bi are the control points, wi,j are the weights, n + 1 and m + 1 are the number of
control points in u and v parametric axes, and Ni,p and Nj,q are the non-rational B-spline
basis function defined on two knot vectors of p+ n+ 1 and q +m+ 1.

The basis function Ni,p of degree p is defined for the parametric u direction as

Ni,p(u) =
u − xi

xi+p − xi
Ni,p +

xi+p+1 − u

xi+p+1 − xi+1
Ni+1,p−1 (2.6)

5

CHAPTER 2. TESSELLATION OF PARAMETRIC SURFACES

with

Ni,0(u) =

1 if xi ≤ u ≤ xi+1

0 otherwise
(2.7)

In the same way, than in Equation 2.2 for NURBS curves, knot vectors in NURBS surfaces
are defined in the same way with the same characteristics:

U = {0, ..., 0︸ ︷︷ ︸
p+1

, xp+1, ..., xr−p−1, 1, ..., 1︸ ︷︷ ︸
p+1

} (2.8)

V = {0, ..., 0︸ ︷︷ ︸
q+1

, yq+1, ..., ys−q−1, 1, ..., 1︸ ︷︷ ︸
q+1

} (2.9)

where r = n+ p+ 1 and s = m+ q + 1

Hence, the most important parameters to determine the shape of a surface are:

1. Bi,j : The control points

2. wi,j : The weights of said points

3. U and V knot vectors, which determine the knot span of the NURBS

4. p and q degrees of the surface

Figure 2.2: Bi-quadratic NURBS surface example [1]

In Figure 2.2 it is possible to see a NURBS surface example with the following control
points B = {B0,0, ..., B0,4, ..., B4,0, ..., B4,4}, U = V = {0, 0, 0, 13 ,

2
3 , 1, 1, 1} and weights

equal to 1.

6

CHAPTER 2. TESSELLATION OF PARAMETRIC SURFACES

2.2 GPU Tessellation

This section is dedicated to the explanation of tessellation and its execution via the different
DirectX APIs (Application Programming Interface) versions, in which DirectX11 was the basis
for the RPNS code developed by the Computer Architecture Group and used as the start point
for this project.

Tessellation is defined as the process of completely filling with the same type of polygon a
surface [10], usually triangles. As the GPUs lack the ability to directly render NURBS surfaces,
this is a necessary step in order to generate them and according to the way this process is
performed the resulted quality may differ.

2.2.1 DirectX11 and the traditional pipeline

Although DirectX12 was released on 2015, DirectX11 is still widely used. On DirectX11 many
important features where introduced, such as: the update to Shader Model to version five, an
improved texture compression, or the inclusion of multithreading support. Nevertheless the
most relevant change for this project is the inclusion of a configurable tessellation phase in
its pipeline, which is performed by the new programmable shaders, Hull Shader and Domain
Shader, which use the HLSL (High Level Shader Language) programming language.

Figure 2.3: DirectX 11 pipeline stages [1]

7

CHAPTER 2. TESSELLATION OF PARAMETRIC SURFACES

Continuing with DirectX11 Pipeline which can be seen in Figure 2.3, a brief explanation
is included bellow [10, 11]:

At the start of the pipeline, points is introduced to the Input Assembler to be arranged
into primitives data types, as for example line or triangles [12]. Said primitives serve as the
input for the Vertex Shader, which applies a user specified function to each vertex of the
primitives regardless of their type. From this point on the tessellator process, which will be
explained in detail bellow, is executed to fill the surfaces adding more detail to the model
and sending the result to the Geometry Shader, which performs the last modifications to the
model topology knowing, in contrast with the Vertex Shader, the primitives data type and the
adjacent geometry to said primitives at execution.

At the end of the pipeline, the Geometry Shader output data is sent to the Rasterizer to
be translated into pixels on the screen, performing a transformation from a tridimensional
representation to a bidimensional one and sending the result to the Pixel Shader. At this stage
colour is added to each pixel and its lightning is calculated to then be applied by the Output
Merger, which also uses said data to determine the pixel visibility on the screen.

Figure 2.4: Tessellation structure on DirectX11 pipeline [1]

Going into detail in how tessellation is performed, these phases are composed of two
shaders: theHull Shader and the Domain Shader with the Tessellator operating between them.
At the start of this process [10, 11], the vertices calculated in the Vertex Shader are received
with the primitive data types determined at the Input Assembler. With this information pro-
ceeds to calculate the surface or patch control points and its tessellation factors, which serve

8

CHAPTER 2. TESSELLATION OF PARAMETRIC SURFACES

as the input for the Tessellator to know the detail level to apply. From this point, the Tessellator
starts to fill the surfaces in accordance with the data provided by theHull Shader, by executing
a user configured tessellation function, which returns the parametric coordinates. This coor-
dinates in junction with the surface control points and the tessellation factors are used at the
Domain Shader to compute the total number of vertices, definitely including the tessellation
into the surface. Figure 2.4 exposes the explained tessellation process in a graphical manner.

It is important to acknowledge that in spite of being an optative phase, it may help to
increase the model quality as it is exposed on [10].

2.2.2 DirectX12 and Meshing Shading

MESH
SHADER RASTERIZER

AMPLIFICATION
SHADER

PIXEL
SHADER

Figure 2.5: DirectX12 pipeline using Meshing Shading

DirectX12 is the latest version of the graphical API, even though some notable benefits
were introduced, such as a reduction onCPUoverhead and parallel GPU execution [13] among
others, the most notable change for this project is the addition along side with the legacy
pipeline (see Figure 2.3) of the DirectX12 Ultimate pipeline (see Figure 2.5) introducing with
it the concept of the Meshing Shading and simplifying the pipeline.

The change on the pipeline brings with it the concept of Meshlet, being each one a seg-
ment of the geometry of the whole model [14]. As consequence of this partitioning at the
Mesh Shader there is the possibility to easily modify the level of detail per model region and
also performing a concurrent rendering process of the primitives and the triangle mesh (tes-
sellation) [15].

In addition this pipeline also includes the Amplification Shader, also known as the Task

Shader, which offers the possibility to easily perform culling over the Meshlets in a multi-
threading manner, thanks to its ability to determine the number of workgroups prior to the
execution of the Mesh Shader [5, 14].

2.3 Related Work

In order to contextualize the evolution of NURBS rendering, this section provides a brief
explanation of the different techniques used to archive this objective.

The first way is the NURBS subdivision [16] into different representations, usually Bézier

patches as they are a specific case of NURBS [1]. If the results obtained from changing the
representation end up in errors higher than the established as acceptable, it is possible to apply

9

CHAPTER 2. TESSELLATION OF PARAMETRIC SURFACES

a recursive subdivision over a specific region to progressively reduce the error. Nevertheless
[17] proposal exposes a way to avoid recursively subdividing patches by applying subpixel
variant tessellation, increasing and decreasing the detail dynamically.

The second approach and the one used at this proposal is the direct evaluation of NURBS.
[18] method takes advantage of the subdivisions applied by [16] and performs the evaluation
by using different meshes with the control point storing this information as textures. The
approach used at this project is based on the KSQuad primitive [2, 4], avoiding the previ-
ous subdivisions and storing of textures by using the Strong Convex Hull and Local support
properties.

10

Chapter 3

Methodology and Planification

In this chapter the planification and methodology followed to develop this project is pre-
sented and tasks in each phase are described in detail.

3.1 Methodology

This project uses a scrum methodology [19], in which a set of product’s requirement are
determined by the Product Owner. This objectives are divided into smaller goals and the set
of tasks needed for its accomplishment are called increments.

This methodology stipulates recurrent meeting (Daily Scrum) to study the increment evo-
lution, identify obstacles or even reschedule tasks in order to achieve the incremental objec-
tives. At the end of each increment, a meeting is arranged to review the obtained results and
to analyse future requirements, called Spring Review.

3.2 Planification

This project follows a Scrum methodology, but some changes were introduced to adequate it
to the directors necessities. The modifications were applied to the Daily Scrum to arrange the
meetings approximately each two weeks in a mainly online format.

Theworkflow of the project startedwith the studio of the NURBS surfaces and the KSQuad
primitive, followed by the analysis of the code developed at the project [3] and the RPNS
[4]. The second step involved the analysis, design and implementation of NURBS surfaces
rendering generalization and the incrementation of their tessellation level via theMesh Shader.
The next increments were oriented to develop KSQuad culling and surface culling approaches
using the Amplification Shader and on the last one, performance tests were conducted on
different architectures. In the next subsections, each increment is described in more detail.

11

CHAPTER 3. METHODOLOGY AND PLANIFICATION

3.2.1 Increment 1

The first increment starts on 14th of February 2022 and finish on 3rd of March 2022 with a
duration of 14 days. The main objective was the study of the theoretical concepts needed to
begin the project. As such, the first task was an introduction to NURBS, followed by the study
of culling at the RPNS code and ending up with the DirectX API study. This is a necessary
step due to the lack of knowledge at crucial aspects of the project when it started.

3.2.2 Increment 2

Once the theoretical bases of the project were acquired, the second increment started on 4th
of March 2022 and ended on 28th of March 2022 during 17 days. The development of this
increment was divided into the deployment of theMesh Shader code from [3] and on the RPNS
[4] code deployment. The increment was finished with the study of both implementations, in
order to determine the needed modifications for this project.

3.2.3 Increment 3

This increment started on 29th of March 2022 and ended on 6th of July 2022 with an extent of
72 days. Over this period, the rendering of the NURBS surfaces was generalized to perform
tests on different models and the level of tessellation was reduced to a smaller scale, via the
Mesh Shader. These goals were achieved by dividing this increment into four tasks dedicated
to render: an individual KSQuad, a complete surface, a specific model (see Figure 5.1) and all
the test models.

3.2.4 Increment 4

This increment is related to the study and addition of the Amplification Shader to the pipeline
in order to start culling, from 7th of July 2022 to 21th of September 2022 and taking 55 days.
The first task was related to the identification of the properties of the Amplification Shader

and the second one was the addition of the Amplification Shader.

3.2.5 Increment 5

From 22th of September 2022 to 9th of November 2022 during 35 days, theAmplification Shader

is programmed to perform our first proposition, culling at KSQuad level. This increment is
divided in two tasks: the study of its characteristics and the implementation of the culling
technique.

12

CHAPTER 3. METHODOLOGY AND PLANIFICATION

3.2.6 Increment 6

The increment number six was dedicated to add culling at surface level, taking place from 10th
of November 2022 to 12th of December 2022 with an extent of 23 days. Although this and the
previous increment are interchangeable, this order was applied so the knowledge acquired at
the previous increment would reduce the time required at this stage. In the same way, the
tasks are the same as those used in the previous increment.

3.2.7 Increment 7

The performance tests were performed on a laptop and on a high-end laboratory system pro-
vided by GAC (Computer Architecture Group) at the Universidade da Coruña. Two tasks
compose this increment: the performance test in the personal laptop and then at the high
end GAC System, starting on 13th of December 2022 and ending on 20th of December 2022,
taking 6 days.

3.2.8 Gantt Diagram

TheMicrosoft Project tool was used to determine the planification as the accounts at the Uni-
versidade da Coruña are granted access. It also provides features to ease the task planning
and visually represent their evolution. Figure 3.1 is the Gantt diagram with the time required
by each task and the relations between them and Figure 3.2 corresponds to the task details.
From left to right at Figure 3.2: the task name, the duration of each task, start and end date, de-
pendencies between them and resources assigned are displayed with summaries to determine
the corresponding increment.

Figure 3.1: Gantt diagram

13

CHAPTER 3. METHODOLOGY AND PLANIFICATION

Figure 3.2: Detail of each task in the Gantt digram

14

CHAPTER 3. METHODOLOGY AND PLANIFICATION

3.3 Project Costs

This section presents the estimation of the project cost derived from the used resources and
time dedicated to it. These can be classified into two categories: human costs and indirect
equipment costs. To provide a cost estimation it would be assumed that the project was done
by a junior programmer and two directors, being the time and salaries of each one detailed at
the table 3.1, representing the first one in hours and the second one in euros (€) per hour.

Junior
Programmer Director A Director B Total

Salary (€/hour) 10 40 40 -

Time (hours) 484 12 12 508

Labour cost (€) 4840 480 480 5800

Table 3.1: Human costs

Considering the indirect costs, these would be mainly linked to the price of the used
computers, a personal laptop dedicated to the code development and a desktop computer
from GAC-UDC to perform the tests. If an average life span of five years is assumed for both
architectures, the cost of using them is the purchased price divided by their life span and
multiplied by the used time, as in Equation 3.1 can be appreciated. These three metrics are
exposed with price and cost expressed in euros (€) and time in months (see table 3.2).

Used T ime ∗ Price

Life Span
(3.1)

System Personal Laptop GAC System Total

Price (€) 1150 4500 5650

Used time (months) 7 1 8

Life Span (months) 60 60 -

Cost of use (€) 134.17 75 209.17

Table 3.2: Cost and time details of the resources used

15

CHAPTER 3. METHODOLOGY AND PLANIFICATION

As a result of the previous calculations and assumptions, a project of this characteristics
would have resulted in 6009.17 euros (see table 3.3).

Expense Name Cost (€)

Labour Costs 5800

Indirect costs 209.17

Total 6009.17

Table 3.3: Total costs of the project

16

Chapter 4

Culling Techniques for NURBS
surfaces using Meshing Shading

This chapter is the explanation of the different culling techniques developed with Di-
rectX12 Ultimate pipeline using Meshing Shading. A brief explanation of the KSQuad

primitive [4] is also presented, as it is highly related to our proposal.
One of the objectives of the project was changing the way models were rendered. The

previous approach [3] tessellated at surface level and our proposal is at KSQuad level. This
transitionwould allow a higher level of tessellation and parallelism, as the used scale is smaller
and it is also rendered in a multithreading way. Moreover, this modifications are also oriented
to generalize the rendering process of models with different properties. In particular, those
with different number of knots on their surfaces.

4.1 Rendering of NURBS surfaces using KSQuad

KSQuad (Knot Span Quad) is a primitive specifically designed to ease the NURBS surface
rendering in the GPU [1]. As the data describes a surface’s section, the application of localized
modifications over the NURBS surface becomes easier. A small change on the control points
or weights stored in the KSQuad is enough.

A KSQuadi,j of a surface of p and q degrees is:

KSQuadi,j = {
Knot Span︷ ︸︸ ︷

xi, xi+1, yj , yj+1,

Control Points︷ ︸︸ ︷
Bi−p,j−q, ..., Bi, j,

Weights︷ ︸︸ ︷
wi−p,j−q, ..., wi,j} (4.1)

where xi ̸= xi+1 and yj ̸= yj+1. This primitive maintains the Convex Hull and Local Support
properties. The first property dictates that a NURBS surface is constrained to the convex hull
defined by its control points and the second one limits de influence of a specific control point
[2].

17

CHAPTER 4. CULLING TECHNIQUES FOR NURBS SURFACES USING MESHING SHADING

Level 1

Surface 0 Surface 1

Surface 2 Surface 3

Level 2

(1,1)

(0,0) (0,1)

(KnotsU[1],0)

(1,0)

u

v

(0,KnotsV[1])

(0,KnotsU[1])

(1,KnotsV[1])

Level 3

(KnotU[1], KnotV[1])

(0,0) (0,KnotV[1])

(KnotU[1],0)

Figure 4.1: Levels of tessellation

In contrast to the previous proposal [3], our proposal presents three levels of tessellation
in order to increase the quality of the image with respect to previous proposal. Previous
proposal only presents two levels of tessellation.

The first level corresponds to the set of NURBS surfaces that define the model, while the
second level is dedicated to the different KSQuads. In each one of those KSQuads tessellation
is applied into a 9×9mesh of triangles. Accomplishing a higher level of tessellation compared
with the previous proposal [3]. Figure 4.1 shows a representation of the three levels of the
proposal.

In Section 2.2.2Meshletswere introduced as a segmentation of the model, which represent
a set of primitives. In our proposal, each Meshlet represents specifically one KSQuad primi-
tive. These are rendered in a parallel manner by the Mesh Shader. This process is performed
by assigning to each thread group (SV_Group) aMeshlet. From this point, the KSQuad is tes-
sellated into 9× 9 points by 128 threads. The result of this process is the triangle mesh of the
tessellated KSQuad.

18

CHAPTER 4. CULLING TECHNIQUES FOR NURBS SURFACES USING MESHING SHADING

0,0,0 1,0,0 2,0,0 3,0,0

0,1,0 1,1,0 2,1,0 3,1,0

0,2,0 1,2,0 2,2,0 3,2,0

Dispatch(4,3,2)

,1

,1

NumThreads(10,3,2)

X

Y

Z

0,0,0 1,0,0 2,0,0 3,0,0 4,0,0 5,0,0 6,0,0 7,0,0 8,0,0 9,0,0

0,1,0 1,1,0 2,1,0 3,1,0 4,1,0 5,1,0 6,1,0 7,1,0 8,1,0 9,1,0

0,2,0 1,2,0 2,2,0 3,2,0 4,2,0 5,2,0 6,2,0 7,2,0 8,2,0 9,2,0

SV_GroupThreadID (X,Y, Z)

SV_GroupID (X, Y, Z)

SV_GroupIndex = 0*10*3 + 2*10 + 4 = 24
SV_GroupThreadID = (3,2,0)
SV_GroupID = (0,2,0)
SV_DispatchThreadID = [(0,2,0) * (10,3,2)] + (3,2,0) = (3,8,0)

2420

10

00

29

SV_GroupIndex

Figure 4.2: Threading group schema example of any DirectX shader with 4×3×2 SV_Groups
and a number of 10× 3× 2 threads.

3 4 5

0 1 2

[0, ksquadPosition, 2, 3]

2 3

0 1

Surface 0 Surface 1

v

u

(0,1) (1,1)

(1,0)(0,0)

[1, ksquadPosition, 2, 2]

(1,1)

(0,0) (1,0)

(0,1)

Figure 4.3: KSQuad position of surface depending of the number of knots at U and V

Figure 4.2 exposes an example of 24 (4× 3× 2) thread groups (SV_Group), defined by the
Dispatch function. Each one of them has 60 (10× 3× 2) threads, concurrently operating per
thread group. The built in variables of DirectX that permit the management of the threads
are:

• SV_GroupID identifies a SV_Group in a shader.

• SV_GroupThreadID identifies a thread in a SV_Group using a 3-component vector.

19

CHAPTER 4. CULLING TECHNIQUES FOR NURBS SURFACES USING MESHING SHADING

• SV_GroupIndex provides the identifier of a thread using a 1-component vector.

• SV_DispatchThreadID identifies a thread in relation to all the SV_Groups in a shader.

1 // Access to surfaceId
2 int surfaceId = ks[4 * SV_GroupID];
3

4 // Access to the KSQuad position
5 int ksquadPosition = ks[4 * SV_GroupID + 1];
6

7 // Number of knots in the surface
8 int knotIntervalU = ks[4 * SV_GroupID + 2];
9 int knotIntervalV = ks[4 * SV_GroupID + 3];

Listing 4.1: Access to KS data structure

On the other hand, in order to include the KSQuad primitive, a new structure calledKS is
defined. The purpose of this structure is to provide to each thread the required data to identify
the parametric position of a KSQuad. It stores: the id of the surface, the number of knots at
U and V directions and the corresponding position of each KSQuad in a surface. Figure 4.3
displays an example with two surfaces, one with two knots at U and three knots at V and
other with two knots at both parametric directions.

The first step performed by the Mesh Shader is the utilization of the SV_GroupID to load
the KS. The relation between this variables is established by the fact that each SV_Group is
responsible of oneMeshlet and eachMeshlet represent a specific KSQuad primitive. Algorithm
4.1 exposes the way this data is accessed by the Mesh Shader.

The second step determines the interval of parametric space to tessellate. This process
is displayed by Algorithm 4.2. The variables knotsU and knotsV contain all the knots of all
the KSQuads in the whole model, at U and V directions. In order to locate the values of the
tessellated KSQuad, the variable tablaKnots returns from each surface id the index of the first
surface’s KSQuad knots.

In lines 2 and 3 of Algorithm 4.2, theKS data is used to locate the KSQuad position on the
surface. In the following lines, this value is used to return the interval of parametric space,
by changing the index of knotsU and knotsV variables.

The third step calculates the parametric coordinates of the tessellation points inside each
KSQuad. Algorithm 4.3 starts by assigning to each thread a point depending on their id, in
lines 2 and 3. In the remaining lines, the distance of each point to the knots 0 at U and V

directions in the KSQuad, is used to calculate the parametric coordinates of the tessellation
point.

Each thread generates the cartesian coordinates of the point by using the function Nurb-

sEval2, where it is evaluated according to Equation 2.5.

20

CHAPTER 4. CULLING TECHNIQUES FOR NURBS SURFACES USING MESHING SHADING

1 // ksquad intervals at U and V axis per specific surface
2 int ksquadCoordU = floor(ksquadPosition / knotIntervalV);
3 int ksquadCoordV = ksquadPosition % knotIntervalV;
4

5 // Final knots position of tessellated KSQuad
6 int knotIndexU = tablaKnots[surfaceId].x + ksquadCoordU + 1;
7 int knotIndexV = tablaKnots[surfaceId].y + ksquadCoordV + 1;
8

9 // Final points of knot interval
10 float knotFinalPointU = knotsU[knotIndexU];
11 float knotFinalPointV = knotsV[knotIndexV];
12

13 // Start knots position of tessellated KSQuad
14 int knotIndexU = tablaKnots[surfaceId].x + ksquadCoordU;
15 int knotIndexV = tablaKnots[surfaceId].y + ksquadCoordV;
16

17 // Start points of knot interval
18 float knotInitialPointU = knotsU[knotIndexU];
19 float knotInitialPointV = knotsV[knotIndexV];

Listing 4.2: Parametric border coordinates of the KSQuad

1 // Triangle's point assignation per thread
2 int trianglePointU = floor(SV_GroupThreadID / 9);
3 int trianglePointV = SV_GroupThreadID % 9;
4

5 // Distance between triangle's points inside KSQuad interval
6 float tesLengthU = (knotFinalPointU - knotInitialPointU) / 8
7 float tesLengthV = (knotFinalPointV - knotInitialPointV) / 8
8

9 // Triangle position in relation to the KSQuad first knots
10 float stepU = trianglePointU * tesLengthU;
11 float stepV = trianglePointV * tesLengthV;

Listing 4.3: Assignation of a point of the mesh of triagnles per thread id (SV_GroupThreadID)

21

CHAPTER 4. CULLING TECHNIQUES FOR NURBS SURFACES USING MESHING SHADING

4.2 Culling Techniques on Rendering Pipeline for NURBS Sur-
faces

Culling is the process of removing those segments of a model that do not play a part in the
final rendering of the scene. The purpose is the reduction of computational load in the rest
of the stages of the pipeline. From the wide variety of ways to perform culling, our proposal
is focused on Back-face culling techniques [20], which consists on removing portions of the
model not facing the camera 2.4.

Figure 4.4: KSQuad primitive defined by a knot span [1]

In [4], different interactive culling strategies for NURBS surfaces are presented based on
Back-face, the one of more interest for our proposal is LBC (Light Backpatch Culling).

In LBC, the normal vector is computed in relation to the plane defined by the skeleton of
each KSQuad. Another characteristic of this approach is that it requires less computational
power. Taking Figure 4.4 as reference, the operation used to cull a KSQuadi,j [4] is:

□i,j = {S(xi, yj), S(xi+1, yj), S(xi, yj+1), S(xi+1, yj+1)} (4.2)

4.3 CullingTechniques Implementation inDirectX12usingMesh-
ing Shading

In this section, we present the culling techniques proposals based on LBC of RPNS [4]. These
techniques use the dot product between the camera vector and the normal of a plane to deter-
mine the visibility. Figure 4.5 exposes two planes with their normal vectors inside the cone
of vision of a camera. It is possible to appreciate how visibility is conditioned to the facing of
each plane to the viewer. Surface a is visible as it faces the camera and b is culled as does not
faces the viewer.

22

CHAPTER 4. CULLING TECHNIQUES FOR NURBS SURFACES USING MESHING SHADING

b

a

Figure 4.5: Back-face culling example with two surfaces, Surface a facing the camera and
Surface b not facing the camera

Our proposal presents two culling techniques, the first technique is KSQuad Level Culling,
which operates at KSQuad scale by computing a normal vector per each individual KSQuad.
The second technique is Surface Level Culling, which calculates the normal vector in relation
to a KSQuad skeleton defined by their NURBS surfaces.

4.3.1 KSQuad Level Culling

In this section, the implementation details of the KSQuad Level Culling are exposed.
Culling requires theAmplification Shader, whichmust not change the received input of the

Mesh Shader. This situation would involve two ways of rendering and it would make harder
the technique evaluation. The second requirement is that the Amplification Shader must take
advantage of its parallel capabilities to perform an efficient culling.

The desired situation is one in which each thread concurrently determines the visibility of
one KSQuad in the Amplification stage and theMesh Shader tessellates with multiple threads
on a specific KSQuad.

In order to achieve one thread per KSQuad, the number of thread groups (SV_Group) at
the Amplification Shader is configured. The amount is the total number of KSQuads in the
model, divided by the number of threads to use at the Amplification stage. Hence, each thread
group is responsible of applying culling to 32 KSQuads.

With respect to theAmplification Shader implementation. It must be able to uniquely iden-
tify each KSQuad inside the group, in order to determine the normal vector of the KSQuad and
transfer its information to theMesh Shader, if the KSQuad is not culled. The SV_DispatchThreadID

provides a unique identification of each thread in the Amplification Shader and by extension
a unique identification of each KSQuad of the model. The justification comes from the total

23

CHAPTER 4. CULLING TECHNIQUES FOR NURBS SURFACES USING MESHING SHADING

number of threads being equal to the number of KSQuads.

1 ...
2 int dtid: SV_DispatchThreadID
3)
4 {
5 bool visible = false;
6

7 if (dtid < totalNumberOfKSQuads) {
8 visible = isVisible(dtid, observerPosition);
9 }
10 ...
11 }

Listing 4.4: First instructions of the Amplification Shader

In Algorithm 4.4 the first steps of the Amplification Shader are displayed. All KSQuads
are considered like no visible (line 5), unless proved the opposite at the function isVisible (line
8). This function receives as parameters the SV_DispatchThreadID of the thread assigned to
a KSQuad and the position of the camera. So, the dot product can be calculated and applied
to our variant of Back-face culling. The condition of line 7 is located before the invocation of
the function, to avoid calculations over threads which might not have KSQuads assigned at
the last thread group (SV_Group).

1 #define AS_GROUP_SIZE 32
2 struct Payload {
3 uint MeshletIndices[AS_GROUP_SIZE]
4 };

Listing 4.5: Payload data structure used at our proposal

1 groupshared Payload s_Payload;
2 ...
3 {
4 // Id of visible elements are stored for renderization
5 if (visible) {
6 uint index = WavePrefixCountBits(visible);
7

8 s_Payload.MeshletIndices[index] = dtid;
9 }
10

11 int visibleCount = WaveActiveCountBits(visible);
12 DispatchMesh(visibleCount, 1, 1, s_Payload);
13 }

Listing 4.6: Preparation and transfer of visible KSQuads information to the Mesh Shader

24

CHAPTER 4. CULLING TECHNIQUES FOR NURBS SURFACES USING MESHING SHADING

Once the visibility of the concurrently computed KSQuads have been determined, prepa-
rations to communicate the KSQuads to theMesh Shader. The data structure used to send this
information to the next shader is the Payload, which can be adapted to the user necessities.
Algorithm 4.5 exposes the Payload used at this project, being for our needs a 32 length array.
This array stores the SV_DispatchThreadID of the threads with visible KSQuads in the thread
group (SV_GroupID).

The process to inform theMesh Shader of the KSQuads to tessellate involves two steps: the
SV_DispatchThreadIDs storage into the Payload array and the calculation of the total number
of KSQuads to tessellate of each thread group. Algorithm 4.6 shows these steps. TheWavePre-

fixCountBits function (line 6) provides a unique index number to store the SV_DispatchThreadID

of each task with visible KSQuads. Then, the total number of visible KSQuads (line 11) is re-
turned and the Dispatch function executes theMesh Shader (line 12). Its first parameter is the
number of visible KSQuads in the thread group and its last parameter is the Payload. This
structure has the SV_DispatchThreadIDs of each visible KSQuads’ threads.

1 ...
2 int gtid : SV_GroupThreadID,
3 int gid : SV_GroupID,
4 in payload Payload payload,
5 ...
6)
7 {
8 // Extraction of DispatchThreadID from Amplification shader

stage
9 int meshletIndex = payload.MeshletIndices[gid];
10

11 // No renderization of a ksquad number higher than the total
number of them

12 if (meshletIndex >= totalNumberOfKSQuads) {
13 return;
14 }
15 ...
16 verts[gtid] = GetVertexAttributes(meshletIndex, gtid);
17 }

Listing 4.7: Extraction of transfered information atMesh Shader from theAmplification Shader

Theoperations performed at theAmplification Shader manage to provided a similar output
to the one which would have been received, if the pipeline directly started with the Mesh

Shader. In Algorithm 4.6, the visibleCount variable specifies a thread group (SV_Group) per
visible KSQuad at theMesh Shader. Nevertheless, to determine the specific KSQuad to render
the data from the Payload must be accessed. Algorithm 4.7 shows the Mesh Shader access of
the SV_DispatchThreadID used at the Amplification Shader (line 9). With this information the

25

CHAPTER 4. CULLING TECHNIQUES FOR NURBS SURFACES USING MESHING SHADING

Mesh Shader can uniquely identify the corresponding KSQuad and proceed to tessellate it.
This process is performed in a parallel way by using the SV_DispatchThreadID as a parameter
for function GetVertexAttributes (line 16).

In relation to the chosen number of threads, the number 32 was selected as a result of
the recommendations in [21]. The Payload should reduce its size the maximum possible and
at the same time, the number of invocations of the Mesh Shader should be the minimum
possible. In our project, the first recommendation can be satisfied by reducing the number
threads, however this would also increase the number of invocations of the Mesh Shader, as
less threads would apply culling per group. As a result of this situation, 32 was selected as
the middle ground between this two requirements.

4.3.2 Surface Level Culling

In this section, we present the second culling technique, which uses the normal defined by the
computed skeleton of each surface, instead of calculating the normal of each KSQuad. Most
of the implementation followed by the Amplification Shader is maintained in relation with the
Section 4.3.1.

1 // ks data structure
2 int surfaceId = ks[4 * SV_DispatchThreadID];
3 int knotIntervalU = ks[4 * SV_DispatchThreadID + 2];
4 int knotIntervalV = ks[4 * SV_DispatchThreadID + 3];
5

6 // Final knots position of surface
7 int knotFinalIndexU = tablaKnots[surfaceId].x + knotsIntervalU;
8 int knotFinalIndexV = tablaKnots[surfaceId].y + knotsIntervalV;
9

10 // Final point of the surface
11 float surfaceFinalPointU = knotsU[knotFinalIndexU];
12 float surfaceFinalPointV = knotsV[knotFinalIndexV];
13

14 // Start knots position of surface
15 int knotInitialIndexU = tablaKnots[surfaceId].x;
16 int knotInitialIndexV = tablaKnots[surfaceId].y;
17

18 // Start point of the surface
19 float surfaceInitialPointU = knotsU[knotInitialIndexU];
20 float surfaceInitialPointV = knotsV[knotInitialIndexV];

Listing 4.8: Calculation of surface’s normal vector points

The Amplification Shader organizes the number of thread groups (SV_Group) as the total
number of KSQuads in the model divided by 32. This number corresponds to the amount of
threads of the thread group, making their SV_DispatchThreadIDs a useful variable to properly

26

CHAPTER 4. CULLING TECHNIQUES FOR NURBS SURFACES USING MESHING SHADING

identify each KSQuad. With the KSQuad properly identified, theKS data structure is able to
determine the KSQuad’s surface and performing culling over it, if it is required.

The most notable change in relation with KSQuad Culling technique occurs in the points
used to determine the visibility. All the KS is accessed, with the exception of the KSQuad
position, as it is not required. By following a process similar to the one used for the tessellation
points at the Mesh Shader, the parametric coordinates of the surface limits are calculated.
Algorithm 4.8 displays this process. The surface limits are calculated by adding the total
number of knots in the parametric directions (lines 7 and 8).

Once the points of the surface borders were determined, the dot product between the
border points of the surface and the camera position is performed, to determine the KSQuad
visibility. All the KSQuads of the same surface operate with the same normal vector and
all the KSQuads must be visible or culled depending on the surface’s points. If a KSQuad is
visible, the SV_DispatchThreadID of its thread is stored and send to theMesh Shader at the end
of the Amplification Shader.

27

Chapter 5

Experimental Results

In this chapter, the results of our proposals for the different NVIDIA GPUs are presented
with our conclusions.

5.1 Test Environment

In this section, the results of our proposal on two different architectures is analysed and ex-
posed. The test platforms used in our experiment were described in table 5.1.

The second column presents the characteristics of a personal laptop (PL) using a GPU
with Turing architecture, used to develop this project and perform the first tests on themodels.
The third column presents the characteristics of a desktop computer at the GAC UDC (GS)
Laboratory with a Turing architecture GPU of high gamma.

Personal Laptop (PL) GAC System (GS)

CPU AMD Ryzen 7-4800H 2.90GHz Intel Core i7-4790H 3.6 GHz

RAM Memory 16GB DDR4 3200 MHz 32 GB DDR4 3200 MHz

OS Microsoft Windows 10 Pro Microsoft Windows 10 Enterprise LTSC

GPU GeForce RTX 2060 Mobile GeForce RTX 2080

Driver 527.56, SDK 10.0 255.255, SDK 10.0

Table 5.1: Description of the test platforms

Themodel used for the tests is displayed in Figure 5.1 and it is calledHead1. It is composed
of 601 surfaces (#NS) and 15025 KSQuads (#KS). Each surface has 3 degrees (p and q) and 4
knots (n and m), at both parametric directions (U and V).

1 Model provided by Direct Dimensions Inc. https://www.dirdim.com/portfolio/

28

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.1: Test model (Head)

5.2 Performance results

This section presents the results of our proposal, exposing at Table 5.2 the performance at FPS
(Frames Per Seconds) and Figure 5.2 exposes the speed up of each system per test model and
culling technique used.

No culling (FPS)
KSQuad Level
Culling (FPS)

Surface Level
Culling (FPS)

GS 481 840 890

PL 660 1073 1082

Table 5.2: Performance comparison

29

CHAPTER 5. EXPERIMENTAL RESULTS

Head

0

0.5

1

1.5

Sp
ee
d
Up

KSQuad Culling
Surface Culling

(a)

Head

0

0.5

1

1.5

Sp
ee
d
Up

KSQuad Culling
Surface Culling

(b)

Figure 5.2: Speed up of culling techniques in relation to No Culling Approach (a) GS platform
and (b) PL platform

Analysing the obtained results at table 5.2 the first impressions are good. All the test
models, in all architectures have a bigger number of FPS in all cases than without of culling.
In fact, KSQuad Culling provides a dramatic performance improvement, easily notable at the
Figure 5.2, attaining speed-ups of more than 1.5x over all the test models regardless of the
architecture. Moreover, the results of our proposals expose that interactive deformation is
feasible with a KSQuad level of detail.

(a) (b)

Figure 5.3: Comparison of the Head model (a) using [3] proposal and our (b) proposal

Continuing with the comparison between [3] proposal and ours. The result from [3] at the
GS system attain 1846 FPS for the Head model. A FPS decrease is observed regardless of the
culling technique used, occurring the higher reduction of 3.84x without culling. If the data
from project [3] is compared with both culling techniques, the decrease is reduced to 2.19x
for KSQuad Culling and 2.07x Surface Culling.

30

CHAPTER 5. EXPERIMENTAL RESULTS

In relation to themodels’ quality, Figure 5.3 displays the levels of tessellation of the project
[3] and our proposal. In Figure 5.3a the tessellation factor is smaller, while in Figure 5.3b the
level of detail is higher. Although the FPS results are bellow of the project [3], our level of
detail is higher. So, the FPS reduction can be justified by the increased quality of the model.

In relation to the Surface Level Culling, it is important to note the technique limitations.
During its testing, it had been observed that some surfaces facing the camera were not ren-
dered, which becomes worse as the surfaces size is increased. The observed situation can be
explained by the difficulty of determining the optimal normal to the plane’s skeleton.

In conclusion, respect project [3] a reduction in performance is experienced, however in
our proposal the tessellation factor is higher and it is able to provide a better quality of ren-
dering. If the proposed culling techniques are applied, the attained performance in relation
to KSQuad rendering, experience speed ups of more than 1.5x in all models. Moreover, in-
teractive deformation can be easily performed at a high level of detail. Nevertheless, Surface
Level Culling is probably not the best option, despite attaining the best performance. It can
cull surfaces facing the camera.

31

Chapter 6

Conclusions and Future Works

At the beginning, this project had three main objectives. The first one was usingMeshing

Shading to achieve tessellation at a KSQuad scale, the second one was an expansion of
the proposal [4] for models with different m and n surface values and the last objective was
the analysis and implementation of the different culling techniques. In order to achieve these
objectives, the RPNS proposal [4], [3], DirectX12 API and Meshing Shading were studied.

This proposal has been able to expand the scope of the previous proposal [3], as tessella-
tion at KSQuad level has been implemented and this process was even generalized to operate
with different models. The image quality resulted of our proposal is also superior to previous
[3], due to the higher level of tessellation.

Culling techniques were implemented and tested, taking as inspiration the Light Quad

Culling (LQC) technique in [4]. The objective of these techniques was to increase the perfor-
mance of model’s deformation. The obtained results achieve speed ups beyond 1.5x for all the
tested models. Nevertheless, the techniques culled KSQuads that should be visible, specially
in Surface Level Culling technique.

In conclusion, the tessellation process was generalized for models with different n andm
in their surfaces and their level of detail increased. Tessellation at such level also comes at the
expense of a reduction of performance compared with [3]. Nevertheless, this situation can be
improved with the proposed culling techniques.

6.1 Future works

In this Section, the possible continuations derived from this project are detailed.
The first continuation would be an improvement on the rendering process. The objective

was the analysis of the culling techniques, but there are still possible optimizations. For ex-
ample, the Mesh Shader can be optimized by using a more efficient structure to implement
the KSQuad primitive.

32

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

Another area of improvement, it is on the implemented culling techniques. Both tech-
niques are based on LightQuad Culling (LQC) from [4], but techniques based on StrongQuad

Culling (SQC) had not been implemented withMeshing Shading pipeline. SQC technique pro-
vides a better quality of image in proposal [4], by calculating the normal vector in relation to
the convex hull polygon, defined by the adjacent control points.

33

Appendices

34

Appendix A

Code Access

In this appendix, the instructions required to obtain the executed code are detailed along side
a brief explanation of the main files.

First of all, the code is saved in a public Github repository https://github.com/DavLN/TFGCulling.
The repository has three branches, one per code implementation previously treated:

• master: Implementation without culling and with the Mesh Shader modified to render
at KSQuad level

• feature/surfaceCulling: Implementation with Surface Level Culling

• feature/ksquadCulling: Implementation with KSQuad Level Culling

The main files of this code are:

• MeshletCull/MeshletMS.hlsl: Mesh shader, where tessellation takes place

• MeshletCull/MeshletAS.hlsl: Amplification shader, where culling is performed

• MeshletCull/Model.cpp: Model data extraction and preparation for the GPU

• MeshletCull/D3D12MeshletCull.cpp: Base program and middleman between CPU and
GPU communications. It contains information about the camera and location of the
shader files.

35

APPENDIX A. CODE ACCESS

36

Bibliography

[1] R. Concheiro, Real Time Rendering of Parametric Surfaces on the GPU. Ph D. da Univer-
sidade Da Coruña, 2013.

[2] R. Concheiro, M. Amor, E. J. Padron, and M. Doggett, “Interactive rendering of nurbs
surfaces,” Computer-Aided Design, vol. 56, pp. 34–44, 2014.

[3] B. Añón Lema, Representación Interactiva demodelos masivos usandoMesh Shading. Tra-
ballo de Fin de Grao da Facultade de Infromática, Universidade Da Coruña, 2021.

[4] R. Concheiro, M. Amor, E. J. Padrón, and M. Doggett, “Efficient Culling Techniques
for Interactive Deformable NURBS Surfaces on GPU,” in 11th Joint Conference on Com-

puter Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016)-

Volume 1: GRAPP. Rome, Italy: SciTePress, 2016, pp. 17–27.

[5] S. Jobalia, “Coming to Directx 12— Mesh Shaders and Amplification Shaders: Reinvent-
ing the Geometry Pipeline,” 2019.

[6] E. Catmull and J. Clark, “Recursively generated B-spline surfaces on arbitrary topological
meshes,” Computer-aided design, vol. 10, no. 6, pp. 350–355, 1978.

[7] R. E. Barnhill and S. N. Kersey, “A marching method for parametric surface/surface in-
tersection,” Computer aided geometric design, vol. 7, no. 1-4, pp. 257–280, 1990.

[8] J. E. Cobb, “Tiling the sphere with rational bézier patches,” in TR UUCS-88-009. Uni-
versity of Utah USA, 1988.

[9] L. Piegl and W. Tiller, The NURBS Book, 2nd ed. Springer Science & Business Media,
1996.

[10] J. Zink, M. Pettineo, and J. Hoxley, Practical Rendering & Computation with Direct3D 11.
AK Peters, Ltd. / CRCPress, 2011.

37

BIBLIOGRAPHY

[11] Microsoft, “Direct3d 11 graphics pipeline,” 2018, last accessed 2023-02-14.
[Online]. Available on: https://docs.microsoft.com/en-us/windows/win32/direct3d11/
overviews-direct3d-11-graphics-pipeline

[12] ——, “Primitive topologies,” 2020, last accessed 2023-02-14. [On-
line]. Available on: https://docs.microsoft.com/en-us/windows/win32/direct3d11/
d3d10-graphics-programming-guide-primitive-topologies

[13] B. Langley, “Windows 10 and DirectX 12 released!” 2015, last ac-
cessed 2023-02-14. [Online]. Available on: https://devblogs.microsoft.com/directx/
windows-10-and-directx-12-released/

[14] C. Kubisch, “Introduction to Turing Mesh Shaders,” 2018, last ac-
cessed 2023-02-14. [Online]. Available on: https://developer.nvidia.com/blog/
introduction-turing-mesh-shaders/

[15] NVIDIA, NVIDIA Turing Architecture Whitepaper. NVIDIA, 2018.

[16] M. Guthe, A. Balázs, and R. Klein, “GPU-based trimming and tessellation of NURBS and
T-Spline surfaces,” ACM Transactions on Graphics (TOG), vol. 24, no. 3, pp. 1016–1023,
2005.

[17] Y. I. Yeo, L. Bin, and J. Peters, “Efficient pixel-accurate rendering of curved surfaces,” in
Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
2012, pp. 165–174.

[18] A. Krishnamurthy, R. Khardekar, and S. McMains, “Direct evaluation of nurbs curves
and surfaces on the gpu,” in Proceedings of the 2007 ACM symposium on Solid and physical

modeling, 2007, pp. 329–334.

[19] K. Schwaber and J. Sutherland, “Scrum Methodology,” 2020, last accessed
2023-02-14. [Online]. Available on: https://scrumguides.org/docs/scrumguide/v2020/
2020-Scrum-Guide-US.pdf

[20] T. Akenine-Moller, E. Haines, and N. Hoffman, Real-time rendering, 3rd ed. AK Peter-
s/crc Press, 2008.

[21] A. Mihuț, C. Kubisch, and M. Kraemer, “Advanced API Perfomance: Mesh Shaders,”
2021, last accessed 2023-02-14. [Online]. Available on: https://developer.nvidia.com/
blog/advanced-api-performance-mesh-shaders/

38

https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-graphics-pipeline
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-graphics-pipeline
https://docs.microsoft.com/en-us/windows/win32/direct3d11/d3d10-graphics-programming-guide-primitive-topologies
https://docs.microsoft.com/en-us/windows/win32/direct3d11/d3d10-graphics-programming-guide-primitive-topologies
https://devblogs.microsoft.com/directx/windows-10-and-directx-12-released/
https://devblogs.microsoft.com/directx/windows-10-and-directx-12-released/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://developer.nvidia.com/blog/advanced-api-performance-mesh-shaders/
https://developer.nvidia.com/blog/advanced-api-performance-mesh-shaders/

	Introduction
	Motivation
	Objectives
	Memory structure

	Tessellation of parametric surfaces
	NURBS surfaces
	NURBS curves
	NURBS surfaces

	GPU Tessellation
	DirectX11 and the traditional pipeline
	DirectX12 and Meshing Shading

	Related Work

	Methodology and Planification
	Methodology
	Planification
	Increment 1
	Increment 2
	Increment 3
	Increment 4
	Increment 5
	Increment 6
	Increment 7
	Gantt Diagram

	Project Costs

	Culling Techniques for NURBS surfaces using Meshing Shading
	Rendering of NURBS surfaces using KSQuad
	Culling Techniques on Rendering Pipeline for NURBS Surfaces
	Culling Techniques Implementation in DirectX12 using Meshing Shading
	KSQuad Level Culling
	Surface Level Culling

	Experimental Results
	Test Environment
	Performance results

	Conclusions and Future Works
	Future works

	Code Access
	Bibliography

