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Abstract

Existing mesh and voxel based modeling methods encounter difficulties when dealing with objects containing cellular structures on
several scale levels and varying their parameters in space.We describe an alternative approach based on using real functions evalu-
ated procedurally at any given point. This allows for modeling fully parameterized, nested and multi-scale cellular structures with
dynamic variations in geometric and cellular properties. The geometry of a base unit cell is defined using Function Representation
(FRep) based primitives and operations. The unit cell is then replicated in space using periodic space mappings such as sawtooth
and triangle waves. While being replicated, the unit cell can vary its geometry and topology due to the use of dynamic parame-
terization. We illustrate this approach by several examples of microstructure generation within a given volume or along a given
surface. We also outline some methods for direct rendering and fabrication not involving auxiliary mesh and voxel representations.

Keywords: procedural modeling, microstructures, FRep, direct rendering, direct fabrication

1. Introduction

Modeling of heterogeneous objects with internal multi-
scale structures has recently become an important area in
CAD/CAM. Traditionally, objects with geometric structures
(on micro, meso and nano levels) are represented by discrete
data structures such as polygonal meshes or voxels. Despite
recent advancements in algorithms and hardware that allow for
the manipulation, visualization and processing of large amounts
of data, modeling of highly detailed and/or complex geometric
models such as microstructures is still a computationally ex-
pensive task. For simplicity, we discuss microstructures here,
but proposed methods due to their procedural nature can be ap-
plied on any level to produce multi-scale superimposed (nested)
structures.

Recently the computational overhead and handling of com-
plex models invoving microstructures was simplified by using
function-based modeling [1][2]. Precise parametrized construc-
tive modeling based on real functions allows for the procedural
definition of multi-scale microstructures, which can undergo
blending, deformations, metamorphosis and other geometric
operations. Furthermore, function-based models of microstruc-
tures can be directly rendered and manufactured without gen-
erating any auxiliary representations such as polygonal meshes
or voxels.

In this work we further develop cellular structures presented
in [2]. The main contributions of this work include outlining
several methods of generating spatial variations in microstruc-
tures: parameterization with point coordinates and distance to
the external shell, metamorphosis between different unit cells,
transfinite interpolation between different cellular types with
given space partitions and recursive multi-scale replication. We
show applications of the proposed methods for generation of

variable volumetric as well as surficial cellular structures.

2. Related works

Existing approaches to modeling microstructures rely on sur-
faces (triangle meshes or NURBS) and voxels [3][4][5]. Many
of the known problems and limitations of both representations
are amplified by the geometric complexity of microstructures.
These problems become unsolvable within existing approaches
when nested multi-scale structures are considered. One can
mention the following problems: large model size and process-
ing time; loss of model validity (due to cracks in surfaces, for
example); limited precision caused by the approximate nature
of various models; limited parameterization and operations for
modeling of microstructures (such as blending between struc-
tural elements and a shell); and finally issues involving digital
fabrication caused by limited model resolutions and complex
slicing for fabrication.

This paper deals with function-based approaches [1][2][6],
which provide solutions to most of the known problems that
plague the traditional approaches to modeling in commercial
CAD products. An approach to modeling periodical structures
based on a triangle wave space mapping was presented in [6].
This approach was only applied to algebraic surfaces and the
modeling of microstructures was not considered. In [1], pe-
riodic surfaces are defined as isosurfaces of real functionsin-
volving the summation of trigonometric functions of point co-
ordinates. Some geometric operations such as union, intersec-
tion, difference and modulation were defined using min/max
functions and algebraic operations. Defining only isosurfaces
instead of solid objects (with the surface separating subspaces
with different function signs corresponding to each of them)
and using non-differentiable functions (min and max) prevent
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(a) (b)

Figure 1: Replicating functions: a) Sawtooth wave, b) Triangle wave. Period
a = 2 for both functions.

the application of additional operations on a model, such as
controlled blending. This approach was further developed in
[2], where microstructures are considered as solid objectsde-
fined by non-negative values of a real continuous function pro-
cedurally evaluated at any given point. The initial periodic
structures, their extensions for set theoretic, controlled blend-
ing and other operations in function representation (FRep)have
been combined using R-functions [7]. Regular lattices, cellu-
lar structures as well as non-regular porous structures were de-
fined within this approach. However, methods for spatial vari-
ation of cellular structures have not been practically developed.
Also, some applications require microstructures to be generated
based on the proximity and features of an object surface. Be-
low, we present methods of modeling variable volumetric and
surficial cellular structures.

3. Function-based cellular structures

As it was shown in [2], cell replication similar to texture
tiling can be applied to any geometric model or part of a model
defined inside a bounding box (called unit cell) such that this
unit cell is replicated in infinite Cartesian space. For FRep
models, infinite cellular structure can be generated by apply-
ing a periodic function defining a space mapping to the FRep
model of the unit cell geometry.

Given a geometric point set defined by a continuous real
function f (x, y, z) on the domainI = (xmin ≤ x ≤ xmax, ymin ≤

y ≤ ymax, zmin ≤ z ≤ zmax) and a periodic replicating function
g(t) such asg(t) ∈ [0, 1]∀t, the cellular solid model is defined by
the inequalityr(x, y, z) ≥ 0, and its surface (sometimes called
implicit surface for historical reasons) is defined by the equa-
tion r(x, y, z) = 0 where:

r(x, y, z) = f (xmin+ g(x) ∗ (xmax− xmin),

ymin+ g(y) ∗ (ymax− ymin),

zmin + g(z) ∗ (zmax− zmin))

(1)

The object defined by the functionf on I is called a unit cell.
Any periodic function can be used as a replicating functiong(t),
however in practical modeling periodical functions with linear
nature can be used. The reason for this choice is to avoid non-
linear deformations of the unit cell during the replicationpro-
cess. In this paper we use two replicating functions: sawtooth

(a) (b)

(c) (d)

Figure 2: Connectivity types: a) Unit cell for the model withgeometric con-
nectivity, b) Function field for model in a), c) Unit cell for the model with full
connectivity, d) Function field for model in c).

wave function for non-symmetric cells and triangle wave func-
tion for symmetric cells. The definition of symmetry for cells
will be presented below.

A sawtooth function [8] (see Fig. 1a) can be defined by sev-
eral different formulations, for example:

g(t) =
1
2
+ (

t
a
− f loor(

t
a
+

1
2

)) (2)

A triangle wave [9](see Fig. 1b) can also be defined by using
different formulations, for example:

g(t) =
1
2
+

1
π

sin−1[sin(π
t
a

)] (3)

In these functionsa represents the period. Note that these
functions are modified to comply with requirements of the
replicating function - i.e. the value of the function lies in[0,
1].

As it can be seen, the sawtooth function has periodical dis-
continuities, therefore the resulting cellular model has discon-
tinuity on the faces of each cell in the cases where the unit cell
has no connectivity. We distinguish two types of connectivity
in function-based models:

• Geometric connectivity - the objects boundary curves at
the opposite faces of the unit cell bounding box have to be
equal (see Figs. 2a and 2b);

• Full connectivity - the function field is equal on the oppo-
site faces of the unit cell bounding box (see Figs. 2c and
2d).
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Figure 3: Non-symmetric unit cell: a) Replication with triangle wave, b) Repli-
cation with sawtooth function.

These types of connectivity can be represented formally.
Given the unit cell defined by the functionf (x, y, z) on the do-
main I , the unit cell has geometric connectivity if

{(y, z)| f (xmin, y, z) = 0} = {(y, z)| f (xmax, y, z) = 0} y, z ∈ I

{(x, z)| f (x, ymin, z) = 0} = {(x, z)| f (x, ymax, z) = 0} x, z ∈ I

{(x, y)| f (x, y, zmin) = 0} = {(x, y)| f (x, y, zmax) = 0} x, y ∈ I
(4)

The unit has full connectivity if the following condition is
met:

f (xmin, y, z) = f (xmax, y, z) ∀y, z ∈ I

f (x, ymin, z) = f (x, ymax, z) ∀x, z ∈ I

f (x, y, zmin) = f (x, y, zmax) ∀x, y ∈ I

(5)

From the practical point of view, if the unit cell has full con-
nectivity, by using sawtooth wave we haveC0-continuous func-
tion in the entire domain. In case of geometric connectivitywe
obtain geometric continuity of the entire model, however the
resulting function can beC0-discontinuous on the faces of each
cell. In case where no full or geometric connectivity conditions
are met, the resulting cellular model has geometric discontinu-
ity on the faces of the cells.

Unlike the sawtooth function, the triangle wave does not have
C0-discontinuities. However the nature of the triangle wave
function requires the unit cell to be symmetrical around the
centre of the unit cell in respect to the coordinate axes. More
formally, the symmetry of the cell can be defined as following:

f (xmin + t ∗ (xmax− xmin), y, z) =

f (xmax− t ∗ (xmin − xmax), y, z) ∀y, z∈ I , t ∈ [0, 1]

f (x, ymin+ t ∗ (ymax− ymin), z) =

f (x, ymax− t ∗ (ymin− ymax), z) ∀x, z ∈ I , t ∈ [0, 1]

f (x, y, zmin+ t ∗ (zmax− zmin)) =

f (x, y, zmax− t ∗ (zmin − zmax)) ∀x, y ∈ I , t ∈ [0, 1]

(6)

In the case where the unit cell is not symmetric in the result-
ing cellular structure every second cell is mirrored with respect
to the centre of the unit cell (see Fig. 3a). Replication of non

(a)

(b)

Figure 4: A regular cellular structure with union of three tori as a unit cell: a)
Unit cell, b) Cellular structure.

symmetric unit cells without mirroring can be obtained with
sawtooth wave (see Fig. 3b).

If we select not to use a replicating functiong(t) from the
equation 1, but to use a linear function instead, for exam-
ple g(x) = x−xmin

xmax−xmin
, we can obtain a cellular structure where

replication takes place only along some of the coordinate axes.
Therefore we can distinguish several types of replication:lin-
ear replication, where only one function ofg(x), g(y) andg(z) is
periodical; plane replication has two periodical functions; and
volumetric replication, where all three functions are periodical.

An example of simple volumetric replication is shown in Fig.
4. In this example we take the set-theoretic union of three tori as
the unit cell using R-functions [7]. Because of the symmetrical
nature of the unit cell, we apply a triangle wave function as the
replicating function for all three coordinate axes. The explicit
defining procedure for this model can be found in the Appendix
(Algorithm 1) of this paper.

4. Variable cellular structures

The mathematical nature of the definition of the cellular
structures allows us to obtain a large variety of different models
by replacing parameters of the cellular structure by parametric
functions. This parameterization of the structure can be applied
to the parameters of the replicating function, to the parameters
of the unit cell or be a mixture of both.

4.1. Variable cellular structures with parameterized unitcell
We can see that the equation 1 can be rewritten in the form

r(x, y, z) = r(rx(g(x)), ry(g(y)), rz(g(z))) (7)
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Figure 5: A variable cellular structure with the unit cell metamorphosing in
space from a ball to a union of three tori.

where

rx(g(x)) = xmin + g(x) ∗ (xmax− xmin)

ry(g(y)) = ymin + g(y) ∗ (ymax− ymin)

rz(g(z)) = zmin + g(z) ∗ (zmax− zmin)

(8)

We obtain variable cellular structures by replacing linear
functions fx, fy and fz by arbitrary non-linear functions. Note
that for cellular structures these arbitrary functions should have
a replicating function over the coordinate variables as theargu-
ment. In the general case, the cellular function with the param-
eterized unit cell can be defined as:

r(x, y, z) = r(rx(g(x), g(y), g(z)),

ry(g(x), g(y), g(z)),

rz(g(x), g(y), g(z)))

(9)

By using dependency of the unit cell parameters, we can ob-
tain a different shape of the unit cell within the cellular struc-
ture. For example, in the case of a unit cell that is defined in
4D space (x, y, z, t) with the additionalt parameter, we can ob-
tain metamorphosis inside the cellular structure by using depen-
dency of thet parameter on the coordinate values (x, y, z) (see
Fig. 5 and Appendix, Algorithm 2).

4.2. Variable cellular structures with parameterized replicat-
ing function

We can vary parameters of the cellular structure by using ad-
ditional parameterization of the replicating function. Ingen-
eral, we obtain parameterization of the replicating function by
replacing arguments of the replicating functiong in equation 1
by functionsgx(x, y, z), gy(x, y, z) andgz(x, y, z). However, in
practice the only parameter that can be variable in the repli-
cating function is the period denoted bya in equations 2 and
3. Therefore by introducing a variable period for the cellular
structure, it can be defined by the following function:

r(x, y, z) = r(xmin + gx(x, y, z) ∗ (xmax− xmin),

ymin + gy(x, y, z) ∗ (ymax− ymin),

zmin + gz(x, y, z) ∗ (zmax− zmin))

(10)

Figure 6: A variable cellular structure with the period parameterized by the
distance to the external object shell.

wheregx(x, y, z), gy(x, y, z) andgz(x, y, z) in the case of the saw-
tooth function as the replicating function can be written as:

gx(x, y, z) =
1
2
+ (

x
ax(x, y, z)

− f loor(
x

ax(x, y, z)
+

1
2

))

gy(x, y, z) =
1
2
+ (

y
ay(x, y, z)

− f loor(
y

ay(x, y, z)
+

1
2

))

gz(x, y, z) =
1
2
+ (

z
az(x, y, z)

− f loor(
z

az(x, y, z)
+

1
2

))

(11)

whereax(x, y, z) > 0, ay(x, y, z) > 0, az(x, y, z) > 0,∀x, y, z∈ <.
As an example of a variable cellular structure with a param-

eterized replicating function, consider a model where the repli-
cation period depends on the distance from the given point to
the boundary of the external carrying shell (see Fig. 6).

As a more complex example we consider a model obtained
with the transfinite interpolation [10] of the period of the repli-
cating function (Fig. 7d) and the transfinite interpolationof the
shape of the unit cell using metamorphosis (Fig. 7e) between
two unit cells (Figs. 7a and 7b). In both cases, two space parti-
tions are defined by spheres with constant values of considered
parameters inside of them. For visualization purposes in Fig.
7 we used plane replication while defining cellular structure,
however the same technique can be applied for cellular struc-
tures defined by the volumetric replication.

5. Applications of volumetric microstructures

Variable cellular structures defined by function-based mod-
els are yet to be used in practical modeling and design. In this
section we present some potential applications of cellularstruc-
tures including variable volumetric and surficial structures.

5.1. Volumetric cellular structures in multi-scale function-
based modeling

Modeling with cellular structures using variable replication
takes place inside function-based modeling framework. This
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(a) (b)

(c)

(d)

(e)

Figure 7: Transfinite interpolation in cellular structures: a) Hexagonal unit cell;
b) Rhombic unit cell, c) Hexagonal cellular structure; d) Period interpolation
between space partitions denoted by spheres with assigned constant periods;
e) Cell shape interpolation between space partitions denoted by spheres with
assigned constant cell shapes using metamorphosis betweenhexagonal unit cell
and rhombic unit cell.

means that the resulting model is a solid object itself that can be
taken as an input for another function-based operation possibly
including another cellular replication.

The first example we would like to consider is metamorpho-
sis applied to a cellular microstructure and a larger scale object
(see Fig. 8 and Appendix, Algorithm 3). In this example we
take the cellular structure with a unit cell as union of threetori
and apply metamorphosis operation (using the linear interpo-
lation of defining functions) between the cellular structure and
another torus model on a larger scale. The application of such
an operation can be useful in artistic design.

Another example of a cellular structure applied in CAD is
a model of the filter with several levels of scale for the cellular
replication. First, we define the cellular structure based on a ba-
sic unit cell (union of three cylinders), apply a few set-theoretic
operations to the cellular structure (Fig. 9a) and then use the
result as the unit cell for another cellular structure (Fig.9b).
The resulting multi-scale cellular structure also can be used for
further operations including replication (Fig. 9c).

5.2. Surficial structures
Cellular structures can be used not only for modeling volu-

metric microstructures. Surficial or on-surface structures can be
created by using cellular structures located near the surface of
some solid object. Obviously, the surface in the geometric sense
has zero thickness, so we are finding a way to increase the thick-
ness and therefore we discuss on-surface structures ratherthan
purely surface structures. Below we consider possible waysto
construct surfaces microstructures based on offsetting and set-
theoretic operations.

5.2.1. Surficial microstructures as feature-based volumes
We can obtain surficial microstructures by using bounding

volumes that enclose the intersection curves [11]. Given the
initial object defined by the functionfob j(x, y, z) ≥ 0 and cellu-
lar structure defined by the functionfcell(x, y, z) ≥ 0, the implicit
curve that defines the intersection of the surfaces of the initial
object and the cellular structure can be defined by the following:

g(x) = (− f 2
ob j)&(− f 2

cell) ≥ 0 (12)

Here & denotes set-theoretic intersection operation usingR-
functions [7]. This definition arises from the fact that for any
solid object defined by inequalityf (x, y, z) ≥ 0 the set of points
lying on the surface is defined by inequality− f 2(x, y, z) ≥ 0, as
the given function is equal to zero on the surface of the object
and is negative everywhere else.

The bounding volume for the intersection curve can be found
by applying offsetting operation to the function defining the in-
tersection curve. A number of various offset operations exists
for functon-based modeling. Depending on the defining func-
tions for an initial object and the cellular structure, different
offsetting operations can be used When choosing an offsetting
operation, we should balance between easiness and speed of
calculations and the properties of the resulting shape. Thus, the
easiest offsetting operation is the constant-value offset defined
as:

fconst(x) = f (x) + d (13)
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(a)

(b)

(c)

Figure 8: An object modelled as a metamorphosis between a cellular microstru-
ture and a larger scale torus in space: a) Torus, b) Cellular structure, c) Result-
ing model. The formulation for this example can be found in the appendix.

(a)

(b)

(c)

Figure 9: Nested cellular structures in modeling: a) Cellular structure for the
unit cell with additional CSG operations, b) Cellular structure from the unit cell
defined in a) with additional CSG operations (zoom out level comparing to a)
is 8x times), c) Resulting model (zoom out level comparing tob) is 6x times).
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(a) (b)

(c)

Figure 10: Surficial microstructures: a) Initial model, b) Feature-based volume
after intersection with the volumetric cellular structurewith the unit cell as a
sphere, constant value offset, c) Feature-based volume after intersection with
volumetric cellular structure with the unit cell as a sphere, offset with the func-
tion normalization

(a)

Figure 11: Set-theoretic subtraction of the volumetric cellular structure from
the initial object shell.

where fconst(x) ≥ 0 corresponds to the solid object representing
offset of the object defined byf (x) ≥ 0 andd the offsetting
amount. This offsetting is simple to implement and extremely
efficient, however it depends heavily on the distance property of
the function and therefore it can produce unpredictable shapes.

Another approach to offsetting uses function normalization.
Then the offsetting operation is:

fnorm =
f

√

f 2 + (∇ f )2
+ d (14)

here fnorm = fnorm(x) ≥ 0 corresponds to the solid object rep-
resenting offset of the object defined byf (x) ≥ 0 andd is the
offset amount. In general, the shape after the normalization is
closer to the constand-radius offset in the sense of Euclidean
distance, however the normalization may produce unexpected
results for functions with the not well behaved gradient.

In Fig. 10 we show a surficial structure obtained by the de-
scribed method. We take the model of the vase as the initial
solid object (see Fig. 10a) and the variable cellular structure
where period varies over the z axis. Then the bounding volume
was constructed as described above. In Fig. 10b, constant-
value offset was used and in Fig. 10c offset with the normal-
ization was used. It can be seen from the examples that the
shape of the resulting surficial structures is not ideal whenus-
ing a simple offsetting operation. Better shapes can be obtained
using a geometric offset by applying a Minkowski sum [12] of
the intersection curves with a sphere, however this operation is
computationally very expensive.

5.2.2. Surficial structures after set-theoretic operations
Surficial structures can be obtained in more traditional way

by using mostly set-theoretic operations. Thus, the on-surface
structure can be a result of set-theoretic intersection of ashell
of the initial solid object and some volumetric cellular structure.
The shell here can be obtained by either using offsetting opera-
tion or by re-modeling. When using an offsetting operation we
can apply one of the following approaches to create a shell:

• Take the surface of the object as− f 2(x, y, z) ≥ 0 and then
apply the offsetting operation as described above;

• Apply offsetting operation with positive value to the object
and subtract the initial object from the result;

In the case of re-modeling, the same object is modeled slightly
smaller or larger by copying the original object and modifying
its parameters to shrink or expand the overall shape. A shellis
obtained by a set-theoretic subtraction of the two objects.

Fig. 11 shows the results of an intersection between a vari-
able volumetric cellular structure with the shell of an object. In
this example, to obtain the shell we subtracted the initial object
from its positive offset.

5.3. Practical modeling of volumetric microstructures and
comparison with other models

Due to the parametrized nature of FRep, the modeling of
cellular structures is not difficult from a user point of view.
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Simple identification of the spacial area that should be repli-
cated by a bounding unit cell is enough to make even very
detailed and complex regular micro-structures such as the ex-
ample filter given in Fig. 9, where a micro-structure is used
in modeling another micro-structure. For even more complex
non-regular examples it is possible to simply construct anyar-
bitrary volume (or take another another model) and identifyit
as a boundary (with arbitrary soft transitions as required)for
any non-regular and localized operation such as scale, warping,
change in the microstructures parameters, metamorphosis,etc.
In addition any micro-structure can be used and incorporated
into any model or combined with other any other operations
such as joining or blending of the micro-structure with a shell
as seen again in Fig. 9. An Frep based system can easily pro-
vide a robust and dynamic framework for complex multi-scale
micro-structure modeling for designers.

Using FRep to model volumetric microstructures not only
performs better but can easily create models that traditional
modeling system fail to create. In a simple example of the
torus ball three tori are placed on each axis and unioned to-
gether into a ”ball” (see Fig. 4). They are then placed in an
array of 10x10x10 in X, Y and Z. The ”ball” is arrayed such
that each ball overlaps or loses part of the the outer diameter.
This allows the microstructure to be joined together as would be
necessary in a real world application, resulting in a microstruc-
ture block of a thousand joined tori balls forming a 3-manifold
that is ready to be sliced for layered or additive manufactur-
ing. The same example was attempted with traditional software
systems. Several industrial modeling packages where unable
to even union three tori in a simple and correct manner so a
test with NURBS counterpart for the example tori microstruc-
ture has not been preformed. A more in depth investigation and
comparison with NURBS based microstructures will be a fo-
cus of future work. Several packages had great difficulty when
attempting the same procedure with meshes. Only after sev-
eral attempts and at low resolution (at higher mesh resolutions
it failed or produced bad results) was it possible with less than
satisfactory results (see Fig. 12a and 12b).

Even with a reduced polygon count (flat faced tori ball) the
construction of mesh based 10x10x1 manifold sheets and the
entire 10x10x10 manifold microstructure block is a very time
and memory consuming operation that finally proved unsuc-
cessful. The process to union the units into 10x10x1 ”sheets”
alone took 6 minutes to complete and while it was possible to
copy the sheets 10 units high it was impossible to union together
the final structure. Attempting to do so resulted in the software
and hardware failing when using several industrial packages of
software - one designed for additive fabrication. Even so, the
non-manifold and therefore un-manufacturable model was hun-
dreds of megabytes in size. By comparison the same model can
be represented by less that hundred bytes and take only a few
minutes to construct using FRep modeling tools.

6. Rendering and fabrication

Application areas for the modeling of multi-scale structures
such as material and biomedical tissue design and engineering

(a) (b)

(c) (d)

Figure 12: Results from making the torii and following construction of the
replication in traditional polygonal/NURBS CAD systems.

require specific procedures for model rendering and fabrication.
Currently, a function-based model has to be converted to some
auxiliary representation such as a polygonal mesh or a voxelar-
ray for subsequent rendering using modern graphics hardware
or for manufacturing using additive or layer based commercial
process and hardware. The conversion to a mesh involves iso-
surface polygonization (tessellation) while voxelization algo-
rithms must be used to produce a voxel array. The known draw-
backs of both these representations in the case of microstructure
modeling were discussed above. Approaches to direct render-
ing and fabrication have to be considered to overcome these
drawbacks.

6.1. Direct rendering

By direct rendering we mean accelerated ray-tracing or ray
casting of function-based object surfaces without involving
polygonization. The acceleration can be either by using graph-
ics hardware (GPU)[13][14] or by using multi-threading on
CPU[15]. Note that the nature of microstructure models re-
quires rendering to be reliable. In [16], revised affine arithmetic
was shown as a fast and reliable technique for ray-tracing of
implicit surfaces. Also by using the same technique, we can
construct reliable enumeration of the object in 3D-space and by
using enumeration information decrease the number of compu-
tations by the calculation of ray-surface intersections only in
the areas of space where a zero value of the function can be
present. Most of the pictures in this paper were obtained by
using described direct rendering with modified version of Pov-
Ray ray-tracing software and our own ray-casting software.

6.2. Direct fabrication

An approach to directly fabricate FRep models without aux-
iliary formats such as traditional STL (triangle soup) is anac-
tive direction of research. One possibility to fabricate FRep
objects directly is to produce a raster image for each layer of
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3D printing at the machine resolution, which is an acceptable
input for some existing machines. Thus the modelled structure
could be procedurally defined on a grid of voxels that corre-
sponds directly to the layer thickness and to the pixel spacing at
the machine resolution. Another approach is to directly control
the material deposition process. However, there are obstacles
presented by the proprietary nature of most digital fabrication
technologies, such as access to machine protocols and control
commands. The wide adoption of direct fabrication requires
open standards for low level hardware friendly formats.

7. Conclusions

In this paper we presented an approach to modeling of vari-
able cellular structures and their applications. The resulting
models are defined procedurally within the function representa-
tion framework. This allows for further operations on the mod-
eled structures including the creation of nested multi-scale cel-
lular models. In practical modeling, our method has one serious
restriction - there is no easy way to use existing microstructures
defined using other types of representations or in traditional
CAD packages. This can be resolved using polygon-to-function
and voxel-to-function conversion procedures. We also outlined
how traditional problems with modeling microstructures such
as polygonization or voxelization for rendering and fabrication
can be avoided by using direct rendering and direct fabrication.

Appendix A. Procedures defining some of the examples
presented in the paper

Algorithm 1 Construction of a regular cellular structure with
union of three tori as a unit cell (Fig. 4)
Procedure: regular(x, y, z)

Coordinate transformation by using triangle wave:
xt =

1
2 +

1
π
sin−1[sin(π x

2)]
yt =

1
2 +

1
π
sin−1[sin(π y

2)]
zt =

1
2 +

1
π
sin−1[sin(π z

2)].
Calculate replicated tori by using deformed coordinates:

torusx = 0.22 − x2
t − y2

t − z2
t − 0.82 + 2 ∗ 0.8 ∗

√

y2
t + z2

t

torusy = 0.22 − x2
t − y2

t − z2
t − 0.82 + 2 ∗ 0.8 ∗

√

x2
t + z2

t

torusz = 0.22 − x2
t − y2

t − z2
t − 0.82 + 2 ∗ 0.8 ∗

√

x2
t + y2

t

Perform union operation over replicated tori:
result= torusx ∨ torusy ∨ torusz

return result;
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