1,113 research outputs found

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Multivariate Statistical Process Control Charts: An Overview

    Get PDF
    In this paper we discuss the basic procedures for the implementation of multivariate statistical process control via control charting. Furthermore, we review multivariate extensions for all kinds of univariate control charts, such as multivariate Shewhart-type control charts, multivariate CUSUM control charts and multivariate EWMA control charts. In addition, we review unique procedures for the construction of multivariate control charts, based on multivariate statistical techniques such as principal components analysis (PCA) and partial lest squares (PLS). Finally, we describe the most significant methods for the interpretation of an out-of-control signal.quality control, process control, multivariate statistical process control, Hotelling's T-square, CUSUM, EWMA, PCA, PLS

    Statistical process monitoring of a multiphase flow facility

    Get PDF
    Industrial needs are evolving fast towards more flexible manufacture schemes. As a consequence, it is often required to adapt the plant production to the demand, which can be volatile depending on the application. This is why it is important to develop tools that can monitor the condition of the process working under varying operational conditions. Canonical Variate Analysis (CVA) is a multivariate data driven methodology which has been demonstrated to be superior to other methods, particularly under dynamically changing operational conditions. These comparative studies normally use computer simulated data in benchmark case studies such as the Tennessee Eastman Process Plant (Ricker, N.L. Tennessee Eastman Challenge Archive, Available at 〈http://depts.washington.edu/control/LARRY/TE/download.html〉 Accessed 21.03.2014). The aim of this work is to provide a benchmark case to demonstrate the ability of different monitoring techniques to detect and diagnose artificially seeded faults in an industrial scale multiphase flow experimental rig. The changing operational conditions, the size and complexity of the test rig make this case study an ideal candidate for a benchmark case that provides a test bed for the evaluation of novel multivariate process monitoring techniques performance using real experimental data. In this paper, the capabilities of CVA to detect and diagnose faults in a real system working under changing operating conditions are assessed and compared with other methodologies. The results obtained demonstrate that CVA can be effectively applied for the detection and diagnosis of faults in real complex systems, and reinforce the idea that the performance of CVA is superior to other algorithms

    Process Performance Analysis in Large-Scale Systems Integrating Different Sources of Information

    No full text
    Process auditing using historical data can identify causes for poor performance and reveal opportunities to improve process operation. To date, the data used has been limited to process measurements; however other sources hold complementary information about the process behavior. This paper proposes a new approach to root-cause diagnosis, which also takes advantage of the information in utility, mechanical and electrical data, alarms and diagrams. Its benefit is demonstrated in an industrial case study, by tackling an important challenge in root-cause analysis: large-scale systems. This paper also defines specifications for a semi-automated tool to implement the proposed approach. © 2012 IFAC

    Seleção de variáveis aplicada ao controle estatístico multivariado de processos em bateladas

    Get PDF
    A presente tese apresenta proposições para o uso da seleção de variáveis no aprimoramento do controle estatístico de processos multivariados (MSPC) em bateladas, a fim de contribuir com a melhoria da qualidade de processos industriais. Dessa forma, os objetivos desta tese são: (i) identificar as limitações encontradas pelos métodos MSPC no monitoramento de processos industriais; (ii) entender como métodos de seleção de variáveis são integrados para promover a melhoria do monitoramento de processos de elevada dimensionalidade; (iii) discutir sobre métodos para alinhamento e sincronização de bateladas aplicados a processos com diferentes durações; (iv) definir o método de alinhamento e sincronização mais adequado para o tratamento de dados de bateladas, visando aprimorar a construção do modelo de monitoramento na Fase I do controle estatístico de processo; (v) propor a seleção de variáveis, com propósito de classificação, prévia à construção das cartas de controle multivariadas (CCM) baseadas na análise de componentes principais (PCA) para monitorar um processo em bateladas; e (vi) validar o desempenho de detecção de falhas da carta de controle multivariada proposta em comparação às cartas tradicionais e baseadas em PCA. O desempenho do método proposto foi avaliado mediante aplicação em um estudo de caso com dados reais de um processo industrial alimentício. Os resultados obtidos demonstraram que a realização de uma seleção de variáveis prévia à construção das CCM contribuiu para reduzir eficientemente o número de variáveis a serem analisadas e superar as limitações encontradas na detecção de falhas quando bancos de elevada dimensionalidade são monitorados. Conclui-se que, ao possibilitar que CCM, amplamente utilizadas no meio industrial, sejam adequadas para banco de dados reais de elevada dimensionalidade, o método proposto agrega inovação à área de monitoramento de processos em bateladas e contribui para a geração de produtos de elevado padrão de qualidade.This dissertation presents propositions for the use of variable selection in the improvement of multivariate statistical process control (MSPC) of batch processes, in order to contribute to the enhacement of industrial processes’ quality. There are six objectives: (i) identify MSPC limitations in industrial processes monitoring; (ii) understand how methods of variable selection are used to improve high dimensional processes monitoring; (iii) discuss about methods for alignment and synchronization of batches with different durations; (iv) define the most adequate alignment and synchronization method for batch data treatment, aiming to improve Phase I of process monitoring; (v) propose variable selection for classification prior to establishing multivariate control charts (MCC) based on principal component analysis (PCA) to monitor a batch process; and (vi) validate fault detection performance of the proposed MCC in comparison with traditional PCA-based and charts. The performance of the proposed method was evaluated in a case study using real data from an industrial food process. Results showed that performing variable selection prior to establishing MCC contributed to efficiently reduce the number of variables and overcome limitations found in fault detection when high dimensional datasets are monitored. We conclude that by improving control charts widely used in industry to accomodate high dimensional datasets the proposed method adds innovation to the area of batch process monitoring and contributes to the generation of high quality standard products

    MVBatch: A matlab toolbox for batch process modeling and monitoring

    Full text link
    [EN] A novel user-friendly graphical interface for process understanding, monitoring and troubleshooting has been developed as a freely available MATLAB toolbox, called the MultiVariate Batch (MVBatch) Toolbox. The main contribution of this software package is the integration of recent developments in Principal Component Analysis (PCA) based Batch Multivariate Statistical Process Monitoring (BMSPM) that overcome modeling problems such as missing data, different speed of process evolution and length of batch trajectories, and multiple stages. An interactive user interface is provided, which aims to guide users in handling batch data through the main BMSPM steps: data alignment, data modeling, and the development of monitoring schemes. In addition, a small-scale non-linear dynamic simulator of the fermentation process of the Saccharomyces cerevisiae cultivation is available to generate realistic batch data under normal and abnormal operating conditions. This generator of synthetic data can be used for teaching purposes or as a benchmark to illustrate and compare the performance of new methods with sound techniques published in the field of BMSPM.This work is partially supported by the Spanish Ministry of Economy and Competitiveness and FEDER funds through the projects DPI2017-82896-C2-1-R and TIN2017-83494-R. Authors also acknowledge the volunteers to test MVBatch and report their impressions for this software tutorial.González Martínez, JM.; Camacho Paez, J.; Ferrer, A. (2018). MVBatch: A matlab toolbox for batch process modeling and monitoring. Chemometrics and Intelligent Laboratory Systems. 183:122-133. https://doi.org/10.1016/j.chemolab.2018.11.001S12213318

    New contributions to non linear process monitoring through kernel partial least squares

    Get PDF
    The kernel partial least squares (KPLS) method was originally focused on soft-sensor calibration for predicting online quality attributes. In this work, an analysis of the KPLS-based modeling technique and its application to nonlinear process monitoring are presented. To this effect, the measurement decomposition, the development of new specific statistics acting on non-overlapped domains, and the contribution analysis are addressed for purposes of fault detection, diagnosis, and prediction risk assessment. Some practical insights for synthesizing the models are also given, which are related to an appropriate order selection and the adoption of the kernel function parameter. A proper combination of scaled statistics allows the definition of an efficient detection index for monitoring a nonlinear process. The effectiveness of the proposed methods is confirmed by using simulation examples. Keywords: KPLS Modeling, Fault Detection, Fault Diagnosis, Prediction Risk Assessment, Nonlinear Processes.Fil: Vega, Jorge Ruben/ Universidad Tecnològica Nacional. ArgentinaPeer Reviewe
    corecore