41 research outputs found

    Doppler radar monitoring of lava dome processes at Merapi Volcano, Indonesia

    Get PDF
    Merapi volcano in Central Java, Indonesia, is considered one of the most dangerous volcanoes worldwide. Due to the high viscosity of its magma, the lava emerging at the top the volcano cannot flow silently down the flanks of the volcano but builds a lava dome. An indicator for the stability of the lava dome are rockfalls and block and ash flows, which are caused by local instabilities at the dome. When the lava dome reaches a critical size, it collapses. This results in dangerous block and ash flows, which can reach several kilometers into the proximity of the volcano. In the past rockfall and block and ash flow activity has been observed visually or by seismic networks. However, visual observations are often impossible due to bad visibility conditions and until now seismic measurements allow only few insights into the dynamic processes that are involved in instability events, i.e. events of material breaks off the lava dome. In order to enhance monitoring of lava dome activity, a first prototype Doppler radar system has been installed at the western of the Merapi in October 2001. This system consists of a frequency modulated continuous wave (FMCW) 24GHz Doppler radar. The Doppler spectra recorded by the system give a relative measure of the amount of material moving through the beam as well as information about its velocities. Because the radar system is insensitive for clouds, the system provides first continuous "quasi-visual" observations of dome instabilities...thesi

    Second generation of AVTIS FMCW millimeter wave radars for mapping volcanic terrain

    Get PDF
    The second generation AVTIS ground-based millimeter wave instruments designed for monitoring topography of volcanic lava domes are solid state 94 GHz FMCW rastered, real beam radars operating at ranges of up to ~7 km with a range resolution of ~2.5 m. Operating ten times faster than the prototype with reduced power consumption suitable for battery powered portable use as well as installation at a telemetered site under solar power, we examine their performance as tools for monitoring topography over time and report on the operational statistics both as a radar sensor and as a means of generating digital elevation maps.Publisher PD

    A detailed view into the eruption clouds of Santiaguito volcano, Guatemala, using Doppler radar

    No full text
    Using Doppler radar technology we are able to show that eruptions at Santiaguito volcano, Guatemala, are comprised of multiple explosive degassing pulses occurring at a frequency of 0.2 to 0.3 Hz. The Doppler radar system was installed about 2.7 km away from the active dome on the top of Santa Maria volcano. During four days of continuous measurement 157 eruptive events were recorded. The Doppler radar data reveals a vertical uplift of the dome surface of about 50 cm immediately prior to a first degassing pulse. Particle velocities range from 10 to 15 m/s (in the line of sight of the radar). In 80% of the observed eruptions a second degassing pulse emanates from the dome with significantly higher particle velocities (20-25 m/s again line of sight) and increased echo power, which implies an increase in mass flux. We carry out numerical experiments of ballistic particle transport and calculate corresponding synthetic radar signals. These calculations show that the observations are consistent with a pulsed release of material from the dome of Santiaguito volcano

    Combining experimental volcanology, petrology and geophysical monitoring techniques

    Get PDF
    In general, an understanding of the complex processes acting before and during volcanic eruptions is approached from various different sides, e.g. laboratory experiments on fragmentation and/or bubble burst eruption mechanisms, petrological analysis of the eruptive products and various geophysical monitoring and source localization techniques. Each of these techniques can deliver valuable insights by adding pieces of information about the physical processes that drive the volcanic activity. However, often studies are focussing on a single aspect of the process, without setting the results in a more general context. Often, this strategy is absolutely valid, when the focus is laid on a single piece in the complex chain of processes taking place in volcanic eruptions. This must fail when the results aim to suggest a valid model for the combined observations at volcanoes using the above described techniques. The resulting models of volcanic source mechanisms and eruptive features can therefore lead to biased assumptions. This study aims to close this gap between laboratory experiments, petro-chemical analysis and modern geophysical monitoring and source localization techniques in a case study of Mt. Yasur (Vanuatu) volcano. The presented laboratory experiments on explosive volcanic eruptions upon rapid decompression show that decompression rate is the dening parameter in the experiments and that a scaling to large-scale processes is valid. Furthermore, a model is presented that correlates measured particle velocities to decompression rate and initial gas-overpressure. This model is used to estimate source volumes and overpressures at Volcan de Colima (Mexico) and Mt. Yasur (Vanuatu). A petrographically and geochemically characterization of Mt. Yasurs eruptive products suggests a shallow magma-mingling process at both of Mt. Yasurs active craters, perhaps due to rejuvenation of material slumped from the crater walls into an open conduit system. A study on the time-reversal imaging technique and its ability to detect the details of finite rupture (or time-variant) processes shows that the limitations of TR imaging start where the source stops being point-localised with respect to the used wavelength. Inversion of the source mechanisms of Strombolian explosions at Mt. Yasur are performed using a multi-parameter dataset consisting of seismic, acoustic and Doppler-radar data. Time-reversal imaging and moment tensor inversion are used to invert the source location of the seismic long-period (f < 1Hz) signals, which is supposed to refl ect fluid movement at depth. The source is located in the north-east of the crater region in a depth of several hundred meters. Furthermore, the source volume of the radiated infrasound signals is estimated from fundamental resonance frequencies. The results showed that the maximum particle velocity measured with the Doppler radar correlates nicely with the estimated source volumes lengths. The inverted seismic moment does not show any correlation with the estimated slug sizes, i.e. the slug size does not map in seismic moment. This is an important information, as it states that a larger source volume does not necessarily produces a larger seismic moment. From these combined results, a common feeder system for all active craters at Mt. Yasur is proposed. The differences in event recurrence rate at the three active craters are believed to be controlled by either the conduit geometry or variations in degassing or cooling rate. Strombolian-type eruptions at Mt. Yasur are suggested to be due to the burst of gas slugs with lengths and overpressures comparable to volcanoes showing similar eruptive patterns. The results illustrate the importance of combined studies that overcome the limitations of single disciplines. In this way, a more comprehensive view of volcanic eruptions and the associated observations is possible. Such a multi-disciplinary approach will contribute to a better understanding of volcanic processes and the associated hazards

    Debris-flow monitoring and warning: review and examples

    Get PDF
    Debris flows represent one of the most dangerous types of mass movements, because of their high velocities, large impact forces and long runout distances. This review describes the available debris-flow monitoring techniques and proposes recommendations to inform the design of future monitoring and warning/alarm systems. The selection and application of these techniques is highly dependent on site and hazard characterization, which is illustrated through detailed descriptions of nine monitoring sites: five in Europe, three in Asia and one in the USA. Most of these monitored catchments cover less than ~10 km2 and are topographically rugged with Melton Indices greater than 0.5. Hourly rainfall intensities between 5 and 15 mm/h are sufficient to trigger debris flows at many of the sites, and observed debris-flow volumes range from a few hundred up to almost one million cubic meters. The sensors found in these monitoring systems can be separated into two classes: a class measuring the initiation mechanisms, and another class measuring the flow dynamics. The first class principally includes rain gauges, but also contains of soil moisture and pore-water pressure sensors. The second class involves a large variety of sensors focusing on flow stage or ground vibrations and commonly includes video cameras to validate and aid in the data interpretation. Given the sporadic nature of debris flows, an essential characteristic of the monitoring systems is the differentiation between a continuous mode that samples at low frequency (“non-event mode”) and another mode that records the measurements at high frequency (“event mode”). The event detection algorithm, used to switch into the “event mode” depends on a threshold that is typically based on rainfall or ground vibration. Identifying the correct definition of these thresholds is a fundamental task not only for monitoring purposes, but also for the implementation of warning and alarm systemsPeer ReviewedPostprint (author's final draft

    Evolution and dynamics of the open‑vent eruption at Arenal volcano (Costa Rica, 1968–2010): what we learned and perspectives

    Get PDF
    On 29 July 1968, there was a violent reactivation of Arenal volcano. The resulting westward-directed lateral blast eruption left two villages destroyed and 78 people dead. The activity continued as a long-lasting, open-vent eruption that evolved into seven recognisable phases refecting changes in magma supply, explosive activity and cone evolution, and ended in October 2010. Here, we review this activity, the geophysical approaches applied to understanding it and the open questions resulting from these insights. The eruptive dynamics were characterised by almost constant lava efusion, degassing, strombolian and vulcanian explosions and infrequent pyroclastic density currents. In this study, the total rock dense equivalent volume of lava and tephra erupted is calculated at 757±77 Mm3, while the volume of the lava fow feld is 527±58 Mm3. Typical seismic activity included harmonic and spasmodic tremors, long-period events and explosion signals with frequent audible “booms”. The decline of the eruptive activity started in 2000, with a decrease in the number and size of explosive events, a shift from long to short lava flows along with the collapse of lava fow fronts and the subsequent formation of downward-rolling lava block aprons, the frequent growth of dome-like structures on the summit and a gradual decrease in seismic energy. Multiple geological and geophysical studies during this 42-year-long period of open-vent activity at Arenal resulted in many advances in understanding the dynamics of andesitic blocky lava fows, the origin and diversity of pyroclastic density currents and seismic sources, as well as the role of site efects and rough topography in modifying the seismic wavefeld. The acoustic measurements presented here include two types of events: typical explosions and small pressure transients. Features of the latter type are not usually observed at volcanoes with intermediate to evolved magma composition. Explosions have diferent waveforms and larger gas volumes than pressure transients, both types being associated with active and passive degassing, respectively. This body of data, results and knowledge can inform on the type of activity, and associated geophysical signals, of open-vent systems that are active for decades.El 29 de julio de 1968 se produjo una violenta reactivación del volcán Arenal. La explosión lateral dirigida hacia el oeste dejó dos pueblos destruidos y 78 personas muertas. La actividad continuó como una erupción de larga duración a conducto abierto que evolucionó en siete fases reconocibles, las cuales reflejaron cambios en el suministro de magma, la actividad explosiva y la evolución del cono, y terminó en octubre de 2010. Aquí revisamos esta actividad, los enfoques geofísicos aplicados para entenderla, y las preguntas abiertas que resultan de este conocimiento. La dinámica eruptiva se caracterizó por una efusión de lava casi constante, desgasificación, explosiones estrombolianas y vulcanianas, e infrecuentes corrientes de densidad piroc- lástica. En este estudio, el volumen total de lava y tefra erupcionada en equivalente de roca densa se calcula en 757 ± 77 Mm3 , mientras que el volumen del campo de lavas es de 527 ± 58 Mm3 . La actividad sísmica típica incluía tremores armónicos y espasmódicos, eventos de largo periodo y señales de explosión con frecuentes bums audibles. El declive de la actividad eruptiva comenzó en el año 2000, con una disminución del número y el tamaño de los eventos explosivos, un cambio de coladas de lava largas a cortas, junto con el colapso de los frentes de colada de lava y la subsiguiente formación de abanicos de bloques de lava que se desplazaban ladera abajo, el crecimiento frecuente de estructuras tipo domo en la cima, y una disminución gradual de la energía sísmica. Los múltiples estudios geológicos y geofísicos realizados durante este período de 42 años de actividad a conducto abierto en el Arenal, dieron lugar a muchos avances en la comprensión de la dinámica de las coladas de lava blocosas andesíticas, el origen y la diversidad de las corrientes de densidad piroclástica y las fuentes sísmicas, así como el papel de los efectos de sitio sísmicos y la topografía accidentada en la modificación del campo de ondas sísmicas. Las mediciones acústicas presentadas aquí incluyen dos tipos de eventos: explosiones típicas y pequeños transitorios de presión. Las características de este último tipo no suelen observarse en volcanes con una composición de magma intermedia o evolucionada. Las explosiones tienen formas de onda diferentes y volúmenes de gas mayores que los transitorios de presión, y ambos tipos están asociados con la desgasificación activa y pasiva, respectivamente. Este conjunto de datos, resultados y conocimientos puede enseñarnos sobre el tipo de actividad y las señales geofísicas asociadas, de los sistemas a conducto abierto que permanecen activos durante décadas.Institut de Physique du Globe de ParisUniversidad de Costa Rica///Costa RicaUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela Centroamericana de Geologí

    Snow Virga above the Swiss Plateau Observed by a Micro Rain Radar

    Get PDF
    Studies of snow virga precipitation are rare. In this study, we investigated data from a vertically pointing Doppler Micro Rain Radar (MRR) in Bern, Switzerland, from 2008 to 2013 for snow virga precipitation events. The MRR data were reprocessed using the radar data processing algorithm of Garcia-Benardi et al., which allows the reliable determination of the snow virga precipitation rate. We focus on a long-lasting snow virga event from 17 March 2013, supported by atmospheric reanalysis data and atmospheric back trajectories. The snow virga was associated with a wind shear carrying moist air and snow precipitation in the upper air layers and dry air in the lower air layers. The lowest altitudes reached by the precipitation varied between 300 m and 1500 m above the ground over the course of the event. The duration of the snow virga was 22 h. In disagreement with the MRR observations, ERA5 reanalysis indicated drizzle at the ground over a time segment of 4 h during the snow virga event

    Extraction d'informations de changement à partir des séries temporelles d'images radar à synthèse d'ouverture

    Get PDF
    A large number of successfully launched and operated Synthetic Aperture Radar (SAR) satellites has regularly provided multitemporal SAR and polarimetric SAR (PolSAR) images with high and very high spatial resolution over immense areas of the Earth surface. SAR system is appropriate for monitoring tasks thanks to the advantage of operating in all-time and all-weather conditions. With multitemporal data, both spatial and temporal information can simultaneously be exploited to improve the results of researche works. Change detection of specific features within a certain time interval has to deal with a complex processing of SAR data and the so-called speckle which affects the backscattered signal as multiplicative noise.The aim of this thesis is to provide a methodology for simplifying the analysis of multitemporal SAR data. Such methodology can benefit from the advantages of repetitive SAR acquisitions and be able to process different kinds of SAR data (i.e. single, multipolarization SAR, etc.) for various applications. In this thesis, we first propose a general framework based on a spatio-temporal information matrix called emph{Change Detection Matrix} (CDM). This matrix contains temporal neighborhoods which are adaptive to changed and unchanged areas thanks to similarity cross tests. Then, the proposed method is used to perform three different tasks:1) multitemporal change detection with different kinds of changes, which allows the combination of multitemporal pair-wise change maps to improve the performance of change detection result;2) analysis of change dynamics in the observed area, which allows the investigation of temporal evolution of objects of interest;3) nonlocal temporal mean filtering of SAR/PolSAR image time series, which allows us to avoid smoothing change information in the time series during the filtering process.In order to illustrate the relevancy of the proposed method, the experimental works of the thesis is performed on four datasets over two test-sites: Chamonix Mont-Blanc, France and Merapi volcano, Indonesia, with different types of changes (i.e., seasonal evolution, glaciers, volcanic eruption, etc.). Observations of these test-sites are performed on four SAR images time series from single polarization to full polarization, from medium to high, very high spatial resolution: Sentinel-1, ALOS-PALSAR, RADARSAT-2 and TerraSAR-X time series.La réussite du lancement d'un grand nombre des satellites Radar à Synthèse d'Ouverture (RSO - SAR) de nouvelle génération a fourni régulièrement des images SAR et SAR polarimétrique (PolSAR) multitemporelles à haute et très haute résolution spatiale sur de larges régions de la surface de la Terre. Le système SAR est approprié pour des tâches de surveillance continue ou il offre l'avantage d'être indépendant de l'éclairement solaire et de la couverture nuageuse. Avec des données multitemporelles, l'information spatiale et temporelle peut être exploitée simultanément pour rendre plus concise, l'extraction d'information à partir des données. La détection de changement de structures spécifiques dans un certain intervalle de temps nécessite un traitement complexe des données SAR et la présence du chatoiement (speckle) qui affecte la rétrodiffusion comme un bruit multiplicatif. Le but de cette thèse est de fournir une méthodologie pour simplifier l'analyse des données multitemporelles SAR. Cette méthodologie doit bénéficier des avantages d'acquisitions SAR répétitives et être capable de traiter différents types de données SAR (images SAR mono-, multi- composantes, etc.) pour diverses applications. Au cours de cette thèse, nous proposons tout d'abord une méthode générale basée sur une matrice d'information spatio-temporelle appelée Matrice de détection de changement (CDM). Cette matrice contient des informations de changements obtenus à partir de tests croisés de similarité sur des voisinages adaptatifs. La méthode proposée est ensuite exploitée pour réaliser trois tâches différentes: 1) la détection de changement multitemporel avec différents types de changements, ce qui permet la combinaison des cartes de changement entre des paires d'images pour améliorer la performance de résultat de détection de changement; 2) l'analyse de la dynamicité de changement de la zone observée, ce qui permet l'étude de l'évolution temporelle des objets d'intérêt; 3) le filtrage nonlocal temporel des séries temporelles d'images SAR/PolSAR, ce qui permet d'éviter le lissage des informations de changement dans des séries pendant le processus de filtrage.Afin d'illustrer la pertinence de la méthode proposée, la partie expérimentale de la thèse est effectuée sur deux sites d'étude: Chamonix Mont-Blanc, France et le volcan Merapi, Indonésie, avec différents types de changements (i.e. évolution saisonnière, glaciers, éruption volcanique, etc.). Les observations de ces sites d'étude sont acquises sur quatre séries temporelles d'images SAR monocomposantes et multicomposantes de moyenne à haute et très haute résolution: des séries temporelles d'images Sentinel-1, ALOS-PALSAR, RADARSAT-2 et TerraSAR-X

    The First Second of Volcanic Eruptions from the Erebus Volcano Lava Lake, Antarctica—Energies, Pressures, Seismology, and Infrasound

    Get PDF
    [1] We describe a multiparameter experiment at Erebus volcano, Antarctica, employing Doppler radar, video, acoustic, and seismic observations to estimate the detailed energy budget of large (up to 40 m-diameter) bubble bursts from a persistent phonolite lava lake. These explosions are readily studied from the crater rim at ranges of less than 500 m and present an ideal opportunity to constrain the dynamics and mechanism of magmatic bubble bursts that can drive Strombolian and Hawaiian eruptions. We estimate the energy budget of the first second of a typical Erebus explosion as a function of time and energy type. We constrain gas pressures and forces using an analytic model for the expansion of a gas bubble above a conduit that incorporates conduit geometry and magma and gas parameters. The model, consistent with video and radar observations, invokes a spherical bulging surface with a base diameter equal to that of the lava lake. The model has no ad hoc free parameters, and geometrical calculations predict zenith height, velocity, and acceleration during shell expansion. During explosions, the energy contained in hot overpressured gas bubbles is freed and partitioned into other energy types, where by far the greatest nonthermal energy component is the kinetic and gravitational potential energy of the accelerated magma shell (\u3e109 J). Seismic source energy created by explosions is estimated from radar measurements and is consistent with source energy determined from seismic observations. For the generation of the infrasonic signal, a dual mechanism incorporating a terminally disrupted slug is proposed, which clarifies previous models and provides good fits to observed infrasonic pressures. A new and straightforward method is presented for determining gas volumes from slug explosions at volcanoes from remote infrasound recordings
    corecore