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ABSTRACT 

The second generation AVTIS ground-based millimeter wave instruments designed for monitoring topography of 
volcanic lava domes are solid state 94 GHz FMCW rastered, real beam radars operating at ranges of up to ~7 km with a 
range resolution of ~2.5 m. Operating ten times faster than the prototype with reduced power consumption suitable for 
battery powered portable use as well as installation at a telemetered site under solar power, we examine their 
performance as tools for monitoring topography over time and report on the operational statistics both as a radar sensor 
and as a means of generating digital elevation maps. 
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1. INTRODUCTION 
Direct observations of active volcanoes are often severely restricted by environmental conditions and hazards which can 
prevent timely measurements of changing volcanic terrain during periods of elevated activity. Driven by the extrusion of 
viscous lava from depth, active lava domes can significantly alter their topography (on the scale of meters) in just a few 
hours following periods of activity (or inactivity) that can last months or even years. Lava extrusion can start, stop or 
change direction with little or no warning1 Monitoring topographic change of lava domes in the periods leading up to 
dangerous and destructive collapse events therefore requires routine and timely survey measurements to construct Digital 
Elevation Models (DEMs) of evolving volcanic topography in a dense time series record. This is essential if collapse 
precursor activity is to be recorded and understood with the end goal of refining and improving lava dome growth and 
collapse models that can then be used for hazard warning and prediction by local scientists. Round-the-clock monitoring 
of topography requires weather-independent remote sensing for which radar is an obvious choice. Radar observations of 
volcanoes are now routinely made using satellite based interferometric synthetic aperture radar (InSAR) to measure 
deformation2, but these data are captured over relatively long repeat survey intervals (typically tens of days3), too long to 
capture the temporal detail of lava dome activity. In addition, although small scale changes at the flanks of a lava dome 
can be recorded by InSAR, the long repeat survey time intervals and large surface height changes on the scale of meters 
per day mean that radar returns from the lava dome itself are usually decorrelated and thus changes on the dome cannot 
be measured4 using that technique.  

Ground based (GB) radars can obtain dense time series, however relatively few have been used to monitor volcanoes. 
Some long range C-band weather radars have been used to probe eruption plumes from fixed5 or mobile6 platforms. A 
few GB Doppler radars have also measured the velocity of rockfalls, ejecta and gas fluxes7,8. Probably the longest 
serving GB radar monitoring an active volcano is located at Stromboli where a permanent Ku-band InSAR installation 
named LISA has been used since 2002 to record millimeter scale deformations at a range of around 1 km over short (few 
minute) intervals9, but this radar does not record DEMs. Another interferometric real aperture radar designed to measure 
deformation, the Ku-band GAMMA portable radar interferometer (GPRI), has also been developed to measure 
deformation and movement for mining sites and glaciers10 but has yet to be successfully applied to volcanic terrain. 

We developed the first All-weather Volcano Topography Imaging Sensor, AVTIS1, to provide portable means for the 
topographic survey of volcanic lava domes in virtually any weather condition11. The instrument was also used 
successfully to measure lava flows12 and lava dome growth13. However, AVTIS1 suffered from long acquisition times, 
low signal-to-noise ratio (SNR) at long ranges, and limited operational duration due to battery consumption14. 
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3. AVTIS SECOND GENERATION DESIGN AIMS AND TECHNICAL ALTERATIONS 
The three main design aims for the second generation instruments were (i) to reduce the radar data acquisition time by a 
factor of ten (turning hours of scanning into minutes), (ii) to improve data quality such that averaging of successive scans 
was not required, and (iii) to minimize power consumption to maximize operational duration on batteries or allow 
autonomous operation using solar panels. Analysis of the well characterized AVTIS1 data14 suggested that the raw SNR 
from volcanic terrain required to be >10 dB to avoid having to average multiple datasets. The first technical 
improvement over the prototype was therefore to reduce the radar noise figure floor which was achieved by replacing the 
IMPATT diode multiplier and amplifier with a x12 MMIC§ multiplier of equivalent output power, driven by a 7.8 GHz 
PMYTO oscillator. The much lower amplitude noise level of the MMIC multiplier reduced the radar noise floor by 
around 10 dB and consequently improved raw data quality. 

AVTIS3 re-uses the antenna and gimbal from AVTIS1 but AVTIS2 is equipped with a new 45 cm Cassegrain antenna 
yielding 7 dB more signal gain and finer angular resolution to further improve performance at longer ranges. The 
narrower beamwidth and greater size and weight of the AVTIS2 antenna meant that a higher specification gimbal was 
selected. This has a yoke structure to support the payload and uses encoder-driven, closed-loop controlled stepper motors 
for superior pointing accuracy. 

The AVTIS1 instrument was controlled by a standard consumer laptop which was sufficient for a prototype system. The 
new control box for AVTIS2/3 was designed to process, manage and store data on-site, interface with telemetry links and 
supervise power management, with low overall power consumption, all fitted in a portable, ruggedized enclosure. At its 
heart is a DC powered fanless PC with IP-rated keyboard mounted in a protective Peli case (Fig. 1) 

A major problem with the AVTIS1 design was the coupling of electronic noise from the gimbal stepper motors into the 
receiver amplification chain leading to discrete bands of interference in the FMCW range spectra which had to be 
removed in post processing of the data. To alleviate this, the new design uses one power supply circuit for the radar 
sensor and a second, separate one for all other system components (controlling computer, gimbal, telemetry, etc.). This 
greatly reduces interference and improves signal fidelity. Also, the output signals in AVTIS1 were routed via several 
meters of cabling to a 500 kSa/s PCMCIA sampling card in the controlling laptop. For the second generation design, 
signals are sampled directly by a 50 MSa/s multifunction data acquisition module located inside the radar head and the 
umbilical connection to the control box is digital data over USB, greatly suppressing interference. 

Based on work in St Andrews to develop real time 3D radar scanning for a separate project17 data processing rates were 
significantly improved in AVTIS2/3 by introduction of multithreaded processing (enabling simultaneous data capture, 
processing and storage), changing the FFT library to utilize the faster ‘FFTW’ library18 and the use of an optimizing C 
compiler. In AVTIS1 scanning speeds were slow since each individual FMCW range spectrum was captured for a fixed 
LOS with the gimbal stepped to its next position only after data capture and subsequent signal processing and data 
storage. In AVTIS2/3 the improvements described above allow data capture and processing to occur simultaneously as 
the antenna is being rastered across the scene with the timing of FMCW chirps and data capture both triggered by 
positional encoder signals from the gimbal. 

For a typical AVTIS2/3 rastering speed of 2°/s with triggering every 0.05° there is an interval of 25 ms between the start 
of each chirp (or equivalently, each LOS). Chirp times have been reduced to around 0.65 ms (i.e. by a factor of ~50) and 
data capture and transfer (via USB) of each time series sample array to computer memory takes ~8 ms leaving ~15 ms as 
a buffer before the next LOS trigger. In practice data processing lags capture by only ~1 s as the gimbal rasters in 
azimuth. The bulk of delay in scanning is taken up with the gimbal moving to the next elevation position. 

The chirp generator for both generations of AVTIS radar uses a swept voltage to modulate the initial ~7 GHz PMYTO 
source. The AVTIS1 voltage waveform was produced using a custom built analogue circuit that was prone to 
temperature fluctuations which affected accuracy whereas AVTIS2/3 use a voltage ramp generated from a DDS-based 
waveform generator for a more stable and repeatable radar chirp. 
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6. DISCUSSION & CONCLUSIONS 
The second generation of AVTIS instruments, AVTIS2 and AVTIS3, have been shown to meet their design goals of 
providing a faster round the clock means by which to record DEMs of the surface terrain of active volcanoes such as the 
SHV. Radar performance has been improved such that the speed of operation has increased by a factor of 10 allowing 
much larger areas to be scanned in a practical field survey. Changing topography has not yet been measured due to the 
recent volcanological inactivity at SHV. Range to surface topography has been shown to be reliable by averaging over 
24 hours but DEM construction methods may have to be improved to better process steep faces in the terrain. In practice 
this could be achieved by scanning smaller areas of interest more often to improve averaging. During an actual eruption 
the height of the lava dome can change on a scale of several meters per day and we therefore expect that such changes 
would be detectable by the AVTIS instruments.  
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