4,420 research outputs found

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Study of state-of-the-art static inverter design Final report, 6 Jan. - 6 Jun. 1966

    Get PDF
    Multiple purpose inverter design based on phase demodulated inverter circuit selected from state-of-the-art assessment of ten inverter circuit

    Fuzzy Controller for Matrix Converter System to Improve its Quality of Output

    Full text link
    In this paper, Fuzzy Logic controller is developed for ac/ac Matrix Converter. Furthermore, Total Harmonic Distortion is reduced significantly. Space Vector Algorithm is a method to improve power quality of the converter output. But its quality is limited to 86.7%.We are introduced a Cross coupled DQ axis controller to improve power quality. The Matrix Converter is an attractive topology for High voltage transformation ratio. A Matlab / Simulink simulation analysis of the Matrix Converter system is provided. The design and implementation of fuzzy controlled Matrix Converter is described. This AC-AC system is proposed as an effective replacement for the conventional AC-DC-AC system which employs a two-step power conversion.Comment: 11 page

    Optimization study of high power static inverters and converters Final report

    Get PDF
    Optimization study and basic performance characteristics for conceptual designs for high power static inverter

    Integrated series transformer in cascade converters for photovoltaic energy systems

    Get PDF
    This paper proposes a novel configuration for photovoltaic applications based on a cascade converter topology. The series connection between modules is achieved through the magnetic core of the integrated series transformer, therefore an inherent isolation is provided without the requirement of a dc-dc conversion stage. Such isolation approach between each module allows operation at high voltage levels without harming the PV panel insulation. The main principles that support this proposal, as well as, simulation results are presented to validate the configuration.Peer ReviewedPostprint (author's final draft

    A simple maximum power point tracking based control strategy applied to a variable speed squirrel cage induction generator

    Get PDF
    This paper presents a comprehensive modelling and control study of a variable speed wind energy conversion system based on a squirrel-cage induction generator (SCIG). The mathematical model of the SCIG is derived in Park frame along with the indirect field oriented control (IFOC) scheme based on a proportional and integral speed controller. A simple maximum power point tracking strategy is used to determine the optimal speed under variable wind speed conditions which is then used as the reference in the IFOC scheme. Power flow between the supply and the inverter is regulated via simultaneous control of the active and reactive currents of the grid and the DC link voltage. The simulation results show that the proposed control technique is able to maximise the energy extracted from the wind during the simulation scenarios considered. The results also demonstrate good transient response characteristics in the decoupled real and reactive powers.Peer reviewedFinal Accepted Versio

    Power Quality Improvement Wind Energy System Using Cascaded Multilevel Inverter

    No full text
    In this paper, a wind energy conversion system based on a cascaded H-bridge multilevel inverter (CHBMLI) topology has been proposed to be used for the grid interface of large split winding alternators (SWAs). A new method has been suggested for the generation of reference currents for the voltage source inverter (VSI) depending upon the available wind power. The CHBMLI has been used as a VSI and operated in a current control mode order to achieve the objectives of real power injection and load compensation (power factor correction, load balancing, and harmonic compensation) based on the proposed reference generation scheme. In the field excitation control of SWA provides a single means vary the dc link voltages of all the CHBs simultaneously and proportionatel

    Analysis of two level and three level inverters

    Get PDF
    The power electronics device which converts DC power to AC power at required output voltage and frequency level is known as inverter. Inverters can be broadly classified into single level inverter and multilevel inverter. Multilevel inverter as compared to single level inverters have advantages like minimum harmonic distortion, reduced MI/RFI generation and can operate on several voltage levels. A multi-stage inverter is being utilized for multipurpose applications, such as active power filters, static var compensators and machine drives for sinusoidal and trapezoidal current applications. The drawbacks are the isolated power supplies required for each one of the stages of the multiconverter and it’s also lot harder to build, more expensive, harder to control in software. This project aims at the simulation study of three phase single level and multilevel inverters. The role of inverters in active power filter for harmonic filtering is studied and simulated in MATLAB/SIMULINK. Firstly, the three phase system with non-linear loads are modeled and their characteristics is observed . Secondly, the active power filters are modeled with the inverters and suitable switching control strategies ( PWM technique) to carry out harmonic elimination

    Fast Adaptive Robust Differentiator Based Robust-Adaptive Control of Grid-Tied Inverters with a New L Filter Design Method

    Get PDF
    In this research, a new nonlinear and adaptive state feedback controller with a fast-adaptive robust differentiator is presented for grid-tied inverters. All parameters and external disturbances are taken as uncertain in the design of the proposed controller without the disadvantages of singularity and over-parameterization. A robust differentiator based on the second order sliding mode is also developed with a fast-adaptive structure to be able to consider the time derivative of the virtual control input. Unlike the conventional backstepping, the proposed differentiator overcomes the problem of explosion of complexity. In the closed-loop control system, the three phase source currents and direct current (DC) bus voltage are assumed to be available for feedback. Using the Lyapunov stability theory, it is proven that the overall control system has the global asymptotic stability. In addition, a new simple L filter design method based on the total harmonic distortion approach is also proposed. Simulations and experimental results show that the proposed controller assurances drive the tracking errors to zero with better performance, and it is robust against all uncertainties. Moreover, the proposed L filter design method matches the total harmonic distortion (THD) aim in the design with the experimental result

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio
    corecore