711 research outputs found

    Development of an open access system for remote operation of robotic manipulators

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáExploring the realms of research, training, and learning in the field of robotic systems poses obstacles for institutions lacking the necessary infrastructure. The significant investment required to acquire physical robotic systems often limits access and hinders progress in these areas. While robotic simulation platforms provide a virtual environment for experimentation, the potential of remote robotic environments surpasses this by enabling users to interact with real robotic systems during training and research activities. This way, users, including students and researchers, can engage in a virtual experience that transcends geographical boundaries, connecting them to real-world robotic systems though the Internet. By bridging the gap between virtual and physical worlds, remote environments offer a more practical and immersive experience, and open up new horizons for collaborative research and training. Democratizing access to these technologies means empower educational institutions and research centers to engage in practical and handson learning experiences. However, the implementation of remote robotic environments comes with its own set of technical challenges: communication, security, stability and access. In light of these challenges, a ROS-based system has been developed, providing open access with promising results (low delay and run-time visualization). This system enables remote control of robotic manipulators and has been successfully validated through the remote operation of a real UR3 manipulator.Explorar as áreas de pesquisa, treinamento e aprendizado no campo de sistemas robóticos apresenta obstáculos para instituições que não possuem a infraestrutura necessária. O investimento significativo exigido para adquirir sistemas robóticos físicos muitas vezes limita o acesso e dificulta o progresso nessas áreas. Embora as plataformas de simulação robótica forneçam um ambiente virtual para experimentação, o potencial dos ambientes robóticos remotos vai além disso, permitindo que os usuários interajam com sistemas robóticos reais durante atividades de treinamento e pesquisa. Dessa forma, os usuários, incluindo estudantes e pesquisadores, podem participar de uma experiência virtual que transcende as fronteiras geográficas, conectando-os a sistemas robóticos do mundo real por meio da Internet. Ao estabelecer uma ponte entre os mundos virtual e físico, os ambientes remotos oferecem uma experiência mais prática e imersiva, abrindo novos horizontes para a pesquisa colaborativa e o treinamento. Democratizar o acesso a essas tecnologias significa capacitar instituições educacionais e centros de pesquisa a se envolverem em experiências práticas e de aprendizado prático. No entanto, a implementação de ambientes robóticos remotos traz consigo um conjunto próprio de desafios técnicos: comunicação, segurança, estabilidade e acesso. Diante desses desafios, foi desenvolvida uma plataforma baseada em ROS, oferecendo acesso aberto com resultados promissores (baixo delay e visualização em run-time). Essa plataforma possibilita o controle remoto de manipuladores robóticos e foi validada com sucesso por meio da operação remota de um manipulador UR3 real

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Remote lab of robotic manipulators through an open access ROS-based platform

    Get PDF
    The research, training, and learning in robotic systems is a difficult task for institutions that do not have an appropriate equipment infrastructure, mainly due to the high investment required to acquire these systems. Possible alternatives are the use of robotic simulation platforms and the creation of remote robotic environments available for different users. The use of the last option surpasses the former one in terms of the possibility to handle real robotic systems during the training process. However, technical challenges appear in the management of the supporting infrastructure to use the robotic systems, namely in terms of access, safety, security, communication, and programming aspects. Having this in mind, this paper presents an approach for the remote operation of real robotic manipulators under a virtual robotics laboratory. To this end, an open access and safe web-based platform was developed for the remote control of robotic manipulators, being validated through the remote control of a real UR3 manipulator. This platform contributes to the research and training in robotic systems among different research centers and educational institutions that have limited access to these technologies. Furthermore, students and researchers can use this educational tool that differs from traditional robotic simulators through a virtual experience that connects real manipulators worldwide through the Internet.The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020), and SusTEC (LA/P/0007/2021).info:eu-repo/semantics/publishedVersio

    Robots for Exploration, Digital Preservation and Visualization of Archeological Sites

    Get PDF
    Monitoring and conservation of archaeological sites are important activities necessary to prevent damage or to perform restoration on cultural heritage. Standard techniques, like mapping and digitizing, are typically used to document the status of such sites. While these task are normally accomplished manually by humans, this is not possible when dealing with hard-to-access areas. For example, due to the possibility of structural collapses, underground tunnels like catacombs are considered highly unstable environments. Moreover, they are full of radioactive gas radon that limits the presence of people only for few minutes. The progress recently made in the artificial intelligence and robotics field opened new possibilities for mobile robots to be used in locations where humans are not allowed to enter. The ROVINA project aims at developing autonomous mobile robots to make faster, cheaper and safer the monitoring of archaeological sites. ROVINA will be evaluated on the catacombs of Priscilla (in Rome) and S. Gennaro (in Naples)

    Virtual and Mixed Reality in Telerobotics: A Survey

    Get PDF

    A Review of Haptic Feedback Teleoperation Systems for Micromanipulation and Microassembly

    No full text
    International audienceThis paper presents a review of the major haptic feedback teleoperation systems for micromanipulation. During the last decade, the handling of micrometer-sized objects has become a critical issue. Fields of application from material science to electronics demonstrate an urgent need for intuitive and flexible manipulation systems able to deal with small-scale industrial projects and assembly tasks. Two main approaches have been considered: fully automated tasks and manual operation. The first one require fully pre determined tasks, while the later necessitates highly trained operators. To overcome these issues the use of haptic feedback teleoperation where the user manipulates the tool through a joystick whilst feeling a force feedback, appears to be a promising solution as it allows high intuitiveness and flexibility. Major advances have been achieved during this last decade, starting with systems that enable the operator to feel the substrate topology, to the current state-of-the-art where 3D haptic feedback is provided to aid manipulation tasks. This paper details the major achievements and the solutions that have been developed to propose 3D haptic feedback for tools that often lack 3D force measurements. The use of virtual reality to enhance the immersion is also addressed. The strategies developed provide haptic feedback teleoperation systems with a high degree of assistance and for a wide range of micromanipulation tools. Based on this expertise on haptic for micromanipulation and virtual reality assistance it is now possible to propose microassembly systems for objects as small as 1 to 10 micrometers. This is a mature field and will benefit small-scale industrial projects where precision and flexibility in microassembly are required

    Comparison of Human Pilot (Remote) Control Systems in Multirotor Unmanned Aerial Vehicle Navigation

    Get PDF
    This paper concerns about the human pilot or remote control system in UAV navigation. Demands for Unmanned Aerial Vehicle (UAV) are increasing tremendously in aviation industry and research area. UAV is a flying machine that can fly with no pilot onboard and can be controlled by ground-based operators. In this paper, a comparison was made between different proposed remote control systems and devices to navigate multirotor UAV, like hand-controllers, gestures and body postures techniques, and vision-based techniques. The overall reviews discussed in this paper have been studied in various research sources related to UAV and its navigation system. Every method has its pros and cons depends on the situation. At the end of the study, those methods will be analyzed and the best method will be chosen in term of accuracy and efficiency

    implementation of tactile sensors on a 3 fingers robotiq adaptive gripper and visualization in vr using arduino controller

    Get PDF
    Abstract Tactile sensors are essential components for the implementation of complex manipulation tasks using robot grippers, allowing to directly control the grasping force according to the object properties. Virtual Reality represents an effective tool capable of visualizing complex systems in full details and with a high level of interactivity. After the implementation of cost-effective tactile arrays on a 3-finger Robotiq ® gripper using an ARDUINO controller, it is presented an innovative VR interface capable of visualizing the pressure values at the fingertips in a 3D environment, providing an effective tool aimed at supporting the programming and the visualization of the gripper VR

    Teleoperation of industrial robot manipulators based on augmented reality

    Get PDF
    This research develops a novel teleoperation for robot manipulators based on augmented reality. The proposed interface is equipped with full capabilities in order to replace the classical teach pendant of the robot for carrying out teleoperation tasks. The proposed interface is based on an augmented reality headset for projecting computer-generated graphics onto the real environment and a gamepad to interact with the computer-generated graphics and provide robot commands. In order to demonstrate the benefits of the proposed method, several usability tests were conducted using a 6R industrial robot manipulator in order to compare the proposed interface and the conventional teach pendant interface for teleoperation tasks. In particular, the results of these usability tests show that the proposed approach is more intuitive, ergonomic, and easy to use. Furthermore, the comparison results also show that the proposed method clearly improves the velocity of the teleoperation task, regardless of the user's previous experience in robotics and augmented reality technology
    corecore