252 research outputs found

    The effect of target and non-target similarity on neural classification performance: a boost from confidence

    Get PDF
    Brain computer interaction (BCI) technologies have proven effective in utilizing single-trial classification algorithms to detect target images in rapid serial visualization presentation tasks. While many factors contribute to the accuracy of these algorithms, a critical aspect that is often overlooked concerns the feature similarity between target and non-target images. In most real-world environments there are likely to be many shared features between targets and non-targets resulting in similar neural activity between the two classes. It is unknown how current neural-based target classification algorithms perform when qualitatively similar target and non-target images are presented. This study address this question by comparing behavioral and neural classification performance across two conditions: first, when targets were the only infrequent stimulus presented amongst frequent background distracters; and second when targets were presented together with infrequent non-targets containing similar visual features to the targets. The resulting findings show that behavior is slower and less accurate when targets are presented together with similar non-targets; moreover, single-trial classification yielded high levels of misclassification when infrequent non-targets are included. Furthermore, we present an approach to mitigate the image misclassification. We use confidence measures to assess the quality of single-trial classification, and demonstrate that a system in which low confidence trials are reclassified through a secondary process can result in improved performance

    Electroencephalogram Signal Processing For Hybrid Brain Computer Interface Systems

    Get PDF
    The goal of this research was to evaluate and compare three types of brain computer interface (BCI) systems, P300, steady state visually evoked potentials (SSVEP) and Hybrid as virtual spelling paradigms. Hybrid BCI is an innovative approach to combine the P300 and SSVEP. However, it is challenging to process the resulting hybrid signals to extract both information simultaneously and effectively. The major step executed toward the advancement to modern BCI system was to move the BCI techniques from traditional LED system to electronic LCD monitor. Such a transition allows not only to develop the graphics of interest but also to generate objects flickering at different frequencies. There were pilot experiments performed for designing and tuning the parameters of the spelling paradigms including peak detection for different range of frequencies of SSVEP BCI, placement of objects on LCD monitor, design of the spelling keyboard, and window time for the SSVEP peak detection processing. All the experiments were devised to evaluate the performance in terms of the spelling accuracy, region error, and adjacency error among all of the paradigms: P300, SSVEP and Hybrid. Due to the different nature of P300 and SSVEP, designing a hybrid P300-SSVEP signal processing scheme demands significant amount of research work in this area. Eventually, two critical questions in hybrid BCl are: (1) which signal processing strategy can best measure the user\u27s intent and (2) what a suitable paradigm is to fuse these two techniques in a simple but effective way. In order to answer these questions, this project focused mainly on developing signal processing and classification technique for hybrid BCI. Hybrid BCI was implemented by extracting the specific information from brain signals, selecting optimum features which contain maximum discrimination information about the speller characters of our interest and by efficiently classifying the hybrid signals. The designed spellers were developed with the aim to improve quality of life of patients with disability by utilizing visually controlled BCI paradigms. The paradigms consist of electrodes to record electroencephalogram signal (EEG) during stimulation, a software to analyze the collected data, and a computing device where the subject’s EEG is the input to estimate the spelled character. Signal processing phase included preliminary tasks as preprocessing, feature extraction, and feature selection. Captured EEG data are usually a superposition of the signals of interest with other unwanted signals from muscles, and from non-biological artifacts. The accuracy of each trial and average accuracy for subjects were computed. Overall, the average accuracy of the P300 and SSVEP spelling paradigm was 84% and 68.5 %. P300 spelling paradigms have better accuracy than both the SSVEP and hybrid paradigm. Hybrid paradigm has the average accuracy of 79 %. However, hybrid system is faster in time and more soothing to look than other paradigms. This work is significant because it has great potential for improving the BCI research in design and application of clinically suitable speller paradigm

    Deep recurrent–convolutional neural network for classification of simultaneous EEG–fNIRS signals

    Get PDF
    Brain–computer interface (BCI) is a powerful system for communicating between the brain and outside world. Traditional BCI systems work based on electroencephalogram (EEG) signals only. Recently, researchers have used a combination of EEG signals with other signals to improve the performance of BCI systems. Among these signals, the combination of EEG with functional near-infrared spectroscopy (fNIRS) has achieved favourable results. In most studies, only EEGs or fNIRs have been considered as chain-like sequences, and do not consider complex correlations between adjacent signals, neither in time nor channel location. In this study, a deep neural network model has been introduced to identify the exact objectives of the human brain by introducing temporal and spatial features. The proposed model incorporates the spatial relationship between EEG and fNIRS signals. This could be implemented by transforming the sequences of these chain-like signals into hierarchical three-rank tensors. The tests show that the proposed model has a precision of 99.6%

    Predictive analysis of auditory attention from physiological signals

    Get PDF
    In recent years, there has been considerable interest in recording physiological signals from the human body to investigate various responses. Attention is one of the key aspects that physiologists, neuroscientists, and engineers have been exploring. Many theories have been established on auditory and visual selective attention. To date, the number of studies investigating the physiological responses of the human body to auditory attention on natural speech is, surprisingly, very limited, and there is a lack of public datasets. Investigating such physiological responses can open the door to new opportunities, as auditory attention plays a key role in many cognitive functionalities, thus impacting on learning and general task performance. In this thesis, we investigated auditory attention on the natural speech by processing physiological signals such as Electroencephalogram (EEG), Galvanic Skin Response (GSR), and Photoplethysmogram (PPG). An experiment was designed based on the well established dichotic listening task. In the experiment, we presented an audio stimulus under different auditory conditions: background noise level, length, and semanticity of the audio message. The experiment was conducted with 25 healthy, non-native speakers. The attention score was computed by counting the number of correctly identified words in the transcribed text response. All the physiological signals were labeled with their auditory condition and attention score. We formulated four predictive tasks exploiting the collected signals: Attention score, Noise level, Semanticity, and LWR (Listening, Writing, Resting, i.e., the state of the participant). In the first part, we analysed all the user text responses collected in the experiment. The statistical analysis reveals a strong dependency of the attention level on the auditory conditions. By applying hierarchical clustering, we could identify the experimental conditions that have similar effects on attention score. Significantly, the effect of semanticity appeared to vanish under high background noise. Then, analysing the signals, we found that the-state-of-the-art algorithms for artifact removal were inefficient for large datasets, as they require manual intervention. Thus, we introduced an EEG artifact removal algorithm with tuning parameters based on Wavelet Packet Decomposition (WPD). The proposed algorithm operates with two tuning parameters and three modes of wavelet filtering: Elimination, Linear Attenuation, and Soft-thresholding. Evaluating the algorithm performance, we observed that it outperforms state-of-the-art algorithms based on Independent Component Analysis (ICA). The evaluation was based on the spectrum, correlation, and distribution of the signals along with the performance in predictive tasks. We also demonstrate that a proper tuning of the algorithm parameters allows achieving further better results. After applying the artifact removal algorithm on EEG, we analysed the signals in terms of correlation of spectral bands of each electrode and attention score, semanticity, noise level, and state of the participant LWR). Next, we analyse the Event-Related Potential (ERP) on Listening, Writing and Resting segments of EEG signal, in addition to spectral analysis of GSR and PPG. With this thesis, we release the collected experimental dataset in the public domain, in order for the scientific community to further investigate the various auditory processing phenomena and their relation with EEG, GSR and PPG responses. The dataset can be used also to improve predictive tasks or design novel Brain-Computer-Interface (BCI) systems based on auditory attention. We also use the deeplearning approach to exploit the spatial relationship of EEG electrodes and inter-subject dependency of a model. As a domain application, we finally discuss the implications of auditory attention assessment for serious games and propose a 3-dimensional difficulty model to design game levels and dynamically adapt the difficulty to the player status

    Classification of Frequency and Phase Encoded Steady State Visual Evoked Potentials for Brain Computer Interface Speller Applications using Convolutional Neural Networks

    Get PDF
    Over the past decade there have been substantial improvements in vision based Brain-Computer Interface (BCI) spellers for quadriplegic patient populations. This thesis contains a review of the numerous bio-signals available to BCI researchers, as well as a brief chronology of foremost decoding methodologies used to date. Recent advances in classification accuracy and information transfer rate can be primarily attributed to time consuming patient specific parameter optimization procedures. The aim of the current study was to develop analysis software with potential ‘plug-in-and-play’ functionality. To this end, convolutional neural networks, presently established as state of the art analytical techniques for image processing, were utilized. The thesis herein defines deep convolutional neural network architecture for the offline classification of phase and frequency encoded SSVEP bio-signals. Networks were trained using an extensive 35 participant open source Electroencephalographic (EEG) benchmark dataset (Department of Bio-medical Engineering, Tsinghua University, Beijing). Average classification accuracies of 82.24% and information transfer rates of 22.22 bpm were achieved on a BCI naïve participant dataset for a 40 target alphanumeric display, in absence of any patient specific parameter optimization

    Decoding Perception of Speech from Behavioral Responses using Spatio-Temporal CNNs

    Get PDF
    Categorical perception (CP) of speech is a complex process reflecting individuals’ ability to perceive sound and is measured using response time (RT). The cognitive processes involved in mapping neural activities to behavioral response are stochastic and further compounded by individuality and variations. This thesis presents a data-driven approach and develops parameter optimized models to understand the relationship between cognitive events and behavioral response (e.g., RT). We introduce convolutional neural networks (CNN) to learn the representation from EEG recordings. In addition, we develop parameter optimized and interpretable models in decoding CP using two representations: 1) spatial-spectral topomaps and 2) evoked response potentials (ERP). We adopt state-of-the-art class discriminative visualization (GradCAM) tools to gain insights (as oppose to the’black box’ models) and building interpretable models. In addition, we develop a diverse set of models to account for the stochasticity and individual variations. We adopted weighted saliency scores of all models to quantify the learned representations’ effectiveness and utility in decoding CP manifested through behavioral response. Empirical analysis reveals that the γ band and early (∼ 0 - 200ms) and late (∼ 300 - 500ms) right hemisphere IFG engagement is critical in determining individuals’ RT. Our observations are consistent with prior findings, further validating the efficacy of our data-driven approach and optimized interpretable models

    EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing

    Get PDF
    We describe a set of complementary EEG data collection and processing tools recently developed at the Swartz Center for Computational Neuroscience (SCCN) that connect to and extend the EEGLAB software environment, a freely available and readily extensible processing environment running under Matlab. The new tools include (1) a new and flexible EEGLAB STUDY design facility for framing and performing statistical analyses on data from multiple subjects; (2) a neuroelectromagnetic forward head modeling toolbox (NFT) for building realistic electrical head models from available data; (3) a source information flow toolbox (SIFT) for modeling ongoing or event-related effective connectivity between cortical areas; (4) a BCILAB toolbox for building online brain-computer interface (BCI) models from available data, and (5) an experimental real-time interactive control and analysis (ERICA) environment for real-time production and coordination of interactive, multimodal experiments

    A Bayesian machine learning framework for true zero-training brain-computer interfaces

    Get PDF
    Brain-Computer Interfaces (BCI) are developed to allow the user to take control of a computer (e.g. a spelling application) or a device (e.g. a robotic arm) by using just his brain signals. The concept of BCI was introduced in 1973 by Jacques Vidal. The early types of BCI relied on tedious user training to enable them to modulate their brain signals such that they can take control over the computer. Since then, training has shifted from the user to the computer. Hence, modern BCI systems rely on a calibration session, during which the user is instructed to perform specific tasks. The result of this calibration recording is a labelled data-set that can be used to train the (supervised) machine learning algorithm. Such a calibration recording is, however, of no direct use for the end user. Hence, it is especially important for patients to limit this tedious process. For this reason, the BCI community has invested a lot of effort in reducing the dependency on calibration data. Nevertheless, despite these efforts, true zero-training BCIs are rather rare. Event-Related Potential based spellers One of the most common types of BCI is the Event-Related Potentials (ERP) based BCI, which was invented by Farwell and Donchin in 1988. In the ERP-BCI, actions, such as spelling a letter, are coupled to specific stimuli. The computer continuously presents these stimuli to the user. By attending a specific stimulus, the user is able to select an action. More concretely, in the original ERP-BCI, these stimuli were the intensifications of rows and column in a matrix of symbols on a computer screen. By detecting which row and which column elicit an ERP response, the computer can infer which symbol the user wants to spell. Initially, the ERP-BCI was aimed at restoring communication, but novel applications have been proposed too. Examples are web browsing, gaming, navigation and painting. Additionally, current BCIs are not limited to using visual stimuli, but variations using auditory or tactile stimuli have been developed as well. In their quest to improve decoding performance in the ERP-BCI, the BCI community has developed increasingly more complex machine learning algorithms. However, nearly all of them rely on intensive subject-specific fine-tuning. The current generation of decoders has gone beyond a standard ERP classifier and they incorporate language models, which are similar to a spelling corrector on a computer, and extensions to speed up the communication, commonly referred to as dynamic stopping. Typically, all these different components are separate entities that have to be tied together by heuristics. This introduces an additional layer of complexity and the result is that these state of the art methods are difficult to optimise due to the large number of free parameters. We have proposed a single unified probabilistic model that integrates language models and a natural dynamic stopping strategy. This coherent model is able to achieve state of the art performance, while at the same time, minimising the complexity of subject-specific tuning on labelled data. A second and major contribution of this thesis is the development of the first unsupervised decoder for ERP spellers. Recall that typical decoders have to be tuned on labelled data for each user individually. Moreover, recording this labelled data is a tedious process, which has no direct use for the end user. The unsupervised approach, which is an extension of our unified probabilistic model, is able to learn how to decode a novel user’s brain signals without requiring such a labelled dataset. Instead, the user starts using the system and in the meantime the decoder is learning how to decode the brain signals. This method has been evaluated extensively, both in an online and offline setting. Our offline validation was executed on three different datasets of visual ERP data in the standard matrix speller. Combined, these datasets contain 25 different subjects. Additionally, we present the results of an offline evaluation on auditory ERP data from 21 subjects. Due to a less clear signal, this auditory ERP data present an even greater challenge than visual ERP data. On top of that we present the results from an online study on auditory ERP, which was conducted in cooperation with Michael Tangermann, Martijn Schreuder and Klaus-Robert Müller at the TU-Berlin. Our simulations indicate that when enough unlabelled data is available, the unsupervised method can compete with state of the art supervised approaches. Furthermore, when non-stationarity is present in the EEG recordings, e.g. due to fatigue during longer experiments, then the unsupervised approach can outperform supervised methods by adapting to these changes in the data. However, the limitation of the unsupervised method lies in the fact that while labelled data is not required, a substantial amount of unlabelled data must be processed before a reliable model can be found. Hence, during online experiments the model suffers from a warm-up period. During this warm-up period, the output is unreliable, but the mistakes made during this warm-up period can be corrected automatically when enough data is processed. To maximise the usability of ERP-BCI, the warm-up of the unsupervised method has to be minimised. For this reason, we propose one of the first transfer learning methods for ERP-BCI. The idea behind transfer learning is to share information on how to decode the brain signals between users. The concept of transfer learning stands in stark contrast with the strong tradition of subject-specific decoders commonly used by the BCI community. Nevertheless, by extending our unified model with inter-subject transfer learning, we are able to build a decoder that can decode the brain signals of novel users without any subject-specific training. Unfortunately, basic transfer learning models do perform as well as subject-specific (supervised models). For this reason, we have combined our transfer learning approach with our unsupervised learning approach to adapt it during usage to a highly accurate subject-specific model. Analogous to our unsupervised model, we have performed an extensive evaluation of transfer learning with unsupervised adaptation. We tested the model offline on visual ERP data from 22 subjects and on auditory ERP data from 21 subjects. Additionally, we present the results from an online study, which was also performed at the TUBerlin, where we evaluate transfer learning online on the auditory AMUSE paradigm. From these experiments, we can conclude that transfer learning in combination with unsupervised adaptation results in a true zero training BCI, that can compete with state of the art supervised models, without needing a single data point from a calibration recording. This method allows us to build a BCI that works out of the box
    • …
    corecore