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Abstract: Brain Computer Interface (BCI) is a powerful system for communicating between the brain and outside world. Traditional
BCI systems work based on EEG signals only. Recently, researchers have used combination of EEG signals with other signals to
improve the performance of BCI systems. Among these signals, the combination of EEG with fNIRS has achieved favorable results.
In most studies, only EEGs or fNIRs have been considered as chain-like sequences, and do not consider complex correlations
between adjacent signals, neither in time nor channel location. In this paper, a deep neural network model has been introduced
to identify the exact objectives of the human brain by introducing temporal and spatial features. The proposed model incorporates
spatial relationship between EEG and fNIRS signals. This could be implemented by transforming the sequences of these chain-like
signals into hierarchical three-rank tensors. The tests show that the proposed model has a precision of 99.6%.
keywords: EEG, fNIRS, Hybrid-BCI, Deep Learning,Spatial, Temporal.

1 Introduction

In the real world, some people may lose connectivity or movement
due to specific diseases. The human brain examines the content of
about 100 billion neurons [1, 2]. The spinal cord, as an interface
cable, transmits information from organs and nerves to the brain.
This information is used to control different parts of the body and
their movements. In people with spinal cord injuries, the brain can
generate normal signals, but these are not available in the differ-
ent parts of the body. In intermediate spinal cord injury, several
technologies help the injured people to control a wheelchair or a
robotic device [3, 4]. These technologies usually employ head move-
ment, eye gaze, etc. However, these methods rely on the control
of one of the muscles of the body by the patient. On the other
hand, providing effective technologies for people without voluntary
muscle control is more challenging [5, 6]. Such people are incap-
able of speaking and moving, but they can think and decide. Stroke,
severe cerebral palsy, Motor Neuron Disease (MND), Amyotrophic
Lateral Sclerosis (ALS) and Encephalitis are diseases that can lead
to severe motion palsy [7]. With Brain-Computer interface techno-
logy (BCI), some people without voluntary muscle control can be
more independent in their daily routines.

A Brain-Computer Interface is a communication system that does
not depend on the brain’s normal output pathways by nerves and
muscles [8]. In other words, BCI is an artificial intelligence sys-
tem that can detect a special set of patterns generated by the brain
[9]. A BCI system can focus on mapping, assisting, enhancing and
modifying cognitive and sensory-motor functions [10]. The idea
of BCI systems is the extraction of the brain’s patterns associated
with the mental activity (consciously or unconsciously). This sys-
tem provides communication for a patient without enough control
over the motor system (muscles). The proposed method in this paper
is to improve the detection of mental activities.

Non-invasive techniques include all mental activity acquisition
methods from outside the body’s borders [11]. These methods can
measure two groups of signals. The first group includes signals that
record neural activities in the brain. These signals referred to as
electrophysiological signals [12]. These types of signals have a low
spatial resolution and a very high temporal resolution (milliseconds).

EEG is one of the important signals in this group. The second group
contains signals that record hemodynamic activity. These types of
signals measure the level of oxygen in the blood [13] and offer a
high temporal resolution [14]. Functional near-infrared spectroscopy
(fNIRS) is one of signals in this group. The main advantage of fNIRS
is the portability of the device. In this paper, the combination of EEG
and fNIRS has been used.

One of the important challenges in designing BCI systems is
what signal to choose; electrophysiological or hemodynamic sig-
nals. So far, many studies have been done for BCI systems based
on electrophysiological signals only [15–19], or based on hemo-
dynamic signals only [20–22]. In addition, there are several recent
works addressing, both [9, 23–26]. However, the electrophysiolo-
gical methods generally suffer from low spatial resolution. On the
other hand, the use of hemodynamic methods alone suffers from
low temporal resolution [23]. Meanwhile, it is expected that com-
bination of EEG with fNIRS provide appropriate results [23, 27, 28]
and can reduce the stand-alone limitations for each modality [29–
31]. Another reason for feasibility of using simultaneous EEG and
fNIRS signals is that these do not generally interfere. In addition,
low cost, low noise, and portability make the use of both EEG and
fNIRS signals more functional. But, in this paper, a new approach
for combining these two signals is presented.

Furthermore, there are several other challenges. The first chal-
lenge is noise interference with signals. Part of the common noise
in the signals is frequency interference with other equipment and
the inappropriate connection of the electrodes. In these signals,
physiological activities cause noise. These activities are associated
with reduced signal-to-noise rate, for example, blinking, muscle
movement, and heart rate [32]. The preprocessing algorithms are
useful to mitigate noise in signals. The second challenge is ambigu-
ity in the relationship between signals and their brain-related intents.
In fact, mental intents cannot be directly observed from the signals
[32]. Precise analysis and classification of signals can resolve this
issue. For this purpose, a deep learning classification approach is
proposed in this paper. The third challenge is the extraction of fea-
tures by the user in order to detect mental intents. Implementation
of this step normally requires heavy processings [33]. In most of
the processing step in the BCI systems, there are two steps, noise
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removal [34] and feature extraction [35]. These steps are imprac-
tical for BCI systems due to time-consuming and dependency on the
level of professional knowledge. In 2019, She et al. [68] have pro-
posed the new deep learning method of hierarchical semi-supervised
extreme learning machine (HSS-ELM) to classify MI-based EEG
data. They proved their algorithm can utilize unlabeled data. They
also used the deep structure algorithm for extracting features and
tried to solve extracting features by user. On the other hand, In
2017, Li et al. [69] tried to classify hybrid EEG-fNIRS using SVM
technique. They considered different number of channels but they
did not consider the importance of position of all channels in hu-
man’s head. In 2017, Lu et al. [70] tried to classify MI-based EEG
using deep learning. They changed time-series EEG signals to fre-
quency domain. They proved that frequency domain is more suitable
than time-series. In this paper, feature extraction is done using the
deep learning algorithm. Feature engineering in deep learning al-
gorithms automatically extracts the appropriate features from the
signal. Thanks to deep learning method, we mitigate the burden of
the feature extraction step.

One of the most important issues tackled in this paper is that
accurate classification of the raw signal using the deep learning al-
gorithm is considerably low. In this paper, we consider both spatial
(location of electrodes on the scalp) and temporal (samples of EEG
and fNIRS) information in order to improve the accuracy. These
properties have merely studied in the past [36, 37]. In this paper,
we focus on an appropriate combination of these properties and
at the same time combining EEG and fNIRS signals. In addition,
deep learning algorithm is adopted to classify the signals with high
accuracy and detecting the user’s mental intents with the least error.

In the proposed method, the raw biological signals are conver-
ted to three-rank tensors using the knowledge about the position
of electrodes. These three-rank tensors show brain topography in
each time instance. Then, a sliding window is used to create data
clips. The sliding window aims to exploit the temporal correlations
in biological signals. In each clip, there is spatial and temporal fea-
ture simultaneously. After these arrangements, deep learning is used
to train the model based on the obtained three-rank tensors. In this
paper, we could improve the diagnostic accuracy by improving the
preprocessing step and adapting deep learning algorithm specifically
for EEG-fNIRS combination purpose.

In the remainder of this paper, the basic techniques used in dif-
ferent parts of the BCI system are reviewed in the Section 2. The
related works are reviewed in Section 3. In Section 4, the proposed
algorithm for data preprocessing and combining and converting sig-
nals into three-rank structures are presented. Then, the proposed
model based on deep learning is described. In Section 5, the results
of the experiments are described. Finally, the conclusion is drawn in
Section 6.

2 Background

In this section, the basic techniques used in different parts of a typical
BCI system are expressed.

2.1 The structure of BCI systems

The structure of BCI systems is important. In most of BCI systems,
it is important to design a comfortable and easy-to-use interface for
users. In the following, we describe the structure of BCI systems.

A BCI system requires careful and complex design. Improvement
of signal acquisition technique, the development of feature extrac-
tion methods and translation algorithms in order to create command
for executive in hardware devices, the development of hardware, im-
provement of operational protocols and user training strategies are
design requirements of a BCI system [38–40]. The general steps of
a BCI system are shown in Figure 1. Brain signals are measured and
converted to control signals for different applications which provide
feedback to the user. The first step in this system is data/signal
acquisition. In general, the signal processing step includes pre-
processing, feature extraction and classification. Preprocessing step

includes any classical algorithm with the aim of signals enhance-
ment, for example, noise removal. Feature extraction step includes
those techniques to extract features from input signals. Classification
step is employed to classify extracted features. The ultimate output is
a control signal that is transferred to an application and then returns
feedback to the user. Such feedback in general BCI systems can be
either Visual or Auditory. These steps are briefly outlined in a block
diagram in Figure 1.

Fig. 1: BCI system steps.

2.2 The Advantages of the combination of EEG and fNIRS

The combination of biological signals has always been a problem.
But sometimes, combining these types of signals have good benefits.
In this paper, the two signals EEG and fNIRS have been combined.
In the following, we will explain the advantages of combining these
two signals.

In recent years, BCI studies have shown that combining EEG
techniques with other neuroimaging technologies can increase per-
formance [41]. As mentioned in the introduction, simultaneous
recording of EEG and fNIRS is associated with challenges. On
the other hand, the existence of electromagnetic waves in the other
neuroimaging technologies has a destructive effect on the EEG
signal during simultaneous recording. In contrast, the fNIRS re-
cording system is well isolated from the EEG part and is suitable
for simultaneous recording with electrophysiological signals (due to
the use of near-infrared light). In fact, electrophysiological signals
and optical signals do not generally interfere. Long-term record-
ings EEG-fNIRS, interracial epileptic discharges (IED) or epilepsy
[26, 42–44] are further investigated using hemodynamic changes
locked at the time of IEDs. Combination of EEG and fNIRS can be
used for detection of brain conditions around 5 minutes prior occur-
ring some diseases [44]. The combination of event-related potentials
(ERP) and hemodynamic responses from fNIRS are also used to
study the visual cortex [25, 45].

3 Related Work

In past years, there was much research on EEG or fNIRS individu-
ally, and recently, researches have been focused on combining these
two signals for using in a hybrid BCI. Different methods and features
have been used to classify these kinds of signals.

3.1 EEG-based BCI

Kosmyna et al. [46] presented a multi-dimensional feature space for
EEG-based BCI systems. This feature space includes four axes and

2



nine sub-axes containing 41 points in total. These 4 axes include
4 questions; "when" (temporal aspects), "how" (median aspects),
"what" (content aspects) and "where" (spatial aspects). Each of
these questions includes nine sub-axes. They have incorporated this
feature space under the BCI and HCI systems.

Yang et al. [36] attempted to solve the problem of lack of suf-
ficient information, including spatial and temporal information in
EEG signals. In order to solve this problem, they used an LSTM
(Long-Short Term Memory) network with a convolutional network.
In this method, spatial and temporal information are simultaneously
applied to MI-EEG (Motor Imagery EEG) signals. To achieve a
higher learning rate, a batch normalization method has been used.
In this method, four steps are provided for data preprocessing. Dif-
ferent experiments have been done to evaluate the performance of
deep learning network architecture. The results have shown that this
method was a powerful and useful model for multiclass classification
among many different methods. The deep learning network model
is compared with conventional classifier algorithms such as LDA
(Linear Discriminant Analysis), KNN (K-Nearest Neighbor), NB
(Naïve Bayes), SVM, LSTM and CNN (Convolutional Neural Net-
work) separately. The problems with this article are that they used
frequency features. Frequency feature extraction needs a large con-
tinuous sampling period, while the motor imagery tasks are periodic
short duration brain activities. So extracting the frequency features
may damage the temporal information.

Zeng et al. [47] presented a method using the combination of
convolutional neural network and deep residual learning in order to
predict EEG signals based on the mental states of drivers. Hence,
two classification models called EEG-Conv and EEG-Conv-R have
been presented. In this method, eye blink has been removed from
EEG signals using ICA technique. Then, a bandpass filter has been
applied with the cut-off frequencies between 1 to 40 Hz. Z-score nor-
malization has also been used to normalize the data. The results have
shown that both models achieve a good performance in mental state
classification. EEG-Conv-R is more suitable for prediction of mental
state among subjects and EEG-Conv-R converges faster. They used
raw signals without any spatial preprocessing except z-score normal-
ization. The raw EEG signal as the chain-like signal is not good for
classification.

Zhang et al. [37] classified the humans mental goals using a
convolutional-recurrent neural network. In this method, the spatial-
temporal features of the EEG signal have been used. In the proposed
model of this paper, the spatial correlation between EEG signals has
been transformed into two-dimensional tensors. In this model, an
LSTM network has been proposed for the extraction of temporal
correlations within EEG signals. The corresponding dataset in this
paper was based on MI-EEG with 108 subjects and about 3.145.160
samples. This deep learning model achieved an accuracy of about
98.3%.

3.2 fNIRS-based BCI

Peng et al. [20] proposed a multiclass classification on MI-fNIRS
signals. Ten healthy subjects have been used to move an object
by motion imagery. In this method, prefrontal cortex signals have
been used. A combination of Ensemble Empirical Mode Decom-
position (EEMD) and ICA (Independent Component Analysis) has
been used to remove noise in signals. Signal Average characteristics
(SA) have been used for the input of SVM and LDA classifications.
The classification accuracy using SVM, and in the HbO2 (oxygen-
ated hemoglobin) mode and 8 to 21 seconds window was higher
than LDA. The classification accuracy for all four directions, up-
down and left-right motions was 40.55, 73.05 and 70.7 percent,
respectively.

The combined motion of the right and left arm was classified us-
ing a support vector machine (SVM) in [21]. In this study, fNIRS
signals were used. The results of this study showed that the com-
bination of fNIRS-based features achieved a maximum accuracy of
76.67%. These results have shown that distinct patterns in hemody-
namic responses from the right and left-hand movements can be used
to develop a BCI system.

Ho et al. [22] used deep learning to detect rest and action states.
The noise in the recorded fNIRS data has been removed by a band-
pass filter with the cut-off frequencies between 0.3 and 3 Hz. In
this method, at first, apparent changes in the concentrations of HbO
and HbR have been identified for both phases. Then, a method
for detecting these parameters is presented. They could increase
the classification accuracy using deep learning methods for up to
84.25%.

The main difference between the articles in sections 3.1 and 3.2
and our proposed method is combining two signals. Inadequate in-
formation in each signal can be completed with the help of another
signal. Therefore, the combination of two signals and the use of both
signals in different ways can increase the information and thus in-
crease the classification accuracy. Some of the articles mentioned
above did not use deep learning to classify their data or tried to
extract various features with the help of feature extraction tech-
niques. It was also the other difference in methods with our proposed
method. Extracting the features manually and by a human can cause
the error, and it is possible that extracted features are not suitable for
the proposed system, and this reduces the classification accuracy.

3.3 hybrid BCI

Khan et al. [48] presented a new classifier using a modified phase
vector diagram and power of EEG signals for predicting hemody-
namic responses. In this paper, EEG and fNIRS signals have been
recorded simultaneously for a motion task (thumb movement). In
this paper, the achieved accuracy in 0 to 1.5 seconds window is 86%.

Zhang et al. [49] have designed a technique for combining EEG
and fNIRS in a BCI system. This method has resolved some existing
issues in EEG- based BCI systems, such as noise and low classific-
ation accuracy. This system is based on punching by the participant.
In this work, combined features based on EEG wavelet coefficient
and fNIRS gradient has been proposed. The classification accur-
acy has increased by 3% compared to EEG features-only and 9%
compared to the fNIRS features-only. The results of this paper have
shown that incorporating fNIRS information for feature design could
greatly increase the performance.

Hong et al. [24] presented a Brain-Computer Interface (BCI)
framework based on EEG and fNIRS to be used by ALS
(Amyotrophic lateral sclerosis) patients. In this paper, brain activ-
ities, channel selection methods, feature extraction algorithms, and
classification algorithms were investigated. Various types of cognit-
ive and motor disorders have been classified to evaluate the BCI
system. Also, in this paper, the brain activity of hemodynamic sig-
nals was investigated. Mental arithmetic and word formation are
workable for patients with ALS. In this method, the spatial area of
the brain was interest. In general, proper detection of the activated
brain area and features have improved the classification accuracy.

Chiarelli et al. [50] improved performance of EEG- and fNIRS-
based hybrid BCI system using deep learning approaches. In this
paper, the classification of two imaginary movements of the right
and left hand was investigated. They conducted experiments on 15
subjects. Each recording time was one second, and the duration of
the experiment was 10 minutes. The recorded signals from EEG
device have been divided into one-second windows and then have
been filtered with cut-off frequencies between 8 to 30 Hz. Then the
ERD/ERS features have been extracted from signal power. The re-
corded signals from the fNIRS device have been converted to oxy-
and deoxy-hemoglobin concentrations using the modified Lambert
beer law algorithm. In this paper, the classification has been carried
out using a DNN (Deep Neural Network). The classification accur-
acy was 83.28% for the combination of EEG and fNIRS. The main
difference between this paper and our proposed method is the struc-
ture of the deep learning model and extracted features. This article
uses deep learning of DNN but does not take into account spatial and
temporal features of two signals.

Muhammad Jawad et al. [9] used hybrid EEG-fNIRS for decoding
eight brain commands. For the fNIRS system and EEG system, they
used prefrontal cortex, and around the frontal, parietal and visual
cortexes, respectively. In this paper, the related tasks for recording
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fNIRS signals were mental arithmetic, mental counter, mental rota-
tion, and word formation. In recorded fNIRS signals, peak signal,
minimum value and mean value of HbO in two-seconds windows
have been selected as features for classification. The related tasks
for recording EEG signals were blinking twice, blinking three times,
eye movement in the up-down direction and eye movement in the
left-right direction. In recorded EEG signals, peak and mean signals
in one-second windows have been selected as features for classific-
ation. The eight generated commands have been used to control a
quadcopter in the open space. The average accuracy for four com-
mands related to fNIRS signals was 75.% and was 86% for four
commands related to EEG signals. In related work, an fNIRS based
method was provided for controlling quadcopter [51]. However, it
has less efficiency than that of the proposed method in [9].

Shin et al. [52] recorded EEG-fNIRS signals using the tasks
of mental arithmetic (MA) and word chain (WC), simultaneously.
Each recording time was 5 seconds which was less than previous
hBCI studies. In this paper, a shrinkage linear discriminant analysis
(sLDA) has been used for the separation of both MA and WC from
baselines. The achieved separation accuracy in the offline model was
90% and 85.8%, respectively. The corresponding results in the on-
line model were 85.5% and 79.5%, respectively. In most cases, these
accuracy values were significantly higher than EEG- or fNIRS-based
BCIs.

There have been also reported some related, EEG-NIRS works
in [53–59] where emotion diagnoses were investigated. As these
works are out of the scope of the current paper, we omit a detailed
description of these papers.

In the works mentioned above, spatial and temporal informa-
tion was not simultaneously used to combine EEG and fNIRS. In
this paper, the effect of using this information for classification of
combined EEG-fNIRS signals was investigated and compared with
previous works.

4 Proposed method

In this section, our focus is on preprocessing and classification. In
the preprocessing step, raw signals are transformed into three-rank
tensors, and in the classification step, a deep learning-based model
is proposed to diagnose mental intents.

4.1 Preprocessing

Preprocessing is one of the most important steps in BCI systems.
This step includes algorithms for changing the signal to prepare it
for the classification step and removing noise. In this section, we de-
scribe how we convert signals from chain-like to three-rank tensors
to prepare for classification.

Mental activities related to motor imagery (MI) appear in 8 to 30
Hz (Alpha and Beta bands) frequency band of EEG signals. On the
other hand, the initial sampling rate of fNIRS data is 10 Hz and for
EEG data is 200 Hz. These two types of data must become compat-
ible before any processing. Hence, the sampling rate of EEG signals
was reduced to 128 Hz, and the sampling rate of fNIRS data was
increased to 128 Hz. Also, by adjusting the sampling rates in both
signals, the processing burden of EEG signals is significantly re-
duced. Important information for both EEG and fNIRS are burried in
the frequency range up to 64 Hz [66]. Therefore, based on Nyquist
theorem, the frequency of 128 Hz chose as the minimum sampling
rate to avoid losing information as well as keeping the computational
burden low. In this paper, a Fourier transform is used for upsampling
fNIRS signals. To downsample, the time-series EEG signals are
transformed to the frequency domain using Fourier Transform, as
showed in Equation 1. Then, the second and third groups of N/4
elements (which correspond to the half with the highest frequency
components) are deleted. Then, the frequency domain is transformed
back to time domain (Equation 2). To upsample, like downsample,
the time-series fNIRS signals are transformed to the frequency do-
main using Fourier Transform and N/2 zeros are added at the end.
Then, the frequency domain is transformed back to time domain,
which N is length of time-series signal.

X(ejw) =

+∞∑
n=−∞

x[n]e−jwn (1)

x[n] =
1

2π

∫+π

−π
X(ejw)ejwndw (2)

Figure 2 shows how to record the simultaneous EEG-fNIRS sig-
nals followed by the proposed method used in this paper. EEG
and fNIRS electrodes record brain activities when the subjects
are asked to imagine a particular action. Typically, the raw data
obtained from the EEG recording system at time t is a one-
dimensional vector et = [S1

t , S
2
t , ..., S

n
t ]

T where Sn
t is the recor-

ded EEG signal sample from the nth channel and at time t and
n is the number of EEG channel. Similarly, the raw data ob-
tained from fNIRS recording system at time t is a vector denoted
by ft = [(E1

t , E
′1
t ), (E

2
t , E

′2
t ), ..., (E

m
t , E

′m
t )] where Em

t is the
oxyhemoglobin sample in the fNIRS signal from mth channel and
at time t, E

′m
t is the deoxy-hemoglobin sample in the fNIRS sig-

nal from mth channel and at time t, and m is the number of fNIRS
channels. A description of all the parameters available throughout
this paper is given in Table 1.

For a simpler description of the process, we consider each raw
signal from time t to (N + 1). By doing this, a number of vectors
of length (N + 1) is extracted within the range [t, t+N ] from raw
signals. This procedure is carried out for n EEG channels and m
fNIRS signals channels.

Figure 3 is shown the raw EEG signal. As a matrix, every channel
is considered as a row in this matrix. Columns in this matrix include
the samples within each channel. Each channel is only limited to two
upper and lower channels. To clarify this issue, each row in this mat-
rix has two vertical neighbours. One neighbour is an upper row, and
another neighbour is a lower row in the matrix. Due to the import-
ance of spatial correlation of electrodes in EEG, spatial correlation of
electrodes in fNIRS, and the relationship between different regions
of the brain with different activities, Equation 3 is used as a conver-
sion function. In [67], they convert the 62-channel EEG placement to
two-dimensional map. In this paper, this conversion method is used
to convert the combination of the EEG and fNIRS time series into
three-rank tensors. The channel positions in the human head in the
system 10-5 [60] are shown in Figure 4. Equation 3 (matrix mt) is
designed according to Figure 4.

Table 1 Description of parameters.

Parameters Descriptions

et A vector associated with EEG signal at time t

snt The recorded EEG signal sample from the nth channel and at
time t

ft A vector associated with fNIRS at time t

Em
t The oxyhemoglobin sample in fNIRS signal from mth channel

and at time t

E
′m
t The deoxy-hemoglobin sample in fNIRS signal from mth

channel and at time t

n The number of EEG channel

m The number of fNIRS channel

mt Three-dimensional meshes

SWj The generated clips from three-rank tensors at a temporal
window

SFj The extracted temporal featured from CNN network

TFj The extracted spatial features from RNN network

ht Hidden cells of LSTM layer at time t

xt Input at time t
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Fig. 2: EEG and fNIRS signal acquisition and preprocessing steps.

Tensor_map(et, ft) =

(3)

This three-rank tensor denoted by mt corresponds to the spatial
information of the electrodes in the recording system. This three-
rank tensor is composed of two matrixes. Each matrix is known as a
facet. In three-rank tensor, there are two facets at each time instance
t. In each time instance t, the first facet, includes EEG-fNIRS data
with low wavelength values, and the second facet contains EEG-
fNIRS data with high wavelength values.

As seen in Equation 3, the null positions (not corresponding to
any electrode position) were shown by zero. These positions do not
affect the training of the neural network because these are similar to
the background. Using this information, the raw data vector series
[et, et+1, ..., et+N ] and [ft, f(t+1), ..., f(t+N)] are converted into
three-rank tensor [mt,m(t+1), ...,m(t+N)] where et is a vector as-
sociated with EEG signal at time t, ft is a vector associated with

fNIRS at time t and mt is a three-rank tenor. After this stage, the
non-zero data tensor are normalized using z-score. Each three-rank
data tensor includes the spatial information of brain activities. The
sliding window method is used to add temporal information to these
three-rank tensors.

The sliding window method is used to convert three-rank tensors
into data clips. All clips have the same length. Each clip has a 50%
overlap with the neighboring clips. Each data clip denoted as SWj
is constructed in the form of Equation 4.

SWj = [mt,mt+1, ...,mt+k−1] (4)

Where k is the window size and j = 1, 2, ..., q. Each SWj in-
cludes both spatial and temporal feature and now it’s ready to train
the proposed model.

The purpose of this paper is to develop an effective model for or-
ganizing a set of human intents using data clips. This model predicts
human intents over the data clips.

4.2 The proposed Recurrent Convolutional Neural Network

The RCNN architecture involves using Convolutional Neural Net-
work (CNN) [61] layers for feature extraction of input data com-
bined with LSTMs [62] to support sequence prediction. RCNNs
have been developed for visual time series prediction problems and
the application of generating textual descriptions from sequences of
images (e.g. videos). RCNNs are a class of models that is both spa-
tially and temporally deep and has the flexibility to be applied to a
variety of vision tasks involving sequential inputs and outputs [63].
Overall, these models can read a sequence of image inputs, such as
a video, and generate a prediction.

Figure 5 shows our proposed structure of the RCNN-based EEG-
fNIRS classifier. This structure is used to give spatial and tem-
poral features from EEG-fNIRS time series. This structure includes
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Fig. 3: Raw EEG signal.

Fig. 4: Placement of EEG electrodes in 10-5 system (red and black
(ground) circles) and NIRS sources (blue squares) and detectors
(green squares). blue solid lines denote NIRS channels.

eight layers. These layers include three convolutional layers, two
fully connected (dense) layers, two LSTM layers, and one out-
put layer. The input of this structure is the preprocessed clips of
three-rank tensors (SWj). Finally, these clips are converted to four-
dimensional structures. These four-dimensional structures convey
both spatial and temporal information. First, the spatial features
(SFj) are extracted using CNN layers from each three-rank tensor.
Then, a fully-connected (dense) layer receives the extracted spatial
features sequence SFj and feed them to LSTM layers to extract tem-
poral features TFj . Finally, a fully-connected (dense) layer receives
the temporal features from LSTM last output layer, and then feeds
the Softmax layer to predict.

In the proposed model, there are three two-dimensional convolu-
tional layers with the same 3× 3 kernel size. As a result, these three
layers extract spatial features from the input three-rank tensors. The
size of each data tensor is h× w. The input to the proposed model,
SWj , contains s− 1 elements where s is the length of the sliding

window. The first convolutional layer includes 32 feature maps. This
layer generates 32 feature maps of size h× w. This number has
doubled for the next convolutional layer. These values are achieved
with numerous examinations. Finally, there are 128 feature maps
in the last layer. After three convolutional layers, a fully-connected
(dense) layer with 1024 neurons are obtained. The purpose of this
layer is to extract high-level signal features. This layer extracts the
final spatial features SFj by receiving 128 feature maps of last con-
volutional layer. The fully-connected (dense) layer has been used to
feed the RNN.

The spatial features sequence (SFj) is the input to RNN network
to extract temporal features (TFj). In this paper, two LSTM layers
are used to extract temporal features. The second LSTM layer in-
put is the extracted temporal features from the previous layer. This
layer extracts temporal features using xt and ht−1 value. Then, this
layer transfers the obtained information to the current state ht and af-
fects the final output. Finally, the second LSTM layer is a sequence
of hidden states in its previous layer [ht, ht+1, ..., ht+s−1]. The
purpose of this research is to find the brains commands during the
sliding window period. Therefore, the extracted temporal features
in the last LSTM layer are used for analysis. These features have
been extracted from the windowed samples SWj . In fact, these fea-
tures are brains commands the during the windowing period. The
last LSTM layer output is given to fully-connected (a dense) layer to
extract the final temporal features sequence TFj . Finally, the Soft-
max classification predicts the final probability for each data class.
Proper architecture design increases the performance of deep learn-
ing network. In this paper, we have tried to provide an appropriate
architecture for finding the brains commands.

In addition to designing the proper architecture, choosing the op-
timal parameters has a great influence on the correct identification
of the brains command. There are a lot of optimizer functions for
parameter optimization. However, based on our experiments Adams
[64] optimizer function with a learning rate of 0.0001 demonstrates
the best performance. Also, for all layers except the last one, the
Rectified Linear Units (ReLU) is used. Softmax function was used
for the last layer. These choices along with other parameters have
been achieved after numerous examinations and studies on various
activation functions.

Since various papers have examined different structures of the
deep neural network, we have used the best parameters in these mod-
els. The best accuracy in most of the methods used in this field is
related to [37]. In this paper, the RCNN hybrid model is used to train
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Fig. 5: The proposed RCNN structure.

the model. The model and parameters used in this paper are based on
the model presented in [37]. Table 2 summarizes the internal details
of proposed RCNN structures in all layers.

Table 2 Details of the proposed RCNN model structure used in this paper.

Layer Layer Name Kernel Size Number of Output Stride

1 Conv2D 3Œ3 32 1
2 Conv2D 3Œ3 64 1
3 Conv2D 3Œ3 128 1
4 Dense - 1024 -
5 Flatten - - -
6 LSTM - 64 -
7 LSTM - 64 -
8 Dense - 1024 -
9 Dense - 4 -

5 Experiments and Results

In this paper, the EEG-fNIRS dataset from Technische Universität
Berlin [27] has been used to evaluate RCNN network. Several ex-
periments have been conducted to evaluate the performance of the
proposed method and compare it with related models.

5.1 Dataset Description

In this section, we will examine the used datasets in this paper. This
dataset is publically available and combines two EEG and fNIRS
signals.

Twenty-eight right-handed and one healthy left-handed subjects
participated in this study (fourteen males and fifteen females, av-
erage age (years) 28.5 ś 3.7). None of them reported neurological,

psychiatric or other brain-related diseases. All volunteers were in-
formed about the experimental procedure, and written consent was
obtained from all participants [27].

EEG and NIRS data were collected in an ordinary bright room.
The EEG signals were recorded by a multichannel BrainAmp EEG
amplifier with thirty active electrodes (Brain Products GmbH, Gilch-
ing, Germany). EEG signal sampling rate was 1000 Hz. Thirty EEG
electrodes were placed on a custom-made stretchy fabric cap (EASY-
CAP GmbH, Herrsching am Ammersee, Germany) and placed
according to the international 10-5 system (AFp1, AFp2, AFF1h,
AFF2h, AFF5h, AFF6h, F3, F4, F7, F8, FCC3h, FCC4h, FCC5h,
FCC6h, T7, T8, Cz, CCP3h, CCP4h, CCP5h, CCP6h, Pz, P3, P4, P7,
P8, PPO1h, PPO2h, POO1, POO2 and Fz for ground electrode). The
fNIRS signals were recorded by NIRScout (NIRx GmbH, Berlin,
Germany). The fNIRS signal sampling rate was 12.5 Hz. Fourteen
sources and sixteen detectors create thirty-six physiological chan-
nels. These channels were placed at frontal (nine channels around
Fp1, Fp2, and Fpz), motor (twelve channels around C3 and C4,
respectively) and visual areas (three channels around Oz). The inter-
optode distance was 30 mm. NIRS optodes were fixed on the same
cap as the EEG electrodes. All signals were recorded simultaneously
(Figure 4).

There are two kinds of datasets, motor imagery, and mental arith-
metic. For motor imagery, subjects were instructed to perform haptic
motor imagery (i.e. to imagine the feeling of opening and closing
their hands as they were grabbing a ball) to ensure that actual motor
imagery, not visual imagery, was performed. For mental arithmetic,
there are two tasks, MA task, and baseline task. The MA task, an
initial subtraction such as ’three-digit number minus one-digit num-
ber’(e.g., 384-8) appeared at the center of the screen for 2 s. For the
baseline task, no specific sign but the black fixation cross was dis-
played on the screen, and the subjects were instructed to take a rest.
For more details, see [27]. The raw data were downsampled to 200
Hz (EEG) and 10 Hz (fNIRS) rates. No pre-processing was applied
to the raw data.
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5.2 Summary of experiments

To evaluate the effectiveness of combined EEG and fNIRS, we in-
vestigated the accuracy of our model with EEG-only, fNIRS-only,
and EEG-fNIRS. In our experiments, the length of the sliding win-
dow was 10 samples. We randomly considered, 80% of the data as
training data, 10% as evaluation data for tuning parameters, and
10% as test data. Our evaluation setting is inter-subject. All data
has been shuffled and the training set and test set separated. Our
model is person-independent and all data are used to train and test
the proposed model. In this paper, we also investigated the impact
of spatio-temporal information on the accuracy of classification. All
models are implemented with Keras framework in Python program-
ming language with the TensorFlow backend. The Adam optimizer
function with binary_crossentropy loss function is used. Network
parameters are taught with a learning rate of 10e-4.

5.3 Results of preprocessing method

As mentioned in Section 4.1, we use the spatial and temporal fea-
tures of the two signals EEG and fNIRS. In this section, the results
of the preprocessing have been presented.

Figures 3 and 6 show the time-series signal, and the result of the
proposed preprocessing method, respectively. Figure 6 includes spa-
tial information of the combined EEG and fNIRS signals.Figure 6,
presents the topographic maps generated by the proposed model. On
the other hand, Figure 6 demonstrates three-rank tensor (mt). This
figure shows brain activity during different tasks and is similar to
scalp topography. In our method, when raw EEG and fNIRS data at
time t (et and ft) turns into a three-rank tensor (mt), this tensor is
corresponded to brain activity at time t. According to Equation 3,
each mt has 17 rows and 17 columns, so the vertical and horizontal
axis are shown these values. By comparing Figures 3 and 6, we can
conclude that the converting time-series signal to three-rank tensors
provides more detailed information. In the proposed method, extrac-
ted spatial features include information about the active regions of
the brain at the desired time, as shown in Figure 6. After applying the
sliding window, the temporal information is added to spatial inform-
ation (Figure 7). These maps display changes in the brains active
regions during the subject 7 movements. Figure 7 presents input of
deep network.

In Figure 6, brain topography is shown for four tasks. The changes
in the activity levels in the various brain regions can be seen in these
four tasks. In this figure, each color trace represents the spectrum of
the activity in one data channel. In the MI right hand, the activity on
the left side of the brain is more. This activity can be seen on left side
channels. These channels include C1, C3 and so on. But in MI right
hand, the activity is deferent on various frequencies. This activity is
seen throughout the brain. Also, little activity is seen on the right
side of the brain [65]. In MA, the highest level of activity is seen in
the frontal lobe and in the Baseline. little activity is seen throughout
the brain because the brain is resting during the baseline. The clip
includes several three-rank tensors is shown in figure Figure 7 which
is the input of proposed RCNN model. Each clip includes spatial and
temporal information. In fact, The impact of time during movement
by the user is shown in Figure 7. During movement, the brain records
activities that can consist of noise. These activities can be similar to
another activity for another movement. During record activities, user
can move head or tongue and makes noise. So, In each moment, there
are similar activities. When time is not considered, the network could
not learn activities very well. Because there are the same activities
with different labels. Therefore, considering a few samples in tan-
dem will help the network understand the activity in the brain well,
and noisy areas of activity will not be considered.

The first step, the CNN model extracts spatial features from this
information. Then the RNN model extracts temporal features from
the sequence of spatial features in each clip. The proposed RCNN
model can read and understand these sequence of figures and this
model can extract appropriate features from them.

5.4 Results of proposed method

As mentioned in Section 4.2, we presented a new model based
on deep learning that includes the combination of CNN and RNN
algorithms. In this section, first, we compare the accuracy of the
proposed model with other models in different paper. Second, we
investigate the accuracy of different implementations. Finally, we
analyze the diagram of accuracy based on number of epochs.

To investigate the importance of simultaneous temporal and spa-
tial analysis, we used two models: CNN, to extract spatial features,
and RNN, to extract temporal features, separately. Then, we com-
pared them with our proposed model. Performance of these models
compared to other works and the results are shown in Table 3.

Table 3 Comparison models.

Reference EEG or fNIRS
or Hybrid

Classifier Accuracy

[37] EEG Recurrent
Convolutional
Neural Network

98.3%

[47] EEG Deep Residual
Learning

92.682%

[36] EEG Recurrent
Convolutional
Neural Network
with DWT

86.7%

[9] EEG or fNIRS Linear Discrim-
inant Analysis

fNIRS=75.6%, EEG=86%

[50] EEG-fNIRS Deep Neural
Network

83.28%

[22] EEG-fNIRS Deep Belief
Network

84.26%

[52] EEG-fNIRS Shrinkage
Linear Dis-
criminant
Analysis

90%

Proposed Method EEG-fNIRS Convolutional
Neural Network

98.22%

Proposed Method EEG-fNIRS Recurrent
Neural Network

95.81%

Proposed Method EEG-fNIRS Recurrent
Convolutional
Neural Network

99.63%

It is observed from this table that the proposed model achieves
high accuracy of 99.63%. In our study, choosing a larger sliding win-
dow also drops the model performance dramatically. This method
has the flexibility to adopt different kinds of EEG-fNIRS based in-
tention recognition by varying sliding window size. Compared to
previous studies, our model requires less preprocess on raw data
making it more suitable for real-time applications, such as BCI.

In [9] and [52], they have not been used deep learning algorithm.
The deep learning algorithm is new technology and more accurately
than other classifiers. In [47], [36], [50] and [22], a deep learning
algorithm for classification for a hybrid BCI and EEG-based BCI
system has been used. They changed deep learning model archi-
tecture and achieved higher accuracy compared to other methods.
Because the deep learning algorithm automatically extracts features.
Feature extraction by a human may cause a lot of errors and reduce
the data size. The preprocessing step is an important step in BCI sys-
tems. In all of the research presented in Table 3, the preprocessing
has been used alone to remove noise. In [37], the preprocessing step
has not been used to remove noise and they used a preprocessing
step to change EEG signals. They changed signals to use special
hidden information. Also, they used RCNN model to classify data.
The highest achieved accuracy in Table 3 is 98.63%. In the pro-
posed method, by adding the fNIRS signal to EEG and use temporal
and spatial information simultaneously and use RCNN model as
classifier the accuracy increases for 1% and the accuracy is 99.63%.
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Fig. 6: Result of proposed preprocessing method. Brain activity during different task like brain topography. First row is showing the combining
EEG and low-length fNIRS (facet one in three-rank tensor) and the second row is showing the combining EEG and high-length fNIRS (facet
two). First column to forth column are showing one of the tasks. These columns are showing brain activity for MI right hand, MI left hand,
MA, and Baseline, respectively. In these figures, the colors are showing low or high activity in specific area in brain. Dark red color indicates
highest activity and dark blue color indicates lowest activity in brain.

On the other hand, as already mentioned, fNIRS data has two
wavelengths. We investigated the effect of both wavelengths along
with EEG signal. The performance of the proposed model for EEG
and each wavelength of fNIRS is shown in Figure 8.

According to Figure 8, we observed that achieved accuracy for
the combination of EEG with low wavelength, and high wavelength
in fNIRS signals are almost equal, and both wavelengths provide
equal information. As a result, we can use any of these two. However
using fNIRS alone for classification greatly reduces the accuracy.
The advantage of such selection is that the computational burden is
reduced. According to Figure 8, the accuracy of the combined EEG-
fNIRS is higher than those of the two. The accuracy of 98% for EEG
signal, accuracy of 86.03% for fNIRS signals and 99.63% for EEG-
fNIRS indicates that adding fNIRS data to EEG data increases the
accuracy of the prediction of intentions. As already mentioned, re-
cording fNIRS data simultaneously does not cause any problem in
recording EEG data. Therefore, the simultaneous use of these two
signals in our proposed method can be a great help in signal analysis
and prediction of intentions and use in systems requiring high ac-
curacy, such as BCI. One of the most important parameters in deep
neural networks is the number of epochs. The epoch is a complete
implementation of model training. In most cases, choosing a higher
number of epochs leads the network to be trained well. But in higher
epochs, changes in accuracy may be negligible. To find an optimal
number of epochs, we must attend to the changes in accuracy. The
accuracy diagram based on the number of epochs clearly shows these
changes.

Figure 9 shows the accuracy diagram based on the number of
epochs. As can be seen, with increasing number of epochs, accur-
acy has increased. However, with increasing number of epochs from
60 to 80, the changes in accuracy were insignificant and the overall
system accuracy was not increasing. Hence, in order to reduce the
computational burden of the system. We consider 60 as the number
of epochs in all experiments.

One of the most important hyper-parameters is the size of the slid-
ing window. This number has a huge impact on network training
and its accuracy. The impact of different size of the sliding win-
dow on the accuracy of the network is presented in Table 4. It is
observed from this table that the accuracy of network decreases by

increasing this number. The reason is that the large window has more
information. It is possible when we consider the large size for sliding
window, the information consist of noise and the network cannot be
trained well. On the other hand, the large size of the sliding window
decreases the number of training data. Therefore, in this paper, we
chose 10 for this size.

Table 4 The accuracy of network due to the different size of sliding window.

Size of sliding window (sample) Accuracy

10 99.63%

64 94.95%

100 90.91%

200 86.87%

5.5 Discussion

As shown in Table 3, the use of both spatial and temporal inform-
ation and extracting the relationship between adjacent signals can
help to detect human intention. The accuracy of the classification is
95.81% using the temporal information alone. Therefore, the tem-
poral chain-like signals do not have much effect on the accuracy of
the classification. In the most recent methods, these signals are in-
vestigated as time series. In this paper, we have not used any feature
extraction algorithm, but we have used feature engineering in deep
learning. On the other hand, considering the spatial information, the
accuracy of the classification up to 98.22% has been upgraded. But,
as shown in Table 3, the proposed model, RCNN, is achieved the
accuracy of 99.63%. Therefore, the combination of temporal and
spatial information greatly impacts the better analysis of signals. The
conversion of EEG and fNIRS signals to three-rank tensors, and the
use of the location of active brain regions increase the accuracy sig-
nificantly. In proposed method, unlike other methods, preprocessing
has not been used to remove noise in signals. Using raw signals are
good but the raw biological signals always have noise. Therefore, it
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Fig. 7: After use sliding window. Spatial and temporal feature is used to train proposed model. For each time, first row is showing the combining
EEG and low-length fNIRS (facet one in three-rank tensor) and the second row is showing the combining EEG and high-length fNIRS (facet
two). All of these figures are showing brain activity for MI right hand at time t=1 to 15. In these figures, the colors are shown low or high
activity in specific area in brain. Dark red color indicates highest activity and dark blue color indicates lowest activity in brain.

is better to use preprocessing algorithms to remove noises. This may
improve detection.

Using more channels in particular areas of the head can also help
to increase the model classes and thus more mental activity detec-
tion. Hence, in future work, we can increase the number of translated
commands into the system by acquisition signal from more channels.

6 Conclusion and Future Work

In this paper, we classified biological signals using spatial and tem-
poral information contained in them and using deep learning. In the
proposed method, the combination of two data EEG and fNIRS has
been used. We continued to extract two spatial and temporal char-
acteristics of the signal. In the proposed method, signals have been
classified by converting chain-like signals into three-rank tensors.
Then the deep learning of RCNN has been used to classify this
data. Therefore, we observed that the accuracy of the method for
combining these two signals was significantly higher than other
methods.

Adding preprocessing step to remove noise from the signal, as de-
scribed in Section 4.1, can be done in the future. This may improve
the classification. Finding the optimal parameters for a neural net-
work is always a grand challenge. To result this issue, a consistent
algorithm to find and set the optimal parameters for the deep network
can be presented in the future. Another interesting future path of re-
search could be acquisition and combining different datasets with
more number of classes for the real-world BCI systems.
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