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ABSTRACT

Categorical perception (CP) of speech is a complex process reflecting individuals’ ability to per-

ceive sound and is measured using response time (RT). The cognitive processes involved in map-

ping neural activities to behavioral response are stochastic and further compounded by individ-

uality and variations. This thesis presents a data-driven approach and develops parameter opti-

mized models to understand the relationship between cognitive events and behavioral response

(e.g., RT). We introduce convolutional neural networks (CNN) to learn the representation from

EEG recordings. In addition, we develop parameter optimized and interpretable models in de-

coding CP using two representations: 1) spatial-spectral topomaps and 2) evoked response po-

tentials (ERP). We adopt state-of-the-art class discriminative visualization (GradCAM) tools to

gain insights (as oppose to the’black box’ models) and building interpretable models. In addi-

tion, we develop a diverse set of models to account for the stochasticity and individual variations.

We adopted weighted saliency scores of all models to quantify the learned representations’ effec-

tiveness and utility in decoding CP manifested through behavioral response. Empirical analysis

reveals that the γ band and early (∼ 0− 200ms) and late (∼ 300− 500ms) right hemisphere IFG

engagement is critical in determining individuals’ RT. Our observations are consistent with prior

findings, further validating the efficacy of our data-driven approach and optimized interpretable

models.
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CHAPTER 1. INTRODUCTION

Categorical perception (CP) of speech is a cogntive process of grouping sounds into small

phonetic categories [Liberman et al. (1967)]. CP of speech is a complex process reflecting

individuals’ ability to perceive sound and can be measured using response time (RT). The

cognitive processes involved in mapping neural activities to behavioral responses can be decoded

through in-depth analysis of neurophysiological recordings such as EEG. Decoding categorical

perception (CP) from EEG recordings involves analyzing spatial-spectral-temporal properties

that define the underlying cognitive functions [Bashivan et al. (2014); Mahmud et al. (2020a);

Bidelman et al. (2019)]. The spatial, spectral, and temporal aspects explain ’where’ in the brain,

the type of operation (i.e., memory, attention) and ’when’ in time the neural activities occurs.

While hypothesis-driven analysis is being widely used in decoding CP, but the multivariate

approach based on machine learning (ML) algorithms have been gaining momentum. For

example, the ML-based approach reported in Bidelman et al. (2019); Mahmud et al. (2020a)

show promising results in determining contributing factors in age-related hearing loss. In another

work reported in Al-Fahad et al. (2020) used an ML-based apporach to decode functional

connectivity patterns in CP. The mentioned studies uses classical ML, such as support vector

machines (SVM) [Cortes and Vapnik (1995)] with stability selections [Meinshausen and

Bühlmann (2010)] to model cognitive processes involved in CP. The feature selection process

provides a limited interpretation of the causal relationship between neural activities and

behavioral responses.

This thesis presents a data-driven approach and develops parameter optimized models to

understand the relationship between cognitive events and behavioral responses (e.g., RT). We

introduce convolutional neural networks (CNN) to learn the relevant features from EEG

recordings using two representations: 1) spatial-spectral topomaps and 2) Event Related
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Potentials (ERP) to model the spatial-spectral and temporal properties of CP. In addition, we

develop a diverse set of deep CNN models to account for the stochasticity and individual

variations. We have used bootstrap averaging of trials to generate ERPs in both spatial-spectral

and temporal data generation. We utilize bootstrapping process as a data augmentation step to

generate a larger number of samples to improve the generalization of CNN models. We use

Bayesian hyperparameter optimization algorithm Tree-structured Parzen Estimator (TPE)

[Bergstra et al. (2011)] to find best performing spatial-spectral and temporal CNN models,

respectively. We have selected ten best performing spatial-spectral and temporal CNNs

separately to analyze behavioral responses in relation to CP.

In deep learning (DL), model interpretation is still a challenge as these models contain

millions of parameters and therefore are extremely difficult to interpret. Convolution Neural

Networks (CNNs) are the only models in the DL arena, where insight into feature importance

allocations is possible. The visual interpretation of models are achieved through class

discriminative feature visualization techniques like Class Activation Maps [Zhou et al. (2016)],

GradCAM [Selvaraju et al. (2017)], CNN-fixation [Mopuri et al. (2019)] and EigenCAM

[Muhammad and Yeasin (2020)]. Studies like Jonas et al. (2019); Li et al. (2020); Wang et al.

(2020a) shows that GradCAM does capture feature importance allocation by CNNs from data

and therefore could be used to infer spatial-spectral-temporal properties underlying a cognitive

event. Despite the successes in visual interpretation, it begs the question ”Are class

discriminative feature visualizations alone enough to capture patterns dictating cognitive events

from EEG data?” To address this, we propose quantification of learned spatial-spectral-temporal

representation from EEG data by CNN models.

We argue that consistent patterns over multiple models could be considered the neural

correlates of CP. To this extent, we have proposed the computation of overall saliency score that

allows us to find the prevalent spatial-spectral-temporal patterns consistent over multiple CNN

models. We have defined two processes to compute overall saliency scores, 1) averaging of

saliency scores across models 2) performance weighted averaging of saliency scores across models.

2



To understand the efficacy of CNN models, we performed mixed model ANOVA analysis on the

saliency scores to determine the spatial-spectral-temporal differences in neurological actions that

define the RT groups.

We empirically evaluate the CNN models using the CP data obtained from 50 participants.

First, we cluster the RTs using Gaussian Mixture Model (GMM). We modeled

spatial-spectral-temporal attributes of the neural activities defining three categories of RT (slow,

medium, and fast) from EEG data. Employing the proposed process, we observe that early and

late engagement in right-hemispheric frontal regions (presumably IFG) is crucial in determining

listeners’ decision speed. We also find that all three bands (α, β, γ) have active and passive roles

while γ band is the most significant in driving listeners’ RT. The significance of γ band suggests

that auditory CP ability in individuals is the primary predictor of their decision speed. Our

findings are coherent with recent and prior studies of brain-behavior function in auditory CP, a

validation of our decoding process using CNNs.

The rest of the thesis is organized as follows: in chapter 2, we review existing decoding

processes from EEG data using CNNs and the use of machine learning algorithms in decoding

auditory CP. Chapter 3 provides a detailed description of our proposed modeling and decoding

process, and in chapter 4, we present our modeling and decoding results. Finally, in chapter 5,

we discuss our approach’s novelty and the findings of the cognitive processing of behavioral

responses in categorical speech perception.

3



CHAPTER 2. REVIEW OF LITERATURE

In this section, we look at some applications of DL models in modeling and decoding neural

activities from EEG data. We also review some recent studies where ML algorithms are used to

decode spatial-spectral-temporal properties of categorical speech perception.

2.1 Utilization of DL models in EEG studies

Deep learning models have been widely used to model neural processes from EEG data.

According to Craik et al. (2019), there are four classification tasks where DL models have been

predominantly applied,

� Motor imagery tasks.

– In motor imagery (MI) tasks, participants are instructed to imagine certain muscle

movement on limbs while their neurological activities are captured through EEG

[Pfurtscheller and Neuper (2001)]. MI tasks are used in Brain-Computer Interface

(BCI) systems to predict users’ limb movements. DL models have been effective in

modeling MI tasks from EEG data. For example, Kumar et al. (2016); Chiarelli et al.

(2018) used deep neural network (DNN) while Amin et al. (2019); Tang et al. (2017);

Olivas-Padilla and Chacon-Murguia (2019) used different CNN models to achieve

significant results in modeling MI tasks from EEG data. Dai et al. (2019); Rezaeitabar

and Halici (2017) combined CNNs with stacked and variational autoencoders to

predict limb movements from EEG recordings. There also has been the use of

recurrent neural networks such as Wang et al. (2018); Luo et al. (2018) utilized Long

Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks in modeling

MI tasks from EEG data.

4



� Mental workload tasks.

– Mental workload (MW) or cognitive load tasks involve recording EEG of subjects

while they are put through varying degrees of mental task complexity. [Craik et al.

(2019)]. Bashivan et al. (2015) was one of the early application of DL in cognitive

neuroscience where cognitive load was modeled using recurrent convolution neural

network (RCNN) from spatial-spectral-temporal features extracted from EEG.

Hajinoroozi et al. (2016) designed channel-wise convolution neural networks (CCNN)

and CNN with Restricted Boltzmann Machine (CCNN-R) to model drivers’ cognitive

state from EEG data. Yin and Zhang (2017) proposed adaptive Stacked Denoising

Auto Encoders (SDAE) to classify different levels of MW and showed higher

performance in dealing with cross-session EEG features.

� Seizure detection tasks.

– In studies of seizure detection, EEG recordings are carried out during seizure and

seizure-free periods of epileptic patients [Craik et al. (2019)]. Modeling seizure

detection tasks allows prediction of upcoming seizures in epileptic patients. Hosseini

et al. (2017, 2016) are two such real-time seizure prediction systems using stacked

autoencoder and CNN.

� Sleep stage scoring tasks.

– In sleep stage scoring studies, EEG signals of patients are recorded overnight and into

different sleep stages. The application of these studies is to automate the analysis of

patients’ sleep stages [Craik et al. (2019)]. DL models have been successful in the

classification of sleep stages from neuropsychological data. For example, Chambon

et al. (2018) designed a CNN that allows end-to-end learning of polysomnography

(PSG) signals (EEG, EMG, and EOG) without handcrafted features. DeepSleepNet is

another CNN model that allows automatic sleep stage scoring from raw EEG data

[Supratak et al. (2017)].
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Along with modeling neurological functions from EEG data, some studies have also evaluated

learned representations by DL models. As mentioned in section 1, CNNs are the only models in

DL domain, where insight into learned representation is possible through visual interpretations.

Among the visual interpretation tools of CNN, GradCAM has been widely used for the

validation of sensible feature learning by CNNs. Recent studies such as Jonas et al. (2019); Wang

et al. (2020b); Chen et al. (2019); Aslan and Akin (2020) applied GradCAM to evaluate the

learned features by CNN models from EEG data. Other than GradCAM, Ang et al. (2012)

proposed network correlation maps for explaining learned spatial-spectral features by CNNs.

Although visual interpretation of CNN models effectively depicts learned representation from

EEG data, it is not enough to determine the neurological factors underlying a complex cognitive

process such as speech perception. Due to the sensitive and stochastic nature of speech

perception, proper quantification of the learned representation by CNN models is required to

infer important neurological factors of CP.

2.2 Utilization of ML in Decoding CP

ML algorithms have been gaining popularity in decoding CP from neurological measures like

EEG and fMRI. One of the most popular ML technique in decoding neurological functions is

multivariate pattern analysis (MVPA) [Haxby et al. (2001)]. MVPA can capture varying brain

states from a cortical region and encode different types of information from fMRI data [Haxby

(2012)]. MVPA has been used in decoding CP from fMRI data; most notably, Lee et al. (2012)

used MVPA to find the cortical regions responsible for speech processing. Arsenault and

Buchsbaum (2015) also used MVPA to investigate distributed activation patterns in brain

regions while processing phonological features. In another study, Zhang et al. (2015) describes

the pattern of activations in subregions of the auditory cortex for sound categories.

Classical ML models also have been successful in decoding CP, especially from EEG data.

Recently, Bidelman et al. (2019); Mahmud et al. (2020a) found the contributing factors related to

hearing loss in older adults through SVM and [Cortes and Vapnik (1995)] with stability

6



selections [Meinshausen and Bühlmann (2010)]. Al-Fahad et al. (2020) also used a similar

framework for decoding individuals’ behavioral response from functional connectivity measures.

While there has been the application of ML models, there are no DL models applied to decode

CP from either EEG or fMRI data.
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CHAPTER 3. METHODS AND PROCEDURES

In this section, we will present our procedures of modeling and decoding speech

categorization behavior. As stated earlier, we utilize CNNs to model the spatial, spectral, and

temporal aspects of behavioral auditory CP. We model the spatial and spectral content together

using a spatial-spectral topographic representation of the scalp surface. The temporal contents

are modeled separately using ERPs. The CNNs responsible for modeling the spatial-spectral

properties are called Spatial Spectral Models (SPSM), and the CNNs attributed to modeling the

temporal aspect are called Temporal Models (TM). For decoding, we have used class

discriminative feature visualization tools like GradCAM [Selvaraju et al. (2017)] that are used to

represent feature importance learned by a trained CNN model. Our implementation of CNN and

GradCAM uses Keras [Chollet et al. (2015)] and TensorFlow [Abadi et al. (2015)]. We also use

the Bayesian Hyperparameter optimization library hyperopt [Bergstra et al. (2013)] to optimize

the hyperparameters of CNNs. All of our implementations are provided in

https://github.com/kmnuddin/stable_hypothesis_selection_eeg_cnn.

3.1 Data

3.1.1 Participants

The dataset consisted of 50 participants, which we used for modeling the behavioral aspect of

CP. All of the participants were recruited from the University of Memphis student body and the

Greater Memphis area. The experiment consisted of 15 males and 35 females aging between 18

and 60 years with a mean of ≈ 24 years. Participants were strongly right-handed (mean

Edinburgh Hand Score ≈ 80.0), had acquired a collegiate level of education (mean ≈ 17 years),

and had a median of 1 year of formal music training. All participants were paid for their time

8
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and gave informed consent in compliance with the Institutional Review Board at the University

of Memphis. Figure 3.1 (A, B) shows the demographic of the participants.

Figure 3.1: Demographics, token-wise identification and RT variation. A) Male-female ratio. B)

Meta information of participants. C) RT variation on each tokens, token-3 shows overall large

variability in RT. D) Identification rate of each tokens.

3.1.2 Experiment Design

During the experiment, the participants were instructed to listen from a five-step vowel

continuum; each token of the continuum was separated by equidistant steps based on first

formant frequency (F1) categorically perceived as /u/ to /a/. Tokens were 100 ms long, including

10 ms rise and fall time. The stimuli were delivered through shielded insert earphones; listeners

heard 150-200 trials of individual tokens and were asked to label the sound as perceived through

binary responses (‘u’ or ‘a’). Response times (RTs) were recorded as the difference between the

stimulus onset and the behavioral response (labeling of tokens). Figure 3.1 (C, D) shows

9



token-wise variability of RTs and identification of tokens. Simultaneous EEG recording was

carried out using 64 sintered Ag/AgCI electrodes at standard 10-10 locations around the scalp

during the trials. As subsequent preprocessing steps, ocular artifacts were corrected using

principal component analysis (PCA), filtered (bandpass: 1-100 Hz; notch filter: 60 Hz), epoched

(-200 to 800 ms) into single trials, and baseline corrected (-200 ms to 0 ms).

3.1.3 Behavioral Data Analysis

To classify behavioral CP, we opted to form categories within RTs from all the samples using

the exact process in Al-Fahad et al. (2020). The idea is to use Gaussian Mixture Model (GMM)

with expectation-maximization (EM) to identify the plausible number of clusters from the

distribution of RTs. We found four clusters within the distribution of RT using the Bayesian

Information Criterion (BIC) as a metric to select the optimal number of components (clusters,

ranges from 1-14) and the type of covariance parameter (full, tied, diagonal, and spherical). The

procedure concluded with an optimal of four clusters using covariance type ‘spherical’. We

inferred fast, medium, and slow RTs as the underlying categories based on the centroid and

minimum, maximum range of each of these clusters. The fourth cluster was determined to be an

outlier due to its low probability and was discarded from further analysis. Figure 3.2 illustrates

the optimization of GMM, the RT distribution, the probability of each RT cluster, and the

maximum, minimum range of each RT cluster.

3.1.4 Spectral-Spatial Data Generation

As explained earlier, we have opted to use bootstrapping to generate more examples

appropriate for modeling using DL tools. We use the process of sampling trials with replacement

in individual RT clusters and averaging them to generate ERPs. We sampled and averaged 50

trials at once in each RT cluster and repeated this process 500 times. This process produced

62525 ERPs, converting to power spectral densities (PSDs) and band powers. We compute PSDs

focusing on three frequency bands: α (8-15 Hz), β (16-31 Hz), and γ (32–60 Hz). We used the

10



Figure 3.2: Clustering of RT data. A) Optimization of hyperparameters of GMM using Bayesian

Information Criterion. B) Original RT distribution. C) The probability of each RT clusters using

the optimum GMM. D) The range of each RT clusters

built-in psd welch function provided in the open-source software package MNE-Python [Gramfort

et al. (2013)] to compute the PSDs for the three distinct bands. Next, we average across each

discrete frequencies within the bands to acquire average band power for each of the 64 channels.

The first three steps of Figure 3.3 (A, B, C) depicts the band power calculation from the ERPs.

We proceed to project these scaler band powers into a 2d topographical representation of the

scalp known as topomap. The scaler band powers associated with each channel get mapped into

the location of the channel in the topomap and extrapolated (‘box’) for crisp visual

representation. We generate topomaps for the three-band powers (α, β, γ) individually, convert

them to grayscale images, and stack them along the third dimension (RGB color channels)

[Bashivan et al. (2015)]. In this way, each of the bands gets represented through different color

11



channels (see Figure 3.3 (D)). We used the plot topomap from MNE-Python to generate the

topomaps from the average band powers.

Figure 3.3: A) Sample ERP. B) PSDs of 64 spatial locations C) α, β, γ band powers D) Spatial

topomaps of α, β, γ bands

3.1.5 Temporal Data Generation

We use ERPs to model and decode the temporal attributes of behavioral CP. We did not

model with single trial EEG due to uneven class samples

(|slow| ≈ 4000, |med| ≈ 25000, |fast| ≈ 30000). ERPs have a very good temporal resolution

(precision in milliseconds) [Friedman and Johnson Jr. (2000)] and therefore are perfect for

answering the ‘when in time’ question. Usually, ERPs are computed by taking the average of all

12



trials of an arbitrary event. However, since ERPs have a good temporal resolution, we opted to

take a bootstrap and average approach. Another reason is that bootstrapping allows for more

sample generation which is needed for effective learning through DL models, as explained in

section 3.1.4. We did keep the rate of bootstrapping significantly lower than that of the topomap

generation process due to the good resolution of ERPs. We take 10 trials with replacement and

average to generate one ERP sample on each iteration; 500 iterations of bootstraping and

averaging are carried out within each subjects’ RT clusters. The bootstrap process produced a

dataset of 74004 ERP samples with equal number of samples in each class.

3.2 Modeling using CNN

To model spatial-spectral and temporal properties of speech categorization behavior, we

utilized 2D-CNN and 1D-CNN, respectively. In order to acquire the best performing model for

each of these tasks, we applied the Bayesian hyperparameter optimization algorithm

Tree-structure Parzen Estimator (TPE) [Bergstra et al. (2011)]. TPE is a smart hyperparameter

optimization technique that gradually improves the performance of any algorithm iteratively. As

mentioned earlier, we have used multiple models for consistent feature selection, so the TPE

algorithm is utilized here as a hyperparameter optimizer and also to come up with multiple

performing models. In this section, we present the hyperparameters for modeling spatial-spectral

and temporal data and the general configuration of modeling.

3.2.1 Spatial-Spectral Modeling

We use topomaps to model the spatial-spectral attributes of the behavioral CP, as mentioned

in section 3.1.4. Among the 62525 topomaps generated, we used 46893 (75%) samples for

training and 15632 (25%) for testing on each model optimized by the TPE algorithm. We

optimize the architecture and the general hyperparameters (e.g., batch size, epochs, learning

rate); table 3.1 describes the hyperparameters optimized by TPE for SPSMs. We utilized Adam

[Kingma and Ba (2014)], Nadam [Dozat (2016)] and RMSprop as the optimizers (learning
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algorithm) and ReLU [Hahnloser et al. (2000), Jarrett et al. (2009)] or ELU [Clevert et al.

(2016)] as activation functions during TPE optimization of SPSMs. In the convolution layers,

each layer contains twice the number of filters than the previous layer. If there are more than

four layers, then the number of filters on each layer is iteratively increased with a constant value

(the initial number of filters chosen by TPE). The kernel size of filters in convolution layers and

residual layers are fixed (3× 3) with single strides (1, 1). The pooling size in max-pooling layers

after convolution layers is also fixed (2× 2) with single strides (1, 1). We ran 35 trials of the

TPE optimization of spatial-spectral modeling and chose the top 10 SPSMs (based on test

accuracy) among 35 for analysis (see section 3.4 for rationale). Figure 3.4 illustrate the chosen

hyperparameters during each trial with associated test accuracy.

Table 3.1: The hyperparameter optimized for SPSMs with TPE

Hyperparameter Description

batch size The batch size during training.

epochs The number of epochs during training.

first conv The number of stacked convolution layers in the bottom of the network.

nb conv pool layers The number of consecutive convolution and max-pool layers.

conv hiddn units mult The number of filters in the 1st convolution layer (40 ×mult).

conv dropout drop proba The dropout probability of convolution filters.

residual The number of residual layers, inspired by ResNet [He et al. (2016)].

conv pool res start idx The layer to start the residual connections.

fc units 1 mult The number of neuron in the 1st fully connected (fc) layer (750 ×mult).

fc dropout drop proba The dropout probability of neurons in the fully connected layers.

one more fc The number of neurons in the 2nd layer of the fc layers (750 ×mult).

l2 weight reg mult The l2 regularization parameter (λ = 0.0007 ×mult).

lr rate mult The learning rate parameter (lr = 10−5 ×mult).

use BN The use of batch normalization in convolution layers.

activation The activation function in the convolution and fc layers.

optimizer The optimization algorithm.

3.2.2 Temporal Modeling

We model ERPs with 1D-CNN or temporal CNN for analyzing the temporal aspect of

auditory CP. Just like our spatial-spectral modeling, we use TPE for hyperparameter

optimization. We took 75% of the ERP samples for training and 25% for testing. Most of the

hyperparameters regarding the architecture design of 1D-CNN are the same as SPSM, except we

limit the search to two types of architectures only. We chose between a vgg [Simonyan and

Zisserman (2015)] like architecture as depicted in Jonas et al. (2019) and a normal CNN i.e.

convolution in each layer followed by max-pooling (an architecture like that of LeNet [Lecun
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Figure 3.4: Hyperparameters chosen during TPE optimization of SPSMs.

et al. (1998)]). Also, our hyperspace for TPE algorithm is configured to build Recurrent

Convolution Neural Network (RCNN) and CNNs with fully connected layers only. We use

bidirectional LSTM [Schuster and Paliwal (1997)] in our RCNNs as they have superior ability to

capture long term dependency than uni-directional LSTM [Hochreiter and Schmidhuber (1997)].

Similar to our spatial-spectral modeling approach, we kept the kernel size in the convolution

layers fixed (kernel size of 3) but chose between a pool size of 2 or 4. We chose the top 10 models

based on test accuracy for temporal analysis. Table 3.2 provides the description of the

hyperspace for TMs and figure 3.5 illustrates the selected hyperparameters during TPE

optimization.

3.3 Decoding using GradCAM

3.3.1 GradCAM and Guided-GradCAM

GradCAM is a visual interpretation tool that depicts a coarse localization map of an image

detected by CNN w.r.t a class or label [Selvaraju et al. (2017)]. GradCAM uses gradients of a
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Table 3.2: The hyperparameter optimized for TMs with TPE

Hyperparameter Description

batch size The batch size during training.

epochs The number of epochs during training.

nb conv pool layers The number of consecutive convolution and max-pool layers.

conv hiddn units mult The number of filters in the 1st convolution layer (20 ×mult).

conv dropout drop proba The dropout probability of convolution filters.

no stack vgg The number of stacked convolutions in a layer of a vgg type network.

pool size Pool size in max-pool layers.

lstm layer The number of units in the lstm layer (200 ×mult).

lstm dropout drop proba The dropout probability of lstm units.

fc layer The number of neuron in the 1st fc layer (200 ×mult).

fc dropout drop proba The dropout probability of neurons in the fully connected layers.

one more fclayer The number of neurons in the 2nd layer of the fc layers (100 ×mult).

l2 weight reg mult The l2 regularization parameter (λ = 0.0007 ×mult).

lr rate mult The learning rate parameter (lr = 10−3 ×mult).

use BN The use of batch normalization in convolution layers.

arch type The type of architecture to utilize.

optimizer The optimization algorithm.

class flowing into the final convolution layer to produce such visualizations. Guided-GradCAM is

another class discriminative activation map proposed in the same study that combines

Guided-Backpropagation [Springenberg et al. (2015)] with GradCAM to produce channel-wise

class activation maps.

We now present the mathematical formulation of GradCAM, Guided-Backpropagation, and

Guided-GradCAM. For computing GradCAM, LcGradCAM ∈ Ru×v of width u and height v for

any class c, the first step is to compute the gradient for class c, yc, w.r.t activations Ak of a

convolutional layer. The gradients are then global-average-pooled over the width i and height j

dimensions to acquire the neuron importance weights αck.

αck =
1

Z

∑
i

∑
j

δyc

δAkij
(3.1)

The next step is to perform a weighted combination of forward activation maps and following

it up with a ReLU to acquire LcGradCAM which is of the same size as the convolutional feature

maps.

LcGradCAM = ReLU(
∑
k

αckA
k) (3.2)

Guided-Backpropagation is an approach derived from the deconvolutional net (deconvnet)

introduced by Zeiler and Fergus (2014). The deconvnet performs a forward pass of the network
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Figure 3.5: Hyperparameters chosen during TPE optimization of TMs.

to compute ‘switches,’ which are maxima positions within each pooling region. These ‘switches’

are then used to obtain a distinctive reconstruction. The reconstruction is based on a backward

pass after the forward pass, and the backward pass is about going down from a neuron activation

in a top layer to the input of the network. The backward pass is put through ReLU in each step

to signify that only non-negative gradients flow from top to bottom layers. However, this

approach shows noise in the reconstruction mostly because higher layers learn more

representative features and cannot be pinpointed to a single input that activates them. Hence in

Guided-Backpropagation, a slight adjustment is made by adding a guidance signal from higher

layers to lower layers, the guidance signal could be interpreted as the signal that paves a path

from top layers to the bottom input, and that path consists of only neurons that are maximally

positively influenced by the input.

A forward pass is defined as f l+1
i = relu(f li ) = (f li > 0), of any arbitrary layer l in the

network travelling from the bottom input to consecutive deeper layers. The backward pass is

progression from the top or the deepest layer to the input and is defined as (Rl+1
i > 0).Rl+1

i , for

any arbitrary layer l. Guided-Backpropagation uses the forward pass f l+1
i as the guidance signal
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and (Rl+1
i > 0).Rl+1

i is the same backward pass of the deconvnet which ensures negative

gradients does not flow through the bottom layers.

Rli = (f li > 0).(Rl+1
i > 0).Rl+1

i (3.3)

It should be noted that Guided-Backpropagation does not produce class discriminative

visualization even though it is conditioned on the input. Guided-GradCAM is another visual

interpretation of CNN which is suggested in Selvaraju et al. (2017). Guided-GradCAM is a

component-wise multiplication of the saliency map from GradCAM and feature map from

Guided-Backpropagation, thus it provides insight into saliency among all extracted features. As

we mentioned earlier, the saliency map from GradCAM, LcGradCAM is of the same size as the

convolutional feature map, whereas the feature map from Guided-Backpropagation is of the size

of the input image. For computing Guided-GradCAM, we need to upsample (by any image

interpolation method) the saliency map to match the Guided-Backpropagation feature map. Let

Lc
′
GradCAM be the upsampled saliency map of size m× n which is the same size of the input

image, so the class discriminative map from Guided-GradCAM L∗c is defined as,

Lc
∗

= ReLU(Lc
′
GradCAM ×Rci ) (3.4)

We have opted to clamp any negative values from the GradCAM output since these negative

values correspond to features belonging to other classes [Selvaraju et al. (2017)]. Figure 3.6

illustrates some examples of class discriminative maps from GradCAM and Guided-GradCAM.

3.3.2 Spatial-Spectral Decoding

We stated earlier that class discriminative feature visualization tools like GradCAM and

Guided-GradCAM do not allow us to reach conclusive inference due to lack of quantification.

Therefore, we introduce a kernel-based extraction method that extracts feature importance

values from class discriminative maps. Note that in our case, the class discriminative map Lc
∗

from equation 3.4 is a colored image which is represented as a matrix of size m× n× c, where
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Figure 3.6: Sample GradCAMs and Guided GradCAMs. A) Noisy saliency map from GradCAM

but with Guided-GradCAM shows a more noise free feature visualization. B) Comparitively less

noisy GradCAM and Guided-GradCAM output. C) A perfect saliency map detecting features in

the perpheri of the scalp.

m,n, c are height, width and RGB color channels respectively. The RGB channels correspond to

the three distinct frequency bands of α, β, γ, and we have opted to apply the kernel-based

extraction method on the band channels separately. Figure 3.7 shows an example of a band-wise

class discriminative map. The band wise feature importance let us compute the spectral saliency

(see equation 3.6) from CNN models.

Let the positions of the electrodes in the input topomaps of the model be

pos = {p1, p2, p3, ........, pn} where n = |electrodes| and p = (x, y), then for each p ∈ pos we apply

a median extractor kernel of size k× k. Figure 3.8 shows an example for median kernel extraction

from Guided-GradCAM. In our experiment, we have used a kernel size of k = 20 (20× 20).
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Figure 3.7: Band-wise Guided-GradCAM visualization.

S = medianp∈pos(L
c∗
pk×k

) (3.5)

S is a vector of size n× |bands| (in our case 64× 3) and is called the Spatial-Spectral

Saliency Score that contains the band wise spatial feature importance. The spatial saliency score

Se is the maximum n values of S across bands. To acquire spectral saliency score Sf , we average

S across each frequency bands.

Sf =

∑
e∈electrodes Se,f

n
, f ∈ {α, β, γ} (3.6)
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Figure 3.8: Extraction of band-wise selected spatial features from Guided-GradCAM.

3.3.3 Temporal Decoding

Although we used 1D-CNN for temporal modeling, there is not much difference in the

application of GradCAM except we work with convolutional feature maps, which are one

dimensional. Naturally, the convolutional feature maps are not of the same size as the input;

thus, we upsample the class discriminative maps from GradCAM to the original input size of

n× |timesteps|, where n = |electrodes|. Note we increase the height of the saliency maps to

match |electrodes| for visual inspection only. Since we are using 1D-CNN, the variability in the

saliency maps is across the temporal dimension only [Jonas et al. (2019)], thus during the

upsampling, the values are copied across the electrodes. Figure 3.9 shows the average saliency

maps from the top ten temporal models and the overall saliency map of these ten models.

We use a similar kernel base extraction procedure for the temporal saliency maps to acquire

saliency values for quantative analysis. Let Lct be the upsampled saliency map from GradCAM
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Figure 3.9: Individual and overall saliency maps of 10 best performing TMs.

belonging to class c, we then use a sliding median kernel extractor of size τ across the temporal

dimension to obtain the Temporal Saliency Score St,

St = medianτ (W (t− τ)(Lct)), where t = {t0, t1, t2, t3, ........., tN} and tN = t0 +N∆t (3.7)

∆t represents the interval in which the EEG signals are epoched. EEG signals in our data are

epoched in 2 ms (∆t = 2ms) interval, so the kernel size τ is equivalent to two times the original

timesteps. For example, we use τ = 50 in our extraction step, which means taking the median

values of 100 ms durations in the epoched EEG signal.
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3.4 Overall Saliency Score

So far, we have illustrated the quantification process of learned representation from

spatial-spectral and temporal modeling through saliency scores. To get insight of the most

prevalent spatial-spectral-temporal features selected by these models we have computed the

unweighted and weighted mean of the saliency scores of the 10 best SPSMs and TMs. If

SM = {Sm1 , Sm2 , Sm3 , ........, SmN} is a set of saliency scores extraced from N corresponding

models, M = {m1,m2,m3, .............,mN}, then the overall saliency score S∗ is a weighted average

of all the candidates in SM ,

S∗ =
Pm

∑
m∈M U(Sm)

N
(3.8)

Pm is a scaler metric that characterizes the performance of model m and U is a min-max

normalization function. We use min-max normalization to ensure that saliency scores from all

the models are within the same range (0 to 1). The performance metric Pm ensures that more

weight is given to the models with better performance (see section 5.2 for rationale). We set

Pm = 1 when computing overall saliency scores through unweighted averaging.
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CHAPTER 4. RESULTS

The current section elaborates on the results of all the experiments conducted in this study.

We have used ten best performing SPSMs and TMs for analysis. First, we present the modeling

performance in classifying the three RT groups. Then we present a learned representation of

individual models and the consistent features selected among them.

4.1 Modeling

The hyperparameter optimization for both temporal and spatial-spectral models are run for

35 trials. Figure 4.1 illustrates the test accuracy of SPSMs and TMs during the trials. The TPE

algorithm iteratively chooses hyperparameters that gradually improves the modeling of some

arbitrary function. Among the 35 SPSMs and TMs, the mean test accuracy was 75.52 and 82.66,

respectively. The top 10 SPSMs has a range of test accuracy from ≈ 83% to 87%, while the

range for the top 10 TMs is from ≈ 91% to 95%. Table 4.1 shows the performance of the top 10

SPSMs and TMs respectively.

Figure 4.1: Test accuracy during TPE optimization of SPSMs and TMs
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Figure A.3 and A.6 shows the overall and individual confusion matrices from the top 10

SPSMs and TMs respectively. The overall confusion matrices suggest effective learning of

spatial-spectral and temporal patterns from EEG data in identifying the RT groups. The overall

better performance in TMs than SPSMs is due to the excellent temporal resolution of ERPs.

Table 4.1: Performance metrics for top 10 SPSMs and TMs respectively.

(a) Performance of SPSMs

Model Precision Recall F1 Score AUC Accuracy

SPSM-1 82.96% 84.80% 83.59% 95.86% 83.22%

SPSM-2 84.25% 84.22% 84.05% 95.86% 83.35%

SPSM-3 84.23% 84.25% 84.16% 95.57% 83.58%

SPSM-4 84.97% 84.46% 84.69% 95.60% 84.05%

SPSM-5 84.43% 85.29% 84.83% 95.87% 84.25%

SPSM-6 84.90% 85.24% 85.01% 95.92% 84.53%

SPSM-7 86.21% 87.10% 86.60% 96.76% 86.09%

SPSM-8 87.12% 87.02% 87.07% 96.79% 86.46%

SPSM-9 87.54% 88.03% 87.75% 97.16% 87.24%

SPSM-10 87.70% 87.95% 87.79% 97.07% 87.28%

(b) Performance of TMs

Model Precision Recall F1 Score AUC Accuracy

TM-1 91.32% 91.33% 91.31% 98.30% 91.27%

TM-2 91.89% 91.95% 91.91% 98.45% 91.88%

TM-3 91.90% 91.93% 91.91% 98.54% 91.87%

TM-4 91.89% 91.33% 91.31% 98.30% 92.58%

TM-5 92.68% 92.71% 92.70% 98.75% 92.65%

TM-6 92.84% 92.88% 92.86% 98.82% 92.81%

TM-7 92.87% 92.91% 92.89% 98.76% 92.85%

TM-8 93.41% 93.45% 93.42% 98.98% 93.39%

TM-9 94.18% 94.21% 94.20% 99.22% 94.16%

TM-10 94.62% 94.65% 94.63% 99.23% 94.59%

4.2 Decoding

In this section, we present individual and overall learned representations across SPSMs and

TMs through saliency score. The spatial, spectral, and temporal saliency score (denoted by

Se, Sf , St respectively) quantifies the features selected by the models on each of these aspects. To

observe the consistent learned representation across models, we have computed the overall

saliency score through weighted-averaging of saliency scores of all the models (see equation 3.8).

Figure 4.2, 4.3, 4.4 illustrates the spatial, spectral and temporal feature importance given by each

of the respective models as well as consistent feature detected across them. The spectral and

temporal difference between RT groups is inferred through pairwise Tukey HSD test and

mixed-model ANOVA analysis on the respective overall saliency scores. By comparing RT groups
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within each band and timesteps using these tests, we were able to observe ’how’ and ’when’ the

neural activities varies in dictating individuals RT.

Figure 4.2: Individual and overall top 15 salient spatial features identified by 10 best performing

SPSMs.

Figure 4.2 show the individual and overall top 15 ranked spatial features based on the spatial

saliency score of the top 10 SPSMs. The overall spatial saliency suggests (denoted by ’Overall’,

in figure 4.2) that frontal regions in the right hemisphere (RH) are consistent in differentiating

between the RT groups. However, activation in the left hemisphere (LH) shows variability across

SPSMs.

26



Figure 4.3: Comparison of individual and overall spectral saliency score across samples in 10 best

SPSMs.

Figure 4.3 illustrates the overall and individual band saliency variation across samples as

modeled by top 10 SPSMs. Primary observation suggests that the γ band is the most prominent

in determining speech categorization behavior, although some SPSMs suggest that the α band is

the most salient. But through overall spectral saliency score we see that γ band is associated

with the highest score (Sα = 0.015, Sβ = 0.006, Sγ = 0.026). It is also clear from the analysis of

spectral saliency scores that different models learn different spectral patterns.

The temporal saliency of the top 10 TMs is shown in figure 4.4 as the mean of temporal

saliency scores (St) across samples on each RT groups. The pairwise Tukey HSD test on each
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Figure 4.4: Individual and overall comparison between mean temporal saliency score of RT

groups across 10 best TMs.

timestep within the RT groups using overall saliency score reveals that 0-200 ms, 300-500 ms,

and 600-800 ms are the duration where the RT groups are most distinguishable.
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CHAPTER 5. DISCUSSION AND CONCLUSION

We present further arguments for our decoding process using CNN, GradCAM, and saliency

scores in the current section. We also look at our finding of speech categorization behavior with

contemporary studies as a final validation step of our process.

5.1 Novelty of Our Decoding Process

In our study, we have demonstrated a novel approach to decode neural functionalities from

EEG studies. Our proposed approach is an entirely data-driven procedure without the effects of

hand-engineered features or prior assumptions. To our best of knowledge, this is the first EEG

decoding framework using CNNs that allows insight into spatial, spectral, and temporal

properties of a neurological process. This study has shown that the scoring of learned features by

CNN models from EEG data allows us to reveal spatial-spectral-temporal patterns of complex

cognitive processes like categorical speech perception. Our decoding using different CNN models

shows that variable patterns are learned by different models even when there is little to no

significant changes in their performance. As stated earlier, this aspect is a direct attribution to

the stochastic nature of speech perception behavior and requires consideration of multiple

conjectures. Through the overall saliency score, we have acquired the most consistent features

learned across the model and can be considered as a unification of multiple conjectures.

5.2 Speech Categorization Behavior

Decoding response time (RT) in speech categorization reveals perceptual differences that

drive speech identification ability among individuals [Al-Fahad et al. (2020)]. Auditory

categorization in the human brain is revealed to use a distributed frontal-temporal-parietal

network by contemporary EEG studies [Bidelman and Walker (2019); Bidelman and Lee (2015a);
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Al-Fahad et al. (2020)]. The canonical language processing is left hemisphere (LH)

predominantly. However, through the consensus of the best performing SPSMs that right

hemisphere (RH) engagement is responsible for decoding RT of categorical speech processing.

Especially, frontal regions in RH (F8, F6, FC2, FC4, FC6) are significant in mapping speech to

the behavioral response. Hampshire et al. (2009, 2010) found through fMRI experiments that

right inferior frontal gyrus (IFG) activation is responsible for attentional control and detection of

task-relevant cues. Our results through overall saliency scores also suggest similar findings as the

fast and medium RT groups show more importance in the F6, F8, FC6, FC8 spatial locations

(presumably IFG) implying more attentional power in speech categorization decision (see figure

5.1). In terms of perceptual encoding of speech, we also find our spatial results to be coherent as

Bidelman and Howell (2016) found that audio stimuli of lower SNR cause increased engagement

of primary auditory cortex (PAC) and IFG in RH. Participants in our experiment predominantly

reacted faster when given clear tokens (TK 1, 2, 4, 5) than the ambiguous one (TK. 3) (see figure

3.1), which explains the functional lateralization of RH. In the case of slower RT, we find more

distributed region activations. Specifically, specfically we see a lesser activation in the frontal

region (presumably IFG) in RH, which suggests lack of attentional control is responsible for

driving slower RT. Al-Fahad et al. (2020) found in decoding RT from functional connectivity

measures that activities outside the CP hub are the leading cause for slower RTs. We also find a

similar pattern in our inference through overall spatial saliency as fast and medium RTs show a

clear frontal-temporal-parietal (F5, F7, M1, P1, PO3, PO7) activation in LH. In contrast, the

slower RT groups show no significant activations in LH frontal and temporal regions.

We assess through pairwise Tukey HSD test on the overall spectral saliency scores that α and

γ band distinguishes between the fast-med (p < .0001) and fast-slow (p < .0001) group while β

band is solely capable of characterizing the difference between med-slow (p = 0.0461) RT groups

(see table 5.1). These findings corroborate different theories about neurological processes in

association with auditory CP. Our study shows that γ band is more predictive of participants

decision time as it acquire the the highest overall spectral saliency score. This is coherent with
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Figure 5.1: Top 20 ranked spatial features for each RT groups by overall spatial saliency score.

the recent study of Mahmud et al. (2020b) suggesting γ band modulations are more correlated

with listeners’ behavioral CP. So, we can hypothesize that auditory object construction

[Tallon-Baudry and Bertrand (1999)] and local network synchronization [Giraud and Poeppel

(2012); Haenschel et al. (2000); Si et al. (2017)] is crucial in determining listeners’ RT as γ is

found to be responsible for these tasks. Our result also suggests that β band is associated with

large difference in RTs (fast-slow) of listeners. We conclude that listeners’ speech identification

capacity [Bidelman and Lee (2015b)] and representational memory [Bashivan et al. (2014)] also

plays a pivotal role in dictating the extreme ends of behavioral responses. The effect of β band in

the difference of medium and slow RTs is limited in our results. We assume the β band is only

significant in late medium and early slow RT ranges (≈ 700− 1000ms). Our assumption is based

on the comparatively insignificant effect of β band (p = 0.0461) on the distinction between these

RT groups. Nevertheless, we conclude that the effect of β band on this matter either could be

related to motor-related activity and uncertainty in decision tasks [Senkowski et al. (2005);

Tzagarakis et al. (2015)] or reflection of weak hearing capacity as Price et al. (2019) found

top-down β connectivity increases for impoverished auditory inputs with minimal behavioral

changes. The findings in Bidelman (2017) support the role of α band in discriminating fast-med

and fast-slow RT groups where early evoked α oscillations were found to be fundamental in
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distinguishing behavioral responses between trained and untrained listeners (i.e., musicians vs.

non-musicians). So, the effect of the α band in our data might reflect listeners’ attentional

control capacity dictated by their musical training experience.

Table 5.1: Significance of α, β, γ band in distinguishing RT groups.

RT Groups p-value

α

fast - med < .0001

fast - slow < .0001

med - slow 0.2638

β

fast - med 0.1135

fast - slow < .0001

med - slow 0.0461

γ

fast - med < .0001

fast - slow < .0001

med - slow 0.2816

The general consensus of the best TMs through overall temporal saliency scores (St) shows

that 0-200 ms, 300-500 ms and 600-800 ms (figure 5.2, 4.4) are the duration where the RT groups

are most distinguished. Recent study from Carter and Bidelman (2020) found that early

(∼ 250ms) and late (∼ 450ms) engagement of right IFG during categorical processing. As we

have found the role of the right IFG to be important, we presume 0-200 ms and 300-500 ms are

the duration when the engagement of the right IFG is occurring. We can also conclude that since

0-200 ms is still during the ”encoding” of the sound, the saliency of speech representation itself

at an early perceptual level drives the later decision speed. The rearing end duration

(∼ 600− 800ms) found in our analysis might be related to the uncertainty in motor-related

activity.

In summary, our results indicate early (∼ 0− 200ms) and late (∼ 300− 500ms) engagement

in the right hemisphere (presumably PAC and IFG) are the primary indicator of individuals

behavioral response. While all three bands have active and passive roles, γ band modulations are

the main predictor of listeners’ behavioral response. This indicates that auditory CP ability in

listeners’ dictates their RT.
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Figure 5.2: Overall temporal saliency scores of each RT groups (without the effect of median ker-

nel).

5.3 Conclusion

In the prescribed study, we have demonstrated a novel way to decode neural activities

dictating individuals’ RT from EEG data using CNNs. Our data-driven approach is a bias-free

decoding process since we have designed a framework for cultivating a consensus from multiple

models, a reflection of only the most common and strong pattern underlying a cognitive task. We

have found the efficacy of our approach by further confirming several supporting hypotheses of

speech categorization behavior. Although the science of interpreting CNN models is still in its

early steps, we show that existing tools like GradCAM and Guided-GradCAM can be used to

explain the neurological properties of behavioral auditory CP. Our proposed process could be

extended to decode other cognitive functions from EEG data.
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APPENDIX A. Accuracy and Loss Curves

Figure A.1: Accuracy curves of 10 best SPSMs during training.

Figure A.2: Loss curves of 10 best SPSMs during training.

40



Figure A.3: Individual and overall confusion matrices of 10 best SPSMs.

Figure A.4: Accuracy curves of 10 best TMs during training.
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Figure A.5: Loss curves of 10 best TMs during training.

Figure A.6: Individual and overall confusion matrices of 10 best TMs.
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