145 research outputs found

    Classification of breast lesions in ultrasonography using sparse logistic regression and morphology‐based texture features

    Get PDF
    Purpose: This work proposes a new reliable computer‐aided diagnostic (CAD) system for the diagnosis of breast cancer from breast ultrasound (BUS) images. The system can be useful to reduce the number of biopsies and pathological tests, which are invasive, costly, and often unnecessary. Methods: The proposed CAD system classifies breast tumors into benign and malignant classes using morphological and textural features extracted from breast ultrasound (BUS) images. The images are first preprocessed to enhance the edges and filter the speckles. The tumor is then segmented semiautomatically using the watershed method. Having the tumor contour, a set of 855 features including 21 shape‐based, 810 contour‐based, and 24 textural features are extracted from each tumor. Then, a Bayesian Automatic Relevance Detection (ARD) mechanism is used for computing the discrimination power of different features and dimensionality reduction. Finally, a logistic regression classifier computed the posterior probabilities of malignant vs benign tumors using the reduced set of features. Results: A dataset of 104 BUS images of breast tumors, including 72 benign and 32 malignant tumors, was used for evaluation using an eightfold cross‐validation. The algorithm outperformed six state‐of‐the‐art methods for BUS image classification with large margins by achieving 97.12% accuracy, 93.75% sensitivity, and 98.61% specificity rates. Conclusions: Using ARD, the proposed CAD system selects five new features for breast tumor classification and outperforms state‐of‐the‐art, making a reliable and complementary tool to help clinicians diagnose breast cancer

    Quantification of tumour heterogenity in MRI

    Get PDF
    Cancer is the leading cause of death that touches us all, either directly or indirectly. It is estimated that the number of newly diagnosed cases in the Netherlands will increase to 123,000 by the year 2020. General Dutch statistics are similar to those in the UK, i.e. over the last ten years, the age-standardised incidence rate1 has stabilised at around 355 females and 415 males per 100,000. Figure 1 shows the cancer incidence per gender. In the UK, the rise in lifetime risk of cancer is more than one in three and depends on many factors, including age, lifestyle and genetic makeup

    Texture analysis and Its applications in biomedical imaging: a survey

    Get PDF
    Texture analysis describes a variety of image analysis techniques that quantify the variation in intensity and pattern. This paper provides an overview of several texture analysis approaches addressing the rationale supporting them, their advantages, drawbacks, and applications. This survey’s emphasis is in collecting and categorising over five decades of active research on texture analysis.Brief descriptions of different approaches are presented along with application examples. From a broad range of texture analysis applications, this survey’s final focus is on biomedical image analysis. An up-to-date list of biological tissues and organs in which disorders produce texture changes that may be used to spot disease onset and progression is provided. Finally, the role of texture analysis methods as biomarkers of disease is summarised.Manuscript received February 3, 2021; revised June 23, 2021; accepted September 21, 2021. Date of publication September 27, 2021; date of current version January 24, 2022. This work was supported in part by the Portuguese Foundation for Science and Technology (FCT) under Grants PTDC/EMD-EMD/28039/2017, UIDB/04950/2020, PestUID/NEU/04539/2019, and CENTRO-01-0145-FEDER-000016 and by FEDER-COMPETE under Grant POCI-01-0145-FEDER-028039. (Corresponding author: Rui Bernardes.)info:eu-repo/semantics/publishedVersio

    IMAGE UNDERSTANDING OF MOLAR PREGNANCY BASED ON ANOMALIES DETECTION

    Get PDF
    Cancer occurs when normal cells grow and multiply without normal control. As the cells multiply, they form an area of abnormal cells, known as a tumour. Many tumours exhibit abnormal chromosomal segregation at cell division. These anomalies play an important role in detecting molar pregnancy cancer. Molar pregnancy, also known as hydatidiform mole, can be categorised into partial (PHM) and complete (CHM) mole, persistent gestational trophoblastic and choriocarcinoma. Hydatidiform moles are most commonly found in women under the age of 17 or over the age of 35. Hydatidiform moles can be detected by morphological and histopathological examination. Even experienced pathologists cannot easily classify between complete and partial hydatidiform moles. However, the distinction between complete and partial hydatidiform moles is important in order to recommend the appropriate treatment method. Therefore, research into molar pregnancy image analysis and understanding is critical. The hypothesis of this research project is that an anomaly detection approach to analyse molar pregnancy images can improve image analysis and classification of normal PHM and CHM villi. The primary aim of this research project is to develop a novel method, based on anomaly detection, to identify and classify anomalous villi in molar pregnancy stained images. The novel method is developed to simulate expert pathologists’ approach in diagnosis of anomalous villi. The knowledge and heuristics elicited from two expert pathologists are combined with the morphological domain knowledge of molar pregnancy, to develop a heuristic multi-neural network architecture designed to classify the villi into their appropriated anomalous types. This study confirmed that a single feature cannot give enough discriminative power for villi classification. Whereas expert pathologists consider the size and shape before textural features, this thesis demonstrated that the textural feature has a higher discriminative power than size and shape. The first heuristic-based multi-neural network, which was based on 15 elicited features, achieved an improved average accuracy of 81.2%, compared to the traditional multi-layer perceptron (80.5%); however, the recall of CHM villi class was still low (64.3%). Two further textural features, which were elicited and added to the second heuristic-based multi-neural network, have improved the average accuracy from 81.2% to 86.1% and the recall of CHM villi class from 64.3% to 73.5%. The precision of the multi-neural network II has also increased from 82.7% to 89.5% for normal villi class, from 81.3% to 84.7% for PHM villi class and from 80.8% to 86% for CHM villi class. To support pathologists to visualise the results of the segmentation, a software tool, Hydatidiform Mole Analysis Tool (HYMAT), was developed compiling the morphological and pathological data for each villus analysis

    医用超音波における散乱体分布の高解像かつ高感度な画像化に関する研究

    Get PDF
    Ultrasound imaging as an effective method is widely used in medical diagnosis andNDT (non-destructive testing). In particular, ultrasound imaging plays an important role in medical diagnosis due to its safety, noninvasive, inexpensiveness and real-time compared with other medical imaging techniques. However, in general the ultrasound imaging has more speckles and is low definition than the MRI (magnetic resonance imaging) and X-ray CT (computerized tomography). Therefore, it is important to improve the ultrasound imaging quality. In this study, there are three newproposals. The first is the development of a high sensitivity transducer that utilizes piezoelectric charge directly for FET (field effect transistor) channel control. The second is a proposal of a method for estimating the distribution of small scatterers in living tissue using the empirical Bayes method. The third is a super-resolution imagingmethod of scatterers with strong reflection such as organ boundaries and blood vessel walls. The specific description of each chapter is as follows: Chapter 1: The fundamental characteristics and the main applications of ultrasound are discussed, then the advantages and drawbacks of medical ultrasound are high-lighted. Based on the drawbacks, motivations and objectives of this study are stated. Chapter 2: To overcome disadvantages of medical ultrasound, we advanced our studyin two directions: designing new transducer improves the acquisition modality itself, onthe other hand new signal processing improve the acquired echo data. Therefore, the conventional techniques related to the two directions are reviewed. Chapter 3: For high performance piezoelectric, a structure that enables direct coupling of a PZT (lead zirconate titanate) element to the gate of a MOSFET (metal-oxide semiconductor field-effect transistor) to provide a device called the PZT-FET that acts as an ultrasound receiver was proposed. The experimental analysis of the PZT-FET, in terms of its reception sensitivity, dynamic range and -6 dB reception bandwidth have been investigated. The proposed PZT-FET receiver offers high sensitivity, wide dynamic range performance when compared to the typical ultrasound transducer. Chapter 4: In medical ultrasound imaging, speckle patterns caused by reflection interference from small scatterers in living tissue are often suppressed by various methodologies. However, accurate imaging of small scatterers is important in diagnosis; therefore, we investigated influence of speckle pattern on ultrasound imaging by the empirical Bayesian learning. Since small scatterers are spatially correlated and thereby constitute a microstructure, we assume that scatterers are distributed according to the AR (auto regressive) model with unknown parameters. Under this assumption, the AR parameters are estimated by maximizing the marginal likelihood function, and the scatterers distribution is estimated as a MAP (maximum a posteriori) estimator. The performance of our method is evaluated by simulations and experiments. Through the results, we confirmed that the band limited echo has sufficient information of the AR parameters and the power spectrum of the echoes from the scatterers is properly extrapolated. Chapter 5: The medical ultrasound imaging of strong reflectance scatterers based on the MUSIC algorithm is the main subject of Chapter 5. Previously, we have proposed a super-resolution ultrasound imaging based on multiple TRs (transmissions/receptions) with different carrier frequencies called SCM (super resolution FM-chirp correlation method). In order to reduce the number of required TRs for the SCM, the method has been extended to the SA (synthetic aperture) version called SA-SCM. However, since super-resolution processing is performed for each line data obtained by the RBF (reception beam forming) in the SA-SCM, image discontinuities tend to occur in the lateral direction. Therefore, a new method called SCM-weighted SA is proposed, in this version the SCM is performed on each transducer element, and then the SCM result is used as the weight for RBF. The SCM-weighted SA can generate multiple B-mode images each of which corresponds to each carrier frequency, and the appropriate low frequency images among them have no grating lobes. For a further improvement, instead of simple averaging, the SCM applied to the result of the SCM-weighted SA for all frequencies again, which is called SCM-weighted SA-SCM. We evaluated the effectiveness of all the methods by simulations and experiments. From the results, it can be confirmed that the extension of the SCM framework can help ultrasound imaging reduce grating lobes, perform super-resolution and better SNR(signal-to-noise ratio). Chapter 6: A discussion of the overall content of the thesis as well as suggestions for further development together with the remaining problems are summarized.首都大学東京, 2019-03-25, 博士(工学)首都大学東

    Clinical Applicability of MRI Texture Analysis

    Get PDF
    Radiologisten kuvien tulkinta on perinteisesti perustunut asiantuntijan näköhavaintoihin. Tietokoneavusteisten menetelmien käyttö lisääntyy radiologisessa diagnostiikassa. Tekstuuria eli kuviorakennetta on käytetty erottelevana ominaisuutena kudoksia luokiteltaessa ja karakterisoitaessa. Kuvan kuviorakenteen ominaisuuksia kuvaavia tekstuuriparametreja voidaan laskea erilaisilla matemaattisilla ja signaalinkäsittelymenetelmillä. Tekstuurianalyysi on antanut lupaavia tuloksia magneettikuvien tarkastelussa. Sen avulla on voitu määrittää sekä pieniä hajanaisia että suurempia paikallisia muutoksia. Menetelmällä on mahdollista havaita ihmissilmälle näkymättömiä sekä näkyviä muutoksia. Menetelmää tulisi tutkia edelleen, koska kliinisen menetelmän kehittämistä varten tarvitaan lisätietoa sen soveltuvuudesta erilaisille aineistoille sekä analyysimenetelmän eri vaiheiden optimoimisesta. Tämän väitöstutkimuksen tavoite oli selvittää magneettikuvauksen tekstuurianalyysin kliinistä käytettävyyttä eri kannoilta. Tutkimusaineisto koostui kolmesta potilasmateriaalista ja yhdestä terveiden urheilijoiden joukosta sekä heidän verrokeistaan. Aineisto kerättiin osina Tampereen yliopistollisessa sairaalassa toteutettuja laajempia tutkimusprojekteja, ja mukaan otettiin yhteensä 220 osallistujaa. Ensimmäisessä osatyössä tarkasteltiin pehmytkudoskuvantamista, non-Hodgkin-lymfooman hoitovasteen arviointia tekstuurianalyysilla. Kaksi seuraavaa osatyötä käsitteli keskushermoston kuvantamista: lieviä aivovammoja sekä MS-tautia. Viimeisessä osatyössä arvioitiin liikunnan vaikutusta urheilijoiden ja verrokkien reisiluun kaulan luurakenteeseen. Kudosten ja muutosten vertailuissa oli edustettuna sekä ympäröivästä kudoksesta visuaalisella tarkastelulla erottumattomia että selkeästi erottuvia rakenteita. Lisäksi tutkimuksessa selvitettiin mielenkiintoalueen käsityönä tehtävän rajaamisen ja magneettikuvaussekvenssin valinnan vaikutusta analyysiin. Yhteenvetona todetaan, että tekstuurimenetelmällä on mahdollista havaita ja karakterisoida tutkimukseen valikoidun aineiston edustamia etiologialtaan erilaisia muutoksia kliinisistä 1.5 Teslan magneettikuvista. Tutkimuksessa käsitellyt yksityiskohdat MRI-kuvasarjojen valinnasta sekä mielenkiintoalueiden piirtämisestä antavat pohjaa kliinisen protokollan kehittämiseen. Osa tutkimusaineistoista oli kokeellisia, ja niiden tulokset tulisi vahvistaa laajemmilla kliinisillä tutkimuksilla.The usage of computerised methods in radiological image interpretation is becoming more common. Texture analysis has shown promising results as an image analysis method for detecting non-visible and visible lesions, with a number of applications in magnetic resonance imaging (MRI). Although several recent studies have investigated this topic, there remains a need for further analyses incorporating different clinical materials and taking protocol planning for clinical analyses into account. The purpose of this thesis was to determine the clinical applicability of MRI texture analysis from different viewpoints. This study is based on three patient materials and one collection of healthy athletes and their referents. A total of 220 participants in wider on-going study projects at Tampere University Hospital were included in this thesis. The materials include a study on non-Hodgkin lymphoma, representing soft tissue imaging with malignant disease treatment monitoring; and two studies on central nervous system diseases, mild traumatic brain injury and multiple sclerosis. A musculoskeletal imaging study investigated load-associated physiological changes in healthy participants? bones. Furthermore, manual Region of Interest (ROI) definition methods and the selection of MRI sequences for analyses of visible and non-visible lesions were evaluated. In summary, this study showed that non-visible lesions and physiological changes as well as visible focal lesions of different aetiologies could be detected and characterised by texture analysis of routine clinical 1.5 T scans. The details of MRI sequence selection and ROI definition in this study may serve as guidelines for the development of clinical protocols. However, these studies are partly experimental and need to be validated with larger sample sizes

    Nonlinear Parametric and Neural Network Modelling for Medical Image Classification

    Get PDF
    System identification and artificial neural networks (ANN) are families of algorithms used in systems engineering and machine learning respectively that use structure detection and learning strategies to build models of complex systems by taking advantage of input-output type data. These models play an essential role in science and engineering because they fill the gap in those cases where we know the input-output behaviour of a system, but there is not a mathematical model to understand and predict its changes in future or even prevent threats. In this context, the nonlinear approximation of systems is nowadays very popular since it better describes complex instances. On the other hand, digital image processing is an area of systems engineering that is expanding the analysis dimension level in a variety of real-life problems while it is becoming more attractive and affordable over time. Medicine has made the most of it by supporting important human decision-making processes through computer-aided diagnosis (CAD) systems. This thesis presents three different frameworks for breast cancer detection, with approaches ranging from nonlinear system identification, nonlinear system identification coupled with simple neural networks, to multilayer neural networks. In particular, the nonlinear system identification approaches termed the Nonlinear AutoRegressive with eXogenous inputs (NARX) model and the MultiScales Radial Basis Function (MSRBF) neural networks appear for the first time in image processing. Along with the above contributions takes place the presentation of the Multilayer-Fuzzy Extreme Learning Machine (ML-FELM) neural network for faster training and more accurate image classification. A central research aim is to take advantage of nonlinear system identification and multilayer neural networks to enhance the feature extraction process, while the classification in CAD systems is bolstered. In the case of multilayer neural networks, the extraction is carried throughout stacked autoencoders, a bottleneck network architecture that promotes a data transformation between layers. In the case of nonlinear system identification, the goal is to add flexible models capable of capturing distinctive features from digital images that might be shortly recognised by simpler approaches. The purpose of detecting nonlinearities in digital images is complementary to that of linear models since the goal is to extract features in greater depth, in which both linear and nonlinear elements can be captured. This aim is relevant because, accordingly to previous work cited in the first chapter, not all spatial relationships existing in digital images can be explained appropriately with linear dependencies. Experimental results show that the methodologies based on system identification produced reliable images models with customised mathematical structure. The models came to include nonlinearities in different proportions, depending upon the case under examination. The information about nonlinearity and model structure was used as part of the whole image model. It was found that, in some instances, the models from different clinical classes in the breast cancer detection problem presented a particular structure. For example, NARX models of the malignant class showed higher non-linearity percentage and depended more on exogenous inputs compared to other classes. Regarding classification performance, comparisons of the three new CAD systems with existing methods had variable results. As for the NARX model, its performance was superior in three cases but was overcame in two. However, the comparison must be taken with caution since different databases were used. The MSRBF model was better in 5 out of 6 cases and had superior specificity in all instances, overcoming in 3.5% the closest model in this line. The ML-FELM model was the best in 6 out of 6 cases, although it was defeated in accuracy by 0.6% in one case and specificity in 0.22% in another one

    Image texture analysis of transvaginal ultrasound in monitoring ovarian cancer

    Get PDF
    Ovarian cancer has the highest mortality rate of all gynaecologic cancers and is the fifth most common cancer in UK women. It has been dubbed “the silent killer” because of its non-specific symptoms. Amongst various imaging modalities, ultrasound is considered the main modality for ovarian cancer triage. Like other imaging modalities, the main issue is that the interpretation of the images is subjective and observer dependent. In order to overcome this problem, texture analysis was considered for this study. Advances in medical imaging, computer technology and image processing have collectively ramped up the interest of many researchers in texture analysis. While there have been a number of successful uses of texture analysis technique reported, to my knowledge, until recently it has yet to be applied to characterise an ovarian lesion from a B-mode image. The concept of applying texture analysis in the medical field would not replace the conventional method of interpreting images but is simply intended to aid clinicians in making their diagnoses. Five categories of textural features were considered in this study: grey-level co-occurrence matrix (GLCM), Run Length Matrix (RLM), gradient, auto-regressive (AR) and wavelet. Prior to the image classification, the robustness or how well a specific textural feature can tolerate variation arises from the image acquisition and texture extraction process was first evaluated. This includes random variation caused by the ultrasound system and the operator during image acquisition. Other factors include the influence of region of interest (ROI) size, ROI depth, scanner gain setting, and „calliper line‟. Evaluation of scanning reliability was carried out using a tissue-equivalent phantom as well as evaluations of a clinical environment. iii Additionally, the reliability of the ROI delineation procedure for clinical images was also evaluated. An image enhancement technique and semi-automatic segmentation tool were employed in order to improve the ROI delineation procedure. The results of the study indicated that two out of five textural features, GLCM and wavelet, were robust. Hence, these two features were then used for image classification purposes. To extract textural features from the clinical images, two ROI delineation approaches were introduced: (i) the textural features were extracted from the whole area of the tissue of interest, and (ii) the anechoic area within the normal and malignant tissues was excluded from features extraction. The results revealed that the second approach outperformed the first approach: there is a significant difference in the GLCM and wavelet features between the three groups: normal tissue, cysts, and malignant. Receiver operating characteristic (ROC) curve analysis was carried out to determine the discriminatory ability of textural features, which was found to be satisfactory. The principal conclusion was that GLCM and wavelet features can potentially be used as computer aided diagnosis (CAD) tools to help clinicians in the diagnosis of ovarian cancer

    Advances in Bioengineering

    Get PDF
    The technological approach and the high level of innovation make bioengineering extremely dynamic and this forces researchers to continuous updating. It involves the publication of the results of the latest scientific research. This book covers a wide range of aspects and issues related to advances in bioengineering research with a particular focus on innovative technologies and applications. The book consists of 13 scientific contributions divided in four sections: Materials Science; Biosensors. Electronics and Telemetry; Light Therapy; Computing and Analysis Techniques
    corecore