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Abstract—Texture analysis describes a variety of image
analysis techniques that quantify the variation in intensity
and pattern. This paper provides an overview of several tex-
ture analysis approaches addressing the rationale support-
ing them, their advantages, drawbacks, and applications.
This survey’s emphasis is in collecting and categorising
over five decades of active research on texture analysis.
Brief descriptions of different approaches are presented
along with application examples. From a broad range of
texture analysis applications, this survey’s final focus is
on biomedical image analysis. An up-to-date list of biolog-
ical tissues and organs in which disorders produce texture
changes that may be used to spot disease onset and pro-
gression is provided. Finally, the role of texture analysis
methods as biomarkers of disease is summarised.

Index Terms—Biomedical imaging, computer-aided diag-
nosis, image analysis, texture analysis, texture biomarker,
texture classification.

[. INTRODUCTION

EXTURE is one of the most significant characteristics
T of all types of images. Although image texture does not
have an agreed-upon formal definition, it can be regarded as a
function of pixel intensity or colour variation that form repeated
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patterns [1]. Computational studies on texture started with the
work of Julesz [2] and, since then, texture has been studied in
the context of classification, segmentation, synthesis, and shape.

Concerning the use of texture in classification, algorithms are
designed to categorise a given textured image or region into one
of a predefined set of texture classes. The use of texture includes
image segmentation, in which images are split into regions
of homogenous texture. Also, new images can be generated
through texture synthesis. These are perceptually equivalent to
a texture sample. Finally, texture also allows recovering the
three-dimensional shape of a textured object present in an image.
Classification, segmentation, and synthesis are closely related
and widely studied, while shape from texture has received less
attention.

The computation of features that describe texture is the core of
texture analysis and can be performed by proposing mathemat-
ical definitions for image texture [3]. In several years of active
research in this field, many kinds of theories and algorithms have
emerged. However, the study of texture analysis can be traced
back to 1962 when the theory of human visual perception of
texture was studied, suggesting that texture might be modelled
using k-th order statistics. Co-occurrence matrices were mainly
driven by this perspective [4].

Human perception of texture has largely influenced the de-
velopment of computer-based texture analysis methods. Ex-
periments to understand how humans visually perceive texture
established the “theory of textons” [2], which assumes that
the preattentive discrimination of texture regions is based on
textons’ similarity and dissimilarity. Textons were first described
as elementary texture elements such as blobs, corners, end-lines,
and closures. In the early 1980s, the texton theory largely influ-
enced the development of early classic texture analysis methods.
Later, the texton concept was revisited, and texton was defined
as a cluster centre in the filter response space [5]. This definition
gave an operational power to the texton, enabling its automatic
generation from images and launching the possibility of learning
auniversal texton dictionary for all images. Texton theory built a
foundation for texture analysis and has inspired the development
of a broad range of texture analysis approaches, ranging from
structural to learning-based ones.

The research on texture analysis was mainly focused on
spectral and model-based approaches in the late 1980s and
early 1990s. Laws filter banks [6], Fourier transform [7], and
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wavelet transform [8] are examples of the spectral approach,
while Markov random fields [9] and fractal models [10] are two
major model-based approaches.

In the early 2000s, local binary patterns [11] appeared as
promising local texture descriptors. Since then, several local
binary patterns variants have been proposed [12]. Moreover,
the need for invariant texture features led to the proliferation
of local invariant methods such as the scale-invariant feature
transform [13] and the histogram of oriented gradients [14].

The transition phase from handcrafted to learned approaches
was started in 2001 with the bag-of-textons [5] (first), and the
bag-of-words [15] approaches. A dictionary of words is created
in these approaches, and images are presented as histograms
over the dictionary. Since 2012, the research attention on deep-
learning methods grew, and these have been applied in numer-
ous problems in computer vision, including texture analysis
[16]-[18].

Texture features have been used in many applications includ-
ing, but not limited to, biomedical image analysis [19], quality
inspection [20], content-based image retrieval [15], analysis of
satellite or aerial imagery [21], face analysis [22], biometric
identification [23], object recognition [24], and image compres-
sion [25].

Several reviews and surveys have been published over the
years, providing insightful state-of-the-art checkpoints of the
texture analysis field at different points in time. The majority
of published surveys have reviewed and compared the classic
approaches to texture analysis, namely the statistical, structural,
spectral, and model-based methods [1], [26]-[29]. Over time,
the reviews in texture analysis methods naturally adapted to the
field’s emerging trends. In [24], local-invariant texture descrip-
tors were reviewed and compared. Recent surveys [30] and [12],
focus on texture feature methods based on local binary patterns.
One of the most recent reviews is focused on learning-based
approaches [31]. Unsurprisingly, texture analysis reviews are
influenced by the authors’ field of application. Authors may
choose to focus exclusively on one or two categories, leaving
out the remaining ones if they are not relevant to their particular
topic (e.g., biomedical applications [27] or document image
retrieval [28]). In [27], a review centred on biomedical applica-
tions, the principles of some of the main texture analysis methods
trending at the time were reviewed. Still, structural approaches
were not covered in detail in reviews, given their limited appli-
cations in the field. Moreover, this field’s heterogeneity, regard-
ing its applications and the considered categorisation schemes,
is reflected by how different authors review texture analysis
methods.

This paper aims to provide a comprehensive and updated
survey in texture analysis methods, covering all its classes,
without an exclusive focus on any current trends or any
particular applications. We provide a review of handcrafted
and learned-based approaches in texture analysis. The classic
handcrafted methods in texture analysis are addressed along
with recently introduced categories. Both vocabulary-learned
and deep-learning methods, which adapt convolutional neural
networks for texture analysis, are addressed within the
learned-based approaches. Furthermore, while texture analysis

reviews typically address pure (isolated) texture analysis
methods, we also address recently introduced integrative, or
“hybrid,” approaches, which combine the principles of multiple
texture analysis methods. These integrative approaches have the
advantage of achieving a good performance trade-off between
different methods and have been gaining momentum.

This survey covers methods addressing static texture analy-
sis only. Dynamic (temporal) is not addressed here. Also, all
presented methods just address grey-level texture.

Finally, because of our work field, the second part of this
review focuses on the application of texture analysis in the
biomedical imaging field. The promising potential of texture
analysis in oncology and neurology is reviewed, and the major
challenges in biomedical texture analysis are discussed. An up-
to-date list of the applications of texture analysis in biomedical
imaging is presented in Section III.

[I. METHODS FOR TEXTURE ANALYSIS

This section provides a thorough review of texture feature
computation methods. First, a granular categorisation of the
methods is presented while addressing the classical approaches
(II-A), the new categories in texture analysis (II-B), and the
learning-based methods (II-C). Each class is briefly explained,
and selected well-known representative methods are described.
These methods are summarised in adjacent tables presenting
their properties, application examples, and their performance
in the corresponding application. Finally, the combinations of
different texture analysis methods (integrative approaches) are
covered in sub-Section II-D.

A. Classical Approaches

In texture analysis, existing methods are traditionally grouped
into four categories: statistical, structural, spectral, and model-
based approaches. These categories, commonly referred to as
classical approaches, cover early texture analysis methods. An
extensive review of these major classes in texture analysis is
provided in sub-Sections II-A1 to 1I-A4.

A desirable texture feature is expected to capture the most
representative texture information of a texture class, regardless
of the variability in the imaging acquisition environments and
settings, notably image rotation, scaling, and noise. To fulfil this,
research in this field remains active and already led to several
methods.

More recent texture analysis approaches use local descriptors
based on binary patterns or local filters to compute local texture
features. These approaches are the natural evolution of both
statistical and spectral methods. Moreover, some local-invariant
techniques are not explicitly designed for texture analysis,
apart from their integration with vocabulary-learned processes
(II-C).

Local descriptors can be divided into sparse and dense classes.
A sparse descriptor first detects the input image’s points of in-
terest, followed by the sampling of a local patch and description
of its invariant features. In contrast, a dense descriptor extracts
local features for every pixel of the input image. Examples of
those types are the scale-invariant feature transform (SIFT) and
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LBP-based methods, respectively, for sparse and dense descrip-
tors. These local approaches are addressed within sub-Section
II-A1 and II-A3 and their corresponding tables.

1) Statistical Methods: Statistical methods are based on
the analysis of the spatial distribution of grey-level values in
the vicinity of an image’s pixel. From this analysis, multiple
statistics-based metrics can be computed. Depending on the
number of pixels defining the local feature, statistical methods
can be further categorised into first-order (one pixel), second-
order (two pixels), and higher-order (three or more pixels)
statistics.

First-order methods are frequently considered, even though
only individual pixels’ values matter, not their relations to
neighbouring pixels. First-order statistical features (e.g., mean,
maximum, minimum, variance, and kurtosis) are histogram-
based descriptors of the grey-level distribution and can only
provide global information on the targeted region. Histogram-
based descriptors are computationally less costly and invariant
to translation and rotation.

On the other hand, second-order statistical features describe
interrelationships of grey-level intensities within a region. These
features are computed from matrices that determine how of-
ten a pixel of intensity ¢ finds itself within a particular spa-
tial relation to another intensity j. For classification purposes,
co-occurrence descriptors are, in general, more discrimina-
tive than histogram-based ones. Of these, the grey-level co-
occurrence matrix (GLCM) and the grey-level run-length ma-
trix (GLRLM) methods are the two most commonly used
ones [32].

The GLCM considers the relationship between two pixels and
computes the number of occurrences of all possible combina-
tions of grey-level values in a particular direction and distance
between these. While GLCMs are usually computed in eight
directions, a common approach is to reduce these to four by
combining opposite directions, resulting in a symmetric GLCM.
The precise information on texture captured in the GLCM can
be conveyed by several metrics, like those proposed by Haralick
in [4].

The downsides of GLCMs are the high dimensionality of the
matrices and the high correlation among the features. In practice,
GLCMs are computed for several directions and distances, and
only those presenting the best characteristics for the problem
being addressed are kept. Nevertheless, the GLCM is one of
the most well-known and thoroughly studied texture analysis
methods, with an extensive list of applications. So far, it remains
a benchmark approach for most comparative studies on texture
classification.

Another approach is the GLRLM method, which evaluates
sets of consecutive pixels, in a given direction, having the same
grey-level value. These sets of consecutive pixels are called
grey-level runs. The GLRLM provides numerical data from the
lengths of the runs in a specific direction [33]. The GLRLMs are
usually computed in four directions and a 2D (grey-level and
length) run-length histogram is computed for each direction.
A theoretical study [34] demonstrated that GLRLM features
are not as useful as histogram-based and GLCM features for
automatic texture classification.

Finally, higher-order statistical features that explore pixel
relationships beyond pixel pairs are, in general, more robust to
image noise [35].

Local binary patterns (LBP) [26] methods are categorised
into the high-order statistical approaches class. They focus on
the patterns of intensity transitions within the subregions of the
region of interest. The LBP method combines the analysis of
local structures, as in structural methods, with the analysis of
occurrences, as in statistical methods. This combination renders
good performance for texture analysis [11].

In the LBP method’s original implementation [26], the local
spatial structure is characterised by the sign of the difference
between a pixel’s intensity and its eight neighbouring pixels.
An 8-bits binary vector is defined resulting from the direct
comparison of each neighbour with the central pixel. This pixel is
then labelled with the corresponding 8-bit binary code’s decimal
value, and the histogram of these LBP labels is used as a
texture descriptor. LBP features can be computed by considering
different radii to cover different spatial resolutions.

The LBP method’s advantages are the ease of implementation,
the low computational cost, and the invariance to monotonic
illumination since it does not change the sign of the difference
between two intensities. Despite these merits, the original LBP
approach has significant drawbacks such as sensitivity to ro-
tation and noise and capturing local texture only, thus failing
to detect large-scale textural structures. Rotation-invariant LBP,
uniform LBP, and rotation-invariant uniform LBP are three early
modifications of original LBP addressing these limitations [11].
A recent LBP variant, the median robust extended LBP [36], is
robust to image rotation and noise and was shown to have the
best overall performance when evaluating robustness in multiple
classification challenges [12].

Built upon the original LBP, several other LBP variants
and extensions have been proposed, aiming to increase the
robustness and improve the discriminative power while avoiding
the original methods’ drawbacks. For details on these variants
and extensions, the reader is referred to recent reviews [12],
[30], [37]. Notably, the LBP method has inspired several local-
invariant methods, amongst which one can find the Weber local
descriptor in [38] (see below) and the local phase quantisation
in [39] (see Section II-A3).

Weber’s local descriptor is based on Weber’s law which states
that the human perception of a pattern depends on both the
change in a stimulus and that stimulus’s initial intensity. This
descriptor comprises two components, differential excitation
and gradient orientation, quantified into 2D histograms, offering
a global representation of texture. The Weber local descriptor
depends on the local intensity variation and the magnitude of
the central pixel’s intensity. Using multiple neighbourhood sizes
allows for the multi-scale generalisation of Weber descriptors.
Furthermore, Weber descriptors are computationally efficient.
Another method that uses the Weber law is the Weber LBP
method [40], which effectively combines the Weber local de-
scriptor’s advantages with those of the LBP method.

The need for invariant texture features, to reduce or elimi-
nate sensitivity to variable conditions like rotation, scale, ori-
entation, and illumination, has expanded the development of
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local-invariant methods. The scale-invariant feature transform
(SIFT) and the histogram of oriented gradients (HOG) method
are examples of those.

The histogram of oriented gradients (HOG) method [14] is an
effective local descriptor, mainly used for object and face recog-
nition. The underlying idea of HOG features is that local object
appearances and shapes can be characterised by the distribution
of the local intensity gradients or edge directions. The method
involves counting the occurrence of gradient orientations; hence
maintaining geometric and photometric transformation invari-
ances. HOG has a strong texture and shape description ability
and has been successfully applied to human detection [14], face
recognition [41], and biomedical image analysis [42]-[44].

A SIFT descriptor is a 3D histogram of gradient locations and
orientations. The interest points in SIFT are commonly detected
with the difference of Gaussians, although other key-point de-
tectors can be used [45]. The key-point dominant orientation
is computed using a weighted histogram of quantised gradient
orientations in local neighbourhoods. A vector descriptor is then
formed by computing weighted histograms of relative orienta-
tions, concerning the dominant orientation in 4 x 4 blocks of
pixels and eight orientations, resulting in a 128-dimensional
descriptor. The principal component analysis SIFT (PCA-SIFT)
method [46] is an extension of the SIFT descriptors with a
reduced 36-dimensional feature vector. SIFT descriptors are
scale-, rotation-, and affine-invariant. SIFT-based features have
also been effectively combined with other texture analysis meth-
ods, namely a hybrid SIFT-LBP local-invariant method known
as centre-symmetric LBP [47].

Most of the vocabulary-learned methods (that will be ad-
dressed later in II-C1) in texture analysis rely on SIFT de-
scriptors as local texture descriptors. As far as in a recent
review [48], learning-based approaches were grouped into SIFT-
based and convolutional neural network-based (CNN-based)
methods. Maximum response filters (MR filters) [49] and
rotation-invariant feature transform (RIFT) method [50] are
other examples of local-invariant methods with relevant contri-
butions in texture analysis in the context of vocabulary-learned
methods.

Other examples of statistical methods for texture analysis are
the centre-symmetric auto-correlation [51], the variogram [52],
the histogram of gradient magnitudes [53], the deterministic
walk [54], and the computation of Tamura features [55].

Table I summarises the properties of some of these statistical
approaches and provides examples of applications of those.

2) Structural Methods: Structural methods consider tex-
ture to be composed of several elements (called primitives)
arranged according to regular or irregular placement rules. Iden-
tifying and locating the primitives representing different texture
structures is the primary task in structural analysis, followed by
their placement rules’ inference.

Regions with uniform grey-level values, blobs, line segments,
repetitive parallel edges, and fan-organised edges are considered
examples of texture primitives. Such concepts for primitives
make structural approaches particularly well-suited to the anal-
ysis of uniform and structured texture, but sub-optimal for the
random type.

Mathematical morphology is a powerful tool for identifying
texture primitives [124]-[126]. Morphological analysis is based
on the concepts of “set theory”. It tries to find objects and con-
tours of different types or localise pixels’ clusters with similar
intensities through morphological operators. The mathematical
morphology approach searches for spatial repetitiveness of ex-
istent shapes using structure elements (primitives). It has been
successfully applied to texture analysis by granulometry.

Granulometry was first introduced to characterise size and
shape information for binary images and was later extended to
grey-scale image analysis [125]. In morphological granulome-
try, primitives are extracted by opening and closing morpholog-
ical operators. The granulometric pattern spectrum correspond-
ing to different primitives is computed, serving as placement
rules for the morphology-based primitives. Properties of the
granulometric pattern spectrum and its probability distribution
function, such as the mean and standard deviation, can be used
as texture features [126]. Granulometry reflects information
regarding the shape and size of the structured texture pattern and
the degree of granularity for unstructured texture patterns [127].

The Voronoi method [128] is another structure-based ap-
proach. It employs Voronoi tessellation to establish local rela-
tionships among texture primitives, allowing for the primitives’
shapes to be obtained at a symbolic level. Following the Voronoi
tessellation of an input image, different Voronoi polygons area
moments are computed, reflecting the spatial distribution and
shapes of the primitives, and serving as placement rules.

In [129], texture primitives were defined as the maximally
connected set of pixels with the same pixel characteristics (e.g.,
intensity or gradient). Instead of inferring the placement rules
from the spatial relationships between the primitives, other mea-
sures such as the intensity, orientation, elongation, and compact-
ness of homogenous primitives are used in this structure-based
method.

In [130], a structural analysis approach is proposed. Here the
energy distribution in the Fourier power spectrum is used to infer
the placement rules. Unlike the previously addressed structural
methods, in this approach, the placement rules are assessed
first. Then the primitives are extracted using those placement
rules combined with phase information. This method can also
be considered a structural-spectral hybrid approach.

Structural approaches provide a beneficial symbolic descrip-
tion of an image [27]. According to the concept of primitives and
placement rules, structural approaches are based on regularity,
hence more appropriate for analysing pattern texture.

The properties of some of the structural methods and examples
of applications are summarised in Table II.

3) Spectral Methods: The visual system’s cells perform
a frequency and orientation analysis that have motivated the
development of spectral methods [138]. These methods, also
known as filter-based or transform-based methods, are used for
the multi-scale and multiresolution representation of texture.
Spectral methods can analyse the frequency content of texture
strictly in the spatial domain (e.g., Laws filters [6]), strictly
in the frequency domain (e.g., Fourier transform [7]), or both,
frequency and spatial domains (e.g., Gabor [139] and wavelet
transform [8]).
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TABLE |

STATISTICAL METHODS IN TEXTURE ANALYSIS

Methods

Pruper(ies’f

Applications

Reported
Performance (%)ﬁ

Binarised statistical image features
[56]

++e

Local descriptor

Rotation-invariant

Statistically meaningful texture represen-
tation

Face recognition [56]
Image quality assessment [57]
Osteoporosis diagnosis [58]

Acc: 50-70
n/a
Acc: 63-77

Centre-symmetric auto-correlation

+ Rotation-invariant

Computer-aided diagnosis in Barrett's

Acc: 6-76, Sen: 50-87,

[51] oesophagus [59] Spe: 52-82
Centre-symmetric local mapped 4 Local descriptor o Human epithelial type 2 cell classification e Sen: 87-90
pattern [60] + Invariant to partial viewpoint changes [61]
+ Scale-, illumination-, and rotation-
invariant
Deterministic walk [54] + Images simultaneously explored in all e Plant leaf texture classification [62] o Acc: 95-98
scales o lIdentification of wear particles [63] e na
First-order statistics methods [4] + Translation- and rotation-invariant o Biomedical image analysis [64]-[66] o Acc: 70-100%
+ Easy to compute
Grey-level ~co-occurrence matrix 4 Broad scope of applications o Defect detection [67]-[69] o n/a
(GLCM) [4] — High matrix dimensionality o Text detection [70] . n/a
— Highly correlated features o Identification of oil spills in synthetic- e na
aperture radar (SAR) images [71]
o Biomedical image analysis [65], [72]-[82] o Acc: 70-100%,
AUC: 55-95¢,
Sen: 50-100F,
Spe: 47-98%
Grey-level  run-length ~ matrix o Adequate for textures containing several o Automated recognition of drill core tex- o Acc: 57—100%
(GLRLM) [33] dominant scales tures [83]
e Biomedical image analysis [64], [65], o Acc: 70-100,
[79], [84]-[88] Sen: 81-97°,
Spe: 61-98F
Grey-level entropy matrix (GLEM) o Robustness depends on window size « Oncologic image analysis [89]-[91] o Acc: 61-70
[89] + Rotation-invariant
Histogram of gradient magnitudes  {  Rotation-invariant o Classification satellite-imagery dataset e Acc:51-79
[53] + Low computational complexity [53]
Histogram of oriented gradients o |ocal descriptor « Face recognition [41] o Acc: 55-95
(HOG) [14] + Geometric and photometric transforma- e Biomedical image analysis [42]-[44], o Acc: 6-1007,
tion invariant [92], [93] AUC: 88-90,
Sen: 76-84,
Spe: 88-92
Local binary patterns (LBP) [26] + Low computational cost « Real-time surface inspection [94] o Acc: 87-99
+ Invariant to monotonic illumination o Defect detection on ceramic surface [95] e n/a
changes o Defect detection on wood surfaces [96] e n/a
+ Noise- and rotation-sensitive e Hybrid fingertip matching [97] e n/a
e Face recognition [98] e Acc: 64-97
e Biomedical image analysis [19], [92], o Acc: 12-1007,
[99}-[104] AUC: 69-99,
Sen: 5675,
Spe: 62—-100
Local directional pattern [105] o Local descriptor o Breast cancer classification [100] o Acc: 74-76,
+ Robust to noise and illumination varia- AUC: 84-90
tions e COVID-19 detection [106] o Acc: 47-54
o Face recognition [105] e Acc: 69-97
Local energy pattern [107] o Local descriptor o Material categorisation [107] o Acc: 59-97
+ Preserves local structure information
+ Relatively invariant to imaging conditions
Local jet pattern [108] o Local descriptor « Texture classification [108] o Acc: 98-99
+ Scale-, reflection-, and rotation-invariant
Local ternary pattern [109] o Local descriptor « Brain MR image analysis [110] o Acc: 75-93
+ Robust to noise e Texture classification [111] e Acc: 54-99
+ Rotation-invariant
Patch intensity™ [112] o Local descriptors o Texture classification [112] o Acc: 94-97
+ Rotation-invariant
— Computationally expensive
Scale-Tvariant feature transform o Local descriptor o Classifying celiac disease [113] e AUC:78
(SIFT)* [13] + Scale- and viewpoint-invariant « Diagnosis of malaria [114] o Acc: 84-94
e Matching medical images [115] e n/a
Speed up robust features (SURF)™ 4 Local descriptor « Face recognition [117] o Acc: 95-97
[116] + Rotation-invariant
+ Scale-invariant
Rotatioginvariantfeature transform o Local descriptor o Sparse texture representation [50] o Acc: 77-95
(RIFT)* [50] + Affine-invariant
+ Invariant to viewpoint changes and non-
rigid deformations
— Memory and computation-intensive
Tamura features [55] o Derived from psychophysical models o Historical document image analysis [118] e Acc: 16-90
+ Correspond to human visual perception o Texture analysis in linguistic terms [119]
e n/a
Variogram [52] + Simple o Classification of SAR images of urban  , Acc: 43-52%
+ Easy to interpret in graph form areas [120]
o Forest airborne image classification [121] o Acc: 77-86%

Mass detection in mammograms [122]

Acc: 70-96, Spe: 67-95

Weber local descriptor [38]

Local descriptor

+ Robust to noise

Face recognition [40]

e Gender recognition from face images

[123]

Acc: 87-98
Acc: 88-99

 These local-invariant methods are mainly ported to texture analysis in the context of vocabulary-learned methods (see II-C1).
t Properties are listed as descriptions (e), advantages (+) and disadvantages (-) of the methods.
1 Performance rounded to zero decimal places. For consistency, only common metrics are shown and, the most common names used. Acc:
accuracy; AUC: area under the receiver operating characteristics (ROC) curve; Sen: sensitivity; Spe: specificity. n/a: not applicable.

¥ In combination with other texture features.
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TABLE Il
STRUCTURAL METHODS IN TEXTURE ANALYSIS

i I Reported
Methods t Applications
Properties PP Performance (%)t
Morphological ~ granulometry 4 Scale-invariant o Defect detection in fabrics [131] o Acc: 97
[129] o Defect detection in printed circuit e Acc: 94-100
boards [132]
e Inspection and segmentation of leather e n/a
fabric [133]
e Texture classification in OCT data [134] e Acc: 53-63
Shape index histograms [135] » Based on second-order image structure o Classification of HEp-2 cell [135] o Acc: 71-80
e Well suited for blob-like structures
Topographic map [136] o Encode geometric information o Satellite image indexing [137] o Acc: 32-95
+ lllumination-invariant
Voronoi method [128] o Identify interior and border regions of o Texture segmentation [128] o n/a
the texture o Classification of pap smears [87] e n/a

T Properties are listed as descriptions (e), advantages (+) and disadvantages (-) of the methods.
1t Performance rounded to zero decimal places. For consistency, only common metrics are shown and, the most common names used. Acc: accuracy. n/a: not applicable.

Applying simple filters, like Laws filters and steerable filters,
was a pioneering approach in early spectral-based implemen-
tations. In filtering approaches, the frequency information is
computed by convolving the image with filters, resulting in a
filter response set. Texture features are usually based on the
statistics of those filter responses. Laws [6], developed a set
of filters by mutual products of so-called Laws texture energy
measures: level, edge, spot, wave, and ripple. The responses
to Laws filters represent meaningful texture patterns. On the
downside, these are not rotationally invariant.

A fundamental approach to frequency domain analysis is the
one performed by applying the Fourier transform. A 2D Fourier
transform decomposes an image into its frequency components
and represents it as a weighted combination of vertical and hori-
zontal sinusoids of various frequencies. Fourier texture features
contain frequency information of the texture but cannot describe
local texture variations. A windowed Fourier transform [140],
in which the frequency information is computed within a win-
dow, was proposed for computing Fourier texture features to
overcome the above limitation, thus, providing information at
the local level. A particular case of the windowed Fourier trans-
form is the Stockwell transform, where the window function is
Gaussian. The Stockwell transform has been applied in biomed-
ical texture analysis [141]-[143]. Fourier texture features are
translation-invariant and capable of handling noise.

The local frequency descriptors method [144] and the local
phase quantisation method [39], both based on the windowed
Fourier transform, compute texture features with local frequency
descriptors robust to noise and blur.

The local phase quantisation method is based on comput-
ing the Fourier transform phase for a local window, consecu-
tively centred in every image’s pixel. First, the local frequency
is computed using a short-term Fourier transform on a local
neighbourhood at each image’s pixel. Then, four low-frequency
components are considered, and the phase information of these
is recorded by observing the signs of their real and imaginary
parts, resulting in an 8-bit binary code. Each pixel is then labelled
with the corresponding decimal value, and the histogram of these
labels are used in the spirit of LBP as local phase texture features.
This phase information of the low-frequency components is

shown to be ideally invariant to centrally symmetric blur, thus
yielding descriptors tolerant to the most common types of image
blurs. Furthermore, since only phase information is used, the
method is also invariant to non-uniform illumination. The local
phase quantisation methods have been effectively combined
with the LBP methods, presenting enhanced texture features for
face recognition [145].

In a distinct approach, Gabor filters are very effective in
texture representation and discrimination. A Gabor filter is a
Gaussian kernel function modulated by a sinusoidal plane wave.
A multichannel filtering approach is performed through a bank
of Gabor filters at different scales and orientations. A Gabor
filter bank performs a robust multiresolution decomposition that
allows the computation of frequency and orientation informa-
tion. Gabor texture features are computed from the statistical
distribution of the Gabor magnitude responses. Gabor features
are robust against photometric disturbances, such as illumination
changes and noise. At the same time, they fail to reach the
expected level of performance in the presence of rotation, scale,
and affine variations. The combination of Gabor filters with LBP
has resulted in texture features with reasonable robustness [ 146].

Wavelet transform, on the other hand, analyses texture in
the spatial and frequency domains. A wavelet-based approach
approximates an image by dilations and translations of a given
basis function, known as mother wavelet. The discrete wavelet
transform can be computed using a pyramid structure imple-
mented with a pair of low-pass and high-pass filters, followed
by down-sampling. The obtained wavelet coefficients and the
measures computed from them (such as energy, variance, and
entropy, among others) are commonly used as wavelet texture
features. The wavelet transform has the advantage of providing
variations of the spatial resolution, therefore representing texture
at the most suitable scale.

Furthermore, the flexibility in the choice of the wavelet
function is an advantage for specific applications. While the
wavelet transform is not invariant to rotations, attempts towards
rotation-invariant texture analysis can be found, as in [147].
Combining the dual-tree complex wavelet transform and the
LBP method has resulted in rotation-, illumination-, and scale-
invariant texture features [148].
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TABLE IlI
SPECTRAL METHODS IN TEXTURE ANALYSIS

i - Reported
Methods f Applications
Properties PP Performance (%)H
Fourier transform [7] o Encodes frequency domain information o Fabric defect detection [149], [150] e n/a
+ Translation-invariant o Video text detection [151] e Acc:81-99
e Biomedical image analysis [75], [77], o Acc: 74-90%, Sen: 50-100%,
[152] Spe: 47-95%
Gabor filters [139] + Encode both spatial and frequency do- e Defect detection [153], [154] o n/a
main information e Quality inspection of steel [155] e Acc: 65-79
+ Robust multiresolution decomposition e Ceramic materials characterisation [156] e Acc: 30-74
+ Robust to illumination changes e Text detection [157] e Pre:49-64, Rec: 42-76
e Fingerprint texture analysis [158] e n/a
o Biomedical image analysis [159]-[162] e Acc:81-97, AUC: 40-100,
Sen: 75-100, Spe: 72-100
Laws filters [6] + Identify meaningful texture patterns o Biomedical image analysis [75], [84], o Acc:30-90%, Sen:50-100%,
— Not rotationally invariant [163]-[166] Spe: 47-98%
Leung-Malik (LM) filters™ [5] o Local descriptor o Natural material characterisation [5] o Acc: 87
+ Scale- and rotation-invariant e Texture classification [49] e Acc: 75-98
Local frequency descriptor o Local descriptor o Texture classification [144] o Acc: 89-99
[144] + Robust to noise
+ Rotation-invariant
Local phase quantisation [39] o Local descriptor o Blurred texture classification [39] o Acc: 88-93
+ Invariant to uniform illumination changes o Face recognition [145] e Acc: 81-95
+ Robust to blurring
Locally encoded transform o | ocal descriptor o Bioimage classification [168] o Acc: 90-93
feature histogram (LETRIST) 1 Robust to Gaussian noise o Texture classification [167] o Acc: 97-100
[167] + Robust to viewpoint changes e COVID-19 identification [169] o Acc: 87-98%
+ Rotation-, illumination-, and scale-
invariant
MR filters™ [49] o Local descriptor o Texture classification [49] o Acc: 71-98
e Low-dimensional filter response space e Brain tumour classification [170] o Acc: 62f
+ Rotation-invariant e Lung nodule classification [171] o Acc: 60F
Riesz transform [172] + Translation-invariant o Lung texture classification [173] o Acc:78
+ Rotation-invariant e 3D solid texture classification [174] e Acc: 12-100
Shearlet transform [21] + Robust to noise o Face recognition [175] o Acc: 14-82
+ Rotation-invariant o Texture classification and retrieval [176] e Acc: 79-99
Schmid filters™ [177] o Local descriptor o Texture classification [49] e Acc: 76-98
e Gabor-like filters
+ Rotation-invariant
Steerable pyramid [178] » Orientation-selective filters o Texture classification [179] o Acc: 93-97
+ Covers multiple scales and different ori- e Thyroid nudle classification in ultrasound e Acc: 92-99
entations images [180]
Stockwell transform [181] o Preserves the phase information o Texture characterisation [182] o Acc: 83-95
+ Encodes both spatial and frequency do- o Biomedical image analysis [141]-[143] e AUC: 94, Sen: 93, Spe: 96
main information
+ Rotation-invariant
Wavelet transform [8] + Encode both spatial and frequency do- e Defect detection [183]-[185] o Acc: 96-98
main information e Monitoring industrial processes and qual- e Acc:77
+ Represents texture at different scales ity of manufactured products [186], [187]

Agriculture and food quality inspection e n/a

[188]

Text detection [189], [190] e Acc: 42-94, Rec: 86-92
Sea ice detection in SAR images [191] e n/a

Biomedical image analysis [64], [82], o Acc: 57-100%

[134], [192]

2 These methods are mainly ported to texture analysis in the context of vocabulary-learned methods (see II-C1).

t Properties are listed as descriptions (e), advantages (+) and disadvantages (-) of the methods.

ft Performance rounded to zero decimal places. For consistency, only common metrics are shown and, the most common names used. Acc: accuracy; AUC: area under the receiver
operating characteristics (ROC) curve; Pre: precision; Rec: recall; Sen: sensitivity; Spe: specificity. n/a: not applicable.

 In combination with other texture features.

A list of different spectral methods with their properties and
examples of applications are summarised in Table III.

4) Model-Based Methods: In model-based approaches, the
fundamental qualities of texture are captured by a model chosen
from a set of models that range from complex network-based,
random field, and fractal-based ones to Wold decomposition
models, whose estimated parameters of the selected model in-
deed represent particular texture properties. The critical issue in
model-based methods is the correct model’s choice and how to

map a specific texture into it effectively. For most model-based
methods, the texture is modelled probabilistically (Markov ran-
dom field model), geometrically (fractal model), or as a set of
basis functions (Wold decomposition).

Probabilistic models include random field models such as the
Markov random field (MRF) approach, which models textures
as a stochastic process, characterising them as distributions
of random variables. An MRF model assumes that a pixel’s
intensity depends only on the previous pixel intensity in a chain
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TABLE IV
MODEL-BASED METHODS IN TEXTURE ANALYSIS

Methods Properties '

Reported

Applications
ppiicall Performance (%)H

Auto-regressive models [203] o A spatial pixel interaction model
+ Simplicity in parameter estimation
+

Suitable for coarse textures

o Defect detection in web inspection systems e n/a
[204]

e Unsupervised texture segmentation [205] e na

o Biomedical image analysis [64], [66], [82], o Acc: 70-100%
[206]

Complex network models  t Relatively rotation-invariant
[207] — Not robust to noise
— Difficulty in estimating a large number of
model parameters

e Pattern recognition [208] e Acc: 37-98
o Classification of froth flotation production e Acc: 75-95
states [209]

Fractal models [10] o Shape description o Defect detection in fabric [210], [211] o Acc: 76-96
+ Low computational cost o Defect detection in steel surfaces [212] e Acc: 98-99
— Feature stability is resolution-dependent o Biomedical image analysis [213]-[220] o Acc: 60-94%, AUC: 75-93
Markov random field models o Probabilistic model o Real-time defect inspection [221] o Acc: 92-97
(MRF) [9] + Rotation-variant o Model defect-free textile web [222] o n/a
« Biomedical image analysis [223]-{225] o Acc: 86%, Pre: 50-100%
Wold decomposition [201] o Measure the randomness, direction, and e Unsupervised texture segmentation [226] e n/a

periodicity of the texture

T Properties are listed as descriptions (e), advantages (+) and disadvantages (-) of the methods.
ff Performance rounded to zero decimal places. For consistency, only common metrics are shown and, the most common names used. Acc: accuracy. n/a: not applicable.

# In combination with other texture features.

and on a transition probability matrix [193]. In other words,
the MRF model builds an undirected graph with neighbour
pixels as random variables. The parameters of the model are
estimated with an optimisation method that aims to minimise an
energy function. The optimised parameters of the MRF model
define the texture and can be used as texture features. Texture
features based on MRF models are generally rotation-variant, as
is the case of the anisotropic circular Gaussian MRF [194] that
computes rotation-invariant texture features.

Fractal models [10] make use of mathematical tools for
dealing with scale in texture analysis. These are appropriate
for images where texture consists of patterns with a certain
degree of self-similarity across scales. Here, the fractal dimen-
sion [195], which computes the change of details in a fractal
pattern with the scale, offers a global description of geometric
objects’ complexity and irregularity. Fractal sets may share the
same fractal dimensions while having different appearances. For
this reason, lacunarity has been proposed as a complementary
measure for the fractal dimension [196]. Lacunarity can distin-
guish between different texture appearances, if presenting the
same fractal dimension, by measuring a fractal’s deviation from
being translationally invariant.

In [197], the fractal-based models are revisited, and the
multifractal spectrum method invariant to viewpoint changes,
nonrigid deformations, and local affine illumination changes is
proposed.

The combination of the multifractal spectrum method with
other texture analysis methods, such as the wavelet trans-
form [198], the LBP method [199], and the scale-invariant fea-
ture transform [200], has resulted in more discriminative texture
features. The fractal features’ stability depends on the image’s
resolution, which is a common drawback of all fractal-based
models.

The Wold decomposition method [201] models texture by
decomposing it into three mutually orthogonal components that
measure the texture’s periodicity, randomness, and direction.

The flexibility in choosing the parameters of these three compo-
nents provides a wide range of texture modelling. However, the
difficulty in estimating the coefficients and selecting the correct
model is a downside of this approach. A 3D texture model based
on Wold decomposition is proposed in [202].

The complexity in estimating several model parameters,
which usually increases with the considered window size, makes
model-based approaches less prevalent than statistical and spec-
tral techniques.

Model-based methods and their applications are summarised
in Table IV.

B. New Categories in Texture Analysis

As techniques from other areas are incorporated into image
texture research, the need to define new categories arises. The
classic categorisation of texture analysis methods has been ex-
tended from four classical classes to seven categories in [227],
including the graph-based and the entropy-based approaches
addressed here.

1) Graph-Based Methods: A graph is a collection of
vertices (nodes) and the connections (edges) between them.
In graph-based methods, texture features are extracted from
the corresponding graph defined over an image. The local
graph structures method [228], the graph of tourist walk ap-
proach [229], and the shortest paths in graphs approach [230]
are the methods in this category of texture analysis.

In the local graph structures method, texture features are
computed from the local graph neighbourhood. The local graph
consists of six vertices, including the target pixel, and eight
edges connecting them. The target pixel’s value is chosen as
the initial threshold. Moving anti-clockwise (clockwise) along
the edges of the left (right) vertices, starting in the targeted
pixel and back, a binary code is produced: 1 if moving to a
higher or equal pixel’s value, O if moving to a lower pixel’s
value. The target pixel is labelled with the decimal value of the
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TABLE V
GRAPH-BASED METHODS IN TEXTURE ANALYSIS
Lk I Reported
Methods P T Applications
roperties PP Performance (%)

Graph of tourist walks [229] — Complex computation o Flotation froth texture extraction [233] o Acc: 87-92
Local graph structures [228] o Contain information on local micro-pattern e Clothing classification [234] o Acc: 82-91

+ Fast computation o Face recognition [228] e Acc: 94-99

+ Invariant to shift and scale e Texture classification [231] e Acc: 71-75
Shortest paths in graphs [230] + Encode both macro and micro-texture in- e Biomedical image analysis [235] e AUC: 77-90

formation

t Properties are listed as descriptions (e), advantages (+) and disadvantages (-) of the methods.
ft Performance rounded to zero decimal places. For consistency, only common metrics are shown and, the most common names used. Acc: accuracy; AUC: area under the receiver

operating characteristics (ROC) curve.

8-bit binary number that results from the edge labels, and the
histogram of these local graph labels are used as texture features.
Based on this method, another one, called extended local graph
structure method, was proposed [231]. It captures further spatial
information by visiting neighbour pixels, both clockwise and
anti-clockwise. Local graph structure contains discriminative
local information and is computationally efficient.

The graph of the tourist walks method is based on deter-
ministic tourist walks and graph theory. In this method [62], a
traveller explores an image according to a given memory and
walking rule, resulting in partially self-avoiding trajectories.
These trajectories can be used to build a graph that describes
the tourist transitivity and, as a result, the texture pattern. The
measures computed from this graph (graph degree and joint
degree) are used as texture descriptors. This approach has been
effectively extended to dynamic texture analysis in [232].

Shortest paths in graphs is another graph-based method that
has been proposed for texture analysis. In this method, the
image’s pixels are regarded as vertices of an undirected weighted
graph, whose weights are defined by the image’s grey-level
values. The shortest paths are computed in the set of four
vertices (pixels) of graphs that correspond to diagonal points
of square regions of the texture. The shortest paths can be
computed in different nonoverlapping square regions while re-
ducing their size, in a multi-scale approach, starting from the
original texture size. Hence, the texture features that are com-
puted from shortest-paths contain both micro and macro texture
information.

The properties and examples of the application of graph-based
methods are summarised in Table V.

2) Entropy-Based Methods: The category of entropy-
based approaches was introduced as a new category in texture
analysis in [227]. Entropy-based methods are based on the ex-
tensions of entropy measures from the information-theory field.
Even though these methods look promising, they need additional
time and research attention to become well-established and gain
momentum in texture analysis.

In the field of signal processing, entropy-based measures
evaluate the irregularity of signals. Sample entropy is one of
the most well-known entropy measures, quantifying the unpre-
dictability of subsequent samples of data-series based on the
previous samples’ knowledge. In [236], the sample entropy was
extended to two dimensions to measure irregularity in pixel

patterns. In 2D approaches, the unpredictability associated with
entropy is computed in a window, taking into account the spatial
distribution of the intensities within that window, compared
to sample windows of the same size. Accordingly, 2D sample
entropy [237], 2D distributed entropy [238], and 2D multi-scale
entropy [239] methods have been proposed for texture analysis.
In [237], discriminative and rotation-invariant texture features
are computed using 2D sample entropy measures. However, the
process is computationally expensive. Hence, 2D distributed en-
tropy and 2D multi-scale entropy measures have been proposed
to overcome this drawback. In general, these 2D entropy-based
methods perform well for irregular and intricate textures and are
easy to implement. Sample entropy has also been extended to
multidimensional and fuzzy sample entropy for colour texture
classification [240].

Table VI summarises the properties of entropy-based methods
and presents application examples of those.

C. Learning-Based Approaches

Learning-based methods are dataset-dependent approaches
that were first developed in the context of texture recognition
via the bag-of-textons method [5]. In this method, a dictionary
of textons is generated by learning textons from different texture
classes, and each texture is represented as a histogram of textons.
This approach was generalised in the bag-of-words method
(BoW), in the context of image retrieval [15], and later for im-
age classification [45]. The methods within this framework are
referred to as the vocabulary-learned methods. Learning-based
approaches have been extended to deep-learning methods by ap-
plying CNN models for texture analysis. In this survey, learning-
based approaches are categorised as vocabulary-learned and
deep-learning methods.

1) Vocabulary-Learned Methods: Vocabulary-learned
methods, when applied to texture analysis, are adapted to
learn a dictionary that contains texture elements computed by
local descriptors. These methods represent texture based on an
orderless aggregation of local features.

Typically, vocabulary-learned methods take the following
approach: extraction of local descriptors, clustering to learn the
dictionary, feature encoding, and pooling into a global descrip-
tor. The local descriptors in these methods can be sparse or
dense local descriptors. The most common local descriptors in
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TABLE VI
ENTROPY-BASED METHODS IN TEXTURE ANALYSIS

) I Reported
Methods T Applications
Properties PP Performance (%)JHL
2D distributed entropy [238] + Rotation-invariant o lIrregularity analysis of small-sized tex- o n/a
ture [238]
2D multi-scale entropy [239] + Effective classification, depending on the o Pseudoxanthoma elasticum (PXE) de- o n/a
texture pattern tection [241]
o Texture classification [239] e Pre:54-62, Rec: 51-63
2D sample entropy [237] + Rotation-invariant o Age discrimination of rat sural nerves e AUC: 84
+ Translation-invariant [237]
— Computationally expensive o Classification of lymphomas [236] e AUC: 69-100
o Colorectal cancer classification [240] e AUC: 98

t Properties are listed as descriptions (e), advantages (+) and disadvantages (-) of the methods.
it Performance rounded to zero decimal places. For consistency, only common metrics are shown and, the most common names used. AUC: area under the receiver operating

characteristics (ROC) curve; Pre: precision; Rec: recall. n/a: not applicable.

TABLE VII
VOCABULARY-LEARNED METHODS IN TEXTURE ANALYSIS

. . Reported
Methods f Applications
Properties PP Performance (%)
Bag-of-words (BoW) [5], [45] -+ Higher flexibility compared to handcrafted o Brain tumour classification [170] o Acc: 59-62, AUC: 59-63
features e Histopathological image classification e Acc: 70-97
— Require a large dictionary [245]
e Natural material characterisation [5] e Acc: 87
Fisher vector (FV) [242] o Encode higher-order statistics o Texture classification [246] o Acc: 63-99
+ Require a small dictionary
Improved Fisher vector (IFV) 4 Pre-eminent performance in texture classi- o Texture classification [17] o Acc: 58-99
[243] fication
+ Require a small dictionary
Vector of locally aggregated de- A simplified version of FV o Texture classification [17] o Acc: 53-99
+

scriptors (VLAD) [244] Require a small dictionary

t Properties are listed as descriptions (e), advantages (+) and disadvantages (-) of the methods.
ff Performance rounded to zero decimal places. For consistency, only common metrics are shown and, the most common names used. Acc: accuracy; AUC: area under the receiver

operating characteristics (ROC) curve.

the vocabulary-learned framework include LM filters [5], MR
filters [49], SIFT [13], RIFT [50], patch intensity [112], and
LBPs [11].

Feature encoding is the core component of vocabulary-
learned methods. In this step, the local descriptors’ information
is encoded in a single vector, either using voting techniques, as
in the BoW method or by extracting high-order statistics, as in
the Fisher vector (FV) method [242].

The most intuitive encoder was introduced in [5] and gen-
eralised to a baseline BoW method, which yields a histogram
representation of local descriptors by counting the number of
local features assigned to each codeword.

In the FV method, the high-order statistics are extracted
by encoding additional information from the local descriptors’
distribution. Based on the FV method, improved Fisher vec-
tor (IFV) [243] and vector of locally aggregated descriptors
(VLAD) [244] methods were proposed. The IFV method has
achieved the best performance in texture classification according
to comprehensive comparisons between FV, IFV, and VLAD
methods in [17].

Even though vocabulary-learned methods were not developed
initially for texture analysis, they provide powerful texture fea-
ture computation tools.

Table VII summarises the properties of vocabulary-learned
methods and their examples of applications.

2) Deep-Learning Methods: The most promising image
classification result was recorded for a deep convolutional neural
network known as AlexNet [16] in 2012. Since then, deep-
learning approaches have also been applied to texture analysis,
and several convolution neural network-based texture represen-
tation methods have been proposed.

A CNN consists of multiple trainable building blocks accu-
mulated on top of one another. A wide range of CNN models
have been developed, including AlexNet [16], VGGNet [247],
GoogleNet [248], ResNet [249], and DenseNet [250], with a
continuously growing depth. CNN models are trained on large-
scale datasets, among which the most commonly used one is
ImageNet, with 1000 classes and 1.2 million images [251].

Recent work on CNNs has illustrated that, with minor modi-
fications, pre-trained CNNs on large datasets can perform well
for texture analysis [18], [252]. In [18], the CNN features were
computed from a convolutional layer’s output and combined
with traditional encoders towards global representation. Based
on this approach, the FV-CNN method was proposed in [253],
has achieved impressive results on texture recognition in clutter
datasets. In this method, a CNN pre-trained on ImageNet is used
as a feature extractor, and an orderless representation is built
using FV.

The power of CNNs in computing deep-learned texture fea-
tures has not been not fully exploited. According to [252],
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TABLE VI
DEEP-LEARNING METHODS IN TEXTURE ANALYSIS
) I Reported
Methods f Applications
Properties PP Performance (%)Jflr
B-CNN [255] + Good representation ability o Texture classification [256] o Acc: 70-81
— Very high dimensional features
Deep-TEN [258] + Dictionary-learning o Liver lesion detection [260] o Acc: 59-70
+ More flexible framework (allow arbitrary in-
put image size)
+ Superior performance in transferring pre-
trained CNN features
FASON [261] + Combining information from the multiple e Texture recognition [261] o Acc: 72-93
levels of convolutional layers
+ Effectively trainable in an end-to-end man-
ner
FV-CNN [253] o Using pre-trained CNN models (AlexNeton e Object and scene recognition [18] o Acc: 68-81
ImageNet) o Material recognition [18] e Acc: 63-68
+ Better texture classification performance
than AlexNet
NetVLAD [257] + Directly trainable in an end-to-end manner o Place recognition [257] o Rec: 64-80
T-CNN [254] e Combining output from multiple convolu- o Dynamic texture classification [262] e Acc: 65-100
tional layers o Tissue image classification [263] e Acc: 25-100
+ Lower complexity compared to classic
CNNs

T Properties are listed as descriptions (e), advantages (+) and disadvantages (-) of the methods.
it Performance rounded to zero decimal places. For consistency, only common metrics are shown and, the most common names used. Acc: accuracy; Rec: recall.

fine-tuning CNN models is expected to be predominant over
pre-trained CNN models on task-specific datasets. In a fine-
tuned CNN, the global image representation is usually generated
end-to-end; that is, the network will render the final visual
representation without additional explicit encoding or pooling
steps.

A texture CNN (T-CNN) was developed in [254], which
includes an energy layer to extract the dense response to in-
termediate features in the network. The network was trained
end-to-end and improved the results on texture classification
tasks while reducing the complexity compared to classic CNNs.

A bilinear CNN model (B-CNN) was developed in [255].
It combines two networks to extract and classify translation-
invariant local pairwise features in a CNN framework and allows
end-to-end training for both networks. The B-CNN method
is beneficial for fine-grained categorisation. It has also been
applied to texture classification, with slightly better performance
than FV-CNN [256].

A fusion network for texture recognition known as FASON
[256] was proposed integrating the ideas of the T-CNN method
and the complete BCNN method. FASON combines first and
second-order information flow and enables more content and
style learning by end-to-end training than B-CNN.

The CNNs and orderless pooling methods, such as VALD
and FV, were integrated in an end-to-end manner in the
NetVLAD [257] and deep texture encoding network (Deep-
TEN) [258]. In NetVLAD, a VLAD-like layer was plugged
into a CNN network at the last convolutional layer and enabled
end-to-end training. NetVALD was initially designed for place
recognition and later applied to texture classification [167],
though with lower classification performance than FV-CNN. In
Deep-TEN, an encoding layer integrated at the top of convo-
lutional layers has combined orderless pooling encoding such
as VLAD and FV in a CNN trained end-to-end. The orderless

encoding integrated into the Deep-TEN method makes it partic-
ularly appropriate for material and texture recognition.

Deep-learning models can automatically learn high-level fea-
tures from raw data, although their performance depends on
the number of training samples. Also, the size of the dataset
used for pre-training and fine-tuning significantly influences the
fine-tuning performance. In [254], it was shown that fine-tuning
a pre-trained network on a texture-centric dataset obtains better
results on another texture dataset than a network pre-trained
on an object-centric dataset. The primary constraint of applying
neural networks in texture analysis is the need for actual training
data.

In [37], several texture descriptors were evaluated and com-
pared with several LBP variants. It was found that CNNs outper-
form the LBP variants despite their much higher computational
complexity. While CNNs usually outperform classical texture
descriptors, their effectiveness in resource-limited settings is yet
to be determined. In [259], a CNN-LBP hybrid approach was
proposed to address this issue.

Table VIII summarises the properties of deep-learning meth-
ods and their examples of applications.

D. Integrative Approaches

Several approaches in texture analysis integrate different
methods aiming to highlight additional texture information.
The so-called hybrid methods commonly include combinations
of benchmark approaches with other methods, porting two or
even more approaches into a single framework to compute
enhanced texture features. These combinations can join methods
of the same class, such as the statistical hybrid approaches
([264]-[267]); methods from two different classes, such as
the statistical-spectral hybrid approaches ([145], [146], [148],
[268]); or even bridge the gap between classic techniques and
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CNN architectures, to form handcrafted deep convolutional
networks such as the ScatNet [269] and PCANet [270].

The co-occurrence of uniform LBP method [265], the
pairwise rotation-invariant co-occurrence LBP method (PRI-
CoLBP) [264], and the co-occurrence histograms of oriented
gradients method [267] are examples of statistical hybrid ap-
proaches. These methods follow similar frameworks that exploit
spatial co-occurrence encoding to boost LBP and HOG methods’
discriminative power and robustness. The spatial co-occurrence
of features in these methods can provide higher-order statistical
information than their individual occurrence. The enhanced
PRICoLBP features capture the spatial context co-occurrence in-
formation effectively and are rotation-invariant. The PRICoLBP
features have been applied effectively for visual classification
after incorporating the multi-scale and multi-orientation colour
information [264].

Based on the concept of lacunarity in fractal analysis, a hybrid
fractal-LBP approach was proposed in [199]. In this integrative
method, the lacunarity analysis has been performed on multi-
scale LBPs to characterise the spatial distribution of texture
structure, yielding highly discriminative texture features (in
comparison to some LBP variants [167]) with strong robustness
to photometric and geometric changes.

In [200], the multifractal analysis is integrated with SIFT,
a well-established local descriptor, in a tight wavelet frame
system. This method has inherited the fractal dimension’s high-
discriminative power, the invariance to most environmental
changes of the SIFT method, and the multi-scale representation
of the wavelet frame system.

The integration between methods has not been limited to
handcrafted approaches, and classic-deep hybrid convolutional
networks have also been proposed. Following the standard CNN
architecture, a scattering convolutional network (ScatNet) was
proposed in [269]. The convolutional filters in ScatNet are
simply Gabor or Haar wavelets, and no learning is required. Scat-
Net computes translation-invariant texture features that preserve
high-frequency information. In [271], ScatNet was extended
to compute scale-, deformation-, and rotation-invariant texture
features.

Another hybrid convolutional network (PCANet), based on
trained principal component analysis (PCA) filters and LBP
encoding, was proposed in [270]. The feature extraction in
PCANet is much faster than ScatNet, but with weaker invariance
properties and lower texture classification performance. More-
over, Deep-TEN [258] and NetVLAD [257] (discussed earlier
in sub-Section II-C2) are two CNNSs that can be referred to as
inter-class hybrid networks (vocabulary-learned-deep-learning
hybrid networks).

A list of hybrid methods with their combinations and proper-
ties are summarised in Table IX.

[Il. TEXTURE ANALYSIS IN BIOMEDICAL IMAGING

Biomedical imaging is one of the most widespread areas for
the application of texture analysis. Texture analysis has been ap-
plied in a variety of biomedical applications, including medical
image enhancement [279], [280], automatic and semi-automatic

segmentation [159], [281], and detection and monitoring of
different diseases [282]-[284]. The first reported use of texture
analysis within the biomedical field was in radiographic imaging
and dates back to 1971 [285]. Since then, the application of
texture analysis in several medical imaging modalities grew
continuously.

The common limitation of all imaging modalities is thatimage
interpretation is based on the human visual system’s input.
Potential features within each image may not be perceived easily
by the naked eye and pass unnoticed. Texture features can play a
complementary role in biomedical image analysis. It was shown
that statistical and spectral texture features can outperform the
visual assessment of magnetic resonance imaging [282].

On the other hand, while texture analysis can take part in
the estimation of fracture risk in osteoporosis (outperforms the
estimation with bone mineral density evaluation [58]) and for
assessment of the healing process after bone loss [286], when
representing the micro-architectural alteration of bone in digital
X-rays, it is not of real use for the diagnosis of, e.g., bone
fracture.

The robustness of texture analysis cooperates in the monitor-
ing of disease progression and therapy assessment. Computer-
aided diagnosis (CAD) tools have been developed to comple-
ment the detection, analysis, and monitoring of several dis-
eases [59], [93], [287], [288] by using texture features. In
this section, the potential of texture analysis in two promising
application areas is discussed, namely oncology and neurology
imaging. In Table X, the application of different texture analysis
methods in various disorders is summarised. Finally, the con-
cept of 3D texture and its relevance in biomedical imaging are
addressed in sub-Section III-C.

A. Oncologic Imaging

In oncologic practice, different imaging modalities such
as computed tomography (CT), magnetic resonance imaging
(MRI), ultrasound, and positron emission tomography (PET)
are used both separately or in combination, depending on the
tumour type and location. In oncology, the role of imaging is to
help answer clinical questions such as the confirmation of diag-
nosis, characterisation of lesions, staging, treatment planning,
targeting therapy, assessing treatment response, and surveil-
lance [284]. Texture features can assist in answering all these
questions.

Oncologic applications of texture analysis fall into cancer
prognosis, diagnosis, and treatment response evaluation. Tu-
mours are heterogeneous both on genetic and histopathological
levels. Tumour spatial heterogeneity is an important prognostic
factor and can be quantified by texture. In [336], the association
of tumour heterogeneity, as assessed by CT image texture analy-
sis, with tumour metabolism, stage, and survival in oesophageal
cancer was studied. The use of first-order statistics-based fea-
tures (computed from autocovariance matrix) of CT images in
liver lesions, to classify them as benign or malignant, has shown
promising [310]. Fractal-based texture features were employed
to classify small lung lesions in high-resolution CT images
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TABLE IX
HYBRID METHODS IN TEXTURE ANALYSIS

Group (category) Methods Combination Properties
Anisotropic circular Gaussian MRF [194] Fourier transform & MRF Rotation-invariant
Linear regression model based on wavelet Linear regression model & Consider the correlation between fre-
transform [272] Wavelet quency regions
] Mufti-resolution MRF [273] MRF & Wavelet Contained the high-pass and low-pass
Classical (model-based + components of wavelet decomposition in

spectral)

a model

Multi-scale fractal [200]

Fractal & SIFT & Wavelet

Robust to illumination change and local
geometric change

Wavelet multifractal spectrum [198]

Fractal & Wavelet

Robust to scale and rotation changes

Wavelet-based multifractal spectrum [274]

Fractal & Wavelet

Easy implementation
Robust to environmental changes

Local configuration pattern [275]
Classical (model-based + sta-
tistical)

LPB & Microscopic configu-
ration modelling

Robust to illumination variations
Rotation-invariant

Pattern Tacunarity spectrum [199]

Lacunarity & LBP

Robust to photometric and geometric
changes

Classical (spectral + spectral) [S1t7eg]rable pyramid based Laws’ masks

Laws filters & Steerable
pyramid

Texture features at different levels and
different orientations

Dominant LBP [276] Gabor & LBP Less sensitive to noise

Robust to image rotation
LBP dual-tree complex wavelet transform LBP & Wavelet Rotation-, illumination-, and scale-
[148] invariant

Classical (statistical + spec-
tral)

LBP histogram Fourier [268]

Fourier transform & LBP

Rotation-invariant

LBP local phase quantisation [145]

LBP & Local phase quanti-
sation

Discriminative
features

spatial-frequency

Local Gabor binary pattern histogram se- Gabor & LBP lllumination-invariant
quence [146]
Center-symmetric LBP[47] LBP & SIFT Computationally inexpensive

Relatively short feature histogram
Robust to illumination changes

Co-occurrence histograms of oriented gra-
dients [267]

Co-occurrence & HOG

Effective for object classification

Co-occurrence of uniform LBP [265]
Classical (statistical + statisti-

cal)

Co-occurrence & LBP

Capture spatial context co-occurrence
effectively

HOG-gist © [277] gist & HOG Texture description ability is stronger
than traditional gist
HOG-LBP [266] HOG & LBP Handling partial occlusion

LBP Weber local descriptor [40]

LBP & Weber local descrip-
tor

Robust to lighting
Robust to noise

Pairwise rotation-invariant co-occurrence
LBP [264]

Co-occurrence & LBP

Capture spatial context co-occurrence
effectively
Rotation-invariant

Classical (spectral) + Learning-
based (deep-learning)

ScatNet [269]

CNN & Gabor wavelets

Features being stable to deformation
Preserving high-frequency information

Local binary CNN [259] CNN & LBP Reduce the computational complexity of
Classical statistical CNNs
Learning-baséd )(deept Well suited for learning and inference of
learnin CNNs in resource-constrained environ-
9 ments
PCANet [270] CNN & LBP Weak invariance properties

b See [278] for more details on computing “gist” features.

[174].In[304], CNN-based features have been used to automati-
cally extract features from shear-wave elastography (SWE) data
to classify the malignant and benign breast tumours. Texture fea-
tures have also been applied in lesion classification and detection
in MRI images of the brain (e.g., Gabor features [160]), breast
(e.g., 3D GLCM features [303]), liver (e.g., GLCM, GLRLM,
auto-regressive, and wavelet features [66]), cervix (e.g., first-
and second-order statistics and deep-learned features [306]) and
prostate (e.g., fractal and multifractal features [215]), suggesting
a promising role for texture analysis in oncology.

Texture features can assess tumour characteristics before
treatment. In various primary and metastatic tumours, texture
features associated with histopathologic characteristics may be
useful in treatment planning and prognostication. In [337],
primary colorectal tumours were evaluated using volumet-
ric texture assessment. It was found that different contrast-
enhanced CT image texture features, such as entropy, uniformity,
kurtosis, skewness, and standard deviation of the histogram,
were predictive of survival, regardless of the tumour stage. In
another study [324], patients with oesophageal cancer treated
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TABLE X

LIST OF ORGANS/TISSUES WHERE TEXTURE ANALYSIS METHODS HAVE BEEN APPLIED, INDICATING THE PATHOLOGY AFFECTING THE TISSUE AND THE

IMAGING MODALITY USED. IN THE “OBJECTIVE” (OBJ) COLUMN, C REPRESENTS CLASSIFICATION APPLICATIONS, WHEREAS S REPRESENTS

SEGMENTATION APPLICATIONS

Organ Disease Imaging technique Texture feature Obj Reported
Performance (%)
o CT First-order statistics, GLCM, and Fourier features [77] C n/a
3 Bladder cancer OCT First-order statistics, GLCM, Laws, and Fourier features [75] C Sen: 50-100,
= Spe: 47-88
o
® X-ray GLCM, GLRLM, and binarised statistical image features [58] C Acc: 50-87
5 Osteoporosis X-ray HOG and Gabor features [43] C Acc: 80-93
o X-ray Laws features [163] o] n/a
- . CT and MRI GLCM features [289] C AUC: 50-84
Acute ischemic stroke MRI GLCM features [81] C n/a
MRI 3D features (GLCM, GLRLM, and gradient) [65] C Acc: 63-98
MRI 3D wavelet features [290] C AUC: 57-97,
e Sen: 72-89,
Alzheimer’s disease Spe: 65-94
MRI First-order statistics, GLRLM, Laws, and fractal features [164] C Acc: 83-98
MRI GLCM features [74] C n/a
MRI Voxel-based GLCM features [291] C Acc: 89-100
OCT GLCM features [292] (¢} n/a
PET Trace transform triple features [293] C Acc: 70-94
SPECT 3D first-order statistical features [294] C Acc: 92
Amyotrophic lateral sclerosis MRI GLCM teaturas [78] C 232'7895’ Sen: 83,
Digital microscopy Bag-of-word (based on MR8 filters) [170] C Acc: 59-80,
AUC: 59-83
Digital microscopy Riesz wavelet and deep-learned features [295] C Acc: 62-99,
Sen: 86-99,
Spe: 87-100
-% MRI First-order statistics and GLCM features [72] C Acc: 74-100
& Brain tumours MRI First-order statistics, Gabor, and fractal features [296] C— greif?z—%%
MRI First-order statistics, GLCM, and GLRLM features [86]) C-S AUC: 73-98,
Sen: 55-100,
Spe: 66-100
MRI Fractal and fractal wavelet features [297] C-S Acc: 88-96
MRI Histogram and GLCM features [298] (¢} n/a
MRI Gabor features [160] C Acc: 81-91,
AUC: 77-92
MRI Stockwell transform features [141] C Sen: 93, Spe: 96
MRI and CT Fractal features [220] S n/a
MRI 3D GLCM and GLRLM features [85] C n/a
Epilepsy MRI GLCM features [80] C-S Sen: 61-85, Spe: 100
MRI Wavelet, multi-wavelet and wavelet packet features [192] C Acc: 50-100
Machado-Joseph disease ~ MRI GLCM features [76] C AUC: 50-100
MRI 3D deep-learned features [299] S Acc: 52-78
Multiple sclerosis MRI GLCM features [300] C Acc: 60-100
MRI GLCM, GLRLM, auto-regressive, and wavelet features [64] C Acc: 58-100
MRI Polar Stockwell transform features [143] C n/a
MRI First-order statistics, GLCM, and GLRLM features [79] C AUC: 95, Sen:76-91,
Parkinson’s disease Spe: 66-75
MRI GLCM [301] C n/a
SPECT First-order statistics and GLCM features [302] C n/a
DCE-MRI Volumetric (3D) GLCM features [303] C n/a
Digital mammograms Variogram and cross-variogram features [122] C-S Acc: 70, Sen: 100,
Spe: 67
Dynamic contrast-  GLCM features [73] C AUC: 70
enhanced MRI (DCE-MRI)
Mammography LBP, Elliptic LBP, and local directional pattern features [100] C Acc: 67-77,
- AUC: 78-92
§ Breast cancer MRI [%lé]CM GLRLM, auto-regressive model, and wavelet features ~ C Acc: 80-100
@ Optical coherence  LBP, average LBP, and block-based LBP features [99] C Acc: 67-100
microscopy (OCM)
Ultrasonography GLCM and GLRM features [288] (¢} Acc: 90, Sen: 84,
Spe: 96
Ultrasound First-order statistics, GLCM, and fractal features [219] C-S  Acc: 88, Sen: 83,
Spe: 92
SWE Deep-learned features [304] C Acc: 92-95,
Sen: 87-96,
Spe: 93-95
Digital microscopy Gabor features [161] Acc: 89, Sen:84-89,
Spe: 85
Digital microscopy GLCM, fractal, GLRLM, and Voronoi diagram features [87] C AUC: 59-95
« MRI First-order statistics and GLCM features [305] C Acc: 53-100,
> Cervical cancer Sen: 63-100,
) Spe: 0-100
© MRI First- and second-order statistics and deep-learned feature =~ C Acc: 4676,
[306] Sen: 43-95,
Spe: 22-77
MRI Deep-learned features [307] C Acc: 60-82,
AUC: 66-88,
Sen: 42-88,
Spe: 62-83

f Performance rounded to zero decimal places. For consistency, only common metrics are shown and, the most common names used. Acc: accuracy; AUC: area under

the receiver operating characteristics (ROC) curve; Pre: precision; Sen: sensitivity; Spe: specificity. n/a: not applicable.
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Contrast-enhanced CT Fractal features [217] S n/a
c Digital microscopy 2D and fuzzy sample entropy [240] C AUC: 98, Sen: 81,
% Colorectal cancer Spe: 100
o MRI First-order statistics features [308] C AUC: 59-90, Sen: 66-100,
Spe: 44-88
Chronic liver disease Contrast-enhanced CT GLCM, GLRM, histogram-based and Laws features [84] C AUC: 50-74
MRI GLCM, GLRLM, auto-regressive model, and wavelet trans- C Acc: 65-100
. form [66]
2 Fatty liver disease Ultrasound First-order statistics, GLCM, and Laws features [165] C Acc: 95
pr Ultrasound Gist feature [309] C Acc: 69-98, Sen:88-100,
Spe: 62—100
Hepatic tumours CT Auto-covariance features [310] C Acc: 81, Sen: 75, Spe: 88
CT First-order statistics, GLCM, and GLRLM features [311] C AUC: 86—-100
CT GLCM features [312] C Acc: 96
X-ray Deep-learned features [313]-[315] C Acc: 84—100, AUC: 92—-99
X-ray GLCM features [316] C Acc: 98, Sen: 96, Pre: 100
COVID-19 X-ray LBP features [317] C Acc: 94, Sen: 95, Spe: 93
X-ray and CT GLCM, GLRLM, local directional pattern, and discrete C Acc: 47-99, Sen: 31-99,
wavelet features [106] Spe: 51-99
X-ray and CT GLCM, LBP, and deep-learned features [318] C Acc: 79-100, AUC: 59-100
X-ray LBP, LPQ, LETRIST, and deep-learned features [169] C Acc: 87-98
Contrast-enhanced CT Fractal features [216] C n/a
CT 2D and 3D LBP features [101] C Acc: 36-78
o CT GLCM and deep-learned features [319] C Acc: 84-97, Sen: 85-98,
5 Lung cancer Spe: 75-96
- 9 CT LBP and HOG features [44] C Acc: 90-98, Sen: 62-91,
Spe: 92-99
CT SIFT, HOG, MR8 and LBP features [171] C Acc: 45-90
CT and PET Laplacian of Gaussian and first-order statistics [320] C Acc: 78
CT First-order statistics, GLCM and GLRLM features [321] C Acc: 55-83, Sen:21-91,
Obstructive lung diseases Spe: 69-97
CT LBP features [102] C Acc: 61-95
. X-ray Gist and HOG features [93] C Acc: 86-94
Tuberculosis X-ray GLCM features [322] C-S n/a
CT 3D Riesz wavelet features [323] C n/a
Pneumonia X-ray Deep-learned features (AlexNet) [319] C Acc: 82-97, Sen: 86-97,
Spe: 75-96
» Digital microscopy Fractal, MRF, and GLRLM features [223] C-S n/a
Y Barrett's oesophagus Endoscopic OCT Center-symmetric auto-correlation features [59] C Acc: 70-84, Sen: 69-82,
E Spe: 71-74
2 CT First-order statistics features [324] — n/a
2 Oesophageal cancer PET Fractal features [325] C n/a
o
c Microscopy GLEM features [90] C Acc: 62-70, Sen: 41-60,
£ Ovarian cancer Spe: 73-75
[ OCT GLCM and Fourier features [326] C Acc: 67-78
o
) Light microscopy GLEM and GLRLM features [89] C Acc: 65-85
s Microscopy Fractal, GLCM, Gabor, and multi-wavelet features [214] C Acc: 60-94
w  Prostate cancer MRI Fractal and multifractal features [215] C-S  AUC:75-93
o Ultrasound Gabor features [159] S n/a
Fundus photography GLCM and MRF features [224] C Acc: 86
Glaucoma OCT GLCM and GLRLM features [327] C Acc: 83-90
© OCT [GLC]M, GLRLM, LBP, wavelet, and granulometry features C Acc: 53-85
c 134
E OCT Wavelet features [328] C Acc: 95, Sen: 93, Spe: 96
OCT LBP and HOG features [92] C Acc: 56—100
Macular pathologies OCT LBP features [103], [104] C Acc: 68-81, AUC: 93
OCT Linear configuration pattern features [329] C Acc: 89-98
c PXE Dermoscopy 2D multi-scale fuzzy entropy features [241] C n/a
= Skin cancer Dermoscopy GLCM features [330] C Acc: 76—100
» OCT First-order statistics, fractal and MRF features [225] C Pre: 50-100
o MRI GLCM, auto-regressive, and wavelet features [206] C Acc: 89
g Thyroid cancer Ultrasound Steerable pyramids and GLCM features [180] C Acc: 92-99
K=
=
» MRI First-order statistics, GLCM, and Gabor features [331] C Acc: 83-98, Sen:58-100,
2 Uterine sarcomas Spe: 55-100
2 Microscopy GLEM features [91] C Acc: 61-68, Sen: 53-74,
= Spe: 63-68
€ Microscopy First-order statistics and GLCM features [332] C Acc: 90, Sen: 91, Spe: 92
@ Atherosclerosis OCT First-order statistics features [333] C Sen: 53—100, Spe: 93-97
‘Q Ultrasound Discrete and stationary wavelet and Gabor features [334] C Acc:35-90, Sen:27-90,
o Spe: 33-88
8 Carotid atherosclerosis Ultrasound First-order statistics features [335] C n/a
3 Ultrasound GLCM, Laws, and fractal features [166] C n/a
a Ultrasound LBP, GLCM, GLRLM, and Fourier features [152] C Acc: 74-90, Sen: 59-83,
= Spe: 76-95

T Performance rounded to zero decimal places. For consistency, only common metrics are shown and, the most common names used. Acc: accuracy; AUC: area under the receiver
operating characteristics (ROC) curve; Pre: precision; Sen: sensitivity; Spe: specificity. n/a: not applicable.

with neoadjuvant chemotherapy and radiation therapy were
evaluated before resection. Survival models that included CT
texture features, besides identified changes in oesophageal wall
thickness, performed better than those that included morpho-
logic assessment alone. Texture analysis has also been applied

to PET images for radiotherapy planning [338] and response
assessment in renal cell cancer metastases treated with tyrosine
kinase inhibitors [217].

Multiple studies have evaluated the response of different tu-
mours and cancers to therapy using texture feature, for instance,
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in lung cancer (first-order statistics and GLCM features [339]),
in liver metastasis (GLCM features [340]), and colorectal cancer
(first-order statistics features [341]). In [342], treatment with
antiangiogenic therapy and radiation therapy for soft-tissue sar-
coma were evaluated with perfusion CT. In general, changes
in tumour heterogeneity may be associated with treatment re-
sponse. Quantitative image findings, texture features included,
have been correlated to histopathological results at surgical
resection by comparing pre- and post-treatment metrics.

The active research on oncological applications of tex-
ture analysis shows the potential of using multiple texture
features as a prognostic biomarker in the diagnosis, char-
acterisation, and response assessment of different types of
cancer.

B. Neuroimaging

Brain tumours’ characterisation is one of the earliest texture
analysis applications in neurology [220], [297]. In addition to its
neuro-oncological applications, texture analysis iS a promising
quantitative biomarker in general neurology. When it comes to
neuroimaging, MRI is the leading imaging modality. Texture
analysis of MRI images is widely used to find biomarkers
for different disorders such as epilepsy, multiple sclerosis, and
Alzheimer’s disease.

Epilepsy is a neurological disorder characterised by seizures.
Texture analysis has been used in epilepsy to detect the le-
sions responsible for seizures, such as cortical dysplasia and
hippocampal sclerosis. Statistical-based methods (GLCM fea-
tures [80], [85]) and the wavelet transform [192] have been used
in this field.

Multiple sclerosis is an inflammatory disease of the cen-
tral nervous system that damages the insulating myelin sheath
around the brain’s axons and spinal cord. In the early stages
of multiple sclerosis, the inflammation can be identified using
T1-weighted MRI. However, in the advanced stages, the conven-
tional MRI markers are not particularly helpful for disease moni-
toring [343]. Texture analysis can help in this regard, having been
used in several studies for identifying active multiple sclerosis
lesions and monitoring disease progression [64], [143]. In the
early stage, multiple sclerosis lesions are classified by GLCM
features [300]. In a subsequent work [64], additional texture
features were extracted from the GLCM, GLRLM, the gradient
matrix, the auto-regressive model, and the wavelet transform.
This work suggested that a combination of features is more
effective than a single-feature assessment for multiple sclero-
sis classification. Some works demonstrate the correlation of
texture features to the changes associated with multiple sclerosis
patient’s disability [344].

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder and the most common cause of dementia. The definitive
diagnosis of AD is obtained only from an autopsy or brain
biopsy. Even though no tests are available for a definite AD
diagnosis in vivo, texture analysis can play arole in AD diagnosis
and monitoring. In a pioneering work in 1998 [345], GLCM
features were computed from MRI to study AD. Since then,
MRI texture features have been widely applied to study this

disorder [65], [74], [164], [290], [291]. In [346], the GLCM and
the GLRLM were used to differentiate between Alzheimer’s dis-
ease and Lewy-body dementia, the second most common cause
of dementia after AD. In addition to 2D texture methods, some
research groups have used 3D GLCM and GLRLM features
from MRI images [347] and local 3D filter responses [290] as
texture features to study AD. Notably, texture analysis studies
on this disorder are not restricted to MRI imaging applications.
Research has been extended to texture analysis of other imaging
modalities such as PET [293], single-photon emission computer
tomography (SPECT) [294], and optical coherence tomography
(OCT) [348].

Texture analysis in neurology is not restricted to the disorders
mentioned above but also applied to Parkinson’s disease [301],
ischemic stroke [289], amyotrophic lateral sclerosis [78], and
Machado-Joseph disease [76].

C. Texture Features in 3D Biomedical Imaging

Volumetric texture is defined in the 3D spatial domain. Ex-
amples include medical images acquired by volumetric data
acquisition devices, such as tomographic imaging techniques
(CT, PET, and OCT), confocal imaging, and MRI.

Texture analysis of 3D data has been introduced as one of
the emerging needs within the medical imaging and diagnostic
radiology field [287]. Despite this demand, only a few methods
have been developed to analyse 3D data, mainly due to 3D
image analysis’s computational cost. The developed 3D methods
are usually the extensions of existent 2D popular methods,
even though the extension of 2D methods to 3D, in general,
is not straightforward and raises several challenges related to
translation, scaling, and rotation invariances.

The GLCM method can be simply extended to 3D by consid-
ering three-dimensional vectors [349]. In [291], GLCM texture
features were extended to define texture features on a voxel-
by-voxel basis for 3D brain MRI acquisitions and provided a
useful 3D statistical map to study cerebral pathology in neu-
rology. Other texture analysis methods such as those based on
the wavelet transform [350], Markov random fields [351], the
GLRLM method [352], Gabor filters [353], the Wold decom-
position method [202], and the LBP method [354], have been
extended to 3D as well. Three-dimensional filtering [355] and
3D model-based methods [356] have also been proposed to
extract 3D texture features.

3D texture analysis methods encompass rich information
on the internal structures of objects by using all data dimen-
sions. Two-dimensional texture analysis methods are usually
less discriminative than 3D ones because one of the data space
dimensions is ignored, therefore hampering the full exploitation
of the information available. In [357], the performance of 3D
texture analysis methods in biomedical image analysis has been
analysed and reviewed.

Based on the success and attention that 2D texture analysis
methods have obtained in biomedical imaging and the improved
performance of 3D methods over 2D approaches, 3D texture
analysis is expected to receive further research attention in the
biomedical field.
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D. Remarks

A wealth of imaging modalities are used in biomedical imag-
ing depending on disease type and the biological tissues and
organs involved. The limitations of the different image acquisi-
tion processes imply some constraints that need to be considered
while choosing an adequate texture analysis approach.

MRI can be highlighted as one imaging modality where tex-
ture analysis methods have been most widely applied in recent
years. The main issues affecting texture that must be considered
when dealing with MRI data are noise, partial volume averaging,
intensity non-uniformity, inter-slice intensity variation, and lack
of intensity standardisation [358].

These issues can be mitigated by the proper choice of the
texture analysis method to apply. Texture methods that are
robust to noise can overcome the noise-related challenges in
MRI data, for example. [llumination-invariant texture features
can address the problems arising from intensity non-uniformity,
inter-slice variability, and intensity non-standardisation. In [66],
the sensitivity of different texture features (such as the GLCM,
the GLRLM, the absolute gradient matrix, the auto-regressive
model, and wavelet features) to variations in the MRI equip-
ment and imaging protocols used, have been studied. The au-
thors demonstrated that these texture features are relatively
robust to several imaging variations and that a proper choice
of robust texture features can address the issues mentioned
earlier.

Some acquisition parameters in the CT imaging modality
affect attenuation or pixel relationships, reflecting in texture-
based metrics. It has been suggested that first-order statistical
texture features may be less affected by these CT acquisition’s
changes [359].

In PET, the spatial resolution is low, which yields less robust
texture information in small regions. Similarly, in ultrasound
and OCT, noise-robust texture analysis approaches are the most
appropriate due to speckle noise.

Biomedical image analysis relies on an immense range of
texture analysis methods. The general trend is to use statistical-
based methods such as the GLCM [64], [65], [72]-[82], [84]-
[88] and the LBP methods [92], [99]-[104]. The next most
popular approaches are spectral methods such as the wavelet
transform [64], [82], [134], [192] and Gabor filters [159]-[162].
Nevertheless, for medical imaging classification systems (for
instance, in [134], [164], [214], [334]), several different texture
analysis features are combined since each conveys complemen-
tary information from the same image.

Besides handcrafted features, learned features also show a
particular potential in medical image analysis. Some examples
include brain structure segmentation [360], mitotic event
detection and cancerous tissue evaluation [361], and polyp
detection [362]. The lack of comprehensive datasets in the
medical imaging domain is the main challenge when using
deep-learning-based texture features. Two approaches have
been suggested to address this issue: transfer learning and
fine-tuning [363].

In transfer learning, CNN models, pre-trained from datasets
of natural images or a different medical domain, are used for new

medical tasks. For instance, in [364], pre-trained CNNs on a non-
medical dataset (ImageNet) were used as feature generators for
different types of pathologies in chest X-rays. In[314] and [315],
transfer learning techniques were used to diagnose COVID-19.
In [315], three deep CNN models were tested to classify subjects
into COVID-19 positive and negative groups. The models were
established using 100 X-ray images from COVID-19 positive
patients and healthy subjects. Due to the small size of the dataset,
transfer learning techniques were applied from the ImageNet
database.

For medium-sized datasets, fine-tuning schemes that use a
pre-trained CNN as initialisation of the network can be applied.
In [362], the potential of fine-tuned CNNSs in the context of
medical image analysis was investigated. The preference of
fine-tuned CNNs, regardless of the size of the available training
sets, is well-demonstrated by its use for the most common med-
ical imaging tasks (lesion detection, image segmentation, and
image classification) from three different imaging modalities:
CT, ultrasonography, and optical endoscopy.

Like the handcrafted features, features from deep-learning
techniques can also be used alone or combined with other
feature sets, both handcrafted and learned. An example along
this line can be found in [168], where handcrafted features
were combined with a pre-trained CNN model for bio-image
classification. Further examples can be found in [295], [306],
[318], and in Table X.

V. SUMMARY

Numerous approaches for the quantification and characterisa-
tion of texture have been proposed over the years. The focus of
this paper, in the first part, was to provide an updated survey of
texture analysis methods. As a comprehensive survey, the reader
was introduced to an extended and granular categorisation of the
texture analysis methods covering different aspects and trends
in the field.

A thorough review of the handcrafted texture analysis
methods was provided, covering both classical approaches and
emerging categories. The learning-based approaches in texture
analysis were addressed, covering the deep-learning processes
and pointing out the use of high-performance CNNs in texture
analysis. A list of integrative approaches, which present a
well-balanced trade-off between different methods, was also
compiled.

The importance of texture analysis techniques is supported
by their application to many different problems and application
fields, of which one of the leading applications fields is biomed-
ical imaging. Quantitative measures of biomedical textures are
expected to provide powerful diagnosis tools for several dis-
eases. A list of the major disorders in which texture analysis
was used on their assessment, detection, and progression analy-
sis, was presented. Texture analysis maximises the information
obtained from biomedical images and has shown the potential
for further development as a valuable clinical tool. Such potential
in oncology and neurology imaging was discussed throughout
the second part of this paper.
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Different texture analysis approaches have been applied, to a
large extent, in 2D medical image analysis. Methods concerning
3D texture and deep-learning approaches were also addressed
as these are two promising directions in the field.
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