245 research outputs found

    Quality-of-service provisioning for dynamic heterogeneous wireless sensor networks

    Get PDF
    A Wireless Sensor Network (WSN) consists of a large collection of spatially dis- tributed autonomous devices with sensors to monitor physical or environmental conditions, such as air-pollution, temperature and traffic flow. By cooperatively processing and communicating information to central locations, appropriate ac- tions can be performed in response. WSNs perform a large variety of applications, such as the monitoring of elderly persons or conditions in a greenhouse. To correctly and efficiently perform a task, the behaviour of the WSN should be such that sufficient Quality-of-Service (QoS) is provided. QoS is defined by constraints and objectives on network quality metrics, such as a maximum end- to-end packet loss or minimum network lifetime. After defining the application we want the WSN to perform, many steps are involved in designing the WSN such that sufficient QoS is provided. First, a (heterogeneous) set of sensor nodes and protocols need to be selected. Furthermore, a suitable deployment has to be found and the network should be configured for its first use. This configuration involves setting all controllable parameters that influence its behaviour, such as selecting the neighbouring node(s) to communicate to and setting the transmission power of its radio, to ensure that the WSN provides the required QoS. Configuring the network is a complex task as the number of parameters and their possible values are large and trade-offs between multiple quality metrics exist. High transmission power may result in a low packet loss to a neighbouring node, but also in a high power consumption and low lifetime. Heterogeneity in the network causes the impact of parameters to be different between nodes, requiring parameters of nodes to be set individually. Moreover, a static configuration is typically not sufficient to make the most efficient trade-off between the quality metrics at all times in a dynamic environment. Run-time mechanisms are needed to maintain the required level of QoS under changing circumstances, such as changing external interference, mobility of nodes or fluctuating traffic load. This thesis deals with run-time reconfiguration of dynamic heterogeneous wire- less sensor networks to maintain a required QoS, given a deployed network with selected communication protocols and their controllable parameters. The main contribution of this thesis is an efficient QoS provisioning strategy. It consists of three parts: a re-active reconfiguration method, a generic distributed service to estimate network metrics and a pro-active reconfiguration method. In the re-active method, nodes collaboratively respond to discrepancies be- tween the current and required QoS. Nodes use feedback control which, at a given speed, adapts parameters of the node to continuously reduce any error between the locally estimated network QoS and QoS requirements. A dynamic predictive model is used and updated at run-time, to predict how different parameter adap- tations influence the QoS. Setting the speed of adaptation allows us to influence the trade-off between responsiveness and overhead of the approach, and to tune it to the characteristics of the application scenario. Simulations and experiments with an actual deployment show the successful integration in practical scenar- ios. Compared to existing configuration strategies, we are able to extend network lifetime significantly, while maintaining required packet delivery ratios. To solve the non-trivial problem of efficiently estimating network quality met- rics, we introduce a generic distributed service to distributively compute various network metrics. This service takes into account the possible presence of links with asymmetric quality that may vary over time, by repeated forwarding of informa- tion over multiple hops combined with explicit information validity management. The generic service is instantiated from the definition of a recursive local update function that converges to a fixed point representing the desired metric. We show the convergence and stability of various instantiations. Parameters can be set in accordance with the characteristics of the deployment and influence the trade-off between accuracy and overhead. Simulations and experiments show a significant increase in estimation accuracy, and efficiency of a protocol using the estimates, compared to today’s current approaches. This service is integrated in various protocol stacks providing different kinds of network metric estimates. The pro-active reconfiguration method reconfigures in response to predefined run-time detectable events that may cause the network QoS to change signifi- cantly. While the re-active method is generally applicable and independent of the application scenario, the, complementary, pro-active method exploits any a-priori knowledge of the application scenario to adapt more efficiently. A simple example is that as soon as a person with a body sensor node starts walking we know that several aspects, including the network topology, will change. To avoid degradation of network QoS, we pro-actively adapt parameters, in this case, for instance, the frequency of updating the set of neighbouring nodes, as soon as we observe that a person starts to walk. At design time, different modes of operation are selected to be distinguished at run-time. Analysis techniques, such as simulations, are used to determine a suitable configuration for each of these modes. At run time, the approach ensures that nodes can detect the mode in which they should operate. We describe the integration of the pro-active method for two practical monitoring applications. Simulations and experiments show the feasibility of an implementa- tion on resource constrained nodes. The pro-active reconfiguration allows for an efficient QoS provisioning in combination with the re-active approach

    File system metadata virtualization

    Get PDF
    The advance of computing systems has brought new ways to use and access the stored data that push the architecture of traditional file systems to its limits, making them inadequate to handle the new needs. Current challenges affect both the performance of high-end computing systems and its usability from the applications perspective. On one side, high-performance computing equipment is rapidly developing into large-scale aggregations of computing elements in the form of clusters, grids or clouds. On the other side, there is a widening range of scientific and commercial applications that seek to exploit these new computing facilities. The requirements of such applications are also heterogeneous, leading to dissimilar patterns of use of the underlying file systems. Data centres have tried to compensate this situation by providing several file systems to fulfil distinct requirements. Typically, the different file systems are mounted on different branches of a directory tree, and the preferred use of each branch is publicised to users. A similar approach is being used in personal computing devices. Typically, in a personal computer, there is a visible and clear distinction between the portion of the file system name space dedicated to local storage, the part corresponding to remote file systems and, recently, the areas linked to cloud services as, for example, directories to keep data synchronized across devices, to be shared with other users, or to be remotely backed-up. In practice, this approach compromises the usability of the file systems and the possibility of exploiting all the potential benefits. We consider that this burden can be alleviated by determining applicable features on a per-file basis, and not associating them to the location in a static, rigid name space. Moreover, usability would be further increased by providing multiple dynamic name spaces that could be adapted to specific application needs. This thesis contributes to this goal by proposing a mechanism to decouple the user view of the storage from its underlying structure. The mechanism consists in the virtualization of file system metadata (including both the name space and the object attributes) and the interposition of a sensible layer to take decisions on where and how the files should be stored in order to benefit from the underlying file system features, without incurring on usability or performance penalties due to inadequate usage. This technique allows to present multiple, simultaneous virtual views of the name space and the file system object attributes that can be adapted to specific application needs without altering the underlying storage configuration. The first contribution of the thesis introduces the design of a metadata virtualization framework that makes possible the above-mentioned decoupling; the second contribution consists in a method to improve file system performance in large-scale systems by using such metadata virtualization framework; finally, the third contribution consists in a technique to improve the usability of cloud-based storage systems in personal computing devices.Postprint (published version

    Mitigation of failures in high performance computing via runtime techniques

    Get PDF
    As machines increase in scale, it is predicted that failure rates of supercomputers will correspondingly increase. Even though the mean time to failure (MTTF) of individual component is high, the large number of components significantly decreases the system MTTF. Meanwhile, the decreasing size of transistors has been critical to the increase in capacity of supercomputers. The smaller the transistors are, silent data corruptions (SDC) are likely to occur more frequently. SDCs do not inhibit execution, but may silently lead to incorrect results. In this thesis, we leverage runtime system and compiler techniques to mitigate a significant fraction of failures automatically with low overhead. The main goals of various system-level fault tolerance strategies designed in this thesis are: reducing the extra cost added to application execution while improving system reliability; automatically adjusting fault tolerance decisions without user intervention based on environmental changes; protecting applications not only from fail-stop failures but also from silent data corruptions. The main contributions of this thesis are development of a semi-blocking checkpoint protocol that overlaps application execution with fault tolerance operation to reduce the overhead of checkpointing, a runtime system technique for automatic checkpoint and restart without user intervention, a holistic framework (ACR) for automatically detecting and recovering from silent data corruptions and a framework called FlipBack that provides targeted protection against silent data corruption with low cost

    Utah Science Vol. 43 No. 4, Winter 1982

    Get PDF
    87 LUNG DISEASE MORTALITY IN UTAH MINERS (1959-1978) S. H. Kan and J. E. Brockert Miners have long suffered from diseases associated with their occupation. Data are examined relative to disease occurrence and resultant death rates. 90 IMPROVING BLACKBRUSH RANGES R. D. Provenza, J. E. Bowns, J. C. Malechek, P. J. Urness, and J. E. Butcher Blackbrush may be small in size, but it has king-size, tough spines. Using goats and controlled grazing, researchers are finding ways to optimize livestock use of this shrub. The results of four years research are reported here. 96 IMPACT OF TRADE LIBERALIZATION ON UTAH AGRICUL TURE B. Biswas and G. Tribedy Does foreign trade in agricultural goods affect the Utah Economy? According to these authors, the connection is measurable and more important than many of us think. 100 THE UTAH SOLAR NETWORK Measuring Our Solar Blessings L. F. Hall, L. E. Hipps, and G. Venugopal Making efficient use of solar energy depends upon our having extensive. long-term, reasonably site-specific data. Thanks to a network of volunteer- operated stations, Utah is on its way toward having such a base. 109 EFFICIENT WATER MANAGEMENT Integration is the Key A thirsty plant is not at its most productive. Researchers are readying recommendations for giving crop, turf. and garden plants precisely the amount of water they need, when they need it. 110 INCREASING GRAZING EFFICIENCY ON CRESTED WHEATGRASS B. E. Norton, P. S. Johnson, and M. K. Owens The value of crested wheatgrass is undenied. but sometimes good can be made better. Management strategies have been tested and recommendations are made for getting more feed value from crested wheatgrass ranges. 114 INDE

    Machine Learning-based Orchestration Solutions for Future Slicing-Enabled Mobile Networks

    Get PDF
    The fifth generation mobile networks (5G) will incorporate novel technologies such as network programmability and virtualization enabled by Software-Defined Networking (SDN) and Network Function Virtualization (NFV) paradigms, which have recently attracted major interest from both academic and industrial stakeholders. Building on these concepts, Network Slicing raised as the main driver of a novel business model where mobile operators may open, i.e., “slice”, their infrastructure to new business players and offer independent, isolated and self-contained sets of network functions and physical/virtual resources tailored to specific services requirements. While Network Slicing has the potential to increase the revenue sources of service providers, it involves a number of technical challenges that must be carefully addressed. End-to-end (E2E) network slices encompass time and spectrum resources in the radio access network (RAN), transport resources on the fronthauling/backhauling links, and computing and storage resources at core and edge data centers. Additionally, the vertical service requirements’ heterogeneity (e.g., high throughput, low latency, high reliability) exacerbates the need for novel orchestration solutions able to manage end-to-end network slice resources across different domains, while satisfying stringent service level agreements and specific traffic requirements. An end-to-end network slicing orchestration solution shall i) admit network slice requests such that the overall system revenues are maximized, ii) provide the required resources across different network domains to fulfill the Service Level Agreements (SLAs) iii) dynamically adapt the resource allocation based on the real-time traffic load, endusers’ mobility and instantaneous wireless channel statistics. Certainly, a mobile network represents a fast-changing scenario characterized by complex spatio-temporal relationship connecting end-users’ traffic demand with social activities and economy. Legacy models that aim at providing dynamic resource allocation based on traditional traffic demand forecasting techniques fail to capture these important aspects. To close this gap, machine learning-aided solutions are quickly arising as promising technologies to sustain, in a scalable manner, the set of operations required by the network slicing context. How to implement such resource allocation schemes among slices, while trying to make the most efficient use of the networking resources composing the mobile infrastructure, are key problems underlying the network slicing paradigm, which will be addressed in this thesis

    Tecnologias IoT para pastoreio e controlo de postura animal

    Get PDF
    The unwanted and adverse weeds that are constantly growing in vineyards, force wine producers to repeatedly remove them through the use of mechanical and chemical methods. These methods include machinery such as plows and brushcutters, and chemicals as herbicides to remove and prevent the growth of weeds both in the inter-row and under-vine areas. Nonetheless, such methods are considered very aggressive for vines, and, in the second case, harmful for the public health, since chemicals may remain in the environment and hence contaminate water lines. Moreover, such processes have to be repeated over the year, making it extremely expensive and toilsome. Using animals, usually ovines, is an ancient practice used around the world. Animals, grazing in vineyards, feed from the unwanted weeds and fertilize the soil, in an inexpensive, ecological and sustainable way. However, sheep may be dangerous to vines since they tend to feed on grapes and on the lower branches of the vines, which causes enormous production losses. To overcome that issue, sheep were traditionally used to weed vineyards only before the beginning of the growth cycle of grapevines, thus still requiring the use of mechanical and/or chemical methods during the remainder of the production cycle. To mitigate the problems above, a new technological solution was investigated under the scope of the SheepIT project and developed in the scope of this thesis. The system monitors sheep during grazing periods on vineyards and implements a posture control mechanism to instruct them to feed only from the undesired weeds. This mechanism is based on an IoT architecture, being designed to be compact and energy efficient, allowing it to be carried by sheep while attaining an autonomy of weeks. In this context, the thesis herein sustained states that it is possible to design an IoT-based system capable of monitoring and conditioning sheep’s posture, enabling a safe weeding process in vineyards. Moreover, we support such thesis in three main pillars that match the main contributions of this work and that are duly explored and validated, namely: the IoT architecture design and required communications, a posture control mechanism and the support for a low-cost and low-power localization mechanism. The system architecture is validated mainly in simulation context while the posture control mechanism is validated both in simulations and field experiments. Furthermore, we demonstrate the feasibility of the system and the contribution of this work towards the first commercial version of the system.O constante crescimento de ervas infestantes obriga os produtores a manter um processo contínuo de remoção das mesmas com recurso a mecanismos mecânicos e/ou químicos. Entre os mais populares, destacam-se o uso de arados e roçadores no primeiro grupo, e o uso de herbicidas no segundo grupo. No entanto, estes mecanismos são considerados agressivos para as videiras, assim como no segundo caso perigosos para a saúde pública, visto que os químicos podem permanecer no ambiente, contaminando frutos e linhas de água. Adicionalmente, estes processos são caros e exigem mão de obra que escasseia nos dias de hoje, agravado pela necessidade destes processos necessitarem de serem repetidos mais do que uma vez ao longo do ano. O uso de animais, particularmente ovelhas, para controlar o crescimento de infestantes é uma prática ancestral usada em todo o mundo. As ovelhas, enquanto pastam, controlam o crescimento das ervas infestantes, ao mesmo tempo que fertilizam o solo de forma gratuita, ecológica e sustentável. Não obstante, este método foi sendo abandonado visto que os animais também se alimentam da rama, rebentos e frutos da videira, provocando naturais estragos e prejuízos produtivos. Para mitigar este problema, uma nova solução baseada em tecnologias de Internet das Coisas é proposta no âmbito do projeto SheepIT, cuja espinha dorsal foi construída no âmbito desta tese. O sistema monitoriza as ovelhas enquanto estas pastoreiam nas vinhas, e implementam um mecanismo de controlo de postura que condiciona o seu comportamento de forma a que se alimentem apenas das ervas infestantes. O sistema foi incorporado numa infraestrutura de Internet das Coisas com comunicações sem fios de baixo consumo para recolha de dados e que permite semanas de autonomia, mantendo os dispositivos com um tamanho adequado aos animais. Neste contexto, a tese suportada neste trabalho defende que é possível projetar uma sistema baseado em tecnologias de Internet das Coisas, capaz de monitorizar e condicionar a postura de ovelhas, permitindo que estas pastem em vinhas sem comprometer as videiras e as uvas. A tese é suportada em três pilares fundamentais que se refletem nos principais contributos do trabalho, particularmente: a arquitetura do sistema e respetivo sistema de comunicações; o mecanismo de controlo de postura; e o suporte para implementação de um sistema de localização de baixo custo e baixo consumo energético. A arquitetura é validada em contexto de simulação, e o mecanismo de controlo de postura em contexto de simulação e de experiências em campo. É também demonstrado o funcionamento do sistema e o contributo deste trabalho para a conceção da primeira versão comercial do sistema.Programa Doutoral em Informátic

    Economic regulation for multi tenant infrastructures

    Get PDF
    Large scale computing infrastructures need scalable and effi cient resource allocation mechanisms to ful l the requirements of its participants and applications while the whole system is regulated to work e ciently. Computational markets provide e fficient allocation mechanisms that aggregate information from multiple sources in large, dynamic and complex systems where there is not a single source with complete information. They have been proven to be successful in matching resource demand and resource supply in the presence of sel sh multi-objective and utility-optimizing users and sel sh pro t-optimizing providers. However, global infrastructure metrics which may not directly affect participants of the computational market still need to be addressed -a.k.a. economic externalities like load balancing or energy-efficiency. In this thesis, we point out the need to address these economic externalities, and we design and evaluate appropriate regulation mechanisms from di erent perspectives on top of existing economic models, to incorporate a wider range of objective metrics not considered otherwise. Our main contributions in this thesis are threefold; fi rst, we propose a taxation mechanism that addresses the resource congestion problem e ffectively improving the balance of load among resources when correlated economic preferences are present; second, we propose a game theoretic model with complete information to derive an algorithm to aid resource providers to scale up and down resource supply so energy-related costs can be reduced; and third, we relax our previous assumptions about complete information on the resource provider side and design an incentive-compatible mechanism to encourage users to truthfully report their resource requirements effectively assisting providers to make energy-eff cient allocations while providing a dynamic allocation mechanism to users.Les infraestructures computacionals de gran escala necessiten mecanismes d’assignació de recursos escalables i eficients per complir amb els requisits computacionals de tots els seus participants, assegurant-se de que el sistema és regulat apropiadament per a que funcioni de manera efectiva. Els mercats computacionals són mecanismes d’assignació de recursos eficients que incorporen informació de diferents fonts considerant sistemes de gran escala, complexos i dinàmics on no existeix una única font que proveeixi informació completa de l'estat del sistema. Aquests mercats computacionals han demostrat ser exitosos per acomodar la demanda de recursos computacionals amb la seva oferta quan els seus participants son considerats estratègics des del punt de vist de teoria de jocs. Tot i això existeixen mètriques a nivell global sobre la infraestructura que no tenen per que influenciar els usuaris a priori de manera directa. Així doncs, aquestes externalitats econòmiques com poden ser el balanceig de càrrega o la eficiència energètica, conformen una línia d’investigació que cal explorar. En aquesta tesi, presentem i descrivim la problemàtica derivada d'aquestes externalitats econòmiques. Un cop establert el marc d’actuació, dissenyem i avaluem mecanismes de regulació apropiats basats en models econòmics existents per resoldre aquesta problemàtica des de diferents punts de vista per incorporar un ventall més ampli de mètriques objectiu que no havien estat considerades fins al moment. Les nostres contribucions principals tenen tres vessants: en primer lloc, proposem un mecanisme de regulació de tipus impositiu que tracta de mitigar l’aparició de recursos sobre-explotats que, efectivament, millora el balanceig de la càrrega de treball entre els recursos disponibles; en segon lloc, proposem un model teòric basat en teoria de jocs amb informació o completa que permet derivar un algorisme que facilita la tasca dels proveïdors de recursos per modi car a l'alça o a la baixa l'oferta de recursos per tal de reduir els costos relacionats amb el consum energètic; i en tercer lloc, relaxem la nostra assumpció prèvia sobre l’existència d’informació complerta per part del proveïdor de recursos i dissenyem un mecanisme basat en incentius per fomentar que els usuaris facin pública de manera verídica i explícita els seus requeriments computacionals, ajudant d'aquesta manera als proveïdors de recursos a fer assignacions eficients des del punt de vista energètic a la vegada que oferim un mecanisme l’assignació de recursos dinàmica als usuari
    corecore