
Economic regulation for
multi tenant infrastructures

Xavier León Gutiérrez

PhD Thesis in Computer Architecture
by the Universitat Politècnica de Catalunya

Advisor: Leandro Navarro Moldes

Barcelona, Spain 2013

Abstract

Large scale computing infrastructures need scalable and efficient resource
allocation mechanisms to fulfil the requirements of its participants and

applications while the whole system is regulated to work efficiently. Com-
putational markets provide efficient allocation mechanisms that aggregate
information from multiple sources in large, dynamic and complex systems
where there is not a single source with complete information. They have been
proven to be successful in matching resource demand and resource supply in
the presence of selfish multi-objective and utility-optimizing users and selfish
profit-optimizing providers. However, global infrastructure metrics which may
not directly affect participants of the computational market still need to be
addressed –a.k.a. economic externalities like load balancing or energy-efficiency.
In this thesis, we point out the need to address these economic externalities,
and we design and evaluate appropriate regulation mechanisms from different
perspectives on top of existing economic models, to incorporate a wider range
of objective metrics not considered otherwise. Our main contributions in this
thesis are threefold; first, we propose a taxation mechanism that addresses
the resource congestion problem effectively improving the balance of load
among resources when correlated economic preferences are present; second,
we propose a game theoretic model with complete information to derive an
algorithm to aid resource providers to scale up and down resource supply so
energy-related costs can be reduced; and third, we relax our previous assump-
tions about complete information on the resource provider side and design an
incentive-compatible mechanism to encourage users to truthfully report their
resource requirements effectively assisting providers to make energy-efficient
allocations while providing a dynamic allocation mechanism to users.

iii

Resum

Les infrastructures computacionals de gran escala necessiten mecanismes
d’assignació de recursos escalables i eficients per complir amb els requisits

computacionals de tots els seus participants, assegurant-se de que el sistema és
regulat apropiadament per a que funcioni de manera efectiva. Els mercats com-
putacionals són mecanismes d’assignació de recursos eficients que incorporen
informació de diferents fonts considerant sistemes de gran escala, complexos
i dinàmics on no existeix una única font que proveeixi informació completa
de l’estat del sistema. Aquests mercats computacionals han demostrat ser
exitosos per acomodar la demanda de recursos computacionals amb la seva
oferta quan els seus participants son considerats estratègics des del punt de
vist de teoria de jocs. Tot i aix́ı, existeixen mètriques a nivell global sobre
la infraestructura que no tenen per què influenciar els usuaris a priori de
manera directa. Aix́ı doncs, aquestes externalitats econòmiques com poden
ser el balanceig de càrrega o la eficiència energètica, conformen una ĺınia
d’investigació que cal explorar. En aquesta tesi, presentem i descrivim la
problemàtica derivada d’aquestes externalitats econòmiques. Un cop establert
el marc d’actuació, dissenyem i avaluem mecanismes de regulació apropiats
basats en models econòmics existents per resoldre aquesta problemàtica des
de diferents punts de vista per incorporar un ventall més ampli de mètriques
objectiu que no havien estat considerades fins al moment. Les nostres contribu-
cions principals tenen tres vessants: en primer lloc, proposem un mecanisme
de regulació de tipus impositiu que tracta de mitigar l’aparició de recursos
sobre-explotats que, efectivament, millora el balanceig de la càrrega de treball
entre els recursos disponibles; en segon lloc, proposem un model teòric basat
en teoria de jocs amb informació completa que permet derivar un algorisme
que facilita la tasca dels provëıdors de recursos per modificar a l’alça o a la
baixa l’oferta de recursos per tal de reduir els costos relacionats amb el consum
energètic; i en tercer lloc, relaxem la nostra assumpció prèvia sobre l’existència
d’informació complerta per part del provëıdor de recursos i dissenyem un
mecanisme basat en incentius per fomentar que els usuaris facin pública de
manera veŕıdica i expĺıcita els seus requeriments computacionals, ajudant
d’aquesta manera als provëıdors de recursos a fer assignacions eficients des del
punt de vista energètic a la vegada que oferim un mecanisme d’assignació de
recursos dinàmica als usuaris.

iv

Acknowledgements

I don’t have enough kind words to thank Prof. Leandro Navarro, my advisor.
These past several years, he provided an invaluable scientific advice and

prompt and detailed feedback when needed. But most importantly, he has
shaped the way I see and feel scientific research. Working under his supervision
has been a pleasure.

I am grateful to Prof. Tuan Anh Trinh, from the Budapest University of
Technology and Economics, for his collaboration as a co-author on some of
the papers related to this thesis. He challenged me to improve my scientific
writing and presentation.

I would also like to thank Prof. Torsten Eymann for the ideas and the
discussion we had during the first baby-steps of my doctoral dissertation as
well as the doctoral course about economics and research he taught at UPC;
they have been really useful.

Thanks to Prof. Joan Manuel Marquès who, without knowing, introduced me
to research by encouraging me to read my first scientific paper on peer-to-peer
systems and got me interested in research as a career.

Since this thesis is the end product of a long education and previous work in
past European and Spanish projects, I would also like to take the opportunity
to thank the people with whom I worked or learnt valuable assets and helped
me enjoy working on research. Thanks to Pablo Chaćın for endless discussions
about our mutual research interests. His ideas and comments have also
influenced to shape this thesis. During my first year, I also greatly benefited
from working with Xavier Vilajosana who was already working on economic
mechanisms and helped me get in touch with this line of research.

I also had the pleasure to collaborate with the PlanetLab team at Princeton
University during a research stay in the US. Specially, I would like to thank
Sapan Bathia and Marco Yuen for making my stay over there enjoyable and
showed me a different perspective on how to do research.

On a more personal note, I would like to thank my family. My parents Angel
and Mari Carmen who provided me unconditional support at any time and
under any circumstance. I will owe you forever. Also thanks to Laia for his
patience with me and constant support during the writing process of this
dissertation.

Last but by any means least, I would like to thank the friends I made during
all these years at the department of Computer Architecture. I don’t know
how to thank you all for the time we spent together and for spicing things up
when need.

v

Contents

List of Publications xi

1 Introduction 1

2 Foundation 5

2.1 Scenarios of shared infrastructures 5

2.2 Economic principles for computational markets 9

3 State of the art 15

4 Summary of contributions 23

5 Modeling resource usage: PlanetLab’s case study 29

5.1 Introduction . 30

5.2 Overview of PlanetLab . 32

5.3 Measurement of Global Phenomena 35

5.4 Resource Usage of Slices . 40

5.5 Related Work . 54

5.6 Conclusions . 55

vii

viii

6 Economic regulation to reduce resource congestion 57

6.1 Introduction . 58

6.2 Motivation and problem statement 59

6.3 Related work . 62

6.4 System Model . 64

6.5 Design of the currency management system 67

6.6 Performance Analysis . 70

6.7 Discussion . 77

6.8 Conclusions . 78

7 Stackelberg game to derive energy limits 81

7.1 Introduction . 82

7.2 Model . 83

7.3 Stackelberg competition model 86

7.4 Strategies with incomplete information 93

7.5 Experimental results . 94

7.6 Related Work . 102

7.7 Conclusion . 103

8 Incentives for dynamic, energy-aware capacity allocation 105

8.1 Introduction . 106

8.2 Background . 108

8.3 Dynamic allocation based on incentives 109

8.4 Algorithms behind the scenes 112

ix

8.5 Evaluation . 118

8.6 Related work . 122

8.7 Conclusions . 123

9 Conclusions 125

Bibliography 129

List of Publications

[P1] Xavier León, Tuan Anh Trinh, and Leandro Navarro. Modeling resource
usage in planetary-scale shared infrastructures: Planetlab’s case study.
Comput. Netw., 55(15):3394–3407, October 2011. (page 24, 29)

[P2] Xavier León, Tuan Anh Trinh, and Leandro Navarro. Using economic reg-
ulation to prevent resource congestion in large-scale shared infrastructures.
Future Generation Computer Systems, 26(4):599 – 607, 2010. (page 25, 57)

[P3] Xavier León and Leandro Navarro. Limits of energy saving for the allo-
cation of data center resources to networked applications. In Proceedings
of theINFOCOM IEEE Conference, pages 216–220, 2011. (page 26, 81)

[P4] Xavier León and Leandro Navarro. A stackelberg game to derive the
limits of energy savings for the allocation of data center resources. Future
Generation Computer Systems, 29(1):74 – 83, 2013. (page 26, 81)

[P5] Xavier León and Leandro Navarro. Incentives for Dynamic and Energy-
aware Capacity Allocation for Multi-tenant Clusters. under review In-
ternational Conference on the Economics of Grids, Clouds, Systems, and
Services. GECON ’13, 2013. (page 27, 105)

xi

xii

Other Publications

[P6] X. Leon, X. Vilajosana, R. Brunner, R. Krishnaswamy, L. Navarro,
F. Freitag, and J.M. Marques. Information and regulation in decentralized
marketplaces for p2p-grids. In Workshop on Enabling Technologies: In-
frastructure for Collaborative Enterprises, 2008. WETICE ’08. IEEE 17th,
pages 133–138, 2008.

[P7] Pablo Chacin, Xavier Leon, Rene Brunner, Felix Freitag, and Leandro
Navarro. Core services for grid markets. In Thierry Priol and Marco
Vanneschi, editors, From Grids to Service and Pervasive Computing, pages
205–215. Springer US, 2008.

[P8] Ruby Krishnaswamy, Leandro Navarro, René Brunner, Xavier León, and
Xavier Vilajosana. Grid4all: Open market places for democratic grids.
In Proceedings of the 5th international workshop on Grid Economics and
Business Models, GECON ’08, pages 197–207, Berlin, Heidelberg, 2008.
Springer-Verlag.

Chapter 1
Introduction

Computational resources are becoming easier to share as a result of technolog-
ical advances in network, operating system and middleware infrastructures.
These new kind of infrastructures have enabled a trend towards openness, acces-
sibility and community contribution where resources, services and applications
are hosted and consumed on the Internet.

The scientific computing community has led the advancement of highly scal-
able wide-area network distributed computing farms –e.g computational grid
infrastructures and computing clouds– capable of solving complex problems
needed by enterprises or academic institutions –e.g optimizing work flow in
hospitals, data mining services, weather modeling and forecasting, etc.– by
means of large pools of commodity resources.

Traditional computing job schedulers have focused on optimising utilization
as well as throughput and response time and have only given users minimal
control over service quality for individual jobs. Besides, priorities among users
and jobs were typically configured by system administrators through ad-hoc
policies and cannot easily adapt to changes in demand and supply without
supervision. These kind of ad-hoc approaches lacks scalability as they usually
are based on centralized schedulers and with minimum flexibility on how users
specify their jobs.

Computational markets have been proposed as an economics-inspired solu-
tion to the problem of allocation in large-scale systems where resources are
shared among different users. The general idea is to allow users to express
their preferences in terms of prices representing their resource requirements

1

2

and value or priority to be computed. They have been proven to efficiently
allocate resources in a decentralised way in the presence of selfish utility-
optimising resource consumers and selfish profit-optimising resource providers.
The advantage of this approach is the self-adjustment made by market partici-
pants –resource consumers and providers– to improve their outcomes without
centralized control or scheduling.

However, these computational markets may fail to address external system-
wide metrics not directly sensed by users of such markets. This way, an
externality1 in economic terms is defined as the cost which results from an
activity and which affects an otherwise uninvolved party who did not choose to
incur that cost. An example of externality is resource congestion in contributive
systems –e.g. experimental testbeds like PlanetLab. In this case, a specific
resource provider may unintentionally support a higher workload than other
resource providers if users have correlated preferences for a given resource of
this provider. Another example is energy-awareness in data centers. Users
may not be aware of the economic costs related energy consumption and
thus, a resource provider may incur in higher costs if it is not able to feed
energy-related information into the computational market.

As in real life free-market economies, these externalities are addressed by
central governments and regulators which impose restrictions (regulations) on
the system that are designed to act as incentives to influence users to behave
in a certain way.

Problem statement

The main question addressed in this thesis is how economic regulation from the
macro economic standpoint can be integrated into large-scale computational
infrastructures to allow resource providers modify the behavior of resource
consumers to not only make economically and computationally efficient alloca-
tion decisions, but to improve system-wide metrics which are not considered
by economically rational users like resource congestion or energy-efficiency.

1A comprehensive discussion on this subject as seen by economists is found at [1]

3

Methodology

The results in this thesis were obtained mainly by three means following the
design science approach by Ken Peffers et al. [2]:

• Trace analysis. In order to successfully capture, model and present
the existing problems in the area of resource allocation in large-scale
infrastructures, we decided to study in depth one of the largest open
operational infrastructures nowadays, PlanetLab. We used techniques
from statistical modelling and time series analysis to find patterns
and statistical properties about the behaviour of applications on this
infrastructure which were used in subsequent works also part of this
thesis.

• Theoretical modeling. System modeling based on real traces allows
us to analytically study and evaluate our enhancements to the micro-
economic framework and how our proposals may impact existing models.
To this end, game theory is a useful tool to provide bounds on the
performance and efficiency of a system in the equilibrium no matter the
strategies used by participants in a game –i.e when resource providers
and consumers in our scenario have no incentive to behave differently.

• Simulation evaluation. Given the complexity and the lack of a suit-
able infrastructure to implement, deploy and test our proposals, we
find that simulation is the best approach to evaluate the contributions
presented in this thesis. To this end, simulation tools were developed to
narrow down the problem and parameter space that was most interesting
for the problem in place. It allowed us a great deal of flexibility to scale
up our system without bounds, and the results obtained could also more
easily be compared to previous work as well as purely theoretical models.

Thesis organization

This thesis is organized as follows. In chapter 2 we summarize the system
model upon which our contributions are build and the necessary background
to aid the reader to interpret our contributions. Chapter 3 presents the state
of the art on economics-inspired resource allocation systems to point out the

4

gaps that this thesis try to fill. Chapter 4 presents the main research questions
addressed in this thesis and summarizes the main contributions to provide
the reader a coherent view of the separate contributions detailed on chapters
5, 6, 7 and 8. Finally, we present our conclusions and future directions on
chapter 9.

Chapter 2
Foundation

In this chapter, we discuss the foundational concepts and theory of the work
presented in this thesis. We first describe the scenarios where our solutions
may be applied covering from large-scale experimental infrastructures to multi-
tenant clusters. Then, fundamental theory related to game theory and strategic
behavior is also presented to guide the reader through the contributions on
following chapters. Finally, we present the system model upon which our
contributions are based to better situate the work presented later on this
thesis.

2.1 Scenarios of shared infrastructures

The problems envisaged in this thesis come as a result of sharing resources
among several users or applications with diverse and potentially conflicting
needs. With the advance on huge monolithic computer mainframes shared
by tens of users, scheduling decisions started to become a complex problem
to deal with and, thus, the first solutions based on economic principles were
proposed [3][4].

However, over the last two decades, the scientific computing community has led
the advancement of highly scalable wide-area network distributed computing
farms –e.g. networked testbeds, grid infrastructures and computing clouds–
capable of solving complex problems needed by enterprises or academic insti-
tutions like optimizing workflows in hospitals, data mining services, weather
modeling and forecasting.

5

6

These kind of infrastructures have enabled a trend towards openness, acces-
sibility and community contribution in some cases where resources, services
and applications are hosted and consumed on the Internet, and shared by
hundreds or thousands of users.

Grid and Cloud Computing

At the beginning of this century, computational resources were becoming more
common on scientific environments to implement, deploy, execute and validate
results from the scientific community.

These initial scientific infrastructures were called the Grid which, according to
a famous definition by Foster [5], is a system that ”coordinates resources that
are not subject to centralized control using standard, open, general-purpose
protocols and interfaces to deliver nontrivial qualities of service.” Non-trivial
here means that services beyond pure information sharing, as typical in the
World Wide Wed, are offered. What is interesting in these infrastructures
from this thesis perspective is that they typically involve large-scale resource
infrastructures that are able to deliver computational services shared by a
dynamic community of users and providers across a large geographic area.

With the advancements on virtualization which allowed the use of the same
physical hardware by different users in a completely isolated environment, and
the need from enterprises to reduce IT costs, large infrastructure operators
began to commercialize computing resources – be it computation or storage –
to external users to make the most of their resources. To denote the shift of
paradigm and to set it apart from current infrastructures like the Grid, the
idea of a cloud infrastructure was born.

Thus, the idea behind the cloud is to maximize the effectiveness of the shared
resources, not only shared by multiple users, but dynamically re-allocated
as per demand as well. What this means is that not only applications can
scale-up or down the number of resources they consume according to their
demand but that the same resources can be dynamically allocated to different
applications over time. In these kind of environments, energy-related costs are
one of the largest contributions to the overall cost of operating a data center.

7

Networked testbeds infrastructures for experimentation

Grid computing and its evolution into the cloud have their main purpose on
high performance computing and maximize the effectiveness of the shared
resources respectively without compromising the quality offered to users.

At the same time, there is a huge interest in creating large-scale distributed
computational and communication infrastructures capable of mimicking real
conditions found in the current Internet. An experimental testbed is a platform
for experimentation of large projects in development. They provide an open
platform to conduct strict, transparent, and replicable testing of scientific
theories, computational tools, new technologies, and the next generation
large-scale services –content distribution networks, peer-to-peer file sharing or
network measurements.

Examples of current large-scale experimental infrastructures are the US-
initiated PlanetLab[6] and GENI [7], OneLab2 [8] and Federica in Europe,
and AKARI [9] in Japan –known in the European context as Future Internet
Research and Experimentation facilities (FIRE). In these environments, re-
searchers are able to test and deploy their new tools without the hazards and
risks of testing in a live or production environment.

A key characteristic shared by all these infrastructures is their trend to openness
in terms of usage: researchers are free to use the infrastructure as long as
they adhere to some pre-established user acceptable policy or norms of good
conduct.

The same infrastructure is used and shared by hundreds of experimental
applications which at the same time show a highly heterogeneous behavior.
Thus, resource allocation and quality of service provided to researchers is a
key concern to expose a stable enough infrastructure to conduct repeatable
experimentation.

Software and hardware general model

The solutions presented throughout this thesis are based on several assumptions
about the type of applications that our mechanisms are designed to deal with,
as well as the type of hardware that they run on.

8

The mechanisms we propose are designed to deal with applications that are
able to scale horizontally or scale out. In other words, these applications are
able to deal with the addition of multiple and independent computers together
to provide more processing power.

Examples of such applications may be distributed peer-to-peer applications
–like peer-to-peer content distributed networks– where the addition or removal
of a portion of the computing elements does not modify the semantics of
the application or its behavior, but only its overall performance. The model
proposed by map reduce for computing jobs also admit this definition as they
are composed of several smaller tasks that can be added or removed from the
overall job to be executed by different computing elements depending on the
size of the data input.

This restrictions comes from the fact that economic mechanisms applied to
computer infrastructures usually involve scaling up or down the resource
allocation because of the change in resource supply and demand in highly
dynamic environments. Thus, applications need to adapt to such adjustments
in a transparent manner.

For the same reason and because applications may need to move from one
resource to another depending on the state of the computational economy,
the hardware we consider for our scenarios is basically homogeneous in terms
of functionality. However, resources may be heterogeneous in terms of hard-
ware characteristics like CPU power, memory, network capacity, or energy
consumption.

An example of functional homogeneous hardware are the nodes provided by the
PlanetLab infrastructure which are presented to the user as a set of lightweight
virtual machines running the same operating system. Another example are
the nodes present in most data centers, which may be replaced from time to
time due to hardware failures. These resources are usually offered to the user
through different abstractions like virtual machines following the Platform As
A Service paradigm or computing time slots in the case of the map reduce
paradigm. However, the hardware characteristics may differ from one node to
another in both cases.

9

2.2 Economic principles for computational markets:
some background

When managing service levels on the scenarios presented above, we would like
to make sure that the system cannot be abused by strategic and selfish users,
who could starve out competing resource consumers. We review the economic
principles behind computational markets that study how mechanisms can be
developed to ensure an overall healthy system even with strategic users.

Tragedy of the commons

Free access and unrestricted demand for finite resource ultimately ends up
the resources through over-exploitation. This occurs because the benefits
of exploitation are received by individuals –each of whom is motivated to
maximize the usage of the resource– while the costs of the exploitation are
distributed among all those to whom the resource is available. This, in turn,
causes demand for the resource to increase leading to the point in which the
resource is exhausted and becomes useless. This problem is a clear example of
the well known problem of the ”Tragedy of the commons” [10] or free-riding.

Consider the example of farmers grazing their cows on a grassy area. This
area can support up to one hundred cows. One hundred farmers each bring a
cow, and the eating is good enough to provide benefit to all of them. But a
strategic farmer may think that bringing an extra cow to the common area
must increase its benefit by doubling the income and only putting a 1% drain
on the common grassy area. The tragedy comes when all the farmers realize
that the common area cannot support such amount of cows. Substitute in this
example the common grassy are by a computer cluster, a farmer by a user
and a cow by an application, and it is not hard to imagine the same problem
from a computational point of view if some incentive is not provided to users
to constrain the cluster usage.

Game theory as an analytical tool

Game theory [11] is the study of strategic decision making and a useful tool
that allows to make statements about the outcome of a system from the
theoretical point of view.

10

In Game theory, a number of players and their possible actions with associated
individual preferences model a game. Other players’ actions affect the utility
or payoff a player receive from a game.

Thus, players receive a certain payoff from choosing an action from their action
profile and given the actions chosen by the other players. The key insight
provided by game theoretic analysis is which is the optimal strategy or action
to take given other players’ actions.

When no player can obtain a higher utility by changing the action chosen
given that every other player chose an optimal action given their strategy, the
game is in a Nash equilibrium. It is important to note that a Nash equilibrium
does not make any statements about uniqueness of the solution, and many
games can indeed have multiple Nash equilibrium. However, it provides an
statement about the steady state of a game, when no player has an incentive
to change its action.

These strategy profiles which produces the most favorable outcome for a
player, taking other players’ strategies as given is called the best response. This
concept is interesting because best response strategies may be implemented
by a software agent to act on behalf of a user or application. Thus, an agent
can react to changes made by other agents on the game. This situation
usually leads to the question of whether the best response strategy is a Nash
equilibrium of a given game.

Mechanism design as a design tool

Mechanism design –sometimes called reverse game theory– is a field in game
theory studying solution concepts for a class of private information games.
The distinguishing features of these games are: from one side a game designer
chooses the game structure rather than inheriting one; and, from the other
side, that the designer is interested in the game’s outcome.

Thus, the mechanism designer starts with a set of desirable properties that
a specific game should possess and then, a game is constructed so that par-
ticipants are influenced to behave in a certain way that fulfils such initial
properties. Such a game is called a game of mechanism design and is usually
solved by motivating agents to disclose their private information.

11

A central property derived from mechanism design is incentive compatibility.
A mechanism is incentive compatible if all the participants consider their best
interest to truthfully reveal any private information inquired by the mechanism.
This way, participants of the game have no incentive to lie and try to game
the mechanism to its own interest.

Why markets then?

Markets can effectively aggregate information from multiple sources in large,
dynamic and complex systems where there is not a single source with complete
information. Prices summarize demand succinctly and uniformly and can be
communicated globally to other participants. Thus, the vision is that selfishly
utility-optimizing resources consumers and selfishly profit-optimizing resource
providers will move the system into an equilibrium state where resources are
allocated efficiently to applications.

There are a couple of fundamental elements of computational markets that
help to meet this vision. First, provide the right incentive to users to specify
truthful priorities of their resource needs and, secondly, to dynamically set
resource prices to find the level where demand equals supply –i.e. the market
equilibrium price.

As we will review on chapter 3, most computational markets use some kind of
currency to meet the first element. A currency is a unit of exchange, facilitating
the transfer of goods and services. It is a form of money, where money is
defined as a medium of exchange rather than a store of value. Therefore one
function of currencies is facilitation and regulation since each country or region
with a currency has some institutions or monetary authority exerting control
over the amount of circulating currency – the central bank or the ministry of
finance.

Limiting each user to a finite budget of a given currency is the main solution to
deal the tragedy of the commons effect. How this budget is initially assigned
and how users are able to spend it is a specific matter of each economic
algorithm.

Price-setting on the other hand is usually addressed by the use of some form
of auction to extract the market price directly from users’ bids. Examples

12

of auctions are the English auction, a Dutch auction, a double auction or a
combinatorial auction [12][13][14][15].

Regulation in computational economies

As in real life however, markets may fail to address specific problems not directly
sensed by users or resource providers of such markets called externalities. An
externality in economic terms is defined as the cost which results from an
activity and which affects an otherwise uninvolved party who did not choose
to incur that cost.

An example of an externality, presented in more detail in chapter 6, is resource
congestion in contributive systems like the experimental testbed PlanetLab.
Different organizations provide a minimum of two computing servers to the
common testbed as a prerequisite to access the open testbed infrastructure.
From them on, users of this organization are free to use the whole set of public
servers. However, only a subset of them is heavily used –because of reputation,
availability, or any other reason– while the rest remain lightly used. This
situation leads to an imbalance of resource consumption and contribution
which makes some of the organizations support most of the experiments.
The ideal situation would be that resource consumption and contribution is
equalized to some extent so all participants of the infrastructure contribute
the same way to the overall testbed.

The solution used in real economies to cope with externalities is to use some
form of regulation, a process of the promulgation, monitoring, and enforcement
of rules, established usually by the government.

If we turn back our attention to computational economies, the ideal scenario
would be to use mechanism design to overcome such externalities and internalize
them into the mechanism, so participants of the mechanism are aware of such
costs.

However, once a mechanism is designed without considering such costs, it
could be extremely complex to redesign it from scratch to account for these
externalities. Thus, a potential solution for such systems would be to intro-
duce a new regulation mechanism on top of it that introduce restrictions or
limitations harnessing the benefits of the existing economic mechanism.

13

(a)

Ex Regulation

External
entity

Resource
provider

User
self-regulation

(b)

Figure 2.1: (a) Research gaps with respect to state of the art and (b) Regulation
entities considered

To situate our contributions with respect the state of the art detailed later,
figure 2.1 shows the high level entities involved in this thesis. On the right
side of figure 2.1(a), users or applications –both terms are interchangeable–
obtain resources from resource providers through a market which acts as a
scheduler or resource allocator.

Users are assumed to be selfish in the game theoretic sense and always try to
maximize the utility obtained. Resource providers are assumed to be selfish as
well and try to maximize profit from their resources. As an intermediary, the
market-based resource allocation mechanism is in charge of matching resource
demand and supply and set the corresponding equilibrium price.

The contributions made in this thesis sit on left side of figure 2.1(a). The
regulation mechanisms proposed in this thesis optimize system-wide metrics
which, for some reason, are not considered in the initial design of current
computational markets.

To this end, we structure our contributions according to the entity responsible
for the regulation, or in other words, who is in charge of modifying, limiting
or influencing the outcome of the market as depicted in figure 2.1(b):

14

• External entity or third-party regulator. In cases where the computa-
tional economy is established, incorporating new metrics to consider into
it may not be plausible. Thus, an external entity or regulator would be
in charge of monitoring the infrastructure and applying the necessary
corrective measures. This would be the role of the government in a real
life scenario. We refer the reader to chapter 6 for more details on the
subject.

• Resource provider. In cases where the presence of a market-based re-
source allocation mechanism is ruled by the resource provider, it has the
authority to modify the behavior of users by, for example, scaling up
or down the supply of resources as to modify the price and potentially
reducing energy costs. Chapter 7 deepen our work on this matter.

• User self-regulation. In this case, we take the mechanism design path
to, given a set of external properties that should be accounted by our
resource allocator, design a mechanism in such a way that users are given
an incentive to care about metrics –energy efficiency– that otherwise are
not considered. This contribution is extensively presented on chapter 8.

Chapter 3
State of the art

Market-based algorithms for resource scheduling, or computational economies
in general, have been used as a mechanism to allocate resources more efficiently
guided by user priorities as far back as in 1968. The work by Sutherland [3]
and Nielsen [4] started to consider computational markets as a solution to the
resource allocation problem. They already stated similar design concerns –
user-driven priorities, funding policies, virtual currencies, price setting, etc.–
as systems being build nowadays. However, being the seventies and looking
at the technology back then, they did not consider the problems found in
current infrastructures due to the huge paradigm shift introduced by parallel
computation and how users access and use resources.

GridBus project

Buyya, et al. proposed an economy driven resource management architecture
for global computational grids in [16] and more recently in [17, 18]. It consists
of a generic framework, called GRACE (Grid Architecture for Computational
Economy) for trading resources dynamically, in conjunction with existing grid
components such as local or meta-schedulers.

Their aim is to enable supply and demand driven pricing of resources to regulate
and control access to computational resources in a grid. The architectural
model of resource management is dependent by the way the economic scheduler
is structured which may be: (i) centralized scheduling for managing single
or multiple resources located either in a single or multiple sites with uniform
policies. This solution is not suitable for grid domains as each one is expected

15

16

to have different resource management policies; (ii) decentralized scheduling
which interact among themselves in order to decide which resource should be
allocated to the jobs willing to be executed; and (iii) hierarchical scheduling as
an hybrid model (combination of centralized and decentralized) which seems
suitable for the federated nature of grid environments.

They propose Nimrod-G [19] as an economic scheduler which may be imple-
mented within this architecture. It serves as a resource broker and supports
deadline and budget constraints algorithms for scheduling task-intensive ap-
plications. It allows users to lease and aggregate resources depending on
their availability, capability, performance, cost and user’s QoS constraints.
Nevertheless, their algorithms only focus on efficient local allocations among
competing users to resources, lacking any kind of coordination between sched-
ulers. Thus, they do not consider the global behaviour of the system taking
into account such local decisions made by the economic scheduler.

Therefore, the focus of this work is to provide a framework for computational
economies relying on the meta-scheduler model, on which users submits jobs
–using a portal– to an economic scheduler which takes the allocation decisions
based on the user supplied information –e.g budget and time constraints. Thus,
they do not provide any insights on how a large-scale system may behave
using this model.

Libra

Libra [20] is a computational economy-based scheduling system for clusters
that focuses on improving the utility, and consequently the quality of service
delivered to users. Libra is intended to be implemented in the resource
management and scheduling (RMS) logic of cluster computing systems, such
as PBS [21]. An extension of the previous system [22] focus on dynamically
pricing cluster resources by considering the current workload to accommodate
supply and demand, aiming for market equilibrium. In addition, Shin Yeo et al.
[23] incorporates Service Level Agreements (SLAs) by considering the penalty
of not meeting a SLA into the admission control and scheduling decisions in a
cluster.

Therefore, the flow of a job in an utility-driven cluster begins with its sub-
mission to the centralized gateway, which decides through an Economy-based

17

Admission Control mechanism whether the job should be accepted or re-
jected based on its specification. Thereafter, the job is allocated to a certain
computing node and monitored.

Although Libra’s approach allow more jobs to be completed by their deadline
–and consequently less jobs rejected– it critically depends on the quality of
the runtime estimation to schedule jobs and resources effectively. Besides,
their solution assumes only one centralized gateway to accept submitted
jobs compromising its scalability, one of the main objectives of large-scale
environments such as the Grid.

Shirako

Shirako [24] is a toolkit for building components of a utility service architecture
based on previous work from the same authors called Cluster on Demand
(COD) [25]. Utility services enable dynamic on-demand sharing of networked
resources through programmatic interfaces.

Resource provider sites might export a variety of resources including servers
or clusters in data centers, virtual application servers, network storage objects,
network attached sensors, or even bandwidth provisioned paths or virtualised
routers within the network itself.

Shirako is based on a common, extensible resource leasing abstraction [26]
which combines elements of both lifetime management and mutual exclusion.
Each offered logical resource unit is held by at most one lease at any given time
although providers may choose to overbook their physical resources locally. If
the lease holder fails or disconnects, the resource can be allocated to another
guest.

This use of leases has three distinguishing characteristics: (i) Shirako leases
apply to the resources that host the guest, and not to the guest itself; the
resource provider does not concern itself with lifetime management of guest
services or objects. (ii) The lease quantifies the resources allocated to the guest;
thus, leases are a mechanism for service quality assurance and adaptation. (iii)
Each lease represents an explicit promise for resource usage to the lease holder
for the duration of the lease. Leases in Shirako are also similar to soft-state
advance reservations [6], which have long been a topic of study for real-time
network applications.

18

Although Shirako is focused on flexible mechanisms to trade resources among
clients through leases, they lack any coordination mechanism among resource
brokers leading to a possible over-provisioning of such resources –as resources
are traded through leases– meaning that negotiated SLAs might be broken.

Bellagio

Bellagio [27] is a market-based resource allocation system for federated dis-
tributed computing infrastructures. Users specify resource of interest in the
form of combinatorial auction bids [28]. Thereafter, a centralized auctioneer
allocates resources and decides payments for users. The Bellagio architecture
consists of a resource discovery subsystem called SWORD [29] and resource
market subsystem.

Regarding the resource market, it uses a centralized auction system, in which
users express resource preferences using a bidding language, and a periodic
auction allocates resources to users. A bid for a resource includes sets of
resources desired, processing duration and the amount of virtual currency
which a user is willing to spend. The centralized auctioneer clears the bid
every 8 hours. The amount of virtual currency owned by a site is directly
determined by the site’s overall resource contribution to the federated system.

As a resource allocation algorithm, they employ SHARE [30] which clears
a combinatorial auction –known to be a NP-complete problem– by using
approximation algorithms for winner determination. SHARE uses a threshold
rule [31] which forces users to reveal their true value for goods when bidding.
Nevertheless, their study focuses on the allocation of resources in a federated
environment using a strategy-proof auction using centralized mechanisms.

Although the allocation achieved is proportional to the bids advertised by users,
this solution is not really well suited for large-scale systems as its scalability is
compromised. Besides, they do not consider the global effect in the system of
such centralized mechanism.

Tycoon

Tycoon [32] is a distributed market-based resource allocation system. Applica-
tion scheduling and resource allocation in Tycoon are based on decentralized

19

isolated auctions. Every resource owner in the system runs its own auction for
his local resources. Although made popular at the beginning of this century,
this system was largely based on one of the first successful implementations of
a distributed computational market called Spawm [33], which was the first to
propose a proportional share auction for this kind of infrastructures.

Auctioneers implement a proportional share-based auction in which users
receive a certain amount of a single resource (CPU and memory) proportional
to the bid they advertise with respect to other bids placed by other users in
the same resource.

They use virtualisation techniques such as Xen [34] to share a single resource.
They also implement a centralized banking service to manage the virtual
currency in the system. Users are endowed with a fixed amount of currency
which they are able to spend over time to allocate their tasks.

Tycoon research interest is focused on the proportional allocation of local
resources in a flexible way allowing users to trade off their preferences for
low latency –e.g a web server–, high utilization –e.g batch processing–, etc.
Nevertheless, they do not take into account coordination mechanisms of
independent markets –one per resource– neither consider the effect of their
mechanisms in the macroeconomic behaviour of the system as a whole.

A game theoretic analysis on the aforementioned proportional share mechanism
is presented in [35, 36] where they provide an algorithm to find the best
response1 of an agent to the system. Given a fixed budget X and a pool
R of divisible resources, their algorithm finds the distribution of bids across
resources that yields the highest utility for an individual player i. This work
is very interesting as it provides bounds on the efficiency of the proportional
share resource market and provides an algorithm for automated agents which
optimises user’s utility allowing the abstraction of the market mechanisms
from end users.

Other works

Popovici and Wilkes [37] examine profit-based scheduling and admission control
algorithms called First Profit and First Opportunity that consider a scenario

1In game theory, the best response is the strategy (or strategies) which produces the
most favourable outcome for a player, taking other players’ strategies as given.

20

where service providers rent resources from resource providers who then run
and administer them. Clients have jobs that need processing with price values
(specifically, a utility function) associated with them. The service provider
rents resources from the resource provider at a cost, and the price differential
is the job’s profit that goes to the service provider. However, resources may
be over-provisioned considering this scenario and the uncertainty in resource
availability. If the service provider promises resources they cannot deliver, the
clients’ QoS targets will not be met and the price they will pay will decline,
as defined by the client utility function. It is assumed that service providers
have some domain expertise and can reasonably predict running times of jobs
in advance.

G-commerce [38] is a resource allocation system based on the commodity
market model where providers decide the selling price after considering long-
term profit and past performance. It is argued and shown in simulations that
this model is able to achieve better price predictability than auctions. The
main issue of their proposal is the necessity for long-term previous study of
their system behaviour to decide optimal price settings. Besides, they lack the
ability to quickly self-adjust prices to sudden changes in market conditions
–e.g high imbalance between supply and demand.

In the context of completely decentralized systems, PeerMart [39] implements
distributed auctions by associating a broker for each resource or service
type. Brokers are implemented as peer-sets on a structured P2P overlay.
Synchronization of peers in the set and detection of malicious behaviour is
necessary to avoid peers’ collusion when modifying user’s accounts, although
it introduces significant message overheads. Furthermore, auctions are clearly
influenced by market forces and contention against a single resource as similar
resources may end up with very different prices in different auctions. Therefore,
this segmentation of markets puts the onus on the clients to choose between
equivalent resources although this framework does not provide any means
to decide which resource fits better its necessity. Finally, they propose the
existence of a virtual currency although do not provide any insights on how it
should be managed.

21

Filling the gaps

Traditional schedulers offered by computing farm jobs of HPC clusters –e.g.
FIFO, SJB, different queueing mechanisms, etc. – focus on optimizing through-
put, usage or response time as general proof of goodness of the performance
delivered.

Instead, the work presented in previous sections focus on the QoE (Quality of
Experience) offered to the users. As a result, the design decisions to solve the
resource allocation problem focused on user-centric priorities are a first order
metric to evaluate the goodness of the proposed system. Thus, markets are a
good abstraction to capture user priorities for their jobs and a good fit to solve
the resource allocation problem. Their key characteristic is the abstraction
provided to users to optimize their efficiency by aggregating the information
of multiple objectives –resource selection or job priority– to a single metric,
the price.

However, while the micro-economic issues applied to resource allocation have
been widely explored in current and previous work, other system-wide metrics
like energy efficiency or load balancing remain out of the scope of those
approaches because of their design principles and the inability of the proposed
computational markets to incorporate system-wide metrics. As a result, users
are not able to sense these problems when making their economic decisions.

Thus, the research gaps identified with respect to previous works, which sets
us apart from the state of the art as well, can be summarized as follows:

• There is a need to include a larger range of system-wide metrics into the
computational economy to optimize multiple system objectives when
traditional market-based mechanisms fail to do so –load balancing and
energy efficiency as examples– without detracting from a key character-
istic of markets, e.g. optimize user efficiency in the presence of selfish
agents.

• There is a need to explore the feasibility of regulation mechanisms from
different perspectives, be it an external entity or providing users tools
to self-regulate themselves.

22

Local

Global

Regulation

Flow of

information

Reputation and

Trust

Auctions

Proportional share

markets

Economic schedulers

Short-term behaviour

Efficient allocations

High utilization

Long-term

behaviour

System-wide

performance

Complex and adaptive

systems

Mechanisms

Research

focus on Related Work

?

GridBus

Tycoon

Bellagio

Shirako

Scope

Figure 3.1: Research gaps with respect to state of the art

Chapter 4
Summary of contributions

In this chapter, the main research questions are presented. Each set of questions
is then discussed and the related contributions are summarized according to
the approach we chose. The specific contributions of this thesis are presented
in detail in chapters 5, 6, 7 and 8.

Modeling resource usage in shared infrastructures

Q1: What phenomena can we find in large scale infrastructures when resources
are shared and finite? What is the usage pattern of resources? What are the
root causes for such behaviours? Can we characterize the underlying nature
of interactions among distributed applications in a shared infrastructure?

In order to successfully capture, model and present the existing problems in
the area of resource allocation in large-scale infrastructures, we decided to
study in depth one of the largest open operational infrastructures nowadays.
The selection of PlanetLab as such was mainly driven for its publicly available
set of traces which span hundreds of nodes and thousands of active users.

We believe that first answering these questions is crucial in the design of
resource allocation and regulation policies. Previous analysis in the scientific
literature [40][41][42] focused on studying issues from the node point of view
like resource contention or failure characterization. Instead, little attention has
been paid to the processes creating these behaviours –i.e. users or applications
using these networked nodes – and the study of their root causes. Thus,
while most of the literature focus on what problems can we see on a shared

23

24

infrastructure, we focus on why these problems occur and how economic
regulation policies may solve some of the known issues.

In our detailed study presented in chapter 5 and journal paper [P1] as well,
we identify several behaviours emerging from an infrastructure with finite
resources which are shared by different users.

First, we find that the Pareto principle, also known as the 80/20 rule [43], holds
in this kind of infrastructures. Few applications running on the infrastructure
–usually long-running services like content distribution networks– monopolize
almost all the resource consumption.

Besides, this phenomenon jointly with the imbalance between resource con-
sumption and resource contribution to the public and open infrastructure
–the resource consumption made by roughly 30% of the participating entities
accounts for the contribution made by the other 70%– is a clear evidence of
the well-known problem of the tragedy of the commons or free-riding : the
benefits of exploitation are received only by individuals (applications) whereas
the costs are distributed between all those who provide access to the resources
(entities contributing resources).

This situation is a clear consequence of the lack of two characteristics: the
lack of incentives for resource providers to supply better resources in terms of
quantity, quality and availability; and the lack of proper regulation policies to
control and limit the access to resources in an open infrastructure.

Another interesting finding was that users’ choice of resources is mainly driven
by the reputation of the entity which provides the nodes and past interactions
with those nodes. Thus, characteristics like locality or current load are
dismissed by users when deploying new applications. This situation appears
due to the lack of more complete information about resource characteristics in
current resource discovery tools.

Regulation through taxing resource pricing

Q2: Can third-party regulative entities moderate the behaviour of large scale
systems with economic mechanisms? Which regulation mechanisms might be
necessary?

25

As we have introduced, the combination of resource-intensive applications and
user preferences can lead to levels of demand that saturate the infrastructure,
negatively affect other users or compromise the overall stability of the system.
In addition, resource congestion usually affects only a subset of the infrastruc-
ture, known as hot spots, whereas the load remains low over the rest of the
system.

While policies and algorithms based on micro-economic principles have proven
to be a decentralized, scalable and efficient way of allocating resources ac-
cording to user preferences, they can also lead to system-wide performance
penalties and they usually neglect the economic externalities associated to
such allocations.

In this case, the externality we focus on is the resource congestion suffered by
a subset of the infrastructure which may be present even with the introduction
of micro-economic algorithms mainly as a result of correlated preferences for
resources. As in the real economy, where free-market mechanisms sometimes
fail to address externalities, central governments impose restrictions (regula-
tions) on the system that are designed to act as incentives to influence users
to behave in a certain way.

In this case, given a computational market which suffers from resource conges-
tion, we propose a third-party regulative entity which oversees and monitors
the system and applies a tax mechanism to increase the price on hot spots
and encourages users to bid for alternative less used resources.

In chapter 6 and the journal paper [P2], we show that this mechanism is able
to influence user decisions to move their workload from highly-used nodes to
other less congested nodes, effectively internalizing the problem of resource
congestion.

Although this work is mainly focused on resource congestion, other high
level decisions by the regulative entity could be achieved. For example, the
availability of certain nodes can be promoted by imposing taxes on those
resources with low availability. A reduction in the overall energy consumption
of a system can be induced by imposing taxes to those resources with high
energy costs effectively discouraging users of its use and encouraging resource
providers to deploy more energy-friendly hardware.

26

Resource providers as regulators

Q3: Can resource providers provide a resource allocation that fulfil an objective
(e.g. energy-efficiency) without limiting the choice of resources by introducing
restrictions or limitations? Which information is valuable to resource providers
to perform this regulation?

We have seen how third-party entities to the computational market may
introduce regulation mechanisms to overcome certain limitation of free-market
economies. However, it is not always feasible to rely on external entities to
perform such regulation due to architecture limitations, lack of control of
resources or absence of information to perform such regulations.

Thus, we focus our attention on how resource providers can regulate the
access to resources without limiting the freedom to choose specific resources
according to user preferences using micro-economic algorithms. In this case,
the objective of the regulation mechanism is to reduce energy consumption
and cut down costs which is a key concern in networked computing systems
like current data centers. Following that line of research, our study presented
in chapter 7 and publications [P3, P4] contains two parts.

In the first part, we derive an energy model for computing elements (servers)
using real data and we observe that the energy consumption when servers are
idle is not negligible compared to the energy consumption which is proportional
to the load. According to our model, resource providers have an incentive
to keep unused resources shut down if they are not necessary to meet users
requirements.

In the second part, we model the interplay between the need for resources from
users and the goal to minimize power consumption using a game theoretic
model based on the Stackelberg game. This classic game is structured at two
levels. The first level is the infrastructure operator acting as the leader and
determining the resources to keep switched on and off. And the second level
is the set of strategic users buying resources as followers.

Following this model, we derive a regulation algorithm that allows resource
providers act as a regulative entity. This algorithm computes the minimum
amount of resources needed by applications to meet their objectives. Thus, the
resource provider is able to shut down exceeding resources without incurring

27

in penalties for not satisfying the service level agreements of participating
users.

In this work, we show that resource providers need to have specific knowledge
about users’ requirements in terms of parallelism and resource capacity to
produce optimal energy savings. However, one limitation of this approach is
that this information may not be available to the resource provider or may
not be completely accurate which makes the allocation decision incur in the
risk of being sub-optimal.

Economic incentives for the self-regulation of users

Q4: Can we reach an optimal resource allocation (finish jobs on time with
minimum resource usage) with the collaboration of users if they can exchange
unused resources at any time? Is this incentive enough to help users self-
regulate the usage of resources?

Throughout this chapter we show how regulation can be carried out by
third-party entities external to the computational system and by the resource
providers themselves. We have seen that for resource providers to make smarter
allocation, they need to have information about the resource requirements of
applications, but with the drawback that this information may be not available
or may no be truthfully reported by users trying to game the mechanism.

Thus, we turn our attention to self-regulation: on the design of an incentive
mechanism in which users are provided an incentive to truthfully report their
resource requirements to the resource provider.

In chapter 8 and paper [P5], we show in detail how our incentive mechanism
pursues two different goals from the regulation point of view. From the
perspective of the user, we show that our mechanism effectively encourages
users to report their true capacity requirement for a given job. Our mechanism
is based on providing a shares market in which users engage to dynamically scale
up (buy) or down (sell) the allocated time slots of a job without intervention
of the infrastructure operator. We also show that it is in the best interest of
the user to participate in such a market. This way, we promote the regulation
of resource allocations made by the users themselves.

28

On the other side, the proposed dynamic shares market obtains valuable
private information from users which allows the resource provider to shut
down a portion of the infrastructure to reduce energy-related costs without
reducing the quality of service provided to users.

Our main result from the incentive mechanism analysis and evaluation is that
users are able to find an optimal resource allocation which allows them to
meet their deadlines with minimum resource usage. We also show how the
incentive mechanism we propose is incentive compatible in the sense that
it is always on the users’ best interest to report their true resource needs,
effectively promoting the self-regulation of resource access. Our evaluation
shows that our shares market provides better user efficiency with a lower
resource consumption compared to well known and widely used schedulers, at
the cost of slower completion times, clearly indicating the trade-off between
job execution throughput and quality of experience.

Chapter 5
Modeling Resource Usage
in Shared Infrastructures:
PlanetLab’s Case Study

Abstract

Understanding how different applications with different resource require-

ments interact in a shared infrastructure like Internet is crucial in the

design of resource allocation and regulation policies. In this chaptera, our

focus is on analyzing a well known planetary scale experimental facility

as a case study –PlanetLab. Previous analysis focused on the workload

characterization from the node point of view, while little attention has

been paid to the processes leading to such workload –i.e. distributed

applications. In particular, our aim is two-fold: i) characterize the

underlying nature of interactions among distributed applications and

understand the interference or mutual influence of one slice on other slices.

And ii) characterize important aspects of applications’ resource usage,

the short-term distribution and temporal dynamics of CPU, memory and

network usage made by experimental applications. Based on the analysis

of publicly available traces, we find that the distribution of resource

usage is highly skewed –with a few applications producing most of the

resource usage. We use our findings to develop a model that produces

good matches in the metrics studied, allowing us to generate a workload

with similar statistical characteristics.

aThis chapter is based on the paper [P1]

29

30

5.1 Introduction

During the last few years, there has been a huge interest in creating large-
scale distributed computational and communication infrastructures capable
of mimicking real conditions found in the current Internet. These test beds
are intended to help in the development, deployment and evaluation for the
next generation of large-scale services –content distribution networks, peer-
to-peer file sharing or network measurement. Examples of current large-scale
experimental infrastructures are the US-initiated PlanetLab[6] and GENI [7],
OneLab2 [8] and Federica in Europe, and AKARI [9] in Japan –known in the
European context as Future Internet Research and Experimentation facilities
(FIRE).

These infrastructures are growing to significant size, as well as geographic
and administrative diversity. As a result, they are working towards a global
environment through federation agreements much like Autonomous Systems
(AS) in Internet, which are expected to evolve in the following years.

As the size and scope of federated infrastructure grows, important challenges
need to be addressed, including resource discovery, scheduling and resource
allocation policies, reliability among mutually distrustful users and organi-
zations or the global government, and sustainability of the infrastructure.
Clearly, the appropriate mechanisms and policies highly depend on the usage
characteristics of applications running on the systems under consideration.

Therefore, understanding how different distributed applications with different
resource requirements interact in an unregulated shared infrastructure is a key
challenge for analyzing and developing appropriate mechanisms for resource
allocation, scheduling and regulation policies for the overall infrastructure.
The results presented in this chapter might be interpreted as a potential
evolution of current unregulated systems like experimental facilities, which do
not exercise any explicit control over resource consumption.

Previous works, discussed in the related work section, have focused on a
per-node study of resource usage to understand the workload supported by
the infrastructure –i.e. the what. However, they completely leave out the
underlying characteristics of applications and, therefore, the information and
modeling of the processes generating such workloads –i.e. the how. In this

31

work, we complement the current knowledge of large-scale infrastructures by
developing a model of the applications’ resource usage.

This work is based on a large collection of data obtained from PlanetLab,
the largest and perhaps most used of current experimental infrastructures.
Our approach starts with an investigation of global phenomena related to
the behavior of infrastructure users that may have a potential effect on
its performance. Furthermore, we conduct an in-depth analysis of current
applications running on the infrastructure at different times and different
aggregation scales. Our goal is to construct a theoretical framework to capture
the distribution and dynamics of the workload generated by applications.

The motivation behind this work is two-fold: i) the novel metrics presented and
described in Section 5.3 related to the interactions between applications and
the underlying resource infrastructure –i.e. consumption versus contribution,
the reciprocity metric and resource selection goodness– could be used by
other works to compare different mechanisms related to resource selection
and allocation. In addition, these results could be used by the developers
to anticipate the problems of a new shared infrastructure if no actions are
taken regarding the problems presented here; and ii) the models presented
in Section 5.4 could be used by other researchers developing new allocation
and selection mechanisms in the initial steps of their implementation through
simulation, allowing them to perform speculative analysis of their solutions by
tweaking model parameters.

Thus, our major contributions can be summarized as follows:

• We identify and study many global phenomena inherent to open shared
experimental infrastructures that may produce an effect on the usage
of computer and network resources and the quality of service offered by
nodes to applications. Specifically, we look at the balance between the
contribution and consumption of resources, at the reciprocity in resource
exchanges among sites, at the mechanisms to promote or limit resource
usage in beneficial ways, and the effects of resource discovery and se-
lection. Results extracted from PlanetLab should not be extrapolated
to the current and future Internet. However, they show several inter-
esting problems which could arise in the future if no proper regulation
mechanisms are provided to control resource usage.

32

• We model applications’ resource requirements at different scales: first,
we analyze the distribution of resource usage among applications; second,
the resource usage of each application among its selected nodes; third,
the temporal dynamics of applications; and fourth, the periods of activity
of the experiments. Taken together, these models allow us to simulate
synthetic traces of different types of applications with similar statistical
properties as the workload found in a real environment and do a what-if
analysis by tweaking model parameters, something that was not possible
with previous models.

The rest of the chapter is organized as follows. Section 5.2 provides an overview
of PlanetLab and describes the data set used in this study. Section 5.3 presents
our analysis on global phenomena related to resource allocation. Section 5.4
describes our analysis of the distribution and time dynamics of resource usage
as well as our stochastic model that captures such behaviors. We review
related work in Section 5.5 and conclude in Section 5.6.

5.2 Overview of PlanetLab as a Planetary-Scale
Shared Infrastructure

The main purpose of planetary-scale experimental facilities is to support the
deployment and evaluation of large-scale applications and network services in
a geographically distributed overlay of nodes.

Figure 5.1 shows a simplified view of the slice-based facility architecture of
current experimental facilities, in which a set of nodes owned by different
sites (universities, research centers or companies) are shared among a basic
abstraction called a slice[6]. A slice is a set of nodes on which the applications
(networked experiments or services) receives a fraction of each node’s resources
through a virtual machine called a sliver.

From the researchers’ point of view, this distributed virtualization architecture
allows services to run in an isolated environment of PlanetLab’s global resources.
Under the hood, each slice competes with the other slices in every node to
acquire a share of a node’s resources. Currently, scheduling in a node is done
through a fair share scheduling policy in which each slice has the right to use

33

Figure 5.1: Simplified view of PlanetLab

an equal proportion of a resource –i.e. CPU or bandwidth– no matter the
number of processes running within a sliver.

From the sites’ point of view, each site must provide at least two networked
nodes to join the consortium and use the infrastructure. Researchers are
then able to manually choose which nodes will belong to their slice. The
information provided to researchers about node characteristics is just technical
and static information about CPU clock rate, memory available, bandwidth
limits, etc. However, dynamic information like availability and load are not
currently provided through the selection interface and researchers need to
use other tools like CoMon to learn these parameters. Once the nodes are
manually selected and initialized, research teams from a site may create a slice
without restrictions on the number of slivers and deploy, test and run their
applications on any number of PlanetLab nodes.

Thus, we can view PlanetLab as a set of sites contributing a set of nodes and
consuming resources from the global infrastructure through their registered
slices.

5.2.1 Data set description

The raw data we use in this study was obtained from CoMon [44], a large-scale
monitoring infrastructure already deployed in PlanetLab. CoMon queries
each node every five minutes to maintain a historic repository of two different
datasets: i) the monall dataset which contains node-centric information (load
average, I/O performance, network usage, memory, among others) and, ii) the
topall dataset which contains slice-centric information (CPU, network and
memory usage).

34

In this study, we focus on the slice-centric dataset (topall) to obtain the activity
of each slice regarding its resource usage (CPU, memory and bandwidth) for
each of the nodes in which a slice is registered. Unfortunately, data regarding
disk usage (I/O performance) is not available in any dataset although it
might be of interest for increasingly popular data intensive applications –e.g
map-reduce based applications.

Thus, for each slice and for each sample (with a granularity of 5 minutes) we
maintain a list of nodes in which the slice had activity. Specifically, we keep
track of the resource usage about network (in Kbps), CPU (in percentage)
and memory (in MB). Additionally, we maintain the list of nodes belonging to
PlanetLab with their location –i.e. latitude and longitude– and the site they
belong to. To provide an overview of the volume of information analyzed, our
measurements show an average of over 134 sites managing 917 nodes spread
over the world with an average of 276 active slices executing at any point in
time.

However, there are a few caveats with the quality of the data in this study.
There are nine days missing or with erroneous information in the datasets
due to problems with the monitoring infrastructure because of updates in
PlanetLab’s underlying infrastructure. For this work, we have removed these
days to avoid misinterpretation of results that should have a low effect on
the overall measures, as the erased days are small compared to the whole
trace. However, we consider this fact when choosing the set of days we use for
our temporal analysis, and chose an interval of continuous data so as not to
destroy temporal dependencies in our analysis.

Furthermore, a node may not reply to CoMon’s queries although it is up and
running. A plausible reason for this is that a node may suffer from sudden
increases in load at certain intervals, leading to a slow response to queries
(triggering a timeout). However, a failing node should have a low effect on the
overall measures, as we are dealing with large-scale applications of up to 600
slivers. Finally, we do not have detailed information about slice activity. In
other words, we may know looking at the traces that a slice is using a certain
amount of a resource but we have no information about the nature of such
activity such as whether this activity corresponds to an initial deployment
and testing, to an experiment, or to a production service activity.

35

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

P
ro

b
a
b
ili

ty
 (

C
D

F
)

η

Heavy Consumers

Heavy Contributors

CPU
BW

(a) Consumption vs contribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
(R

e
c
ip

ro
c
it
y
 <

 x
)

Reciprocity Index

CPU
BW

(b) Reciprocity

Figure 5.2: Global phenomena evaluation. Subfigure 5.2(a) shows the ratio of
consumption vs. contribution of sites participating in PlanetLab. Subfigure
5.2(b) shows the degree of reciprocity among sites. The length of the trace
used in these analyses is 8 months (the whole trace available).

We have collected and analyzed the aforementioned data for a period of 8
months (from April to November) in 2009. However, we use different subsets
of these traces of different lengths to simplify computation in some cases.

5.3 Measurement of Global Phenomena

Through this section, we focus our attention on global phenomena of interest
related to resource allocation in large-scale infrastructures like the balance
between the contribution and consumption of resources, the reciprocity in
resource exchanges among sites, the mechanisms to promote or limit resource
usage in beneficial ways, and the effect of resource discovery and selection.

5.3.1 Im/balance Between Resource Consumption and Con-
tribution

Collaborative experimental facilities rely on the individual contributions of re-
sources (networked computers) from participants (sites) to create a distributed
infrastructure powerful enough to allow them to run large-scale experiments
and services.

A key characteristic of this kind of shared infrastructures is its peer-to-peer
nature, as participants are both resource consumers (through the execution

36

of distributed applications in a slice) and resource providers (through the
provision of nodes associated with a site) acting on their own interest.

Thus, we measure the degree of resource consumption and contribution in
such environments with the normalized ratio shown in Equation 5.1. For each
site i, we aggregate the total amount of resources consumed by its slices (ci)
and the total amount of resources contributed by its nodes (pi) during the
whole measurement period considering CPU1 and bandwidth2.

ηi =
pi − ci
pi + ci

(5.1)

This normalized ratio allows the relative comparison among sites with different
volumes of resource usage. Notice that sites consuming a certain amount
of resources from their own nodes are not accounted for in the final result
as both terms (pi and ci) are canceled in the numerator. Values close to 0
reflect balance between resource usage and contribution, whereas imbalance
is represented by values close to 1 (excess of contribution) or -1 (excess of
consumption).

For example, a site executing an application in 10 nodes that consumes 20% of
CPU (ci = 10 ∗ 20/100 = 2 CPU powers) and contributing three nodes which
CPU usage is 20% (pi = 3 ∗ 20/100 = 0.6 CPU powers) will have a ηi = −0.54
which indicates that this site has consumed more resources than contributed.

As shown in Figure 5.2(a), around 30% of sites have a negative contribution
metric. This means that resource consumption made by this 30% of sites
accounts for the contribution made by the other 70% of sites. This is a clear
example of the well-known problem of the tragedy of the commons or free-
riding : the benefits of exploitation are received by individuals (sites) whereas
the costs are distributed between all those who have access to the resource.
With the expected increase of usage in the coming years, the overall stability
of the infrastructure will be compromised if no proper incentive mechanisms to

1The unit of measure is CPU powers which is the accumulated percentage of usage of
nodes divided by 100 to obtain the equivalent number of CPUs used. For example, a slice
using 5 nodes at 20% of usage each, will have a consumption of 1 CPU power equivalent to
1 fully used node.

2The unit of measure is the total bytes transmitted and received.

37

contribute resources are provided as, obviously, it is much easier to consume
than contribute resources considering operational costs.

This current imbalance of resource consumption and contribution is the result
of the policies currently present at PlanetLab in which, for example, sites
are required to provide only two networked nodes in order to use the whole
infrastructure. This policy leads to a minimal contribution of resources in
contrast with a potential unlimited consumption.

To solve this problem of unlimited consumption, the current design and
implementation in PlanetLab includes limits on resource consumption, but this
is only a mechanism to stop intended or unintended clearly abusive behavior
from one slice or sliver when limits are reached. For example, PlanetLab’s
policy is to allow the creation of up to 10 slices per site, with an average
bandwidth of 1.5 Mbps per slice. Moreover, the application consuming most
of the memory available on a node is killed when memory reaches 90% of
utilization.

In contrast to hard limits, incentive mechanisms can act on applications
by sending signals or establishing dynamic limits proportional to the actual
resource contribution of a site that promote or limit the behavior of applications.
These mechanisms should encourage application developers and operators to
optimize applications to be more “environmentally friendly” by reducing their
consumption of resources and increasing the availability of the contributed
resources. Some of these mechanisms to control resource consumption by
providing incentives might be market-based [45][46] in which resource owners
earn money (either real or virtual) by contributing resources and spend that
money using available resources. As a promising way to control resource
consumption and thus improve the imbalance between consumption and
contribution, we are currently studying different incentive policies suitable for
open and shared infrastructures.

5.3.2 Degree of Reciprocity in Resource Exchanges

We are also interested in the relationship between sites in terms of resource
exchanges to introduce proper incentive mechanisms adequate to these ex-
changes.

38

Thus, we turn our attention to the degree of reciprocal exchange among sites.
This measure is motivated by the fact that common decentralized peer-to-peer
incentive mechanisms are based on some kind of bargaining protocol in which
reciprocal exchanges are necessary.

To evaluate the degree of reciprocity in resource exchanges, we compute a
matrix C where Ci,j is the consumption of every slice belonging to site i
executing in any node of site j. Thus, the reciprocity metric ri is computed
for each site i following Equation 5.2, where S is the set of sites.

ri,j =
min(Ci,j , Cj,i)

max(Ci,j , Cj,i)
(5.2)

ri =
1

|S|
∑

∀j∈S\{i}

ri,j

Values closer to 1 indicate a higher degree of reciprocal exchange. Notice
that we do not consider the reciprocal exchange for the site i itself because it
would be always equal to one. As shown in Figure 5.2(b), 80% of sites have a
reciprocity value very close to 0. This result is not intrinsically related to the
PlanetLab resource allocation scheme but a consequence of the resource usage
and node selection made by researchers –which are currently not provided
with this reciprocity information.

This result shows that incentive mechanisms based on bargaining protocols
like Bittorrent’s tit-for-tat [47] might not be applicable in these kind of
environments because there is no stable bilateral exchange between sites.
Thus, mechanisms based on transferable rights [26][30][45] might be more
adequate.

5.3.3 Resource Selection Impact

Finally, one of the main tasks researchers have to do before conducting their
trials is the resource discovery and selection process. An inadequate selection
of nodes may distort results and misguide conclusions from experiments.

Currently, node selection is done manually based on static criteria such as
location or bandwidth limits. However, results may be highly influenced by

39

dynamic node attributes like load or availability. This information is currently
not provided to users in the selection interface –although there are currently
efforts to integrate such information through the MySlice tool– and they need
to learn these characteristics by other means. Usually, researchers use the
CoMon tool although it only presents current load and, therefore, does not
provide historical information like availability and past load.

To assess the quality of choices made by researchers, we computed the average
node load and availability from the dataset3 during one month (April 2009) to
obtain enough long-term coverage of such attributes4. This way, we evaluate
if better resource choices could be made with such available information.
Thereafter, we obtain the list of nodes used by each slice during the subsequent
day (May 1st, 2009). From the list of nodes of each slice, we consider a
researcher has made a bad choice selecting a node A if there is another node
B nearby5 which satisfies the following conditions: i) node B is less loaded
than A; ii) node B provides higher availability than node A; iii) both of the
previous conditions exist at the same time.

We consider the geographical proximity of nodes because of the lack of more
complete information in the dataset –e.g. inter-node latency. In the context
of PlanetLab, geographical proximity is a reasonable measure considering
an academic network infrastructures like universities (nearby node location)
because of their highly hierarchical structure6.

Thus, the quality of choices bi made by a slice i is defined by Equation 5.3,
where Nbad is the number of bad choices and N is the number of nodes used
by a slice.

bi =
Nbad

N
(5.3)

3The raw dataset indicates, at a given sampling time, whether a given node is available
by providing its usage information or the node is down by omitting such information.

4At the time of the analysis of this metric, we only had one month of the raw dataset
available, enough to compute a fairly accurate measure of historical load and availability.

5Using the latitude and longitude of each node, we can measure its distance considering
Earth’s curvature. We consider a nearby node if it is located at less than 100km from the
original node.

6A nearby node in PlanetLab is likely to be owned by the same operator with similar
network characteristics in terms of bandwidth and inter-node latency

40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
ra

c
ti
o
n
 o

f
s
lic

e
s

Bad Choice ratio

60 %

Load
Availability

Both

Figure 5.3: It shows a measure of how good node selection is made by slices.
The length of the trace analyzed is one month (April 2009).

Figure 5.3 shows the empirical cumulative distribution function (CDF) of the
bad choice ratio for each of the three conditions presented above. It shows
how 60% of slices have a percentage of bad choices between 35% and 75%
of the overall selected nodes. These percentages would be reduced by using
current selection services deployed in PlanetLab like SWORD [48] or those
already planned like Raven [49]. Moreover, resource discovery in the context
of long-term experiments should not be understood as a one-shot process
but rather as a continuous process with live migration capabilities in which
resources are continuously monitored and application components redeployed
to enable the adaptation of applications to changes in resource supply.

5.4 Resource Usage of Slices

So far, we have defined and presented interesting metrics relevant to resource
allocation in networked experimental infrastructures. Throughout this section,
we evaluate and present models for applications’ resource usage responsible for
the observed behavior. In this case, we use standard statistical techniques to
build a model useful in performing synthetic but realistic workload simulations.

We first examine the long term distribution of resource usage (over the entire
measured period) of all slices. Figure 5.4 shows the CDF of resource usage
ranked by CPU and bandwidth consumption. We observe in both cases a
highly skewed distribution; the top 35% of slices are responsible for 99.9% of
the resource usage in this period. Thus, to simplify computation without loss

41

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

P
ro

p
o
rt

io
n
 o

f
u
s
a
g
e

Slices index (sorted by usage)

Top 35%

CPU usage
BW usage

Figure 5.4: Most of the resource usage is made by a small number of applica-
tions or slices. We used the whole trace to compute the proportion of usage
made by slices (8 months).

of generality, we focus only on these high consuming slices for the rest of the
chapter.

5.4.1 Short-term Distribution of Resource Usage

We next focus on the short term distribution of resource usage with respect
to the attributes we are studying –i.e. CPU, network, memory and number
of nodes. Thus, through this section, we examine two different aspects: i)
short-term distribution of resource usage among individual slices (inter-slice)
and ii) short-term distribution of resource usage of slivers within a single slice
(intra-slice).

Inter-slice distribution: First of all, we examine the inter-slice distribution
of resource usage at different points in time across all slices. For each slice,
we compute its characteristic resource usage at a given point in time as the
arithmetic mean among all slivers belonging to a slice. Interestingly, we
find the distribution of each type of resource nearly invariant over different
points in time considering a single day. Figure 5.5 illustrates the CDF of the
characteristic resource usage of a slice in terms of CPU, bandwidth, memory
and the number of slivers using 1 hour aggregation granularity at different
points in time (12-1 AM, 5-6 AM, 12-1 PM and 5-6 PM in the Eastern Daylight
Time (EDT) which is the time zone used by the traces). We find the curves
very close to each other, meaning that independently of the time of the day, it

42

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

P
ro

b
a
b
ili

ty

CPU Usage (%)

1 AM
6 AM
1 PM
6 PM 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

P
ro

b
a
b
ili

ty

BW Usage (Kbps)

1 AM
6 AM
1 PM
6 PM

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

P
ro

b
a
b
ili

ty

Mem Usage (Mb)

1 AM
6 AM
1 PM
6 PM 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600
P

ro
b
a
b
ili

ty

of Nodes

65% of slices

1 AM
6 AM
1 PM
6 PM

Figure 5.5: Hourly distribution inter-slice. We used one day of the dataset for
this analysis (April 1st, 2009).

follows the same distribution. We stress that the nearly invariant distribution
function does not necessarily imply that the resource usage for a given slice is
stable during the whole period as some of them present strong daily patterns.
We will turn to the temporal dynamics in Section 5.4.2.

The distributions shown are highly skewed and with a long tail for CPU,
bandwidth and memory, giving us a hint that those distributions might be
represented by a heavy-tailed distribution. To determine the model parameters
that best describe the data trace analyzed, we apply a data fitting procedure
against well-known heavy-tailed distributions –i.e. lognormal, Weibull and
Pareto distributions– for each one of the attributes based on maximum likeli-
hood estimation (MLE) [50]. From the fitted distributions, we select those
with a lower standard error. For CPU, bandwidth and memory, we find that
the best fitted model is the lognormal distribution. In the case of the number
of slivers belonging to a slice, none of the heavy-tailed distributions presented
a good match. Thus, we chose a uniform distribution considering only the
65% of slices with higher numbers of nodes, as they are responsible for most
of the resource usage.

43

 0.1

 1

 10

 100

 0.1 1 10 100

E
m

p
ir
ic

a
l
(%

C
P

U
)

Theoretical (%CPU)

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

E
m

p
ir
ic

ia
l
(K

b
p
s
)

Theoretical (Kbps)

 1

 10

 100

 1 10 100

E
m

p
ir
ic

a
l
(M

B
)

Theoretical (MB)

 100

 200

 300

 400

 500

 100 200 300 400 500

E
m

p
ir
ic

a
l
(#

 N
o
d
e
s
)

Theoretical (# Nodes)

(a) Hourly distribution qq-plots

Attributes Distribution K-S test

CPU ln N ∼(µ = 1.812, σ = 1.504) 0.636

BW ln N ∼(µ = 2.636, σ = 1.931) 0.337

Mem ln N ∼(µ = 2.476, σ = 1.046) 0.976

Slivers U ∼(min = 20, max = 516) 0.135

(b) Hourly distribution parameters

Bandwidth CPU Memory #Slivers

Bandwidth * 0.082 0.040 0.060

CPU -0.082 * 0.052 0.089

Memory -0.040 -0.052 * 0.059

#Slivers -0.060 -0.089 -0.059 *

(c) Pair-wise Pearson correlation coefficients

Figure 5.6: Hourly distribution QQ plots and model parameters. We used one
day of the dataset (April 1st, 2009).

44

Table 5.6(b) shows the parameters of our model that best describe our empirical
results. Additionally, it shows the probability value of the non-parametric one-
sample Kolmogorov-Smirnov test, which quantifies the distance between the
empirical distribution function of the sample and the cumulative distribution
function of the reference distribution and is sensitive to differences in both
location and shape of the distributions. All tests report probability values
higher than the 0.1 confidence interval, which means that we cannot reject
the null hypothesis of distributions coming from the same distribution. These
tests are confirmed by the QQ (quantile-quantile) plots in Figure 5.6(a), which
demonstrate good matches between our models and real traces collected.

To capture any existing inter-dependency between slice’s number of slivers,
CPU utilization and bandwidth consumption, we first perform a pair-wise
correlation analysis between these variables. Thus, we compute the Pearson
correlation coefficient for each pair of variables. The correlation results pre-
sented in Table 5.6(c) show that each pair of variables exhibit a very low
correlation coefficient. Thus, each pair of distributions is not correlated and
we consider this a fair signal of their independence.

Intra-slice distribution: Also interesting is to look at the degree of usage
within each slice –i.e. the workload introduced by slices to each one of the
instantiated slivers.

To measure this, we show in Figure 5.7 a heat map where each line represents
a distribution of usage within a single slice where the x-axis is the fraction of
nodes sorted by usage and the color gradient represents the degree of usage.

Our first intuition was to see that nodes might be uniformly used as each
slice is considered to run a large-scale experiment with homogeneous software.
However, we can appreciate that the distribution of usage is highly heteroge-
neous among slices. Notice that most of the slices have predominantly low
values (light color) for a large fraction of their slivers. This is especially true in
the case of CPU usage. For bandwidth and memory usage we can appreciate
a large portion of nodes with low-medium values and only slices with a low
positive skew show a uniform increase of usage across nodes.

In this work, we do not provide a specific model because of the highly hetero-
geneous behavior across slices, and it remains for future work to establish how
to represent such behavior. However, this result contradicts the assumption

45

 0 0.2 0.4 0.6 0.8 1

Fraction of slivers (sorted by usage)

S
lic

e
s
 (

s
o
rt

e
d
 b

y
 s

k
e
w

n
e
s
s
)

 0

 0.2

 0.4

 0.6

 0.8

 1

N
o
rm

a
liz

e
d
 C

P
U

 U
s
a
g
e

(a) CPU

 0 0.2 0.4 0.6 0.8 1

Fraction of slivers (sorted by usage)
S

lic
e
s
 (

s
o
rt

e
d
 b

y
 s

k
e
w

n
e
s
s
)

 0

 0.2

 0.4

 0.6

 0.8

 1

N
o
rm

a
liz

e
d
 B

W
 U

s
a
g
e

(b) BW

 0 0.2 0.4 0.6 0.8 1

Fraction of slivers (sorted by usage)

S
lic

e
s
 (

s
o
rt

e
d
 b

y
 s

k
e
w

n
e
s
s
)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

N
o
rm

a
liz

e
d
 M

e
m

o
ry

 U
s
a
g
e

(c) Mem

Figure 5.7: Hourly distribution intra-slice. We used one day of the dataset
(April 1st, 2009).

of uniform usage in a distributed application made in different theoretical
analyses of resource allocation [36][35].

It remains unclear for us which distribution model would better fit the observed
behavior. However, based on our intuition, we performed some simulations
with the family of lognormal distributions with variable mean and standard
deviations –i.e. a simulated distribution per slice– and we observed a reasonable
match between the empirical heat maps and the simulated ones. Despite the
promising initial results, we leave this part of the model as an interesting part
of our future work.

5.4.2 Temporal dynamics of resource usage

The short-term distribution of resource usage among slices was described in
detail, and we now turn our attention to the time dynamics for individual
slices. We undertook a time series analysis by looking at slices’ stationarity
and autocorrelation properties and their frequency domain structure.

We only consider the first 12 days of April 2009, one of the most loaded periods
analyzed, and limit our study to CPU and bandwidth usage. Our aim with
this analysis is to extract information on short-term patterns –e.g. daily or
weekly patterns– and we found that such a short period was a good trade-off

46

between efficient computation of parameters7 and clarity of the presented
results.

Besides, given the experimental nature of applications shown in Section 5.4.3
–different alternate periods of activity and inactivity– we only consider those
time frames in which applications were active –i.e. an application using a
non-trivial amount of CPU or bandwidth. We decided to leave out of this
study the dynamic behavior of memory, because memory reallocation made by
the operating system is not instantaneous and loosely related to the application
dynamics but rather based on the current memory usage and load on a single
machine. In other words, the memory allocation is more static than CPU and
bandwidth, and does not provide a good picture of the current memory size
used by an application.

Stationary and autocorrelation properties: To test the stationarity of
resource usage time series, we apply the parametric KPSS (Kwiatkowski-
Phillips-Schmidt-Shin) test [51] which tests for the null hypothesis that an
observable time series is stationary around a deterministic trend. The core of
the test consists of expressing the time series as the sum of a deterministic trend,
a random walk and a stationary error. Thus, the null hypothesis corresponds
to the hypothesis that the variance of the random walk equals zero meaning
that the series follows a stationary distribution around a deterministic trend.

At the 0.05 confidence interval, we find that 93% of CPU time series and 84%
of network usage time series pass the stationary test. The remaining 7% of
CPU time series show aberrant behavior mostly due to bursty experimentation
with the slice and are discarded for the rest of the temporal dynamic analysis
to simplify our model. In the case of time series for bandwidth consumption,
the remaining 16% show either aberrant behavior similar to the CPU case or
strong diurnal patterns, which makes the series non-stationary. However, we
decided not to discard some of these time-series as they belong to heavily used
public services and discarding them would produce misleading simulations.
The presence of diurnal patterns was surprising at first because PlanetLab
is used worldwide by a wide range of users. However, we assume that such

7The analysis of 300 slices with traces of 8 months and 4 variables –i.e. hundreds of
Gigabytes of raw data– was too computationally expensive to extract results iteratively in
the development phase of the analysis framework with R.

47

patterns are present because most of the users of such public services are
located in the United States time zones.

To detect diurnal patterns, we look the frequency domain of the time series
(see Figure 5.8(a)). We find that 5% of slices exhibit diurnal patterns (high
frequency components at 1 day) corresponding to public services available
using the PlanetLab infrastructure.

If we look at the autocorrelation function (ACF) of the example stationary
time series (see Figure 5.8(b)), all correlations are basically zero independently
of the lag difference, and a flat power spectrum, a typical behavior observed in
purely random processes. To assess such evidence, we apply the non-parametric
runs test for randomness [52]. Given a time series X(t), the runs test computes
the median value of Xi over all the time series and marks the ones below
the median as “−” and the rest as “+”. Then, a consecutive sequence of
equal elements (either “−” or “+”) is considered a run and it compares the
distribution of consecutive runs to known run-count distributions of random
data –e.g. a normal distribution. At the 0.01 confidence interval, all the
application traces, which previously showed a stationary behavior, pass the
runs-test confirming the random nature of such processes.

By considering only the processes that do comply with the stationary hypoth-
esis or the presence of strong diurnal patterns, we account for 98% of the
resource usage both in CPU and bandwidth usage, which is a good trade-off
between simplicity of model and representativeness. Including the whole
population of applications might over-complicate our model without offering
extra information from the resource utilization point of view.

Stationary and non-stationary models: Given the evidence presented
so far –i.e. temporal correlations in ACFs, spectral density in the frequency
domain and the stationary behavior– we choose two different approaches for
modeling the observed time series depending whether they are pure random
processes or non-stationary with diurnal patterns.

(a) Random processes. The independent distribution of runs in a time series,
its stationary property, the absence of autocorrelation in the time domain and
the flat power spectrum, are clear evidence of the well-known white Gaussian
noise (WGN). It is characterized by Equation 5.4 where µ is the long-term

48

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12

R
e
a
l
T

ra
c
e

Days

 0

 2

 4

 6

 0 2 4 6 8 10 12

M
a
g
n
it
u
d
e

Frequency (Days)

x 10
6

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

A
C

F

Lag (Days)

x 10
6

(a) Real network usage trace (seasonal)

 0
 10
 20
 30
 40
 50

 0 2 4 6 8 10 12

R
e
a
l
T

ra
c
e

Days

 0
 2
 4
 6
 8

 10

 0 2 4 6 8 10 12

M
a
g
n
it
u
d
e

Frequency (Days)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10 12

A
C

F

Lag (Days)

(b) Real CPU usage trace (stationary)

Figure 5.8: Real traces. We used the first 12 days of April 2009 for this
analysis.

mean of the series and σ its standard deviation.

Xt = µ+N ∼ (0, σ) (5.4)

To simplify the number of parameters needed to simulate such processes,
we look at the correlation between the long-term mean µ and its standard
deviation σ. Figures 5.9(a) and 5.9(b) show the scatter plot of the explanatory
variable µ in the x-axis against the response variable σ in the y-axis –notice
the log-log plot. We find that points follow a linear relationship confirmed by
the Pearson’s correlation coefficient in Table 5.9(e). Thus, we approximate
this correlation using the ordinary least squares (OLS) method to the straight
lines superimposed, with the resulting slopes presented also in Table 5.9(e).
Therefore, we estimate the standard deviation σ of the stochastic process
following Equation 5.5, where α are the slopes previously obtained depending
on if we are estimating the variance of a CPU or bandwidth process.

σ = µα (5.5)

(b) Non-stationary processes with diurnal patterns. To model an approximation
of those processes with strong diurnal patterns –high frequencies at one day– we
decompose the time series in their structural components –i.e. seasonal, trend
and remainder– following the locally weighted scatter plot smoothing (LOESS)
method, which combines much of the simplicity of OLS with the flexibility

49

 0.1

 1

 10

 100

 1 10 100

C
P

U
 s

d
 (

σ)

CPU mean (µ)

(a) Correlation CPU µ - CPU σ

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

B
W

 s
d
 (

σ)
BW mean (µ)

(b) Correlation BW µ - BW σ

 1

 10

 100

 10 100 1000

B
W

 a
m

p
lit

u
d
e
 (

A
)

BW mean (µ)

(c) Correlation Bw µ - BW A

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000 10000

B
W

 r
e
s
id

u
a
l
s
d
 (

σ r
)

BW mean (µ)

(d) Correlation Bw µ - BW σr

Attributes Pearson’s corr. Linear slope

Stationary process
CPU (µ vs σ) 0.8249 0.5165

BW (µ vs σ) 0.8156 0.5913

Seasonal process
BW (µ vs A) 0.6061 0.1084

BW (µ vs σr) 0.9189 0.1284

(e) Correlation parameters

Figure 5.9: Correlation between mean µ as explanatory variable and standard
deviation σ, amplitude of the diurnal pattern A and standard deviation of
the residual component σr as response variables. We used the first 12 days of
April 2009 for this analysis.

50

of nonlinear regressions. It does this by fitting simple models to localized
subsets of the data to build a function that describes the deterministic part of
the variation in the data, point by point. The resulting seasonal component
is then fitted through OLS by a cosine function with a fixed frequency of
one day, representing the diurnal pattern. This way, we find the amplitude
of the diurnal pattern as the coefficient of the fitted cosine function. Our
model is then constructed by the sum of two independent process as shown
in Equation 5.6: i) a cosine function representing the deterministic diurnal
pattern and ii) a white Gaussian noise representing the stochastic component
of the process where σr is the standard deviation of the remainder component.

Xt = A cos(2πt) +N ∼ (0, σr) (5.6)

Again, to simplify the number of parameters needed to simulate such processes,
we look at the correlation between the long-term mean µ and the amplitude
of the fitted cosine function A. We also look at the correlation between the
long-term mean µ and the standard deviation σr of the residual component
(modeled as WGN). Figures 5.9(c) and 5.9(d) show a slight linear relation
confirmed also by the Pearson’s correlation coefficient. Thus, we estimate the
response variables A and σr in a similar fashion as the stationary σ parameter
(see Table 5.9(e) for the slopes of the linear relations). Although the number
of processes with diurnal patterns is too low to make a strong statistical
conclusion on such correlation, it will serve our purposes for our simplified
model.

Model validation. We validate our model against measurement data by
simulating every trace with the estimated parameters and quantifying the
similarity (or dissimilarity) of the resulting processes using the cosine similarity
metric, commonly used in the data-mining field [53]. It measures the similarity
between two vectors of n dimensions (where n is the length of the measurement
period) by finding the cosine value of the angle between them. Values closer
to 1 indicate higher similarity.

similarity(A,B) = cos(θ) =
A ·B
||A|| ||B||

(5.7)

51

Figure 5.10(c) shows that 10% of slices have a value less than 0.9. Those
simulated traces that showed a low cosine similarity measure are those by which
our parameter estimation is not effective and thus produce quite different
patterns. However, most of the simulated traces produced quite similar
patterns as shown by the remaining 90% of slices with a similarity metric very
close to 1. Figures 5.10(a) and 5.10(b) show the simulated traces with their
autocorrelation function and spectral analysis of the frequency domain of the
same traces presented in Figures 5.8(a) and 5.8(b) respectively. Both sets of
figures contain a similar structural behavior, a diurnal pattern with a high
frequency at one day for the seasonal traces and a flat frequency spectrum
with autocorrelation almost zero independently of the lag for the random
processes.

This validation states that our model is able to reproduce existing resource
usage performed by applications. We consider this validation sufficient as
our objective is not to forecast future workloads but to reproduce current
conditions in a synthetic manner through simulations. This way, we can
perform what-if simulations following a model based on real measurements.

5.4.3 Duration of Experiments

Finally, we look at the intermittent behavior in the activity pattern of slices.
As experimental applications, the duration of such active periods may be highly
variable because of potential rounds of testing, deployment and evaluation.

Thus, we consider the whole period of our traces and measure the time when
a slice shows some kind of activity. A slice is considered active if it shows
non-trivial CPU usage or has used at least 1 Kbps of network bandwidth in
a given sample. We then compute the mean time of activity (MToA) and
the mean time of inactivity (MToI), an analogous measure to the mean time
to failure (MTTF) and mean time to recover (MTTR) in resource reliability
analysis [54].

Figure 5.11(a) shows the relation between MToA and MToI. There is a high
heterogeneity and no correlation between them at first sight. However, we
can distinguish between three types of experiments: i) long-running services
with high availability –i.e. short periods of inactivity of less than 1 hour–
corresponding to public services currently deployed in PlanetLab –e.g. the

52

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12

S
im

u
la

te
d

Days

 0

 2

 4

 6

 0 2 4 6 8 10 12

M
a
g
n
it
u
d
e

Frequency (Days)

x 10
6

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

A
C

F

Lag (Days)

x 10
6

(a) Simulated network usage trace (seasonal)

 0
 10
 20
 30
 40
 50

 0 2 4 6 8 10 12

S
im

u
la

te
d

Days

 0
 2
 4
 6
 8

 10

 0 2 4 6 8 10 12

M
a
g
n
it
u
d
e

Frequency (Days)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10 12

A
C

F

Lag (Days)

(b) Simulated CPU usage trace (stationary)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

P
(S

im
ila

ri
ty

 <
 x

)

Cosine similarity

(c) Cosine similarity CDF

Figure 5.10: Simulated traces and cosine similarity CDF

content distribution networks (CDN) of the CoDeeN family [55] or Oasis [56],
an overlay network stack; ii) long-run experiments with MToA between 1 day
and several weeks with high MToI variability and iii) short-run experiments
with a very low MToA (ranging from several minutes to a few hours) and high
variability of their inactivity periods.

It is important to notice that the MToA and MToI distributions are highly
skewed (see Figure 5.11(b)), meaning that almost all applications belong to
the third type while the mass of the resource usage is caused by the long-
running services and experimental applications. We fit the empirical data to a
lognormal distribution using MLE (see parameters in Table 5.11(d)). Looking
at the QQ plots in Figure 5.11(c), it shows a good fit between the empirical
distribution and the estimated distribution. Besides, both distributions pass
the Kolmogorov-Smirnov test at the 0.05 confidence interval.

53

10 m

2 h

1 day

1 week

2 months

0 m 10 m 2 h 1 day 1 week 2 months

D
u
ra

ti
o
n
 o

f
O

N
 p

e
ri
o
d
s

Duration of OFF periods

Services - long run
Experiments - long run

Experiments - short run

(a) Clustering of slices

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250
P

ro
b
a
b
ili

ty

Time (days)

ON sessions
OFF sessions

(b) CDF of ON-OFF sessions

2h

1 day

1 week

2 months

2h 1 day 1 week 2 monthsE
m

p
ir
ic

a
l
(O

F
F

 s
e

s
io

n
)

Theoretical (OFF sesion)

2h

1 day

1 week

2 months

2h 1 day 1 week 2 monthsE
m

p
ir
ic

a
l
(O

N
 s

e
s
io

n
)

Theoretical (ON sesion)

(c) QQ plot of ON-OFF goodness of fit

Attributes Distribution K-S test

ON session ln N ∼(µ = 5.364, σ = 2.144) 0.209

OFF session ln N ∼(µ = 8.173, σ = 1.969) 0.791

(d) ON-OFF distribution parameters

Figure 5.11: Results of ON-OFF session analyses. We used the whole data set
for these analysis (8 months of available data).

54

To model such an active-inactive pattern, we decide to model each applica-
tion’s activity as an on-off process, setting the rate of transition according
to Equation 5.8 using the MToA and MToI extracted from the distribution
parameters in Table 5.11(d).

λ =
1

MToA
µ =

1

MToI
(5.8)

5.5 Related Work

Traditionally, workload characterization of computational infrastructures has
been widely studied in the literature. However, most of them focused on the
workload supported by resources –e.g. networked nodes– instead on focusing
on the structural behavior of applications that leads to such workload.

Chun et al. [40] made an extensive study of the workload in PlanetLab by
analyzing node load and node reliability as well as some characteristics of
slice behavior. However, their work was carried out in the initial stages of
the experimental infrastructure when a small fraction compared to today’s
resources were available. Moreover, they did not present a specific model to
generate the workload they described. Finally, the objectives, metrics and
scope of our work are different than Chun et al. work and, thus, results are
not directly comparable. However, we consider an interesting future work
to be the comparison of similar metrics of previous work with the current
usage present in PlanetLab to see the evolution of usage characteristics in this
infrastructure.

Oppenheimer et al. [41] also performed an analysis of PlanetLab traces from
the service placement point of view. Their work focused on assessing whether a
discovery and selection service might be useful for the infrastructure considering
the current usage of resources. Their analysis led to the development of
SWORD[29], a resource discovery tool deployed in PlanetLab. However, its
lack of usability and integration hinders their current applicability, confirmed
by our findings in Section 5.3. Spring et al. [42] used measurements of
PlanetLab’s nodes to dispel various myths about the infrastructure to do
experimental research focusing on node performance and tips and tricks to
deploy and successfully execute experimental applications.

55

In the wider context, not specifically related to shared experimental infras-
tructures but to computational grids and data centers, Verma et al. [57]
studied the temporal dynamics of a workload in a private company’s data
center to design new allocation policies to minimize power consumption by
consolidating applications. Although they also focus on the structural behavior
of applications, their work is based on a small-scale sample (4 applications) of
the workload giving a biased estimation of their workload. Finally, Foster et
al. [58] describes resource utilization on Grid3 from the utilization perspective
to describe which aspects of their grid would be important to improve without
giving a detailed model of such usage .

5.6 Conclusions

In this work we analyze usage characteristics of PlanetLab as a case study. Our
results may be extrapolated to other types of experimental infrastructures that
have similar goals –experimentally driven research– and are driven by the same
architectural principles –resources spread around the globe, slice-based design
to share resources, collaborative contribution of resources to the infrastructure,
hard limits on single resource consumption but no incentives to cooperate, etc.

We present an analysis and a model of resource usage of applications to
understand the structural behavior of its participants (slices), in contrast to
previous work which focused on modeling the workload itself (nodes).

Considering the current state of the infrastructure, we find that the distri-
bution of usage among slices is highly skewed with few slices (long-running
services) monopolizing almost all resources. This phenomenon jointly with the
highly skewed distribution of resource contribution presented in previous works
[45], where almost 50% of nodes were persistently overloaded while the others
are underloaded, leads to a highly unbalanced ratio of contribution and con-
sumption, clear evidence of free-riding –i.e. there are only minimum resource
requirements but no incentives to contribute more resources in proportion to
the usage of the infrastructure.

Although this study is focused on experimental infrastructures and our results
may not be directly extrapolated to real applications in the current and future
Internet, our findings may be useful to understanding the potential impact of
unlimited and unrestricted usage made by applications in real infrastructures

56

–e.g. resource congestion, lack of incentives to behave, poor resource selection,
etc.

Given the short-term distribution of resource usage and temporal dynamic
model presented in this work, our plan for future work is to refine our model
to capture the global phenomena presented in Section 5.3.

With the expected growth in the near future of these kind of infrastructures
–and generalizing towards the Future Internet– proper mechanisms for resource
discovery, selection and allocation, and global mechanisms for the overall regu-
lation and governance of the infrastructure seem necessary for its sustainability.
Besides, the increased scale of the system may aggravate the effect of the
detected imbalances.

Chapter 6
Using economic regulation to

prevent resource congestion in
large-scale shared infrastructures

Abstract

In this chaptera we study the problem of large-scale resource congestion

from the control and regulation point of view. Applications and services

running in large-scale shared infrastructures like Grids or PlanetLab

have different resource usage profiles and different resource consumption

strategies according to their specific requirements. However, users of

these types of infrastructure tend to prefer a subset of available nodes to

execute their tasks. As a result, this pattern of user behaviour usually

leads to an unfair distribution of work between nodes. We find that most

current research focuses on short-term and per-resource scheduling, and

the issue of efficient resource allocation in the long-term and system-

wide is not yet appropriately studied. Our main contribution is the

introduction of a novel macro-scheduling (long-term and system-wide)

mechanism for resource capacity self-regulation in which virtual currency

is used as a tool to govern resource usage in massively distributed settings,

which are otherwise hard to control. We show by simulation that our

approach successfully redistributes the load in a fair and economically

efficient manner.

aThis chapter is based on the paper [P2]

57

58

6.1 Introduction

The current and future Internet, as an open shared network and service
infrastructure, is used by more people and more diverse applications every day.
However, the growth in usage, capacity and diversity makes it increasingly
difficult to provide users with sustainable, high-quality services.

In addition, shared computing infrastructures rely on the individual contri-
butions of participants to create an infrastructure with enough power to run
large-scale applications and services. A key characteristic of this type of
shared infrastructures is its peer-to-peer nature, in which participants are both
consumers and resource providers acting in their own interests. Examples
include scientific collaboration grid networks [59][60] or network testbeds such
as PlanetLab [61] or EmuLab [62].

To solve the resource allocation problem, traditional schedulers optimise
usage, throughput or response time at a cost of centralising components and
compromising scalability. An opposite approach is to implement an economic
solution in which computational markets give users control over the service
levels they require in large-scale resource sharing. These economics-inspired
systems have been shown to be a decentralised, scalable and efficient way of
allocating resources according to user preferences.

However, the combination of resource-intensive applications and user pref-
erences can lead to levels of demand that saturate the infrastructure, affect
negatively other users or compromise the overall stability of the system. In
addition, saturation usually affects only a subset of the infrastructure resources,
known as hot spots, whereas the load remains low over the rest of the system.

In this chapter, we present a set of mechanisms for self-regulation of resource
and service exchange to ensure that work is distributed in a fair and stable
way. Besides, current economics-inspired models focus only on short-term
(i.e. micro-economic1) interactions between participants, and the effects of
long-term, system-wide (i.e macro-economic2) interactions have not yet been

1A branch of economics that focuses on the ways in which individuals, households and
firms determine how to allocate limited resources, typically in markets where goods or
services are being bought and sold.

2A branch of economics that focuses on the behaviour of an economy at the aggregate
level and the effects of government actions (such as laws or taxation levels).

59

analysed in depth. Although economic scheduling is efficient regarding the
social welfare of a system, it can also lead to system-wide performance penalties.

We stress the importance of introducing regulatory mechanisms for controlling
and limiting user demand for shared resources. Consequently, our main
contribution is the introduction of a novel mechanism for self-regulation of
resource capacity based on virtual currency management. Besides, we show
that our macro-economic mechanism is a powerful tool that (i) provides
users with incentives to distribute their tasks to prevent the emergence of
hot-spots in large-scale infrastructures and (ii) enables the redistribution
of wealth to improve the social fairness of the system. Additionally, the
money-based infrastructure introduces an economic incentive for enforcing
regulatory standards to improve the overall governability and sustainability of
the network.

The rest of this chapter is organised as follows: in Section 6.2 we present the
motivation and problem statement; in Section 6.3 we present related work on
resource allocation mechanisms; in Sections 6.4 and 6.5 we describe the system
model and present our regulatory mechanism; in Section 6.6 we analyse the
simulation results; in Sections 6.7 and 6.8 we conclude the study by discussing
the applicability of our solution and proposing areas for future work.

6.2 Motivation and problem statement

Free access and unrestricted demand for finite resources ultimately leads to
over-exploitation and degrades quality of service (QoS). This problem arises
because the benefits of exploitation are received by individuals –each of whom
is determined to maximise their use of the resource– whereas the costs of
the exploitation are distributed between all of those who have access to the
resource. This, in turn, increases demand for the resource to such an extend
that the resource is exhausted and becomes useless. As explained in chapter
2, this is a clear example of the well-known problem tragedy of the commons
[63].

As a motivation, in this section we analyse a reference system like PlanetLab
using data from CoMon, a monitoring infrastructure for PlanetLab [44]. We

60

measured PlanetLab usage over a one-month period3, restricting our study
to available nodes (i.e nodes to which users actually had access) and dis-
carding those nodes that were inoperative due to maintenance work, network
connectivity problems, or for other reasons.

Figure 6.1(a) shows the load quartiles (1st, 2nd and 3rd quartiles) during
the measurement period for all working nodes in PlanetLab. Despite daily
variations, the nodes appear to be very highly loaded: the mean for each
day is over 3, which is considered to be overloaded [64]. Although this is not
necessarily a problem, since it is a sign of usefulness of the infrastructure
for their users. However, Figure 6.1(b) shows that almost 50% of nodes are
persistently overloaded whereas the others are underloaded. The overloaded
nodes provide lower QoS to applications, whereas the other nodes are mainly
idle. In Table 6.1(c), we can see that the distribution has a positive skew,
which indicates that the mass of the distribution is unbalanced.

If we consider a reasonable scenario in which tasks are distributed uniformly
among resources, the load distribution (i.e. the number of running tasks on a
given resource) should follow a normal distribution, with low variance and a
skew value close to zero, which indicates that most of the nodes support the
same workload. We assume that our target load distribution should be similar
to a normal distribution because if tasks are distributed randomly among
resources following an unbiased and uniform distribution, all resources are
treated equal. Therefore, according to the law of large numbers, if there are a
large number of resources, the sum of independent identical variables (the sum
of tasks on a resource equals to the load) constitutes a normal distribution.

The presence of overloaded nodes is a result of correlated user preferences
(i.e. users tend to prefer similar nodes in terms of reputation or technical
characteristics) and the lack of incentives to behave considerately in these
types of collaborative environments.

Even if micro-economic schedulers are used, the correlated preferences could
lead to overloading certain nodes with higher preference weights. However,
the higher revenue generated by these overloaded nodes leads to an unfair
distribution of wealth among participants.

3Observed from 24 March to 23 April 2009, with samples of each node taken
every 5 minutes. Traces are publicly available following the instructions at
http://comon.cs.princeton.edu

http://comon.cs.princeton.edu

61

 0

 2

 4

 6

 8

 10

 12

Mar-28 Apr-04 Apr-11 Apr-18

L
o
a
d

Day

High dispersionOverloaded

3rd Q
Median

1st Q

(a) Load evolution

 0

 0.1

 0.2

 0.3

 0.4

 0 5 10 15 20 25 30 35 40 45
 0

 0.2

 0.4

 0.6

 0.8

 1

R
el

at
iv

e
fr

eq
ue

nc
y

of
 n

od
es

Lo
ad

 P
ro

ba
bi

lit
y

P
(L

<
x)

Load

Idle zone

Overloaded zone

PlanetLab - overload
PlanetLab - idle

Target load N~(µ, σ)

(b) Load distribution

Real Load Target Load

Mean 4.393 ' 4.393

StDev 6.565 min

Median 5.935 ' 4.393

Skewness 2.118 ' 0.000

(c) Load (uptime)

Figure 6.1: Measures of system overload for all working nodes in PlanetLab
from 24 March to 23 April 2009. Figure 6.1(a) represents the evolution of
load quartiles. Figure 6.1(b) is the frequency histogram of the load average for
each node and the load CDF for the same period. The green zone represents
idle resources and the red zone represents overloaded resources. Table 6.1(c)
contains load distribution statistics.

62

This scenario is very similar in real-world economies, where wealth is distributed
following a Pareto distribution (i.e. “long tail” distribution). Although a
Pareto wealth distribution is not inherently unhealthy, a fair distribution of
wealth (in open testbed infrastructures like PlanetLab) would be one that
gives researchers the same chance to test their proposals in similar conditions,
regardless their actual incomes.

To address the unbalanced load between nodes and the unfair wealth distribu-
tion between users, we propose a macro-economic approach (i.e. long-term,
system-wide strategy) based on regulation through virtual currency manage-
ment, which can be viewed as capacity management mechanism, that gives
resource providers and consumers incentives to redistribute the load in large-
scale shared infrastructures to prevent congestion on hot-spots nodes and
to distribute wealth equitably –i.e. accommodate user demand in a more
reasonable scenario (see Figure 6.1(b)). Our solution is based on automatically
detecting and forcing the redistribution of tasks by taxing resource prices until
we reach a reasonable distribution of work.

6.3 Related work

In this section we present related resource allocation studies in which both
economic and non-economic mechanisms are used.

Studies which do not consider economic concepts analyse the resource allocation
as a scheduling problem (see the survey by Pinedo [65]). These proposals
range from simple, centralised scheduling algorithms like First Come First
Serve (FCFS), to Shortest Job First (SJB) which provides efficient allocations
but does not take into account the different values of the users’ tasks.

On the other hand, extensive research has also been carried out into the
application of economic models to resource allocation in large-scale shared
infrastructures. Computational markets have been shown to allocate resources
efficiently in a decentralised way in the presence of selfish utility-optimising
resource consumers and selfish profit-optimising resource providers. Shirako
[24] is a toolkit for building utility services for dynamic on-demand sharing of
networked resources through programmatic interfaces. Shirako is based on a
common, extensible resource leasing abstraction [26] similar to those used in
the allocation of airline seats. It combines elements of lifetime management

63

and mutual exclusion. Although Shirako mainly uses flexible mechanisms
for trading resources between clients through a series of leases, there is no
regulation mechanism between resource brokers, which can lead to over-
provisioning of resources. Consequently, negotiated SLAs might be broken
and the infrastructure, or a subset of it, may suffer congestion.

Bellagio [27] is a market-based resource allocation system for federated dis-
tributed computing infrastructures like PlanetLab. The Bellagio architecture
is based on a centralised auctioneer which allocates resources periodically
and determines the corresponding user payments. Users specify resources of
interest by bidding in a combinatorial auction [28]. The amount of virtual
currency owned by a site is determined directly by the central authority, which
establishes the share of virtual currency assigned to each site. Although the
final allocation is proportional to the bids advertised by users, Bellagio does not
provide software agents that can act on behalf of their users to maximise their
utility; consequently, the system can be sub-optimal, because human users
may not behave in an economically rational way under certain circumstances.

Buyya et al. developed Nimrod-G [19], a resource broker that supports
deadline and budget constrained scheduling algorithms [66] for task-intensive
applications in clusters. However, their algorithms are only designed to
make efficient local resource allocations between competing users, and do not
establish a coordination between schedulers or fully analyse the long-term
effect of their algorithms on the overall infrastructure. Also, studies of double
auctions (see the survey by Friedman [13]) or combinatorial auctions (see the
survey by De Vries [14]) allocate users to resources on the basis of short-term
economic efficiency and do not take into account infrastructure-wide metrics
such as the distribution of work among resources.

Finally, Tycoon [32] is a distributed market-based resource allocation system
in which every node in the system runs an independent auction for its local
resources. Auctioneers conduct a proportional share-based auction in which
users receive a proportional amount of a single resource (virtualised CPU and
memory) determined by the size of the bids made by all users for the same
resource. Users are assigned a fixed amount of currency to spend over time to
allocate their tasks. Although this model is similar to the one presented in
Section 6.4, it does not consider system-wide metrics associated with correlated
resource preferences –e.g. the uneven distribution of work among nodes. In

64

addition, the Tycoon model considers symmetric systems in which all users
have the same budget, whereas our model takes into account the behaviour of
the system in the presence of variable budget constraints between participants.

We believe that most current research focuses on the short-term allocation
and maximisation of user utility and does not address the behaviour and
health of the system as a whole or system-wide metrics like the distribution of
work load, the proportionality between consumption and contribution, or the
impact of different budget constraints on user utility.

6.4 System Model

Our solution is designed for a system consisting of an arbitrary large set of
nodes (physical or virtual machines) at diverse locations which communicate
via message passing over a network such as the Internet. The system is
dynamic in the sense that nodes and networks can be added or removed and
can degrade (overload) or fail at any time. The nodes are resources owned by
different organisations and, although there are common protocols and rules,
there is no need for a central executive authority to carry out the day-to-day
management of the system. Each organisation can freely determine the number
of resources it contributes to (or shares with) the system beyond a specified
minimum. Participants in the system are human users (or software agents
participating on their behalf) who usually belong to a single organisation and
execute their tasks across a subset of available nodes (see Figure 6.2(b)).

In view of the above scenario and the benefits of market-based resource
allocation in decentralising resource scheduling in a end-to-end way, the
system requires a short-term micro-economic resource allocation foundation to
enable users to express their preferences as prices. Extensive research has been
carried out in this field. The most popular approach is to use some form of
auction to extract the market price directly from the users’ bids, for example
an English auction, a Dutch auction, a double auction or combinatorial auction
[12][13][14][15] . The main drawbacks of auction-based systems are that the
response time is slow (bidders have to wait for auction clearing) and they
are unsuitable for divisible resources because of the complexity involved in
determining the most efficient way to divide a resource.

65

6.4.1 Proportional share allocation

The simplest and most appealing mechanism for shared divisible resources
is to use proportional share auctions, which have already been proposed for
OS process scheduling [67], I/O disk scheduling [68] or task scheduling in grid
environments [69]. In this case, allocations are proportional to the consumer’s
weight (or preference for a resource) and inversely proportional to the sum
of all other users’ weights for the same resource. Therefore, we base the
mode for our system on the price-anticipating mechanism proposed in [35], in
which each user submits a bid for resources and the price of the machine is
determined by the total bids submitted. More formally, the price of resource
j is set to Yj =

∑k
i=1 xij , where k is the number of bids on resource j and xij

is a non-negative user’s i bid for resource j. Following the proportional share
allocation mechanism, user i receives a fraction rij =

xij
Yj

of resource j.

A game theory analysis of the aforementioned price-anticipating mechanism
can also be found in [35]. Feldman et al. propose an algorithm for finding the
best response4 of an agent to the system. Given a fixed budget X and a pool
R of divisible resources, the algorithm finds the distribution of bids across
resources that yields the highest utility for an individual player i by solving
the following optimisation problem (6.1):

maximize Ui(∀j∈R
xij
Yj

) subject to (6.1)

m∑
j=1

xij = Xi and xij ≥ 0

The computational cost of the optimisation algorithm is θ(n log n), which is
acceptable considering the computational power of current hardware and the
input size of the problem. Finally, Feldman et al. show that there is always a
Nash equilibrium when the players’ utility functions are strongly competitive,
i.e. when there are at least two users competing for each resource, which is a
reasonable assumption in systems like PlanetLab. They also show that the
Nash equilibrium resulting from the best response dynamics is efficient and
fair.

4In game theory, the best response is the strategy (or strategies) that produces the most
favourable outcome for a player, taking other players’ strategies as given.

66

6.4.2 Metrics

The utility of each user i is represented by a function Ui of the shares obtained
by the user from each machine. An important issue in representing utility is
the notion of preference for resources, since each user could have a different
preference for the same machine. Consequently, we consider a linear utility
function Ui(ri1, . . . , rin) = wi1ri1 + . . .+winrin, where wij is the private prefer-
ence of user i for resource j. This utility function is suitable for heterogeneous
environments in which resources are valued differently by each participant.

To study the behaviour of our proposed mechanism, we consider the following
metrics:

• Load uniformity and dispersion: The load distribution is an inter-
esting metric for measuring the overall health of the system in terms of
congestion. In this model we assume that if users are willing to spend
virtual money on a resource, they will eventually execute a process.
Therefore, we consider the load L on a resource to be the number of
positive bids on that resource. To measure the distribution of load among
nodes, we define two different metrics. Firstly, the load uniformity is
represented by minLi

maxLi
, which is the ratio between the minimum and

maximum loads. The higher the ratio, the greater the distribution of the
load among resources, since each resource supports a similar workload.
Secondly, we measure the dispersion of the load as the standard deviation
σ(L) of the node loads.

• Efficiency (price of anarchy): For an allocation scheme ω at equi-

librium, the efficiency is computed as π(ω) = U(ω)
U∗ , where U(ω) =∑n

i=0 Ui(ωi) and U∗ = max(U(ω))∀ω. In our case, it is easy to compute
the social optimum U∗ because it is achieved when we allocate a whole
node to the user with the highest preference weight on that node. Thus,
it represents the loss in efficiency as a result of user’s selfishness and
decentralisation.

• Fairness (uniformity, envy-freeness): To represent the fairness of
our system, we consider two different metrics: utility uniformity and
envy-freeness. Utility uniformity is represented by υ(ω) = minUi(ωi)

maxUi(ωi)
,

which is the ratio between the minimum and maximum utilities. The

67

higher the ratio, the fairer the mechanisms, since users obtain similar
utility from the system. Another way to measure the fairness of an
allocation in Economics is to determine the envy-freeness [70], which is

represented by ρ(ω) = min(minij
Ui(ωi)
Ui(ωj)

, 1), where Ui(ωi) is the utility of

user i and Ui(ωj) is the utility that user i would have if it was allocated
the resource shares of user j. In other words, envy is related to user i’s
perception of its own allocation with respect to those received by the
other users.

An economically healthy resource allocation scheme should enforce a Nash
equilibrium with high efficiency and high fairness. We also aim to guarantee
high load uniformity and low dispersion, to distribute the load evenly while
maintaining the high efficiency and fairness produced by the proportional
share model.

6.5 Currency Management System: an economic-
inspired self-regulation mechanism

As explained in Section 6.2, the main problem is the unfair distribution of tasks
among nodes in heavily-loaded systems. As in the real economy, free-market
mechanisms sometimes fail to address such problems and central governments
impose restrictions (regulations) on the system that are designed to act as
incentives to behave in a certain way. The existence of a central authority
with a degree of global and aggregated knowledge of the system does not
necessarily restrict its scalability, as discussed in Section 6.7.

We propose a self-managed regulatory body (i.e a virtual bank or Currency
Management System (CMS)) which manages through simple policies the
virtual currency used by participants to bid for resources. The CMS has
a two-fold aim: i) to limit the amount of currency each user can spend on
resources, thereby restricting their long-term purchasing power; and ii) to
introduce long-term, system wide macro-economic policies that act as a self-
regulation mechanism by taxing resource prices according specified policies
and redistributing wealth (virtual currency) among participants to improve
the overall fairness of the system.

68

(a) System architecture (b) Virtual organisation model

Figure 6.2: System architecture and system model overview. Figure 6.2(a)
shows the interactions between components. Figure 6.2(b) is a schematic
representation of a virtual organization based on contributed resources that
earn virtual currency and users who consume resource from other organisations.
Resources and users from the same organisation share the same virtual account.

Resource taxation (following specified policies) increases prices and encourages
users to bid for alternative resources. For example, one policy would be to
improve availability by imposing taxes on those resources with low availability;
consequently, resources with low availability would generate less revenue
because users would tend to change their bids to resources with lower taxes,
which would, in turn, provide an incentive to improve the availability of
resources. Similarly, another policy would be to tax overloaded nodes to
attenuate hot-spots.

It is important to note the difference between: i) the resource price, which
represents the cost required to gain possession of a resource considering user’s
preferences and competition; and (ii) the tax price, determined dynamically by
our mechanism as a means for solving the uneven distribution of work, similar
to other taxes on consumption such as value added taxes (VAT). The former is
a micro-economic mechanism for the regulation of access to resources and the
latter is a macro-economic mechanism which introduces a correcting factor
based on an observed effect seen at macroscopic level (eneven distribution of
work among congested resources).

69

The architecture of our proposal is shown in Figure 6.2(a). The CMS gathers
system-wide and aggregated statistics from the monitoring infrastructure, such
as average load and its dispersion, the effective contribution and consumption
of users, etc. After a certain period of time, or epoch, the CMS uses predefined
policies to determine the appropriate taxes on each resource (a factor to
be applied on the price). During the epoch, users can freely evaluate their
needs and spend their budgets according to their own strategies, without any
other external restriction. Once the taxes have been determined, the price of
resource j is computed according to Equation 6.2, where k is the number of
bids on resource j, bi is the bid of consumer i and taxj ∈ [−1,∞) ⊂ R is the
tax applied by CMS to resource j.

Yj =

(
k∑
i=1

bi

)
∗ (1 + taxj) (6.2)

Since the aim of our proposal is to redistribute the load as evenly as possible,
we impose a higher tax on resources with higher loads, which increases the
price and encourages participants to use spare resource instead (those with a
lower tax and, consequently, a lower price).

The CMS does not know the users’ preferences in advance, so it cannot
anticipate user behaviour in response to a specific set of taxes. We therefore
use a heuristic based on the ratio between the load and the target load to move
towards the set of target taxes under which the load is distributed equally
among all nodes (e.g. the load dispersion is minimal).

Algorithm 6.1 shows the procedure for determining the tax to apply during
the next epoch. The tax does not jump straight to the target value but
instead moves towards it at a rate determined by a learning rule, which
prevents oscillations and produces a smooth approximation to the target
value. The learning rule used is the Widrow-Hoff rule, which is a well-known
learning mechanism used for back propagation in neural networks [71] and
used to move towards the target price in different economic agents [72]. It
contains a parameter β (learning rate) that represents the speed with which
the adjustment takes place.

70

Therefore, once the CMS has gathered information about the load and the
current tax for each resource, it computes the uniformity metric to determine
the current load dispersion in the system and adjusts the learning rate of the
algorithm: a lower learning rate is used at higher uniformity to produce a
smooth approximation to the target load. The CMS then applies the heuristic
described above to the current tax to determine the new tax to apply to each
resource.

Algorithm 6.1 Pricing tax regulation algorithm
Require: τ ← target load
Require: S ← {∀j ∈ R(loadj , taxj)} . Set of resource info

uniformity← min loadj
max loadj

β ← 1.0− uniformity
for all (loadj , taxj) ∈ S do

∆tax,j ←
(
loadj
τ
− 1

)
∗ β

taxt+1
j ← taxtj + ∆tax,j

end for

6.6 Performance Analysis

We use simulations to evaluate the long-term impact of our system. To
determine the effectiveness of our regulatory mechanism in improving the load
distribution in comparison with the free-market (unregulated) scenario, we
compare the best-response dynamics from the game theory analysis of the
price-anticipating model (Section 6.4) with the best response dynamics under
our regulatory mechanism (Section 6.5).

Method. The set-up of the simulations consists in fixing the number of
resources m to 100 and varying the number of users n (from 10 to 200) to
asses the scalability of the solution as more users (and, therefore, more load)
are added to the system. We do not present the results for a variable number
of resources because the simulations showed that different executions with the
same ratio of resources to users produce similar results. The best-response
algorithm is updated after each time step (1 simulated minute) and the epoch
(at the end of which the tax regulation algorithm is executed) is defined as 60
time steps (1 simulated hour).

71

User preferences. Some nodes are persistently more loaded than others
(see Figure 6.1(b)) due to correlations of user preferences. To capture these
correlations, we experiment with the following user preference model. For
each user, we create a list of weights that are independently and identically
distributed according to a uniform distribution U ∼ (0, 1). Next, we arrange
the list in descending order to create a user’s preference weight on resources
so that pi = (pi1, ..., pin), pik represents user i’s weight on resource j and pik >
pi(k+1). We then normalise the expression so that

∑m
j=0wj = 1. Consequently,

we expect to have a high load on the first resources and a lower load as the
weights decrease.

Note that we only consider positive weights on resources, so every user obtains
a certain positive utility from each resource. If we had included resources with
weights equal to zero, those users following the best-response algorithm would
not have bid on these resources because the utility provided is also zero. In
practical terms, this means that those resources with a weight equal to zero
are not available. Therefore, and with no loss of generality, we only consider
available nodes in our simulations.

Convergence criteria and results. The convergence time is a measure
of the speed with which the system reaches an equilibrium. As in [35], the
price-anticipating system converges to a Nash equilibrium when the difference
in the best-response utility between two time-steps is less than ε (0.001 in our
experiments). However, when we apply our regulatory mechanism, we change
the environment (i.e. the prices of resources) at the end of each epoch, and
each epoch evolves iteratively to a different Nash equilibrium. Therefore, we
consider that our tax regulation mechanism has converged when the value of
∆tax,j (see Algorithm 6.1) is less than δ (0.1 in our simulations). The results
presented in these sections are taken when the system has converged.

The simulation results show that the best-response dynamics converge after 5
iterations (5 simulated minutes), as in [35], whereas our regulatory mechanism
converges in a range of 3-5 epochs (3-5 simulated hours). This shows that,
although our mechanism is designed to be executed in a long-term time window,
it is also able to converge in few iterations. Therefore, this mechanism can
be executed frequently (i.e. using short epochs) when the load conditions are
dynamic but the epoch can be longer when the load conditions are in a steady
state.

72

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100 120 140 160 180 200

L
o
a
d
 u

n
if
o
rm

it
y

Number of users

Global regulation
Price anticipating

Social optimum

(a)

 0

 20

 40

 60

 80

 100

 120

 20 40 60 80 100 120 140 160 180 200

Lo
ad

 S
ta

nd
ar

d
D

ev
ia

tio
n

Number of users

Price anticipating
Global regulation

(b)

Figure 6.3: (a) Load uniformity and (b) Load dispersion

Load uniformity and dispersion. The effectiveness of our proposal is
based on distributing the load effectively among resources. We measure
the load uniformity and its dispersion for the price-anticipating model and
the regulatory mechanism, once they have converged. As shown in Figure
6.3(a), the price-anticipating mechanism produces low load uniformity because
users tend to bid for their preferred resources, which creates a large difference
between the maximum and minimum loads. However, under our tax regulation
mechanism, when the CMS detects that there is a subset of heavily loaded
nodes and it begins to increase the corresponding tax (and, therefore, the
price), users following the best-response algorithm tend to distribute their bids
to cheaper (less loaded) resources to maintain as high their utility as possible.
Our results show that the system encourages users to redistribute the load
more evenly (similar load on nodes) regardless of the number of users.

Similarly, Figure 6.3(b) shows the dispersion of the statistical variable load L
(µ(L)± σ(L)) in the system. As the number of users increases, the load on
the system also increases. However, without tax regulation the dispersion is
higher and increases with the number of users. Conversely, when taxes are
applied the dispersion is maintained at similar values, which demonstrates
that our proposal is scalable independently of the number of users .

Figure 6.4(a) shows the empirical CDF of the load distribution for a simulation
with 100 resources and 100 users. We can see that load is highly dispersed
without regulation; approximately 50% of nodes are highly loaded, at levels

73

above the mean load (> 60 users bidding on them). However, when our
regulatory mechanism is applied, the load distribution is centered at the target
load (the mean load in our simulations) and the CDF shows that the variance
is very low, because the load values of each resource fall within a small range
(between 55 and 65).

Specifically, Table 6.4(b) shows that the standard deviation is very high
when no regulations are enforced. However, under regulation, the average
load remains similar but the standard deviation and skewness decrease. The
Kolmogorov-Smirnov normality test for the global regulation case shows a
significance value of 0.232 given the assumed significance level of 0.05, so
normality cannot be ruled out. The normality assumption is also supported by
the Normal Q-Q plot in Figure 6.4(c). The results show that our mechanism
provides users with an incentive to redistribute their workloads evenly and
ensures a reasonable distribution of work among resources.

Importantly, the behaviour of the price-anticipating algorithm (without regula-
tion) is similar to the high load variance illustrated in Figure 6.1(b) and Table
6.1(c) in Section 6.2, which shows the relationship between our simulations and
real observed results from PlanetLab. These results clearly demonstrate that
our regulatory mechanism redistributes the load among nodes and achieves a
similar distribution to our target distribution, where the load is centered at
the mean and shows low dispersion.

Efficiency (price of anarchy). Figure 6.4(d) shows efficiency as a function
of the number of users. The efficiency achieved by the price-anticipating
algorithm is very high (approximately 0.95) and the tax regulation mechanism
does not lower the efficiency, irrespective of the number of users in the system;
in other words, the system provides users with the same level of efficiency but
the load is effectively redistributed to prevent hot-spots.

Fairness (uniformity, envy-freeness). Figure 6.5(a) shows the utility
uniformity as a function of users for the correlated preferences presented
above. Our regulatory mechanism achieves high utility uniformity (> 0.8, all
users obtain similar utility from the system), although with a small amount
of uniformity lost in comparison with the price-anticipating simulation (ap-
proximately 15%, taking the highest difference). This is because, once our
regulatory mechanism has been applied, those users bidding on the nodes
with the highest preference weights obtain higher utility than those bidding

74

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b
ili

ty

Load

Global regulation
Price anticipating

(a)

Price
Anticipating

Global
Regulation

Mean 58.930 61.546

StDev 22.113 2.841

Median 66.823 61.017

Skewness -1.735 0.473

K-S test 0.000 0.232

(b)

 36

 38

 40

 42

 44

 46

 36 38 40 42 44 46

E
x
p
e
c
te

d
 N

o
rm

a
l
V

a
lu

e

Observed Value

Normal Fit
Global regulation

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100 120 140 160 180 200

E
ff
ic

ie
n
c
y

Number of users

Global regulation
Price anticipating

Social optimum

(d)

Figure 6.4: (a) CDF of load distribution, (b) Load distribution statistics, (c)
Normal Q-Q plot of the load for the global regulation case and (d) Efficiency
of the system.

on the less preferred nodes, as the load is similar for every node. However,
user’s perception is no longer envy-free, because agents who eventually bid
on the nodes with the lowest preference weights (due to the increase in price
on loaded nodes) would be happier with the allocation obtained by the users
who bid on the more preferred nodes. Nevertheless, the envy-freeness index
is still very high (> 0.7) compared to the social optimum, which illustrates
the trade-off between maintaining a highly efficient system, redistributing the
load among nodes, and maintaining a high level of fairness.

Impact of users’ preferences on utility. Finally, we compare the be-
haviour of our system without regulation –Figures 6.6(a)(c)– and the system

75

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100 120 140 160 180 200

U
ti
lit

y
 u

n
if
o
rm

it
y

Number of users

Global regulation
Price anticipating

Social optimum

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100 120 140 160 180 200

E
n
v
y
 F

re
e
n
e
s
s

Number of users

Global regulation
Price anticipating

Social optimum

(b)

Figure 6.5: (a) Utility uniformity and (b) envy-freeness

with regulation –Figures 6.6(b)(d). Specifically, we compare the ratio of fit-
ness5 to revenue from the point of view of the resource provider –Figures
6.6(a)(b)– and the ratio of budget available to utility obtained from the point
of view of the user –Figures 6.6(c)(d)6.

Fitness and revenue show an almost linear relationship in the unregulated
system. Consequently, the higher the preference weight of a resource, the
more revenue it will generate, although it will also be affected by higher load
(a resource obtains more virtual currency as more users bid on it). However,
when regulations are enforced, the revenue generated by approximately 80% of
resource providers is very similar (between 0.4 and 0.6 of normalised revenue),
which means that wealth is distributed more evenly among organisations
following application of regulatory taxes. This percentage represents those
users “protected” by the control mechanism. However, those resources with
higher fitness will still generate higher revenue because they attract higher user
preference. This proves that our regulation system prevents the emergence of
strong organisations (monopoly) that could dominate the resource market. As
in real welfare states, those people with higher incomes are somehow “penalised”

5The fitness of a resource is defined as the sum of weights of all users on that resource
$(j) =

∑k
i=0 wij where k is the number of users and wij is the weight of user i on resource

j.
6All values are normalised in the range [0, 1] considering maximum and minimum values

obtained from the price-anticipating simulations.

76

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
it
n
e
s
s

Revenue

Fitness vs revenue (Price Anticipating)

Resource

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
it
n
e
s
s

Revenue

Fitness vs revenue (Regulation)

Resource

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
ti
lit

y

Budget

Utility vs budget (Price Anticipating)

User

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
ti
lit

y

Budget

Utility vs budget (Regulation)

User

(d)

Figure 6.6: System behaviour considering variable revenue and budget among
participants and assuming that each resource has different fitness. Figures
(a)(c) represent the behaviour of the system without regulation (Price Antici-
pating). Figures (b)(d) represent the behaviour when regulatory policies are
enforced (Currency Management System, CMS).

77

with higher taxes to increase the overall social welfare and the fairness of the
state.

Because our model is decentralised (the revenue generated by a resource is
spent by users belonging to the corresponding organisation to obtain resources
outside the organisation), we can see that the revenue generated by resources
(i.e. the budget from the user’s point of view) is translated into higher utility
as more budget becomes available. This is true for the simulations with and
without regulation; the only difference is that wealth is distributed more
equitably when regulations are enforced and, therefore, there is a cluster of
users with similar utilities (i.e. utilities are less dispersed when regulatory
policies are applied).

6.7 Discussion

In this section, we discuss how our proposal could be integrated into a planetary-
scale distributed system like PlanetLab to solve the problems explained in
Section 6.2. Firstly, our regulatory mechanism (CMS) must be scalable to cope
with large numbers of resources and users. Instead of a centralised solution
like GridBank [73] or Tycoon Bank [32], which are susceptible to scalability
problems, we have designed a prototype [74] on top of a structured peer-to-peer
overlay similar to Chord [75], which enforces and manages a virtual currency
account for each user in a scalable and efficient way.

In our proposal, the load derived from managing the users’ virtual accounts
is distributed among the set of nodes that make up the DHT. In addition,
our algorithm for calculating taxes can be executed independently by each
node because it only needs information about the target load –which is not
expected to change very frequently– and the load of the resources the node is
responsible for managing (i.e. the resource’s account is mapped to that node).

The system-wide information that the CMS uses to apply its policies –e.g.
average load, effective consumption and contribution, availability, etc.– can
easily be computed from the data already provided by PlanetLab’s monitoring
infrastructure CoMon [44], so no additional overhead is generated. Other
information systems with higher scalability based on structured overlays, such
as MIS [76], or discovery systems like SWORD [29], could also be used. In
addition, we do not require instant information, which could be impossible to

78

obtain in planetary-scale systems, but instead use aggregated information for
relatively long time windows, in the order of hours, days or weeks depending
on the system dynamics.

Finally, we discuss how our model could be integrated into the PlanetLab
environment. PlanetLab’s architecture and design allows the existence of
resource allocation and brokering services through resource loans. Thus, a
privileged slice (i.e. a service executing across several nodes with a specific
share of reserved resources) might lend a subset of a node (e.g a percentage
of CPU or bandwidth) to other slices in exchange for a reward, in this case
virtual money. The privileged slice would be responsible for executing and
managing the proportional share mechanism explained in this chapter, thereby
allowing PlanetLab users to bid for a specific resource. It would also be
responsible for applying the appropriate taxes to the resources price. Next,
the privileged slice would transfer the actual payment from the user’s account
to the resource owner’s account through our CMS. The specific details and
exact implementation of the protocol are beyond the scope of this work.

6.8 Conclusions

Large-scale shared and open infrastructures are based on resource contribution
by organisations and are suitable for deploying planetary-scale public services
and applications. Due to their diverse aims, these applications may have
different, complex and often conflicting strategies. Without scalable and
decentralised resource allocation, incentives and self-regulation mechanisms,
these types of systems can suffer from resource overloading and congestion,
which reduce the QoS offered to users.

In this chapter we presented a mechanism in which virtual currency is used to
give resource providers an incentive to work collaboratively and contribute to
the efficient operation of the shared infrastructure. Currency management is
also an incentive for consumers to use resources efficiently and a regulatory
mechanism to ensure that they behave under certain rules designed to guarantee
fairer access to the resources. Currency management limits the resource
capacity to which each user is entitled and taxes resource prices according to
a series of specific rules. Specifically, we present in this chapter a regulatory
policy for distributing work evenly between resources and preventing hot-spots.

79

Simulations showed that our system provides a high level of efficiency in
the presence of self-interested participants and decreases the load dispersion
between nodes. In addition, the system offers a fair volume of resources
(utility) according to the virtual currency owned by each organisation, even
under high-demand conditions.

Finally, we discussed how our proposal could be applied to a large-scale
experimental facility such as PlanetLab at low cost and using existing tools and
services. We considered the architecture and implementation of the PlanetLab
testbed and explained how our solution could be successfully integrated.

Chapter 7
Stackelberg Game to Derive the
Limits of Energy Saving for the

Allocation of Data Center
Resources

Abstract

Energy related costs are becoming one of the largest contributors to

the overall cost of operating a data center, whereas the degree of data

center utilization continues to be very low. An energy-aware dynamic

provision of resources based on the consolidation of existing application

instances can simultaneously address the under-utilization of servers

while greatly reducing energy costs. The economics behind energy costs

cannot be treated separately from resource provision and allocation.

However, current scheduling techniques based on market mechanisms

do not specifically deal with such a scenario. In this chaptera, we

model the problem of minimizing energy consumption when allocating

resources to networked applications as a Stackelberg leadership game, to

establish the upper bound of energy saving, . The model is applied to a

proportional-share mechanism where resource providers can maximize

profit by minimizing energy costs; while users can select resources that

ensure that their minimum requirements are satisfied. We show that

our mechanism can determine the optimal set of resources on and off,

while maintaining user service level agreements (SLA) – even in realistic

conditions considering incomplete information.

aThis chapter is based on the papers [P3, P4]

81

82

7.1 Introduction

Energy consumption is a key concern in networked computing systems, includ-
ing service overlays, content distribution systems and many other distributed
systems. These systems require a collection of networked computing resources
from one or many data center providers around the world.

All data centers or cloud computing providers face the problems of changing
resource demand by applications and high energy costs that discourage low
server utilization. For instance, Hoelzle et al. [77] looked at the average CPU
utilization of 5,000 Google servers during a six-month period. It was shown
that, on average, servers spend relatively little aggregate time at high load
levels, and spend most of the time at the 10–50% CPU utilization range, where
server efficiency in terms of energy is the lowest.

Two popular methods for effectively matching power consumption to workload
requirements in a data center are via processor speed scaling and powering
down nodes.

The goal of this work is to develop a theoretical framework for analyzing the
limits of energy saving and strategies for determining the right set of computing
nodes on and off in order to minimize energy consumption – while keeping
the right level of service for networked applications using these computational
resources. We consider several characteristics of modern applications and
resources – e.g. proportional share of resources, granularity of application
processes, level of parallelism, and migration and consolidation of virtual
machines.

The focus and contributions of this chapter are as follows: i) we derive an
energy model for computing elements based on SPEC benchmarks using real
data; ii) we model the problem of energy minimization in resource allocation as
a Stackelberg competition game to derive an algorithm to compute the upper
bound on energy saving that optimizes both energy consumption and the
resource requirements of applications; iii) although the model assumes complete
information, we also explore the effect of having incomplete information, a key
aspect in large-scale systems; iv) we also conduct a comprehensive evaluation by
simulation of the influence of user budgets, their diversity, profit maximization
and energy minimization.

83

The chapter is organized as follows. In Section 7.2 we present the energy
consumption model for computing elements in a data center, and the allo-
cation model of shared resources to multiple networked applications. Sec-
tions 7.3 and 7.4 establish a competition model, with complete and incomplete
information, between a leader determining the resources to keep on and off,
and the users buying resources. In Section 7.5 we provide the experimental
results and findings based on simulation. Section 7.6 presents the related work
and finally, in Section 7.7, we summarize the chapter and discuss future work.

7.2 Model

7.2.1 Energy consumption model

In this section we introduce a model for energy consumption of computing
elements present in a data center. The energy curve of a server can be
characterized in terms of the CPU load by

f(s) = σ + µ ∗ sα

σ represents the fixed cost of maintaining a server powered on and ready
to perform work. µ, α are parameters of the device used to characterize
its dynamic energy consumption taking into account the load in percentage
s ∈ [0, 100].

To understand the trend in power consumption over recent years, we examined
a comprehensive set of 500 server profiles made publicly available through
the SPEC (Standard Performance Evaluation Corporation) website [78] using
the SPECpower ssj2008 benchmark. This benchmark is an industry-standard
that evaluates the power and performance characteristics of volume server
class and multi-node class computers.

We performed a fitting procedure using maximum likelihood estimation (MLE)
[50] to the above energy function and obtained resource parameters with a
low relative error of 3.7%, thus validating our model. The results (in Watts if
not otherwise stated) are presented in Table 7.1.

The value of µ ∗ sα (where s = 100%) should be understood as the maximum
amount of energy consumed by a device at full capacity without considering

84

Parameter 2008 2009 2010 Mean

σ 133.60 120.14 96.32 126.46

µ 1.39 4.10 5.02 3.50

α 0.92 0.81 0.76 0.83

f(s)− σ = µ ∗ sα 96.17 170.92 166.22 159.98

σ
f(s) (%) 58.15 41.28 36.69 44.15

Table 7.1: Estimate of server parameters (in Watts) and considering full load
where applicable (s = 100).

the energy consumed when the server is idle. We can see that the trend is
to decrease the idle consumption while the dynamic consumption increases.
This trend is due to the increasing interest from companies in achieving
energy proportionality, which refers to the goal by which the amount of energy
consumed by a device is proportional to the workload supported.

However, we also observe that the values of the idle consumption σ are still
of the same magnitude as µ ∗ sα in the worst case. If we look at the ratio
between idle and maximum consumption, σ represents a fraction from 58% to
37% of the total consumption in the worst case –when s = 100% and the node
is fully used.

From this fact, we can conclude that the idle consumption is not negligible
compared to the term proportional to the load in the energy curve. If this
were not the case and energy consumption was proportional to the load, then
dynamic power scaling of nodes could be beneficial because moving load
to other servers could enable system administrators to adapt server power
consumption to the current load. Moreover, dynamic scheduling according to
power consumption of nodes could also be beneficial depending on the shape
(parameters µ, α) of the energy curve.

However, energy proportionality is yet a goal to achieve. Therefore, the idle
consumption is a non-negligible operational cost that cannot be removed
without powering down nodes.

85

We argue that higher savings in large-scale infrastructures can be achieved if
we consider the problem of powering up or down nodes instead of focusing on
scheduling decisions based on dynamic power scaling of nodes.

7.2.2 Resource allocation model

Sharing of computing elements (resources) can significantly increase system
utilization by combining in a single resource different types of workloads
with complementary resource requirements. Although our results are quite
independent of the specific resource allocation model, we have decided to
employ a market-based approach to allocate computing resources in contrast
to traditional centralized schedulers.

The rationale behind this decision is the complexity of efficiently allocating
applications to resources given that each user has different requirements
(i.e. private information that users are unwilling to disclose) and, therefore,
centralized schedulers that optimize resource allocation have a high cost
in terms of information needed and computational complexity. The use of
market-based mechanisms enables such data to be reduced to a single piece of
information, namely the price, which enables the system to scale up.

The most popular approach is to use some form of auction to extract the market
price directly from user bids using, for example, Vickrey auctions, double
auctions or combinatorial auctions. Their main drawback is the slow response
time (bidders have to wait for auction clearing) and the fact that auctions
are unsuitable for divisible resources because of the complexity involved in
determining the most efficient way to divide a resource.

However, the simplest and most appealing mechanism for shared divisible
resources is the proportional share allocation mechanism, in which each user
submits bids for the different resources and receives a fraction proportional to
the user bid and inversely proportional to the sum of all other user bids for
the same resource. More formally, the price of the resource is Yj =

∑k
i=1 xij ,

where k is the number of bids for resource j and xij is a non-negative bid of
user i for resource j. Following the proportional share allocation mechanism,
user i receives a fraction rij =

xij
Yj

of resource j.

One of the benefits of this mechanism is that its straightforward formulation
enables users to understand what will be the response of the system to a

86

specific bid. Current operating systems and virtual machine systems already
provide proportional share mechanisms that further simplify implementation
from the technological point of view [67][68][79][80].

The use of proportional share also enables dynamic pricing based on the
load supported by the system by giving an incentive to users to schedule the
execution of their applications based on private information – e.g. if a service
has a high priority, a user will be willing to pay more when the load in the
system is high although it will be reluctant to do so with low priority tasks.

Moreover, this dynamic and fine grained partition of a single resource in
virtual machines might potentially improve the consolidation of applications
compared to current consolidation techniques that consider fixed-sized virtual
machines.

As mentioned previously, our aim is to minimize energy consumption by
considering energy costs. We extend this mechanism to consider the state of a
resource – i.e. on or off state. Therefore, the fraction of a resource received by
user i is actually rij = qj

xij
Yj

, where qj ∈ {0, 1} is a binary variable representing

the state of resource j – i.e. 0 if the resource is shutdown and 1 when powered
up.

7.3 Stackelberg competition model

One of the contributions is a novel model to characterize the competition
between the resource provider and its clients. We develop a model of the data
center economy concept considering energy costs as a Stackelberg game [81]
on two levels. The first level is the infrastructure operator acting as the leader
and determining the resources to keep on and off. The second level is the set
of strategic users buying resources as followers.

We then present the respective payoff functions of users and the infrastructure
operator, and the efficient algorithms to compute the best response of both
roles when considering each others’ actions. This model will enable us to
provide lower and upper bounds for metrics of interest to both users and
providers.

87

7.3.1 User model

To model user 1 behavior, we consider the utility function presented in [36],
a linear payoff function Ui(ri1, . . . , rim) = qi1wi1ri1 + . . .+ qimwimrim, where
rik is the resource share obtained from resource k, wik ≥ 0 is user i private
preference for resource k, and qik ∈ {0, 1} represents whether the resource is
off or on respectively. However, following the trends of resource providers of
providing homogeneous resources to users in the form of virtual machines,
these weights or preferences for actual resources no longer apply and thus
∀j,kwij = wik.

Typically we also assume that users are selfish and strategic – i.e. they all act
to maximize their own utility as defined by their payoff functions. The best
response of an agent given a set of resource prices is to find the set of bids on
resources that maximizes its utility function. More formally, the best response
is the solution to the following optimization problem (7.1):

max Ui(x1, . . . , xm) =
m∑
j=1

qij
xij

xij + yj
(7.1)

subject to
m∑
j=1

xij ≤ Xi

xij
xij + yj

≥ φi ∈ (0, 1]

|S| ≥ τi

7.3.2 Restrictions

We assume several restrictions for the optimal solution of each agent. The
first restriction is that each user i has a budget (or money) constraint Xi and
its total positive bids must match its budget. This constraint represents the
fact that each user does not have an infinite budget, as opposed to standard
assumptions in traditional economic models.

The following restrictions can be seen as the minimal SLA a user is willing to
accept in order to be satisfied with the resource provider. The second restriction

1We may use the word user and application indistinctly through the chapter to describe
an entity which consumes resources from the infrastructure.

88

assumes a certain application granularity. An application i needs at least a
minimum share at each node specified by φi. Therefore, the optimization
problem should select those resources in which this constraint is satisfied.
Notice that this restriction may be reformulated in terms of the minimum bid
to state: xij ≥ yjφi

1−φi .

The third restriction is on the level of distribution2. Let S = {rij : rij ≥ φi}
be the set of nodes in which the second restriction is satisfied. We assume that
an application has a minimum level of parallelism (defined as the cardinality
of S) of up to τi nodes. If this restriction is not satisfied, the user has no
incentive to participate in the resource market as its requirements will not be
met. To simplify the notation through the rest of the chapter, we denote this
restriction as a boolean named satisfaction.

The second and third restrictions improve the representation of real distributed
applications. Previous models did not consider that an optimal allocation for
the above problem could contain a share so small that it is impossible (or
impractical) to make an allocation in a real computing resource.

Although this model is more realistic in terms of application requirements,
we still do not consider the cost in time of moving virtual machines between
nodes. However, recent results for live migration in several virtual machine
monitors show migration latencies at the millisecond level, supporting our
decision to disregard this cost [82][83][84].

7.3.3 User best response algorithm

Algorithm 7.1 summarizes the algorithm for computing the best response –
i.e. the bidding vector x∗ = (x∗1, . . . , x

∗
m) that maximizes the payoff function

Ui – considering the above optimization problem (for a complete proof of
correctness refer to [36]). In short, it determines the maximum number of bids

xj on a resource j such that xj ≥ yjφi
1−φi .

The computational complexity of this algorithm is O(m logm), dominated by
the initial sorting. This algorithm is distributed in the sense that each user finds
the set of bids that maximizes its own utility considering its private information

2Distribution is understood as the need for several instances of a virtual machine in
separate nodes. This need would arise when dealing with fault-tolerance, load-balancing, etc.

89

Algorithm 7.1 UserBestResponse(φi, Xi) – User i’s best response algo-
rithm
Require: φi . user i’s minimum share
Require: τi . user i’s minimum number of nodes
Require: Xi . user i’s budget
Require: {y1, . . . , ym} . list of resource prices
Require: {q1, . . . , qm} . list of resource states (on/off)
M = {yj : qj = 1} . list of prices of on machines
Sort the set M by yj in increasing order
Compute largest k such that

√
yk∑k

i=1
√
yi

(X +
k∑
i=1

yi)− yk ≥
yjφ

1− φ
Set xj = 0 for j > k, and for 1 ≤ j ≤ k, set:

xj =
√
yj∑k

i=1
√
yi

(X +

k∑
i=1

yi)− yj

return k, (x1, . . . , xm) . k is the number of nodes with positive bids

(φ, τ and X). Following an iterative process of updating the bidding vector,
the utility and resource prices converge to an efficient equilibrium in a few
iterations (2-3 iterations in our experiments).

7.3.4 Provider model

The payoff function of the resource provider is that of maximizing its profit
when considering income (price paid by users for each resource) and the cost of
maintaining the infrastructure (price paid by the provider for its on resources).

As the provider is in a privileged position to decide in advance which resources
to keep on-line and which ones to shutdown, we can model the interaction
between users and provider according to a Stackelberg game, in which the
provider acts as the leader (deciding the values of qj) and users act as followers
who decide their optimal bidding vector once the values of qj are announced.

More formally, the best response is the solution to the following optimization
problem (7.2):

90

max P (q1, . . . , qm) =

m∑
j=1

(qj

n∑
i=1

xij)−
m∑
j=1

qjcj (7.2)

subject to ∀i |Si| ≥ τi

7.3.5 Restrictions

We assume that the provider has no incentive to perform admission control
on users given that there are enough resources to accommodate the aggregate
demand from users. In other words, the provider’s restriction is to satisfy
every user –i.e. minimum resource requirements are met – providing there
are enough resources. An interesting line of future work would be to increase
profit by considering admission control on users and keeping those users who
provide a higher income with a minimum associated cost. However, in this
chapter we consider that admission control is made beforehand through a
contract between a user and the provider. Therefore, our goal is to satisfy all
contracts previously accepted.

7.3.6 Provider best response algorithm

The Stackelberg model can be solved by finding the subgame perfect Nash
equilibrium (SPNE) –i.e. the strategy profile that best serves each player,
given the strategies of the other player. This approach entails every player
playing in a Nash equilibrium.

A common method for determining subgame perfect equilibrium in the case of
a finite game is backward induction. To calculate the SPNE, the best response
functions of the follower must first be calculated. As we already provide an
efficient algorithm to compute the user best responses, we now present an
algorithm to compute the provider best response –the leader in our game.

To compute the best response, we first sort machines by their associated
energy cost in increasing order. Without loss of generality, suppose that
c1 ≤ c2 ≤ . . . cm. Suppose that q∗ = (q∗1, . . . , q

∗
m) is the optimal solution

(values of 0 and 1 representing off and on machines).

Claim. If q∗i = 0, then it must hold that for any j > i, q∗j = 0.

91

Proof. By the optimality constraint in Equation 7.2, we have that ∀i |Si| ≥ τi,
and therefore, each user participating in the market spends all of its budget
in the optimal subset of on resources (recall that off resources have a price of
0). Then:

m∑
j=1

(q∗j

n∑
i=1

xij) =

n∑
i

Xi

Substituting the provider’s payoff function we have that:

P (q∗1, . . . , q
∗
m) =

n∑
i=1

Xi −
m∑
j=1

q∗j cj

As
∑n

i=1Xi is a constant value, we need to minimize
∑m

j=1 q
∗
j cj to maximize

P (q∗1, . . . , q
∗
m).

Now suppose that Claim 1 is untrue. There is then a q′ permutation of q∗

that is different to q∗ with the same number of on machines. Recall that
q∗ already contains the minimum amount of on nodes to support the user
workload following the hypothesis of q∗ being optimal. The sum of the on
machines in q′ is then less than the sum of the costs of the on machines in q∗,

m∑
j=1

q′jcj <

m∑
j=1

q∗j cj

We construct q′ by swapping two elements k, l of q∗ where k < i ≤ l in such a
way that q′k = q∗l = 0 and q′l = q∗k = 1. Although we only present the proof
for two different elements for the sake of clarity, the proof for more than two
different elements follows the same principle presented here.Then,

k−1∑
j=1

cj +

i−1∑
j=k+1

cj + cl <

k−1∑
j=1

cj + ck +

i−1∑
j=k+1

cj

92

Canceling terms, we have that

cl < ck

But, by construction, k < i ≤ l → k < l. As machines are ordered in
increasing order of their energy costs, we have that ck ≤ cl and we conclude
with a contradiction. �

Intuitively, as q∗ already contains the nodes with the lowest associated energy
cost, there is no other arrangement of q∗ that yields a lower aggregated cost.

The remaining question is to determine the number of on nodes. This is the
minimum number of nodes such that each user is satisfied with their allocation.
Recall that the satisfaction of each user is determined by their minimum
requirements in terms of share in a node φ and a τ number of minimum nodes.
Thus, we obtain the following algorithm to compute the best response of a
provider in Algorithm 7.2.

Algorithm 7.2 ProviderBestResponse – Provider best response algorithm

Require: {φ1, . . . , φn} . users minimum share
Require: {τ1, . . . , τn} . users minimum number of nodes
Require: {X1, . . . , Xn} . users budget
Require: M = {c1, . . . , cm} . list of resource costs

Sort the set M by cj in increasing order
k=0
repeat
k ← k + 1
Set qj = 1 for j ≤ k
Set qj = 0 for j > k
repeat

for all user i do
Si, (xi1, . . . , x

i
m)← UserBestResponse(φi, τi, Xi)

end for
until convergence

until ∀iSi ≥ τi OR k = m
return (q1, . . . , qm)

93

Intuitively, it checks if the outcome of the SPNE complies with the satisfaction
constraint for all users by iteratively adding a single machine into the set
of on machines. This algorithm stops when every user is satisfied with its
allocation or the provider needs to keep every machine on. The computational
complexity of this algorithm is O(m2n logm) dominated by the external loop
with a cost of O(m) and the internal loop that executes for each user its
best response with a cost of O(nm logm) (as mentioned earlier, the rate of
convergence is a small constant in the order of units). We could improve the
computational cost to O(mn log2m) by replacing the external linear search
loop with a binary search with a cost O(logm). However, we present this
linear algorithm for the sake of clarity.

7.4 Strategies with incomplete information

The algorithm presented above is useful for understanding the upper and lower
bounds on metrics of interest for the provider. However, the main problem
with the above model is the complete information required by the provider in
order to compute the SPNE. Thus, we present two strategies that use only
aggregated information (either economic or technical) available to the provider
–i.e. without knowing the private information of each user.

Proportional cost threshold strategy. In this case, the provider will
decide to shutdown those machines that do not cover their own energy cost.
More formally, it will shutdown the set of machines OFF = {j : ∀cj >

∑n
i xij}.

The intuitive idea behind this is to shutdown those nodes that do not report
a positive profit for the provider because of their high energy costs.

Demand aware strategy. In this case, instead of relying on the energy cost
of each resource, the provider will make use of the aggregate demand present
in its resource pool. In this way, it will compute a rough number of nodes
that could potentially carry the current load. More formally, we compute the
number of nodes k to maintain on-line, considering a mean resource usage of
p ∈ [0, 1] and a confidence parameter α ∈ [0,∞], as k = (1 + α) ∗ p ∗m.

As in the complete information case, we then sort machines by cost in increasing
order and set qj = 1 for j ≤ k and qj = 0 for j > k. Intuitively, we are
estimating the optimal number of machines necessary to satisfy every user.
The parameter α is related to the confidence on the estimation of the mean

94

resource usage p or aggregate demand. In addition, α represents the trade-off
between user satisfaction and the reduction in energy costs. A higher α will
lead to an overestimation of the necessary resources to keep users satisfied with
the cost of maintaining resources on, while a lower α will be more aggressive
and accept the risk of user’s insatisfaction at the benefit of lower costs.

7.5 Experimental results

In this section, we provide detailed experimental findings. In our simulations
we fix the number m of nodes at 1000 and we assign an individual cost of cj
in Watts to each node drawn from a uniform distribution U ∼ (96.32, 133.60)
extracted from real measurements and summarized in Table 7.1. We assume
that the economic cost of each Watt is one monetary unit.

We compare the behavior of the strategies presented in previous sections by
varying the number of users, budget, and minimum requirements φ and τ .

7.5.1 Metrics

Profit is the outcome of the providers utility function defined in Equation 7.2.
That is, it is the total income provided by users bidding on available machines
minus the energy cost of those available machines. As we are not interested in
the actual profit but the ratio between the profit and the money available in
the system –i.e. the money owned by users– we normalize the resulting profit
by
∑n

i Xi. Formally,

Profit =
∑m

j (qj
∑n

i xij)−
∑m

j qjcj∑n
i Xi

Energy saving is the ratio between the cost saving achieved by shutting
down nodes and the total cost if all nodes were available. Formally,

Energy savings = 1−
∑m

j qjcj∑m
j cj

Server usage is the mean server usage of the whole infrastructure. In our
simulations, users consume up to φ of a single resource. For example, if a

95

user’s share of resource is rij = 0.7 and its resource requirements φ = 0.3, then
40% of that resource will be unused –i.e. resource reservation minus actual
usage. Recall that rij ≥ φ is always true because of the optimality restrictions
of the user payoff function presented in Equation 7.1. Instead of a percentage,
we present a ratio in the range [0, 1] for comparison purposes.

Satisfaction shows the efficiency of our strategies in terms of user satisfaction.
It is the ratio between the number k of satisfied users (those fulfilling their
satisfaction criteria) and the total number n of users.

User efficiency or price of anarchy (PoA) is defined as the ratio between the
social welfare U(ω) considering a current allocation ω and social welfare at the
optimal allocation U∗ where U∗ = max(U(ω)) ∀ω. We compute social welfare
as the

∑n
i Ui(r1, . . . , rm) or, intuitively, the sum of the utilities obtained by

each user considering their individual allocations. For an explanation on how
to compute the optimal social welfare U∗ we refer the reader to [36].

For the sake of comparison, we introduce another simple strategy which is to
maintain all nodes always available (No cost in the figures). This strategy will
enable us to compare the behavior of different strategies and provide a lower
bound on how the system would behave regardless of the strategy followed by
the provider.

7.5.2 Impact of user budgets

We first experiment with a fixed number n of homogeneous (running equiva-
lent applications) users of 250 –meaning a ratio of 1 distributed application
per 4 machines, a reasonable scenario. For each user i we fix its minimum
requirements φi = 0.1 and a minimum number of virtual machines τi = 5. In
this way, we introduce a constant light workload that could be supported by a
subset of the whole infrastructure. Through subsequent iterations, we increase
the budget of each user in the range [60, 600] with steps of 10 monetary units.
The expected behavior is that the greater the budget available to users, the
more resources they buy to increase their own utility.

The results show that for the simplest strategy of maintaining the whole
infrastructure available (No threshold in Figures 7.1(a)-(e)) the provider has
no incentive to participate in the market –i.e. its profit is less than zero– until
the level of income is at least equal to the cost of maintaining the infrastructure

96

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

P
ro

fit

Budget

Anticipated
No threshold

Proportional threshold
Demand aware

(a) Profit

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

E
ne

rg
y

S
av

in
gs

Budget

Anticipated
No threshold

Proportional threshold
Demand aware

(b) Energy Savings

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

M
ea

n
S

er
ve

r
U

sa
ge

Budget

Anticipated
No threshold

Proportional threshold
Demand Aware

(c) Server Usage

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

S
at

is
fa

ct
io

n

Budget

Anticipated
No threshold

Proportional threshold
Demand aware

(d) Satisfaction

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

U
se

r
U

til
ity

Budget

Anticipated
No threshold

Proportional threshold
Demand aware

(e) User Efficiency

Figure 7.1: Results with variable budget per user

97

(around 220 monetary units per user). Moreover, the energy savings and server
mean usage are the lowest possible given that the whole infrastructure is active
and the workload is constant. However, in this case, user satisfaction and
efficiency are the highest possible as there are always enough resources to
meet each user requirement. This scenario is interesting as it provides lower
bounds for energy savings and profit while providing upper bounds for user
satisfaction and user utility.

In contrast, let’s look at the strategy derived from the Stackelberg game
(Anticipated in Figures 7.1(a)-(e)). This has proven to be the best response of
the Stackelberg game and in which the provider has a privileged position over
its followers. Figure 7.1(a) shows that the greater the budget available to users
the more profit is obtained by the provider because it can adjust the number
of available machines for a given workload (which is fixed in these simulations).
At the same time, the mean server utilization (Figure 7.1(c)) is higher than
in the simplest strategy because of the consolidation of applications into a
subset of the infrastructure. More importantly, this adjustment of available
resources to a given workload implies a drastic reduction in energy costs and
so makes the infrastructure more environmentally and economically efficient
(Figure 7.1(b)). However, this privileged position gives the provider a great
advantage over users as shown in Figure 7.1(e). In this case, the provider’s
profit is maximized whereas the efficiency considering user utility is decreased
to the minimum considering the minimum requirements of satisfaction. This
scenario, although unrealistic because of the need for complete information, is
interesting as it provides an upper bound on energy savings, profit, and mean
server usage; and a lower bound on user efficiency.

Any other strategy should lie between these two scenarios. The proportional
threshold strategy behaves similarly to the anticipated strategy when there is
little money in the system, and its performance decreases as more money is
introduced. For example, Figure 7.1(a) shows that profit slowly increases as
more budget is introduced by users in contrast with the rapid increase of the
anticipated strategy. This is because users are able to pay for the specific costs
of each machine as they have more money – independently of the workload. We
can see a point of saturation (around a budget of 300 monetary units) where
users have enough money to awaken all the resources of the infrastructure and
then behave as in the no cost strategy.

98

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

M
ea

n
S

er
ve

r
U

sa
ge

Users

Anticipated
No threshold

(a) Server Usage

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

E
ne

rg
y

S
av

in
gs

Users

Anticipated
No threshold

(b) Energy savings

Figure 7.2: Results with variable demand in the number of users

Interestingly, Figures 7.1(a)–7.1(e) also show the behavior of the demand
aware strategy in which the infrastructure considers the aggregate demand to
estimate the number of nodes to shutdown with an α = 0.25. The value of α
represents a trade-off between provider satisfaction (increasing revenue) and
user satisfaction. A lower value of α would lead to shutting down more nodes
and potentially decreasing user satisfaction; yet increasing energy savings
and therefore reducing costs and increasing provider profit. Conversely, the
behavior of this strategy would move slowly towards the no cost behavior if α
were slowly increased. This scenario is also interesting as tuning this param-
eter would enable system administrators to decide – using only aggregated
information – at which point of the solution space to operate between the no
cost (lower bound) and anticipated (upper bound) strategies. This information
is commonly available in currently deployed monitoring infrastructures.

7.5.3 Variable number of users

In these experiments, we wanted to understand the behavior of our strategies
when the amount of money in the system grows to become excessive. That
is, each user has enough money to buy the whole infrastructure. We also
modify the aggregate workload by changing the number of users in the system.
We only show the anticipated and the no cost strategies as we have seen
that any other strategy would behave in between. Figure 7.1(c) shows the
mean server usage for each strategy. As we increase the number of users, the

99

anticipated strategy calculates the resources necessary to cope with such a
workload and maintain a high overall utilization independently of the workload.
This result comes from the fact that this strategy provides the strict minimum
number of nodes necessary and so, maintains a high degree of utilization –
while increasing the energy costs as more nodes become available to users
(see Figure 7.2(b)). However, the no cost strategy always provides the whole
infrastructure – i.e. without energy savings – and the degree of utilization
increases linearly as more users are added.

7.5.4 Impact of users heterogeneity

Our last set of results shows the impact on system performance considering
heterogeneous users (with different minimum consumption φ and minimum
parallelism τ) and the behavior of the demand aware strategy with a homoge-
neous budget among users (Figure 7.3) and proportional budget among users
with respect to the private demand parameters minimum consumption φ and
minimum parallelism τ (Figure 7.4).

In both cases, we select for each user a consumption φ drawn from a uniform
random variable U ∼ (0.15−Λφ, 0.15+Λφ) where Λφ ∈ [0, 0.15] changing along
the X-axis, and a τ drawn from a uniform random variable U ∼ (20−Λτ , 20 +
Λτ) where Λτ ∈ [0, 20] changing along the Y-axis. The Z-axis represents the
variable we are studying – as a visual aid, the darker the surface the higher the
value. With this setup, we aim to study the effect of the degree of heterogeneity
on certain variables.

For a given demand, we compute the anticipated strategy to calculate the
optimal allocation using the Stackelberg game. For Figures 7.3 and 7.4, the
surface represents the optimal value of the studied variable. Values above the
surface represents an over-provision of resources (waste of energy) and values
below the surface represent an under-provision of resources (unsatisfied users).

Figure 7.3(a) shows what would be the optimal confidence value α in the
demand aware strategy. It shows that when there is no diversity among
applications –i.e. Λφ = 0 and Λτ = 0 and, therefore, users are homogeneous
with the same minimum requirements– the estimation of the number of nodes
through the aggregate demand works quite well since the α value is low. In
other words, the correction that should be made is minimal. However, as we

100

∆τ
5

10

15

∆φ

0.02
0.04

0.06
0.08

0.10
0.12

α

0.5

1.0

1.5

2.0

2.5

(a) Confidence value α

∆τ

5

10

15∆φ

0.02
0.04

0.06
0.08

0.10
0.12

Energy Savings

0.2

0.4

0.6

0.8

(b) Energy Savings

∆τ

5

10

15∆φ

0.02
0.04

0.06
0.08

0.10
0.12

M
ean Usage 0.2

0.4

0.6

0.8

(c) Mean server usage

Figure 7.3: Behavior of α, energy
savings and mean server usage with
respect to the degree of freedom in
user’s requirements with homoge-
neous budget

∆τ
5

10

15

∆φ

0.02
0.04

0.06
0.08

0.10
0.12

α

0.5

1.0

1.5

2.0

2.5

(a) Confidence value α

∆τ

5

10

15∆φ

0.02
0.04

0.06
0.08

0.10
0.12

Energy Savings

0.2

0.4

0.6

0.8

(b) Energy Savings

∆τ

5

10

15∆φ

0.02
0.04

0.06
0.08

0.10
0.12

M
ean Usage 0.2

0.4

0.6

0.8

(c) Mean server usage

Figure 7.4: Behavior of α, energy
savings and mean server usage with
respect to the degree of freedom in
user requirements with proportional
budget for user workload.

101

increase diversity among users –i.e. increasing Λφ and Λτ– the value of α
should increase because of the loss of information caused by using aggregate
load values instead of complete information.

We also observe that a greater diversity implies a loss in server utilization and
therefore in energy saving (see Figures 7.3(b) and 7.3(c)3). The conclusion we
can draw from these results is that when heterogeneous users with the same
budget compete for a finite set of resources, there is an unfair competition
among over-budgeted users and under-budgeted users. In other words, a user
with small resource requirements will pay the same amount of money and will
obtain the same share of resources as a user with higher resource requirements.
Although these over-budgeted users obtain a specific share of a resource, they
will only use up to its minimum requirements –e.g. a user may purchase 75%
of a resource but only use 25%, which implies that 50% of that resource would
be unused.

These findings lead us to the question of what would be the right budget for
a user given its private demand. Our intuition was that users should have
the right to access resources in a fair manner. Accordingly, we explored the
previous scenario but this time considering heterogeneous budgets among users
proportional to their workload. In this way, we specify the budget of user i
as Xi = B × φi × τi where B is an arbitrary large number (enough to buy all
resources).

Figures 7.4(a)–7.4(c) show that with a proportional budget among users, the
three metrics studied (α, energy savings and mean server usage) describe a flat
surface and this means that they are independent of the variability between
user requirements. Note that the α value and optimal energy savings drop in
Figure 7.3 as we decrease and increase the variability respectively; however,
this is not the case in Figure 7.4. The conclusion we can extract is that the
influence of user market power (through budgets) on the resource market
should not be neglected as we have shown that it has an impact on power
consumption. Thus, from the provider perspective, it should offer an incentive
for users to adjust their budgets in proportion to their requirements.

3To avoid confusion and overlapping of the surface, notice the change on the order of the
X-Y-axis

102

If proper incentives were given to users to adjust their budgets, the infras-
tructure operator would be able to choose the right amount of resources to
be made available without complete information –because α would become a
constant that is independent of user heterogeneity. This leaves an interesting
open question for future work.

7.6 Related Work

Energy related costs will become the single largest factor in the overall cost
of operating a data center, while most data centers continue to have under-
utilized servers. Most of current work focuses on scheduling techniques and
architectures for consolidating virtual machines in fewer servers to reduce
energy consumption. Takeda et al. [85] propose an algorithm to migrate
virtual machines based on priorities among competing applications. Verma et
al. [86] also considers the performance issues associated with the design and
implementation of pMapper, a power and cost-aware scheduling algorithm
for virtual machine placement. Schröder et al. [87] discuss an interesting
scenario of migration among geographically distributed data centers. The
primary concern of these works is the design and evaluation of a specific
piece of software with specific workloads regardless of the economic issues
behind user behavior. Moreover, their scheduling techniques consider complete
information on application performance requirements. In contrast, we focus
on providing algorithms for computing upper and lower bounds on the number
of resources needed to support a workload when considering the economic
decisions performed by either heterogeneous and homogeneous applications,
and from which upper and lower bounds on provider profit, energy savings
and overall data center performance may be extracted.

To the best of our knowledge, our work is the first to model a theoretical
economic framework using Stackelberg games to understand the trade-offs
in user demand, market power, and provider decisions in the context of
energy efficiency in computer networks. However, Stackelberg games have
been extensively used in the literature for understanding the behavior of a
set of users when considering that one (or several) have a specific advantage
such as information, market power, decision power, etc. This situation arises
quite often in the real world and makes this type of game very appealing
to model and analyze new mechanisms. For example, Biczók et al. [88]

103

use a Stackelberg game to model the problem of users willing to share their
bandwidth at home as opposed to the traditional ISP–consumer relationship
in the context of wireless community networking. Regarding power control on
wireless networks, Wang et al. [89] studied the problem of resource allocation
in a decentralized and cooperative network setting by modeling users in a two
level game (Stackelberg game) where source nodes play the role of buyers and
relay nodes play the role of sellers.

At the network level, different techniques to reduce energy consumption have
been proposed. Most of the work focuses on exploring models related to
speed scaling and power down methods to match network traffic to available
resources. For example, Andrews et al. [90][91] studied energy minimization
algorithms at a global wired network level in both models respectively and
Nedevschi et al. [92] considered energy minimization when the operational
voltage and the frequency of transmission could be scaled. Although these
works are not intrinsically related to ours, we believe that energy minimization
at both network and server levels should go together and there is an open
door for future work in the intersection between these areas.

7.7 Conclusion

This work investigates the limits of energy saving for the allocation of data
center resources by finding an algorithm that is efficient in selecting the optimal
set of active resources to maximize energy consumption while satisfying the
minimum performance requirements from networked applications. The focus
is on the choice to power down and power up nodes, as most of the power
consumption in energy curves for computing nodes is determined by the fixed
cost for being on. We model the interplay between the need for resources
from users and the goal to minimize power consumption as a Stackelberg
competition, where the market leader determines which resources should be
on and off, and the followers select among the resources left on. The game
ensures that networked applications, the followers, will have enough resources
to comply with their minimum performance levels. Although we focus on a
proportional share model for resource allocation in this work, the results can
be applied to other resource allocation models.

The results can be extended in many directions. One possibility is to demon-
strate the feasibility of energy minimization through an implementation with

104

real workloads; making comparisons with the upper bounds presented here
and evaluating the implementation with other resource allocation models
(economic and traditional). Energy-aware admission control of users might
help to keep and optimize the most profitable set of users in terms of income
and associated cost. The resource model can be extended by looking at nodes
with multiple power levels that depend on load instead of just being switched
on and off. An interesting line of work is to study and analyze the intersection
of energy minimization at the network and server levels. Finally, another
direction is to explore competition models with incomplete information on
user strategy (Bayesian games).

Chapter 8
Incentives for Dynamic and

Energy-aware Capacity Allocation
for Multi-tenant Clusters

Abstract

Large scale clusters are now being used in shared, multi-tenant scenarios

by heterogeneous applications with completely different requirements. In

this scenario, it’s interesting to explore the intersection of two different

lines of research. On one side, energy efficiency is an important factor to

consider in this world with increasing operating costs related to energy

consumption. On the other side, heterogeneous applications emphasize

the problem of distributing the execution capacity among competitive

users in a shared setting. In this chaptera, we address these two problems

by introducing an incentive mechanism to make users report their actual

resource requirements, allowing them to dynamically scale-up or down

as necessary. In turn, this information is used by the infrastructure

operator to shut down resources without reducing the QoS provided to

users and effectively reducing energy costs. We show how our mechanism

is able to meet the performance requirements of applications without

over-provisioning physical resources, which in turn is translated into

energy savings.

aThis chapter is based on the paper [P5]

105

106

8.1 Introduction

Energy consumption is a key concern in networked computing systems, includ-
ing service overlays, content distribution networks, and many other distributed
systems. One of the main usages of large scale clusters is data analysis and
manipulation using distributed computation models like Map Reduce [93]. In
this context, all data centers or cloud computing providers face the problem of
a changing resource demand by applications over time and high energy costs
that makes low server utilization a luxury.

Hoelzle and Barroso [94] looked at the average CPU utilization of 5000 Google
servers during a six-month period. It was shown that, on average, servers
spend relatively little aggregate time at high load levels, but that they spend
most of the time at the 10-50% CPU utilization range, where server efficiency
in terms of energy is the lowest. Given that, energy efficiency should be
considered a first-order metric when designing data centers and the software
they run.

On a different perspective, these large scale clusters are now being used in
shared, multi-user settings in which submitted applications may have com-
pletely different requirements in terms of space (number of simultaneous
running tasks) and time (duration of the execution), from small almost in-
teractive executions, to very long program that take hours to finish. This
situation makes task scheduling, which is the mechanism by which jobs are
assigned a set of resources, even more relevant.

For example, Hadoop (the implementation of the Map Reduce model of
computation supported by the Apache foundation) provides two different
schedulers for multi-tenant scenarios: the fair share scheduler and the capacity
scheduler. The former focus on delivering a similar share of resources to
all running applications targeting fairness as their main objective while the
latter focus on accommodating heterogeneous applications with different share
requirements. However, both approaches are highly static in the sense that
shares are granted by high-level policies decided by the infrastructure operator,
and end users must negotiate a change in case the allocated shares are not
enough. Besides, none of the approaches considers energy efficiency as a metric
on the scheduling decisions.

107

To better understand the rationale behind our design, we start with a set of
desirable properties that any resource scheduling policy should satisfy among
others: social efficiency, the allocation should maximize the utility or satisfac-
tion (quality of experience, QoE) perceived by users; capacity differentiation,
it should be capable of provisioning different capacity to different applications
depending on their needs; fairness, each application should have a chance
to obtain resources proportional to its assigned capacity; elasticity, or high
utilization, a job should not be delayed or not executed if there are free or
spare resources in the infrastructure which may occur because of an imbalance
of execution capacity among users; dynamically adaptive, application capacity
should be allowed to change or adapt dynamically depending on application’s
needs without (or minimal) intervention of administrators to increase respon-
siveness; and energy efficient, in today’s world where energy operating costs are
an important share of the total costs, the scheduling algorithm should consider
energy costs as a first-order metric to optimize the energy consumption related
to operating the infrastructure.

Current schedulers already consider capacity differentiation, fairness and
elasticity as important elements on its design. Thus, in this chapter we focus
and explore the intersection of two additional lines of research: i) energy
efficiency of big data clusters through resource scheduling policies and ii)
enabling dynamic capacity allocation on shared multi-tenant clusters.

From the energy efficiency perspective, it’s risky for resource provides to simply
power down a portion of the infrastructure without breaking service level
agreements (SLAs) usually described as deadlines, given the heterogeneity of
running applications and their changing requirements over time. Thus, we
propose an incentive mechanism to maximize progress at an acceptable rate
minimizing power consumption or unnecessary resource usage by promoting
users to report their actual requirements in terms of resources instead of
deadlines.

From the scheduling point of view, our goal is to move from operator-oriented
static allocation policies to a user-oriented dynamic allocation to provide
guarantees to users depending on their global or instant needs, without the
intervention of the infrastructure operator, instead of relying on fixed policies
to allocate resources.

108

This chapter is organized as follows. Section 8.2 introduces some technical
concepts related to map-reduce to situate the context of our mechanism.
Section 8.3 and section 8.4 present our incentive mechanism and associated
algorithms respectively. Section 8.5 presents the simulation results that support
the contribution of our work. Finally, section 8.6 shows the related work and
we conclude the chapter in section 8.7.

8.2 Background

The Map Reduce [93] model of computation was originally designed by Google
to exploit large clusters to perform parallel computations on extremely large
sets of data. It basically consists on the implementation of two functions by
a programmer: a map function, which processes fragments of input data to
produce intermediate results, usually in the form of key-value pairs. This
intermediate data then feed a reduce function to combine the intermediate
results to create the final output.

All nodes in the cluster execute these functions on different subsets of data.
The Map Reduce runtime divides and distributes the data across nodes and
collects the results once nodes finish their calculations.

Although there are different implementations of this model for different pur-
poses and architectures [95][96], we focus on Hadoop [97], one of the most
widely used frameworks by companies like Yahoo!, Facebook or Amazon.

One of the core components of Hadoop is the job scheduler which allocates
resources to jobs. Currently, there are three different scheduling policies
implemented on Hadoop. The FIFO scheduler which pulls jobs from the work
queue, oldest being the first. This scheduling policy has no concept of the
size or resource requirement of a job, but the approach was simple enough to
implement at first. The fair share scheduler –developed by Facebook– assigns
resources to jobs in a way that on average, each job obtains a similar share
of the available resources over time. This scheduler is able to interleave low
consuming jobs with short time spans with jobs that require more resources
and more time to complete, providing a more responsive system and avoiding
starvation of small jobs in favor of larger ones. Finally, the capacity scheduler
–developed by Yahoo!– shares some of the principles of the fair share scheduler
in the sense that a certain amount of shares can be assigned to different

109

users or applications. However, it was defined for large clusters with multiple,
independent users and target applications, providing greater control over the
capacity guarantees among users.

An important factor about the operation efficiency of Hadoop is how the data
is spread among nodes. It is usually replicated over different nodes as to
improve data availability in case some of the replicas are busy or just failed.
Without digging into details, the aforementioned schedulers already deal with
such issues related to data replication. Current research is dealing with data
placement policies to overcome the problem of shutting down nodes to save
energy costs as well [98][99][100].

As we will see, enhancements over data placement policies are orthogonal
to our work since since our mechanism is in fact an extension of the fair
share or capacity schedulers and any improvement on that matter would be
applicable to our solution as well. Thus, we will leave out the issues related to
the mapping of jobs and data for simplicity and it will allow us to simplify
our model. It will remain future work stating the impact of our solution
considering data placement as another variable to consider.

8.3 Dynamic allocation based on incentives

In this section we present the design, operation and objectives of the incentive-
based allocation mechanism introduced in this chapter. The mechanism
consists of two elements: an incentive for users to report their actual resource
requirement, and the strategy to allocate available resources.

8.3.1 Design Goal

The goal of the incentive mechanism presented in this chapter is twofold. From
the application perspective, users should receive an incentive to report their
actual resource requirement in order to allocate only those resources necessary
to complete the task within their completion goal, and no more. This way, we
may be able to aggregate unused resources that are not necessary to improve
the Quality of Service (e.g. SLAs) of users and, therefore, put strategies in
place to shut-down such resources to reduce energy costs. In contrast with
current mechanisms which use the maximum amount of resources available
to complete the task, targeting job runtime as a primary goal, we propose

110

a more rational way to share resources by making explicit the cost of using
such resources and giving users the option to scale up and down their resource
allocation.

From the infrastructure operator perspective on the other side, the allocation of
resources is usually static because of the complexity of the allocation decision.
For example, the Hadoop fair share scheduler always allocate the same amount
of resources to each application regardless of application requirements and
the Capacity scheduler is able to allocate a specific share of resources to each
application but requires the infrastructure operator to manually change such
allocations in case of a change on the priority of different applications. Our
mechanism simplifies the decision of how many resources allocate to each user
– because now users are in charge of such decision – and provides a solution to
reduce energy costs by shutting-down unused resources without breaking the
QoS contracts signed with users.

Therefore, this may lead us to a win-win situation in which users are able to
finish their tasks within a given time goal and infrastructure operators are
able to reduce energy costs by shutting-down unused resources and simplify
their allocation decisions.

8.3.2 System model

While Map Reduce was originally used for batch data processing, it is now
also being used in shared, multi-tenant environments in which submitted jobs
may have completely different priorities depending on resource requirements
and completion time: from small, almost interactive, executions, to very long
programs that take hours to complete. This shift in the initial paradigm makes
the associated resource allocation even more relevant. In this multi-tenant
scenario, each user has a guaranteed resource capacity according to different
strategies implemented by different schedulers. For example, the fair share
scheduler allocates 1/n of the available slots to each application and the
Capacity scheduler allocates a fixed amount of resources to each application
according to high-level policies –e.g. 5% to application A, 25% to application
B and 70% to application C. Our mechanism can be considered an hybrid
of these two in the sense that an application has a fair share of the resource
guaranteed but is free to hand out spare resources to other applications or ask
for more resource when necessary – this is the essence of dynamic allocation.

111

Throughout this document, we will indistinctly refer as user or application a
piece of software running in the cluster to perform data intensive computations.
These applications are modeled as a Map Reduce job characterized by an
upper (rmax) and lower (rmin) bound on resource requirements in the form of
a percentage or share of the cluster capacity. This information is considered
in principle unknown to the resource provider and private to the user.

This simple model allow us to specify the minimum share to meet a certain
time goal to complete the job. Thus, the utility function of a user will be
computed as a function of the share allocated by the scheduler (si) and the
share requirement (rmin) in the following way:

U(si, rmin) =

{
1 if si ≥ rmin
si
rmin

if si < rmin
(8.1)

In few words, this utility function is in the range [0, 1] and models the fact that
users will not obtain more benefit if they obtain more than their minimum
requirement, which is the minimum share to meet the deadline of the job. In
case the allocated share is less than the share requirement, the utility obtained
by the user will decrease linearly.

For problem

8.3.3 Making private information explicit through incentives

The basic principle behind our mechanism is a use your assigned resources
now or better save them for later approach. Our goal is to provide users an
incentive to truthfully declare their actual resource requirements (rmin). This
way, the infrastructure operator can decide which minimum portion of the
cluster is necessary to provide jobs with enough resources to complete their
tasks in time.

As we stated in the model above, applications are given a fair share (1/nth

where n is the number of concurrent applications) of the time slots available
for execution. Sometimes applications will need more than this fair share, and
sometimes applications will need less. The incentive we propose is a simple
market in which users sell their spare allocations when not needed to the
operator to obtain a certain amount of credits, and buy resources with these

112

credits from the pool of unused resources when they need more than their fair
share. In a few words, it’s an enhancement over the fair-share scheduler in
which users can dynamically decide which is their actual share allocated as a
function of their requirements.

The benefits of such mechanism is two-fold: i) applications are able to scale
up (buy) and down (sell) their allocations based on their requirements which
provides a dynamic environment to adapt to changing conditions according
to the workload (dynamic capacity allocation); and ii) if at any point in time,
the aggregated demand is less than the total capacity, the infrastructure
operator can decide to reduce costs by powering down (or switch resources to
a low power consumption state) without breaking application’s SLAs (energy
efficiency).

8.4 Algorithms behind the scenes

Throughout this section, we will detail the procedure to allocate resources to
applications according to their requested share. The allocation mechanism
presented in this work consists of two main components: i) an algorithm to
update the capacity allocated to each application which is executed every
time a new allocation request is made (Algorithms 8.1 and 8.2) and, ii) a
procedure to recompute the credits earned by selling spare resources, or the
credits spent (virtual money) by buying extra capacity required to accomplish
the QoS needed (Algorithm 8.3).

Dynamic capacity allocation. Every time an application sends a request
to obtain a specific set of resources, Algorithm 8.1 is executed. It recomputes
the shares assigned to all running jobs taking into account the new request.
Basically, we are given a set of share requests submitted by users (φ), which
are the shares (percentage of the cluster) needed by an application to complete
within a specific deadline and a set of budgets or credits for each user.

First, we divide all requests in two groups by looking if the request is lower
(set S) or greater (set Q) than its fair share (1/n). In the first case, we directly
grant the request (φi) and add the spare capacity not planned to be used
(1/n− φi) to the pool of free resources (p). In the second case, we add this
extra capacity requested to a counter (r) for later use and include it on the
second set (Q), always checking that the application has enough credit to

113

Algorithm 8.1 UpdateCapacityAllocation – main algorithm to compute
capacity allocation

Require: φ = 〈φ1, . . . , φn〉 . share request
Require: C = 〈c1, . . . , cn〉 . credits
Q← {∅} . greater than φi set
S ← {∅} . lower than φi share set
p← 0 . pool of free resources
r ← 0 . extra capacity requested
for all request φi do

if φi ≤ 1/n then
si ← φi . sellers
S ← S ∩ {si}
p← p+ (1

n − φi)
else

if ci > 0 then
qi ← φi − 1

n . buyers
r ← r + qi
Q← Q ∩ {qi}

end if
end if

end for
if r < p then

for all request qi ∈ Q do
si ← 1

n + qi
Q′ ← Q′ ∩ {si}

end for
else
Q′ ← AllocateUnusedCapacity(Q, C, p)

end if
return S ∩Q′

114

Algorithm 8.2 AllocateUnusedCapacity – allocate spare capacity among
users
Require: Q = 〈q1, . . . , qm〉 . extra share request
Require: C = 〈c1, . . . , cm〉 . credits
Require: p . % of free resources

for all i ∈ Q do

X ←
m∑
i=0

ci

for all ci ∈ C do
xi ← ci/X
yi ← (xi ∗ p)/qi

end for
Sort the set Q by yi in decreasing order . if yi > 1 → request <
capacity
if yi > 1 then
ai ← qi

else
ai ← (xi ∗ p)

end if
si ← 1/n+ ai
p← p− ai

end for
return S ← (s1, . . . , sm)

Algorithm 8.3 updateCredits – update the amount of credits

Require: S = 〈s1, . . . , sn〉 . actual allocation made by UpdateCapac-
ityAllocation

Require: C = 〈c1, . . . , cn〉 . current number of credits
Require: t . time since last updateCapacityAllocation

for all si ∈ S do
ci ← ci + t ∗ (1

n − si)
end for
return C ← {c1, . . . , cn}

115

spend on extra resources. Notice that the set S is the set of applications
selling their spare capacity, and the set Q is the set of applications buying
extra capacity.

Thereafter, if the amount of extra capacity required is lower than the pool of
free resources or, in economic terms, demand is lower than supply, we allocate
this extra capacity to applications buying resources – which will be charged
for this extra use and accomplish the elasticity criteria presented on section
8.1. On the other hand, when resources are scarce and demand is higher than
supply, we allocate these extra requests proportional to the credits earned
previously –which accomplish the fairness criteria presented also on section 8.1–
following Algorithm 8.2 which is a loosely-based proportional share allocation
algorithm.

On algorithm 8.2, we take into account the set Q of extra capacity requests
and the budget in credits owned by each application. Following our goal of
allocating only the necessary (and no more) resources to applications, we first
compute for each application the theoretical share of resources proportional
to their budget (xi) and compute the ratio yi which will be greater than 1 for
applications requesting less than their theoretical proportional share and lower
than 1 for applications requesting more than their theoretical proportional
share. Given that, by sorting the set Q by the ratio yi in decreasing order,
we first allocate the extra requested capacity to applications requesting less
than their theoretical proportional share to accumulate their spare capacity to
subsequent applications. In case yi < 1, the theoretical proportional share is
the upper bound on the amount of resources an application can obtain given
the credits. This procedure is repeated until no application requests are left
in the set Q.

Accounting of credits. Before the actual allocation is made, algorithm 8.3
is processed to update the credits each application owns based on the previous
execution. The current budget of credits for each application is computed
as a function of the current allocation provided by algorithm 8.1 at time
t-1. Therefore, if the application bought extra resources (si ≥ 1

n) on the
previous round of the algorithm, the term t ∗ (1

n − si) will be negative and the
corresponding amount of credits will be discounted. On the other hand, if the
application sold spare resources (si <

1
n), the term t ∗ (1

n − si) will be positive
and the equivalent number of credits will be added to the current budget.

116

Utility (Ui)

Share allocation (Si)

1

0

si < rmin

si = rmin

si = rmin

si > rmin

Figure 8.1: User Utility comparing
rmin and si

Credits (Ci)

Share allocation (Si)

si = rmin

si > rmin

si < rmin

Figure 8.2: Credits earned/spent com-
paring rmin and si

Analysis of incentive compatibility. A key factor of our mechanism
is its incentive compatibility. A mechanism is incentive compatible if all
the participants consider their best interest to truthfully reveal any private
information inquired by the mechanism.

In our case, the private information that the mechanism asks users is their
actual resource requirement in terms of shares to finish the job within a
deadline. To perform the analysis, we will consider the case in which a user
declare a share request below, above or exactly equal to its actual share
requirement and observe how our mechanism reacts to these values and the
utility function described in Equation 8.1.

An informal proof of incentive compatibility is as follows. Given a user i, a
minimum share requirement for a job rmin and the outcome of our mecha-
nism which is an actual share allocation si, we can observe these situations
considering a user reports ri:

• case ri ≤ 1/n. Request share is lower than fair share (potential earnings).
In this case, si = ri because all requests less than the granted fair
share are accepted without charges. Users have no incentive to report
ri < rmin because it will not obtain its minimum share to complete the
job (Ui(si, ri) = si

rmin
< 1), as shown in Figure 8.1. Reporting a ri above

117

its requirement rmin will grant the user more shares and maximize utility
(Ui(si, ri) = 1) but with the drawback of earning less credits to spend
in the future without gaining any utility out of it. Therefore, the best
response of the user is to report a ri = rmin.

• case ri > 1/n. Request share is higher than fair share (potential
payments).

– case ri = rmin. Request share is equal to requirement. This is the
ideal situation in which users truthfully report their requirements.
In this case, si ≤ rmin = ri. Because the user is requesting more
resources than its fair share, it will pay up to ci credits which
is proportional to si − 1

n or, in the best case, proportional to
rmin − 1

n = ri − 1
n . Looking at the utility function Ui(si, ri) = 1

because si = rmin in the best case. In the following cases, we will
see that this is the best possible situation and, thus, the users have
no incentive to misreport ri.

– case ri > rmin. Request share is higher than requirement. In this
case, rmin ≤ si ≤ ri. Again, user will pay up to ci credits which is
proportional to si − 1

n or, in the best case of allocating the whole
request, proportional to ri − 1

n . The request in this case is greater
than the request in case ii-i, so the total amount of credits to pay
will be higher (si > rmin in Figure 8.2). Given that the outcome of
our algorithm Ui(si, ri) = 1 is the same as the case above because
si > rmin, it will end up paying more credits for the same utility.

– case ri < rmin. Request share is lower than requirement. In this
case, the utility obtained Ui(si, ri) = si

ri
< 1 because si < rmin and

it will be lower than in the previous two cases because our algorithm
allocates a maximum number of shares equal to the request.

Following that, we can conclude that our mechanism always maximizes the
utility Ui(si, ri) = 1 while minimizing the amount of credits to pay in case of
buying resources, and also maximizes the amount of credits to earn in case of
selling resources. �

118

8.5 Evaluation

We use simulations to evaluate the long-term impact of our system. To
determine the effectiveness of our incentive mechanism in reducing the cluster
usage without reducing the QoS perceived by users, we compare our algorithm
– cooperative label in the figures – with the outcome of a widely used scheduler
– the fair share scheduler used in Hadoop. We also use for comparison purposes
an optimum allocation mechanism which always allocates the share requirement
rmin to jobs effectively maximizing user utility and minimizing resource usage,
independently of the market of resources (credits earned and spent). This
optimum scheduler however has an unbound resource pool so it can always
allocate the optimum shares regardless of the load.

The set-up of the simulations consists in varying the number of simultaneous
users n (from 2 to 100) to assess the scalability of the solution as more users
(and, therefore, more load) are added to the system. In addition, each user
is assigned a set of jobs to execute in the cluster. Specifically, each job is
represented by a tuple (t, rmin, rmax) where t is the deadline for completing
the job, rmin is the minimum share necessary to finish the job before time
t and rmax is the maximum number of shares the job is able to use taking
into account that the level of parallelism is bounded or, in other words, we
model the fact that depending on the nature of the job, it cannot use the
whole cluster even if a single job is running on it.

Given the lack of public reliable map reduce-like workloads, we simulate a
synthetic workloads that try to mimic real world workloads as described by
Zaharia et al. [101]. Thus, we assign rmin and t drawn from a log-normal
distribution L ∼ (1, 1.25) which produce a workload distribution in which
most of the jobs have a rather short running time and share requirement
(small to medium size jobs) and fewer jobs with higher running times and
share requirements. rmax is derived from rmin by adding a variable k drawn
from a uniform distribution U ∼ (0, 100). We normalize rmin and rmax in the
range [0, 100] as it represents the shares in percentage of a cluster and t is
capped in the range [0, 10000] which is an arbitrary number large enough to
not misrepresent the random distribution but effective to avoid not real or
excessively large jobs.

119

To study the behavior of our proposed mechanism, we consider the following
metrics.

• Cluster usage. This is the average usage of the cluster in percentage
over the whole simulation period. Although peak usage may differ over
time depending on the actual jobs being run on the cluster, this is an
indication of the overall usage over time, the time the cluster remains
unused and the percentage of the cluster that could be shutdown to
reduce power consumption on average.

• Satisfaction. Given a specific share request ri for user i and a specific
share allocation si, the satisfaction or efficiency is φi = si − ri. In other
words, it is the difference between the share requirement of user i and
the actual allocation made by the algorithm. This is a measure of the
QoS the user perceives from the running time on the cluster considering
their requests and their actual allocations. Given that this metric is
measured as a difference, the lower the better.

• Mean completion time. Given a set of jobs for user i and its actual
completion time (time elapsed between submitting the job and gathering
the results), it is the mean time to complete each of the jobs. This
measure is an indication of how well the scheduler is able to scale down
the number of shares given to a job to save resources.

All figures are normalized in the range [0, 1] for comparison purposes and
because the actual numbers are actually meaningless because of the synthetic
nature of our workload. Thus, we are only interested in the relative difference
between our proposal and the widely used fair share scheduler.

Figure 8.3 shows the QoS perceived by users. Because satisfaction is measured
as the difference between the share request (requirement) and the share
allocated, the lower the number the better. We can see that our mechanism
(label cooperative in the figures) is able to provide better QoS to users compared
to the widely used fair share scheduler because it is able to allocate dynamically
more resources to those jobs in more need instead of allocating the same fair
share to all of them. It is also able to provide a QoS on par with the optimum up
to the point where resources become scarce and the gap between share request
and share allocation becomes noticeable (20-30 simulated users). However, we

120

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S
at

is
fa

ct
io

n

Users

Optimum
Cooperative
Fair Share

Figure 8.3: User Satisfaction

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

C
lu

st
er

 U
sa

ge

Users

Energy saving
Optimum

Cooperative
Fair Share

Figure 8.4: Cluster Usage

stress the importance of our incentive mechanism because users are able to
buy more resources to improve their QoS even in high contention scenarios
(more than 20-30 users).

If we now look at the cluster usage (Figure 8.4), we can observe that our
algorithm consumes up to 50% less resources than the fair share scheduler with
20 simultaneous users. This lower resource consumption is possible because
users sell resources to the infrastructure operator when not strictly necessary
to meet the job’s deadline. It’s important to note that this lower cluster usage
may allow the infrastructure operator to scale down the available nodes to
reduce power consumption and, thus, increase the revenue obtained given
the same workload. In contrast, the fair share scheduler always allocates the
maximum amount of shares to a given job regardless of the actual minimum
resource requirement. This is because the fair share scheduler is agnostic to
the job characteristics – i.e. minimum share requirement and deadline. In
contrast, our incentive mechanism is actually able to extract such information
from the user and use it to the operator’s benefit to maintain the resource
usage to a minimum without impacting user efficiency.

However, these benefits (reduced resource consumption, lower energy costs,
higher user’s satisfaction) comes at a certain cost, namely a higher mean
completion time (see Figure 8.5). Because our mechanism influence users to
report the minimum share to meet a certain deadline, its easy to see that
the mean completion time for the set of jobs a users must run will be higher

121

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

M
ea

n
co

m
pl

et
io

n
tim

e

Users

Optimum
Cooperative
Fair Share

Figure 8.5: Mean Completion Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S
at

is
fa

ct
io

n

% Followers

Followers
No Followers

Mean

Figure 8.6: Variable % of followers

than in the case of traditional schedulers whose main aim is to finish a job
as soon as the cluster capacity allows. However, this minor drawback is
bearable considering that almost no deadlines are broken when there are less
than 30 users. In fact, below this threshold its performance is comparable
to the optimum allocation. As the number of concurrent users increases, our
mechanism behaves almost exactly as the other schedulers.

It’s important to notice that users are free to follow our incentive mechanism
by reporting the minimum share requirement and engaging in buying and
selling resources, or reject it and just behave as a regular user which receives
its fair share.

To state the effectiveness of our incentive mechanism, we observe the satisfac-
tion of users depending on the opt-in ratio in our mechanism. Figure 8.6 shows
the scalability of our mechanism with a variable ratio of opt-in users (label
followers) and opt-out users (label no followers). We can see that the more
users opt-in to collaborate through our mechanism the better the satisfaction
(recall that a lower number is better by the definition of satisfaction). This is
true because there will be more users selling resources which in turn can be
used by other users in need of more resources effectively allowing a dynamic
allocation of resources.

122

8.6 Related work

The focus of current schedulers in distributed processing frameworks is on
high performance computations targeting job run time as a primary objective.
However, the trade off between performance and the effect on data center
energy efficiency has not been fully investigated. Our work is a step towards
the reconciliation of quality of service allowing dynamic scale up and down of
jobs and energy cost efficiency.

There are different strategies to address the problem of energy efficiency, most
of them based on data replication strategies to allow shutting down a portion
of the cluster safely. Jacob et al. [99] find that running Hadoop in fractional
configurations by means of distributing data replicas over a covering set can
save energy by shutting down idle fractions of the clusters at a cost of losing
performance due to data contention. Kaushik et al. [98] makes use of hardware
heterogeneity and different power consumption policies by divide the cluster
in two zones: the hot zone where highly popular data is placed and where
servers run without any power saving policy and the cold zone where low
spatial or temporal popularity data is placed but with an aggressive policy
towards saving energy. Interestingly, their simulations were carried out using
a three month worth of traces from Yahoo! and found an impressing 26%
savings in energy costs. Finally, Lang et al. [100] proposes to use the entire
cluster for a certain period of time to run a specific workload and then powers
down the entire cluster until the next running period, certainly consolidating
dispersed workload over a shorter period. Although an interesting analysis, the
practicality of such mechanism remains to be seen as starting up and shutting
down a large-scale cluster is not trivial and would need improvements on the
hardware side between transition periods. From the economic standpoint,
Sandholm et al. [102, 103] already proposed a market for dynamically assign
resources of a shared cluster to multiple Hadoop instances. The priorities
are assigned using high level policies like budgets similarly to our solution.
However, they had to deal with the complexities of a “real” market like
inflation and deflation or forcing the users to understand the mapping between
currency and real resources. In our case, we simplify this complexity leveraging
the share concept and applying a direct translation between shares, time and
credits earned or bought, which help users understand how many resources
they can buy or sell for a given share at any point in time.

123

It is important to note that, as previously stated on this chapter, our mecha-
nism relies on the users’ knowledge about their jobs and requirement targets.
This knowledge could be acquired over time by learning from previous exe-
cutions. However, recent works propose a prediction mechanism for Hadoop
environment [104] which could be integrated into our mechanism to aid users
in their decisions or even implement high level policies to act on behalf of
users using such predictions.

Our proposal is orthogonal to such previous works in the sense that our focus is
not on data placement strategies nor performance prediction but on scheduling
decisions of the time slots allocated to each application and, as such, any
improvement over data placement policies is complementary to our solution.

8.7 Conclusions

In this chapter we investigate the possibility of reducing energy costs by
providing users an incentive to report their actual needs instead of over
reporting the size of their jobs. Our mechanism is based on markets and could
be implemented as an extension of the traditional Capacity Scheduler.

Our mechanism pursues two different goals. From the user perspective, we
show how our incentive mechanism effectively encourages users to report their
true share requirement for a given job. Thus, we are able to provide a shares
market in which users engage to dynamically scale up (buy) or down (sell)
the allocated time slots of a job without the intervention of the infrastructure
operator, providing a more elastic and agile infrastructure. We also show that
it’s in the users’ best interest to participate in the market to improve their
QoS instead of default.

Furthermore, map-reduce computations are characterized by long, predictable,
streaming I/O, massive parallelization, and non interactive performance. These
computational services are often used in real-time data processing scenarios
[105] and, as such, they can benefit from our mechanism as quality of service
become more important than job run time.

From the infrastructure operator point of view, our mechanism is able to
extract valuable private information from users (share requirements). In a
scenario in which energy related costs is one of the single largest factor in the

124

overall cost of operating a data center, this information can be used to shut
down a portion of the cluster without reducing the quality of service provided
to users, which in turn could reduce energy costs.

Looking at the results, we can conclude that our mechanism is a step towards
a more rational use of the available resources. It is able to dynamically scale
up and down the shares allocated to jobs with the aid of users and at the
same time provide valuable information to the resource provider to shutdown
spare resources without breaking SLAs or affecting QoS.

To the best of our knowledge, our work is the first to explore the problem
emerging from the intersection of ensuring users’ quality of service providing
dynamic allocation of resources based on user’s requests and reducing energy
costs together.

Chapter 9
Conclusions

We have investigated how economic regulation can be integrated into large-scale
computational infrastructures to not only make economically and computa-
tionally efficient allocation decisions, but to include system-wide metrics or
externalities into the computational market which are not taken into account
by economically rational users otherwise.

The methods proposed were designed with a specific scenario in mind. Our
first challenge was to improve load balancing in infrastructures where an
economic mechanism is in place but in a decentralized setting where no single
authority exists. We proposed the creation of a third-party regulation entity
which monitors the health of the overall infrastructure and introduce a tax
mechanism to solve the problem of hot spots and the imbalance of resource
consumption and contribution.

Our next challenge was to address energy related costs in data centers operated
by a single resource provider in charge of the supply of computing elements.
We proposed an analytical model to study the problem and derive an algorithm
to scale up and down resource supply as a regulation mechanism in such a way
that, at any point in time, users are able to meet their resource requirements
but using the minimum amount of resources. This regulation mechanism aids
the resource provider to reduce energy-related costs by powering down nodes
when not strictly necessary.

The last challenge we address in this thesis was the creation of a new mechanism
with two principles in mind: it should be incentive compatible so users are

125

126

encouraged to truthfully reveal their resource requirements; and the resource
provider could use this information to make smarter allocations so users get
what they want with the minimum amount of resources. They key difference
from the previous contribution is that the mechanism encourages users to
self-regulate themselves by giving away resources they don’t need in exchange
for future rights to use those resources if available.

We believe that computational markets are indeed a good approach to the
resource allocation problem. Moving complex decisions from a central scheduler
oriented approach towards users in an end-to-end approach may seem moving
the problem around but the key insight is that the important scheduling
information –be it job priority or resource requirements– resides on the users-
end, not on the scheduler. As in real life however, markets sometimes fail to
address such problems and additional regulative mechanism must be provided
to correct, limit or modify its behaviour.

Future directions

The main remaining challenge for computational markets is to make resource
allocation as simple as possible without losing the fine-grained control of
service-levels. The simplification of the overall user experience is critical for
the success of market-based resource allocation and the artificial intelligence
field may play a very important role in that aspect by developing agents to
act on behalf of users to aid them in making smarter allocations.

Whether this usability goal is met can only be evaluated in pilot projects with
real users in large markets with resource contention. A thorough analysis of
the benefits of our proposals and economic allocations in a live system with
real users would expose the psychological factors of decision making which are
hard to capture accurately in simulations.

Once more experience is gained with real users, the next challenge is to explore
more advanced regulative measures if necessary. We have provided insights
on how to cope with hot spots and energy efficiency in different scenarios but
other types of externalities may be investigated: not only care about user’s
own allocation but the allocation to others, avoid monopolies on federated
scenarios or reward those users whose executions provides a higher utility to
the overall community as examples.

127

The use of regulative measures in computational markets opens the door
to a new variety of mechanisms ranging from income taxes on the resource
providers to monetary policies and exchange rates in federated environments.
However, their usefulness remains to be seen while there are no new problems
that require such mechanisms.

Finally, the implementation of resource pools instead of specific resources –e.g.
percentage of a cluster instead of specific resources– may help in the simplifi-
cation process of markets. In this thesis, we have seen that standard support
of the notion of pool of resources on parallel programming environments like
MapReduce can help to make scheduling decisions. In the advent of cloud
computing and network virtualization, the abstraction of pool of resource
could be translated into virtualized network resources –switches, links– and
include them on the market for scheduling decisions in coordination with a
pool of computing resources –CPU, memory, storage.

Bibliography

[1] James Edward Meade and Karin Hjertonsson. The Theory of Economic
Externalities: The Control of Environmental Pollution and Similar Social
Costs, volume 2. Brill Archive, 1973. (page 2)

[2] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir
Chatterjee. A design science research methodology for information
systems research. Journal of management information systems, 24(3):45–
77, 2007. (page 3)

[3] IE Sutherland. A futures market in computer time. Communications of
the ACM, 11(6):449–451, 1968. (page 5, 15)

[4] Norman R Nielsen. The allocation of computer resources—is pricing the
answer? Communications of the ACM, 13(8):467–474, 1970. (page 5,
15)

[5] Ian Foster. What is the grid?-a three point checklist. GRIDtoday, 1(6),
2002. (page 6)

[6] Andy Bavier, Mic Bowman, Brent Chun, David Culler, Scott Karlin,
Steve Muir, Larry Peterson, Timothy Roscoe, Tammo Spalink, and Mike
Wawrzoniak. Operating system support for planetary-scale network
services. In Proceedings of the 1st conference on Symposium on Networked
Systems Design and Implementation - Volume 1, pages 19–19, Berkeley,
CA, USA, 2004. USENIX Association. (page 7, 17, 30, 32)

[7] Global environment for network innovations, 2009. (page 7, 30)

[8] OneLab: Future Internet Test Beds, 2009. (page 7, 30)

129

130

[9] AKARI: Architecture Design Project for New Generation Network, 2008.
(page 7, 30)

[10] G. Hardin. The Tragedy of the Commons. Science, 162(3859):1243–1248,
1968. (page 9)

[11] Martin J Osborne. An introduction to game theory, volume 3. Oxford
University Press New York, 2004. (page 9)

[12] J.H. Kagel. Auctions: a survey of experimental research. Internation
Library of critical writings in Economics, 113:601–685, 2000. (page 12,
64)

[13] D. Friedman. The double auction market institution: A survey. The
Double Auction Market: Institutions, Theories, and Evidence, pages
3–25, 1993. (page 12, 63, 64)

[14] S. De Vries, R.V. Vohra, Center for Mathematical Studies in Economics,
and Management Science. Combinatorial auctions: A survey. INFORMS
Journal on Computing, 15(3):284–309, 2003. (page 12, 63, 64)

[15] Hesam Izakian, Ajith Abraham, and Vaclav Snasel. Comparison of
heuristics for scheduling independent tasks on heterogeneous distributed
environments. In Computational Sciences and Optimization, 2009. CSO
2009. International Joint Conference on, volume 1, pages 8–12. IEEE,
2009. (page 12, 64)

[16] David Abramson Rajkumar Buyya and Jonathan Giddy. An economy
driven resource management architecture for global computational power
grids. In PDPTA’00: Proceedings of the 7th International Conference
on Parallel and Distributed Processing Techniques and Applications, Las
Vegas, USA, June 2000. (page 15)

[17] R. Buyya and S. Venugopal. The gridbus toolkit for service oriented
grid and utility computing: an overview and status report. In 1st
IEEE International Workshop on Grid Economics and Business Models
(GECON’04), pages 19–66, April 2004. (page 15)

[18] R. Buyya, D. Abramson, and S. Venugopal. The grid economy. Proceed-
ings of the IEEE, 93(3):698–714, March 2005. (page 15)

131

[19] David Abramson, Rajkumar Buyya, and Jonathan Giddy. A computa-
tional economy for grid computing and its implementation in the nimrod-
g resource broker. Future Generation Computer Systems, 18(8):1061 –
1074, 2002. (page 16, 63)

[20] Jahanzeb Sherwani, Nosheen Ali, Nausheen Lotia, Zahra Hayat, and
Rajkumar Buyya. Libra: a computational economy-based job scheduling
system for clusters. Softw. Pract. Exper., 34(6):573–590, 2004. (page 16)

[21] Robert L. Henderson. Job scheduling under the portable batch system. In
IPPS ’95: Proceedings of the Workshop on Job Scheduling Strategies for
Parallel Processing, pages 279–294, London, UK, 1995. Springer-Verlag.
(page 16)

[22] Chee Shin Yeo and Rajkumar Buyya. Pricing for utility-driven resource
management and allocation in clusters. Int. J. High Perform. Comput.
Appl., 21(4):405–418, 2007. (page 16)

[23] Chee Shin Yeo and R. Buyya. Service level agreement based alloca-
tion of cluster resources: Handling penalty to enhance utility. IEEE
International Cluster Computing, 2005, pages 1–10, Sept. 2005. (page 16)

[24] Laura Grit, David Irwin, Aydan Yumerefendi, and Jeff Chase. Virtual
machine hosting for networked clusters: Building the foundations for
“autonomic” orchestration. In Proceedings of the 2nd International Work-
shop on Virtualization Technology in Distributed Computing (VTDC
’06), page 7, Washington, DC, USA, 2006. IEEE Computer Society.
(page 17, 62)

[25] Jeffrey S. Chase, David E. Irwin, Laura E. Grit, Justin D. Moore, and
Sara E. Sprenkle. Dynamic virtual clusters in a grid site manager. In
HPDC ’03: Proceedings of the 12th IEEE International Symposium on
High Performance Distributed Computing, page 90, Washington, DC,
USA, 2003. IEEE Computer Society. (page 17)

[26] Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and Amin Vahdat.
Sharp: an architecture for secure resource peering. SIGOPS Oper. Syst.
Rev., 37(5):133–148, 2003. (page 17, 38, 62)

132

[27] A. AuYoung, B.N. Chun, A.C. Snoeren, and A. Vahdat. Resource alloca-
tion in federated distributed computing infrastructures. In Proceedings
of the 1st Workshop on Operating System and Architectural Support for
the On-demand IT Infrastructure, 2004. (page 18, 63)

[28] Noam Nisan. Bidding and allocation in combinatorial auctions. In
Proceedings of the 2nd ACM conference on Electronic commerce (EC
’00), pages 1–12, New York, NY, USA, 2000. ACM. (page 18, 63)

[29] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Design and
implementation tradeoffs for wide-area resource discovery. In Proceed-
ings of the 14th IEEE International Symposium on High Performance
Distributed Computing (HPDC ’05), pages 113–124, Los Alamitos, CA,
USA, July 2005. IEEE Computer Society. (page 18, 54, 77)

[30] B.N. Chun, J. Ng, and D.C. Parkes. Computational resource exchanges
for distributed resource allocation. Technical report, Intel Research
Laboratory, Berkeley, 2004. (page 18, 38)

[31] D.C. Parkes, J. Kalagnanam, and M. Eso. Achieving budget-balance with
vickrey-based payment schemes in combinatorial exchanges. Technical
report, IBM, 2001. (page 18)

[32] Kevin Lai, Lars Rasmusson, Eytan Adar, Li Zhang, and Bernardo A.
Huberman. Tycoon: An implementation of a distributed, market-based
resource allocation system. Multiagent Grid Syst., 1(3):169–182, 2005.
(page 18, 63, 77)

[33] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O.
Kephart, and W. Scott Stornetta. Spawn: A distributed computational
economy. Software Engineering, IEEE Transactions on, 18(2):103–117,
1992. (page 19)

[34] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization.
In Proceedings of the nineteenth ACM symposium on Operating sys-
tems principles, pages 164–177. ACM Press New York, NY, USA, 2003.
(page 19)

133

[35] M. Feldman, K. Lai, and L. Zhang. A price-anticipating resource allo-
cation mechanism for distributed shared clusters. In Proceedings of the
6th ACM conference on Electronic commerce, pages 127–136. ACM New
York, NY, USA, 2005. (page 19, 45, 65, 71)

[36] Michal Feldman, Kevin Lai, and Li Zhang. The Proportional-Share
Allocation Market for Computational Resources. IEEE Transactions on
Parallel and Distributed Systems, 20(8):1075–1088, 2009. (page 19, 45,
87, 88, 95)

[37] F.I. Popovici and J. Wilkes. Profitable services in an uncertain world. Su-
percomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference,
pages 36–36, Nov. 2005. (page 19)

[38] R. Wolski, J.S. Plank, J. Brevik, and T. Bryan. G-commerce: Market
formulations controlling resource allocation on the computational grid.
Proceedings of the 15th International Parallel & Distributed Processing
Symposium table of contents, 2001. (page 20)

[39] David Hausheer and Burkhard Stiller. Decentralized auction-based
pricing with peermart. In 9th IFIP/IEEE International Symposium on
Integrated Network Management, 2005. (page 20)

[40] B. Chun and A. Vahdat. Workload and failure characterization on
a large-scale federated testbed. Intel Research Berkeley, Tech. Rep.
IRB-TR-03-040, 2003. (page 23, 54)

[41] D. Oppenheimer, B. Chun, D. Patterson, A.C. Snoeren, and A. Vahdat.
Service placement in shared wide-area platforms. In Proceedings of the
twentieth ACM symposium on Operating systems principles, page 1.
ACM, 2005. (page 23, 54)

[42] Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Using planetlab
for network research: myths, realities, and best practices. SIGOPS Oper.
Syst. Rev., 40(1):17–24, 2006. (page 23, 54)

[43] Mark EJ Newman. Power laws, pareto distributions and zipf’s law.
Contemporary physics, 46(5):323–351, 2005. (page 24)

134

[44] K.S. Park and V.S. Pai. CoMon: a mostly-scalable monitoring system
for planetlab. ACM SIGOPS Operating Systems Review, 40(1):65–74,
2006. (page 33, 59, 77)

[45] Xavier León, Tuan Anh Trinh, and Leandro Navarro. Using economic
regulation to prevent resource congestion in large-scale shared infras-
tructures. Future Generation Computer Systems, 26(4):599 – 607, 2010.
(page 37, 38, 55)

[46] M.J. Freedman, C. Aperjis, and R. Johari. Prices are right: Manag-
ing resources and incentives in peer-assisted content distribution. In
IPTPS’08: Proceedings of the 7th Internation Workshop in Peer-to-Peer
Systems, Tampa Bay, Florida, USA, January 2008. (page 37)

[47] B. Cohen. Incentives build robustness in bittorrent. In Workshop on
Economics of Peer-to-Peer Systems, volume 6. Berkeley, CA, USA, 2003.
(page 38)

[48] J. Albrecht, D. Oppenheimer, A. Vahdat, and D.A. Patterson. Design
and implementation trade-offs for wide-area resource discovery. ACM
Transactions on Internet Technology (TOIT), 8(4):1–44, 2008. (page 40)

[49] The Raven Provisioning Service, 2009. Raven Consortium funded by
the GENI initiative. (page 40)

[50] W.N. Venables and B.D. Ripley. Modern applied statistics with S.
Springer verlag, 2002. (page 42, 83)

[51] D. Kwiatkowski, P.C.B. Phillips, P. Schmidt, and Y. Shin. Testing the
null hypothesis of stationarity against the alternative of a unit root.
Journal of econometrics, 54(1-3):159–178, 1992. (page 46)

[52] J.V. Bradley. Distribution-free statistical tests. Prentice-Hall Englewood
Cliffs, NJ, 1968. (page 47)

[53] S. Bani-Ahmad, A. Cakmak, G. Ozsoyoglu, and A. Al-Hamdani. Evaluat-
ing Publication Similarity Measures. IEEE Data Eng. Bull, 28(4):21–28,
2005. (page 50)

[54] D.A. Menasce and V.A.F. Almeida. Capacity planning for Web services:
metrics, models, and methods. Prentice Hall PTR, 2002. (page 51)

135

[55] Limin Wang, Kyoung Soo Park, Ruoming Pang, Vivek Pai, and Larry
Peterson. Reliability and security in the codeen content distribution
network. In ATEC ’04: Proceedings of the annual conference on USENIX
Annual Technical Conference, pages 14–14, Berkeley, CA, USA, 2004.
USENIX Association. (page 52)

[56] H.V. Madhyastha, A. Venkataramani, A. Krishnamurthy, and T. Ander-
son. Oasis: An overlay-aware network stack. ACM SIGOPS Operating
Systems Review, 40(1):48, 2006. (page 52)

[57] A. Verma, G. Dasgupta, T. Nayak, P. De, and R. Kothari. Server
workload analysis for power minimization using consolidation. In Usenix
ATC, 2009. (page 55)

[58] I. Foster et al. The grid2003 production grid: Principles and practice.
High-Performance Distributed Computing, International Symposium on,
0:236–245, 2004. (page 55)

[59] Tobias Scholl, Bernhard Bauer, Benjamin Gufler, Richard Kuntschke, An-
gelika Reiser, and Alfons Kemper. Scalable community-driven data shar-
ing in e-science grids. Future Generation Computer Systems, 25(3):290 –
300, 2009. (page 58)

[60] Marc Sànchez-Artigas and Pedro Garćıa-López. escigrid: A p2p-based
e-science grid for scalable and efficient data sharing. Future Generation
Computer Systems, In Press, Corrected Proof:–, 2009. (page 58)

[61] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman. Planetlab: an overlay testbed for broad-coverage
services. ACM SIGCOMM Computer Communication Review, 33(3):3–
12, 2003. (page 58)

[62] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar.
An integrated experimental environment for distributed systems and
networks. In Proceedings of the Fifth Symposium on Operating Systems
Design and Implementation, pages 255–270, Boston, MA, December
2002. USENIX Association. (page 58)

[63] G. Hardin. The tragedy of the commons. Science, 162(3859):1243–1248,
1968. (page 59)

136

[64] J. Peek, T. O’Reilly, M.K. Loukides, and L. Mui. UNIX power tools.
O’Reilly, 1997. (page 60)

[65] M.L. Pinedo. Scheduling: theory, algorithms and systems. Springer,
2008. (page 62)

[66] Saurabh Kumar Garg, Rajkumar Buyya, and Howard Jay Siegel. Time
and cost trade-off management for scheduling parallel applications on
utility grids. Future Generation Computer Systems, In Press, Corrected
Proof, 2009. (page 63)

[67] C.A. Waldspurger. Lottery and Stride Scheduling: Flexible Proportional-
Share Resource Management. PhD thesis, Massachusetts Institute of
Technology, 1995. (page 65, 86)

[68] Young Jin Nam and Chanik Park. Design and evaluation of an effi-
cient proportional-share disk scheduling algorithm. Future Generation
Computer Systems, 22(5):601 – 610, 2006. (page 65, 86)

[69] Chunlin Li and Layuan Li. Competitive proportional resource allocation
policy for computational grid. Future Generation Computer Systems,
20(6):1041 – 1054, 2004. Computational science of lattice Boltzmann
modelling. (page 65)

[70] Thomas Sandholm. Statistical Methods for Computational Markets.
Doctoral Thesis ISRN SU-KTH/DSV/R–08/6–SE. Royal Institute of
Technology, Stockholm, 2008. (page 67)

[71] C. Caux. Neural networks applied on identification of ship motions.
In Proceedings of the International Conference on Marine Simulation
and Ship Manoeuvrability (MARSIM’96), Copenhagen, Denmark, 9-13
September, page 577. Taylor & Francis, 1996. (page 69)

[72] P. Vytelingum, D. Cliff, and NR Jennings. Strategic bidding in contin-
uous double auctions. Artificial Intelligence, 172(14):1700–1729, 2008.
(page 69)

[73] A Barmouta and R Buyya. Gridbank: a grid accounting services ar-
chitecture (gasa) for distributed systems sharing and integration. In
Proceedings of the 17th Parallel and Distributed Processing Symposium
(IPDPS’03), page 8, April 2003. (page 77)

137

[74] Xavier León and Leandro Navarro. Currency management system: a
distributed banking service for the grid. Technical Report UPC-DAC-
RR-XCSD-2007-6, Universitat Politècnica de Catalunya, Spain, July
2007. (page 77)

[75] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 149–
160. ACM New York, NY, USA, 2001. (page 77)

[76] R. Brunner, F. Freitag, and L. Navarro. Towards the development of a
decentralized market information system: Requirements and architecture.
In IEEE International Symposium on Parallel and Distributed Processing
(IPDPS 08), pages 1–7, April 2008. (page 77)

[77] Urs Hoelzle and Luiz Andre Barroso. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines. Morgan
and Claypool Publishers, 2009. (page 82)

[78] Spec power benchmarks, 2010. (page 83)

[79] K. Jeffay, F. D. Smith, A. Moorthy, and J. Anderson. Proportional
Share Scheduling of Operating System Services for Real-Time Applica-
tions. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS
’98), page 480, Washington, DC, USA, 1998. IEEE Computer Society.
(page 86)

[80] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and
the art of virtualization. In SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages 164–177, New
York, NY, USA, 2003. ACM. (page 86)

[81] D. Fudenberg and J. Tirole. Game Theory MIT Press. Cambridge, MA,
1991. (page 86)

[82] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transparent
migration for virtual machines. In ATEC ’05: Proceedings of the an-
nual conference on USENIX Annual Technical Conference, pages 25–25,
Berkeley, CA, USA, 2005. USENIX Association. (page 88)

138

[83] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration
of virtual machines. In NSDI’05: Proceedings of the 2nd conference
on Symposium on Networked Systems Design & Implementation, pages
273–286, Berkeley, CA, USA, 2005. USENIX Association. (page 88)

[84] Michael R. Hines and Kartik Gopalan. Post-copy based live virtual ma-
chine migration using adaptive pre-paging and dynamic self-ballooning.
In VEE ’09: Proceedings of the 2009 ACM SIGPLAN/SIGOPS interna-
tional conference on Virtual execution environments, pages 51–60, New
York, NY, USA, 2009. ACM. (page 88)

[85] Shingo Takeda and Toshinori Takemura. A rank-based vm consolidation
method for power saving in datacenters. IPSJ Online Transactions,
3:88–96, 2010. (page 102)

[86] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pmapper: power and
migration cost aware application placement in virtualized systems. In
Middleware ’08: Proceedings of the 9th ACM/IFIP/USENIX Interna-
tional Conference on Middleware, pages 243–264, New York, NY, USA,
2008. Springer-Verlag New York, Inc. (page 102)

[87] Kiril Schröder, Daniel Schlitt, Marko Hoyer, and Wolfgang Nebel. Power
and cost aware distributed load management. In e-Energy ’10: Proceed-
ings of the 1st International Conference on Energy-Efficient Computing
and Networking, pages 123–126, New York, NY, USA, 2010. ACM.
(page 102)

[88] Gergely Biczók, László Toka, András Gulyás, Tuan A. Trinh, and Attila
Vidács. Incentivizing the global wireless village. Computer Networks,
55(2):439 – 456, 2011. ¡ce:title¿Wireless for the Future Internet¡/ce:title¿.
(page 102)

[89] Beibei Wang, Zhu Han, and K.J.R. Liu. Distributed relay selection
and power control for multiuser cooperative communication networks
using buyer/seller game. In INFOCOM 2007. 26th IEEE International
Conference on Computer Communications. IEEE, pages 544 –552, may
2007. (page 103)

139

[90] Matthew Andrews, Antonio Fernández Anta, Lisa Zhang, and Wenbo
Zhao. Routing for energy minimization in the speed scaling model.
In INFOCOM’10: Proceedings of the 29th conference on Information
communications, pages 2435–2443, Piscataway, NJ, USA, 2010. IEEE
Press. (page 103)

[91] Matthew Andrews, Antonio Fernández Anta, Lisa Zhang, and Wenbo
Zhao. Routing and scheduling for energy and delay minimization in the
powerdown model. In INFOCOM’10: Proceedings of the 29th conference
on Information communications, pages 21–25, Piscataway, NJ, USA,
2010. IEEE Press. (page 103)

[92] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy,
and David Wetherall. Reducing network energy consumption via sleeping
and rate-adaptation. In NSDI’08: Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation, pages
323–336, Berkeley, CA, USA, 2008. USENIX Association. (page 103)

[93] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107–113,
2008. (page 106, 108)

[94] Luiz André Barroso and Urs Hölzle. The datacenter as a computer:
An introduction to the design of warehouse-scale machines. Synthesis
Lectures on Computer Architecture, 4(1):1–108, 2009. (page 106)

[95] M Mustafa Rafique, Benjamin Rose, Ali R Butt, and Dimitrios S
Nikolopoulos. Cellmr: A framework for supporting mapreduce on asym-
metric cell-based clusters. In Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pages 1–12. IEEE,
2009. (page 108)

[96] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K Govindaraju, and
Tuyong Wang. Mars: a mapreduce framework on graphics processors. In
Proceedings of the 17th international conference on Parallel architectures
and compilation techniques, pages 260–269. ACM, 2008. (page 108)

[97] Tom White. Hadoop: The definitive guide. O’Reilly Media, 2012.
(page 108)

140

[98] Rini T Kaushik and Milind Bhandarkar. Greenhdfs: Towards an energy-
conserving storage-efficient, hybrid hadoop compute cluster. In Pro-
ceedings of the USENIX Annual Technical Conference, 2010. (page 109,
122)

[99] Jacob Leverich and Christos Kozyrakis. On the energy (in) efficiency of
hadoop clusters. ACM SIGOPS Operating Systems Review, 44(1):61–65,
2010. (page 109, 122)

[100] Willis Lang and Jignesh M Patel. Energy management for mapreduce
clusters. Proceedings of the VLDB Endowment, 3(1-2):129–139, 2010.
(page 109, 122)

[101] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-
egy, Scott Shenker, and Ion Stoica. Job scheduling for multi-user mapre-
duce clusters. Technical Report UCB/EECS-2009-55, EECS Department,
University of California, Berkeley, Apr 2009. (page 118)

[102] Thomas Sandholm and Kevin Lai. Mapreduce optimization using regu-
lated dynamic prioritization. In 11th international conference on Mea-
surement and modeling of computer systems, SIGMETRICS ’09, pages
299–310, New York, NY, USA, 2009. ACM. (page 122)

[103] T. Sandholm and K. Lai. Dynamic proportional share scheduling in
Hadoop. In Job Scheduling Strategies for Parallel Processing, pages
110–131. Springer, 2010. (page 122)

[104] Jorda Polo, David Carrera, Yolanda Becerra, Jordi Torres, Eduard
Ayguadé, Malgorzata Steinder, and Ian Whalley. Performance-driven
task co-scheduling for mapreduce environments. In Network Operations
and Management Symposium (NOMS), 2010 IEEE, pages 373–380.
IEEE, 2010. (page 123)

[105] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E
Gruber. Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):4, 2008. (page 123)

	List of Publications
	Introduction
	Foundation
	Scenarios of shared infrastructures
	Economic principles for computational markets

	State of the art
	Summary of contributions
	Modeling resource usage: PlanetLab's case study
	Introduction
	Overview of PlanetLab
	Data set description

	Measurement of Global Phenomena
	Im/balance Between Resource Consumption and Contribution
	Degree of Reciprocity in Resource Exchanges
	Resource Selection Impact

	Resource Usage of Slices
	Short-term Distribution of Resource Usage
	Temporal dynamics of resource usage
	Duration of Experiments

	Related Work
	Conclusions

	Economic regulation to reduce resource congestion
	Introduction
	Motivation and problem statement
	Related work
	System Model
	Proportional share allocation
	Metrics

	Design of the currency management system
	Performance Analysis
	Discussion
	Conclusions

	Stackelberg game to derive energy limits
	Introduction
	Model
	Energy consumption model
	Resource allocation model

	Stackelberg competition model
	User model
	Restrictions
	User best response algorithm
	Provider model
	Restrictions
	Provider best response algorithm

	Strategies with incomplete information
	Experimental results
	Metrics
	Impact of user budgets
	Variable number of users
	Impact of users heterogeneity

	Related Work
	Conclusion

	Incentives for dynamic, energy-aware capacity allocation
	Introduction
	Background
	Dynamic allocation based on incentives
	Design Goal
	System model
	Making private information explicit through incentives

	Algorithms behind the scenes
	Evaluation
	Related work
	Conclusions

	Conclusions
	Bibliography

