
UNIVERSITAT POLITÈCNICA DE CATALUNYA

DEPARTMENT OF COMPUTER ARCHITECTURE

File System Metadata Virtualization
by Ernest Artiaga i Amouroux

Advisor: Toni Cortés Rosselló

A dissertation submitted in partial fulfilment of the
requirements for the degree of

Doctor per la Universitat Politècnica de Catalunya

File System Metadata Virtualization

Abstract:
The advance of computing systems has brought new ways to use and access

the stored data that push the architecture of traditional file systems to its limits,
making them inadequate to handle the new needs. Current challenges affect
both the performance of high-end computing systems and the usability of
general-purpose personal computing systems.

One of the elements that limit the usability of file systems is the exposure
of their internal organization through rigid name spaces, that usually reflect
how data is actually stored in the underlying media. Users must know and
understand the nuts and bolts of specific storage systems in order to achieve
good results, receiving the burden of taking into account the complexities and
restrictions of the new environments.

This burden can be alleviated by providing dynamic, flexible name spaces
adapted to specific application needs, instead of representing how data is
stored in the underlying storage systems.

This thesis contributes to the goal above by proposing a mechanism to
decouple the user view of the storage from its underlying structure. This
mechanism consists in the virtualization of file system metadata and the intro-
duction of a sensible layer able to take automatic decisions on where and how
the files should be stored in order to take advantage of the underlying storage
system features.

More specifically, the first contribution of this thesis is the design of a
metadata virtualization framework which is able to produce consistent and
flexible views of a file system, independently from the actual underlying data
organization. The second contribution consists in using this framework to
alleviate the complex file system tuning requirements in high-performance
environments. Finally, The third contribution of this thesis consists in applying
the metadata virtualization principles to provide an ubiquity layer for cloud
storage systems that extends the cloud-awareness to the whole file system,
making it independent from the directory where the cloud-related files reside.

Keywords:
File system virtualization, file system metadata, parallel file systems, cloud

storage, name spaces.

Place and date:
Barcelona. October, 2013

Funding:
This work was partially supported by Spanish MECD under grants

TIN2007-60625 and TIN2012-34557, and the Catalan Government under the
2009-SGR-980 grant. Part of the research leading to the presented results has
also received funding from the EU IST program as part of the XtreemOS
project (contract FP6-033576) and the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement RI-283493, as part
of the PRACE-2IP project.

Infrastructure:
Part of the research in this thesis has been possible thanks to the high-

performance computing infrastructures kindly provided by the Barcelona
Supercomputing Center (BSC), the Partnership for Advanced Computing in
Europe (PRACE) and the Lawrence-Livermore National Laboratory (LLNL)
via the Hyperion Project; additionally, part of the works in this thesis have
made use of the computing infrastructure of the Department of Computer
Architecture at the Technical University of Catalonia (DAC-UPC). I sincerely
acknowledge their support.

Acknowledgements
This thesis is part of a long path that started many years ago, and I have met many

people that have supported me along the way and helped me in critical moments. All
of them have contributed in some way to this work, I sincerely acknowledge their part
in the effort.

Specially, I would like to thank Mateo Valero for giving me the opportunity of
working at BSC since its beginning and dedicating these last years to research. Thanks
to that, I have had access to both the people and the technological resources that have
enabled me to pursue my PhD. I would not be finishing my thesis now without his
support.

All journeys have a start, and I would not have reached this point without the
continuous support of Pep Fuertes. He was the person that many years ago started
to push me into the world of research, and trusted me even before I finished my
Computer Science courses at University. I have learned many valuable things from
him, and I owe many of my achievements to his advice, encouragement and friendship
during all these years.

The day to day efforts leading to my PhD have been assisted by Toni Cortés who,
despite knowing me, accepted to be my advisor. His vision and wisdom have indeed
contributed to the happy ending of my PhD, and his friendliness and optimism have
created a wonderful and interesting place to work.

I want to thank the current and former members of the Storage Systems Research
Group at BSC for being a wonderful team to work in. I have received many useful
inputs from them. In particular, Jonathan Martí, Jan Wiberg, Juan González de Benito
and Thanos Makatos have had an important participation in the technical aspects
related to this thesis. I must specially mention Alberto Miranda, whose abilities and
curiosity make of him an amazing source of information and technical knowledge,
apart from a nice colleague to work with.

The use of the supercomputing infrastructures required for the present work has
been greatly facilitated by the Operations team at BSC. I really appreciate the help
from the system administrators and the support team to prepare the rather uncon-
ventional setups required for my experiments. I specially want to thank to Javier
Bartolomé, David Vicente, Sergi Moré, Jordi Valls and Albert Benet their readiness
to collaborate, and the help of Ferran Sellés, Toni Espinar, Pedro Gómez and Albert
Riera to solve any issues in the working environment.

I want to mention the people from the Operating Systems Group at the Depart-
ment of Computer Architecture who shared my first steps (and specially Xavier
Martorell, whom I honestly admire for his ability to comprehend all aspects of a
system at any arbitrary level of detail). Since then, a lot of people from the Depart-
ment of Computer Architecture at UPC and from the BSC have made my life easier
by sharing their knowledge, but also breakfasts, coffees, meals and discussions about
spherical cows. I am afraid that the list is too long to mention you all, but I really
appreciate your company. I specially want to thank David Carrera, Marc González

vi

and Anna Queralt for consistently being able to cast away any worries during lunch
times.

I have a very long list of reasons to say thanks to Yolanda Becerra, and excellent
colleague and good friend since school time. She has that rare quality of being reliable
on good and bad times, and so many times she has helped me to stay focused during
trouble. Thanks for always being there!

I also want to thank my friends for helping me to have a life outside the work.
Specially Pedro, Oriol, Maria José, Rosa, Sandra and Nacho who, even when life makes
it difficult to meet often, continue being great friends.

And I cannot forget my family for being by my side at all times. Specially my
uncles, my cousins (Edu, Anna and Núria) and my new family in Granada (Manolo
and Ana). Above all, I want to thank my mother, Pilar, for always being caring and
teaching me everything I needed to prepare for life, and to my grandmother, Carmen,
who would have enjoyed seeing this work finished.

Finally, I want to thank Pili, my wife, for her sustained support during all these
years, for her patience and for making my life a happier place. Her energy has always
inspired me to go on. Thanks for sharing your life with me!

Agraïments
Aquesta tesi és part d’un llarg camí que va començar fa molts anys, durant el qual

he trobat a molta gent que m’ha anat ajudant, especialment en els moments crítics.
Tots ells han aportat d’alguna forma el seu gra de sorra a aquest treball i desitjo
agraïr-los sincerament la seva contribució.

En particular, m’agradaria agrair a Mateo Valero que em donés l’oportunitat de
treballar al BSC des de la seva creació i poder dedicar aquests últims anys a la recerca.
Gràcies a això he pogut tenir accés tant a la gent com als recursos tecnològics que
m’han permès fer el doctorat. Sense el seu suport, no estaria ara escrivint aquestes
línies.

Tots els camins tenen un començament, i no hauria arribat a aquest moment sense
el suport continu d’en Pep Fuertes. Ell va ser la persona que, fa molts anys, em va
introduir en el món de la recerca, confiant en mi fins i tot abans que acabés la carrera
d’Informàtica. He tingut la sort de poder aprendre moltes coses d’ell, i moltes de les
coses que he aconseguit fer les dec al seus consells, el seu suport i la seva amistat
durant tots aquests anys.

Els esforços del dia a dia que han portat a la conclusió del meu doctorat han estat
guiats per en Toni Cortés qui, tot i que em coneixia, va acceptar dirigir-me la tesi. La
seva visió de la tecnologia i la seva experiència han contribuït de forma decisiva a que
el meu doctorat tingués un bon final; la seva amistat i el seu optimisme han creat un
espai interessant per treballar-hi.

Vull agrair als membres i ex-membres del Storage Systems Research Group del BSC
per haver format un equip fantàstic. D’ells he rebut moltes aportacions. En particular,
en Jonathan Martí, en Jan Wiberg, en Juan González de Benito i en Thanos Makatos
han tingut una participació destacada en els aspectes tècnics relacionats amb aquesta
tesi. Vull mencionar també de forma especial a l’Alberto Miranda, les habilitats i la
curiositat del qual el converteixen en una increïble font d’informació i coneixements
tècnics, a més d’un bon company de feina.

L’ús de les infraestructures de supercomputació requerides per a aquest treball
ha estat enormement facilitat pel grup d’Operacions al BSC. Agraeixo sincerament
els esforços dels administradors de sistemes i l’equip de suport per preparar les poc
convencionals configuracions que necessitaven els meus experiments. Vull mencionar
especialment al Javier Bartolomé, en David Vicente, en Sergi Moré, en Jordi Valls i
l’Albert Benet la seva disposició a col·laborar, i l’ajuda d’en Ferran Sellés, en Toni
Espinar, en Pedro Gómez i l’Albert Riera per sol·lucionar qualsevol problema al lloc
de treball.

Vull mencionar als membres del Grup de Sistemes Operatius del Departament
d’Arquitectura de Computadors que van veure les meves primeres passes (especial-
ment a en Xavier Martorell, a qui admiro per la seva capacitat de copsar tots els
aspectes d’un sistema a tots els nivells de detall). Des de llavors, molta gent del De-
partament d’Arquitectura de Computadors a la UPC i del BSC han fet la meva vida
més senzilla i agradable compartint tant els seus coneixements com esmorzars, cafès,

viii

dinars i discussions sobre vaques esfèriques i altres amenitats. Em temo que la llista
seria massa llarga per mencionar-vos a tots, però us vull dir que aprecio sincerament
la vostra companyia. Vull agrair especialment al David Carrera, en Marc González i
l’Anna Queralt la seva contrastada capacitat per fer desaparèixer les preocupacions
durant els dinars.

Tinc una llista molt llarga de raons per estar agraït a la Yolanda Becerra, una
excell·lent companya de feina i bona amiga des de l’escola. Ella és una d’aquelles
persones en qui he pogut confiar tant en els bons temps com en els no tan bons, i ha
estat un punt de referència en els moments complicats. Gràcies per no fallar mai!

També vull agrair els meus amics per ajudar-me a tenir una vida fora de la feina.
Vull mencionar especialment al Pedro, l’Oriol, la Maria José, la Rosa, la Sandra i en
Nacho, que segueixen sent grans amics, fins i tot quan les circumstàncies fan que sigui
difícil que ens veiem més sovint.

I no puc oblidar la meva família, a qui sempre he tingut al costat. Especialment
els meus oncles i els meus cosins (l’Edu, l’Anna i la Núria), i la meva nova família a
Granada (Manolo i Ana). I sobre tot, vull agrair a la meva mare, Pilar, per preocupar-
se sempre per mi i ensenyar-me tot el que he necessitat per a poder fer la meva vida;
i a la meva àvia, Carmen, a qui hauria fet il·lusió veure el final d’aquest treball.

Finalment, vull agrair a la Pili el seu suport durant tots aquests anys, la seva
paciència, i el fet d’haver aconseguit fer de la meva vida un lloc més feliç. La seva
il·lusió i la seva energia m’han donat forces per seguir sempre endavant. Gràcies per
compartir la teva vida amb mi!

Contents

Abstract . i
Funding and Infrastructure . iii
Acknowledgements . v
Agraïments . vii
Table of Contents . ix
List of Figures . xiii
List of Tables . xv
Terms and Abbreviations . xvii
Units . xix

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3

1.2.1 Metadata virtualization framework 3
1.2.2 Improved metadata service for large-scale file systems 3
1.2.3 Transparent ubiquity layer for cloud storage 4

1.3 Organization of the document . 5

2 Technological Background 7
2.1 Introduction . 7
2.2 Classical file system structure . 8
2.3 Distributed storage . 11
2.4 Metadata issues . 14
2.5 Layered architectures . 15

3 The Approach: Metadata Virtualization 17
3.1 Introduction . 17

3.1.1 The case for multiple views . 18
3.1.2 The need of seamless system integration 20
3.1.3 Previous approaches . 21

3.2 The overall concept . 22
3.2.1 Design principles . 23
3.2.2 Enabling technologies . 24

3.3 Architecture . 26
3.3.1 Extending a traditional file system 26
3.3.2 Introducing a metadata file system layer 29

3.4 Terminology . 32
3.5 Practical applicability aspects . 32

3.5.1 Dealing with underlying file system information 33
3.5.2 System-specific identifiers . 34
3.5.3 Using databases for metadata storage 36

x Contents

3.5.4 Metadata volatility . 37
3.5.5 Metadata caching . 38
3.5.6 Metadata represented as active objects 39
3.5.7 Stateless large directory handling 42
3.5.8 Coordinating distributed file creation 46
3.5.9 Kernel vs. user-space implementations 48

3.6 Summary . 48

4 Virtualized Metadata Management for Large-Scale File Systems 49
4.1 Introduction . 49

4.1.1 Motivation . 49
4.1.2 Approach . 51

4.2 Case study . 51
4.2.1 Execution environments . 52
4.2.2 Base system behaviour at Nord . 54
4.2.3 Base system behaviour at MareNostrum 56
4.2.4 Lessons learned . 58

4.3 Prototype implementation . 60
4.3.1 Design aspects . 61
4.3.2 Architecture . 62
4.3.3 Implementation details . 64
4.3.4 Potential technology limitations 76

4.4 Evaluation . 77
4.4.1 Metadata performance on GPFS at Nord 78
4.4.2 Metadata performance on GPFS at MareNostrum 87
4.4.3 Metadata performance on Lustre at INTI cluster 89
4.4.4 Summary . 98

4.5 Conclusion . 99

5 Name Space Virtualization to Improve Usability 101
5.1 Introduction . 101
5.2 Approach . 103

5.2.1 Decoupling virtual name space from physical layout 103
5.2.2 Structure of the virtualization layer 105
5.2.3 Design decisions . 106

5.3 Implementation aspects . 108
5.3.1 Common implementation aspects 108
5.3.2 Windows-specific implementation details 109
5.3.3 Linux-specific implementation details 113

5.4 Outcome . 116
5.5 Extensions . 119
5.6 Conclusion . 119

Contents xi

6 Related Work 121
6.1 Related work . 121

6.1.1 Metadata management . 121
6.1.2 Parallel file systems . 123
6.1.3 Metadata consistency . 124
6.1.4 File organization versus low-level file system layout 125
6.1.5 Virtualization . 127
6.1.6 Issues on large-scale file systems 128
6.1.7 Cloud storage . 128
6.1.8 Implementation techniques . 129

7 Conclusion 131
7.1 Conclusion . 131
7.2 Open research areas . 132

Bibliography 135

Index 143

List of Figures

2.1 Basic file system structure. 9
2.2 Distributed file system architecture. 13

3.1 Example of variation in the operation rates for parallel file creation at
MareNostrum, depending on files being organized in a shared directory
or in separated directories dedicated to each participating process. . . . 19

3.2 Example of directory-based feature variations: the location of a file in
the hierarchical tree determines if a particular file is encrypted, if its
made available through a remote file server (share) or kept local in the
user’s workstation documents folder. 20

3.3 Extending a basic file system for decoupled metadata management. . . 27
3.4 Deploying a Metadata Virtualization Layer. 30
3.5 Hash-based directory partitioning schema for stateless listing. 44

4.1 Effect of the number of entries in a directory in IBM GPFS at Nord,
using 1 and 2 processes in a single node. 54

4.2 Base parallel metadata behaviour of IBM GPFS at Nord, using 1 and 2
processes per node. 55

4.3 Variation of utime operation cost in IBM GPFS in a single node at
MareNostrum with respect to the number of entries, using 1 process. . 57

4.4 Comparison of parallel utime cost in IBM GPFS at MareNostrum on
shared and non-shared directories, using 1 process and 1,024 files per
node. 58

4.5 Comparison of parallel create cost in IBM GPFS at MareNostrum on
shared and non-shared directories, using 1 process and 1,024 files per
node. 59

4.6 COFS components. 63
4.7 COFS setup for distributed environments. 64
4.8 Effects on the create time in a shared directory of the COFS virtualiza-

tion layer over IBM GPFS, using 1 process per node at Nord. 79
4.9 Effects on the stat time in a shared directory of the COFS virtualization

layer over IBM GPFS, using 1 process per node at Nord. 80
4.10 Effects on the utime time in a shared directory of the COFS virtualiza-

tion layer over IBM GPFS, using 1 process per node at Nord. 80
4.11 Changes in stat time in a shared directory for several COFS configu-

rations, using 8 nodes and 1 process per node at Nord. 81
4.12 Operation time on a shared directory at Nord with 256 files per node,

using 64 nodes and 1 process per node. 82
4.13 Consecutive (serial) read performance comparison between IBM GPFS

and COFS over IBM GPFS at Nord, using 1 process per node. 85

xiv List of Figures

4.14 Consecutive (serial) write performance comparison between IBM GPFS
and COFS over IBM GPFS at Nord, using 1 process per node. 86

4.15 Parallel create improvements of COFS over IBM GPFS, using 1,024 files
per node in a shared directory at MareNostrum, with 1 process per node. 88

4.16 Parallel utime scalability using COFS over IBM GPFS, using 1,024 files
per node in a shared directories at MareNostrum, with 1 process per
node. 89

4.17 Cost of create on a shared directory in a single Lustre node, using 1
and 8 processors at INTI. 90

4.18 Cost of utime on a shared directory in a single Lustre node, using 1 and
8 processors at INTI. 91

4.19 Cost of parallel create in a shared directory at INTI from multiple
Lustre nodes, using 1 and 8 processes per node. 92

4.20 Cost of parallel utime in a shared directory at INTI from multiple Lustre
nodes, using 1 and 8 processes per node. 93

4.21 Shared directory contention on Lustre create operations at INTI, creat-
ing 1,024 files per node and using 8 processes per node (128 files per
process). 94

4.22 Shared directory contention on Lustre stat and utime operations at
INTI, accessing 1,024 files per node and using 8 processes per node
(128 files per process). 95

4.23 Lustre open operation scalability in a shared directory at INTI with 1,024
files per node, using 1 and 8 processes per node. 96

4.24 Parallel create performance on shared directories using COFS over
Lustre at INTI, with 1,024 files per node and 8 processes per node (128
files per process). 97

4.25 Parallel open performance on shared directories using COFS over Lustre
at INTI, with 1,024 files per node and 8 processes per node (128 files
per process). 98

5.1 Relation between a physical (top) and a virtual (bottom) name space. . 104
5.2 Architecture of the Metadata Virtualization Layer. 106
5.3 Microsoft Windows I/O subsystem components. 109
5.4 Virtualization path in a Microsoft Windows environment. 111
5.5 Virtualization path in a Linux environment. 114
5.6 Example of a traditional file system organization. 116
5.7 Example of a flexible organization enabled by the metadata virtualiza-

tion framework. 117
5.8 Screenshot from the Windows prototype of the metadata virtualization

framework. 118

List of Tables

4.1 FUSE callbacks (version 2.6) . 66
4.2 Fields of the Inode table in the Mnesia Metadata Server 70
4.3 Fields of the FileLocation table in the Mnesia Metadata Server 70
4.4 Fields of the SymbolicLink table in the Mnesia Metadata Server 70
4.5 Fields of the ITree table in the Mnesia Metadata Server 71
4.6 Impact of COFS on data transfers, depending on use pattern 84

Terms and Abbreviations

API Application Programming Interface.

BSC Barcelona Supercomputing Center.

CD Compact Disc.
CEA Commissariat à l’énergie atomique et aux énergies alternatives.
CIFS Common Internet File System protocol.
COFS COmposite File System.

DAS Directly-Attached Storage.
DEISA Distributed European Infrastructure for Supercomputing

Applications.

EPO European Patent Office.
Ext3 Third Extended Filesystem.
Ext4 Fourth Extended Filesystem.

FAT File Allocation Table.
FUSE Filesystem in USErspace.

GPFS General Parallel File System.

Hadoop High-Availability Distributed Object-Oriented Platform.
hFS Hybrid File System.
HPC High-Performance Computing.

I/O Input/Output.
IBM International Business Machines.
INTI Computing cluster at CEA (128 nodes - 1,024 cores).
IOR Interleaved Or Random I/O benchmark.
IP Internet Protocol.
IRP Input/Output Request Packet.
iSCSI Internet Small Computer System Interface.

LFS Log-structured File System.
LLNL Lawrence-Livermore National Laboratory.

MareNostrum Supercomputer at BSC (2,560 nodes - 10,240 cores).
MDT Metadata Target.
MFS Multi-structured File System.
MFT Master File Table.
MPI Message Passing Interface.
MPI-IO Message Passing Interface I/O management abstractions.

xviii Terms and Abbreviations

NAS Network-Attached Storage.
NCAR National Center for Atmospheric Research.
NFS Network File System.
NFSv4 Network File System, Version 4.
Nord Computing cluster at BSC (70 nodes - 140 cores).
NTFS New Technology File System.

OBFS OSD-Based File System.
OS Operating System.
OSD Object Storage Device.
OSR Open Systems Resources, Inc.
OTP Open Telecom Platform Framework.

PLFS Parallel Log-structured File System.
pNFS Parallel Network File System.
POSIX Portable Operating System Interface.
PRACE-2IP Partnership for Advanced Computing in Europe, Second

Implementation Phase.
PVFS Parallel Virtual File System.
PVFSv2 Parallel Virtual File System, Version 2.

QDR Quad Data Rate.

RAIF Redundant Array of Independent Filesystems.
RAM Random-Access Memory.

SAN Storage Area Network.
SDSC San Diego Supercomputer Center.
SMB Server Message Block protocol.
SRB Storage Resource Broker.
SSL Secure Socket Layer.
SSU Lustre Scalable Storage Unit.

TSS Tactical Storage System.

UCAR University Corporation for Atmospheric Research.
ULS User-Level Service.
USB Universal Serial Bus.

VFS Virtual Filesystem Switch.

Units

Bandwidth
Gbps gigabits per second.
MB/s megabytes per second.

Frequency
GHz gigaherz.

Storage
b bit.
GiB gibibyte.
KiB kibibyte.
MiB mebibyte.

Time
ms millisecond.

First things first, but not necessarily in that order.
(The Doctor)

Chapter 1

Introduction

Contents
1.1 Motivation . 1
1.2 Contributions . 3

1.2.1 Metadata virtualization framework 3
1.2.2 Improved metadata service for large-scale file systems 3
1.2.3 Transparent ubiquity layer for cloud storage 4

1.3 Organization of the document . 5

1.1 Motivation

The advance of computing systems has brought new ways to use and access the stored
data that push the architecture of traditional file systems to its limits, making them
inadequate to handle the new needs. Current challenges affect both the performance
of high-end computing systems and its usability from the applications perspective.

On one side, high-performance computing equipment is rapidly developing into
large-scale aggregations of computing elements in the form of clusters, grids or clouds.
In the last few years, the size of such distributed systems has increased from tens of
nodes to tens of thousands, and the number is still rising.

On the other side, there is a widening range of scientific and commercial applica-
tions which seek to exploit these new computing facilities. The requirements of such
applications are also heterogeneous, usually leading to dissimilar patterns of use of
the underlying file system.

These new computing environments require parallel and distributed storage sys-
tems able to provide a sustained flux of data to the distributed computing elements.
Nevertheless, many of the current distributed file systems are heavily oriented to
provide performance for specific software environments with distinctly predominant
traits such as favouring local independent accesses, having low modification ratios,
performing data streaming or executing high-performance MPI-IO codes, just to men-
tion some possibilities. The downside of file system specialization is that it jeopardizes
the ability to adapt to varying use patterns from different applications.

Data centres have tried to compensate this situation by providing several file sys-
tems to fulfil distinct requirements such as storing operating system files, users’ data,
long-term storage, etc. Typically, the different file systems are mounted on different
branches of a directory tree, and the preferred use of each branch is publicised to
users.

2 Chapter 1. Introduction

A similar approach is being used in personal computing devices. Typically, in a
personal computer there is a visible and clear distinction between the portion of the
file system name space dedicated to local storage (i.e. data residing on the personal
computer itself), the part corresponding to remote file systems (such as corporate
SMB/CIFS shares or other remote data servers) and, recently, the areas linked to cloud
services as, for example, directories to keep data synchronized across devices, to be
shared with other users, or to be remotely backed-up.

In such environments, the burden of understanding and taking into account the
complexities and restrictions of each file system is passed to the user of the system
(either the final user or the application developer), who must keep in mind the nuts
and bolts of specific storage systems in order to achieve good results and adapt his
way of working to their restrictions. Summarizing, in this scenario a user must:

� Explicitly choose which file system to use by placing the files in the correspond-
ing branch of the directory tree (which may not correspond with a logical and/or
sensible organization of the files, from user/application perspective).

� Make sure that each branch is used according to certain rules and restrictions,
which may differ among file systems (e.g. a high creation/deletion ratio may be
fine in a local file system, but it may collapse the system when done in a branch
corresponding to a remote file system).

� Know how the file systems are organized and always remember which ser-
vices/features are available or not in each branch; this feature-consciousness
may be especially important when dealing with critical services such as encryp-
tion, high-availability or backup support.

In practice, this approach compromises the usability of the file systems and the
possibility of exploiting all their potential benefits. Moreover, it also creates a depen-
dency on specific configuration details, as users and applications learn to rely on a
particular setup. The consequence is that ulterior changes (in case of moving to a
different platform or simply re-provisioning) may incur in high re-adaptation costs.

We consider that this burden can be alleviated by determining applicable features
on a per-file basis, and not associating them to the location in a static, rigid name
space. Moreover, usability would be further increased by providing multiple dynamic
name spaces that could be adapted to specific application needs.

This thesis contributes to the goal above by proposing a mechanism to decouple
the user view of the storage from its underlying structure. This mechanism consists
in the virtualization of file system metadata (including both the name space and the
objects attributes) and the interposition of a sensible layer to take decisions on where
and how the files should be stored in order to benefit from the underlying file systems
features, without incurring on usability or performance penalties due to inadequate
usage.

1.2. Contributions 3

1.2 Contributions

1.2.1 Metadata virtualization framework

File systems are complex entities containing many components that interact to provide
a consistent and well-defined way to access stored data.

In a conventional file system, the components dealing with metadata are tightly
coupled with the underlying storage structures, forcing a rigid view of the data orga-
nization. In order to provide a flexible and adaptable presentation of the name space
and the objects attributes, it is necessary to decouple the metadata management from
the rest of the file system components, but without altering the semantics nor limiting
the functionalities.

The first contribution of this thesis is the design of a metadata virtualization
framework which is able to produce consistent and flexible views of a file system
which are independent of the actual underlying data organization.

The novelty of the metadata virtualization framework consists in its ability to
provide multiple, simultaneous, arbitrarily organized views of the data, yet keeping
the consistency of the underlying file system. Additionally, the framework introduces
a series of novel techniques to represent and handle metadata which overcome some
of the limitations of traditional file systems. In particular, file system objects are
represented as active intercommunicating processes instead of passive data structures,
improving the parallelization opportunities; also, a new partitioned directory schema
allows stateless yet consistent listings of directories in large-scale systems.

The work performed in this area resulted in the filing of the International Patent
Application PCT/EP2011/053410 [Artiaga 2011], which is currently following the
examination process in the National Phase by the European Patent Office.

1.2.2 Improved metadata service for large-scale file systems

Modern parallel file systems need to provide sustained performance able to catch up
with the efficiency achieved by current large-scale computing systems. In order to
do so, file system internals are heavily optimized, and their operational parameters
are carefully tuned to particular installations. Nevertheless, optimization and tuning
often involve trade-offs, and outstanding performance for certain cases may become
poor results when the assumed conditions are not matched by a particular workload.

The situation is aggravated by the increasing number of parameters that affect the
file system performance and must be tuned, requiring an in-depth knowledge of the
system internals. This fine-tuning of system parameters implies that the file system
must be used in a precise manner, and this responsibility is pushed to the user, who
must either adapt the applications to the particular characteristics of the system (with
the consequent cost in terms of application porting or even software redesign) or sim-
ply ‘misuse’ the environment and be ready to accept performance losses (which also

4 Chapter 1. Introduction

have a cost in terms of wasted computing time). In certain production environments,
a user may not even have the information or capabilities required to perform such
adaptations.

The second contribution of this thesis consists in alleviating the over-tuning re-
quirements in high-performance computing systems by means of our metadata virtu-
alization framework.

The metadata virtualization framework is able to produce a file system name space
which isolates the user from the actual file system layout, so that the user does not
need to be aware of the low-level details and restrictions of the underlying system.
Then, sensible modules plugged into the metadata virtualization framework transpar-
ently translate applications requests into access patterns adapted to the underlying
file system features. A change in the system configuration may require tuning the
translation module in the framework, but user applications remain unaffected.

A framework prototype has been tested in high-performance environments using
parallel file systems such as IBM GPFS and Lustre. The proposed technique has been
successfully used to transparently eliminate harmful use patterns in the MareNostrum
supercomputer, improving the metadata performance of the file system.

The work performed in this area resulted in the publication of the paper “Using file
system virtualization to avoid metadata bottlenecks” [Artiaga 2010], and the PRACE-
2IP white paper “Lessons learned about metadata performance in the PRACE file
system prototype” [Artiaga 2013a].

1.2.3 Transparent ubiquity layer for cloud storage

Currently, cloud-based storage services are widely available and there are multiple
commercial products offering features such as data synchronization among devices,
data sharing among users or backup management based on the cloud.

These products successfully face challenges such as keeping the integrity and
consistency of data and optimizing the information transfer between the cloud and
the local systems. Nevertheless, they usually show a lack of flexibility: the selection
of files to consign to the cloud is usually rigid and coarse-grained, based on placing
the files in specific directories of the file system. The reason is that most file systems
offer change detection interfaces that work on a directory level and, therefore, it is not
feasible to track single files independently from their location.

The third contribution of this thesis consists in providing an ubiquity layer that
extends the cloud-awareness to the whole file system, making it independent of the
directory where the cloud-related files reside.

The method consists in using the metadata virtualization framework to provide
alternate name spaces to the user and to the local cloud service components. Using
a virtual view of the file system, the user applications can organize the files as they
please; at the same time, the framework is able to export a special name space to the
cloud components, where the cloud-related files appear grouped in directories as the

1.3. Organization of the document 5

cloud expects them to be. In this work, we have focused our efforts in validating the
feasibility of the method by developing prototypes that can be integrated in Linux-
based and Microsoft Windows-based operating systems.

The work performed in this area has resulted in the publication of the paper
“Better Cloud Storage Usability Through Name Space Virtualization” [Artiaga 2013b].

1.3 Organization of the document

This thesis is organized as follows: Chapter 2 introduces basic concepts about file
systems and associated technologies that will be used as a reference in the rest of
the document; Chapter 3 explains the principles behind the metadata virtualization
model, as well as discusses the techniques used to implement a virtualization frame-
work and overcome the potential issues; Chapter 4 presents and evaluates a technique
to improve metadata performance in high-performance environments based on meta-
data virtualization; Chapter 5 presents method to improve the usability and flexibility
of cloud-based storage through the provision of multiple virtual name spaces; Chap-
ter 6 discusses the related work and, finally, Chapter 7 presents the conclusions of this
thesis.

Chapter 2

Technological Background

Contents
2.1 Introduction . 7
2.2 Classical file system structure . 8
2.3 Distributed storage . 11
2.4 Metadata issues . 14
2.5 Layered architectures . 15

2.1 Introduction

Traditionally, rotating disks have constituted the hardware base for computing storage
systems. The principles of this technology have not changed since its inception; despite
the advances that made them faster and smaller, they still work very much in the same
way as their predecessors: a read/write head is mechanically moved to the selected
track and the rotation of the media makes the desired data pass below it, so that the
information can be accessed.

One of the driving goals in the evolution of the storage systems based on rotating
disks was improving their performance by reducing the average time required to
place the read/write head of the disk on the right track (seek time) and the average
time to wait for the desired data to pass below the head (rotational delay).

This goal can be achieved by hardware means (e.g. increasing the speed of the
disks mechanical parts), but also through software means: for example, by concen-
trating and accessing as many data as possible in adjacent positions, so that physical
movements and idle wait times are avoided. In order to take advantage of this possi-
bility, data to be stored in disks is usually grouped in large blocks whose contents are
expected to be used at the same time.

File systems lay on top of the physical media and offer a high level view of the
storage to the user, allowing the organization of data into files which are usually
accessed through a hierarchical name space composed of directories and subdirec-
tories. Maintaining these higher level abstractions requires additional information,
apart from the pure data that the user wants to keep; this additional information is
usually referred to as ‘metadata’.

The principle of grouping pieces of information that are going to be used together
has permeated into the design of file systems. Indeed, most of the file systems try
to structure the users’ data and the corresponding metadata in such a way that they
could be stored in close locations if they are assumed to be used at the same time.

8 Chapter 2. Technological Background

Unfortunately, the tight coupling between data and metadata implies rigidity in
the file system organization, hindering the adaptability of file systems to today’s
changing environments, and also their usability for widely different applications.

This thesis defends the idea that decoupling the data and its physical location from
the metadata used to describe and organize user files increases file system flexibility
and its adaptability to varying purposes.

In order to decouple metadata in a sensible way, it is important to understand
the reasons behind its current organization. This chapter describes the structure of
classical file systems, how they have evolved trying to meet current needs, and why
the inherited rigid tights between data and metadata strain the performance and
usability of modern file systems.

2.2 Classical file system structure

Storage devices typically provide crude means to store unstructured raw data persis-
tently. For example, a disk can be seen as a collection of fixed-size blocks identified by
its physical position in the disk. Arguably, this is not the most comfortable support
for building robust and portable applications.

In order to overcome the difficulties of working with raw storage devices, file
systems provide higher-level abstractions to work with data: the files. In a modern
file system, a file may have variable size, a set of attributes describing properties of
the data contained in it, and a way to reference it independently from its physical
location in a particular device.

Figure 2.1 represents the basic elements of a file system. The file system resides
between the application and the raw storage device. It receives high-level, file-oriented
requests from the application via the file system interface and, when necessary, inter-
acts with the low-level storage device to store and retrieve persistent data.

The file system uses metadata to fulfil the necessary functionalities. We may distin-
guish three different types of metadata information: the name space metadata keeps
information about the naming of the files and its organization, the file-specific meta-
data describes properties of individual files (such as who has access to it), and the
global metadata handles information about the storage system as a whole (e.g. how
much free space remains available).

The name space defines how individual files can be referenced from an application,
and how they are organized. For example, a typical file system allows human-readable
file names and usually permits the organization of such files into a hierarchical direc-
tory tree. In this case, the name space metadata would mainly comprise the means
to map the entries (the visible file system object names) into the internal file system
objects, the information about the hierarchical relationship between the directories,
and the lists of entries belonging to each directory.

2.2. Classical file system structure 9

Figure 2.1: Basic file system structure.

The file-specific metadata comprises attributes that represent properties of a file
system object. These properties include small information items such as access control
information (who has rights to access the object and how), statistical and auditing
information (e.g. when the object was last modified) and functional information (such
as the size of the valid data contained in a file). Modern file systems also provide
mechanisms to handle so-called extended attributes; these are user-defined pieces of
arbitrary information that can be attached to file system objects and can be subject to
application-specific semantics (for instance, extended attributes can be used to carry
tags for an external classification system).

The global metadata represents functional data about the storage system as a
whole. This may include the list of attached storage devices, their particular addressing
units, the available space in them, etc.

Eventually, the actual file data has to be stored and retrieved from the storage
devices; and the same applies to the metadata, which also has to be stored in persis-
tent media in order to sustain the view of the file system organization. To this end,
the location information indicates where a particular piece of data or metadata is
to be found inside the storage devices (for example, in a block-based device, such
information could comprise the identifier of the block, the offset of the interesting
data from the beginning of the block, and the size of the piece of data).

10 Chapter 2. Technological Background

Historically, cache management has also been a centric aspect of file systems.
Persistent mass storage devices have been traditionally slower than the rest of com-
ponents of computer systems, so it is customary for file systems to cache the most
used data into main memory in order to avoid as many storage device accesses as
possible. The cache is used for both data and metadata, and one of the challenges
for file systems is to make sure that data in the storage device is kept consistent (for
instance, when data has been modified in the cache but not yet completely transferred
to the persistent storage).

The level of intricacy in the relationship between the different types of metadata
and the data itself depends on the implementation of the file system. However, this
relationship is usually quite tight.

The reason is that most classical computer systems tend to group the relatively
small pieces of metadata together, in such a way that they can be stored and retrieved
from slow storage devices in a single shot, and then be kept in memory. Consequently,
the data structures intermix file attributes with location information and, possibly,
with the file contents themselves.

This principle also applies to information related to groups of files that are going
to be used together. To this end, some file systems tend to interpret directories as a hint
to indicate that there is a relation between their files, and also try to put information
about files in the same directory in close locations, so it can be retrieved at once.

Examples of this trend are found in the most popular file systems. For instance, en-
tries in the old FAT-based file systems consisted of the name of the file or directory, its
attributes, and its starting physical location. In the modern Microsoft NTFS file system,
files and directories are represented by entries in a Master File Table (MFT) that also
contain the name of the object, some attributes and, even, the contents themselves, if
they are small. Directories are represented as special files consisting in a collection
of entries (which, in the case of Microsoft NTFS, may replicate some of the attributes
present in the MFT).

Unix-based file systems usually exercise a better separation between the name
space and the file attributes. The directories of the name space are represented also
as files with collections of entries, but these entries do not contain file attributes; they
only contain a reference to another structure representing the file: the i-node structure.
This i-node still contains all the attributes and also the location information to access
the file contents in the storage device, and modern implementations try to store i-nodes
near the actual data of the file they represent.

This amalgamation of metadata and data has been useful to speed-up the storage
systems by enabling an efficient use of cache mechanisms, specially in environments
where the storage devices where directly attached to the computer system using their
data.

Nevertheless, modern computer systems have brought new ways to use and access
stored data. For example, parallel and distributed systems are a commodity today,
and these systems try to perform simultaneous accesses (and updates) to the same

2.3. Distributed storage 11

pieces of data and metadata residing in remote locations. As a consequence, complex
locking mechanisms must be put in place to prevent these simultaneous accesses from
leaving the information in an inconsistent state; and the more tightly coupled the data
and metadata are, the higher is the probability of a conflicting access.

Also, modern users demand flexible organizations of files adapted to specific ap-
plication needs and goals. Therefore, a permanent, and rigid, directory tree hierarchy
closely related to the location of data on a storage device does not fit the user ways
any more. On the contrary, there is a demand for flexible mechanisms allowing the
user to choose the most appropriate file organization for each different task.

Naturally, file systems have tried to adapt to the new environments and demands.
Next sections summarize some of the approaches taken to address the new challenges.

2.3 Distributed storage

The ability to access data from multiple locations is an emerging need for current
distributed systems (clusters and grids). Ideally, a storage architecture should provide
strong security, data sharing across platforms, high performance and scalability in
terms of clients and devices. Different architectures try to address these needs, and all
of them involve certain trade-offs in terms of the provided features [Mesnier 2003].

Storage Area Networks (SAN) were introduced to deal with the connectivity limi-
tations of traditional Directly-Attached Storage (block-based storage devices directly
connected to the I/O bus of a host machine). A SAN provides a fast and scalable
interconnect network (such as iSCSI or FibreChannel) that allows the connection of a
large number of storage devices and host machines, so that hosts see the block devices
as if they were locally attached; for example, in the case of iSCSI, each set of blocks is
exposed as an iSCSI Target and can be mounted by an iSCSI Initiator. This setup has
been shown competitive in terms of performance [Aiken 2003].

Some projects like Peabody [Morrey III 2003] use the iSCSI Target mechanism to
virtualize the disk and provide extended features behind the scenes, such as automatic
check-pointing, coalescing blocks with the same content, or eliminating silent writes
(i.e. avoiding writing sectors to disk for which the new content is the same as the old
one). As the iSCSI Target exports a low-level block interface, any file system running
on top of any iSCSI Initiator benefits from the added features in a transparent way.

The downside of SAN architectures is that they, per se, do not provide support for
letting multiple hosts access the data: they simply provide means to attach multiple
devices to a host. If access is to be shared among several hosts, the information to
map blocks to high-level abstractions (files and directories) and the corresponding
access coordination must be handled by an external entity (e.g. a software component
able to share this information among the participating hosts). The complexity of this
task is one of the major drawbacks for considering SAN architectures as a stand-alone
solution for scalable distributed systems.

12 Chapter 2. Technological Background

A common approach to improve the scalability of storage systems in terms of ac-
cessing the data from multiple hosts is the so-called Network-Attached Storage archi-
tecture (NAS). This architecture is based on a reduced set of hosts acting as file servers
(usually dedicated to this task), and which are directly attached to the storage devices
via SAN. The number of servers is reduced so that the complexity of coordinating their
access to the shared storage and handling the necessary metadata is kept bounded.
On the other hand, these file servers are also configured to export higher-level storage
abstractions to multiple clients. Using high-level interfaces instead of basic block ad-
dressing facilitates the implementation of shared access and the storage can be made
available to many more client hosts (which access the data indirectly through the file
servers). NFS (in its different versions [Pawlowski 1994] [Pawlowski 2000]) is a clear
example of a NAS architecture.

The arrival of NAS environments moved the pressure of scalability from the stor-
age devices to the file servers, which funnel all the storage traffic and, eventually, may
constitute a bottleneck preventing the full use of the storage device bandwidth. To
mitigate this effect, SAN file systems appeared as a new step in storage design.

In a SAN file system, both file servers and clients are connected to a SAN storage
network, but metadata remains under the control of the servers. Commonly, clients
ask the servers for metadata, and then recover the data directly from devices; this way,
consistency is guaranteed by a small number of servers, without hindering the I/O
bandwidth.

Nevertheless, as the number of participating hosts and storage devices increased,
security and integrity in SAN file systems became a concern. The reason was that
classical storage devices export data as fixed-size blocks, without any knowledge
about their contents. The organization of these blocks into high-level constructs (such
as files) is the task of an external entity (the file system), but it has little or no support
at all from the block devices. As all hosts have access to storage devices, there is a risk
that a malicious or malfunctioning client causes havoc on the storage infrastructure.

Some systems, such as Farsite [Adya 2002], address this issue by making heavy use
of encryption and digital signatures; another approach consists in replacing the back-
end block-based devices with object storage devices (OSD). An OSD exports variable-
length containers of data and offers the possibility to enrich them with semantic
and security information in the form of attributes [Factor 2005] (including ownership,
capabilities, or striping and replication policies). File systems such as Ceph [Weil 2006],
zFS [Rodeh 2003] and Lustre [Braam 2007] use OSDs as back-end storage devices.

The trend resulting from the need to add higher-level functionalities to the devices
is that clients do not access low-level devices directly any more, but file system data
servers that provide the extra needed support such as, for example, security.

Taking all the above into account, Figure 2.2 shows the architecture of a modern
distributed file system. This is the architecture we will use as a reference, though it
is possible that some file system implementations have minor variations (that will be
indicated when relevant).

2.3. Distributed storage 13

Figure 2.2: Distributed file system architecture.

In Figure 2.2, the raw storage devices lie at the bottom and are never accessed
directly from the client hosts. Instead, they are used as storage media by the file
system servers, possibly through a dedicated storage network (e.g. a SAN).

The file system servers are divided into data servers and metadata servers. The
data servers are responsible to provide data to clients and, at the same time, to enforce
security and to provide any required high-level functionalities (e.g. an OSD interface).
Some distributed systems rely on classic local file systems to handle the data inside the
data servers. For example, the TSS [Thain 2005] builds high-level storage abstractions
on top of a common Unix file system; distributed file systems such as Google File
System [Ghemawat 2003] and PVFSv2 [PVF 2003] also use conventional file systems
to store data chunks.

On the other side, the metadata servers handle the metadata and provide the client
hosts with a consistent name space and semantics. Regarding metadata organization,
current file systems are mainly divided into two groups: those which opt for distribut-
ing metadata among multiple metadata servers to achieve scalability, and those which
use centralized management in a single metadata server (replicated only as failover
backup).

14 Chapter 2. Technological Background

The distributed approach require complex techniques to keep the consistency, such
as effective distributed locking algorithms, leases and control delegation to speed-up
independent operations on different parts of the file system; nevertheless, it may
incur in performance penalties when a global synchronization is actually required or,
simply, when connectivity failures isolate some of the participants in the distributed
algorithms. On the contrary, centralized management seeks to compensate the lack
of parallelism with simpler (and faster) procedures for both consistency management
and failure recovery.

We may find systems like IBM GPFS [Schmuck 2002] and xFS [Wang 1993] us-
ing the distributed metadata approach but, up to now, most of the relevant file
systems were using centralized mechanisms as, for example, Lustre [Braam 2007],
Hadoop [Borthakur 2007], Google File System [Ghemawat 2003] and PVFSv2 [PVF 2003].
However, efforts are being done to incorporate distributed metadata management
mechanisms into systems initially designed as centralized; this is the case of Far-
site [Douceur 2006] or recent Lustre versions (version 2.4 and beyond).

The remaining participants in Figure 2.2 are the client hosts, which access the file
system servers (both data and metadata) through a network. A common approach for
general-purpose systems is to hide the file system-specific client behind a standard
local file system interface; this way, local processes can make use of the distributed
file systems transparently as if it were a conventional local file system.

In this kind of environments, distributed applications usually consist of aggrega-
tions of local instances represented by processes that run locally in a single host. The
local processes in different hosts are able to see the same name space, thanks to the
distributed file system running below.

2.4 Metadata issues

The development of improved file systems has been traditionally focused on data
transfers. Nevertheless, the increase in size and capacity of the distributed file systems
are currently putting the stress in the metadata handling.

It is interesting to note that most of the current file systems use the i-node (or
an equivalent set of attributes, such as the MFT file entries in Microsoft NTFS) as
the smallest granularity unit for metadata. Handling all file attributes together made
sense as a means of gathering structures large enough to be efficient when transferring
them to and from block-based devices.

Nevertheless, the set of attributes of a file system object contain information with
different volatility ratios that may cause unnecessary cache invalidations and synchro-
nization traffic when they are partially modified. (Just to mention an example, an
i-node contains the object type, which is immutable, the ownership and access permis-
sion information, which change rarely but are checked often, and access times, which
may change often, but are rarely needed.)

A similar situation occurs for directories. A single directory may contain many

2.5. Layered architectures 15

unrelated files with subsets of them being used by different applications. Therefore,
treating a directory as a unit may cause false-sharing situations leading to potential
access conflicts.

2.5 Layered architectures

Some modern file system architectures go one step beyond the models described in
Section 2.2 and Section 2.3 and allow structuring file system services as a composition
of layers. These layers are typically interposed in the interfaces between components
and allow providing additional functionalities (such as encryption or replication)
or even completely replacing the original file system (for example, by transparently
redirecting requests to a different file system).

The mount points in classical Unix-based file systems can be considered a primitive
way of layering file systems. The Unix view of the storage system usually consists in a
single-rooted tree of directories, representing a hierarchy of files. Different file systems
can be attached to this unique tree by using specific directories as mount points. When
a file system is mounted on a directory, the previous contents are not visible any
more and, when an application crosses that directory, it transparently accesses the
root directory of the attached file system.

The Plan 9 operating system [Pike 1990] made extensive use of this feature to
offer personalized directory trees: different file services were mounted in the same
directory by different processes, so that each process viewed different contents. This
feature was later extended to allow the mix of several directory contents, effectively
creating a union file system [Pike 1992].

Since then, union mounts became available in different Unix
flavours [Pendry 1995] [Wright 2006], and different directories could be stacked in
layers. The main issue related to these systems was dealing with conflicts between
layers while maintaining the standard semantics; specifically: how to choose the right
file version when it existed in several layers, where to write the changes and how to
deal with deletions.

A common approach consisted in making all layers read-only but the top-most.
When accessing a file, the path was checked for all layers from top to bottom, and the
first instance found was the one returned. The modification of a file involved copying
it to a read-write layer (usually the top one) and performing the modifications in the
copy. Finally, deleting a file was usually implemented by creating white-out entries
that hid underlying entries with the same name.

Still, some issues remain: atomicity of certain operations is difficult to get when
combining several file systems, and performance tends to suffer when the number of
layers is increased (in the worst case, each operation has to be done on all layers, as
in the case of searching for a non-existing file) [Wright 2006].

Currently, most operating systems offer some level of support for layered file
systems as a means to extend the functionalities of a file system or to facilitate the

16 Chapter 2. Technological Background

integration of different file systems [Zadok 2006]. Common uses of this technology
include adding encryption support for stored data, transparently accessing remote
storage systems and providing file system-like interfaces to non-storage systems.

The work in this thesis borrows some of the concepts from layered file systems but,
instead of composing fully-fledged file systems, we focus on providing and combining
different metadata views. The result are virtual name spaces and file attribute sets
that can be adapted to specific application needs without having to change how data
is handled and stored in the low-level devices.

Chapter 3

The Approach: Metadata
Virtualization

Contents
3.1 Introduction . 17

3.1.1 The case for multiple views . 18
3.1.2 The need of seamless system integration 20
3.1.3 Previous approaches . 21

3.2 The overall concept . 22
3.2.1 Design principles . 23
3.2.2 Enabling technologies . 24

3.3 Architecture . 26
3.3.1 Extending a traditional file system 26
3.3.2 Introducing a metadata file system layer 29

3.4 Terminology . 32
3.5 Practical applicability aspects . 32

3.5.1 Dealing with underlying file system information 33
3.5.2 System-specific identifiers . 34
3.5.3 Using databases for metadata storage 36
3.5.4 Metadata volatility . 37
3.5.5 Metadata caching . 38
3.5.6 Metadata represented as active objects 39
3.5.7 Stateless large directory handling 42
3.5.8 Coordinating distributed file creation 46
3.5.9 Kernel vs. user-space implementations 48

3.6 Summary . 48

3.1 Introduction

The advance of computing systems has brought new ways to use and access the stored
data that push the architecture of traditional file systems to the limits, making them
inadequate to handle the new needs.

One of the causes of the inadequacy is the interlinked nature of the relationship
between metadata and the actual physical data location in the storage media. The
consequence of this relation is a rigid file system organization where, by default, a
specific file or directory is available only in a unique precise location in a directory tree.
Moreover, the view of the file system organization is fixed for the whole computer:
although it is possible to protect or restrict access to certain areas (e.g. via access

18 Chapter 3. The Approach: Metadata Virtualization

permissions), it is impractical to offer radically distinct views to different users or
applications.

Modern file systems should allow users to organize their data in multiple co-
existing views adapted to different applications. Moreover, they should be able to
access and share their files from anywhere in a transparent way, independently of the
storage device where they actually reside, as if they were always using a conventional
disk permanently attached to their computer.

Summarizing, a modern file system should fulfil the following requirements:

Flexibility: Files and folders must be accessible as pleases the user at each moment,
allowing multiple simultaneous organizations or views of the same file systems
adapted to each particular need. A view may consist in selecting certain files
with specific characteristics and making them available in different directories,
while other views may consist, for example, in completely hiding portions of the
file system when the user is in a specific location or assumes a certain role (for
example, removing access to work-related data while browsing the web at home).

Uniform file-based features: File-related features should be available in the whole
file system and be selectable on a per-file basis; specifically, their functionality
should not depend on the directory where a particular file is located. This prin-
ciple also includes the ability to decide which files are to be shared, with whom,
when, and what can be done by the person to whom the access is granted, without
these decisions affecting the way in which files are organized.

Transparency: Users must not notice any difference between the way of working with
the new service and the traditional file systems. Conventional applications must
work on the new platform without changes.

Additionally, modern storage systems should be able to provide seamless support
for remote facilities (e.g. distributed file systems or cloud services). The integration
with remote services also means that the system must be able to handle a much larger
storage capacity which, besides, can be dynamically increased.

One of the contributions of this thesis is the provision of a metadata virtualiza-
tion framework that facilitates the achievement of a file system fulfilling the above-
mentioned requirements. In this work, we have focused on two key elements: first, the
flexibility in the organization of files, allowing different simultaneous views of those
files adapted to specific needs; second, the seamless integration of the new functional-
ities into the conventional systems, hiding the complexity of new storage services and
features and allowing them to be transparently used by conventional applications.

3.1.1 The case for multiple views

We present two use cases that have guided the design of our metadata virtualization
framework and that illustrate the potential benefits of allowing multiple co-existing
file organizations.

3.1. Introduction 19

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 4 8 16 32 64

 1024 2048 4096 8192 16384 32768 65536

C
R

E
A

T
E

,
a

v
g

.
ra

te
 (

o
p

e
ra

ti
o

n
s
 p

e
r

s
e

c
o

n
d

)

Nodes (1 process per node)

Total files

shared directory
separate directories per process

Figure 3.1: Example
of variation in the
operation rates for
parallel file creation
at MareNostrum,
depending on files
being organized in a
shared directory or in
separated directories
dedicated to each
participating process.

Avoidance of performance bottlenecks. Modern file systems, specially in high-
performance parallel environments, try to keep pace with the growing perfor-
mance demands by identifying common use patterns and optimizing them. A
common hint used by these systems is the fact that unrelated data tend to be
in separated directories while related files are usually in close locations, and
applications are expected to abide by this principle. Unfortunately, legacy appli-
cations may not follow this kind of rules, or a user or developer may not have
the necessary information or skills to adapt an application to specific file system
expectations regarding the organization of the files.

A system supporting multiple views of the file system can solve this situation by
providing the application with a file system view without restrictions, and then
convert that view to an organization adapted to the file system optimizations.
For example, a parallel application creating many independent files could be
transparently redirected to multiple directories, to avoid the overhead associated
to parallel creations in a single directory.

An example of how file system organization can affect performance was found at
the MareNostrum supercomputer at BSC, where it was observed that deciding to
organize files in a single shared directory vs. multiple dedicated directories had a
substantial impact on performance (see, for example, Figure 3.1). This particular
case will be studied in detail in Chapter 4.

Globally available features. Different storage systems provide different features and,
in order to use them, users must place their files in the appropriate area of the
name space. For example, files with sensitive information may need to placed
into a specific encrypted directory, and files to be shared via a cloud service or
a shared file system may also need to be stored in particular directories. Clearly,
this generates a conflict with an ideal function-conscious organization where files
would be organized in the most useful way according to users needs, instead of
according to the specific features the files require.

20 Chapter 3. The Approach: Metadata Virtualization

Figure 3.2: Example of directory-based feature variations: the location of a
file in the hierarchical tree determines if a particular file is encrypted, if its

made available through a remote file server (share) or kept local in the
user’s workstation documents folder.

Figure 3.2 represents a possible organization in an employee’s workstation, where
a report has to be written and made available through a corporate remote file
service (the “Share” directory) with a well-defined and rigid structure, some of
the necessary data is confidential and have to be encrypted, and some temporary
notes are kept in the user’s documents folder. These requirements force the
user to distribute the work files manually across the directory hierarchy, so that
the proper features are applied to each file. However, it would be much more
comfortable if the employee could have all the files in his “Current Work” folder
and simply indicate the desired features on a per-file basis.

A system supporting multiple views of the file system can offer to an application
a name space where files can be organized arbitrarily, independently from the
features they require from the underlying system; at the same time, a different
view can convert this arbitrary organization into a distribution of files where
each file is in the necessary location to benefit from the required functionalities.
The consequence is that, for the application, all features appear to be available
globally, instead of being limited to certain directories.

3.1.2 The need of seamless system integration

Storage for modern computing does not rely any more on a single file system on
a locally attached disk. Even a simple home computer may have several traditional
disks, as well as USB connected drives, or smaller devices such as pen-drives.

Additionally, distributed file systems can also be used (such as NFS in Unix envi-
ronments, or SMB/CIFS in the Microsoft Windows world, to mention two widely used

3.1. Introduction 21

examples). In this case, data does not reside locally on the computer where they are
being used, but in disks attached to remote servers. This has several advantages: first,
the aggregated storage capacity of the servers can be considerably larger than the
local disks (and can be extended in a transparent way in case of need); on the other
hand, providing service to a potentially larger amount of users allows space to be
used with greater efficacy, and cost-effective solutions for backup and replication can
be implemented.

Unfortunately, the architecture and internal behaviour of file systems, as well as
the differences in their respective metadata, prevent their integration at a low level. As
a consequence, users are forced to deal with separated file and directory hierarchies
for each file system and handle them in different ways.

This is especially true for distributed file systems, which present additional diffi-
culties. These systems require an active network connection; otherwise, data is not
accessible. Even when network is available, bandwidth limitations usually produce
noticeable drops in data transfer performance compared to locally attached disks.
Such limitations and the lack of integration between the local and remote systems
force users to move data from the remote file system to the local area and the other
way around constantly, replicate files, apply explicit synchronization mechanisms and
usually maintain similar directory trees in the different systems.

Ideally, users should be able to handle a unified name space seamlessly integrating
different file systems (either local or remote). It ought to be possible to keep in the
same directory some remote files while others (for example, temporary files or pro-
cessing by-products) are kept local. Again, the tight connection between the metadata
(and, in particular, the name spaces) and the actual data location in file systems makes
this very difficult to achieve with conventional approaches. Some of the techniques
presented in this thesis aim to facilitate such seamlessly integrated view across file
systems.

3.1.3 Previous approaches

We observe that there is a need for multiple, dynamic, integrated views of the file sys-
tem that can enable the users to organize and access their data in the most convenient
way at each moment, without arbitrary restrictions.

The proof that this is a real need lays in the fact that most file systems have
come up with different workarounds to provide some appearance of flexibility. These
mechanisms are usually static and cumbersome, as the internal file system architecture
is not changed.

Several file systems offer the possibility to have ‘links’ or ‘shortcuts’. These es-
sentially consist in named references to the original files or directories which can be
placed in different locations of the name space. Nevertheless, they have to be main-
tained manually for each file (a cumbersome procedure if the links are to be created or
updated often — even if some systems allow some degree of automation, such as the
folder actions in Apple Mac OS X). Moreover, link behaviour differs from the original

22 Chapter 3. The Approach: Metadata Virtualization

file in some systems (for example, replacing a symbolic link in a POSIX file system
with a new file does not change the contents of the target file, but just the link itself).

Directory binding mounts and union file systems are attempts to combine contents
from different directories. They allow to stack several directories in the same position
of the directory tree, uniting their contents by means of altering the in-memory meta-
data structures (a low-level procedure that must be kept consistent with the physically
stored metadata organization). As a result, they usually need to impose access restric-
tions on the original directories to guarantee the consistency, and they lack the ability
to combine contents, with per-file granularity, dynamically.

A more dynamic approach is obtained via saved queries or smart folders. These are
virtual folders whose contents are dynamically collected via the execution of some
file search operation. Still, the functionality is limited: first, the search criteria do not
usually allow arbitrarily complex queries and may work only on a few file properties;
second, results are placed in a different folder, but they cannot replace an existing one
(i.e. they cannot dynamically change the visibility and grouping of files in different
views); finally, being the result of a search script, these folders are read-only and files
cannot be added directly to them.

Given the limitations of existing mechanisms, our objective is to provide means
to allow the dynamic combination of different directories in a flexible way, selectively
uniting or hiding their contents and placing the result either in a different location of
the directory tree or temporarily replacing existing folders depending on environment
conditions; and, of course, modifications to the original directories should be reflected
in the resulting view.

Unfortunately, conventional file system architectures make it difficult to provide
such features. Therefore, the metadata virtualization framework presented in this
thesis aims to provide the mechanisms to make those requirements feasible.

3.2 The overall concept

In general, file systems try to adapt to the new demands by specializing and targeting
specific kinds of workloads. As a counterpart, there is a cost in terms of performance
for non-optimized cases.

As mentioned in Chapter 2, conventional file system architectures suffer from the
historical tightening of the relationship between name spaces, object attributes and
physical data location, which was introduced to optimize accesses to physical media
and, in particular, to improve the performance of file systems on locally attached
disks.

Handling metadata at the low-level system layers exposes the inner limitations
and complexities to the feature implementers, the applications and, at the end, to
the users. On the contrary, decoupling the file system metadata (including the name
space and the object attributes) from the actual data layout is a key tool to provide
flexibility, integration and extensibility.

3.2. The overall concept 23

The foundation of this thesis precisely consists in introducing such a decoupled
metadata layer into the file system architecture. In this chapter, we present a metadata
virtualization framework that is able to provide to the applications a virtual name
space and its corresponding set of file system object attributes, independent of the
actual metadata in the underlying file system. This provides a convenient view of the
file system for the users and transparently converts their requests into the appropriate
low-level file system operations on the actual file locations.

Additionally, this technology makes possible to offer a well-defined interface
where independent modules can be plugged in order to make specific file system
extensions globally available or, simply, to provide new features.

It is important to note that the new techniques presented here are not aimed to
build a new file system from scratch, but to increase usability by leveraging existing
file systems, combining their strong points and mitigating their disadvantages. Even
if some control over physical data layout is apparently lost, the multiple benefits of
this technology largely compensates any possible negative effects.

The rest of this section discusses the principles guiding the design of the technol-
ogy enabling metadata decoupling and mentions some of the tools that make these
techniques feasible.

3.2.1 Design principles

Our main goal is to be able to decouple the user view of the file hierarchy (i.e. the
name space) and the rest of the metadata management from the physical placement
of data in the storage devices. In practice, we present the users a virtual view of the
file system organization adapted to their needs while the actual layout is optimized
for the underlying file system.

In order to facilitate the integration of our framework into existing systems, we
need to be compatible with current standards, both official and ‘de facto’. This enables
our system to support unmodified conventional applications.

POSIX compliance is a strong requirement. This is still the dominant model for
most applications, and our intention is not limiting the semantics of current systems;
so, if POSIX semantics is required and the underlying file system supports it, then the
system resulting from applying our framework should also be able to deal with it.

The same applies for Microsoft NTFS, which is the other largely used non-POSIX
file system. Microsoft NTFS is the most commonly used file system in devices using
the Microsoft Windows series of operating systems. Therefore, the development of our
techniques should take it into account and also be compatible with its semantics.

The metadata virtualization framework should not deal with low-level data stor-
age. There is no explicit management of disks, blocks or storage objects: our technol-
ogy simply forwards data requests to the underlying file systems and suggests an
appropriate low-level path when a file is created. Then, it is up to the underlying file
system to take decisions on low-level data server selection, striping, object placement,

24 Chapter 3. The Approach: Metadata Virtualization

etc. In this sense, the techniques proposed in this thesis do not form a complete file
system, but a tool to leverage the capabilities of underlying file systems.

On the contrary, our framework does take the responsibility on metadata man-
agement. By metadata we specifically mean access control (owner, group and related
access permissions), symbolic link and hard link management, directory management
(both the name space hierarchy and the individual entries) and size and time data
for non-regular files (sizes and access time management for regular files rely on the
underlying file system).

3.2.2 Enabling technologies

Nowadays, the state of the art of the computing technology makes feasible the imple-
mentation of a usable metadata virtualization framework on top of well-understood,
robust and efficient base components, enabling multiple placement-independent
views and seamless integration of file systems. The following paragraphs summa-
rize the set of technologies that have been used as a foundation for the name space
and metadata virtualization framework proposed in this thesis.

Memory. Modern computers have plenty of memory to use. When the foundations
of file systems were designed, memory was a scarce resource, and its contents had to
be frequently replaced by means of slow accesses to permanent storage media, so it
was critical to get the most of data and its related metadata together.

Today, the size of files has grown, as well as their number. Nevertheless, the size
of individual file metadata is still relatively small, and the size of the aggregated
metadata from the active working set at any given time is not unbounded. As a
consequence, the metadata of a usual working set can be kept for a long time in a
fraction of the available memory (the experiments with our prototypes indicate that
an average computer with 4 GiB of RAM can easily manage the metadata for an active
working set of a few hundreds of thousands of files), so that there is no need to mix
them with the actual data for combined storage and retrieval from media; on the
contrary, separating them enables the use of more efficient techniques to handle the
metadata. In particular, our studies indicate that it is feasible to organize the metadata
as a series of light-weight database tables and take advantage of database engines to
speed-up the metadata processing.

Distributed consistency mechanisms. Large aggregations of computers are becom-
ing common; therefore, there has been an effort to develop distributed coordination
techniques. It has been observed that, despite the increasing number of collaborating
nodes, there is a considerable amount of locality in data accesses, and aggressive
caching and intelligent synchronization algorithms can reduce the costs of shared
metadata when integrating the data views from different computers.

3.2. The overall concept 25

Local storage capacity. Despite their limitations as a standalone storage media, lo-
cally attached disks have continued increasing their capacity and speed. Therefore,
they constitute a valuable asset that can be used as a giant cache for remote storage
systems. Considering the usual locality and access patterns for personal computers,
it is feasible to devise a caching policy that converts most of the remote accesses into
local cache hits. This is a key element to achieve a seamless integration between local
and remote file systems.

Interception and extension support. The recent improvements in virtualization
techniques provide us with mechanisms to transparently alter the users view of a
computer system. The refinement of these techniques, the advance of the hardware ca-
pacity, and also the increased support from the operating system kernels, have turned
a costly and cumbersome technology in a widely extended and completely usable
mechanism. Specifically for our needs, the most extended operating systems offer
ways to intercept every aspect of file system operation and introduce new features
and services, from simple extensions up to providing whole file system-like environ-
ments to interact with varied systems (the Filter Manager [MSDN 2012] in Microsoft
Windows and FUSE [Szeredi 2005] in Linux are good examples).

Processor capacity. The processors speed and capacity have increased at a higher
ratio than the rest of the computer components. This means that there are more
processor cycles available in a given unit of time, and it is possible to execute more
complex software stacks without noticeable overheads. In particular, virtualization
and file system interception techniques can be used to add new features at a very low
cost in absolute time.

Lightweight tools for embedded systems. The emergence of embedded systems
with relatively small individual capacities, and their need for interconnection, have
brought forth the development and improvement of specialized and highly efficient
light-weight programming models and tools. The Erlang/OTP [Erl 2013] environment
is an example of such tools. Interestingly, file system metadata activity can be mod-
elled in a very similar way to embedded telecommunications systems (thousands or
millions of small elements that have to interact in a consistent way); therefore, the
same tools provide a robust foundation for a decoupled metadata engine.

Network capacity. Last but not least, the capacity of current communications sys-
tems (from ADSL to 3G, Wi-Fi, corporate networks and high-performance intercon-
nects) is enough to permit the transfer of metadata (which is relatively small) and a
continuous flow of file data updates. This enables the maintenance of a local cache
with the current working set, the reception of updates from remote servers and the
progressive back-up of modified data, favouring the integration of local and remote
storage.

26 Chapter 3. The Approach: Metadata Virtualization

3.3 Architecture

The architecture of our system must provide the means to separate the name space, the
file system object attributes and the global metadata from the internals of a particular
file system. This will enable us to offer virtual views of the file system organization
that do not necessarily match the actual layout of files in the underlying file system
and, additionally, to transparently divert files into different storage systems.

In order to achieve this goal, different architectures are possible. The two main
options are modifying and extending a conventional file system to provide the desired
new features, and building a layer on top of the original file system, complementing
its functionalities. In this section, we discuss both possibilities.

3.3.1 Extending a traditional file system

A first approach to provide decoupled metadata management is to extend a traditional
file system to offer such functionality. Figure 3.3 shows a diagram with the extensions
needed to make this transformation.

Compared with the basic structure depicted in Figure 2.1 (Chapter 2), we may
see that some of the elements are equivalent (for example, we still have name space
information, location information and file-specific metadata). However, apart from the
physical metadata needed to handle the physical storage devices, we have to add the
corresponding information for the virtual views. This involves an increased level of
complexity because the file system components must be able to determine which set
of metadata must be used for each request (while maintaining the consistency among
the different metadata sets).

The other important change is that, in order to be able to integrate multiple file
systems under the same name space, the extended file system need to be able to
interface with those other file systems for data storage, instead of relying only on its
own low-level storage devices. This is represented in Figure 3.3 by the data file system
interface and the underlying file system, which lays side by side with the interface
elements required to access a physical low-level storage device.

As a whole, we have the physical metadata and location information to handle the
attached low-level storage devices (as in the traditional file system) and the virtual
metadata which is used to integrate multiple underlying file systems and low-level
storage devices and to provide different views of their combined contents to the user
applications.

The following items describe in more detail the changes affecting to each element:

Application file system interface. In order to be transparent and let unmodified ap-
plications work on the new system, the interface between the applications and the
file system engine must be compatible with the non-extended version. However,
it is possible to incorporate new calls to the interface to make use of the new

3.3. Architecture 27

Figure 3.3: Extending a basic file system for decoupled metadata
management.

features (for example, to choose a specific name space to perform a particular op-
eration, or to set the rules to decide automatically which set of metadata should
be used at each moment).

Name space metadata. Traditional file systems as the ones described in Section 2.2
offer a single view of the directory tree to the user; thus a single name space is
provided. In our extended file system, we need to maintain a set of name spaces
to be able to provide multiple views to the user.

It is important to note that these name spaces are not completely unrelated to
each other. Indeed, the different name spaces export different organizations of the
same set of objects in the underlying storage; therefore, certain changes made to
an object through a particular name space will be reflected in other name spaces.
For example, a particular semantics may allow deleting a file from a particular
name space; in that case, the file system should locate the entries in other name
spaces referring to the same file and also remove them.

28 Chapter 3. The Approach: Metadata Virtualization

File-specific metadata. File system object attributes managed by our extended file
system fall into two groups. On one side, there are the physical attributes required
to manage the data residing in the low-level storage device; these are essentially
equivalent to the file-specific metadata in the basic file system structure. On the
other side, there are the so-called virtual file-specific metadata attributes, which
are the ones actually exported to the users.

The virtual attributes may differ from the low-level ones and provide support to
unify the underlying data systems. This is useful to integrate different storage
devices and/or underlying file systems under a common view. For example,
virtual file-specific metadata may provide attributes supporting ownership and
access permission information which are not available in the underlying physical
metadata (such as the metadata in a FAT-based file system).

Additionally, it is possible to store different sets of values to virtual attributes of
a specific object, associated to the name space through which they are accessed.
For example, a file meant to be read-only under some views and modifiable in
others could have two sets of access permission values to reflect its properties
under each view.

Location information. As with the file-specific metadata, our extended file system
has to deal with two different types of location information: the information
required to physically access data in the low-level storage device and the vir-
tual location information meant divert access from the common interface to the
multiple underlying file systems and low-level storage devices.

The nature of both types of location is quite different. While physical location
information is device-dependent (e.g. block address and offset in a block-based
device), the virtual location information is device-independent and typically con-
tains a reference to a particular underlying storage system and locator inside such
data repository (e.g. a file system identifier and a path inside that file system);
in the latter case, the underlying file system is assumed to contain the low-level
location information to actually access the required physical data.

Global metadata. The global metadata does not have significant changes compared
to the basic file system structure from Section 2.2. The information provided to
the user applications is the same, and the only difference resides in the fact that,
in a extended file system architecture, it must provide a sensible aggregation of
the global metadata from the underlying file systems and storage devices.

This model of extended file system has the necessary elements to provide multiple
views of the underlying file systems objects to the user applications.

Nevertheless, integrating all the elements is not an easy task. The file system
engine has to maintain and coordinate multiple name spaces with their associated
sets of virtual attributes and virtual location information. At the same time, this virtual
information has to be combined with the handling of physical metadata to manage
the attached storage devices and, additionally, it must also incorporate the capacity

3.3. Architecture 29

to use other underlying file systems. Mixing all this elements may lead to complex
implementations that are difficult to maintain and prone to error situations.

Therefore, a more suitable approach would consist in splitting the system into
several modules addressing different functionalities. Fortunately, the model reveals a
clear distinction between the virtual view management (including the virtual name
spaces and the virtual attributes) and the underlying data management (composed
of storage devices and the associated management information, as well as additional
underlying file systems).

In the next section, we present an architecture that structures the elements of the
extended file system into separated modules that form a Metadata Virtualization Layer
on top of conventional file system interfaces.

3.3.2 Introducing a metadata file system layer

A practical approach to offer metadata decoupling and all its benefits consists in build-
ing a specialized Metadata Virtualization Layer that runs on top of other file systems.
Figure 3.4 presents the architecture for such a system.

In this architecture, the application requests are captured by an Interception Engine
that publishes a conventional file system interface. The requests are directed to the
Metadata Manager, which translates them into adequate requests for the underlying
file systems. The Data Manager takes these translated requests and actually forwards
them to the underlying file systems, taking into account their specific characteristics.

This generic procedure may be altered in some situations. For example, some
requests can be completely resolved by the Metadata Manager without reaching the
Data Manager if they involve just virtual elements. In other cases, a request can bypass
the Metadata Manager and be immediately diverted to the Data Manager if it has
nothing to do with metadata management (e.g. an actual read or write data request).

The elements in this architecture are essentially the same as the ones discussed in
Subsection 3.3.1. The only difference is that, given that this metadata layer is deployed
on top of other file systems instead of raw low-level storage devices, it does not need
to keep physical metadata and location information.

This way, the components in the specialized metadata layer are independent of
the existing file systems. Though the lack of knowledge about the low-level storage
systems may introduce a greater overhead because the metadata management is not
so tightly integrated with the underlying file system, it also offers greater flexibility,
as it is not necessary to maintain compatibility with specific file system structures.

The tasks of each component are summarized in the following items:

File system interface. The file system interface is associated with an Interception En-
gine to capture the requests issued from the applications to the actual file system.
This module is responsible for redirecting the original requests to either the Meta-
data Manager or the Data Manager of the Metadata Virtualization Layer.

30 Chapter 3. The Approach: Metadata Virtualization

Figure 3.4: Deploying a Metadata Virtualization Layer.

Metadata Manager. This module is the responsible for providing virtual views of the
underlying file systems to the applications. It can be conceptually divided into
several subcomponents handling the different types of metadata:

Name Space Manager. The Name Space Manager subcomponent is in charge of
translating paths in a directory tree into internal identifiers used by the
Metadata Virtualization Layer to reference the actual objects. Additionally, it
also handles requests related to directory content management (including, for
example, directory listing, file renaming and file existence checks). Directory
content operations are completely independent of the actual directory layout
in any of the underlying file systems and storage mechanisms; therefore, they
can be completely performed by the Name Space Manager without needing to
reach the underlying file systems.

The Name Space Manager has also to be able to choose the right name space
(from the available ones) to perform the required operations.

Attributes Manager. The Attributes Manager subcomponent is responsible for
handling the individual file system object attributes. The attributes provided

3.3. Architecture 31

by the Metadata Virtualization Layer are very similar to those found in tradi-
tional file systems and may include items such as security elements (owner,
group, access permissions and control lists), statistical information (access
times and other utilization indicators), infrastructure-related fields (such as
file system identifiers, hard link counters and symbolic link paths) and ex-
tended attributes.
Location information is considered a kind of attribute and also handled by
the Attributes Manager. The main difference with the location information in a
traditional file system architecture (such as the one described in Section 2.2) is
that the locations in the Metadata Virtualization Layer are device-independent.
Because of not being restricted to a specific low-level format, the Metadata
Manager can be easily extended to provide advanced location functionalities.
For example, several locations containing replicas could be associated to a
file’s data or to fragments of it, enabling replication across several underly-
ing file systems; in a similar way, a single file data could be transparently
stripped across several storage systems.

Data Manager. In a traditional file system, the internal data management modules
are in charge of reading the data (or writing the modifications) in the low-level
storage devices. The Data Manager in the Metadata Virtualization Layer performs
a similar task, but working on top of another file system instead of a raw device.
Actually, its function is to provide the Metadata Manager with a unified interface
that eliminates the differences between the underlying file systems. Fortunately,
the advantage is that, being higher-level entities, the differences between file
systems are easier to overcome than the differences between low-level devices.

Depending on the operation and its environment settings, the Data Manager may
let the request go forward to an underlying file system, it may alter it (for example,
encrypting or compressing data), it may decide to split the contents into different
underlying files, or it may even duplicate the data or redirect it to several storage
systems.

The Data Manager can also perform operations on the underlying file systems
autonomously from applications, enabling advanced features such as automatic
maintenance, information gathering or data reorganization and migration.

In summary, a Metadata Virtualization Layer is able to handle the elements men-
tioned in the extended file system model, but in a simplified way (as it delegates
all low-level aspects to the underlying file systems). Being loosely coupled with the
underlying storage may increase the overhead risks but, at the same time, the lack
of integration allows more robustness and flexibility, due to not having to abide by
low-level compatibility issues.

As a consequence, in this thesis we have decided to use the Metadata Virtualization
Layer as the reference model for our developments. Section 3.5 discusses details about
several aspects that must be taken into account in order to convert this model into an
implementable and functional system.

32 Chapter 3. The Approach: Metadata Virtualization

3.4 Terminology

Though virtualization techniques are currently applied to a multitude of areas, it is
also true that the precise meaning attributed to the term ‘virtual’ usually varies from
case to case. Therefore, we deem important to specify how ‘virtual’ and other related
terms are going to be used in this work.

We will refer to the directory hierarchy of the underlying file system as the physical
name space, which will be composed of ‘physical’ files and directories.

Oppositely, the Metadata Virtualization Layer will provide alternate views of the file
system layout that may differ, at least in some points, from the physical name space.
We will designate these alternate views as virtual name spaces.

We will use the expression ‘virtual file’ to indicate an entry in the virtual name
space representing a file, and ‘virtual directory’ to refer to a folder in the virtual view.
The expression ‘virtual object’ generically refers to objects related to a virtual name
space (either a virtual file, a virtual directory, a symbolic link or any other entity), and
‘virtual entry’ indicates the name of that object (i.e. the last component of its path).

In the implementations discussed in Chapter 4 and Chapter 5, virtual files are
usually backed by physical files in the underlying file system, while the rest of virtual
objects does not have corresponding underlying objects.

Nevertheless, in some occasions a virtual name space may expose part of the
physical name space. One of the ways to achieve this feature is to match a virtual
directory with a corresponding physical directory; the resulting entity can expose the
physical directory contents through the Metadata Virtualization Layer and it is called
an anchor directory. (This particular use case is discussed in Chapter 5.)

3.5 Practical applicability aspects

One of the goals of this thesis is to provide a metadata virtualization framework able
to offer multiple views of the file system organization to applications and, at the same
time, able to integrate several underlying file systems seamlessly.

In Section 3.3, we have outlined the changes and additions required, compared to
a conventional file system architecture. These modifications affected both the nature
and type of the metadata information as well as the components that handle them.

Nevertheless, file systems are complex entities and converting the proposals into
fully functional systems involves taking care of a multiplicity of aspects that may
impact the feasibility of practical implementations.

In this section, we identify the relevant aspects that affect the implementation of
a file system Metadata Virtualization Layer and discuss the possible ways to deal with
them.

3.5. Practical applicability aspects 33

3.5.1 Dealing with underlying file system information

The Metadata Virtualization Layer relies on an underlying file system to keep the
actual data. This data is usually represented in terms of files and other objects in the
underlying file system.

These ‘underlying’ objects have attributes that may be unrelated to particular name
spaces or virtual metadata items (for example, the size of a file or the time of its last
modification is independent of the name space through which it is being accessed —
and changes to these values can be visible across multiple name spaces). However,
updating the attributes of the underlying objects may require complex protocols (for
example, all nodes in a distributed file system should be made consistently aware of
a modification of the size of a file).

Usually, the underlying file systems are specially designed to take care of these
attributes. Therefore, duplicating such mechanisms in the Metadata Virtualization Layer
does not offer clear benefits. For this reason, the implementations of the metadata vir-
tualization framework described in this thesis delegate the management of attributes
tightly related to underlying objects to the underlying file systems.

On the contrary, ‘virtual’ objects (e.g. files in a virtual view) are actually associated
with high-level virtual attributes with a more restricted scope and which effectively
depend on the particular entry or name space used to access them. These attributes
are kept in the Metadata Virtualization Layer instead of the underlying file systems.

So, we establish a distinction between the underlying objects and their attributes
(actually stored in the underlying file systems) and the virtual objects accessible
through a virtual view, which may have virtual attributes that can be independent of
the related underlying objects.

The coordination of metadata access to underlying objects and their attributes,
as well as the implementation of any consistency protocol required to coordinate
multiple underlying file systems, is a responsibility of the Data Manager component
from the architecture described in Subsection 3.3.2 (see Figure 3.4). This module is
also responsible for accessing the actual underlying file data whenever necessary.

The handling of virtual attributes not directly related to underlying objects is car-
ried out by the Metadata Manager component. This module may able to use simplified
protocols and consistency mechanisms to access and update such attributes, result-
ing in optimized performance (for example, changing the permissions of a file in a
virtual view which is accessible from a single node does not require any distributed
consistency mechanism, even if the underlying file system is a distributed file system
deployed across multiple nodes).

An actual example of this management separation is the implementation of a
Metadata Virtualization Layer providing POSIX semantics on top of an underlying
file system. A request to access certain file attributes (e.g. utime to modify a file’s
access and modification times, or stat to retrieve a file’s size) requires accessing
the underlying file related to the ‘virtual’ file in the specific view being used. In

34 Chapter 3. The Approach: Metadata Virtualization

the case of access and modification times, the reason is that these values are tied to
actual underlying activity, and the underlying file systems usually handle them well;
duplicating them in the Metadata Virtualization Layer and keeping them synchronized
with the underlying file attributes is an unnecessary cost. A similar situation occurs for
the file size requested via stat: it is much cheaper to check with the actual underlying
object when needed, than to keep a value in the Metadata Virtualization Layer and
maintain it synchronized at all times.

Attributes related to objects not associated to any underlying object (such as direc-
tories and symbolic links) are not bound to this attribute delegation policy. As they
are independent of the underlying file system, their size and time-related information
is directly maintained as attributes of a virtual object in the views provided by the
Metadata Virtualization Layer.

The actual location of the files in the underlying file system is stored by the
Metadata Manager. This location information is an opaque value, in the sense that it is
to be interpreted by the Data Manager to reach the actual file data.

In a general case, the location information is composed of a storage repository
identifier and a reference to the underlying object inside that particular storage (in
a simple case this could be mapped to an underlying file system identifier — or a
mount point — and the path of the target file inside that file system).

In more complex scenarios, the location opaque value can be used to keep arbitrary
information allowing the Data Manager to locate the actual data. For example, a file
in the user’s view of the file system can correspond to the concatenation of several
files, possibly in different underlying file systems (file striping); then, the location
information would contain information about such files indicating, for example, the
file systems where they reside, the path of the files and, if necessary, the offsets of the
user file represented by each underlying file.

A similar approach can be used to handle file replication (either of the complete
file or part of it). In this case, the location information would contain a list of the
replica locations.

3.5.2 System-specific identifiers

Typically, users refer to an object in a file system by means of a path, which represents
the location of the object inside a particular name space (e.g. the sequence of folders
that need to be traversed in a directory tree to reach the object, plus the name of the
object inside the final folder).

Internally, the file systems typically refer to objects by means of numerical iden-
tifiers. As a matter of fact, one of the main tasks of the Name Space Manager in a file
system is to provide means to translate a path provided by a user into the internal
identifier referring to the actual file system object structures.

POSIX-based systems assign an internal identifier (the so-called i-node number)
to each file system object. This identifier is assumed to be unique for a given file

3.5. Practical applicability aspects 35

system during the life time of the object. Furthermore, in some environments, it is
sometimes recommended to not immediately re-use the identifier once the object has
been destroyed, in order to avoid conflicts due to stale references to that identifier (for
example, in case it has been cached remotely and a network issue does not allow to
guarantee that the cached value has been invalidated).

The POSIX i-node number must be made available to the system and to the ap-
plications using the file system. Therefore, if the Metadata Virtualization Layer has to
provide POSIX semantics, it needs to generate the proper i-node numbers for the ob-
jects in its views. The internal identifiers from the underlying file systems cannot be
directly re-used for this purpose: for example, there may be several underlying file
systems (with possibly duplicated i-node numbers) or, simply, some of the underlying
file systems may not be POSIX-compliant and not provide compatible identifiers.

The valid range for i-node numbers is somewhat dependant on the operating system
because they have to be fed back to it. For example, one of the possible requests from
the VFS component in a Linux system to a POSIX file system is a request for translation
from an entry name into an i-node number; the provided i-node numbers are stored by
the Linux kernel to be directly used as identifiers in future requests [Bovet 2008].

The i-node numbers are typically represented as integer values. Most systems use
integers with 32 bit or 64 bit lengths, while a few can use larger integer sizes. It is
usually assumed by the system that an i-node number represents a unique object in a
given file system, and that such i-node number will not be reused until the previous
object is destroyed. Nevertheless, some systems allow a more flexible scheme: an i-node
number could be reused as far as the underlying system keeps no reference about the
previous object. To this end, Linux VFS instantiations use a forget request from the
kernel to notify that some references to a particular i-node number have been released.
Additionally, some systems use a generation number associated to the i-node number
which is increased each time the corresponding i-node number is re-used; nevertheless,
this is not usually exported outside the file system.

The implementations of the Metadata Virtualization Layer internally identify and
refer to virtual objects accessible through views by means of identifier (internally
called inums — a contraction of “identification number”). These identifiers are unique,
at least for the life time of the object; they are handled internally, so they do not
necessarily match the i-node numbers that must be provided to POSIX-based systems.
Therefore, an inum value has to be mapped to a locally unused i-node number adequate
for the user.

Of course, if it can be guaranteed that the possible range of inum values is always a
subset of the values accepted as i-node numbers by the user’s operating system kernel,
a possible map consists in directly using the inum value as the i-node number.

Nevertheless, it is possible that the inums do not match the valid i-node number
range (for example, some of the implementations derived from this work use 128 bit
identifiers, while current Linux kernels support, at most, 64 bit i-node numbers). In
this case, the Metadata Virtualization Layer has to explicitly map local i-node numbers to

36 Chapter 3. The Approach: Metadata Virtualization

internal inums in order to be able to translate one into the other, in both senses. The
data structures supporting this translation can be local and even temporary (e.g. they
could be cleaned on system restart because no assumptions are made regarding the
persistence of the local identifiers once the system has been terminated).

The identifier translation mechanisms also help in situations when the limited size
of i-node numbers is a handicap to provide the required functionalities. For example,
the Metadata Virtualization Layer may interface to an underlying file system with a
very large set of objects exceeding the local identifier range (as could be the case
of a distributed or a globally available cloud-based file system); in this case, large
identifiers can be used to identify the underlying objects, but only those in the ‘active’
working set would be assigned local i-node numbers, keeping them in a reduced value
range. Another reason for having arbitrary large identifiers not fitting in the locally
available ranges is the use of algorithms for distributed generation of universally
unique identifiers; such identifiers are usually large, in order to reduce the chances of
clashing.

The implementations of the metadata virtualization framework that we have de-
veloped as part of this thesis use different approaches depending on the environment
where they are going to be used. For example, the HPC implementation discussed in
Chapter 4 is mainly designed to boost specific application runs; therefore, it uses a
64 bit monotonically increasing counter as inum, which can be reset when a particular
workload is completed and, due to its size, can be directly mapped into local i-node
numbers. On the contrary, the implementations described in Chapter 5 are meant to
deal with a potentially large number of files in the cloud that need persistent iden-
tifiers; therefore, they use 128 bit inums which are mapped to local identifiers via
non-persistent local hashes.

3.5.3 Using databases for metadata storage

Most file systems store information related to the file system objects and the name
spaces using specific structures (for example, i-nodes and directories) which are usually
grouped together (e.g. the i-nodes are packed together in certain sections of disks, and
directories are represented as huge lists of entries stored in consecutive blocks in a
disk).

When developing implementations of the Metadata Virtualization Layer, we decided
to use a different approach. The data required by the different components is orga-
nized as records in large tables indexed by a key value (or, at most, the combination of
a few values) without any explicit grouping. Therefore, any hash-like structure (a set
of entries accessible via a key) would be adequate for storing the necessary pieces of
data, such as entry information for the Name Space Manager module, object attributes
for the virtual Attributes Manager and other pieces of information (such as paths for
the symbolic link support).

Databases fulfil the functionality of hashes, with some additional features such
as multiple keys, or atomic transactions, for example. Moreover, advanced database

3.5. Practical applicability aspects 37

engines also provide fault tolerance mechanisms or distribution support. For these
reasons, our implementations of the Metadata Virtualization Layer use databases as
back-end for the data required by the different components.

Specifically, we have used Mnesia, a database that is part of the Erlang/OTP suite,
to support some of the distributed implementations of the Metadata Virtualization
Layer. Said database is optimized for simple queries in soft real time distributed
environments and has built-in support for transactions, fault tolerance mechanisms
and data distribution. An interesting property is that said database is able to keep
and manipulate its tables in memory (for efficiency) while sending the information in
the background to persistent media (safety).

Despite the fact that databases may seem too cumbersome for the fast pace re-
quired in file system implementations, we have found that adequately tuned databases
do not have a substantial impact in file system metadata performance and, at the same
time, they provide a level of flexibility that is not present in block-based metadata
storage in traditional file systems. The results obtained with the Metadata Virtualization
Layer implementations using databases will be shown in the next chapters.

3.5.4 Metadata volatility

It was mentioned in Chapter 2 that the trends in traditional file systems tended to
group all metadata (i.e. all attributes) together so that, being usually small, they could
be packed and transferred in an efficient way.

Nevertheless, such packing also has negative consequences: for example, updating
an attribute usually involves locking the attribute set in order to keep the consistency
but, at the same time, this may prevent another process from accessing an unmodified
attribute while another attribute is being updated (causing lock contention).

This situation is often aggravated by the fact that the values of the different at-
tributes of file system objects have different levels of volatility, from immutable to
highly volatile values.

In distributed file systems, the impact is more noticeable. A common technique
in distributed implementations is to use a cache mechanism to avoid unnecessary
transfers and, usually, this involves keeping a local copy of the attributes from a remote
repository. Then, issues arise when frequently used attributes with low volatility levels
are packed and handled together with rarely needed attributes with high volatility:
changes in the rarely needed attributes may require the invalidation of the group of
cached attributes, removing also the highly needed — and probably unmodified —
low volatility attributes (thus, limiting the effectiveness of some techniques such as
caching).

We may find a concrete example in POSIX-based file systems. POSIX-based file
systems use the i-node structure to keep all the information related to a file system
object. Such information include some immutable information that is needed very
often (e.g. the i-node number, and the file object type), information which is also used

38 Chapter 3. The Approach: Metadata Virtualization

very often (possibly by multiple clients) and rarely updated (e.g. the owner, the group,
and the access permissions) and information which is rarely needed but updated very
often (e.g. the file size, or the access and modification times).

A solution for said type of situations is to classify and group the attributes in
‘volatility levels’ according to how often they are updated (and possibly also taking
into account how often they are needed). Using such classification, the Metadata Man-
ager in a Metadata Virtualization Layer can treat each set of attributes in a specific way,
according to their characteristics (for example, it may use different caching policies —
e.g. with different lease times).

The implementations of the metadata virtualization framework presented in this
thesis are designed to take advantage of the volatility classification and break the
traditional grouping of attributes. Unfortunately, some traditional interfaces limit the
effectiveness of this approach; for example, in the POSIX standard, stat is the most
commonly used operation to retrieve the attributes of a file system object — and it
retrieves all the attributes at the same time (the application just ignores the attributes
that it does not need). Nevertheless, other modern file systems, not strictly POSIX-
compliant, offer tools to access attributes individually and can take advantage of the
different attribute behaviours; this is the case, for example, of Microsoft NTFS.

3.5.5 Metadata caching

In cases where the modules of the Metadata Virtualization Layer are distributed, caching
is a useful technique to avoid some communication among components and improve
the performance. Nevertheless, care must be taken to keep the cache synchronized
with the actual data.

The components of the Metadata Virtualization Layer could maintain a cache by
themselves, or try to take advantage of mechanisms already implemented in the base
technology. For instance, FUSE, when used as one of the base technologies, allows
the Metadata Manager module to specify the expiration times for directory entries and
some of the file system object attributes cached in the operating system kernel.

Unfortunately, we observed that most of the available caching mechanisms in the
base technologies were not adapted to our specific needs. In particular, at the time of
the implementation development, FUSE did not offer means to arbitrarily invalidate
cached items in the kernel, which was a feature required to maintain consistency
when metadata was modified from a remote node in a distributed deployment.

Eventually, a specific cache mechanism was implemented to keep object attributes
and entry-related data locally, in order to reduce interactions with remote nodes. The
cached data was provided with a limited-time lease and, additionally, the provider
could issue specific invalidation requests whenever the affected pieces of metadata
were going to be modified by a different node.

A particular detail of the cache implementation is that lease handling can be
decoupled from data requests; in other words, the lease is not sent back to the caching

3.5. Practical applicability aspects 39

component together with the response to a request: instead, the response is sent as fast
as possible from the component having the desired data, and it triggers a decoupled
concurrent mechanism that will end up in the corresponding lease being sent to the
requesting component afterwards.

Though this might seem counter-intuitive (as the data is sent twice to the client),
we observed that it resulted in better response times when back-end components of
the Metadata Virtualization Layer were executed in low-end systems (where process-
ing speed was slow compared to network speed), while the cache efficacy was not
affected in a significant way. When tested in systems with higher processing capacity,
differences between decoupled and non-decoupled lease handling disappeared.

The number of leases granted for a specific piece of data is limited. This limitation
helps to keep the synchronization and invalidation costs bounded. Beyond this limit,
the cost of synchronization would outweigh the benefits of caching, so the system
moves to work as a no-cache system.

3.5.6 Metadata represented as active objects

The separation between metadata and the underlying file system introduced by our
Metadata Virtualization Layer has allowed us to explore alternative possibilities for
metadata representation.

In particular, this subsection discusses an unconventional method consisting in rep-
resenting the file system objects as active objects (i.e. threads or lightweight processes)
controlling their related pieces of metadata. This method has been particularly effec-
tive for the implementation of a Metadata Virtualization Layer designed for distributed
HPC environments (see Chapter 4).

The basic idea consists in creating a process for each virtual object in a view, with
such process having exclusive rights for performing updates to the attributes of the
corresponding object. The following paragraphs explain the rationale.

In modern computing environments, it is usual that several users or applications
issue requests to the file system simultaneously. Therefore, different requests may
cause conflicts because they need to access the same object in different ways (for
example, trying to create a subdirectory while the parent directory is being listed).
Moreover, it is not uncommon that certain requests may affect several objects (for
example, a file removal involves destroying the target virtual object representing the
file and modifying the object representing the parent directory).

A well known technique to deal with these situations is using explicit locking
mechanisms: the code implementing a request tries to acquire locks on the required
data structures; if the locks are granted, the code may continue; otherwise, it has to
wait until the current lock owner releases them. Nevertheless, in situations with lots
of activity, or when large groups of structures have to be manipulated, this technique
can lead to lock contention. Even with no conflicts, acquiring and releasing locks may
produce some overhead.

40 Chapter 3. The Approach: Metadata Virtualization

Representing the file system objects as processes allows using a novel approach to
deal with concurrent activity: instead of having to lock data structures before using
them from different applications, each data structure has an assigned thread or process
which is the only one with permissions to modify the data.

In the implementations of the Metadata Virtualization Layer, the Metadata Manager
associates one of these processes to each virtual object representing a file system
object in a particular view. Such exclusive process is the only one with permissions to
modify the attributes of the virtual object associated to it (e.g. the access permissions,
or the location of the actual file in the underlying file system).

The fact that only one process is allowed to modify a specific attribute of a particu-
lar object and a strict order for updating attributes allow to avoid the need to enclose
certain operations in large and costly synchronization procedures (such as database
transactions), even when attributes are read from non-owner processes. For example,
when a new file is created, the attributes of the virtual object representing the new
file are updated first, then the object corresponding to the parent directory is also
updated and, finally, a new entry is added to the name space; therefore, if an external
process is able to reach the object following a path, it is sure that the related attributes
have been already set and are consistent.

There are some database transaction properties that are not maintained with this
mode of operation; namely, there is no automatic roll-back capability when errors
prevent the completion of a complex operation. In these situations, the construction of
the framework guarantees that the resulting view of the system is consistent, but it is
possible that stale structures remain allocated. Clean-up of such structures is enabled
by logging the objects involved in error situations and making them candidates for a
posterior check-and-clean swept.

The method to operate with processes instead of data structures is as follows.
Whenever a request arrives to the Metadata Manager to update a virtual object, it is
forwarded to the process associated to the target virtual object. If the request involves
a modification, then the process performs such modification (e.g. by updating a
repository containing the actual attributes such as, for instance, a database); otherwise,
the requested data is included in the response. Once the process sends the response
back to the caller, it waits for the next request. Note that, as the process is the only
updater, the pieces of metadata can be safely cached in the process local memory
without consistency risks.

In cases where several virtual objects are involved (for example, removing a file,
which may affect the virtual object representing the file itself and the virtual object
representing the parent directory) the request is sent to the ‘main’ object process (the
parent directory) which then interacts with the process of the other object involved
(the file to be removed) by any convenient means (e.g. via message passing).

One of the implementations of the Metadata Virtualization Layer presented in this
thesis is based on the Erlang/OTP environment, which provides support for extremely
lightweight processes (a single Erlang node may handle up to a few million processes).

3.5. Practical applicability aspects 41

In such environment, the data related to virtual objects (including attributes) was
kept in a repository based on the Mnesia database. This particular environment was
used for the implementation described in Chapter 4, deployed on top of distributed
file systems for HPC environments, where the potentially huge number of files in a
working set required the ability to handle a large number of active object processes.

In other environments, such as the Microsoft Windows-based systems described
in Chapter 5, dedicating an exclusive process to each object can rapidly exhaust the
available resources (due to the heavier nature of threads in that operating system). In
these circumstances, a single process may be used to handle more than one virtual
object. In order to achieve similar benefits to having a dedicated process per object, the
subsets of virtual objects handled by different processes are disjoint (i.e. two different
processes with any overlap in time do not have ownership of the same virtual object,
even at different times).

In summary, contention problems and costly synchronization mechanisms can be
reduced by using a dedicated process for each virtual object. This mechanism can
improve the performance and scalability of the Metadata Virtualization Layer, especially
when this layer operates in environments where several users may issue simulta-
neous requests (for example, parallel and/or distributed systems). In particular, the
Erlang/OTP framework provides support for transparent process migration across a
set of node, facilitating the scalability of a Metadata Manager based on this technology.

The processes associated to virtual objects can be activated or deactivated when
necessary, so that not all virtual objects must have an associated active process at all
times. The process can be eliminated and disappear after a period of inactivity, and
be re-created when the associated object is needed again.

The responsibility for the activation or deactivation is shared by the Metadata
Virtualization Layer components and the object processes themselves. The ability to
activate and deactivate object processes as needed allows the Metadata Virtualization
Layer to maintain a greater control on the amount of resources being used to handle
virtual objects. For example, when there is a request to update a virtual object and
its dedicated process does not exist, a new process will be created to represent such
virtual object. Once the process is created, the Name Space Manager or the Attributes
Manager components can forward the request to the new process.

The decision to deactivate a dedicated object process depends on the availability of
resources and an inactivity time threshold. The inactivity time threshold for different
object processes may also be different, being adapted to different usage patterns.
Another reason for deactivation is provided by the file system semantics itself: for
example, a requirement to deactivate an object process representing a directory in a
file system (e.g. because of a removal operation), may cause that process to request
the deactivation of other dedicated processes associated to virtual objects representing
the children of the first directory.

In our implementations of the Metadata Virtualization Layer, each object process is
able to deactivate itself when certain conditions occur. The advantage of having an

42 Chapter 3. The Approach: Metadata Virtualization

object process to deactivate itself is that each process may keep its own state and track
the conditions that make it a candidate for deactivation, instead of moving the burden
to an external component having to maintain global information about all the object
processes and their state and conditions in order to deactivate them when necessary.

3.5.7 Stateless large directory handling

Directory listing is one of the common operations that users perform on a file system.
This operation returns the contents of a given folder in a directory tree. The Name
Space Manager is the responsible for generating a list of entries contained in a given
folder in a particular view upon request.

As the Metadata Virtualization Layer may receive several requests simultaneously
(possibly from different users), it may occur that entries from the set being listed are
to be removed while the listing is in progress, or where new entries that could appear
in the listing are to be created while the listing is in progress. In these situations, most
systems demand a certain degree of consistency in the listing; usually, this means, at
least, that the listing should not contain the same entries more than once (i.e. entries
with the same name, regardless of them referring to the same or to different objects). In
other words, removed entries may or may not appear in the listing, and newly created
entries may either not appear at all, or appear in the listing as far as a previously
existing entry with the same name (but already removed) was not already listed.

A possible approach consists in using a lock mechanism (or a database transac-
tion if the entries are stored in a database) to prevent modifications to the affected
entries while producing the listing. For short listings of entries, this may be effective;
nevertheless for very large listings, this has a number of problems: for example, gen-
erating a large listing may take a considerable amount of time, causing performance
problems due to delays to other requests waiting for the locks to be released. Also,
in distributed environments where the listing may have to be transferred between
components in different nodes, other potential problems arise: either all the listing is
transferred at once (probably causing long response times due to having to wait for
all data to arrive) or the listing is fragmented (facing complex error situations in case
the communication fails at the middle of the transfer, leaving the locks acquired).

An additional problem is posed by file system semantics as POSIX, which defines
an interface allowing to list a directory fragment by fragment (entry by entry, specif-
ically) and permits a user starting the listing, leaving it unfinished, and continuing
with the listing after an arbitrary amount of time. Furthermore, POSIX requires the
ability to replay a partial directory listing keeping the previous listing order (via
telldir/seekdir interface).

The traditional and well-known approach in the field of file systems to handle
large directories is to maintain the entries of a directory in an ordered tree structure,
usually stored as special file. By having the entries ordered, it is relatively simple to
keep a pointer to the last entry listed and generate the listing fragment by fragment. If
a new entry is added before the current pointer, it will be ignored; if an already listed

3.5. Practical applicability aspects 43

entry is removed and then re-created, it will be placed before the current pointer, so it
will not be listed twice; and, finally if an entry is either created or removed after the
current pointer, it will not affect the part of the listing already generated.

Nevertheless, the trees also have issues, especially when growing to large scales:
in order to be efficient, trees should be kept balanced when new entries are added
and when existing entries are removed. Balancing a tree while keeping it ordered can
be a costly operation, which in the case of file systems is aggravated by the fact that,
in order to take advantage of block devices, the leaves of the trees are not entries, but
groups of entries packaged in one or more consecutive blocks. As such groups can
keep only a limited amount of entries, adding or removing an entry may involve split-
ting or uniting blocks of entries, causing non-trivial (and potentially time consuming)
reorganizations of data. Furthermore, in current distributed environments, maintain-
ing an ordered tree which could be distributed across several nodes for scalability
purposes even adds more complexity and costs, making it a poorly scalable solution.

An alternative solution would be storing the entries in a table in a database.
Current database technologies allow large-scale distribution of the data (so that the
mechanism is scalable and can operate on distributed systems easily, contrary to what
happened with ordered trees), and storage and retrieval of data (entries, in our case)
is fast and effective. The issue with database tables is that, in general, they do not
guarantee a particular ordering of the data contained in them. So, the obvious way
to generate listings from them would be locking the table or using transactions (with
the cost and potential problems commented above).

In order to address such issues, we devised a method that allows to store entries
in non-explicitly ordered repositories (such as database tables), while allowing the
implementation of entry listings (even fulfilling POSIX semantics). The mechanism
is based on the fact that all entries have some distinctive characteristic that allows to
differentiate them (for example, all entries in a directory must have different names),
so that such characteristic can be used as input to a hash function, and so that the set
of distinct results obtained from applying such function to the entries to be listed is
smaller than the set of entries to be listed.

The procedure to list the directory entries starts by generating the list of distinct
results of the selected hash function applied to the names of the entries to be listed.
Each distinct hash value defines a disjoint subset of the entries to be listed (said subset
containing the entries for which the hash function returns the same hash value).

The hash function must be chosen in such a way that the list of distinct hash values
has an adequate size to be transferred in a single shot from a remote server having
the set of entries to be listed to the local client generating the list for the requester.
Additionally, each subset of entries defined by each hash value should also have a
size adequate for being transferred in a single shot with a reasonable cost, and sorted
in the local client to generate an ordered listing (note that a relatively large number
of hash values with relatively few bits can be packed in a small space, and be used to
define a large number of subsets, which can be potentially small).

44 Chapter 3. The Approach: Metadata Virtualization

Figure 3.5: Hash-based directory partitioning schema for stateless listing.

Once the set of distinct hash values for all directory entries is received, the local
client will sort said hash values following any arbitrary sorting criteria. Once the hash
values are sorted, it will contact the remote server to request the subset of entries
corresponding to the first hash value; when the subset of entries is received, it is also
ordered according to an arbitrary criterion and can be forwarded to the requester as
part of the whole listing (entry by entry, if so demanded). The same procedure is then
repeated for each distinct hash value defining a subset of entries until all subsets of
entries have been obtained and, thus, the list of all entries has been generated.

Figure 3.5 illustrates a situation where a hash function distributes the entries in
a directory into M sets. Considering i as the current subset being processed, entries

3.5. Practical applicability aspects 45

added or removed having hash values identifying previous subsets will be ignored
(in particular, if an entry from a previous subset is removed and a new entry with
the same name is added, it will fall within the same subset — already processed
— so it will not appear twice). On the other hand, entries added or removed to the
current set do not affect the listing (as they are added into or removed from the remote
repository, while the client generating the listing is working with its own local copy).
Finally, entries added or removed from unprocessed subsets will appear or disappear,
respectively, from the final listing (but they will not produce duplicated results).

There is a possibility that a new entry is added and its corresponding hash value
is not in the initial list of distinct hash values cached by a client; in this case, such
entry will not appear in the final listing (which is also compatible with most of the
file systems semantics — and particularly with POSIX).

Re-playing the entry listing in the same order from an arbitrary point is possible
as far as the original list of distinct hash values has been kept locally (or recovered
and re-organized into the original order). A handle to indicate a given position in the
listing to start the replay in an efficient way would consist of the name of the desired
entry and the hash value corresponding to it. Such handle could be generated and
stored locally whenever a telldir operation is performed.

In summary, the mechanism described above improves the system robustness
because the user can request listings of large amounts of entries without jeopardizing
the Metadata Virtualization Layer efficiency and reliability. By using the above-described
method, large directory listings can be generated in a reproducible way, fragment by
fragment, without the need of locking large amounts of data during arbitrary amounts
of time. Additionally, the mechanism does not require any state in the remote server
storing the entries (e.g. to track the last entry returned), thus avoiding potential causes
of errors in distributed environments. Finally, the repository used to keep the entries
to be listed does not need to have any predefined ordering semantics (in particular,
tables in arbitrary databases can be used, enabling the system to take advantage of
the database technology, including scalability and distributed operation).

In order to avoid the cost of computing hash values for the entries to be listed,
it is possible to calculate the hash value associated to given entry when the entry is
created, and store the value of the hash value together with the entry.

The Name Space Manager can use a variable number of bits of the hash function
in order to adjust the number of fragments of the directory. This allows to adapt the
algorithm to the number of entries: large directories will use more bits and, therefore,
will be divided into more subsets, while small directories can use fewer bits and be
divided into a smaller number of fragments. The goal is to keep the number of entries
in each fragment reasonable (not too small, to reduce the overhead of sending each
fragment, and not too large to be handled effectively).

Additionally, there may be other factors that may influence the choice of a given
hash function, so that the resulting subsets are smaller or larger. For example, if the
component generating the listing (e.g. the user client) is running on a low capacity

46 Chapter 3. The Approach: Metadata Virtualization

hardware (e.g. a mobile device), it may be interesting to have smaller subsets, so that
they can be adequately handled by such a device; on the contrary, in an environment
where the components generating the listing and storing the entries have high capacity
and are connected through a robust network with large bandwidth, then it may be
useful to generate larger subsets to reduce the overhead of multiple requests.

3.5.8 Coordinating distributed file creation

File creation in a distributed environment is a delicate operation that requires careful
coordination between the different components of the Metadata Virtualization Layer. On
one side, the Metadata Manager will have to check the access permissions and create a
new entry in a particular view. On the other side, an actual underlying file must be
created somewhere in the underlying file system. Eventually, the new entry and the
new underlying object will be linked by attaching the path of the underlying object
to the virtual object. Last but not least, the semantics of the file system operation
may require to generate a handle to the new file, so that further requests on it (e.g.
reads and writes) can be tracked and associated to the corresponding file (and to any
particular flags indicated during the creation of such a file) without needing to repeat
searches of the path in the name space.

The first step to fulfil a file creation request is to generate an identifier for the new
object (the inum). This identifier must be unique across a distributed system where
users may issue simultaneous requests to create files, and where the components of
the Metadata Virtualization Layer can also be distributed across multiple nodes.

In our implementations of the metadata virtualization framework, the local client
generates the identification numbers (inums) by requesting a range of identifiers to a
global server, which gets requests from all participating clients and guarantees that
they receive different sets of identifiers; then, the client consumes the set of identifiers
as it needs. The identifier service uses a monotonically increasing counter to generate
the identifier sets, and it has the particularity that assigned identifiers are never reused,
even if the corresponding object has been deleted.

A file creation request also requires generating and identifying an actual underly-
ing object. If the underlying storage is a file system, then the object is usually identified
by a path for such file system. In our implementation, the actual path is determined
by the local Data Manager, which has to make sure that it does not collide with paths
generated from remote Data Managers in other clients.

Once the path is determined, the next step consists in requesting the underlying
file system to create the corresponding underlying object. If the underlying object
creation is successful, the Data Manager will have a valid reference (usually a path) to
an underlying object that can be associated to the corresponding virtual object as an
attribute. This association is carried out by the Name Space Manager, which creates the
corresponding entry in the specified view.

In case the Name Space Manager cannot create the entry (for example, because an
entry in the desired name space already existed with the same name), a notification

3.5. Practical applicability aspects 47

is sent back to the Data Manager, so that the created underlying file can be removed.
Additionally, the discarded identifiers (e.g. the inum for the new virtual object) can be
stored locally to be re-used later (as it was not associated to any entry, the identifier
was not officially assigned and, therefore, the convenient rule about not re-using
assigned identifiers is still maintained).

The procedure just described can be used not only for files, but also for other types
of file system objects (in particular, those that can be created with a mknod system call
in a POSIX-based file system), such as named pipes, Unix domain sockets, or character
and block devices. Directories and symbolic links, on the contrary, do not require the
existence of corresponding underlying objects (all necessary information is kept by
the Metadata Virtualization Layer and is not related to any underlying file system).

Apart from simply creating the file system object, some file systems may have more
elaborated semantics. In particular, some of them may allow a conditional behaviour:
preparing a file for access if it exists, and creating it if it does not exist and then
preparing it for access. For instance, this is the case of the POSIX open call.

Such a combined operation might produce a race situation in a Metadata Virtualiza-
tion Layer running on top of a distributed system; therefore, the procedure is adapted
to avoid inconsistencies. In the case that at least two nodes are trying to create and
prepare a virtual object for a non-existing file, the initial procedure is similar to the
simple create-only method: each component generates a new virtual object with its
corresponding underlying object and, then, tries to register it in a name space via the
Name Space Manager. At least one of them should succeed, but the other (or others, if
more than two nodes were trying to create files), instead of just getting the error, will
get the path corresponding to the file that was successfully created and registered;
then, they will discard its own virtual object and the corresponding underlying file
and proceed to prepare the access to the registered one (which involves interaction
with the Metadata Manager in order to make the necessary checks on the registered file
system object type and permissions — as it could happen that different types of file
system objects were intended to be created with the same entry name: for instance, a
file and a directory).

When the local components of the Metadata Virtualization Layer receive someone
else’s file path to open during an open/create request (instead of the path generated
by themselves), there is a chance that the actual file in the underlying repository is
removed before it can be effectively opened. This situation can be handled in different
ways. For example, an “open-in-progress” counter can be maintained for the data
structures related to the file and, despite being removed from the name space, the
removal of the virtual object and the corresponding underlying file could be delayed
until such counter reaches zero.

In the implementations of the framework presented in this thesis, we opted for
a simplified alternative that just discards the information and re-tries to create its
own file again (theoretically, in a highly volatile environment, the described failure
situation could be repeated indefinitely, leading to starvation; to avoid that, a retry
counter is used to return an error after a certain number of retries).

48 Chapter 3. The Approach: Metadata Virtualization

3.5.9 Kernel vs. user-space implementations

Considering the operating system boundary, the components of the Metadata Virtual-
ization Layer can be placed at either kernel level or at the user-space. Both approaches
have their advantages and their drawbacks. Kernel-based implementation offers, a-
priori, the advantage of a less expensive interface (no user-kernel cross-boundary
calls); it may provide access to lower-level information, allowing for educated de-
cisions; and may also permit hooks to low-level operations, permitting aggressive
optimizations. Nevertheless, kernels tend to contain non-standard interfaces that are
often subject to unannounced changes; integrating code in such environment is com-
plex and error prone, and may jeopardize the stability of the whole system; and
last but not least, low-level hooks can make the system too dependent on specific
components and compromise the desired flexibility of the system.

Oppositely, building the service in user-space is more appealing. Of course, the
low-level virtualization techniques allowing the interception the file system calls may
require some support mechanisms at the kernel level; but these can be kept to a
minimum. Running the bulk of the service operation at user-space has several advan-
tages. First, it would make the development easier and would allow the introduction
of standard failure isolation techniques. Second, the technology can be more easily
applied to different platforms; by reducing the dependencies on kernel particularities,
most of the code can be reused and porting it to a new platform would be easier.
Finally, user-space may enable the use of standard interfaces and the possibility of
offering a convenient software development kit for writing extensions or third-party
applications based on our system (increasing its added value).

Our experiments (see Chapter 4) demonstrated that the possible performance
drawbacks caused by cross-boundary calls were not substantial. Therefore, most of
the developments in this thesis use user-space implementations whenever possible
(relying on kernel support only for request interception and some low-level features).

3.6 Summary

In this chapter, we have presented the elements needed to support a storage system
(namely a file system) that is flexible enough to provide multiple simultaneous views
of the file organization adapted to specific application needs. We have also proposed
an architecture for metadata virtualization framework that can be implemented as a
layer running on top of conventional file systems, seamlessly integrating them.

The decoupling between the metadata management in the framework and the
underlying file systems made us consider a series of practical issues that needed to
be resolved to provide a consistent file system semantics. In Section 3.5, we discussed
possible solutions to such issues, determining the most adequate ones for our goals.

The following chapters will present specialized implementations of the framework
discussed here, adapted to specific environments.

Chapter 4

Virtualized Metadata Management
for Large-Scale File Systems

Contents
4.1 Introduction . 49

4.1.1 Motivation . 49
4.1.2 Approach . 51

4.2 Case study . 51
4.2.1 Execution environments . 52
4.2.2 Base system behaviour at Nord 54
4.2.3 Base system behaviour at MareNostrum 56
4.2.4 Lessons learned . 58

4.3 Prototype implementation . 60
4.3.1 Design aspects . 61
4.3.2 Architecture . 62
4.3.3 Implementation details . 64
4.3.4 Potential technology limitations 76

4.4 Evaluation . 77
4.4.1 Metadata performance on GPFS at Nord 78
4.4.2 Metadata performance on GPFS at MareNostrum 87
4.4.3 Metadata performance on Lustre at INTI cluster 89
4.4.4 Summary . 98

4.5 Conclusion . 99

4.1 Introduction

4.1.1 Motivation

High-performance computing is rapidly developing into large aggregations of com-
puting elements in the form of big clusters. In the last few years, the size of such
distributed systems has increased from tens of nodes to thousands of nodes, and the
number is still rising. Trying to keep pace with this evolution, parallel file systems
have emerged, providing mechanisms for distributing data across a range of storage
servers and making them readily available to the computing elements.

At the other end, the final user’s view of the storage systems has not changed
significantly: for the usual case, files are organized in a hierarchical name space, much
in the same way as they were placed in a classical local file system using an attached
disk in a single computer.

50 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

In this classical view, a directory was tacitly used as a hint to indicate locality.
Indeed, it is common to find directories containing files that are going to be used to-
gether, or in a very related way (for example, a directory containing a program’s code,
the corresponding executable, configuration files and the output of its execution).

Trying to exploit this affinity, file systems tended to group together the manage-
ment information (the metadata) about directory contents. This was favoured by the
fact that this information is relatively small, so that it is feasible to pack together
information about access permissions, statistics, and also the physical location of the
data, not only for a single file, but also for a set of related files (i.e. for files present in
the same directory).

The approach of treating directory contents as a group of related objects with
similar properties is still present in modern file systems (with the logical adaptations
due to the evolution of the technology). It is common to see parallel file systems to
use directories as mount points to access different volumes or partitions with different
functionalities or, in finer grain file systems, to be able to specify directory-wide rules
that apply to directory contents.

The problem appears when, in large clusters with parallel file systems, directory
contents are semantically related according user’s view, without that meaning that
they are going to be used together or in similar ways from the file system perspective.
Reusing the example above, now the program code in a directory will be compiled
and linked in a single node, to generate a binary that will be read and executed
simultaneously in 2,000 nodes, each of them generating an output file to be left in
the same directory, which will be collected and read by a single post-processing tool
generating some summary information. Files are indeed related, but patterns of use
are totally dissimilar.

File systems trying to keep close the apparently related fragments of metadata will
end up trying to keep consistent a relatively small pack of miscellaneous information
(not easy to distribute and share) while it is being simultaneously used, and probably
modified, by a large number of nodes. As a result, the pressure on metadata handling
in large scale systems will rise, producing delays comparable to the actual data transfer
times to the storage systems, and jeopardizing the overall system performance.

The Metadata Virtualization Layer proposed in this thesis can help in this situation
by breaking the ties between the user-visible hierarchical organization (the directory
tree as seen by the application) and the underlying file system structure, not only
by decoupling it from the storage location of data blocks, but also by transparently
re-structuring the actual directory and i-node information, so that the pressure on
metadata handling is reduced and critical bottlenecks can be avoided.

A specific implementation of the Metadata Virtualization Layer was developed to
demonstrate the feasibility of adding a new layer above raw file systems without
harming the performance. This prototype is called COFS (COmposite File System).
COFS is a framework to decouple the file system metadata and the name space
hierarchy from the actual data handling in the underlying file system.

4.2. Case study 51

One of the specific motivations of this development was the file system perfor-
mance drop observed on one of the BSC large production clusters, MareNostrum
when using IBM GPFS as parallel file system.

A prototype of COFS was developed and tested on a small cluster (Nord), where
it boosted the performance of its native file system by transparently re-arranging
the user file hierarchy without altering the user view. The prototype was eventually
deployed on MareNostrum, where it was tested under production conditions. This
prototype was able to boost the performance of the file system metadata at MareNos-
trum, specially in scenarios where shared directories are accessed from multiple nodes
simultaneously (the detailed results are shown in Subsection 4.4.2).

COFS was also deployed in the CEA INTI test-bed for the PRACE-2IP project, in
order to test the suitability of the Metadata Virtualization Layer features for the Lustre
parallel file system. In this case, COFS was able to improve the performance of create
and open operations on shared directories, as shown in Subsection 4.4.3.

4.1.2 Approach

A usual way to deal with non-optimized cases is to add even more specific optimiza-
tions, either by means of file system specific modifications (for example, the parallel
creation policies in PVFSv2 [Devulapalli 2007]), or by means of a middleware targeted
to fulfil the needs of specific classes of applications (e.g. MPI-IO implementations us-
ing hierarchical striping for Lustre [Yu 2007]). Unfortunately, this approach does not
deal with performance penalties caused by unforeseen or inadequate access patterns
from arbitrary applications, which are likely to occur in heterogeneous workloads.

We have decided to take a novel approach to mitigate the effects of non-optimized
situations. Our technique to handle the metadata issues consists in placing a Metadata
Virtualization Layer on top of the file system for decoupling the user view from the
actual low-level file system organization, allowing us to convert the application access
patterns into something that can be dealt with by the underlying file system without
harming the performance, instead of trying to adapt the file system to any possible
workload. In other words, the mechanism consists in improving the file system be-
haviour by avoiding bottlenecks caused by application patterns, instead of focusing
only on optimizing the file system for a very specific workload.

Running on top of the file system (instead of integrating new code into it) makes
development much easier and simplifies the integration of other state-of-the-art tech-
nologies which may help to address the issues under study. Additionally, it allows us
to adapt the same solutions to multiple file systems and environments easily.

4.2 Case study

As mentioned in Section 4.1, one of the motivations of our work was the performance
drop observed at BSC clusters; they had IBM GPFS file systems and an heteroge-

52 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

neous workload corresponding to different projects, comprising both large parallel
applications spanning across many nodes, and large amounts of relatively small jobs.

Large parallel applications usually create per-node auxiliary files and/or gener-
ate checkpoints by having each participating node dumping its relevant data into a
different file; not unlikely, applications place these files in a common directory.

On the other hand, smaller applications are typically launched in large bunches,
and users configure them to write the different output files in a shared directory,
creating something similar to a file-based results database; the overall access pattern
is similar to that from a parallel application: lots of files are being created in parallel
from a large number of nodes in a single shared directory.

So, observation indicates that typical modus operandi ends up creating large
amounts of files in the same directory; and very large directories, specially when pop-
ulated in parallel, require IBM GPFS to use a complex and costly locking mechanism
to guarantee the consistency [Schmuck 2002], resulting in far-from-optimal perfor-
mance. For example, the operations team at BSC noticed that a parallel application
spanning across a large number of nodes can use an important portion of its execu-
tion time creating and writing checkpoint files (significantly greater than what should
be expected for the simple transfer of data) [Bent 2009] [Frings 2009]. To mention
another example, trace collection software used by computer science researchers to
obtain per-node application execution traces for performance analysis also suffer from
this inadequate metadata handling [Lab 2007].

As an additional concern, the overhead is not limited to the infringing applications,
but affects the whole system because file servers are busy with synchronization and
all file system requests are delayed.

Our proposed use of Metadata Virtualization Layer to decouple the name space from
the actual low-level file system layout can mitigate the issues, offering, for example,
large directory views to the user while internally splitting them to reduce the synchro-
nization pressure on the IBM GPFS. This leads to overall performance improvements
while avoiding the need to change how the individual applications work (which is
difficult to do for some legacy codes).

To verify our assumptions and evaluate their impact, we conducted a series of tests;
first, under a controlled environment in a small cluster and then, in the MareNostrum
supercomputer itself. The rest of this section describes the execution environments
and show the metadata behaviour on a bare IBM GPFS file system.

4.2.1 Execution environments

The first controlled tests to determine the IBM GPFS metadata behaviour were con-
ducted at a test-bed cluster at BSC called Nord. The results obtained at Nord were
afterwards validated at a production-grade system: the MareNostrum supercomputer.

The Nord test environment consisted in a cluster of 70 IBM JS20 blades, with 2
processors each (PPC970FX) and 4 GiB of RAM. Blades were distributed in several

4.2. Case study 53

blade centres: each blade center had an internal 1 Gbps switch, and the different blade
centres were interconnected through non-uniform network links (so that available
bandwidth was not the same for all blades). We conducted our tests on a IBM GPFS
file system, based on two external Intel-based servers connected to the cluster by
1 Gbps link each.

The MareNostrum setup at the time of the experiments consisted in a cluster of
2,500 IBM JS21 blades, with 2 dual core processors PPC970MP at 2.3 GHz and 8 GiB of
RAM per blade. The interconnection network is a 1 Gbps Ethernet, and the tested file
system was IBM GPFS version 3.2.1, served by 14 combined data/metadata servers.

IBM GPFS offers a standard POSIX interface, but it also has the possibility to use
non-POSIX advanced features for increased performance (e.g. for MPI-IO). A typical
configuration consists of clients which access to a set of file servers connected to the
storage devices via a SAN. Metadata is also distributed and consistency is guaranteed
by distributed locking, with the possibility of delegating control to a particular client
to increase performance in case of exclusive access [Schmuck 2002].

The situation we wanted to evaluate essentially involved parallel metadata op-
erations, so we used Metarates [Met 2004] as the main benchmark. Metarates was
developed by UCAR and the NCAR Scientific Computing Division, and measures
the rate at which metadata transactions can be performed on a file system. It also
measures aggregate transaction rates when multiple processes read or write meta-
data concurrently. We used this application to exercise create, stat and utime on
a number of files in the same directory in parallel. As an addition to the original
code, we also measure the time needed to open and close a file. The cost of create
is measured by having each participating process create the same number of files in
parallel in either a shared directory or in dedicated directories and, then, dividing the
elapsed time into the number of created files. For the rest of metadata operations, files
are initially created sequentially from a single process (in either a shared directory or
in dedicated directories for each participating process) and, then, each participating
process performs in parallel the tested operation on a disjoint subset of files; again, the
cost of the operation is computed by dividing the elapsed time (without the creation
phase) into the total number of files.

It is important to mention that neither our test-bed cluster Nord nor the MareNos-
trum were exclusively dedicated to benchmarking: our measurements were done
while the rest of the cluster was in production (specifically, we had an allocation of 16
nodes out of 70 for most of the tests in Nord, and up to 256 nodes in MareNostrum).
This was an interesting situation because it gave us the opportunity to see how the
unrelated (though usual) workload affected the file system behaviour. Though we
observed that the overall effect of the production workload was quite homogeneous
along time, special care was taken to detect and avoid deviations due to particular
situations. The methodology employed to run the experiments tried to minimize
the impact of punctual variations of system behaviour to get acceptable statistical
confidence levels. For example, at MareNostrum, we usually repeated each measure-
ment between 30 and 50 times depending on the level of ‘noise’ caused by activity

54 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 512 1024 1536 2048 2560

C
R

E
A

T
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per directory

1 process
2 processes

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 512 1024 1536 2048 2560

S
T

A
T

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per directory

1 process
2 processes

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 512 1024 1536 2048 2560

U
T

IM
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per directory

1 process
2 processes

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 512 1024 1536 2048 2560

O
P

E
N

/C
L

O
S

E
,

a
v
g

.
ti
m

e
 (

m
s
)

Files per directory

1 process
2 processes

Figure 4.1: Effect of the number of entries in a directory in IBM GPFS at
Nord, using 1 and 2 processes in a single node.

of the rest of the system at each moment; in all cases, we obtained a minimum of 16
measurements to calculate average values.

4.2.2 Base system behaviour at Nord

Understanding under which conditions a file system has a good performance, and
which are the factors that negatively affect it, is the starting point for boosting it.

Figure 4.1 shows average times for IBM GPFS metadata operations in a single
node (using 1 and 2 processes in the same node). The average operation time used
here and in the other diagrams is calculated by dividing the elapsed execution time
into the number of operations performed in a benchmark run (which, in the case of
Metarates, corresponds to the total number of files); the error bars are used to represent
the standard deviation, in order to give an indication of the variability of the results.

4.2. Case study 55

 0

 20

 40

 60

 80

 100

4-4 4-8 8-8 8-16 16-16 16-32

C
R

E
A

T
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Total nodes - Total processes

1024 files per directory
2048 files per directory
4096 files per directory

 0

 20

 40

 60

 80

 100

4-4 4-8 8-8 8-16 16-16 16-32

S
T

A
T

,
a

v
g

.
ti
m

e
 (

m
s
)

Total nodes - Total processes

1024 files per directory
2048 files per directory
4096 files per directory

Figure 4.2: Base parallel metadata behaviour of IBM GPFS at Nord, using 1
and 2 processes per node.

The figures reveal an extremely good behaviour for stat, utime and open/close
when the directory size is below 1,024 entries (with a performance comparable to
local file system rates). The low operation times are related to the ability of IBM GPFS
to delegate control to clients under certain circumstances (e.g. single-node access and
data present on local cache [Schmuck 2002]) Beyond 1,024 entries, performance drops
to network-compatible rates. Having two processes seems to compensate this effect
slightly, as some fetched data can be re-used by the second process (though this effect
disappears beyond 2,048 entries).

The pattern is different for create operations: there is no cached information to
exploit (as we are creating new entries) and operation time follows a steady increase
above 512 entries.

Figure 4.2 shows results for create and stat operations (the x axis shows the
combination of nodes and processes used, and the error bars represent the standard
deviation, indicating the level of variability of the measures).

The first observation is the large increase of the create time when operating in
parallel. For a directory with 1,024 entries, it goes from slightly less than 2 ms in a
single node (Figure 4.1) to more than 20 ms in 4 nodes and more than 30 ms for 8
nodes (Figure 4.2). The stat operation also suffers from a noticeable slowdown when
executed in parallel.

Considering that these operations have a very small payload (only metadata in-
formation), we can deduce that an important portion of the relatively large operation
times is consumed, not by actual information being transmitted from the server to the
clients, but by consistency-related traffic (even when each process works on a different
set of files). The reason for this assumption is that the amount of information actually
transmitted is small (e.g. the set of attributes for each file needs less than 100 bytes),

56 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

and thus, the increase in time cannot be justified by network bandwidth limitations;
additionally, specific measurements transmitting the same amount of data generated
by a null test driver instead of IBM GPFS showed an almost negligible cost in the
same hardware (see the COFS null driver results in Figure 4.11). That assumption
would give our virtualization system enough margin to obtain a good speed-up by
reorganizing the file layout and reduce the synchronization needed among IBM GPFS
clients.

The performance drop when using 16 nodes (clearly visible for the create —
Figure 4.2) is due to the test-bed network topology: when using up to 8 nodes, blades
are located in close blade centres; for 16 nodes and above, some blades are allocated
in far locations, so that the available bandwidth is shared with more nodes and the
effect of possible interferences from the production workload is more noticeable.
Interestingly, as the number of nodes involved increases in this environment, the
potential benefits of reducing the synchronization cost by using a more appropriate
file layout are also augmented.

Another interesting observation is how the stat time increases as the number of
files in the directory decreases. Being IBM GPFS a black box, we can speculate that this
is related to distributed locking granularity: a stat response from the servers contains
information about several entries to take advantage of bandwidth; however, the fewer
files we have, the higher is the probability of locking conflict between a larger number
of nodes. Note that conflict-free access is not possible, because ‘the user’ (here, the
Metarates benchmark) has decided to put all the files in the same directory and that
forces the file system to handle a shared common structure (the directory).

The behaviour of the system for 2,048 files per directory deserves a special com-
ment, as the performance varies depending on the number of processes per node.
Apparently, IBM GPFS is able to coalesce the requests inside a client and this coalesc-
ing crosses a boundary that makes possible for IBM GPFS to take advantage of the
situation and improve the performance (reducing the inter-node conflicts, and being
able to handle intra-node sharing efficiently). Ideally, a user could use this knowl-
edge and tune an application to take advantage of it; however, parameters are closely
related to specific data center configuration, so that user-specified per-application tun-
ing would be impractical. On the contrary, a Metadata Virtualization Layer as the one
provided by COFS may have a module with this kind of information and exploit it
transparently.

The experiments at Nord revealed both strong and weak points in the IBM GPFS
behaviour. In the next subsection, we validate the information obtained from the small
test-bed in a larger, production-grade system.

4.2.3 Base system behaviour at MareNostrum

As mentioned before, one of the motivations of this work was the performance drop
observed in large production clusters using IBM GPFS, which were related to metadata
management issues caused by the way in which the applications used the file system.

4.2. Case study 57

 0

 1

 2

 3

 4

 0 512 1024 1536 2048 2560

U
T

IM
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per directory

1 process

Figure 4.3: Variation
of utime operation
cost in IBM GPFS
in a single node at
MareNostrum with
respect to the number
of entries, using 1
process.

Therefore, it is important to validate the data obtained in the small test-bed Nord in a
larger cluster such as MareNostrum.

We have conducted a series of experiments in the MareNostrum IBM GPFS-based
cluster to confirm that metadata handling was actually a significant cause of per-
formance drops. The situation we wanted to evaluate essentially involved parallel
metadata operations, so we used Metarates as the main benchmark (as we did in the
Nord test-bed). We will focus on presenting the results obtained for create and utime;
the results obtained for the other measured operations (stat and open) closely fol-
low the same pattern as utime and we will mention them only in case of substantial
differences.

Following the results obtained at Nord, the observations confirmed that a sub-
stantial amount of time was consumed, not by actual information being transmitted
from the server to the clients, but by consistency-related traffic (even when each pro-
cess works on a different set of files). Nevertheless, the production-grade hardware
at MareNostrum and the better network setup compared to Nord made us expect
differences in the performance that could affect the effectiveness of our Metadata
Virtualization Layer.

Figure 4.3 shows the average time to fulfil an utime request (changing the times-
tamp indicating when the file was last modified) on a file in a directory accessed by a
single client node. The low values for small directories (about 45 microseconds) are
the cost of the request when the IBM GPFS delegation mechanism is active (control
is transferred to the client node, so that operations can be carried on locally, with-
out server synchronization) and represent a lower boundary for the operation cost;
beyond 1,024 entries per directory, delegation is no longer active and the operation
requires remote server intervention, resulting in larger operation times.

The operation average times for simultaneous utime calls from different nodes,
using 1,024 files per node, are shown in Figure 4.4. Ideally, the cost should be around
0.75 ms (the cost in a single node when a round-trip to the server is done). What

58 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

 0

 1

 2

 3

 4

 1 2 4 8 16 32 64

 1024 2048 4096 8192 16384 32768 65536

U
T

IM
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Nodes (1 process per node)

Total files

shared directory
separate directories per process

Figure 4.4: Compari-
son of parallel utime

cost in IBM GPFS
at MareNostrum
on shared and non-
shared directories,
using 1 process and
1,024 files per node.

we actually observe is that the cost with 2 nodes is much higher, and progressively
decreases when we increase the parallelism.

When all clients have their files in a shared directory, the optimum value is reached
for 16 nodes; beyond that point, the system does not scale any more and increasing
the number of nodes just increases the access conflicts, reducing the performance. It
is worth mentioning that the performance reduction is not observed when each node
works in its own directory; this fact seems to indicate that shared access management
is one of the causes of the loss of performance.

Another interesting observation from IBM GPFS is that the average parallel create
time also differs depending on the files being created on a single shared directory or
on unique directories per processor. The difference in performance is much greater
than in the utime, as can be observed in Figure 4.5 for the creation of 1,024 files per
node.

It is important to mention that each node creates a disjoint set of files; so, the
only cause of poor behaviour is the management of a shared metadata management
structure: the directory. By changing the way the metadata is organized and handled,
it should be possible to reduce this cost to levels similar to using unique directories
per processor.

In summary, the experiences and observations in the MareNostrum supercomputer
confirmed the trends observed in Nord regarding the impact of shared metadata
management on the performance of parallel file systems.

4.2.4 Lessons learned

We learned some facts from the experiments:

� The best sequential behaviour in IBM GPFS is obtained for small directories
(below 1,024 entries for stat, utime and open/close and about 512 entries for

4.2. Case study 59

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16 32 64

 1024 2048 4096 8192 16384 32768 65536

C
R

E
A

T
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Nodes (1 process per node)

Total files

shared directory
separate directories per process

Figure 4.5: Compari-
son of parallel create
cost in IBM GPFS
at MareNostrum
on shared and non-
shared directories,
using 1 process and
1,024 files per node.

create). This is due to the effective optimizations that IBM GPFS has in place
for working sets consisting of small directories accessed from a single node. The
effect of optimizations disappears for large directories and/or parallel accesses.

� Parallel file creations on shared directories suffer an important overhead. This
overhead appears even for a small number of nodes. On the contrary, parallel
file creation on separate directories scales reasonably well.

� Parallel non-create operations on shared directories are also likely to produce
locking conflicts between nodes, and substantial overhead appears at 32 nodes
and beyond. As in the case of file creation, operations on separate directories
show a better behaviour.

Decoupling the name space from the low-level file system layout should mitigate
the issues. The Metadata Virtualization Layer proposed in this thesis could offer large
shared directory views while internally splitting them into separate directories to
reduce synchronization pressure on the IBM GPFS servers, and keep the use patterns
within the optimized boundaries.

In particular, we observe that the differences in performance between the op-
timized and non-optimized behaviours is large enough to cover the potential cost
of adding a virtualization layer on top of the file system and, still, leave room for
performance improvements.

The COmposite File System (COFS) prototype is an implementation of the Meta-
data Virtualization Layer discussed in Chapter 3, and it was developed to address the
metadata performance issues observed in IBM GPFS.

In particular, the measurements presented in this section inspired the COFS Sparse
Placement Module for the Placement Driver described in Section 4.3. Its goal is split-
ting large shared user directories into non-shared directories small enough to enable
delegation and local access, so that IBM GPFS can improve its performance.

60 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

4.3 Prototype implementation

The use of a Metadata Virtualization Layer to decouple the user view of the file system
organization from the actual layout of the file system can alleviate contention issues in
metadata handling and, therefore, boost the performance of a file system. Nevertheless,
adding new layers to a traditional file system architecture may also raise concerns: the
overhead introduced by the new layers could actually harm the performance and the
new components could bring forth new interactions that increased the overall system
complexity, nullifying the potential benefits.

The COFS prototype was developed as a proof-of-concept to cast out such concerns:
it demonstrates that it is feasible to add a new layer above a raw file system to decouple
the file system metadata and the name space hierarchy from the underlying data
handling without harming the performance nor introducing complex dependencies.

COFS presents the user a virtual view of file system directories, allowing the
user to organize the files as they please while implementing a completely different
directory layout in an underlying file system. The performance results obtained will
be detailed in Section 4.4.

This section describes the most relevant parts of the COFS prototype. COFS pro-
vides a file system interface supporting the semantics required to run most applica-
tions on top of it. The mechanisms used are also flexible enough to easily allow any
required extension.

In particular, we have taken special care to fulfil two expectations: first, the proto-
type could not assume oversimplifications of a file system’s behaviour (i.e. a minimum
set of typical file system features should be fully operative in the prototype, includ-
ing, for example, data integrity and access control); and, second, the implementation
should not jeopardize the extensibility of the prototype by depending on specific
low-level system characteristics.

A way to guarantee that COFS is complete enough to allow applications to run on
top of it is making it POSIX-compliant. POSIX is still the dominant interface model for
most applications using file system services. It imposes a quite restrictive semantics
and consistency model. Supporting it, the prototype demonstrates its ability to handle
strict operation paradigms. From that point, relaxing the model is always easier, and
can be done by means of specific configuration options or, for example, by indicating
the desired behaviour using the extended attributes mechanism on files or directories.

The current prototype fully supports POSIX except for some elements which are
not relevant for storage management and were not implemented (namely named
pipes). The prototype successfully passed the POSIX compliance test suite by Pawel
Jakub Dawidek [Dawidek 2008], excluding the named pipe tests.

Despite the strict POSIX support, COFS also permits deactivating some of the
restrictions via configuration files, allowing certain optimizations to take place. This
kind of relaxation is common in HPC environments, allowing applications a trade-off
between the expected file system support and the potential performance obtained.

4.3. Prototype implementation 61

Security is another important aspect that must be taken into account in order to
have a complete file system (though it is often overlooked in experimental and test
systems). The prototype relies on the underlying tools and infrastructure to guarantee
the appropriate data protection. The COFS prototype uses FUSE and Erlang/OTP as
foundation, which already provide mechanisms to implement an adequate level of
security [Szeredi 2005] [Erl 2013]; in particular, FUSE can obtain authentication infor-
mation directly from its kernel module, and Erlang provides a cookie-based and SSL
support to prevent the inter-node communications from being tampered. Addition-
ally, the underlying file system also provides its own mechanisms to guarantee data
integrity and also a certain degree of access control. The prototype just leverages all
these components to provide global security.

4.3.1 Design aspects

The COFS prototype is be able to decouple the user view of the file hierarchy, the
metadata handling and the physical placement of the files, following the framework
architecture discussed in Chapter 3.

Its specific goal is to present the user a virtual view of the file system directories,
while the actual layout can be optimized for the underlying file system.

Additionally, COFS contains mechanisms allowing to track operations at the file
system interface to obtain detailed traces of the file system activity. This information
has facilitated the exploration of different mechanisms for metadata handling and
the assessment of its impact on performance, and also to test different policies and
parameters for laying out data in the underlying file system.

The first thing to note is that the COFS prototype was initially developed for a
Unix-like operating system (specifically Linux) which provided the applications with a
POSIX interface as a means of interacting with the file system. In practice, this involves
providing support to deal with particular structures of metadata and a specific set of
operations to manipulate the files. Nevertheless, one of the design directives of the
prototype was that it should be easily adaptable to other file system interfaces and
semantics, being able to manage different pieces of metadata information and respond
to a different set of operations. In other words, the design has no hard dependencies
on a specific operating system or a specific file system interface.

The prototype uses an actual file system as a back-end for the data. The interaction
of the prototype’s Data Manager with the underlying file system is done via basic
POSIX calls, which means that the prototype has no dependency on a particular
underlying file system, and can operate on top of any one providing such interface.
Actually, COFS has run without modifications on top of Ext3, IBM GPFS and Lustre,
among other file systems.

As only a few simple operations are actually required (create and remove files,
and read or write data at specific offsets), the design of the Data Manager should be
easy to adapt to other file system interfaces, such as the native Microsoft Windows file
system interface; in fact, the implementations presented in Chapter 5 are able to use

62 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

both Microsoft NTFS and SMB/CIFS shares as data back-ends. Similarly, it would not
be hard to port the Data Manager to work directly on top of other storage media.

Another important point to mention is that the prototype is designed to operate in
both local and distributed environments. In particular, the component corresponding
to the Metadata Manager can be detached and run either locally or in a remote node.
Moreover, it is able to provide the metadata and name space services to several clients
simultaneously and coordinate them.

Moving to functional aspects, the prototype hides the underlying file system di-
rectory hierarchy and metadata management and provides its own name space and
high-level metadata to the user. This approach completely detaches the user view from
the features offered by the underlying file system, preventing potential compatibility
issues with the back-end.

Specifically, the high-level metadata provided by COFS includes access control
(owner, group and related access permissions), symbolic and hard link management,
directory management (both the hierarchy and the individual entries) and size and
time data for non-regular files (management of sizes and access times for regular files
relies on the underlying file system).

The metadata handled by the prototype does not include any knowledge of low-
level data storage (in particular, there are no references about disks, blocks or other
storage objects — though they could be easily included if necessary). Currently, it is
up to the underlying file system to take decisions about low-level data server selection,
striping or block/object placement.

Whenever the actual data has to be accessed, the prototype forwards the requests
to the underlying file system, indicating the actual path where the data is to be located
(which, of course, may be different from the path seen by the user).

Another important design decision is that COFS is implemented as a user-space
FUSE daemon which, in practice, is the factor that makes it independent of the under-
lying file system. The reasons for this are two-fold. First, even as one of the original
motivation of this work was mitigating a performance drop on a specific file sys-
tem (IBM GPFS), we believed that equivalent issues affect other file systems; so, the
solving mechanism must be generic enough to be applied to any file system. Sec-
ond, we planned to deploy our framework in production-grade clusters, and having
a user-space drop-in package without hard requirements on kernel modifications
or configurations makes it much easier to have access to such environments, as the
potential impact on the rest of the system is minimum.

4.3.2 Architecture

Figure 2.2 in Section 2.3 showed an example of distributed file system environment.
Applications running on the nodes accessed the the distributed file systems via local
interfaces; the operations were received by local file system client components which,
then, were responsible to contact the adequate file system servers through the network.

4.3. Prototype implementation 63

Figure 4.6: COFS components.

The IBM GPFS architecture follows the same model: client components are inte-
grated in each node and provide a conventional file system interface to the applica-
tions. Additionally, these local components also take advantage of local node facilities
such as the local page cache in order to improve performance.

Our Metadata Virtualization Layer prototype (COFS) has to be integrated into this
architecture in order to provide a file system view to the applications detached from
the actual system configuration. To this end, COFS introduces an extra layer on each
client node providing a virtual view of the file system layout. This layer takes care of
intercepting the applications requests, managing the name space and metadata, and
communicating with the native file system for the actual data storage.

Figure 4.6 shows the actual components of the COFS layer and how they are
mapped into the architecture discussed in Section 3.3. The Interception Engine provides
a conventional file systems interface and captures the application requests; a Placement
Driver fulfils the functionalities of the Data Manager discussed in Section 3.3 and
handles the interactions with the underlying file system; finally, the functions of the
Name Space Manager and the Attributes Manager from Section 3.3 are covered by the
Metadata Driver, which can be assisted by a remote Metadata Service.

More specifically, the Placement Driver is responsible for mapping the regular files
into the underlying file systems and actually accessing the data, while the Metadata
Driver takes care of hard and symbolic links, directories, and generic attributes. Some
operations need the collaboration of both drivers: for example, creating a file involves
creating an actual regular file on a convenient location (a Placement Driver responsi-
bility) and updating the proper entries in the directory (done by the Metadata Driver).
So, an interface is also defined for communication between both drivers.

The extension of this structure to a fully distributed environment is shown in
Figure 4.7. As indicated before, a distributed application usually consists of multiple

64 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

Figure 4.7: COFS setup for distributed environments.

local instances running on different nodes, and each instance communicates with a
distributed file system via the local interface on the node where it is running. COFS
captures this interface and intercepts the requests, diverting the metadata handling
to the local Metadata Driver. The Metadata Drivers use a remote Metadata Service to
coordinate operations on the metadata and the name space, ensuring its consistency
across the system. Pure data requests are forwarded by the Placement Driver to a
distributed file system, which is already able to deal with parallel data requests.

It is important to remark that even though we use a single metadata server in our
current implementation, this is not forced by design, and the framework also admits
a distributed Metadata Service (we will be back on this issue later).

Many of the characteristics and techniques used by the COFS have already been
discussed in Section 3.5; nevertheless, the next section will elaborate on some relevant
aspects of the implementation.

4.3.3 Implementation details

Interception Engine

An easy approach to capture the communication between the application and the file
systems is making the Interception Engine appear as a conventional file system to the
application. To this end, the prototype uses the FUSE technology [Szeredi 2005].

FUSE is a well-known and robust tool to intercept file systems operations and
implement file systems replacements. Originally developed for Linux, it is currently

4.3. Prototype implementation 65

available for several operating system (including FreeBSD, NetBSD, Apple Mac OS X,
OpenSolaris and GNU/Hurd), and has been also ported to Microsoft Windows.

FUSE provides a kernel module that exports VFS-like callbacks to user-space
applications (Table 4.1 shows the list of callbacks available at the time of the imple-
mentation). The COFS prototype has been implemented as one of such applications
receiving the file systems operation callbacks and resolving them from user-space.
Considering our goals, the downside of missing some kernel-level information that
is not exported or forwarded to user-space, and possible minor efficiency losses, is
largely compensated by having a drop-in environment that can be used in most Linux
boxes without requiring specific kernel modifications.

Apart from receiving the file systems callbacks, the Interception Engine based on
FUSE is also responsible for providing the necessary support so that COFS appears
as a regular file systems. This includes initializing the environment and providing
the interface to attach it to the global POSIX directory tree. In particular, this allows
COFS to be mounted as any other file systems.

Additionally the Interception Engine forwards the file systems callbacks to either
the Placement Driver or the Metadata Driver (depending on the nature of the callback),
also provides sensible defaults in case some of the callbacks are not handled by a
particular implementation of the corresponding driver.

Placement Driver

The Placement Driver is responsible for mapping regular files into the underlying file
system and also forwarding data-related operations to it.

Functionalities

More specifically, some of the functions covered by the Placement Driver are creat-
ing and removing regular files (and possibly other types of file system objects) in the
underlying storage system, accessing the contents of files (read and write operations)
and querying and setting specific attributes in the underlying file system.

It also provides complementary support for some metadata operations that require
a direct interaction with the actual data (for example, getting the size attribute of a file).
Additionally, it responds to Metadata Driver requests in case of combined operations;
for example, opening a file requires checking the access permissions (a Metadata Driver
task) and then getting a handle on the actual underlying file (which is provided by
the Placement Driver). In the current implementation, all requests requiring both data
and metadata access are sent by the Interception Engine to the Metadata Driver which,
in turn, generates a request for the Placement Driver when necessary (this connection
between both drivers is represented in both Figure 4.6 and Figure 4.7).

When a file is opened, the Placement Driver is responsible for returning an opaque
file handle that contains the necessary information to access the file contents. This
information is then stored in a FUSE internal structure, and passed back to Placement
Driver when a subsequent operation has to be done to the open file. For instance, in

66 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

Table 4.1: FUSE callbacks (version 2.6)

Call Description
access Check file access permissions.
create Atomically create and open a file.
flush File handle clean-up on close.
forget Notify that an i-node is no longer cached in the kernel.
fsync Synchronize file contents with back-end devices.
fsyncdir Synchronize directory contents with back-end devices.
getattr Get file attributes.
getlk Test for a POSIX file lock.
getxattr Get an extended attribute.
link Create a hard link.
mkdir Create a directory.
mknod Create a regular file, character device, block device, fifo or socket

node.
listxattr List extended attribute names.
lookup Look-up a directory entry by name and get its attributes.
open Open a file.
opendir Open a directory.
read Read data.
readdir Read directory entries.
readlink Read a symbolic link.
release Notify that all references to an open file have been dropped.
releasedir Release an open directory.
removexattr Remove an extended attribute.
rename Rename or move a file.
rmdir Remove a directory.
setattr Set file attributes.
setlk Acquire, modify or release a POSIX file lock.
setxattr Set an extended attribute.
statfs Get file systems statistics.
symlink Create a symbolic link.
unlink Remove an non-directory entry from a directory.
write Write data.

4.3. Prototype implementation 67

the usual case of a system backed by a POSIX file systems, such opaque file handle
would contain, among other things, the file descriptor returned by an open system
call to the actual underlying file.

Upon receiving a release callback, the file is closed and the Placement Driver is
responsible for cleaning up any remaining state (including any related underlying file
descriptor).

Policies

Apart from the functional aspects described so far, one of the relevant aspects
of the Placement Driver is the policy used to determine the actual underlying path
corresponding to the file systems objects in the application view. As mentioned before,
the COFS prototype was designed to allow us to test easily different policies for both
data organization and metadata handling.

During the development of COFS, different policy modules for the Placement Driver
were implemented for testing and evaluation purposes. One of them was the Null
Placement Module, which redirects all data-related requests to the local /dev/null

device. Apart from providing an easy-to-implement data back-end for testing the
metadata functionality without having to deal with an actual file systems, the Null
Placement Module has proved to be a useful tool to determine the actual overhead
that the Metadata Virtualization Layer adds to the underlying file system, allowing
us to distinguish between the performance issues caused by the way in which the
underlying file system handles data and metadata from the potential performance
losses caused by COFS itself.

The actual module implemented to deal with the underlying file system issues
was the Sparse Placement Module. This module was specifically designed to mitigate
the issues observed in our large IBM GPFS clusters (see Section 4.2). It implements
a very simple policy to re-organize the user’s file hierarchy into something adequate
to take advantage of the underlying file system, and to prevent situations that could
harm the overall performance.

This placement policy consists in distributing user files into automatically gen-
erated paths that guarantee that no performance ‘risk thresholds’ are trespassed.
Specifically, we control the maximum amount of entries per directory, so that direc-
tory caches can be exploited adequately, and directory-access synchronization is kept
within reasonable limits.

The automatically generated path is obtained from a hash function applied to
some input parameters (specifically the node issuing the creation request, the parent
directory in the user’s view of the file hierarchy and the process creating the file).
Then, this base path is concatenated with some random bits, so that files with the
same input values for the hash function may end up into different directories. Apart
from that, the number of entries in a particular directory is bounded: if the limit is
exceeded, additional directories are created.

68 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

The level of ‘randomness’ (i.e. the number of random bits in the generated path)
can be configured. Obviously, at the minimum level, files tend to be grouped by the
node issuing the creation request, the location of the file in the virtual user’s view of
the file hierarchy, and the process creating the file.

We have observed that slightly increasing the level of randomness mitigates the im-
pact of false-sharing accesses to the same directory, which helps to balance the pressure
in situations where a single process creates lots of files that are to be accessed by mul-
tiple clients, improving the performance. Nevertheless, experimentation showed that
further increases do not lead to greater improvements, so that no dynamic fine-tuning
is required for this parameter.

The Sparse Placement Module has proven useful to avoid bottlenecks originated by
user’s distribution of files, without harming the performance of the rest of the file
systems operations. The results obtained with this module are presented in Section 4.4.

Metadata Driver and Service

The Metadata Driver is the responsible for responding to metadata-related requests
forwarded by the Interception Engine, including name space management, object at-
tributes, and global file system metadata.

Functionalities

One of the functions of the Metadata Driver is, therefore, translating file names
given by the user to internal identifiers (the so-called i-node numbers). This is requested
by the kernel (via FUSE) by issuing the lookup callback, which converts a file system
object path to its corresponding i-node number.

Apart from translating from names to i-node numbers, the Metadata Driver takes
care of creating and removing directories in the user view of the file system, managing
the directory streams, renaming directory entries, and handling special objects such
as symbolic and hard links (even if the actual underlying file system does not support
them). The prototype’s Metadata Driver also controls the operations to set and get
object attributes and checks the access permissions.

Some operations do not consist in pure metadata manipulation, and interaction
with the underlying file system may be required (for example, creating a regular file in
a file system view may require an actual file being created in the underlying storage
system; also, setting a file’s size could involve changing the stored data, or some
attributes may need being propagated to the actual file system). For this reason, the
Metadata Driver can communicate with the Placement Driver to perform certain actions
on the underlying storage system. The Metadata Driver takes care of maintaining any
ancillary data needed to track this kind of operations (such as obtaining and releasing
the appropriate file handles when opening and closing files).

The reason why some metadata operations (such access to file size and modifica-
tion times) are delegated to the Placement Driver is that these values are quite related
to actual data manipulation, and the underlying file system usually handles them

4.3. Prototype implementation 69

well; duplicating them in the metadata management and keeping them synchronized
would be an unnecessary cost.

The above-mentioned operations are part of the interface between the prototype’s
Interception Engine and the Metadata Driver, and also between the Metadata Driver
and the Placement Driver. As part of the modular design of COFS, these interfaces
constitute a framework for different implementations of Metadata Drivers. A particular
implementation does not need to implement all the operations of the interface, but
only those required to fulfil the expected behaviour.

The Mnesia Metadata Module

As in the case of the Placement Driver, different modules with alternative imple-
mentations and policies can be used. For the purposes of improving the metadata
behaviour of parallel file systems, the Mnesia Metadata Module provides a fully oper-
ative Metadata Manager. It has been designed to use a detached Metadata Service as
a persistent back-end for the metadata information, including both name space data
and object attributes. The implementation of this service is the Mnesia Metadata Server.
The name Mnesia comes from the core database engine used by the service (Mnesia is
a non-sql database distributed as part of the Erlang/OTP suite).

The Mnesia Metadata Module is able to receive metadata requests from the Inter-
ception Engine, retrieve and store metadata from and to the Mnesia Metadata Server,
keep a local cache of part of the metadata, and communicate with the corresponding
Placement Driver when necessary to interact with the underlying storage system.

The Mnesia Metadata Server

We took a conceptually centralized approach for the Metadata Service because of
its simplicity. We dealt with scalability concerns by leveraging the well-know technol-
ogy of distributed databases: the core of the Mnesia Metadata Server is a distributed
database which, in case of need, could be distributed into several servers by the
database engine itself (without the need of handling explicit file system partitions or
separate volumes). Metadata is represented as a small set of tables in that database,
keeping information about files, directories, and their relationship to form directory
trees. As an example, Table 4.2 shows the fields of the database table containing ba-
sic file system object attributes in the initial implementation of the COFS prototype;
Table 4.3 represents the information to locate a particular file system object in the
underlying file system: the fsid allows the Placement Driver to identify a particular
storage back-end (in case several of them are used simultaneously), while path is a
reference to the object relative to such specific storage back-end; Table 4.4 stores sym-
bolic link contents and, finally, the ITree table (Table 4.5) maintains the representation
of the virtual name space, linking an object with the directory in which it is contained.

The Inode table (Table 4.2) contains an entry for each file system object (either
regular file, directory, symbolic link or any other type) and keeps the object attributes.
As it can be observed, it mostly mimics a typical i-node structure from a Unix-based
file system. Nevertheless, there are some specific differences.

70 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

Table 4.2: Fields of the Inode table in the Mnesia Metadata Server

Columnn Type Description
inum integer File system object identifier.
type enumeration Object type.
mode bitmap Access permissions.
nlink integer Hard link count.
owner integer File owner user identifier.
group integer File owner group identifier.
atime integer Last access time for non-regular files.
mtime integer Last content modification time for non-regular

files.
ctime integer Last attribute change time.
size integer Object size for non-regular files.
parent integer Identifier of the parent directory (directories

only).
ecount integer Number of child entries (directories only.)

Table 4.3: Fields of the FileLocation table in the Mnesia Metadata Server

Columnn Type Description
inum integer File object internal identifier.
fsid integer Placement Driver-specific token.
len integer Length of the path field.
path string Placement Driver-specific object locator (usually a

path).

Table 4.4: Fields of the SymbolicLink table in the Mnesia Metadata Server

Columnn Type Description
inum integer Symbolic link internal identifier.
len integer Length of the contents field.
path string Symbolic link contents (usually a path).

4.3. Prototype implementation 71

Table 4.5: Fields of the ITree table in the Mnesia Metadata Server

Columnn Type Description
entry tuple(integer,string) Parent directory internal identifier and entry

name.
inum integer Internal identifier of the referenced file system ob-

ject.
type enumeration Type of the referenced file system object.

One of the differences between a typical i-node structure and the contents of the
Inode table is that object type and access permission bits are separated into different
fields. In classical organizations, both elements are combined, usually by being stored
in different groups of bits of the same value. Separating the type (which is immutable
for a specific file system object) from the mode (which can be modified) allows for
faster and easier type checks, as well as offering the possibility of storing both values
separately and being able to cache the file object type without worrying about possible
invalidations due to modifications to the mode section.

Regarding data access and modification times, the prototype only uses them for
directories and symbolic links. For the rest of the file system objects, time-related
queries and modifications are forwarded to the underlying storage system via the
Placement Driver (as explained before).

A similar situation occurs with the size field: it is only maintained for directories
and symbolic links (the meaning of size for a directory is left to the implementation
and, for symbolic links, the prototype uses the size of link contents). For the rest of
file system objects, size queries and/or modifications (truncations) are also forwarded
to the underlying storage system.

Finally, there are two fields that are used only for directories: parent and ecount.
The value of parent is the file system object identifier of the parent directory. For a
generic object, this has no meaning because the prototype supports hard links and a
file system object may potentially have several parents in the hierarchical user view.
Nevertheless, directories cannot be hard-linked under the supported POSIX semantics
(except for “.” and “..” entries — but these are special cases and treated separately)
and then a directory can only have a single parent. Keeping this information allows
certain optimizations in the internal algorithms.

The field ecount contains the number of entries in the directory. Maintaining this
value allows speeding up some operations that depend on the number of entries of a
directory, but not on the specific contents (for example, to know if a directory can be
removed, it is necessary to know if it is empty or not).

In an experimental version of the prototype, a different table was added to keep
the directory specific information such as the ecount and parent fields, instead of
including them in the Inode table. This table also contained a name field with the user-

72 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

given name of the directory. This, combined with the parent information, allows the
reconstruction of canonical paths for directories, which is interesting for certain policy
features. Nevertheless, the experience showed that the handling of the additional
table increased the complexity of error management and the path reconstruction itself
added noticeable overhead; as a consequence, the additional table was discarded in
the COFS prototypes targeted to HPC systems.

The ITree table (Table 4.5) constitutes the basic infrastructure to provide the user
views of the file system organization. It contains the directory entries that associate a
name in a particular directory with an internal file system object identifier. According
to the standards supported by the prototype, there cannot be two objects with the
same name inside the same directory.

The ITree table contains all directory entries, and it is indexed by the combination
of the identifier of the parent directory, and the name of the child object inside that
directory. The inum field contains the identifier of the child object (which may be a
directory, a symbolic link, a regular file, or any other kind of file system object).

There may exist several directory entries with the same inum value. This means
that the same file system object may have several names (or the same names but
accessible from different directories). Technically, this feature is known as hard link,
and the model supported by the prototype permits it for all file system object types
except directories (with the exception of “.” and “..” entries, which are hard links
to the directory containing the entries and its parent, respectively — as special cases,
they are handled separately and do not have explicit directory entries). It is impor-
tant to note that, being completely handled by the Mnesia Metadata Module and the
corresponding Mnesia Metadata Server, the prototype supports hard links even if the
underlying file system does not support them.

The directory entry also contains the type of the child object. Its value corresponds
to the field of the same name in the object attributes table, but it is cached here so
that some basic type checks can be done without the need to recover all the attributes.
(Note that being the type immutable during the life time of the object, no effort is
needed to keep the fields in both tables synchronized.)

A remarkable difference between the COFS prototype using the Mnesia Metadata
Module and most directory implementations in file systems is that there is no explicit
structure actually grouping the entries belonging to the same directory. In other words,
there is no real directory structure: all directory entries (from different directories)
can be held together in a single table. In this scenario, a ‘directory’ is defined as the
subset of directory entries with the same parent identifier.

Active objects engine

The Mnesia database is specially well-suited to handle the tables with file system
metadata information. Mnesia provides a database environment optimized for simple
queries in soft real time distributed environments (with built-in support for transac-
tions and fault tolerance mechanisms). Additionally, the Erlang language has proven
to be a good tool for fast prototyping of highly concurrent code (the language itself

4.3. Prototype implementation 73

internally deals with thread synchronization and provides support for transparently
distributing computations across several nodes).

The Mnesia Metadata Server keeps the current working set of metadata informa-
tion as a cache of active objects to reduce the pressure on the back-end database
engine, using a concurrent caching mechanism similar to the one described by Jay
Nelson [Nelson 2006]. Even as our performance tests showed that a single node is
enough to handle the metadata, the used algorithm would be compatible with a
distributed multi-node Erlang system if needed.

Following the principles explained in Subsection 3.5.6, the active objects cache
mechanism implemented in the Mnesia Metadata Server is an alternative to the use of
conventional locking mechanisms to deal with concurrent access to multiple objects
from multiple clients. Instead of locking data structures to allow its use from different
threads or processes, each data structure has an assigned thread or process which
is the only one with permission to modify the data. Our experimental results (see
Section 4.4) show that this technique helps to alleviate the lock contention that appear
when using conventional lock methods in situations with lots of activity, or when
large groups of structures have to be manipulated (even with no conflicts, acquiring
and releasing locks may produce a certain overhead).

The Mnesia Metadata Server implemented in the prototype associates an Erlang
process to each file system object. An Erlang process is a very light-weight thread
(according to the specifications [Erl 2013] and our own tests, a single Erlang node can
handle millions of them simultaneously); the programming model allows them to be
activated by communication events and, when activated, they execute their code in a
‘run-to-completion’ mode, without preemptions.

The Erlang process associated to a file system object is the only one with permis-
sion to modify the data associated to the object, including the object attributes, the
underlying file location information, link contents data and directory-specific fields, if
the object is a directory. In practice, these Erlang processes act as ‘active objects’ that
cache the information from the Mnesia database and use it as a persistent back-end.
Therefore, the preferred way to obtain file system object information is not querying
the database directly, but sending a message to the corresponding process asking for
the desired piece of data.

Under certain circumstances, other processes may be allowed to read pieces of data
that do not belong to them directly from the database. This information is usually
treated as a hint. In complex operations such as the creation of a file system object, the
responsible Erlang process follows a strictly ordered sequence of actions that allow
other threads to check for the correctness of the data if accessing the database directly.
For example, the fact that internal identifiers are never re-used allow a process to
check a hinted identifier against the actual one before attempting an operation on a
hinted object that may have been already deleted.

The fact that only one process is allowed to modify a specific piece of data in
the database, and the strict ordering in which several parts of the data are written,

74 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

allow avoiding the need to enclose certain operations in large and costly database
transactions, even when read is allowed from different processes (it is important
to mention that, in Mnesia, row changes are atomic, even outside transactions). For
example, when a new file is created, the attributes are modified first, and then the
entry in the name space; therefore, if an external process is able to follow the path up
to the object, it is sure that the attributes have been already set.

Naturally, not all objects need to have an associated active process at all times. The
process may die and disappear after a period of inactivity, and be re-created when the
associated object is needed again.

In summary, the overall operation mechanism is as follows: when a request arrives
to the Mnesia Metadata Server, it is forwarded to the process associated to the target
object (if no process exists, it is created and, then, it reads all the object information
from the database, keeping it internally cached); if the request involves a modification,
the database is updated and, eventually, the requested data is included in the response.
Once the process sends the response back to the caller, it waits for the next request.

In cases where several objects are involved (for example, removing a file, which
affects the file itself and the parent directory) the request is sent to the ‘main’ object
process (the parent directory, in this example) which may then communicate with the
process of the other involved object (the file to be removed) via messages.

Object identifiers

The Mnesia Metadata Server also assumes the responsibility of generating internal
identifiers for the file system objects belonging to the applications file system views.
When the Mnesia Metadata Module needs identifiers for new objects, it requests them
to the Mnesia Metadata Server, which centralizes the requests and guarantees that all
clients receive different identifiers. Specifically, the implementation in COFS uses a
monotonically increasing counter, and it has the particularity that assigned identifiers
are never re-used, even if the corresponding object has been deleted (for long running
systems, counter overflow is not a problem because the number of bits used for the
counter can be dynamically increased). In order to avoid frequent requests, the Mnesia
Metadata Module can request a range of identifiers (instead of a single one), and keep
them locally and use them whenever needed.

As mentioned in Subsection 3.5.2, the internal identifiers must be mapped to i-node
numbers to be used by a POSIX system. In the particular case of the COFS prototype,
the size of the internal identifiers matched the size of the file system i-node numbers;
so, a direct mapping was used.

Caching

The fact that most metadata-related information is generated and kept at the re-
mote Mnesia Metadata Server makes relevant the possibility of caching this information
locally in the Metadata Driver.

Seeking simplicity, our first approach was following the PVFSv2 model: having
no client cache at all and forwarding to the Metadata Service [Sebepou 2008]. Though

4.3. Prototype implementation 75

this was useful for validating the prototype, most of the operations resulted in several
round trips to the Metadata Service for path validation, permission checks, etc. Under
pressure, the cost was affordable compared to the native file system; but resulted
in a high overhead on more relaxed situations (namely when there were few nodes
involved and there was high locality).

Alternatively, an appealing possibility would have been coalescing requests in
the NFSv4 style [Pawlowski 2000], or using intents (in the way of Lustre’s locking
protocol [Sebepou 2008]) to have the Metadata Service return additional information
that would be immediately needed. Unfortunately, the interface provided by the FUSE
infrastructure made this particular approach not feasible (as the intent information
was missing).

Eventually, we decided to implement our own client cache mechanism to keep
metadata information (i-node like data, the actual location in the low level file system
for the regular files, and symbolic link contents). The information is provided by the
Mnesia Metadata Server with a limited-time lease. Additionally the Mnesia Metadata
Server may issue an invalidation request whenever the affected metadata is going to
be modified by a different client. The cached information was kept in user-space by
the Mnesia Metadata Module.

There are two main reasons for using an ad-hoc cache mechanism instead of
the i-node kernel cache accessible via the FUSE interface: first, the information to
cache did not directly match the i-node structures kept by the kernel (so that some
of the information could not be cached — for example, the location information);
second, at the time of the implementation, there was no mechanism to invalidate the
information cached in the kernel before its ‘natural’ expiration. Apart from this issues,
using a kernel-based cache would be a valid alternative that could even reduce the
cross-boundary communication between the kernel and the user-space.

A particular detail of the implementation is that lease handling can be decoupled
from metadata requests; in other words, the lease is not sent back to the client together
with the response: instead, the request is responded as fast as possible, and it triggers
a concurrent mechanism that will end up in a lease being sent to the client afterwards.
Though this may not seem intuitive, we have experimentally verified that it results
in a better response time in situations where Metadata Service was instantiated in
a low-end hardware, where processing took substantially more time than network
communication. In this circumstances, the cache efficacy was not affected by the delay
in a significant way. On the contrary, we observed that decoupling of lease handle
had no effect on deployments of COFS in high-end systems.

The implementation of lease management in the Mnesia Metadata Server is as fol-
lows: when a cache request is accepted, an Erlang process representing the requester
Metadata Driver is created. From then on, all the cache-related interaction with that
particular Metadata Driver in both directions (possibly including lease revocation, vol-
untary releases of cached data, and lease renewal) is done through the newly created
process. When no data is cached, the process may die after a period of inactivity.

76 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

The number of leases granted for a specific piece of information is limited. This
keeps the synchronization and invalidation costs bounded. Beyond this limit, the
system works like a no-cache system. Again, no drawback has been observed for this,
as the other benefits obtained from reorganizing the directory layout compensate for
the lack of cached data (in some cases because the reorganization prevented the need
for large shares of cached data, and in other cases because the cost of synchronization
is larger than the additional round-trips to fetch the required information).

Directory listing

Finally, another important function of the Metadata Driver is generating directory
listings for the user views. The directory stream operations include opendir, readdir
and releasedir. The POSIX standard leaves to the implementation to decide what
happens if the directory is modified (i.e. entries are added or removed) between the
opendir and releasedir operations. In that case, the readdir operation could return
the entries before any modification (when the directory opened), the entries after all
modifications, or any state in between.

In the COFS prototype implementations, the Mnesia Metadata Module requested
all directory entries from the Mnesia Metadata Server at opendir time, cached them
locally, and then progressively returned data from that cache whenever an application
demanded it via a readdir operation. The cache was released on directory closing by
releasedir.

The advantage of this method is that the whole operation is done at once, and the
Mnesia Metadata Server does not need to maintain any state to know which entries
have already been delivered. This avoids several possible locking and synchronization
issues in the Mnesia Metadata Server (for example, in the case that someone opened
a directory, but it did not read the entries or released it at the end). In extreme
situations, the number of entries could be too large to be handled at once; in that case,
the techniques for partitioned stateless directory listings discussed in Subsection 3.5.7
could be used.

4.3.4 Potential technology limitations

A final caveat on performance impact is related to the use of FUSE as the base infras-
tructure for intercepting file system calls. FUSE intercepts the file system operations
in the kernel, forwarding the requests to a user-space daemon (the COFS client, in
our case). The user-space daemon then performs the necessary operations and sends
the answer back to the kernel, from where it is returned to the application originally
requesting it.

Obviously, this requires additional user-space/kernel boundary crossings and
more additional memory copies for data, compared with a direct file system access.

A few additional kernel boundary crossings per I/O operation are not an issue
because they represent a constant overhead (in the order of nanoseconds) almost
negligible in modern computer systems (compared with the overall cost of an I/O

4.4. Evaluation 77

operation, which may be up to the order of milliseconds).

Regarding the additional memory copies, the data is requested by the FUSE/COFS
daemon to the underlying file system, temporarily stored in a daemon buffer, and
then copied back again to the kernel to be forwarded to the original client application.
This is intrinsic to FUSE implementation and involves, at least, a double copy of
the same data. This issue was discussed regularly in the FUSE developers mailing
lists [Szeredi 2005], but for a long time there was no plan to modify that behaviour,
as the experiments done showed no conclusive evidence of a significant performance
impact. Only the most recent versions include experimental code to avoid partially
the additional memory copies of file data (but not metadata).

Our own tests indicate that the double-copy effect is not relevant for metadata
operations because the amount of data being copied is small. Regarding data read
and write operations, the impact in performance is noticeable for those cases where
there are relatively large data transfers which can be handled completely from the
local page cache (i.e. no actual disk access and no network access are performed).

Fortunately, there is a very limited window for these situations in our target envi-
ronments: transfers must be big enough for the memory copy time to be significant,
small enough to be cached, and should be local (to avoid the need for inter-node syn-
chronization). For most cases, the performance drawbacks due to double copies are
negligible or reduced to an acceptable small factor. In Subsection 4.4.1, we comment
the test results regarding data transfers, which show a very limited impact.

4.4 Evaluation

As we have mentioned, we believe that virtualization techniques based on decoupling
the name space and file metadata from the actual location in the underlying file system
can be used to mitigate a series of performance issues that affect current large-scale
file systems.

In this section, we present the evaluation results of a proof-of-concept Metadata
Virtualization Layer: the COFS prototype. As described in Section 4.2 the specific
problem motivating the experiment was a drop of performance observed in some of
our production IBM GPFS-based clusters, where the workloads used directories with
a large number of entries and produced synchronization overheads that eventually
affected the servers, causing a general slow down (for example, during simultaneous
file creation for parallel application check-pointing).

The following subsections show the results obtained by COFS in three different
environments. The first environment is Nord, a test-bed cluster using IBM GPFS file
system at BSC, where the initial development and testing of COFS was performed. The
second environment is MareNostrum, a production-grade supercomputer at BSC also
using IBM GPFS as file system. Finally, the third set of results show the performance
of COFS at CEA INTI system, a test-bed cluster for the PRACE-2IP European project,
using the Lustre file system.

78 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

4.4.1 Metadata performance on GPFS at Nord

We have evaluated the COFS effects on performance using the Nord test-bed cluster,
described in Subsection 4.2.2. When using COFS, one of the blades in the blade center
(with 2 PPC970FX processors and 4 GiB of RAM) was used to host the Mnesia Metadata
Server; the back-end for the the Mnesia database was a 25 GiB disk locally attached to
that node and formatted with the Ext3 file system.

We have used Metarates [Met 2004] as the main benchmark. Directories were popu-
lated with different amounts of files (from 256 to 32,768, depending on the experiment)
and accesses were done simultaneously from 4 to 16 nodes.

In order to verify that interposing the COFS Metadata Virtualization Layer had no
significant negative impact on pure data transfers, we have also used IOR (Interleaved
Or Random I/O benchmark [Ior 2013]) to measure data I/O performance. IOR v2
was developed at Lawrence-Livermore National Laboratory and provides aggregate
I/O data rates for both parallel and sequential read/write operations to shared and
individual files in a parallel file system. The benchmark was executed using the POSIX
interface with aggregate data sizes of 256 MiB, 1 GiB and 4 GiB, in the form of a single
shared file accessed in parallel and also having a separate file for each parallel process.

As in the initial study (Subsection 4.2.2), our test-bed cluster was not exclusively
dedicated to benchmarking: our measurements were done while the rest of the cluster
was in production (specifically, we had an allocation of 16 nodes out of 70 for most of
the tests). The methodology employed to run the experiments minimized the impact
of punctual variations of system behaviour, getting acceptable statistical confidence
levels by repeating the experiments as many times as needed (usually between 30 and
50 times, and never less than 16 measurements).

Virtualization results

Unless stated otherwise, COFS measurements in this section have been done using the
Sparse Placement Module, limiting the low level directory size to 512 entries, and using
1 random bit as randomization factor (distributing related entries into two separate
directories). We have observed that there are no substantial differences in parallel
performance between using 1 and 2 processes per node at Nord (IBM GPFS client
seems to be able to parallelize some requests when using 2 processes per node, while
the FUSE component in COFS apparently serializes them; nevertheless, differences
are marginal compared with overall values). As the trends are the same, we will focus
on the results using a single process per node.

Figure 4.8 shows the benefits of breaking the relationship between the virtual name
space offered by the COFS Metadata Virtualization Layer (exporting a single shared
directory to application level) and the actual layout of files in the underlying IBM
GPFS file system. By redistributing the entries into smaller low level directories, COFS
allows IBM GPFS to fully exploit its parallel capacity by converting a shared parallel
workload into multiple local sections that do not require global synchronization.

4.4. Evaluation 79

 0

 20

 40

 60

 80

 100

16 32 64 128 256 512 1024 2048 4096 8192

C
R

E
A

T
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per node

GPFS

4 nodes
8 nodes

16 nodes

 0

 20

 40

 60

 80

 100

16 32 64 128 256 512 1024 2048 4096 8192

C
R

E
A

T
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per node

COFS

4 nodes
8 nodes

16 nodes

Figure 4.8: Effects on the create time in a shared directory of the COFS
virtualization layer over IBM GPFS, using 1 process per node at Nord.

The overhead of using 8 nodes in IBM GPFS disappears when COFS is used. For 16
nodes, there is also a big improvement due to the elimination of synchronization needs,
but there is a performance barrier slightly below 20 ms. Some network measurements
confirmed that this was not related to COFS itself, but to the particular topology of
our test-bed (as already mentioned in Subsection 4.2.2).

Figure 4.9 and Figure 4.10 show the average time for stat and utime operations as
a function of the number of files in a shared directory accessed by each node (figures
for open/close operations are not shown as they closely resemble the stat figures
for both IBM GPFS and COFS).

Overall, we can see that all the figures follow a similar pattern: there is a first phase
of large operation times when only a few files per node are accessed, that converges
when the number of files per node increases. It is worth noting that the stable times
for stat and utime are considerably lower than create times; this is mainly due to
an effective use of caches for larger amounts of files (which cannot be exploited for
create operations).

Times for utime operations are slightly higher than times for stat operations. One
of the main reasons for these are i-node cache invalidations caused by the modification
of data. On this respect, we must mention that we have observed noticeable false-
sharing effects inside the i-node structure: some fields are rarely modified (type and
permissions) but frequently used, and they are affected by modifications to more
volatile fields (such as access times) which are not so often needed. Despite of this
fact, i-nodes are usually handled and cached atomically in most implementations.

The COFS layer remarkably reduces the stat time when a directory grows beyond
512 entries per node (from approximately 7 ms to 1 ms for 8 nodes, and from 5 ms to
1 ms for 4 nodes). Some of the variability (indicated by the error bars representing

80 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

 0

 10

 20

 30

 40

 50

 60

16 32 64 128 256 512 1024 2048 4096 8192

S
T

A
T

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per node

GPFS

4 nodes
8 nodes

16 nodes

 0

 10

 20

 30

 40

 50

 60

16 32 64 128 256 512 1024 2048 4096 8192

S
T

A
T

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per node

COFS

4 nodes
8 nodes

16 nodes

Figure 4.9: Effects on the stat time in a shared directory of the COFS
virtualization layer over IBM GPFS, using 1 process per node at Nord.

 0

 10

 20

 30

 40

 50

 60

16 32 64 128 256 512 1024 2048 4096 8192

U
T

IM
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per node

GPFS

4 nodes
8 nodes

16 nodes

 0

 10

 20

 30

 40

 50

 60

16 32 64 128 256 512 1024 2048 4096 8192

U
T

IM
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per node

COFS

4 nodes
8 nodes

16 nodes

Figure 4.10: Effects on the utime time in a shared directory of the COFS
virtualization layer over IBM GPFS, using 1 process per node at Nord.

the standard deviation) caused by network noise is also eliminated, and Figure 4.9
shows that COFS operation times for 4 and 8 nodes are nearly identical. Even for 16
nodes, where the network bandwidth is reduced, the speed-up for large directories is
noticeable (from approximately 17 ms to 6 ms per operation).

The utime time is also improved with COFS (from about 5 ms to 1–3 ms for 4 and
8 nodes). Again, the effect is clearer for 16 nodes (from approximately 18 ms to 11 ms,
as seen in Figure 4.10).

Below 128 operations per node, the COFS setup is only able to reduce slightly the
high access cost for small shared directories, but it does not incur in any additional

4.4. Evaluation 81

 0

 10

 20

 30

 40

 50

 60

32 64 128 256 512 1024 2048 4096

256 512 1024 2048 4096 8192 16384 32768

S
T

A
T

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per node

Total files

GPFS
COFS (sparse, 2048 files/dir, no randomness)
COFS (sparse, 512 files/dir, no randomness)

COFS (null driver)

 0

 10

 20

 30

 40

 50

 60

32 64 128 256 512 1024 2048 4096

256 512 1024 2048 4096 8192 16384 32768

S
T

A
T

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per node

Total files

GPFS
COFS (sparse, 512 files/dir, 1 random bit)

COFS (sparse, 512 files/dir, 2 random bits)
COFS (null driver)

Figure 4.11: Changes in stat time in a shared directory for several COFS
configurations, using 8 nodes and 1 process per node at Nord.

overhead. Even then, results for 16 nodes show a better behaviour than pure IBM
GPFS (less variability and faster convergence to reduced operation times). That makes
us expect that the benefits of COFS will be more noticeable for a larger number of
nodes (as we will show in the next subsection).

In order to understand thoroughly the causes of COFS benefits, we conducted
some additional experiments. Figure 4.11 shows the results for 8 nodes: we compared
pure IBM GPFS behaviour with the results of COFS using different sets of parameters
for the Sparse Placement Module (increasing the number of entries per directory in the
underlying file system from 512 to 2,048, and modifying the layout randomness factor);
we also executed the tests using the COFS Null Placement Module (which diverts all
operations to “/dev/null”) in order to distinguish pure COFS behaviour from that
related to the underlying file system.

The cost of accessing few files is mostly due to IBM GPFS (as the overhead does
not appear with the Null Placement Module), and this cost is partially related to syn-
chronization: increasing the random bits in the sparse layout distributes effectively the
files into a wider number of underlying directories, and we can observe that this helps
to mitigate the problem (by reducing the chances of simultaneous colliding accesses
from different nodes — as a matter of fact, we are reducing the level of false-sharing
inside the back-end directories).

The effect of layout randomization is complemented by the limitation of the di-
rectory size. When the maximum number of entries is increased up to 2,048 entries,
the synchronization overhead is also increased, resulting in larger operation times (to
better understand this effect, it is worth noting that the benchmark creates all the files
to be from a single node in such a way that files to be accessed by node 1 are created

82 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

 0

 20

 40

 60

 80

 100

Create Stat Utime Open/Close

M
e

ta
d

a
ta

 o
p

e
ra

ti
o

n
s
,

a
v
g

.
ti
m

e
 (

m
s
)

Operation type

GPFS
COFS

Figure 4.12: Operation
time on a shared direc-
tory at Nord with 256
files per node, using
64 nodes and 1 pro-
cess per node.

first, then those for node 2, and so on; beyond the directory size limit, the COFS data
driver manages to put each node’s files into different directories, effectively converting
shared accesses into non-shared accesses). This way, access time approaches the Null
Placement Module results. On the contrary, pure IBM GPFS is unable to reduce the
operation time.

In summary, our measurements show that using the Metadata Virtualization Layer
provided by the COFS framework can drastically boost our underlying IBM GPFS file
system for file creations on shared parallel environments (with speed-up factors from
2 to 10, as shown in Figure 4.8). For the rest of metadata operations, performance
is also boosted (though the speed-ups are more moderated), and the overhead and
variability for parallel access to small-sized directories is reduced.

Scalability

One of our concerns was to check that our proof-of-concept prototype was able to
deal with environments larger than our test-bed. So, we conducted some additional
experiments to probe possible scalability limits in two different aspects: number of
files in the file system and number of nodes in the distributed environment.

In order to check how many entries was able to handle a single COFS metadata
server, we artificially populated the metadata database with a large directory tree
(with a proportion of 10% directories and 90% files), and then re-run the experiments
on it. Results show no significant degradation on create operations up to 8,000,000
entries (which is one order of magnitude larger than the actual file system in our
test-bed). With respect to other metadata operations (stat, utime, open/close), re-
sults were stable up to 10,000,000 entries (where we started hitting physical memory
limits — the metadata server uses a JS20 blade with 4 GiB RAM). These results were
promising, given the limited capacity of the hardware used to run the Mnesia Metadata
Server; for the sake of comparison, at the time of these measurements, the home file
system of the MareNostrum supercomputer was using about 19 million i-nodes (which

4.4. Evaluation 83

gives an indication of the number of file system objects). Further scalability should
not be a problem, as mechanisms to deal with creations in larger tables in Mnesia
are discussed in Erlang-related literature [Erl 2013], and node physical limits can be
bypassed by using Mnesia distribution mechanisms [Nelson 2006]. Also, several works
on file system metadata focus on partitioning techniques to distribute metadata and
name space information to multiple nodes [Douceur 2006] [Patil 2007] [Weil 2004].

Regarding the number of nodes in the cluster, we had the opportunity to use
temporarily a larger partition of the test-bed cluster (with a very similar network
configuration and the same hardware components). On this enlarged test-bed, we
were able to confirm that the benefits of Metadata Virtualization Layer were not only
maintained but increased in larger scales. As an example, Figure 4.12 shows the
comparison of metadata operation times on 64 nodes, accessing 256 files per node on
a shared directory (results with other directory sizes show similar trends).

As we may observe, the base-line given by pure IBM GPFS shows considerably
high operation times for 64 nodes, because the inter-node conflicts when accessing a
shared directory increase with the number of nodes, and they are the main component
of the operation cost. On the contrary, COFS is able to mitigate such conflicts, allowing
IBM GPFS to obtain remarkable speed-ups. We expect to observe the same trend for
a larger number of nodes.

Impact of COFS infrastructure on data transfer

As shown in the previous subsections, the benefits obtained by our prototype re-
garding metadata handling were promising, and they effectively mitigate the issues
motivating the present work.

Nevertheless, there was a concern about the possible impact on read and write

operations on file contents: theoretically, altering the file hierarchy could lead the
underlying file system to modify the actual location of data, impacting negatively on
read/write bandwidth; additionally, we wanted to be sure that the COFS infrastruc-
ture was not adding an unacceptable overhead to data transfer operations. Some of
the possible causes of overhead have been outlined in Section 4.3 and include caching
issues, FUSE double buffer copying and extra kernel-boundary communication, and a
higher number of round-trips to the Metadata Service due to lack of additional kernel-
level information (like the file system intents when requesting metadata). In order to
rule these possibilities out, we conducted a series of experiments using the IOR I/O
benchmark [Ior 2013]. This benchmark measures the bandwidth when reading and
writing data in parallel; each participating process operates on a series of blocks that
may belong to either a shared file or to different files for each process (the “aggregated
size” parameter indicates either the size of the single shared file or the sum of the
individual files, respectively).

We executed one IOR process per node accessing either separate files per node (in
the same directory) or a single shared file in parallel. The aggregate data sizes used
were 256 MiB, 1 GiB and 4 GiB (either distributed in separate files, or accumulated in

84 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

Table 4.6: Impact of COFS on data transfers, depending on use pattern

Separate files per
process Single shared file

Sequential
read

COFS performance comparable
to IBM GPFS, except for small

files (<32 MiB per node),
where COFS suffers an
important slowdown.

COFS performance comparable
to IBM GPFS.

Random
read

COFS performance comparable
to IBM GPFS, except for small

files (<32 MiB per node),
where COFS suffers an
important slowdown.

COFS performance comparable
to IBM GPFS.

Sequential
write

COFS performance drawback
for a single node, and

performance improvements of
COFS over IBM GPFS as the

number of nodes is increased.

COFS performance drawback
for a single node, and

comparable performance for
multi-node.

Random
write

COFS performance comparable
to IBM GPFS, except for small

files (<32 MiB per node),
where COFS suffers form slight

slowdown.

COFS performance comparable
to IBM GPFS.

a single file, depending on the execution mode). The block and transfer sizes for IOR
were 4 KiB (as the stable version of FUSE at the time of the experiments imposed this
limit for write data transfers). The bandwidth measures produced by IOR include
both the data transfer time and the file open/create and close times.

Table 4.6 summarizes the results of our experiments. Overall, COFS Metadata
Virtualization Layer using FUSE over IBM GPFS is usually able to obtain a performance
similar to native IBM GPFS. The most remarkable exceptions occur when each node
accesses a separate set of relatively small files.

Figure 4.13 shows the IOR bandwidth obtained for sequential reads. When all
nodes share a single file, performance of COFS and native IBM GPFS are comparable,
without significant speed-ups or penalties. We may assume that the performance of
shared access is dominated by the mechanisms used to guarantee a consistent view
of the data from the different nodes, because the obtained bandwidth is below the
nominal bandwidth expected from the network setup. As pure data transfers do not
seem to be the limiting factor, the overhead introduced by FUSE infrastructure is not
noticeable. Also, metadata handling mechanisms have little to do in this case.

4.4. Evaluation 85

 0

 50

 100

 150

 200

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

S
H

A
R

E
D

 F
IL

E
 R

E
A

D
,

b
a

n
d

w
id

th
 (

M
B

/s
)

Aggregated data size

Single shared file for all processes

Data size per file

1 Node 4 Nodes 8 Nodes 16 Nodes

GPFS
COFS

 0

 50

 100

 150

 200

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

6
4

M
iB

2
5

6
M

iB

1
G

iB

3
2

M
iB

1
2

8
M

iB

5
1

2
M

iB

1
6

M
iB

6
4

M
iB

2
5

6
M

iB

M
U

L
T

IP
L

E
 F

IL
E

 R
E

A
D

,
b

a
n

d
w

id
th

 (
M

B
/s

)
Aggregated data size

Separated files per process

Data size per file

1 Node 4 Nodes 8 Nodes 16 Nodes

GPFS
COFS

Figure 4.13: Consecutive (serial) read performance comparison between
IBM GPFS and COFS over IBM GPFS at Nord, using 1 process per node.

When each node works with its own dedicated file, both COFS and IBM GPFS have
a similar behaviour when accessing the same aggregated sizes, and the performance
varies around 150 MB/s. Nevertheless, a notable exception occurs for an aggregated
data size of 256 MiB and 8 nodes. In this case, the bandwidth values (out of the figure’s
scale) go up to 1,500 MB/s for COFS and up to 4,250 MB/s for IBM GPFS. The values
for 16 nodes are also high: 1,250 MB/s for COFS and 2,500 MB/s for IBM GPFS.

In these situations, the individual file size falls below 32 MiB and, having a closer
look at the experiments, we saw that the total time for the data transfer time for IBM
GPFS was about a few milliseconds (which was comparable to the open time). It was
then clear that IBM GPFS was able to keep the file data completely in the local cache
(as it was created on the same node) and, therefore, the transfer consisted in a memory
copy with negligible cost.

Under these circumstances, COFS is paying the cost of its infrastructure, partly due
to the FUSE extra data movement (discussed in Section 4.3) and partly due to extra
round-trips to the COFS Metadata Service. Due to the small amounts of time involved
(tens to hundreds of milliseconds), the slight increment in operations time appear
as considerable differences in bandwidth ratios. Improvements on COFS leasing and
caching mechanisms could probably mitigate this difference.

The very same effect appeared also for random reads to separate files per process.
The orders of magnitude of the measurements are fully comparable with those for
sequential reads to individual files per process (note that data caching minimizes the
effect of randomizing the read access for small files).

Regarding random writes to separate files, we have observed a similar pattern
at a different scale: there are no remarkable differences between COFS and IBM

86 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

 0

 50

 100

 150

 200

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

S
H

A
R

E
D

 F
IL

E
 W

R
IT

E
,

b
a

n
d

w
id

th
 (

M
B

/s
)

Aggregated data size

Single shared file for all processes

Data size per file

1 Node 4 Nodes 8 Nodes 16 Nodes

GPFS
COFS

 0

 50

 100

 150

 200

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

2
5

6
M

iB

1
G

iB

4
G

iB

6
4

M
iB

2
5

6
M

iB

1
G

iB

3
2

M
iB

1
2

8
M

iB

5
1

2
M

iB

1
6

M
iB

6
4

M
iB

2
5

6
M

iB

M
U

L
T

IP
L

E
 F

IL
E

 W
R

IT
E

,
b

a
n

d
w

id
th

 (
M

B
/s

)

Aggregated data size

Separated files per process

Data size per file

1 Node 4 Nodes 8 Nodes 16 Nodes

GPFS
COFS

Figure 4.14: Consecutive (serial) write performance comparison between
IBM GPFS and COFS over IBM GPFS at Nord, using 1 process per node.

GPFS performances, and the bandwidth is between 1.5 MB/s and 2.5 MB/s, except for
aggregate sizes of 256 MiB and 8 nodes, where the performance raises up to 90 MB/s.

Nevertheless, the relative difference between COFS and IBM GPFS for the peak
is much smaller (almost negligible). IBM GPFS cannot exploit a pure local cache
operation (as it was the case for read) as we have to eventually send the written data
to the file system servers. So, effective transfer time increases, hiding part of the extra
cost of the COFS infrastructure.

Sequential data writes present quite a different behaviour, as shown in Figure 4.14.
On one side, the COFS overhead is clearly noticeable when executing IOR in a single
node. In fact, the ‘single file in a single node’ situation corresponds to the worst-case
scenario for our platform, as there is no room for advantage by reorganizing the
location of the (single) file.

Nevertheless, the IBM GPFS advantage disappears as we use more nodes. For
concurrent writes to a single shared file, performance of both systems is comparable.
In this case, the cost is dominated by the mechanism to combine data writes from
multiple clients, and metadata reorganization has no significant effect.

On the contrary, when writing several files, we can appreciate that COFS is able
to maintain a certain level of performance, while IBM GPFS behaviour suffers a fast
degradation as the number of nodes is increased. This is an example of how improving
the metadata behaviour can produce a better use of data transfer bandwidth.

Looking at the IOR numbers corresponding to file creation times (obtained from
the detailed benchmark logs), we saw that values for IBM GPFS were much greater
than those for COFS: about 20 seconds vs. less than 2 seconds for 16 nodes and 4 GiB

4.4. Evaluation 87

of aggregated data. According to the IOR code, this means that COFS had all the
individual processes writing data (i.e. utilizing the maximum possible bandwidth)
2 seconds after the execution start; on the contrary, the last IBM GPFS process did
not start writing until 20 seconds after the execution start, so there was a slight
serialization of the writes from the different nodes.

The effect is more remarkable for smaller data sizes because the total transfer time
is smaller (about 15 seconds for 1 GiB) and the impact of serializing the individual
data writes is higher (there are fewer chances of overlapping data transfers from
the different nodes and thus, there are fewer chances of fully utilizing the available
bandwidth).

4.4.2 Metadata performance on GPFS at MareNostrum

The performance of applications observed in the MareNostrum supercomputer was
one of the motivations of the work developed in this thesis. Parallel applications on
large scale parallel systems like the MareNostrum expect to be able to perform I/O
simultaneously from all the nodes as they would do in a single node (i.e. efficiently,
in parallel and keeping the consistency).

In this subsection, we summarize the experiments performed on the MareNostrum
supercomputer to validate the virtualization results obtained in the Nord test-bed
cluster. As mentioned in Subsection 4.2.3, the measurements for stat and open in
MareNostrum closely resemble the performance of utime; therefore, we will focus on
presenting the results for utime and create.

The potential impact of the interception technology (FUSE) on data transfers is
equivalent to the one studied for Nord (Subsection 4.4.1); therefore, we will not in-
clude data benchmark results (IOR) in the discussion, and will focus on the metadata
benchmark (Metarates).

Virtualization results

We deployed the COFS prototype on the IBM GPFS file system of the MareNostrum
supercomputer to verify that it could mitigate some of the metadata performance
issues and that the benefits obtained where significant enough to compensate the cost
of adding an extra layer on top of the file system. This deployment was important to
check that the trends observed in the Nord test-bed were still valid for a larger-scale
system with faster hardware like the MareNostrum.

A difference of this particular deployment of COFS is that, at MareNostrum, it uses
IP over Myrinet for communicating the Metadata Driver with the remote Metadata Ser-
vice and clients. The reason for using Myrinet for COFS instead of the 1 Gbps Ethernet
used by IBM GPFS was to compensate for a network topology favouring the official
file system servers. The forty (40) IBM GPFS servers (14 of them dedicated to the file
system being tested) had dedicated 1 Gbps links to the main switch; on the contrary
the COFS Metadata Service run on a standard computation node sharing 1 Gbps link

88 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

 0

 2

 4

 6

 8

 10

 12

 2 4 8 16 32 64 128 256

 2
0
4
8

 4
0
9
6

 8
1
9
2

 1
6
3
8
4

 3
2
7
6
8

 6
5
5
3
6

 1
3
1
0
7
2

 2
6
2
1
4
4

C
R

E
A

T
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Nodes (1 process per node)

Total files

GPFS
COFS Figure 4.15: Parallel

create improvements
of COFS over IBM
GPFS, using 1,024
files per node in a
shared directory at
MareNostrum, with 1
process per node.

with other thirteen blades; as the tests were run while the whole cluster was in pro-
duction executing other applications, we noticed that the results varied significantly
depending on the blade being allocated for the metadata server and the activity of
its neighbouring blades. On the contrary, the different topology of the Myrinet net-
work mostly prevented this variability. Though the Myrinet protocols are theoretically
able to provide less latency and greater bandwidth than the 1 Gbps network, using
the IP stack on top of it adds enough overhead to compensate the differences: tests
performed with the cluster in dedicated mode revealed that there were no substantial
differences between the performance of the 1 Gbps Ethernet network and the IP over
Myrinet network regarding metadata traffic.

Figure 4.15 shows the benefits of the COFS Metadata Virtualization Layer, exporting
a single shared directory virtual view to the application level while maintaining
separate directories in the actual layout of files in the underlying IBM GPFS file system.
By redistributing the entries into smaller low level directories, COFS allows IBM GPFS
to fully exploit its parallel capacity by converting a shared parallel workload into
multiple local sections that do not require global synchronization.

The improvement translates into a reduction of the average create time from
more than 10 ms in 16 nodes for IBM GPFS to about 1 ms when using COFS over IBM
GPFS. The numbers for pure IBM GPFS were limited to 64 nodes because beyond
that point the system was suffering severe performance problems when running the
benchmarks (that issue was not present when using COFS over IBM GPFS).

Figure 4.16 shows the average time for utime requests. We can see that, in this
case, the overhead introduced by COFS Metadata Virtualization Layer is noticeable for
a small number of nodes, but it converges with pure IBM GPFS results at 16 nodes.
Beyond that point, we can observe that IBM GPFS rapidly degrades its performance
as we increase the number of participating nodes; on the contrary, COFS is able to
compensate and eliminates the degradation, allowing the system to scale better to
larger amounts of nodes.

4.4. Evaluation 89

 0

 2

 4

 6

 8

 10

 12

 2 4 8 16 32 64 128 256

 2
0
4
8

 4
0
9
6

 8
1
9
2

 1
6
3
8
4

 3
2
7
6
8

 6
5
5
3
6

 1
3
1
0
7
2

 2
6
2
1
4
4

U
T

IM
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Nodes (1 process per node)

Total files

GPFS
COFS Figure 4.16: Parallel

utime scalability us-
ing COFS over IBM
GPFS, using 1,024
files per node in a
shared directories at
MareNostrum, with 1
process per node.

COFS takes advantage of the reduced operation time when COFS delegation is
active by redistributing the files in smaller directories and avoiding parallel accesses
to such directories when possible, thus reducing the conflicts between different nodes
and allowing IBM GPFS to fully exploit the parallelism.

In summary, our measurements show that the Metadata Virtualization Layer pro-
vided by the COFS framework can drastically boost the base IBM GPFS on large-scale
systems like the MareNostrum supercomputer. COFS allows to obtain speed-up fac-
tors up to 10 for file creations on parallel environments (as shown in Figure 4.15).
For the rest of metadata operations, performance is also boosted for large numbers of
nodes, and performance degradation due to conflicting parallel accesses is reduced.

4.4.3 Metadata performance on Lustre at INTI cluster

After studying the metadata behaviour of IBM GPFS and how the methods imple-
mented in COFS were able to mitigate its performance problems, the next step was
checking if the same issues were present in other file systems and, in such case, if
the solutions from COFS were also able to alleviate them. This study was carried
out as part of the task 12.4 of the PRACE-2IP European project, which had as objec-
tive to identify potential scalability issues in the Lustre file system in very large-scale
environments, and to propose solutions in the case such issues were found.

Lustre [Braam 2007] is a parallel file system able to offer a POSIX compliant in-
terface and based on three types of components: the clients (nodes accessing the file
system), the storage servers where the data resides (based on OSDs) and a metadata
server responsible for name space, access rights and consistency management.

One of the key characteristics of Lustre regarding metadata management is that
it relies on a single metadata server (possibly replicated for failover replacement) to
handle all metadata. This approach simplifies consistency management (compared to
a fully distributed locking mechanism for metadata management — as in IBM GPFS).

90 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 256 512 768 1024 1280 1536 1792 2048

C
R

E
A

T
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per directory

1 process
8 processes

Figure 4.17: Cost of
create on a shared di-
rectory in a single Lus-
tre node, using 1 and 8
processors at INTI.

The goal of the evaluation was, on one side, to check if the potential scalability
issues in Lustre were analogous to those found in IBM GPFS, or if they were of a
different nature. On the other side, we wanted to verify if the COFS framework could
be used to mitigate the potential issues, or if alternative techniques were needed.

The test-bed was deployed in the INTI cluster at CEA, consisting of 128 Bullx Inca
Nehalem-based blade nodes (with 8 X5560 processors at 2.80 GHz). The InfiniBand
network topology was a fat-tree with 9 Mellanox InfiniBand QDR top-switches (with
36 ports each). The storage system (Xyratex Exascale I/O prototype) was a ClusterStor
6000 including 9 SSUs with 18 CS6000 controllers (SandyBridge-based, FDR capable),
a Cluster Management Node based on a quad-redundant node with shared, high-
performance MDT storage, 2 Mellanox QDR switches (36 ports each) and 1 Gbps
Ethernet Network switch (24 ports). The Lustre file system was the latest (at the time
of the tests) Xyratex 2.1 prototype branch.

The focus of study in the PRACE-2IP file system prototype was the behaviour
of metadata; consequently, we used the Metarates benchmark to obtain the measure-
ments.

The following subsections summarize the observations of metadata behaviour in
the Lustre prototype and the results of applying the COFS infrastructure on top of it.

Metadata issues in Lustre

The Metarates benchmark has been executed in the Lustre prototype in order to com-
pare the results with the observations in IBM GPFS. One of the goals is, given the
different strategies used by both systems, to be able to obtain thorough information
about the causes of metadata performance issues and which are the best ways to
neutralize them.

The first step in the study of metadata behaviour in Lustre was measuring the file
system performance on a single node, with the goal of spotting elements affecting

4.4. Evaluation 91

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 256 512 768 1024 1280 1536 1792 2048

U
T

IM
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per directory

1 process
8 processes

Figure 4.18: Cost of
utime on a shared di-
rectory in a single Lus-
tre node, using 1 and 8
processors at INTI.

the performance but unrelated to parallel access patterns. In particular, there was an
interest in assessing the impact of the number of files on a single directory (which
notably affected IBM GPFS).

Figure 4.17 shows the average time spent in a file create operation in a Lustre
client for increasing sizes of the working directory. There are two important things
to observe. First, the pattern of the lines is essentially flat (except when using 8
processors in directories smaller than 256 files, where the ratio between overhead
and actual work is higher), indicating that the size of a directory is not, per se, an
important factor regarding performance. The second is that using multiple threads
inside a node effectively increases the performance.

The same behaviour can be observed for the utime system call (Figure 4.18), and
the results for the stat system call are very similar (though slightly faster, there are
no differences depending on the number of files in the directory).

It is worth mentioning that this behaviour differs significantly from the observa-
tions done in the IBM GPFS file system, where small directories used from a single
node could benefit from special optimizations, resulting in a highly reduced operation
time compared to larger directories (Figure 4.3). Oppositely, there is no equivalent
optimization in Lustre.

The next step in the study of Lustre metadata behaviour is to observe the influence
of having multiple client nodes using the file system at the same time. We compared
the results in a single node with the results of executing the benchmark on 2 and 4
nodes. For the different series, each node uses the same number of distinct files in
order to avoid the effects of different work versus overhead ratios (therefore, the total
number of files varies according the number of participating nodes).

The results for the create operation obtained using 1 and 8 processes per node
are shown in Figure 4.19. For this experiment, all files were created in a single shared
directory. The first observation is that Lustre seems able to exploit efficiently the
internal parallelism, and the Lustre metadata server does not seem to behave too

92 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 256 512 768 1024 1280 1536 1792 2048

 0 256 512 768 1024 1280 1536 1792 2048

C
R

E
A

T
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per node

1 process per node

Files per process

1 node
2 nodes
4 nodes

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 256 512 768 1024 1280 1536 1792 2048

 0 32 64 96 128 160 192 224 256

C
R

E
A

T
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per node

8 processes per node

Files per process

1 node
2 nodes
4 nodes

Figure 4.19: Cost of parallel create in a shared directory at INTI from
multiple Lustre nodes, using 1 and 8 processes per node.

differently if parallel requests come from the same node or from different nodes
(though increasing the number of nodes seems to be slightly more efficient than
simply increasing the number of threads in a node — for example, the performance
of using 4 nodes with a single process is not far from using 8 processes in a single
node).

Nevertheless, it is worth mentioning the lack of improvement in performance
when moving from one to two nodes: Lustre seems to be able to exploit effectively
the parallelism only beyond 4 processes. A possible explanation for this effect would
be that the overhead of maintaining the consistency when multiple clients use the
file system is relatively high, and can only be compensated when there is enough
parallelism to be exploited.

The same experiments were executed creating the files in separate directories for
each process, to avoid intra-directory conflicts. The results obtained showed the same
pattern as Figure 4.19, with just slightly better performance for 8 or more processes.

Other metadata operations such as utime and stat show a different pattern and
reveal a potential scalability issue. Figure 4.20 shows the average cost of the utime

system call using up to 4 nodes with 1 and 8 processes per node.

The first thing to note is that we do not see the lack of performance increase when
moving from 1 to 2 processes (which we could observe for file create in Figure 4.19).
That means that the overhead in create is probably due to either the directory entry
creation or the actual data file creation itself (tasks that are exclusively related to the
file creation operation), rather than accessing or modifying a file’s metadata.

The second interesting observation reveals a potential scalability issue. Indeed, we
can observe that executing the benchmark with 4 processes offers a slightly better
average performance than using 8 processes. This effect is substantially bigger for the

4.4. Evaluation 93

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 256 512 768 1024 1280 1536 1792 2048

 0 256 512 768 1024 1280 1536 1792 2048

U
T

IM
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per node

1 process per node

Files per process

1 node
2 nodes
4 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 256 512 768 1024 1280 1536 1792 2048

 0 32 64 96 128 160 192 224 256

U
T

IM
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Files per node

8 processes per node

Files per process

1 node
2 nodes
4 nodes

Figure 4.20: Cost of parallel utime in a shared directory at INTI from
multiple Lustre nodes, using 1 and 8 processes per node.

stat system call, where the system obtains an average cost of 0.12 ms when using 4
processes, and then the performance drops to an average cost of 0.21 ms when using
8 processes.

After doing additional measurements, we determined that the anomaly was mainly
due to two different causes. First, utime and stat seem to benefit more from multi-
node parallelization than from single-node, multi-process parallelization; second, par-
allel access to a shared directory generates contention, which tends to increase with
the number of processes accessing the shared resource.

For utime, the average cost of the system call when using 8 processes in a single
node is about 0.24 ms, and then it drops to 0.13 ms when using 2 nodes with 4 pro-
cesses each, and finally reaches 0.1 ms for 8 nodes with a single process each. In the
case of stat, the average costs of the system call for 8 processes are 0.21 ms, 0.11 ms
and 0.06 ms when the processes are distributed into 1, 4 and 8 nodes respectively. A
possible reason for this effect is that the actual cost of the operations is very small
and, therefore, the impact of network aspects like latency and bandwidth (which are
potentially improved by using more nodes) is more significant. Additionally, commu-
nication with the Lustre developers revealed that potentially parallel utime operations
can be serialized inside a client node to facilitate metadata journaling procedures.
This effect is not significant in the case of create, which has an overall cost more than
an order of magnitude larger.

It is also expected that the effect of increasing the number of nodes versus intra-
node parallelism will only be noticeable for a relatively small number of nodes, until
either the network or the server is saturated. This point was confirmed with addi-
tional measurements showing that using additional threads in each node had no
improvement in performance when using 32 nodes or more.

94 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

 0

 0.5

 1

 1.5

 2

 1 2 4 8 16 32 64

 1024 2048 4096 8192 16384 32768 65536

C
R

E
A

T
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Nodes (8 processes per node)

Total files

shared directory
separate directories per process

Figure 4.21: Shared di-
rectory contention on
Lustre create opera-
tions at INTI, creating
1,024 files per node
and using 8 processes
per node (128 files per
process).

The other factor impacting the performance is the contention caused by parallel ac-
cess to a shared directory. In order to assess this effect, we re-executed the benchmarks
making each process work in a separate directory.

Figure 4.21 shows the impact in performance of file create operations in a shared
directory versus creating the files in unique separate directories, and how it increases
with the number of nodes involved (each node uses 8 processes).

On the contrary, the differences between using shared and non-shared directories
tend to disappear for utime and stat operations, and the cost of the operations con-
verge to a base line for 32 nodes and beyond (see Figure 4.22). A possible explanation
compatible with this behaviour is that other costs (e.g. network-related costs) become
dominant over the actual operation time, so that differences are no longer relevant.

It is interesting to see that the cost of utime in separate directories is also close
to the shared directory costs. Conversations with Lustre developers suggested that
this drop in performance for a small number of nodes could be caused by a lock in
the Lustre clients, used to serialize certain intra-node metadata operations with the
objective of guaranteeing proper replayability of the metadata journal.

There is a metadata-related operation which does not seem to be affected by
parallel access to shared directory versus non-shared directories: open. We have not
observed any noticeable differences when files are open by different processes in a
single shared directory compared with opening the files in unique directories. This is
probably due to the fact that other metadata operations (which do show differences)
require some kind of synchronization when accessed in parallel (utime modifies the
access times and must be kept consistent, stat requires synchronization of, at least,
data sizes, and create has to keep the shared directory consistent); on the contrary,
open does not require, per se, to perform any type of synchronization (apart from the
minimum required to ensure that the file being open exists and can be accessed).

Another important difference between open and the previously studied metadata
operations is that, while the cost of other operations tends to stabilize as we increase

4.4. Evaluation 95

 0

 0.1

 0.2

 0.3

 0.4

 1 2 4 8 16 32 64

 1024 2048 4096 8192 16384 32768 65536

S
T

A
T

,
a

v
g

.
ti
m

e
 (

m
s
)

Nodes (8 processes per node)

Total files

shared directory
separate directories per process

 0

 0.1

 0.2

 0.3

 0.4

 1 2 4 8 16 32 64

 1024 2048 4096 8192 16384 32768 65536

U
T

IM
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Nodes (8 processes per node)

Total files

shared directory
separate directories per process

Figure 4.22: Shared directory contention on Lustre stat and utime

operations at INTI, accessing 1,024 files per node and using 8 processes per
node (128 files per process).

the number of nodes, open shows a clear degradation when using more than a few
nodes, which is aggravated when using multiple threads per node.

Figure 4.23 shows the loss of performance of the open operations when the number
of nodes is increased. The figure shows the results for parallel open operations in a
shared directory; there are no noticeable differences in behaviour and performance
when operations are performed in separate directories dedicated to each process.

In summary, we have observed that parallel create operations on shared directo-
ries suffer from overhead with respect to parallel creations in separate directories per
process (though the overhead is less important than in IBM GPFS).

Parallel operations in Lustre scale quite well up to an optimum value about 16–32
nodes (depending on the operation and conditions) but show hints of performance
degradation beyond that point. The goal should be avoiding the performance degra-
dation and even continue the performance improvement with more nodes.

Finally, the sequential behaviour of Lustre regarding metadata operations is not
significantly affected by the number of files in the directory (unlike IBM GPFS), and
it does not seem to have specific optimizations to exploit the sequential case (e.g. via
control delegation to the client node).

Virtualization results

After studying the behaviour of metadata in Lustre, we deployed the COFS prototype
to check if it could mitigate some of the metadata performance issues we observed,
especially the loss of performance when creating files in a shared directory.

Being a drop-in component with only generic dependencies, the prototype initially

96 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32 64

 1024 2048 4096 8192 16384 32768 65536

O
P

E
N

/C
L

O
S

E
,

a
v
g

.
ti
m

e
 (

m
s
)

Nodes

Total files

1 process per node
8 processes per node

Figure 4.23: Lustre
open operation scal-
ability in a shared
directory at INTI
with 1,024 files per
node, using 1 and 8
processes per node.

developed for IBM GPFS required no modifications, apart from usual rebuilding of
binaries. At the CEA test-bed, the COFS Metadata Service was run in a normal compu-
tation node of the cluster. Even if this implied some performance handicaps compared
with Lustre metadata server setup, we expected to gather enough information to assess
the feasibility of COFS mechanisms to improve certain performance aspects of Lustre.

COFS Metadata Virtualization Layer offers a file system name space decoupled
from the underlying file system (Lustre, in this case), and it internally reorganizes
the location of the files without altering the user view of the directory hierarchy;
specifically, COFS tries to place files in such a way that the underlying file system can
obtain a good performance even if the original file distribution would cause parallel
access conflicts and, consequently, performance degradation.

An application working on top of COFS will send file system requests to COFS
Metadata Service which, eventually, may forward them to the underlying Lustre file
system. This involves an overhead with respect to a native Lustre operation, which
can be compensated if the gains of the file distribution made by COFS are higher than
the cost of the extra work performed by the COFS Metadata Virtualization Layer.

According to the results of the study of Lustre metadata behaviour in the pre-
vious subsection, one of the candidate situations where COFS can mitigate Lustre’s
performance degradation is the parallel creation of files in a shared directory.

Figure 4.24 shows the results of using COFS over Lustre for parallel file create

operations on a shared directory. We can see that, for a small number of nodes, the
overhead of COFS is higher than the benefits of file reorganization, but beyond 8
nodes, the gains compensate the overhead, preventing further degradation of the
performance.

It is worth mentioning that, in the case of IBM GPFS, COFS hid the overhead by
exploiting the cases for which IBM GPFS was highly optimized (e.g. small directories
only used locally). According to the observations in the previous subsection, Lustre
does not appear to have such cases with drastic optimizations and, on the contrary,

4.4. Evaluation 97

 0

 1

 2

 3

 4

 5

 6

 1 2 4 8 16 32 64

 1024 2048 4096 8192 16384 32768 65536

C
R

E
A

T
E

,
a

v
g

.
ti
m

e
 (

m
s
)

Nodes (8 processes per node)

Total files

Lustre
COFS

Figure 4.24: Parallel
create performance
on shared directories
using COFS over
Lustre at INTI, with
1,024 files per node
and 8 processes per
node (128 files per
process).

performance changes show smooth and homogeneous trends. Therefore, there is less
room to hide the virtualization overhead.

Even if the benefits of COFS in the case of parallel creation are smaller than
they were for IBM GPFS, there is still an indication that the way COFS manages the
directories is adequate for large-scale parallel access, and it could be considered as
a possible candidate to be integrated inside Lustre itself in order to avoid parallel
creation degradation, without the need to pay the overhead of an external layer.

Another situation in which we have observed an improvement due to using COFS
over Lustre is file open operations. Again, native Lustre showed performance degra-
dation for large numbers of clients, though it was not related to accessing a shared
directory, as it also appeared for non-shared directories.

Figure 4.25 shows the open behaviour of COFS over Lustre on shared directories.
Again, the overhead introduced by COFS is higher than the benefits, for small amounts
of nodes, but it is compensated when the number of nodes increases, mitigating the
Lustre degradation. The low overhead of COFS for the single-node case is due to
some specific optimizations (essentially based on aggressive caching) introduced to
be competitive with IBM GPFS control delegation mechanisms for isolated, single-
node, file system operations.

The open case is interesting because it is less depending on the underlying file
system metadata than other metadata operations like utime or stat, and it is almost
completely handled at COFS level. This explains why COFS can show performance
improvements, even when there was no obvious optimal situation observed in the
study of Lustre.

The execution of the benchmarks for the remaining metadata operations (namely
utime and stat) showed no further improvements derived from the use of COFS
because either Lustre was already showing scalable good performance, or because
the margins between optimal and non-optimal Lustre behaviour were too small to
compensate for COFS overhead.

98 Chapter 4. Virtualized Metadata Management for Large-Scale File Systems

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 4 8 16 32 64

 1024 2048 4096 8192 16384 32768 65536

O
P

E
N

/C
L

O
S

E
,

a
v
g

.
ti
m

e
 (

m
s
)

Nodes (8 processes per node)

Total files

Lustre
COFS

Figure 4.25: Parallel
open performance on
shared directories us-
ing COFS over Lustre
at INTI, with 1,024
files per node and 8
processes per node
(128 files per process).

Nevertheless, the results also indicate that Lustre may obtain benefits from integrat-
ing some of the directory management techniques used by COFS in order to improve
situations with degraded performance, without paying the cost of an external layer.

4.4.4 Summary

From the experiments, we have learned some facts about file system behaviour. We
have evaluated the effects that the number of files and clients have on the performance
of metadata operations in both IBM GPFS and Lustre, specially when requests are
made from multiple nodes to shared directories.

We have observed that parallel creations on shared directories suffer from overhead
with respect to parallel creations in separate directories per process. The overhead is
less significant in Lustre than in IBM GPFS, but still substantial. The behaviour of the
other metadata operations varies depending on the file system: IBM GPFS shows a
progressive degradation on shared directory behaviour when the number of partici-
pating nodes is increased, while Lustre performance seems to be stable. Nevertheless,
Lustre reveals an important loss of performance of the open operation when increasing
the number of nodes.

The number of entries in a directory affects the performance of IBM GPFS. The
reason is that the system is highly optimized for small directories, reverting to ‘normal’
performance values for large directories. Lustre does not seem to have equivalent
optimizations, and show a consistent behaviour across different directory sizes.

Decoupling the name space from the low-level file system layout is the mechanism
used by COFS to mitigate metadata issues. The COFS Metadata Virtualization Layer
offers large shared directory views while internally splitting them to take advantage
of non-shared operations.

Using COFS over IBM GPFS drastically improves the performance of file create

operations on shared directories, and prevents performance degradation of other

4.5. Conclusion 99

metadata operations at large scale. Its use over Lustre also results in improvements
for both parallel create and open operations, preventing performance degradation
for large numbers of nodes.

Regarding the rest of studied Lustre metadata operations (stat and utime), the
overhead introduced by COFS appears to be too high to be used effectively. Never-
theless, as the techniques to handle directories and metadata seem to adequate for
large scale systems, it could be considered to integrate them inside Lustre to take
advantage of the benefits, without having to pay the cost introduced by the external
virtualization layer.

4.5 Conclusion

In this chapter, we have discussed the issues of large-scale file systems used in HPC
environments related to metadata management. We have studied the behaviour of
such systems in actual large-scale computing clusters and implemented a prototype
that uses file system metadata and name space virtualization to mitigate their issues.
The evaluation has shown that an extra Metadata Virtualization Layer is an effective tool
to solve some of the metadata-related performance issues on parallel file systems, and
hints techniques that could be directly integrated into the file systems themselves.

After evaluating the behaviour of IBM GPFS and Lustre file systems, we have de-
tected that parallel file creation on shared directories suffers from severe performance
penalties on both systems beyond a few dozens of nodes. The use of the COFS Meta-
data Virtualization Layer shows that decoupling the name space view from the actual
layout in the underlying file system allows to avoid contention bottlenecks, improving
the performance and scalability of the system.

COFS operates by detaching the user view from the underlying layout of the file
system. By doing so, it is able to transparently convert non-optimized cases (from the
file system point of view) into optimized ones, thus getting all the benefits that the
underlying file system can offer without asking users to change their behaviour.

The experiments also show that the centralized Metadata Service approach used by
COFS does not introduce substantial scalability issues, due to the fact that metadata
is relatively small and metadata operations are usually short.

The scale at which file system metadata should be managed in a distributed
way has to be carefully considered, in order to avoid the cost of distribution and
synchronization being higher than the potential Metadata Service contention it tries
to solve. In fact, we could observe that Lustre metadata management (which uses a
centralized approach) appeared to scale better than IBM GPFS (which aggressively
distributes metadata across multiple servers).

In those situations where the overhead of the additional layer introduced by COFS
is too high to obtain significant benefits, the directory and metadata management
algorithms used by COFS could be integrated inside the target file system (e.g. IBM
GPFS or Lustre) to obtain the benefits without the overhead of an additional layer.

Chapter 5

Name Space Virtualization to
Improve Usability

Contents
5.1 Introduction . 101
5.2 Approach . 103

5.2.1 Decoupling virtual name space from physical layout 103
5.2.2 Structure of the virtualization layer 105
5.2.3 Design decisions . 106

5.3 Implementation aspects . 108
5.3.1 Common implementation aspects 108
5.3.2 Windows-specific implementation details 109
5.3.3 Linux-specific implementation details 113

5.4 Outcome . 116
5.5 Extensions . 119
5.6 Conclusion . 119

5.1 Introduction

Cloud-based storage services are widely available. Nowadays, these services are pro-
vided to final users by means of a number of commercial products (Box [Box 2013],
Dropbox [Dro 2013], JustCloud [Jus 2013] or SugarSync [Sug 2013] are just a few ex-
amples). Some popular features of such products are data synchronization among
devices, data sharing among users, and backup management.

From a technical perspective, some of the challenges that these applications face
are keeping the integrity and consistency of data, and optimizing the transfer of data
between the client system and the cloud. Nevertheless, for the final user, such technical
aspects are things that happen behind the scenes and, once a certain quality in the
service is achieved, there is another aspect that becomes important: usability.

In terms of usability, cloud-based backup and synchronization services show a
lack of flexibility. The selection of files to consign to the cloud is usually rigid and
coarse-grained. For example, it is typically not possible to select a single file in an
arbitrary location of the file system for synchronization or sharing: most systems (such
as the examples mentioned above) force the synchronization of the whole directory
where the file resides (some of them can generate a special url that allows obtaining
a copy of a ’shared’ file, but this is not a truly collaborative solution because the copy
obtained is detached from the original). The result is that the user is forced to select a

102 Chapter 5. Name Space Virtualization to Improve Usability

limited number of directories to put in the files that will be under the cloud control
and, at most, select some specific files in them. Moving a file outside one of such
directories may cause the file to fall out the cloud.

There is a reason behind the rigidity of file organization for cloud-based storage
services. The interaction between a local system and the cloud-based storage service
is handled by local components: these components are programs or daemons that run
in the local computer and act as local agents that communicate with the remote cloud
service. These local components usually need to determine if a file has been modified
and changes should be synchronized; for that, the local components have to monitor
and track changes in the local file system. Modern file systems offer event-driven
interfaces to obtain this information without incurring in the high overhead that a
continuous polling from applications would cause. However, these interfaces vary
in terms of granularity and the details provided: the minimum common service just
indicates if changes have occurred in a directory, but it does not necessarily inform
about which files have been modified, and it is up to the application to collect and
store the necessary state to identify the changes.

For example, the FSEvents API in Apple Mac OS X [FSE 2012] sends a notification
when files in a selected directory (and subdirectories) have changed, but it does not
indicate which ones; the mswindows API function ReadDirectoryChangesW informs
about specific changes in a given directory (and subdirectories), though information
may be dropped if the notification buffer overflows [MSDN 2013]; finally, the Linux
inotify interface provides details about changes related to an arbitrary file or directory
(but not to subdirectories) [Love 2005]. In all cases, the burden of maintaining handles
to track the changes and filtering out the uninteresting events falls on the monitoring
application.

As a consequence, the local components of cloud-based services use individual
directories as the basic unit of operation, and try to limit their number as a way to
minimize the state required for effectively tracking changes. Unfortunately, this also
reduces the ability of the user to organize the files for the cloud in a flexible way,
having to abide by the constraints imposed by the cloud service.

One of the contributions in this thesis consists in increasing the flexibility in the or-
ganization of files to be incorporated to the cloud. To this end, we propose decoupling
the view of the file system name space from the actual underlying directory hierarchy
by means of the virtualization techniques discussed in this work. This virtualization
of the name space allows offering different simultaneous views to different users or
applications. A direct application of this mechanism permits a local component of a
cloud-based service to keep relevant files concentrated in a small, easy to track set
of directories while, at the same time, the user sees files organized according to her
preferences and needs.

One of the advantages of using a Metadata Virtualization Layer to offer specialized
name spaces is that it does not require changes to either the file system change
tracking interfaces or the local components of the cloud-based storage services. Yet, it
provides the user with increased flexibility.

5.2. Approach 103

5.2 Approach

In this section, we present some concepts related to the virtualization of the name
space, and then we discuss the details of the structure of the specific Metadata Virtual-
ization Layer needed for the current purposes, as well as some of the design decisions.

5.2.1 Decoupling virtual name space from physical layout

Cloud-based storage systems rely on interfaces provided by the underlying file sys-
tem to track relevant changes in monitored local directories; but, as mentioned in
Section 5.1, the available mechanisms make tracking the whole directory tree imprac-
tical; consequently, relevant files are usually confined into a specific set of folders.

The name space virtualization model allows to overcome these limitations without
changing the way cloud components work. Particularly, we can let the local compo-
nents of the cloud-based service interact directly with the native file system, orga-
nizing the relevant files in the usual way: i.e. concentrating them in a set of selected
folders. We will refer to these folders as ‘cloudified’ directories. In order to simplify
the examples, the cases that we will discuss will use a single cloudified directory;
nevertheless, all techniques described are equally valid for a set of them.

On the other hand, the user (and, by extension, the rest of applications running
in the local computer) should be able to organize the files without the restrictions im-
posed by cloud-based services. This means that we need to provide an alternate view
of the file system layout which may differ, at least in some points, from the physical
name space (for example, synchronized files will appear anywhere in the directory
hierarchy instead of being concentrated in the ‘cloudified’ physical directory). We will
provide this alternate view through a virtual name space.

The selection of files to be stored in the cloud and the additional information
associated with them (e.g. if they can be shared and, if so, with whom) can be set
by different mechanisms. For instance, the user may introduce her preferences as
extended attributes of the file (it is possible to transparently hook functions into
the extended attribute interface, and trigger a communication with the cloud service
components to set particular configuration options for a file whenever a specially
formatted value is set for a particular attribute); the advantage of this method is that
it is integrated in the standard file system interface. Alternatively, it is also possible
to use an ad-hoc application to indicate the desired setup to the cloud service.

Auxiliary data about the directory hierarchy in a particular name space may also
be stored in the cloud. This includes, for example, the relation between a particular
data file in the cloud and its position in a virtual name space, so that cloudified files
can be represented according to a virtual view when accessed from outside the local
system (e.g. via a web service).

In our basic model, the virtual name space will expose part of the physical name
space enriched with virtual files. We will use the expression ‘anchor directory’ to

104 Chapter 5. Name Space Virtualization to Improve Usability

Figure 5.1: Relation between a physical (top) and a virtual (bottom) name
space.

indicate a directory in the virtual name space exposing a modified view of the contents
of the physical directory with the same path, adding virtual files associated to that
directory and hiding physical files that should not be available in the virtual view.

Figure 5.1 shows the relationship between the physical name space and a virtual
name space. The physical name space has a dedicated cloudified directory containing
two files to be managed by a cloud-based service; this is the name space that the local
components of the cloud service will see. On the other hand, the rest of applications
will see the virtual name space at the bottom of the figure. Directories “Dir2” and
“Dir3” act as anchor directories and they expose the contents of the corresponding
physical directories plus two virtual files (“VFile1” and “VFile2”) which correspond
to physical files “CloudFile1” and “CloudFile2”. Regarding “Dir4”, there are no
differences between the physical and virtual name spaces.

Optionally, the cloudified directory in Figure 5.1 could be hidden from the virtual
name space view, preventing applications from directly accessing and manipulating
the cloud-based storage service data. This adds an extra level of protection to the
cloudified directory and allows using it to store administrative information for the
name space virtualization mechanism (for example, the cloud service itself could be
used to synchronize information about the mapping of the cloudified physical files
into the virtual name space for a particular device, as mentioned before).

The binding between the virtual entries and the physical files is similar to hard
links in POSIX file systems, allowing multiple entries to reference the same data file;

5.2. Approach 105

nevertheless, their semantics differ in two aspects. First, when a user removes a file
in the virtual name space, the corresponding entry is also to be removed from the
cloudified directory in the physical name space - and vice versa; so, the removal of
an entry in a name space requires the removal of the entries referring to the same file
from the other name spaces (conventional hard links must be removed individually,
and finding all hard links to a given file is a costly operation). Second, the attributes
associated to entries in different name spaces may be different, even when they refer
to the same data file: for example, the file access permissions could allow only read-
write access for the owner in the virtual name space and permit read-only access for a
synchronization application accessing the physical name space (oppositely, hard link
entries would share all attributes).

The relationship between entries in the physical and virtual name spaces is trans-
parent to applications: the Metadata Virtualization Layer is responsible for keeping the
necessary information to track the usage of name spaces and for maintaining their
consistency.

5.2.2 Structure of the virtualization layer

Applications perceive the file system name space through path resolution (e.g. when
checking if a file exists in a given path and can be open) and directory listings. Inside
the file system, the path resolution mechanism converts a given path into a reference
to the actual piece of information; then, that reference can be used in subsequent
operations to access and manipulate the data. Additionally, directory listings also
collaborate to expose a picture of the name space by providing the names of the objects
located in a particular node of the directory hierarchy. Consequently, our mechanism
to provide a coherent virtual name space to applications focuses on providing support
for those two operations, while relying on the underlying file system for the rest of
storage management aspects (such as storing and retrieving file contents).

Figure 5.2 outlines the architecture of our Metadata Virtualization Layer, which
closely follows the outline depicted in Section 3.3. Applications interact with the stor-
age system using the standard file system interface. This way, they are unaware of
the presence of the Metadata Virtualization Layer: usual access operations such as open,
read, write and close files are available, no matter if the target is a physical or a
virtual object. Likewise, operations more closely related to the name space organi-
zation (such as create, rename or unlink) are identical on both anchor and physical
directories.

When a request from an application crosses the file system interface, it is captured
by the Interception Engine; then, the Metadata Manager decides what to do with the
request. Essentially, the Name Space Manager detects whether the request is related
to a virtual entry; if so, the system uses information stored as virtual attributes to
fulfil the petition. These virtual attributes, handled by the Attributes Manager, include
pieces of data such as the corresponding path in the physical name space or the access
permissions to be applied when accessing the target object through a particular virtual

106 Chapter 5. Name Space Virtualization to Improve Usability

Figure 5.2: Architecture of the Metadata Virtualization Layer.

name space. On the contrary, if the original target is a physical object, the request is
forwarded to the underlying file system.

The Data Manager is responsible for organizing the storage of data in the underly-
ing file system (for instance, when a new virtual file is created, this module determines
where the corresponding physical file should be located according to its cloud-related
properties — e.g. if it has to be synchronized or shared). Additionally, the Data Man-
ager may monitor the cloudified physical directory in order to detect new files and,
if necessary, to incorporate them to the virtual name space (this situation occurs, for
example, when a synchronized file is created in a remote device).

The interaction of the Metadata Virtualization Layer with the underlying file system
is done through the Native File System Support module. The mission of this module
is to deal with the intrinsics of a particular file system and maintain the necessary
housekeeping information to allow a correct and consistent access to the actual data.

5.2.3 Design decisions

Kernel vs. user-space

Following the reasoning in Subsection 3.5.9 and the experience of the implementa-
tions in Chapter 4, we have decided to make the interception mechanism kernel-based.
Apart from facilitating a transparent deployment of the Metadata Virtualization Layer
from the application’s perspective, the kernel also protects the interception mecha-
nism, preventing applications from bypassing it.

A consequence of intercepting requests at the kernel level is that the interface with
the underlying file system is a low level, system-dependent one; this means that each

5.2. Approach 107

different platform needs a specific implementation of the Native File System Support
module. Nevertheless, the greater control and the availability of detailed information
about the operation compensate the difficulties of handling the interception and the
low level file system interface at the kernel level.

Oppositely, the Metadata Manager and the Data Manager are implemented in user-
space. Here, the main reason was the ease of implementation: standard libraries and
tools that can be used at user-space are not always available at the kernel level, and
encapsulating the complexities of the name space virtualization logic in a standard
process also protects and improves the stability and security of the underlying oper-
ating system.

Metadata representation

The attributes of virtual objects (files and directories) are stored in database tables.
Each object has a unique identifier which is independent of its path. The tables use
that identifier as a key, and store relevant information about the object. In particular,
for a virtual file, one of the tables stores the path of the corresponding physical file.
Ancillary tables contain other pieces of information depending on the functionalities
required (for example, additional access permissions information).

The Name Space Manager also uses a table to store virtual directory entries. A
virtual entry record contains the parent directory identifier and the name inside the
directory as the key, as well as the identifier of the virtual object itself and its type as
values. This allows the representation of virtual directory hierarchies.

Cross-name space semantics

Another relevant design decision involves defining the semantics of cross-name
space operations, such as the behaviour of a rename request when the source and
the target paths may belong to different name spaces. For the implementation of the
prototypes, we tried to take a ‘least-surprise approach’ from the user’s expectations.

First, we consider that the target of a virtual file rename is always a virtual file.
This fulfils one of the main purposes of the name space virtualization mechanism: to
improve the flexibility of cloud-based storage services. In our context, a virtual file
represents a file under the control of the cloud (e.g. a synchronized file); therefore,
even if we move that file around, we still want that file to be in the cloud (which in
practice means that it has to be a virtual file with its physical counterpart stored in
the cloudified physical directory). In the simple case, both the parent directories of
the source and the target entries are anchor directories: then, rename just consists in
adjusting the virtual name space information in the Metadata Manager (the mapping
to the physical file in the cloudified directory remains unmodified). When the target’s
parent directory is a physical directory, it is automatically transformed into an anchor
directory before the actual move takes place (as virtual files are always associated to
anchor directories).

When renaming a physical file, the target will be converted to a virtual file if the
target’s parent directory has been configured to do so (i.e. if the user has selected the

108 Chapter 5. Name Space Virtualization to Improve Usability

whole directory to be synchronized or backed-up in the cloud). The file will also be
virtualized if a virtual name space is being used and a virtual file with the same target
path already exists (in this case, renaming means replacing the target file’s contents
with the data from the source file, and if the target were in the cloud, it is expected to
remain there).

5.3 Implementation aspects

In this section, we explain some details about the implementation of prototypes of
Metadata Virtualization Layer. We have chosen two different targets for the prototypes:
the first is a Microsoft Windows-based system (Microsoft Windows 7 Enterprise Edition,
using Microsoft NTFS as file system); the second is a Linux-based system (Ubuntu-
Server 12.04 LTS distribution, using a POSIX file system — namely Ext4). With this
target selection, we demonstrate that virtual name spaces are implementable in widely
different platforms.

5.3.1 Common implementation aspects

Despite the semantics of POSIX and Microsoft NTFS being different, we have tried
to make both implementations as similar as possible in order to facilitate code reuse
across platforms. Naturally, the kernel-level code (including interception and the
low-level file system support) must be system-specific but, as mentioned in Subsec-
tion 5.2.3, the majority of the name space virtualization logic is implemented in a
user-level service, and most of it can share a common structure across platforms.
From now on, we will refer to the set of components of the Metadata Virtualization
Layer running in the user-space as the User-Level Service (or ULS, for short).

The ULS is divided into two layers: a platform-dependent layer transforms the re-
quests captured by the system-dependent Interception Engine into system-independent
requests; then, a platform-agnostic layer handles the high level logic and the data
structures needed to provide the file system functionality.

The data structures representing the virtual name space and the objects in it (vir-
tual files and anchor directories) are the same in the Microsoft Windows and Linux
prototypes. Each virtual object is designated by an unique identifier, which is used as
a key to access the database tables containing the necessary information to manage
the object. The stored data includes file attributes (owner, permissions), internal man-
agement information (such as the actual path of the physical file corresponding to a
virtual file), and specific support data for the cloud-based service (e.g. flags indicating
if a virtual file or an anchor directory is being synchronized, shared or backed-up,
as well as additional data related to this functionality). The virtual objects are linked
together to form the virtual name space by means of an entry table, where the key is
the composition of the parent directory’s identifier and the name of the object inside
that directory.

5.3. Implementation aspects 109

Figure 5.3: Microsoft Windows I/O subsystem components.

The differences in the file system interfaces are addressed either by decomposing
the native requests into simpler operations with common functionality or, alternatively,
by coalescing multiple low-level requests into a single ULS operation. For example,
Microsoft Windows operations that take a full path argument are transformed into a
series of individual path component look-ups to determine the internal target object,
followed by the invocation of the platform-independent operation on such object; this
makes it compatible with the Linux VFS interface, which separates the path resolution
from the operation itself. Oppositely, a single conceptual operation such as a file
removal consists of a sequence of three low-level requests in Windows: opening the
file, setting a deletion flag, and then closing the file and eventually deleting the entry;
in this case, the platform-dependent layer in the ULS keeps information to track the
request sequence and invokes a single platform-independent removal operation when
necessary.

5.3.2 Windows-specific implementation details

Infrastructure

Figure 5.3 represents the Microsoft Windows I/O stack. The Microsoft Windows
I/O subsystem is packet-based: a request from an application to the I/O service
is translated into a series of IRPs (Input/Output Request Packet) by the I/O Man-
ager [Russinovich 2009]. IRPs are sent down the I/O stack for a particular device;
such stack usually consists of a series of filter drivers, which may alter the informa-

110 Chapter 5. Name Space Virtualization to Improve Usability

tion contained in the IRP (and even generate new IRPs). The stack ends up in the
file system driver, which communicates with the physical device driver and responds
to the IRPs. The components in the I/O stack also interact closely with the Memory
Manager and the Cache Manager [Nagar 2006].

Recent versions incorporate a special type of filter driver called Filter Manager.
The Filter Manager acts as a place holder to plug minifilters [MSDN 2012]. The main
difference between a minifilter and a filter driver is that a minifilter does not need to
implement all IRP operations: it may register to receive a subset of the IRPs, and the
missing functionality is provided by the Filter Manager itself. Several instances of the
Filter Manager may appear at different depths of the I/O stack.

A minifilter may register both a ‘pre-operation’ and a ‘post-operation’ callbacks.
The ‘pre-operation’ callback is invoked when the IRP is going down the I/O stack; the
‘post-operation’ callback is invoked when the response to the IRP is travelling up to
the application, once the request has been processed by the lower levels. Additionally,
a minifilter can declare the processing of an IRP completed (effectively preventing it
from reaching the lower levels and the file system) or, on the contrary, it may generate
additional IRPs. Special care has to be taken when using these options, since failing
to receive expected IRPs, or receiving unexpected ones, may cause inconsistencies in
lower level filters or the underlying file system itself.

The Windows prototype of our Metadata Virtualization Layer uses a minifilter to
intercept IRPs related to file system operations. Due to the fact that a high-level
operation can consist of a series of IRPs, this minifilter is responsible for aggregating
information and keeping the necessary kernel state to build a service request for the
ULS. The minifilter may also cache data from the ULS to be reused for several IRPs.

Name space mapping

One of the most important IRPs for the name space virtualization is
IRP_MJ_CREATE. This IRP either creates a new file or directory, or opens it if the target
already exists. It receives the path of the target object in the arguments; so, handling
it correctly is critical in order to generate a consistent virtual view of the file system.

The interception minifilter collects the IRP_MJ_CREATE arguments and related in-
formation (such as the issuer process, security context) and sends them to the ULS
during the ‘pre-operation’ step. The ULS then discriminates the name space under
which the request must be processed. The simple case corresponds to the physical
name space: the ULS does no additional processing, and the minifilter just forwards
the IRP to the lower levels without alteration.

The use of the physical name space is activated when a request comes from the
ULS itself or a process explicitly entitled to use it (e.g. the local components of a cloud-
based storage service). For convenience, when a new process is created, it inherits the
name space settings of its parent. The rest of processes also fall back to the physical
name space when there is no virtual object in the requested path (that would be the
case, for example, of a process accessing “Dir1/Dir4/File5” in the virtual name space
of Figure 5.1).

5.3. Implementation aspects 111

Figure 5.4: Virtualization path in a Microsoft Windows environment.

If the target of IRP_MJ_CREATE is a virtual entry, then some additional processing
is required. Upon reception of the request, the ULS resolves the path against the
virtual name space. If the target does not exist, the Data Manager in the ULS decides
the physical path where the file should reside and issues a create request using the
standard, user-level file system interface; then, the virtual name space is updated with
the new entry, and the link between the new virtual object and the actual physical
path is stored by the ULS Metadata Manager. On the contrary, if the target already
existed, the mapping to an actual physical path would be retrieved by the Metadata
Manager and fed into the Data Manager to open the underlying file.

In both cases, the ULS Data Manager actions result in issuing a standard file system
operation which, in turn, will generate a new IRP going down the I/O stack. As
mentioned before, the virtualization minifilter will let pass this IRP unaltered, and the
IRP will get an open handle for the physical file (namely a user-level file descriptor).

The last step consists in binding the obtained handle on the physical file with the
original IRP still pending in the virtualization minifilter. For that, the ULS Metadata
Manager stores the handle and other relevant information in a transient data area,
and sends a reference to that information back to the minifilter. Then, the minifilter
creates fake structures to represent the virtual file and associates the ULS reference
to them, so that the Metadata Virtualization Layer can retrieve the proper information
when further operations are performed on the virtual object.

A representation of the IRP processing can be seen in Figure 5.4. It is important to
remark that, when dealing with an IRP related to a virtual file, the processing ends

112 Chapter 5. Name Space Virtualization to Improve Usability

in the virtualization minifilter, and the IRP is not forwarded to the lower levels of the
I/O stack (and, in particular, it never reaches the underlying file system). This adds
two responsibilities to the minifilter: first, it must create the kernel structures that
are usually created by the file system driver to represent a file system object (and fill
them with consistent values); second, it must detect all references to these structures
in the I/O stack and divert them to the virtualization ULS, effectively preventing them
from reaching the lower levels of the I/O stack and the underlying file system itself —
failure to do so could result in file system inconsistencies.

Once the IRP_MJ_CREATE has been successfully processed, further IRPs related
to the same file will provide a reference to the kernel structures representing the
file. The minifilter can easily distinguish native file system structures from fake ones
(corresponding to virtual objects) by checking the associated ULS information that
was set up during the IRP_MJ_CREATE processing. In general, if the IRP corresponds
to a virtual file, it will be diverted to the ULS for processing; nevertheless, it may
be possible to fulfil the request completely at the kernel level if all the necessary
information is available (a particular case are read and write operations: the minifilter
can interact with the Cache Manager to complete the request if the required data is
being cached).

Another essential operation for name space virtualization is the directory listing.
This operation is translated into the I/O stack as an initial IRP_MJ_CREATE followed
by a series of IRPs of type IRP_MN_QUERY_DIRECTORY, which provide buffers to fill-in
with directory entry information. As with the IRP_MJ_CREATE request, IRPs processed
under the physical name space are forwarded to the lower I/O stack levels, and those
corresponding to a virtual name space are sent to the ULS. In the latter case, the
ULS will access the underlying physical directory, combine its entries with the entries
from the corresponding directory in the virtual name space, and eventually hide any
entries not to be available through the virtual name space.

Semantics

Apart from taking care of the different IRPs, the Metadata Virtualization Layer needs
to provide the adequate file system semantics for virtual objects. Indeed, file system
operations results are affected by the context (for example, a delete operation may
fail if the target is open by another process), and some concurrent requests affecting
the very same data must be serialized to avoid race conditions. These specifications
define what an application may expect from the file system in each situation.

In the Windows I/O model, the I/O Manager issues IRPs without restrictions regard-
ing file system semantics: it is the task of the underlying file system driver to take care
of those aspects. However, the Metadata Virtualization Layer prevents requests related to
virtual objects to reach the file system driver: therefore, it must take the responsibility
of guaranteeing a behaviour compatible with the underlying file system.

The Metadata Virtualization Layer is able to provide the right semantics for virtual
object operations through two elements: first, both the virtualization minifilter and
the Metadata Manager in the ULS keep transient data to track context (including on-

5.3. Implementation aspects 113

going operations and information about previous related requests); second, the ULS
incorporates a concurrency management mechanism, so that requests referring to the
same pieces of data are adequately serialized to avoid consistency issues.

5.3.3 Linux-specific implementation details

Infrastructure

The implementation of the Metadata Virtualization Layer for Linux follows the same
principles as the implementation based on Windows: the interception of file system
request is based on kernel grounds, while the bulk of processing (the Metadata Manager
and the Data Manager from Figure 5.2) is implemented at user-space. In this section,
we will focus on the differences with respect to the Windows-based implementation.

The VFS (Virtual Filesystem Switch [Bovet 2008]) mechanism inside the Linux
kernel was initially designed to facilitate the addition of file systems [Zadok 2006]; it
provides an interface for registering the code that should be executed to fulfil each low
level file system operation (such as name look-ups, getting and setting file attributes
or reading and writing data). This set of callbacks also provides the necessary support
to capture requests related to the file system name space.

The Interception Engine of our Metadata Virtualization Layer is based on the Linux
VFS callbacks, but we use them via FUSE [Szeredi 2005] instead of registering our code
directly. FUSE (Filesystem in USErspace) provides a kernel module that hooks into
Linux VFS and exports the callbacks to a user-space application. FUSE is a standard
component of current Linux kernels and provides a stable and widely used platform
for implementing file system features in user-space. The decision to use FUSE was
driven by the ease of development as well as its proven robustness. On the other hand,
it hides some kernel-level information and has limited ability to interact with other
kernel components, though this does not substantially hinder the implementation of
the prototype.

FUSE provides two different interfaces to the user-level service implementing
the VFS-like calls: a ‘high-level’ interface and a ‘low-level’ interface. We chose the
‘low-level’ interface because it allows a slightly greater control of the behaviour of
the file system operations (at the cost of having to maintain and take care of some
additional information); in particular, the ‘high-level’ interface is based on paths and
automatically caches directory entry data into the kernel, which is inappropriate for
our purposes because the Metadata Virtualization Layer must be able to change the
mapping between directory entries and objects dynamically, depending on the name
space being used. On the contrary, the ‘low-level’ interface is based on i-node numbers
and allows full control of directory entry mapping and its caching at the kernel level.

One of the main differences between the implementation of the Interception En-
gines in Microsoft Windows and Linux is that the combination of VFS and FUSE does
not allow file system requests to pass through the Metadata Virtualization Layer and
reach the underlying file system: FUSE diverts all requests to the User-Level Service

114 Chapter 5. Name Space Virtualization to Improve Usability

Figure 5.5: Virtualization path in a Linux environment.

(ULS). In particular, this includes both requests coming from the cloud-based service
components (which should access the physical name space) and from the rest of the
applications (which should access the virtual name space). Therefore, it is the ULS
who must explicitly forward to the underlying file system the operations related to
the physical name space.

Figure 5.5 illustrates the behaviour of the Metadata Virtualization Layer in Linux.
The Metadata Virtualization Layer attaches to VFS via the FUSE kernel module and
appears as a conventional file system which is mounted on top of the physical name
space (i.e. the underlying POSIX file system). When an application performs a file
system operation, this operation is converted into one or more VFS requests, which
are intercepted by the FUSE module and diverted to the ULS; if the request is to be
processed under the physical name space, the ULS generates the corresponding series
of operations for the underlying file system.

In order to bypass the VFS layer and be able to perform operations directly on
the underlying file system, the ULS acquires a handle of the root directory of the
underlying file system before the VFS layer is mounted on top of it. Then, whenever a
physical object is to be accessed, the physical path is resolved after this handle, instead
of using the conventional path resolution mechanism; in the prototype, this is enabled
by using the openat system call and its relatives.

Name space mapping

As discussed in subsection Section 5.2, path resolution is one of the key elements
to provide the perception of a virtual name space to applications. In the case of

5.3. Implementation aspects 115

Microsoft Windows, the requirement to resolve a path was embedded as part of the IRPs
representing the different operations. In the Linux implementation, path resolution
is performed separately from the actual operation via explicit VFS+FUSE lookup

callbacks; the path resolution procedure returns an internal identifier which is then
used to invoke the actual operation (create, mkdir, unlink, etc).

Apart from the formal difference, the treatment of lookup in the Linux-based
prototype is equivalent to the Microsoft Windows-based prototype: if the request refers
to the physical name space, the ULS generates a new request for the underlying file
system; otherwise, the ULS tries to resolve it against the virtual name space data, and
may fall back to check the underlying file system if the entry is not found.

The processing of directory listings is also equivalent to the procedure followed
in the Microsoft Windows-based prototype, with the sequence of IRP_MJ_CREATE and
IRP_MN_QUERY_DIRECTORY IRPs translated into an opendir followed by a series of
readdir callbacks, with essentially the same semantics as their Windows counterparts.

Tracking directory changes

User notification of file system changes in the Linux prototype deserves a spe-
cific comment. In the Linux kernel, the change notification mechanism (usually ino-
tify [Love 2005]) is implemented inside the VFS and reacts to requests coming from
the user-space, without requiring any action from the underlying file system. Specifi-
cally, FUSE delegates all change notification handling to the Linux VFS. Unfortunately,
this means that FUSE does not provide any means to notify the user applications that
changes have occurred behind the scenes.

This limitation would affect a component of the cloud-based service that wished
to track the changes in the cloudified directory through the VFS layer. When the user
application acts on an arbitrary directory in the virtual name space, the ULS could
directly update the cloudified directory in the underlying file system; but then, the
VFS associated to the Metadata Virtualization Layer could not relate the virtual directory
with the physical cloudified directory and the cloud service component would not be
notified.

The initial solution used in the Linux-based prototype makes the Data Manager of
the ULS redirect updates to the cloudified directory through the VFS layer, instead
of writing directly to the underlying file system; that makes the VFS aware of the
changes, so that notifications work properly. An alternative solution to the extra
indirection level consists in modifying FUSE to allow informing the VFS about the
changes made by the ULS. FUSE already provides a mechanism for sending requests
from the user-space to the kernel module (e.g. to invalidate data cached by the kernel);
so, the same feature can be used to push change notification events into the kernel and,
upon reception, the FUSE kernel module can invoke the proper change notification
kernel interface.

116 Chapter 5. Name Space Virtualization to Improve Usability

Figure 5.6: Example of a traditional file system organization.

5.4 Outcome

In this chapter, the goal was using the metadata virtualization framework to improve
the usability of a diversity of file systems from the final user’s perspective. The techni-
cal aspects discussed in Section 5.3 provide the insights necessary to be able to interact
with existing operating systems, enabling the possibility to fulfil the requirements of
the metadata virtualization framework.

The result of the techniques described above is the addition of new functionalities
to the existing file system. These new functionalities provide the final user with
new ways to handle the storage system that, previously, were either unavailable or
impractical.

Figure 5.6 shows an example of a traditional file system organization. The example
represents a production environment where an employee has to prepare a public
report based on financial data for the current year and, occasionally, has to check data
from previous years. We can see that the necessary files are scattered across different
branches of the directory hierarchy; the reason is that each branch has specific features
that we want applied to specific files. For instance, the public report is stored in a
“shared” directory attached to a cloud storage service, so that other people has access
to it; the financial data corresponding to each year is also located in a cloud-based
backup service, with a rigid structure to allow the easy identification and retrieval of
data from a certain year; finally, the user also holds some files (such as a “to-do” list
and some useful report templates) in his own documents folder in the local disc.

5.4. Outcome 117

Figure 5.7: Example of a flexible organization enabled by the metadata
virtualization framework.

Despite having all the needed files with the required features, this scenario is
uncomfortable for the final user because all files are scattered, instead of being held
together in a single place to be used in a combined way. The options provided by
a traditional system are not specially appealing: the user can either copy all files to
a single place temporarily and copy them back after the work is done, or try to use
links or shortcuts to have some appearance of the files being together.

In the first case, the copying procedure is prone to failure: a wrong path can
result in the unduly overwrite of valid data, or in the failure to update a file with
old contents. Moreover, the copies would miss the features provided by the specific
branches of the directory tree (in the example from Figure 5.6, any updates to financial
data files copied into the local documents folder would not be backed up until they
are copied back to their original places, and any modifications of a local copy of the
public report would not be visible by other users). Alternatively, the use of links also
has issues: first, they have to be maintained manually (a cumbersome procedure if
there are many files to handle) and, second, the semantics of the operations on links
is not identical to the equivalent operations on files, which could cause unexpected
results (for instance, the removal of a shortcut does not involve the removal of the
original file containing the actual data; and a ‘move’ operation over a symbolic link
causes the link to be severed, instead of replacing the contents of the original file).

The use of the techniques described in this chapter allows the final user to have
a comfortable organization (having all the necessary files together), but without the
issues mentioned in the previous paragraphs: no manual maintenance, no missing
features and no changes in semantics.

118 Chapter 5. Name Space Virtualization to Improve Usability

Figure 5.8: Screenshot from the Windows prototype of the metadata
virtualization framework.

Figure 5.7 shows the result of applying the methods discussed in this chapter to
the example from Figure 5.6. The metadata virtualization framework provides a name
space where the user can combine the local files (such as the “to-do” list and the
templates) with files from the branches attached to a remote cloud storage service
(such as the shared report document and the financial data for the current year). The
user can even create virtual directories to group physically disperse files (like the
“previous” directory containing the financial data for previous years).

The binding between the virtual files and the actual physical files scattered across
the cloud-related directories is hidden from the user and, once defined, it is internally
handled by the metadata virtualization framework without further user intervention;
in the example of Figure 5.7, the complete cloud-related subtree is even suppressed
from the user view. Nevertheless, the logic in the ULS component of the metadata
virtualization framework still takes care of properly mapping the operations on the
virtual view to the actual files in the cloud-based subtree.

Summarizing, the result of the presented techniques is the possibility of simulta-
neously having multiple flexible organizations of the file system, adapted to specific
needs, and which existing applications can use transparently without needing any
modifications.

5.5. Extensions 119

As an example, Figure 5.8 presents a screenshot from the Windows prototype
of the metadata virtualization framework showing two applications working on
two different views of the same file system, similar to the examle presented in Fig-
ure 5.6 and Figure 5.7. The bottom right browser presents a folder containing a
file (“local_notes”) and a few subfolders (“Templates”, “Client1”, “Client2” and
“Client3”); the top right browser presents the same folder with a different view, con-
taining the “local_notes” file and the “Templates” and “Client1” directories from
the other application, but also some additional virtual objects from a remote loca-
tion (virtual files “Report” and “Financial”, a “Speller” application, and a virtual
directory “Previous”.

Additionally, the view in the top left browser hides two of the directories in the
alternative view (“Client2” and “Client3”. This ability to selectively hide portions
of the file system is another example of a functionality that cannot be achieved with
the means provided by traditional file systems.

Both views from Figure 5.8 are fully functional: applications can be executed, and
files can be opened with the usual applications, regardless of them being virtual or not.
The construction of this prototype allowed us to verify that the metadata virtualization
framework was a feasible mechanism to provide the flexibility demanded by modern
file system environments.

5.5 Extensions

The model of having a physical and a virtual name space can be easily extended
to multiple, simultaneous, virtual name spaces. In fact, the prototypes described so
far permit such multiplicity, and the only addition needed is the logic to select the
appropriate name space to resolve a given path.

Using multiple virtual name spaces enables presenting specialized views of the
file system to a particular application or group of applications. Following the case
described in the paper, we could have, for example, multiple cloud-based storage
services using incompatible directory layouts coexisting in the same system.

Additional features can also be added, such as hiding part of the files to certain
services, quarantining the changes from certain applications or selectively encrypting
sensitive data.

In general, the mechanisms explained in this chapter allow any feature specific of
a given file system to be made globally available to the whole file system name space,
without having to limit its use to specific directories or mount points.

5.6 Conclusion

Cloud-based storage services provide means to replicate local data and keep it syn-
chronized across different platforms. To keep this data up to date, local components

120 Chapter 5. Name Space Virtualization to Improve Usability

of the cloud services need to track changes in the local file systems. However, current
mechanisms to perform this tracking require rigid file organizations in order to be
effective.

The contribution in this chapter consists in using our metadata virtualization
framework to improve the flexibility and ease of use of cloud-based storage systems.
We remove the need to use strict directory hierarchies by providing multiple simulta-
neous views of the file system organization: the Metadata Virtualization Layer allows
user applications to access a view of the file system without organizational restrictions,
while cloud components maintain a view of the file system structured according their
needs.

The prototypes presented in this chapter show how virtual name spaces can be im-
plemented on top of both Windows and Linux platforms, demonstrating the feasibility
of the approach in actual systems.

Chapter 6

Related Work

Contents
6.1 Related work . 121

6.1.1 Metadata management . 121
6.1.2 Parallel file systems . 123
6.1.3 Metadata consistency . 124
6.1.4 File organization versus low-level file system layout 125
6.1.5 Virtualization . 127
6.1.6 Issues on large-scale file systems 128
6.1.7 Cloud storage . 128
6.1.8 Implementation techniques . 129

6.1 Related work

There is a lot of previous work that analysed the limitations of file systems and
addressed them from different perspectives, many of which have influenced the devel-
opment of the techniques used by the COFS Metadata Virtualization Layer. This section
summarizes some of the developments related to the present work.

6.1.1 Metadata management

Some advances in metadata handling are related to where and how metadata should
be stored. While it was initially considered a good thing to mix data and metadata to
improve cache efficacy, some research pointed out that access patterns differed greatly
for data and metadata and, therefore, they should be treated separately.

Systems like MFS [Muller 1991] followed the proposal of having different struc-
tures and caching policies for data and metadata, physically separating them in dif-
ferent storage systems when possible, in order to increase performance and avoid
interferences with data accesses.

DualFS [Piernas 2002] is also separates data and metadata, but it does not re-
quire placing them in different devices. Metadata is organized as a log file system
(LFS [Rosenblum 1992]) to improve write performance and crash recovery, using meta-
data dynamic relocation and caching to adapt to changing access patterns. Similarly,
hFS [Zhang 2007] uses the same approach, but intermixing very small data files with
their related metadata to improve access time.

The systems mentioned above demonstrate the advantages of clearly separating
the file system metadata from the bulk of file contents. Nevertheless, they still amal-

122 Chapter 6. Related Work

gamate the metadata, focusing on extracting the maximum efficacy from the storage
device transfers. Therefore, additional techniques are required to improve both the
adequacy to multiple simultaneous accesses and the flexibility in the file system
organization.

Directories are usually represented as special files containing collections of entries;
these collections were originally structured as simple lists, but their internal orga-
nization has evolved to deal with large amounts of entries (for example, extendible
hashes [Tang 2003] are commonly used to handle directory entries). As a consequence,
manipulating a directory involves making sure that the underlying data structure sup-
porting it is kept consistent.

The cost of handling large sets of loosely related attributes or directory entries
together and keeping them consistent is becoming important in modern file systems
and, in particular, the effects of excessive synchronization traffic are much noticeable
for parallel file systems [Cope 2005].

Some mechanisms have been proposed to mitigate this effect and increase meta-
data update performance. The soft updates mechanism [Ganger 1994] tracks dependen-
cies between directory entries and i-node modifications to be able to commit partial
changes to metadata, without being tied to block granularity. The Zettabyte File Sys-
tem [Bonwick 2003] implements a transactional mechanism to keep track of unrelated
modifications and to avoid unnecessary locking (though it is not designed to support
parallel multi-node accesses).

Specifically focusing on directory issues, some systems use special techniques to
be able to manipulate different portions of a directory independently, reducing the
false-sharing effect. A common approach is to use some kind of hash-based partition-
ing allowing to diversify the target structures of the operations and, thus, minimize
potential collisions. For example, OBFS [Wang 2004] does a heavy use of hashes to
handle a flat name space inside an object storage device (OSD) as if it were a sin-
gle directory, and GANESHA [Deniel 2007] uses a multi-level combination of hash
functions and red-black trees to deal with large directories and metadata sets while
reducing the risk of conflicts during parallel access.

An alternative approach to break the traditional granularity of the metadata con-
sists in leveraging database technologies and use tables to store metadata and, in
some cases, also file contents.

The use of databases presents additional advantages such as easily allowing the ex-
tension of metadata with extra information (e.g. user-defined attributes) and enabling
the recovery of data by attribute query in addition to path-based access [Olson 1993].
Conceptually, this would bring flexibility to file system organizations, allowing muta-
ble name spaces based on file attributes.

On the downside, fully-fledged databases are claimed to be slow for heavily loaded
file systems (though new developments may show otherwise), and some POSIX oper-
ations like directory streaming, and extended operations like per-attribute searches,
may be difficult to implement efficiently [Ames 2005].

6.1. Related work 123

Despite the performance concerns, several metadata management services have
been successfully based on databases. For example, Chimera [Mkrtchyan 2006] pro-
vides the name space service for the dCache distributed system [Fuhrmann 2006] by
means of a database. The Logic File System [Padioleau 2003] also uses a database
to allow file access by attribute selection. The Linking File System [Ames 2005] uses
a database to enrich the metadata with information about navigable relationships
among files, though it relies on non-volatile main memory technologies for perfor-
mance. The Trove storage subsystem for PVFSv2 [PVF 2003] also may use a database
for metadata storage.

6.1.2 Parallel file systems

Currently, platforms for high-performance computing have shifted from classic
big single-node supercomputers to large clusters of smaller nodes linked by low-
latency interconnect networks. In 2005, 60% of systems in the Top500 supercom-
puter list were considered clusters [Boulton 2005] and by June 2006, the ratio reached
73% [Stein 2007]. Just to mention an example, the MareNostrum supercomputer at
BSC has more that 10,000 processors distributed in more than 2,500 nodes. Parallel ap-
plications running on such systems expect to be able to perform I/O simultaneously
from all the nodes as they would do in a single node (i.e. efficiently, in parallel and
keeping the consistency).

So, together with the rise of clusters, parallel file systems have appeared to fill
the gap and offer a consistent single view of the storage system across all nodes
in the clusters, trying to handle simultaneous parallel reads and writes accesses to
many files in many directories, many files in a single directory or even a single
file. As of this writing, three of such systems have reached a state mature enough to
dominate the production-grade arena: Lustre [Braam 2007], IBM GPFS [Schmuck 2002]
and PVFSv2 [Ross 2000] [PVF 2003].

Lustre claims to offer a fully compliant POSIX interface and is based on three types
of components: the clients (nodes accessing the file system), the storage servers (based
on object storage devices — OSDs) where the data is kept, and metadata servers,
responsible for keeping the name space, access rights, and consistency management.
Current versions have unique metadata server (with a failover replacement) to simplify
consistency management. Current scalability expectations are about a thousand of
client nodes and a few hundred of storage nodes. Communications between the
components is done via an optimized network stack [Brightwell 2002]. Lustre has
been used to provide the root file system for a cluster of disk-less nodes [Boggs 2006].

IBM GPFS also offers a POSIX interface, while having the possibility to use non-
POSIX advanced features for increased performance (e.g. for MPI-IO). Unlike Lustre,
IBM GPFS uses block-based storage. A typical configuration consists of clients which
access to a set of file servers connected to the storage devices via SAN. Metadata is
also distributed, and its consistency is guaranteed by distributed locking, with the
possibility of delegation to increase performance in case of exclusive access. Current in-

124 Chapter 6. Related Work

stallations such as the ones at BSC reach a few thousand of nodes, and continent-wide
multi-cluster configurations have been also tested in production-like environments as
part of the DEISA infrastructure [DEI 2008].

PVFS [Ross 2000] also offers a POSIX interface, though the system provides a
native API mostly designed to support advanced parallel interfaces such as MPI-IO.
Like Lustre, metadata is managed by a single server, which provides data locations to
the clients which, then, access directly to storage servers. Both data and metadata are
stored as regular files using the local file systems present in the nodes where the server
daemons are run. The file system was mostly rewritten for its version 2 [PVF 2003]
in order to have a modular design for the networking and storage subsystems and
to support flexible and extensible data distribution policies. There is also support for
limited metadata distribution, data replication and fault tolerance. The counterpart
is that the system has evolved towards providing high-performance for advanced
parallel interfaces (such MPI-IO), and POSIX semantics has been relaxed.

The performance of these systems has been analysed in [Cope 2005] and
[Hedges 2010]. All of them achieve good performance for reading and writing data in
parallel in a moderate-size cluster, but PVFSv2 is heavily penalized when being used
by a single node. The differences in metadata handling between Lustre and IBM GPFS
are also significant: the unique metadata server in Lustre seems to take advantage
over IBM GPFS in case of simultaneous access to same directories, while IBM GPFS’s
distributed locking appears to be much better for scattered accesses. This means that
the way users organize their file hierarchy may have a great impact on systems perfor-
mance. It is worth mentioning that the high specialization of PVFSv2 in parallel data
reads and writes has a price in terms of poor metadata performance [Cope 2005].

6.1.3 Metadata consistency

How to handle metadata is an important factor that must be considered carefully
when dealing with parallel and distributed file systems. This also applies to the COFS
framework, as the separation of metadata and name space handling from the actual
data layout is a key feature to obtain performance benefits.

IBM GPFS [Schmuck 2002] can distribute the name space and metadata across
several nodes, integrated in the same servers used to store data (in fact, directories
are essentially treated as special files)

On the contrary, other file systems, such as Lustre [Braam 2007], Ceph [Weil 2006]
or PVFSv2 [PVF 2003] decouple metadata and name space management from data
accesses, having specialized services and distinct storage mechanisms for name space
handling. In all these cases, the metadata also includes information to reach the
physical location of file contents. This is also true for the decoupled architecture
of pNFS [Hildebrand 2005] (where the information returned by the metadata server
also contains information about data distribution) and the object manager in Ursa
Minor [Abd-El-Malek 2005].

COFS Metadata Service separates name space and metadata management from the

6.1. Related work 125

file data handling and does not keep any information about how and where file data
is physically stored: data handling is a responsibility of the underlying file system.
This allows us to have a lighter server with a reduced load (e.g. there is no need to
contact the COFS Metadata Service if a file is resized or has new data appended).

Mechanisms to maintain name space coherence also vary with file systems. For ex-
ample, IBM GPFS uses distributed locking techniques, with the possibility of delegat-
ing data management to the client under controlled circumstances. These techniques
aim to prevent bottlenecks and to facilitate parallel access to disjoint sets of informa-
tion; the drawback is that distributed locking and leasing techniques are complex and
also require so sophisticated fault detection and recovery mechanisms.

In a completely opposite approach, PVFSv2 prevents consistency problems by dis-
tributing metadata with a “no shared data, no cached data” policy [Sebepou 2008];
and Lustre uses a single metadata server to avoid conflicts. Panasas [Welch 2008]
(closely related to Lustre) organizes the directory tree into separate ‘volumes’, having
a single independent metadata servers for each volume.

COFS approach for metadata handling is oriented towards the centralized service
model, combined with a limited client caching mechanism to speed-up cases with low
risk of conflicts.

6.1.4 File organization versus low-level file system layout

Users like to organize their files in such a way that related things are close in the
directory tree. Traditional file systems assume that ‘related’ things are to be stored
together (and possibly to be treated in similar ways).

The idea of using directories as a way to group things that are handled together is
implicit in the concept of mount point (a directory that is used to traverse file system
boundaries): creating a file beyond one of these directories determines where it will
be stored.

This concept is still very alive in modern file systems. For example, Panasas makes
the volumes visible as directories in the name space root. ONTAP GX [Eisler 2007] is
also based on volumes; they tend to be small and the mount point directories (called
junctions) can be located anywhere in the name space; physical re-location and repli-
cation, when needed, is applied to the whole volume.

An alternative to the “group by directory” philosophy is based on stack-
able file systems. Stackable file systems are a well-known technology that can
be used to extend the functionality of a file system [Zadok 2006]. In particular,
fan-out stackable file systems (or union file systems) can combine the contents
of several directories (possibly in different file systems) into a unified virtual
view [Pike 1992] [Pendry 1995] [Wright 2006]. Essentially, each operation is forwarded
to the corresponding objects in all the underlying file systems and the result is a sen-
sible composition of the operation results for each layer, including file attributes and
other metadata.

126 Chapter 6. Related Work

Typical applications of union file systems are ‘live’ installation environments based
on read-only media (e.g. a CD providing a read-only file system with the base operat-
ing environment is combined with a RAM-based file system supporting site-specific
configuration files and temporary read-write storage), development environments
for building the code on top of read-only sources like Diverge FS [Lin 2004], or auto-
matically versioning files using copy-on-write techniques [Yamamoto 2000]. All these
examples exploit the same concept: having an immutable base (possibly the combina-
tion of several sources), and a single writeable layer that allows modification (either
temporary or permanent).

Recently, systems like Blutopia [Oliveira 2007] went a step further, combining the
stackable file system principles with distributed environments to provide a mecha-
nism for centralized cluster management. Essentially, each different service (mail, web
servers. . .) and even each different configuration for the service is set up as a file sys-
tem layer stored in central servers. Then, each client node in the cluster can combine
the remotely exported layers to offer the necessary services. Client re-provisioning can
be done by simply changing the stacked layers, and maintenance and upgrade tasks
can be carried out safely in a test system and then propagated to all clients by chang-
ing the exported images. The idea behind this mechanism is similar to data center
management systems based on virtual server farms, such as Parallax [Warfield 2005],
but without imposing the need of a virtual machine to support each service.

RAIF [Joukov 2007] (Redundant Array of Independent Filesystems) exploits stack-
able file systems in quite a different way. Instead of limiting the writeable layers to
the topmost, RAIF replicates the directory tree and distributes files across several
layers. A set of rules specifies the distribution policy (in which layer a file must reside,
where to replicate it and even how to stripe it across layers). It is assumed that each
layer is backed by a file system with different features, and the goal is to optimize
system behaviour by placing the files in the most adequate file system according its
probable use (for example, temporary files could be placed in local or even temporary
RAM disks while large media files can be stripped across file systems optimized for
streaming access). Nevertheless, one of its limitations is that the directory tree has
to be replicated in all branches, making the mechanism difficult to scale to many
underlying file systems.

Ursa Minor [Abd-El-Malek 2005] also allows specifying completely independent
storage policies on a per-object basis (in fact, there are no directories in Ursa Minor:
data objects have an identifier in a flat name space and are accessed by non-standard
protocols — unless accessed via an NFS front-end).

COFS also treats directory contents as a potentially unrelated objects. The main
difference from RAIF is that metadata and name space handling are decoupled from
the underlying file systems. Regarding Ursa Minor, COFS differs in the separation of
pure metadata from data distribution information (as mentioned in previous subsec-
tion) and the fact that COFS does provide a standard conventional interface, so that
any standard application can make direct use of it.

6.1. Related work 127

6.1.5 Virtualization

The notion of virtualization is not new to file systems; on the contrary, it is commonly
used at different levels to hide complexities and extend functionalities.

Acting on the lowest device level, Parallax [Warfield 2005] uses a virtual machine
to offer a block-based interface hiding a distributed storage environment. In a similar
way, Peabody [Morrey III 2003] uses a software-based iSCSI target to provide virtual
disk images that a local file system can then use as a backing store.

At operating system level, mechanisms such as the Linux VFS provide a common
layer aimed to facilitate the integration of different file systems into the OS internal
structure [Zadok 2006].

At the infrastructure level, ONTAP GX [Eisler 2007] virtualizes the file system
servers and network interfaces used to access the file system data, offering a single
virtual large server with multiple interfaces and allowing transparent re-provisioning
of physical servers. A similar approach is used by Slice [Anderson 2000].

The same transparent redirection techniques are used for server off-loading to
achieve load balancing (Cuckoo [Klosterman 2002]) or efficient power management in
data centres [Narayanan 2008].

Name space virtualization has been used to provide a unified virtual view of
multiple file systems: well-known examples of this technique are union file sys-
tems [Pendry 1995] [Wright 2006]. Fan-out stackable file systems [Zadok 2006] are
one of the mechanisms allowing the construction of unified virtual name spaces; for
example, RAIF [Joukov 2007] uses this technique to combine several file systems with
the same directory hierarchy under a single virtual name space, with the goal of di-
verting files to the most appropriate underlying file system according to each file’s
characteristics. Our approach uses a similar technology with the opposite goal: in-
stead of unifying several file systems under a single virtual name space, we provide
multiple virtual name spaces for a single underlying file system.

ONTAP GX [Eisler 2007] also provides a virtual layer allowing volumes (di-
rectory sub-trees) to be transparently re-located or replicated. On the other hand,
RAIF [Joukov 2007] uses virtualization to divert the target file system for individual
files, though the directory tree itself is not virtualized, but directly mapped into the
underlying file systems.

The SDSC Storage Resource Broker [Baru 1998] is also able to provide a uniform
interface to a variety of heterogeneous storage resources. Several physical storage
resources can be combined into logical storage resources as means of transparently
providing replication support. The SRB is also able to split a large file from the
user view and scatter it across several storage resources and to provide compound
resources that combine features from different physical storage systems, such as com-
binations of tapes and cache disks [Wan 2003].

COFS exploits virtualization at the name space level, using single file granularity
and virtualizing also the directory hierarchy. User-space mechanisms have been pre-

128 Chapter 6. Related Work

ferred to kernel integration because of the ease of development and deployment in
production-grade environments.

6.1.6 Issues on large-scale file systems

Potential performance risks for parallel file systems have already been spotted. For ex-
ample, the performance drawbacks caused by mismatches between the workload char-
acteristics and the file system configuration are commented in [Abd-El-Malek 2005].

Some studies tried to determine experimentally the strong and weak points
of different parallel file systems and how they behave under different work-
loads [Cope 2005] [Sebepou 2008] [Hedges 2010]. Another evaluation, focused on
PVFSv2, aimed to isolate the different causes of performance losses and determine
their impact [Kunkel 2007].

Efforts are already being directed to mitigate some of the issues and limitations,
either by means of file system-specific modifications to improve certain metadata
operations [Devulapalli 2007], or by means of a middleware to be used by certain
classes of applications [Yu 2007].

The usual path of action consists in adding optimizations at some level so that
the file system is able to deal with the spotted issue in a reasonable way. Addition-
ally, COFS allow for a complementary approach: automatically reorganize and avoid
situations where specific patterns are harmful for the overall performance of the file
system.

The issues caused by multiple nodes writing into shared structures and, specifi-
cally, by large-scale application check-pointing, were one of the motivations for the
development of PLFS [Bent 2009]. PLFS uses an approach similar to COFS and use
an interposition layer to change the underlying file system layout in order to improve
the behaviour of parallel I/O; nevertheless, they focus on parallel writes to shared
files and data transfer bandwidth, rather than the metadata issues originated by the
parallel creation of files in shared directories, which are addressed by COFS.

A different approach to solve the metadata overhead of creating large collections of
files is represented by the SIONlib [Frings 2009]. This approach consists in mapping an
entire collection of files into a single physical file (or a small number of them), avoiding
contention at metadata servers. Contrary to COFS, SIONlib is not transparent, and
applications must explicitly call its API to make use of it; being designed for high-
performance applications, it assumes certain restrictions in the characteristics of the
files and the way they are used (e.g. their size must be known in advance, and all files
must be created from the same parallel application). COFS solution may introduce
more overhead, but it offers greater flexibility and does not have such limitations.

6.1.7 Cloud storage

Nowadays there are multiple commercial products providing cloud-based storage
with added value services, such as data synchronization across devices or collabo-

6.1. Related work 129

rative sharing. Many of these services are integrated in the form of one or more
selected directories in the existing file system (like Box [Box 2013], Dropbox [Dro 2013],
JustCloud [Jus 2013] or SugarSync [Sug 2013], to name just a few).

In all these products, the use of the cloud is activated by moving the files into
specific places (either drives or directories); on the contrary, our proposal enables the
cloud services support independently of a particular file’s location.

The combination of cloud storage and local storage also has similarities to the
compound digital entities handled by the SRB data grid [Wan 2003]. The SRB can
manage logical compound resources that combine different storage resources (such
as tapes and disk-based caches). One of the differences with our framework is that
we handle the composition at the name space level, while SRB does it at the storage
resource level, providing a low-level logical storage device.

6.1.8 Implementation techniques

Regarding technical aspects, the implementation of the minifilter-based interception
engine for the Windows prototype borrows ideas from the ‘isolation driver’ concept
from OSR [OSR 2010] [OSR 2011].

The Linux-based prototypes rely on FUSE [Szeredi 2005] to interface with the
underlying file system.

Chapter 7

Conclusion

Contents
7.1 Conclusion . 131
7.2 Open research areas . 132

7.1 Conclusion

In this thesis, we have presented a mechanism to decouple file system metadata
management from the underlying file system organization. This technique allows to
present multiple virtual views of the name space and the file system object attributes
that can be adapted to specific application needs without altering the underlying
storage configuration.

In the first contribution, we have introduced the design of a metadata virtualiza-
tion framework that makes possible such decoupling. This framework incorporates
mechanisms to overcome the limitations of traditional file systems, imposed by the
dependence of metadata on their internal structures. First, we have replaced coarse-
grained block-based metadata amalgamations by fine-grained database entries that
enable more agile metadata access and manipulation. Second, we have empowered
the static data structure representation of file system objects with active objects em-
bodied as light-weight processes, making them more suitable for parallel independent
management and scalability. Finally, we have proposed a technique to deal with large
directories by using a stateless partitioning method, fulfilling the standard directory
listing semantics without requiring locks being held for long times.

The second contribution consists in a method to improve file system performance
by using the metadata virtualization framework. The proposed implementation of the
framework is able to transparently modify application requests before they reach the
underlying file system. Unlike usual file system optimizations, which introduce spe-
cialized features to improve the response in very specific situations, our method allows
for a complementary approach: to automatically reorganize requests to avoid situa-
tions that are harmful for the overall performance of the file system. The framework
prototype has proved this approach feasible, showing that the theoretical overhead
can be largely compensated by its benefits. In particular, the prototype has been suc-
cessfully used to boost file system performance for shared parallel workloads. More
specifically, we are able to obtain a speed-up factor of 10 for parallel file creations on
IBM GPFS and we eliminate the parallel metadata performance degradation when
using 32 nodes or more; on Lustre, we have been able to mitigate the performance

132 Chapter 7. Conclusion

issues and reduce the parallel overhead of create and open operations, reaching a
speed-up factor of nearly 2 on 64 node configurations.

The third contribution of this thesis consists in a technique to improve the usability
of cloud-based storage systems in personal computing devices. We have analysed the
reasons behind the coarse-grained nature of cloud-based storage support and pre-
sented a proposal consisting in the use of virtual name spaces to provide fine-grained,
ubiquitous support for cloud-based storage. We have shown that our metadata vir-
tualization framework can be adapted to this end, and have presented the means to
integrate it with two widely used operating systems: Microsoft Windows and Linux.
The result is an environment that seamlessly integrates both local storage and cloud
storage, where the actual location of the data is determined by their attributes and
not its position in the directory tree.

7.2 Open research areas

The work in this thesis also revealed areas that may be worth of further exploration:

� The use of a metadata virtualization framework allows to reorganize files in the
underlying file system to avoid performance penalties. The high-performance
oriented prototype developed in this thesis is based on the study of the target
file system in order to identify its weak points and prevent applications from
hitting them. An alternative approach would consist in having several under-
lying file systems with different behaviours and an intelligent component of
the virtualization framework able to divert the files to the most appropriate file
system according to its use. In order to be effective, this could require the use
of machine learning techniques in order to determine the needs of particular
applications.

� The metadata virtualization framework used to make cloud-based files inde-
pendent from their location in the name space could also be used to enable
other file-specific features anywhere in the file system. Some specially inter-
esting features in modern environments are encryption, off-line availability of
remote files, and life-cycle management. Although these features are available
by means of specific external applications, a metadata virtualization framework
would offer a clean way to integrate them seamlessly under a conventional file
system interface, making them readily available to all applications.

� Traditionally, the file system object attributes have been grouped and stored
together, regardless of the meaning and pattern of use of their values. During
this work, we have observed that this grouping may generate consistency-related
issues and jeopardizes the effectiveness of performance-critical mechanisms such
as caches. It would be interesting to analyse how the different attributes are used,
which is their volatility, and when precise values are needed and when they can
be used just as hints. The result of such study would lead to more efficient ways

7.2. Open research areas 133

to group and store attribute values and should inspire the design of better file
system interfaces able to specify the information that is really needed.

� In this work we have used lightweight processes to represent file system objects
in the virtual name space. These active objects fulfilled the requirements to
implement the behaviour of traditional files. Nevertheless, the possibilities of
using active objects are much broader, and could be used to implement storage
objects with more functionalities, such as being able to generate replicas of
themselves and keep them updated, establish relationships with other objects
and react to their changes, or even be able to execute arbitrary self-processing
algorithms as, for example, extracting summary information from their contents.

Bibliography

[Abd-El-Malek 2005] Michael Abd-El-Malek, William V Courtright II, Chuck Cranor,
Gregory R Ganger, James Hendricks, Andrew J Klosterman, Michael P Mesnier,
Manish Prasad, Brandon Salmon, Raja R Sambasivanet al. Ursa Minor: Versatile
Cluster-based Storage. In FAST, volume 5, page 163, 2005. (Cited on pages 124,
126 and 128.)

[Adya 2002] Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie
Chaiken, John R Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer and
Roger P Wattenhofer. FARSITE: Federated, available, and reliable storage for an
incompletely trusted environment. ACM SIGOPS Operating Systems Review,
vol. 36, no. SI, pages 1–14, 2002. (Cited on page 12.)

[Aiken 2003] Stephen Aiken, Dirk Grunwald, Andrew R Pleszkun and Jesse Willeke.
A performance analysis of the iSCSI protocol. In Mass Storage Systems and
Technologies, 2003.(MSST 2003). Proceedings. 20th IEEE/11th NASA Goddard
Conference on, pages 123–134. IEEE, 2003. (Cited on page 11.)

[Ames 2005] Alexander Ames, Carlos Maltzahn, Nikhil Bobb, Ethan L Miller, Scott A
Brandt, Alisa Neeman, Adam Hiatt and Deepa Tuteja. Richer file system metadata
using links and attributes. In Mass Storage Systems and Technologies, 2005.
Proceedings. 22nd IEEE/13th NASA Goddard Conference on, pages 49–60.
IEEE, 2005. (Cited on pages 122 and 123.)

[Anderson 2000] Darrell C Anderson, Jeffery S Chase and Amin M Vahdat. Interposed
request routing for scalable network storage. In Proceedings of the 4th conference
on Symposium on Operating System Design & Implementation-Volume 4,
pages 18–18. USENIX Association, 2000. (Cited on page 127.)

[Artiaga 2010] E. Artiaga and T. Cortes. Using filesystem virtualization to avoid metadata
bottlenecks. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2010, pages 562–567, 2010. (Cited on page 4.)

[Artiaga 2011] Ernest Artiaga, Toni Cortes and Jonathan Martí. Virtual Shell
(PCT/EP2011/053410), 2011. (Cited on page 3.)

[Artiaga 2013a] Ernest Artiaga and Toni Cortes. Lessons Learned about Metadata Per-
formance in the PRACE File System Prototype. PRACE White Paper, May 2013.
(Cited on page 4.)

[Artiaga 2013b] Ernest Artiaga, Jonathan Martí and Toni Cortes. Better Cloud Stor-
age Usability Through Name Space Virtualization. In Proceedings of the 6th
IEEE/ACM International Conference on Utility and Cloud Computing, Dres-
den, Germany, December 2013. (Cited on page 5.)

136 Bibliography

[Baru 1998] Chaitanya Baru, Reagan Moore, Arcot Rajasekar and Michael Wan. The
SDSC storage resource broker. In Proceedings of the 1998 conference of the
Centre for Advanced Studies on Collaborative research, page 5. IBM Press,
1998. (Cited on page 127.)

[Bent 2009] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczyn-
ski, James Nunez, Milo Polte and Meghan Wingate. PLFS: a checkpoint filesystem
for parallel applications. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, page 21. ACM, 2009. (Cited on
pages 52 and 128.)

[Boggs 2006] Adam Boggs, Jason Cope, Sean McCreary, Michael Oberg, Henry M
Tufo, Theron Voran and Matthew Woitaszek. Improving cluster management
with scalable filesystems. In Proceedings of the 7th LCI International Conference
on Linux Clusters: The HPC Revolution, Norman, Oklahoma, 2006. (Cited on
page 123.)

[Bonwick 2003] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee and Mark Shel-
lenbaum. The zettabyte file system. In Proc. of the 2nd Usenix Conference on
File and Storage Technologies, 2003. (Cited on page 122.)

[Borthakur 2007] Dhruba Borthakur. The hadoop distributed file system: Architecture
and design. Web document: http://hadoop.apache.org/docs/r0.18.0/hdfs_
design.html, 2007. (Cited on page 14.)

[Boulton 2005] Clint Boulton. IBM Dominates Supercomputer List. Web document:
http://www.serverwatch.com/news/article.php/3515476, June 2005. (Cited
on page 123.)

[Bovet 2008] Daniel P Bovet and Marco Cesati. Understanding the linux kernel,
chapitre 12, The Virtual Filesystem. O’Reilly Media, 2008. (Cited on pages 35
and 113.)

[Box 2013] Box. Web page: http://www.box.com/, 2013. (Cited on pages 101 and 129.)

[Braam 2007] Peter J. Braam. Lustre file system: High-performance storage architecture
and scalable file system (white paper). Rapport technique, Sun Microsystems, Inc.,
2007. (Cited on pages 12, 14, 89, 123 and 124.)

[Brightwell 2002] Ron Brightwell, William Lawry, Arthur B MacCabe and Rolf Riesen.
Portals 3.0: Protocol Building Blocks for Low Overhead Communication. In ipdps,
volume 2, page 268, 2002. (Cited on page 123.)

[Cope 2005] Jason Cope, Michael Oberg, Henry M Tufo and Matthew Woitaszek.
Shared parallel filesystems in heterogeneous linux multi-cluster environments. In
Proceedings of the 6th LCI International Conference on Linux Clusters: The
HPC Revolution, 2005. (Cited on pages 122, 124 and 128.)

http://hadoop.apache.org/docs/r0.18.0/hdfs_design.html
http://hadoop.apache.org/docs/r0.18.0/hdfs_design.html
http://www.serverwatch.com/news/article.php/3515476
http://www.box.com/

Bibliography 137

[Dawidek 2008] Pawel Jakub Dawidek. POSIX file system test suite. Web page: http:
//www.tuxera.com/community/posix-test-suite/, August 2008. (Cited on
page 60.)

[DEI 2008] DEISA Infrastructure: global file system. Web document: http://www.deisa.
eu/services/infrastructure#globalfs, 2008. (Cited on page 124.)

[Deniel 2007] Philippe Deniel, Thomas Leibovici and Jacques-Charles Lafoucrière.
GANESHA, a multi-usage with large cache NFSv4 server. In Linux Symposium,
page 113, 2007. (Cited on page 122.)

[Devulapalli 2007] Ananth Devulapalli and PW Ohio. File creation strategies in a dis-
tributed metadata file system. In Parallel and Distributed Processing Sympo-
sium, 2007. IPDPS 2007. IEEE International, pages 1–10. IEEE, 2007. (Cited on
pages 51 and 128.)

[Douceur 2006] John R Douceur and Jon Howell. Distributed directory service in the
Farsite file system. In Proceedings of the 7th symposium on Operating systems
design and implementation, pages 321–334. USENIX Association, 2006. (Cited
on pages 14 and 83.)

[Dro 2013] Dropbox. Web page: http://www.dropbox.com, 2013. (Cited on pages 101
and 129.)

[Eisler 2007] Michael Eisler, Peter Corbett, Michael Kazar, Daniel S Nydick and
J Christopher Wagner. Data ONTAP GX: A Scalable Storage Cluster. In FAST,
volume 7, pages 23–23, 2007. (Cited on pages 125 and 127.)

[Erl 2013] Erlang/OTP. Web page: http://www.erlang.org, 2013. (Cited on pages 25,
61, 73 and 83.)

[Factor 2005] Michael Factor, Kalman Meth, Dalit Naor, Ohad Rodeh and Julian
Satran. Object storage: The future building block for storage systems. In Local
to Global Data Interoperability-Challenges and Technologies, 2005, pages 119–
123. IEEE, 2005. (Cited on page 12.)

[Frings 2009] Wolfgang Frings, Felix Wolf and Ventsislav Petkov. Scalable massively
parallel I/O to task-local files. In High Performance Computing Networking,
Storage and Analysis, Proceedings of the Conference on, pages 1–11. IEEE,
2009. (Cited on pages 52 and 128.)

[FSE 2012] File System Events Programming Guide. Web page: https:

//developer.apple.com/library/mac/documentation/Darwin/Conceptual/

FSEvents_ProgGuide/, December 2012. (Cited on page 102.)

[Fuhrmann 2006] Patrick Fuhrmann and Volker Gülzow. dCache, storage system for the
future. In Euro-Par 2006 Parallel Processing, pages 1106–1113. Springer, 2006.
(Cited on page 123.)

http://www.tuxera.com/community/posix-test-suite/
http://www.tuxera.com/community/posix-test-suite/
http://www.deisa.eu/services/infrastructure#globalfs
http://www.deisa.eu/services/infrastructure#globalfs
http://www.dropbox.com
http://www.erlang.org
https://developer.apple.com/library/mac/documentation/Darwin/Conceptual/FSEvents_ProgGuide/
https://developer.apple.com/library/mac/documentation/Darwin/Conceptual/FSEvents_ProgGuide/
https://developer.apple.com/library/mac/documentation/Darwin/Conceptual/FSEvents_ProgGuide/

138 Bibliography

[Ganger 1994] Gregory R Ganger and Yale N Patt. Metadata update performance in file
systems. In Proceedings of the 1st USENIX conference on Operating Systems
Design and Implementation, page 5. USENIX Association, 1994. (Cited on
page 122.)

[Ghemawat 2003] Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung. The
Google file system. In ACM SIGOPS Operating Systems Review, volume 37,
pages 29–43. ACM, 2003. (Cited on pages 13 and 14.)

[Hedges 2010] Richard Hedges, Keith Fitzgerald, Mark Gary and D Marc Stearman.
Comparison of leading parallel NAS file systems on commodity hardware. In Petas-
cale Data Storage Workshop, volume 2010, 2010. (Cited on pages 124 and 128.)

[Hildebrand 2005] Dean Hildebrand and Peter Honeyman. Exporting storage systems
in a scalable manner with pNFS. In Mass Storage Systems and Technologies,
2005. Proceedings. 22nd IEEE/13th NASA Goddard Conference on, pages
18–27. IEEE, 2005. (Cited on page 124.)

[Ior 2013] IOR HPC Benchmark. Web site: http://sourceforge.net/projects/

ior-sio/, 2013. (Cited on pages 78 and 83.)

[Joukov 2007] Nikolai Joukov, Arun M Krishnakumar, Chaitanya Patti, Abhishek Rai,
Sunil Satnur, Avishay Traeger and Erez Zadok. Raif: Redundant array of inde-
pendent filesystems. In Mass Storage Systems and Technologies, 2007. MSST
2007. 24th IEEE Conference on, pages 199–214. IEEE, 2007. (Cited on pages 126
and 127.)

[Jus 2013] JustCloud. Web page: http://www.justcloud.com, 2013. (Cited on
pages 101 and 129.)

[Klosterman 2002] Andrew J Klosterman and Gregory Ganger. Cuckoo: layered clus-
tering for NFS. Rapport technique, DTIC Document, 2002. (Cited on page 127.)

[Kunkel 2007] Julian M Kunkel and Thomas Ludwig. Performance evaluation of the
PVFS2 architecture. In Parallel, Distributed and Network-Based Processing,
2007. PDP’07. 15th EUROMICRO International Conference on, pages 509–516.
IEEE, 2007. (Cited on page 128.)

[Lab 2007] Personal communication with Jesús Labarta, Director of the Computer Science
Department at BSC, 2007. (Cited on page 52.)

[Lin 2004] Chao-Kuo Lin. DivergeFS file system for Plan 9. Web page: http://www.cs.
bell-labs.com/wiki/plan9/divergefs/, 2004. (Cited on page 126.)

[Love 2005] Robert Love. Kernel korner: Intro to inotify. Linux Journal, vol. 2005,
no. 139, page 8, 2005. (Cited on pages 102 and 115.)

[Mesnier 2003] Mike Mesnier, Gregory R Ganger and Erik Riedel. Object-based storage.
Communications Magazine, IEEE, vol. 41, no. 8, pages 84–90, 2003. (Cited on
page 11.)

http://sourceforge.net/projects/ior-sio/
http://sourceforge.net/projects/ior-sio/
http://www.justcloud.com
http://www.cs.bell-labs.com/wiki/plan9/divergefs/
http://www.cs.bell-labs.com/wiki/plan9/divergefs/

Bibliography 139

[Met 2004] Metarates. Web page: http://www.cisl.ucar.edu/css/software/

metarates/, 2004. (Cited on pages 53 and 78.)

[Mkrtchyan 2006] Tigran Mkrtchyan, Patrick Fuhrmann and Martin Gasthuber.
Chimera-a new, fast, extensible and Grid enabled namespace service. In Proceed-
ings of CHEP 2006, February 2006. (Cited on page 123.)

[Morrey III 2003] Charles B Morrey III and Dirk Grunwald. Peabody: The time trav-
elling disk. In Mass Storage Systems and Technologies, 2003.(MSST 2003).
Proceedings. 20th IEEE/11th NASA Goddard Conference on, pages 241–253.
IEEE, 2003. (Cited on pages 11 and 127.)

[MSDN 2012] MSDN. File System Minifilter Drivers. Web document: http:

//msdn.microsoft.com/en-us/library/windows/hardware/ff540402.aspx,
2012. (Cited on pages 25 and 110.)

[MSDN 2013] MSDN. Desktop App Development Documentation: Directory Management
Functions. Online document: http://msdn.microsoft.com/en-us/library/
windows/desktop/aa363946.aspx, 2013. (Cited on page 102.)

[Muller 1991] Keith Muller and Joseph Pasquale. A high performance multi-structured
file system design. In ACM SIGOPS Operating Systems Review, volume 25,
pages 56–67. ACM, 1991. (Cited on page 121.)

[Nagar 2006] Rajeev Nagar and Tony Mason. Windows NT file system internals (OSR
classic reprints). Osr Press, 2006. (Cited on page 110.)

[Narayanan 2008] Dushyanth Narayanan, Austin Donnelly and Antony Rowstron.
Write off-loading: Practical power management for enterprise storage. ACM Trans-
actions on Storage (TOS), vol. 4, no. 3, page 10, 2008. (Cited on page 127.)

[Nelson 2006] Jay Nelson. Concurrent caching. In Proceedings of the 2006 ACM
SIGPLAN workshop on Erlang, pages 32–38. ACM, 2006. (Cited on pages 73
and 83.)

[Oliveira 2007] Fabio Oliveira, Gorka Guardiola, Jay A Patel and Eric V Hensber-
gen. Blutopia: Stackable storage for cluster management. In Cluster Computing,
2007 IEEE International Conference on, pages 293–302. IEEE, 2007. (Cited on
page 126.)

[Olson 1993] Michael A Olson. The Design and Implementation of the Inversion File
System. In USENIX Winter, pages 205–218, 1993. (Cited on page 122.)

[OSR 2010] Getting Away From It All: The Isolation Driver (Part I), August 2010. (Cited
on page 129.)

[OSR 2011] Getting Away From It All: The Isolation Driver (Part II), January 2011. (Cited
on page 129.)

http://www.cisl.ucar.edu/css/software/metarates/
http://www.cisl.ucar.edu/css/software/metarates/
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540402.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540402.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363946.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363946.aspx

140 Bibliography

[Padioleau 2003] Yoann Padioleau and Olivier Ridoux. A logic file system. In Proceed-
ings of the USENIX 2003 Annual Technical Conference, pages 99–112, June
2003. (Cited on page 123.)

[Patil 2007] Swapnil V Patil, Garth A Gibson, Sam Lang and Milo Polte. Giga+: scalable
directories for shared file systems. In Proceedings of the 2nd international work-
shop on Petascale data storage: held in conjunction with Supercomputing’07,
pages 26–29. ACM, 2007. (Cited on page 83.)

[Pawlowski 1994] Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane
Lebel and Dave Hitz. NFS Version 3: Design and Implementation. In USENIX
Summer, pages 137–152. Boston, MA, 1994. (Cited on page 12.)

[Pawlowski 2000] Brian Pawlowski, Spencer Shepler, Carl Beame, Brent Callaghan,
Michael Eisler, David Noveck, David Robinson and Robert Thurlow. The NFS
version 4 protocol. In Proceedings of the 2nd International System Adminis-
tration and Networking Conference (SANE 2000), 2000. (Cited on pages 12
and 75.)

[Pendry 1995] Jan-Simon Pendry and Marshall Kirk McKusick. Union mounts in 4.4
BSD-lite. In Proceedings of the 1995 USENIX Technical Conference (TCON95),
1995. (Cited on pages 15, 125 and 127.)

[Piernas 2002] Juan Piernas, Toni Cortes and José M García. DualFS: a new journaling
file system without meta-data duplication. In Proceedings of the 16th interna-
tional conference on Supercomputing, pages 137–146. ACM, 2002. (Cited on
page 121.)

[Pike 1990] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickeyet al. Plan 9 from
bell labs. In Proceedings of the summer 1990 UKUUG Conference, pages 1–9,
1990. (Cited on page 15.)

[Pike 1992] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey and Phil Win-
terbottom. The use of name spaces in Plan 9. In Proceedings of the 5th workshop
on ACM SIGOPS European workshop: Models and paradigms for distributed
systems structuring, pages 1–5. ACM, 1992. (Cited on pages 15 and 125.)

[PVF 2003] Parallel Virtual File System Version 2. Web document: http://

www.pvfs.org/cvs/pvfs-2-8-branch-docs/doc//pvfs2-guide.pdf, Septem-
ber 2003. (Cited on pages 13, 14, 123 and 124.)

[Rodeh 2003] Ohad Rodeh and Avi Teperman. zFS-a scalable distributed file system
using object disks. In Mass Storage Systems and Technologies, 2003.(MSST
2003). Proceedings. 20th IEEE/11th NASA Goddard Conference on, pages
207–218. IEEE, 2003. (Cited on page 12.)

[Rosenblum 1992] Mendel Rosenblum and John K Ousterhout. The design and im-
plementation of a log-structured file system. ACM Transactions on Computer
Systems (TOCS), vol. 10, no. 1, pages 26–52, 1992. (Cited on page 121.)

http://www.pvfs.org/cvs/pvfs-2-8-branch-docs/doc//pvfs2-guide.pdf
http://www.pvfs.org/cvs/pvfs-2-8-branch-docs/doc//pvfs2-guide.pdf

Bibliography 141

[Ross 2000] Robert B Ross, Rajeev Thakuret al. PVFS: A parallel file system for Linux
clusters. In in Proceedings of the 4th Annual Linux Showcase and Conference,
pages 391–430, 2000. (Cited on pages 123 and 124.)

[Russinovich 2009] Mark E Russinovich, David A Solomon and Alex Ionescu. I/O
system, chapitre 7. O’Reilly, 2009. (Cited on page 109.)

[Schmuck 2002] Frank B Schmuck and Roger L Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In FAST, volume 2, page 19, 2002. (Cited
on pages 14, 52, 53, 55, 123 and 124.)

[Sebepou 2008] Zoe Sebepou, Kostas Magoutis, Manolis Marazakis and Angelos Bi-
las. A Comparative Experimental Study of Parallel File Systems for Large-Scale
Data Processing. LASCO, vol. 8, pages 1–10, 2008. (Cited on pages 74, 75, 125
and 128.)

[Stein 2007] Lex Stein, David Holland, Margo Seltzer and Zheng Zhang. Can a file
system virtualize processors? In Proceedings of the 1st ACM EuroSys Workshop
on System-level Virtualization, 2007. (Cited on page 123.)

[Sug 2013] SugarSync. Web page: http://www.sugarsync.com, 2013. (Cited on
pages 101 and 129.)

[Szeredi 2005] Miklos Szeredi. FUSE: Filesystem in USErspace. Web page: http:

//www.fuse.org, 2005. (Cited on pages 25, 61, 64, 77, 113 and 129.)

[Tang 2003] Rongfeng Tang, Dan Meng and Sining Wu. Optimized implementation of
extendible hashing to support large file system directory. In Cluster Computing,
2003. Proceedings. 2003 IEEE International Conference on, pages 452–455.
IEEE, 2003. (Cited on page 122.)

[Thain 2005] Douglas Thain, Sander Klous, Justin Wozniak, Paul Brenner, Aaron
Striegel and Jesus Izaguirre. Separating abstractions from resources in a tactical
storage system. In Proceedings of the 2005 ACM/IEEE conference on Super-
computing, page 55. IEEE Computer Society, 2005. (Cited on page 13.)

[Wan 2003] Michael Wan, Arcot Rajasekar, Reagan Moore and Phil Andrews. A sim-
ple mass storage system for the SRB data grid. In Mass Storage Systems and
Technologies, 2003.(MSST 2003). Proceedings. 20th IEEE/11th NASA Goddard
Conference on, pages 20–25. IEEE, 2003. (Cited on pages 127 and 129.)

[Wang 1993] Randolph Y Wang and Thomas E Anderson. xFS: A wide area mass storage
file system. In Workstation Operating Systems, 1993. Proceedings., Fourth
Workshop on, pages 71–78. IEEE, 1993. (Cited on page 14.)

[Wang 2004] Feng Wang, Scott A Brandt, Ethan L Miller and Darrell DE Long. OBFS:
A File System for Object-Based Storage Devices. In MSST, volume 4, pages 283–300.
Citeseer, 2004. (Cited on page 122.)

http://www.sugarsync.com
http://www.fuse.org
http://www.fuse.org

142 Bibliography

[Warfield 2005] Andrew Warfield, Russ Ross, Keir Fraser, Christian Limpach and
Steven Hand. Parallax: Managing Storage for a Million Machines. In HotOS,
2005. (Cited on pages 126 and 127.)

[Weil 2004] Sage A Weil, Kristal T Pollack, Scott A Brandt and Ethan L Miller. Dynamic
metadata management for petabyte-scale file systems. In Proceedings of the 2004
ACM/IEEE conference on Supercomputing, page 4. IEEE Computer Society,
2004. (Cited on page 83.)

[Weil 2006] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long and Carlos
Maltzahn. Ceph: A scalable, high-performance distributed file system. In Proceed-
ings of the 7th symposium on Operating systems design and implementation,
pages 307–320. USENIX Association, 2006. (Cited on pages 12 and 124.)

[Welch 2008] Brent Welch, Marc Unangst, Zainul Abbasi, Garth A Gibson, Brian
Mueller, Jason Small, Jim Zelenka and Bin Zhou. Scalable Performance of the
Panasas Parallel File System. In FAST, volume 8, pages 1–17, 2008. (Cited on
page 125.)

[Wright 2006] Charles P Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan, David P
Quigley, Erez Zadok and Mohammad Nayyer Zubair. Versatility and unix se-
mantics in namespace unification. ACM Transactions on Storage (TOS), vol. 2,
no. 1, pages 74–105, 2006. (Cited on pages 15, 125 and 127.)

[Yamamoto 2000] Tetsuo Yamamoto, Makoto Matsushita and Katsuro Inoue. Accu-
mulative versioning file system Moraine and its application to metrics environment
MAME. ACM SIGSOFT Software Engineering Notes, vol. 25, no. 6, pages
80–87, 2000. (Cited on page 126.)

[Yu 2007] Weikuan Yu, Jeffrey Vetter, R Shane Canon and Song Jiang. Exploiting lustre
file joining for effective collective io. In Cluster Computing and the Grid, 2007.
CCGRID 2007. Seventh IEEE International Symposium on, pages 267–274.
IEEE, 2007. (Cited on pages 51 and 128.)

[Zadok 2006] Erez Zadok, Rakesh Iyer, Nikolai Joukov, Gopalan Sivathanu and
Charles P Wright. On incremental file system development. ACM Transactions on
Storage (TOS), vol. 2, no. 2, pages 161–196, 2006. (Cited on pages 16, 113, 125
and 127.)

[Zhang 2007] Zhihui Zhang and Kanad Ghose. hFS: A hybrid file system prototype
for improving small file and metadata performance. In ACM SIGOPS Operating
Systems Review, volume 41, pages 175–187. ACM, 2007. (Cited on page 121.)

Index

A

access 66
access pattern 4, 25, 51, 52, 91, 121
access permission 14, 24, 28, 31, 38,
40, 46, 50, 62, 65, 66, 68, 71, 105, 107,
see permission
API 124, 128
Apple 21, 65, 102

Mac OS X 21, 65, 102
application 1–4, 8, 9, 11, 14–16, 18–
20, 22, 23, 26, 28–32, 35, 36, 38–40, 48,
50–53, 56, 60–65, 67, 74, 76–78, 87, 88,
96, 101–106, 109, 110, 112–115, 119, 120,
123, 126, 128, 131, 132
attribute 2, 3, 8–10, 12, 14, 22, 26, 28,
30, 31, 33, 34, 37–41, 46, 63, 65, 66, 68–
70, 72–74, 103, 105, 107, 108, 113, 122,
123, 125, 131, 132

extended attribute 9, 31, 60, 66, 103
virtual attribute 16, 23, 28–30, 33,
34, 36, 105

Attributes Manager 30, 31, 36, 41, 63,
105

B

backup 2, 4, 13, 21, 25, 101, 108
bandwidth 12, 21, 46, 53, 56, 80, 83–88,
93, 128
block 7–9, 11, 12, 23, 28, 36, 37, 43, 50,
62, 84, 122, 127, 131
Blutopia 126
Box 101, 129
BSC xvii, xviii, 19, 51, 52, 77, 123, 124

C

cache 10, 14, 25, 35, 37–40, 45, 55, 63,
66, 67, 69, 71–77, 79, 85, 86, 110, 112,
113, 115, 121, 125, 127, 129

Cache Manager 110, 112
callback xv, 65–68, 110, 113, 115
CD 126
CEA xvii, 51, 77, 90, 96
centralized 13, 14, 69, 99, 125, 126
Ceph 12, 124
Chimera 123
CIFS 2, 20, 62
client 11–14, 38, 39, 43–46, 53, 55–58,
62, 63, 68, 73–77, 86, 87, 89, 91, 92, 95,
97, 98, 101, 123–126
close 53, 55, 58, 66, 79, 82, 84, 105
cloud 1, 4, 5, 36, 101–103, 106–108, 118,
120, 129, 132

cloud service 2, 4, 18, 19, 102–104,
108, 114–116, 120, 129
cloud storage 4, 5, 101–104, 107, 110,
116, 118–120, 128, 129, 132

cluster 1, 11, 49–53, 56, 57, 62, 67, 77,
78, 83, 87, 88, 90, 96, 99, 123, 124, 126
COFS xiii–xv, 50, 51, 56, 59–65, 67, 69,
72, 74–90, 95–99, 121, 124–128
consistency 3, 4, 10–14, 22, 25, 33, 37,
38, 40, 42, 48, 50, 52, 53, 55, 57, 60, 64,
84, 87, 89, 92, 94, 101, 105, 106, 110, 112,
113, 122, 123, 125
cookie 61
create xiii, xiv, 47, 51, 53, 55–59, 66, 79,
82, 84, 87, 88, 90–99, 105, 111, 115, 132
Cuckoo 127

D

DAS 11
Data Manager 29, 31, 33, 34, 46, 47,
61–63, 106, 107, 111, 113, 115
data server 2, 12, 13, 23, 62
database 24, 36, 37, 40–43, 45, 52, 69,
72–74, 78, 82, 107, 108, 122, 123, 131
dCache 123

144 Index

DEISA 124
device

block device 47, 66
character device 47, 66

directory xiii, 2–4, 7, 8, 10, 11, 14, 15,
17–22, 24, 30, 34, 36, 38, 41–45, 47, 50,
52–63, 66–73, 76–83, 88, 89, 91, 92, 94–
99, 101–105, 107, 108, 110, 112–116, 118,
119, 122–127, 129, 131

anchor directory 32, 103, 104, 107,
108
cloudified directory 104–107, 115
parent directory 39, 40, 67, 70–72,
74, 107, 108
physical directory 32
shared directory xiii, xiv, 19, 51–53,
58, 59, 78–80, 82, 83, 88–99, 128
subdirectory 7, 39, 102
virtual directory 32, 118, 119

directory creation 68
directory hierarchy 21, 32, 62, 96, 102,
103, 105, 107, 120, 127
directory listing 30, 42, 45, 76, 105,
112, 115, 131
directory tree 1, 2, 8, 11, 15, 17, 21, 22,
27, 30, 34, 42, 50, 65, 69, 82, 103, 125–
127, 132
distributed 1, 14, 24, 33, 36–39, 43, 45,
46, 52, 53, 56, 63, 64, 69, 73, 83, 89, 93,
99, 123–125, 127
distributed environment xiii, 37, 42,
43, 45, 46, 62–64, 72, 82, 126
distributed system 1, 10, 11, 13, 41,
43, 46, 47, 49, 123
Diverge FS 126
Dropbox 101, 129
DualFS 121

E

entry xiii, 8, 10, 14, 15, 24, 27, 32, 33,
35, 36, 38, 40, 42–47, 54–58, 62, 63, 66–
72, 74, 76–79, 81, 82, 88, 92, 98, 104, 105,
107–109, 111–113, 115, 122, 131

virtual entry 32, 104, 105, 107, 111

EPO 3
Erlang 25, 37, 40, 41, 61, 69, 72, 73, 75,
83
Ethernet 53, 87, 88, 90
Ext3 61, 78
Ext4 108

F

failover 13, 89, 123
failure 14, 47, 48, 112
false-sharing 15, 68, 79, 81, 122
Farsite 12, 14
FAT 10, 28
FibreChannel 11
fifo 66
file xiii, xiv, 1, 2, 4, 7–12, 14–28, 30–34,
36–42, 46–63, 65–72, 74, 75, 77–79, 81–
86, 88, 89, 91, 92, 94–98, 101–113, 117–
129, 132, 133

physical file 32, 104, 106–108, 111,
118, 128
shared file 78, 84, 86, 128
underlying file 31, 33, 34, 46, 47, 65,
67, 73, 111
virtual file 28, 32, 103, 104, 106–108,
111, 112, 118, 119

file creation 23, 40, 46, 59, 61, 65, 77,
82, 86, 89, 92, 99
file system xiii, 1–5, 7–43, 45–56, 59–
78, 82, 83, 86–92, 96–99, 101–116, 118–
129, 131–133

distributed file system 1, 12–14, 18,
20, 21, 33, 37, 41, 62, 64, 124
layered file system 15, 16
parallel file system 3, 4, 49–51, 58,
69, 78, 89, 99, 122, 123, 128
stackable file system 125–127
underlying file system 1–4, 23, 24,
26, 28–36, 39, 40, 46–48, 50, 51, 60–
63, 65, 67–69, 72, 77, 81, 83, 96, 97, 99,
103, 105, 106, 110, 112–115, 125–129,
131, 132

file system organization xiv, 8, 9, 17,
19, 23, 26, 32, 51, 60, 116, 120, 122

Index 145

Filter Manager 25, 110
flush 66
folder action 21
forget 35, 66
forward 23, 29, 31, 40, 41, 44, 62, 64,
65, 68, 71, 74, 77, 96, 106, 110, 112, 114,
125, 127
FSEvents 102
fsync 66
fsyncdir 66
FUSE xv, 25, 38, 61, 62, 64–66, 68, 75–
78, 83–85, 87, 113–115, 129

G

GANESHA 122
getattr 66
getlk 66
getxattr 66
Google File System 13, 14
grid 1, 11, 129

H

Hadoop 14
hash 36, 43–45, 67, 122
hFS 121
high-performance 1, 4, 5, 19, 25, 49,
90, 123, 124, 128, 132
host 11–14, 78
HPC 36, 39, 41, 60, 72, 99

I

i-node 10, 14, 36, 37, 50, 66, 69, 71, 75,
79, 82, 122

generation number 35
i-node number 34–37, 68, 74, 113

I/O xiv, 11, 12, 76, 78, 83, 87, 90, 109,
112, 123, 128
I/O Manager 109, 112
I/O stack 109–112
IBM xiii, xiv, 4, 14, 51–59, 61–63, 67,
77–91, 95–99, 123–125, 131

GPFS xiii, xiv, 4, 14, 51–59, 61–63,
67, 77–91, 95–99, 123–125, 131

identifier 9, 28, 30, 31, 34–36, 46, 47,
68, 70–74, 107, 108, 115, 126
InfiniBand 90
inotify 102, 115
integration 5, 16, 18, 21–25, 29, 31, 51,
63, 97, 99, 103, 124, 127–129
intent 75, 83
interception 25, 48, 63, 64, 76, 106–108,
110, 113, 114, 129
Interception Engine 29, 63–65, 68, 69,
105, 108, 113
interface 4, 8, 11–16, 23, 26, 28, 29,
31, 36, 38, 42, 48, 53, 60–65, 69, 75, 78,
89, 102, 103, 105–107, 109, 111, 113, 115,
123, 124, 126, 127, 129, 132, 133
INTI xiv, 51, 77, 90–98
inum 35, 36, 46, 47, 72
invalidation 14, 35, 37–39, 71, 75, 76,
79, 115
IOR 78, 83, 84, 86, 87
IP 87, 88
IRP 109–112, 115
IRP_MJ_CREATE 110–112, 115
IRP_MN_QUERY_DIRECTORY
112, 115
iSCSI 11, 127
iSCSI Initiator 11
iSCSI Target 11

J

junction 125
JustCloud 101, 129

K

kernel 25, 35, 38, 48, 61, 62, 65, 66, 68,
75–77, 83, 106–108, 110, 112–115, 128

L

layer 2, 4, 15, 22, 23, 26, 29, 41, 48, 50,
59, 60, 63, 79, 87, 97–99, 108, 109, 114,
115, 125–128
lease 14, 38, 39, 75, 76
LFS 121
link 21, 22, 117

146 Index

hard link 24, 31, 62, 66, 68, 71, 72,
104, 105
symbolic link 21, 22, 24, 31, 32, 34,
36, 47, 63, 66, 69–73, 75, 117

link 66
Linking File System 123
Linux xiv, 5, 25, 35, 61, 64, 65, 102, 108,
109, 113–115, 120, 127, 129, 132
listxattr 66
LLNL 78
location 2, 4, 7–11, 17–23, 26, 28, 29,
31, 34, 40, 50, 56, 63, 68, 73, 75, 77, 83,
86, 96, 101, 124, 125, 129, 132
lock 11, 14, 37, 39, 42, 43, 45, 52, 53,
56, 59, 66, 73, 75, 76, 89, 122–125, 131
locking 11, 14, 37, 39, 40, 43, 45, 52, 53,
56, 59, 73, 75, 76, 89, 122–125, see lock
Logic File System 123
lookup 66, 68, 115
Lustre xiv, 4, 12, 14, 51, 61, 75, 77, 89–
99, 123–125, 131

M

MareNostrum xiii, xiv, 4, 19, 51–53,
57–59, 77, 82, 87–89, 123
MDT 90
Mellanox 90
Memory Manager 110
Metadata Driver 63–65, 68, 69, 74–76,
87

Mnesia Metadata Module 69, 72,
74–76

Metadata Manager 29, 31, 33, 34, 38,
40, 41, 46, 47, 62, 69, 105, 107, 111–113
metadata server 13, 53, 64, 82, 88, 89,
91, 96, 123–125, 128
Metadata Service 63, 64, 69, 74, 75, 83,
85, 87, 96, 99, 124, 125

Mnesia Metadata Server xv, 69–76,
78, 82

metadata virtualization framework
xiv, 3, 4, 18, 22–24, 32, 33, 36, 38, 46,
48, 116–120, 131, 132

Metadata Virtualization Layer xiii,
xiv, 29–42, 45–48, 50–52, 56, 57, 59, 60,
63, 67, 77, 78, 82–84, 88, 89, 96, 98, 99,
102, 103, 105, 106, 108, 110–115, 120,
121
Metarates 53, 54, 56, 57, 78, 87, 90
MFS 121
MFT 10, 14
Microsoft xiv, 5, 10, 14, 20, 23, 25, 38,
41, 61, 62, 65, 108, 109, 111, 113, 115,
132, 149

NTFS 10, 14, 23, 38, 62, 108
Windows xiv, 5, 20, 23, 25, 41, 61,
65, 108–113, 115, 118–120, 129, 132

minifilter 110, 111, 129
mkdir 66, 115
mknod 47, 66
Mnesia 37, 41, 69, 72–74, 78, 83
mount point 15, 34, 50, 119, 125

binding mount 22
move 107, see rename
MPI xvii
MPI-IO 1, 51, 53, 123, 124
Myrinet 87, 88

N

name space xiv, 2–4, 7, 8, 10, 13, 14,
19–24, 26–28, 30, 33, 34, 36, 40, 46, 47,
49, 50, 52, 59, 60, 62–64, 68, 69, 74, 77,
83, 89, 96, 98, 99, 102–105, 107, 108, 110,
112, 113, 118, 119, 122–127, 129, 131,
132

physical name space 32, 103–105,
110, 112, 114, 115
virtual name space 5, 16, 23, 29,
32, 69, 78, 103–108, 110–112, 114, 115,
119, 120, 127, 132, 133

Name Space Manager 30, 34, 36, 41,
42, 45–47, 63, 105, 107
named pipe 47, 60
NAS 12
Native File System Support 106, 107
NCAR 53

Index 147

network 11–14, 21, 25, 35, 39, 46, 53,
55–57, 62, 75, 77, 79, 80, 84, 87, 88, 90,
93, 94, 123, 127
NFS 12, 20, 126
NFSv4 75
Nord xiii, xiv, 51–58, 77–82, 85–87

O

OBFS 122
object 2, 3, 8–10, 14, 22, 23, 26–28, 30,
32–42, 46, 47, 50, 62, 65, 67–74, 83, 105,
107–110, 112, 113, 124–126, 131–133

active object 39, 41, 73, 131, 133
physical object 106, 114
underlying object 32–34, 36, 46, 47
virtual object 32–35, 39–41, 46, 47,
105, 107, 108, 110–112, 119

offset 9, 28, 34, 61
ONTAP GX 125, 127
open xiv, 47, 51, 53, 55, 57, 58, 66, 67,
79, 82, 84, 85, 87, 94–99, 105, 132
open file 47, 65, 66, 94, 109–111
open file handle 66, 68, 111
openat 114
opendir 66, 76, 115
operation xiii, xiv, 14, 15, 22, 23, 25,
27, 30, 31, 38, 40–43, 45–48, 52–55, 57,
59–65, 68, 69, 71, 73–83, 85, 86, 89, 91–
99, 102, 105, 107, 109–115, 117, 122, 125,
128

post-operation 110
pre-operation 110

OS 127
OSD 12, 13, 89, 122, 123
OSR 129
OTP 25, 37, 40, 41, 61, 69

P

Panasas 125
Parallax 126, 127
parallel xiii, xiv, 1, 10, 19, 41, 51–53,
55, 57–59, 64, 77, 78, 82, 83, 87–89, 91–
99, 122–125, 128, 131

parallel environment 19, 82, 89
parallelism 14, 58, 89, 91–93
path 15, 23, 28, 30–32, 34, 36, 40, 46,
47, 62, 67, 68, 70, 72, 74, 75, 104, 105,
107–111, 113–115, 117, 119, 122, 128

path resolution 105, 109, 114, 115
Peabody 11, 127
performance xiii, xiv, 1–5, 7, 8, 11, 14,
15, 19, 21, 22, 33, 37, 38, 41, 42, 48, 50–
63, 67, 68, 73, 76–79, 82, 84–99, 121–124,
128, 131, 132
permission 14, 24, 28, 31, 33, 38, 40,
46, 47, 50, 62, 65, 66, 68, 70, 71, 73, 75,
79, 105, 107, 108
placement 23, 24, 61, 62, 67
Placement Driver 59, 63–65, 67–71

Null Placement Module 56, 67, 81,
82
Sparse Placement Module 59, 67,
68, 78, 81

Plan 9 15
PLFS 128
pNFS 124
POSIX 22, 23, 33–35, 37, 38, 42, 43, 45,
47, 53, 60, 61, 65–67, 71, 74, 76, 78, 89,
104, 108, 114, 122–124
PRACE-2IP 4, 51, 77, 89, 90
PVFS 124
PVFSv2 13, 14, 51, 74, 123–125, 128

Q

QDR 90

R

RAIF 126, 127
RAM 24, 52, 53, 78, 82, 126
random 67, 68, 78, 81, 84, 85
read 7, 40, 50, 53, 61, 73, 74, 76, 77, 84,
85, 113, 123, 124
read xiii, 29, 46, 65, 66, 78, 83, 85, 86,
105, 112
read-only 15, 22, 28, 105, 126
read-write 15, 105, 126

148 Index

readdir 66, 76, 115
ReadDirectoryChangesW 102
readlink 66
recovery 14, 121, 122, 125
redirection 19, 29, 31, 67, 115, 127, see
forward
release 66, 67
releasedir 66, 76
remove 27, 39–43, 45, 47, 61, 65, 66, 68,
71, 74, 76, 105, 109
removexattr 66
rename 68, 107, 108
rename 66, 105, 107
replication 12, 15, 21, 31, 34, 89, 119,
124, 125, 127, 133
request 4, 8, 15, 23, 26, 29–31, 33, 35,
38–42, 44–48, 52, 56, 57, 62–65, 67–69,
74–76, 78, 88, 92, 96, 98, 105–115, 131
rmdir 66

S

SAN 11–13, 53, 123
scalability xiv, 11–13, 41, 43, 45, 69,
82, 83, 89, 90, 92, 96, 97, 99, 123, 131
SDSC 127
security 11–13, 31, 61, 107, 110
seekdir 42
semantics 3, 9, 13, 15, 23, 27, 33, 35,
41–43, 45–48, 60, 61, 71, 105, 107, 108,
112, 115, 117, 124, 131
sequential 58, 78, 84–86, 95
server 12–14, 21, 52, 53, 55–57, 59, 62,
69, 77, 86, 87, 93, 99, 108, 123–127

global server 46
remote server 21, 25, 43–45, 57

setattr 66
setlk 66
setxattr 66
share 2, 62
shared xiii, 2, 11, 12, 18, 19, 24, 41, 50,
56, 58, 59, 76, 78, 82, 84, 88, 90, 93, 94,
98, 101, 103, 105, 106, 108, 125, 128, 131
shortcut 21, 117, see symbolic link
SIONlib 128

size 1, 8, 9, 12, 24, 33–36, 38, 43, 49, 55,
62, 65, 68, 70, 71, 74, 78, 81–87, 91, 94,
98, 124, 128
Slice 127
smart folder 22
SMB 2, 20, 62
socket 47, 66
soft update 122
SRB 127, 129
SSL 61
SSU 90
stat xiii, xiv, 33, 34, 38, 53, 55–58, 79–
82, 87, 91–95, 97, 99
stateless xiii, 3, 44, 76, 131
statfs 66
storage device 8–13, 18, 23, 26, 28, 29,
31, 53, 122, 123, 129

block-based storage device 9, 11,
12, 14, 28, 123
object storage device 12, 122, 123

storage server 49, 89, 123, 124
storage system 1, 2, 7–10, 12, 15, 16,
18, 19, 25, 26, 28, 29, 31, 48–50, 65, 68,
69, 71, 90, 105, 121, 123, 127
SugarSync 101, 129
supercomputer 4, 52, 58, 77, 82, 87, 89,
123
symlink 66
synchronization 2, 4, 14, 21, 24, 34,
38–41, 52, 56, 57, 59, 67, 69, 72, 73, 76–
79, 81, 88, 94, 99, 101–108, 119, 122, 128

T

telldir 42, 45
time xiii, 4, 7, 13, 20, 24, 25, 28, 31–35,
37–39, 41–43, 45, 50, 52–58, 62, 65, 72,
74–77, 79–91, 94, 102, 131

access time 14, 24, 31, 62, 70, 79, 82,
94, 121
change time 70
modification time 9, 33, 34, 38, 57,
68, 70, 71

transaction 36, 37, 40, 42, 43, 53, 72, 74
Trove 123

Index 149

TSS 13

U

UCAR 53
ULS 108–115, 118
union file system 15, 22, 125–127
Unix 10, 13, 15, 20, 47, 61, 69
unlink 66, 105, 115
Ursa Minor 124, 126
usability 1, 2, 5, 8, 23, 101, 116, 132
USB 20
user-level 108, 111, 113
user-space 48, 62, 65, 75, 76, 107, 108,
113, 115, 127
utime xiii, xiv, 33, 53, 55, 57, 58, 79, 80,
82, 87–89, 91–95, 97, 99

V

VFS 35, 65, 109, 113–115, 127
view 2–4, 7, 9, 15–30, 32–35, 39, 40, 42,
46, 48–52, 59–63, 67, 68, 71, 72, 74, 76,
84, 88, 96, 98, 99, 102–104, 110, 118–120,
123, 125, 127, 131

W

white-out 15
Windows xiv, 109, 110, 112, 113, 115,
118–120, 129, see Microsoft Windows
working set 24, 25, 36, 41, 59, 73
workload 3, 22, 36, 51–53, 56, 77, 78,
88, 128, 131
write xiv, 29, 46, 65, 66, 78, 83, 86, 105,
112
write 7, 11, 15, 31, 52, 53, 61, 73, 77,
84–87, 113, 115, 121, 123, 124, 126, 128

X

xFS 14
Xyratex 90

Z

Zettabyte File System 122
zFS 12

	Abstract
	Funding and Infrastructure
	Acknowledgements
	Agraïments
	Table of Contents
	List of Figures
	List of Tables
	Terms and Abbreviations
	Units
	Introduction
	Motivation
	Contributions
	Metadata virtualization framework
	Improved metadata service for large-scale file systems
	Transparent ubiquity layer for cloud storage

	Organization of the document

	Technological Background
	Introduction
	Classical file system structure
	Distributed storage
	Metadata issues
	Layered architectures

	The Approach: Metadata Virtualization
	Introduction
	The case for multiple views
	The need of seamless system integration
	Previous approaches

	The overall concept
	Design principles
	Enabling technologies

	Architecture
	Extending a traditional file system
	Introducing a metadata file system layer

	Terminology
	Practical applicability aspects
	Dealing with underlying file system information
	System-specific identifiers
	Using databases for metadata storage
	Metadata volatility
	Metadata caching
	Metadata represented as active objects
	Stateless large directory handling
	Coordinating distributed file creation
	Kernel vs. user-space implementations

	Summary

	Virtualized Metadata Management for Large-Scale File Systems
	Introduction
	Motivation
	Approach

	Case study
	Execution environments
	Base system behaviour at Nord
	Base system behaviour at MareNostrum
	Lessons learned

	Prototype implementation
	Design aspects
	Architecture
	Implementation details
	Potential technology limitations

	Evaluation
	Metadata performance on GPFS at Nord
	Metadata performance on GPFS at MareNostrum
	Metadata performance on Lustre at INTI cluster
	Summary

	Conclusion

	Name Space Virtualization to Improve Usability
	Introduction
	Approach
	Decoupling virtual name space from physical layout
	Structure of the virtualization layer
	Design decisions

	Implementation aspects
	Common implementation aspects
	Windows-specific implementation details
	Linux-specific implementation details

	Outcome
	Extensions
	Conclusion

	Related Work
	Related work
	Metadata management
	Parallel file systems
	Metadata consistency
	File organization versus low-level file system layout
	Virtualization
	Issues on large-scale file systems
	Cloud storage
	Implementation techniques

	Conclusion
	Conclusion
	Open research areas

	Bibliography
	Index

