

Quality-of-service provisioning for dynamic heterogeneous
wireless sensor networks
Citation for published version (APA):
Steine, M. (2013). Quality-of-service provisioning for dynamic heterogeneous wireless sensor networks. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR760026

DOI:
10.6100/IR760026

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR760026
https://doi.org/10.6100/IR760026
https://research.tue.nl/en/publications/5c5aa9ef-a825-430f-9bbb-b243a5789118

Quality-of-Service Provisioning for
Dynamic Heterogeneous

Wireless Sensor Networks

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven, op gezag van de

rector magnificus prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op donderdag 31 oktober 2013 om 16.00 uur

door

Marcel Steine

geboren te Rotterdam

Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. T. Basten

Copromotor:
dr.ir. M.C.W. Geilen

Quality-of-Service Provisioning for Dynamic Heterogeneous Wireless Sensor Networks
By Marcel Steine, 2013
A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-3468-5

Quality-of-Service Provisioning for
Dynamic Heterogeneous

Wireless Sensor Networks

Committee:

prof.dr.ir. T. Basten (promotor, Eindhoven University of Technology)
dr.ir. M.C.W. Geilen (copromotor, Eindhoven University of Technology)
prof.dr.ir. A.C.P.M. Backx (chairman, Eindhoven University of Technology)
prof.dr. J.-D. Decotignie (Ecole Polytechnique Fédérale de Lausanne, Switzerland)
prof.dr. K.G. Langendoen (Delft University of Technology)
prof.dr. J.J. Lukkien (Eindhoven University of Technology)
prof.dr.ir. S.M. Heemstra (Eindhoven University of Technology)

The work presented in this thesis has been partially supported by the European
Commission under the Framework 6 IST Project Wirelessly Accessible Sensor
Populations (WASP, IST-2006-034963).

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 286.

c© Marcel Steine 2013. All rights are reserved. Reproduction in whole or in part
is prohibited without the written consent of the copyright owner.

Printing: Printservice Technische Universiteit Eindhoven

Abstract

Quality-of-Service Provisioning for
Dynamic Heterogeneous Wireless Sensor Networks
A Wireless Sensor Network (WSN) consists of a large collection of spatially dis-
tributed autonomous devices with sensors to monitor physical or environmental
conditions, such as air-pollution, temperature and traffic flow. By cooperatively
processing and communicating information to central locations, appropriate ac-
tions can be performed in response. WSNs perform a large variety of applications,
such as the monitoring of elderly persons or conditions in a greenhouse.

To correctly and efficiently perform a task, the behaviour of the WSN should
be such that sufficient Quality-of-Service (QoS) is provided. QoS is defined by
constraints and objectives on network quality metrics, such as a maximum end-
to-end packet loss or minimum network lifetime. After defining the application
we want the WSN to perform, many steps are involved in designing the WSN such
that sufficient QoS is provided. First, a (heterogeneous) set of sensor nodes and
protocols need to be selected. Furthermore, a suitable deployment has to be found
and the network should be configured for its first use. This configuration step in-
volves setting the controllable parameters of all nodes, such as the neighbouring
node(s) to communicate to and the transmission power of its radio. Configuring
the network is a complex task as the number of parameters and their possible
values are large and trade-offs between multiple quality metrics exist. High trans-
mission power may result in a low packet loss to a neighbouring node, but also in
a high power consumption and low lifetime. Heterogeneity in the network causes
the impact of parameters to be different between nodes, requiring parameters of
nodes to be set individually. Moreover, a static configuration is typically not
sufficient to make the most efficient trade-off between the quality metrics at all
times in a dynamic environment. Run-time mechanisms are needed to maintain
the required level of QoS under changing circumstances, such as changing external
interference, mobility of nodes or fluctuating traffic load.

This thesis deals with run-time reconfiguration of dynamic heterogeneous wire-
less sensor networks to maintain a required QoS, given a deployed network with
selected communication protocols and their controllable parameters. The main
contribution of this thesis is an efficient QoS provisioning strategy. It consists of

i

ii

three parts: a re-active reconfiguration method, a generic distributed service to
estimate network metrics and a pro-active reconfiguration method.

In the re-active method, nodes collaboratively respond to discrepancies be-
tween the current and required QoS. Nodes use feedback control which, at a given
speed, adapts parameters of the node to continuously reduce any error between
the locally estimated network QoS and QoS requirements. A dynamic predictive
model is used and updated at run-time, to predict how different parameter adap-
tations influence the QoS. Setting the speed of adaptation allows us to influence
the trade-off between responsiveness and overhead of the approach, and to tune
it to the characteristics of the application scenario. Simulations and experiments
with an actual deployment show the successful integration in practical scenar-
ios. Compared to existing configuration strategies, we are able to extend network
lifetime significantly, while maintaining required packet delivery ratios.

To solve the non-trivial problem of efficiently estimating network quality met-
rics, we introduce a generic distributed service to distributively compute various
network metrics. This service takes into account the possible presence of links
with asymmetric quality that may vary over time, by repeated forwarding of
information over multiple hops combined with explicit information validity man-
agement. The generic service is instantiated from the definition of a recursive local
update function that converges to a fixed point representing the desired metric.
We show the convergence and stability of various instantiations. Parameters can
be set in accordance with the characteristics of the deployment and influence the
trade-off between accuracy and overhead. Simulations and experiments show a
significant increase in estimation accuracy, and efficiency of a protocol using the
estimates, compared to today’s current approaches. The service is integrated in
various protocol stacks providing different kinds of network metric estimates.

The pro-active reconfiguration method reconfigures in response to predefined
run-time detectable events that may cause the network QoS to change signifi-
cantly. While the re-active method is generally applicable and independent of the
application scenario, the, complementary, pro-active method exploits any a-priori
knowledge of the application scenario to adapt more efficiently. A simple example
is that as soon as a person with a body sensor node starts walking we know that
several aspects, including the network topology, will change. To avoid degradation
of network QoS, we pro-actively adapt parameters, in this case, for instance, the
frequency of updating the set of neighbouring nodes, as soon as we observe that a
person starts to walk. At design time, different modes of operation are selected to
be distinguished at run-time. Analysis techniques, such as simulations, are used
to determine a suitable configuration for each of these modes. At run time, the
approach ensures that nodes can detect the mode in which they should operate.
We describe the integration of the pro-active method for two practical monitoring
applications. Simulations and experiments show the feasibility of an implementa-
tion on resource constrained nodes. The pro-active reconfiguration allows for an
efficient QoS provisioning in combination with the re-active approach.

Contents

Abstract i

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 4
1.3 Approach . 7
1.4 Contributions . 8
1.5 Thesis Overview . 9

2 Distributed Estimation of Network Metrics 11
2.1 Importance of Network Metric Estimation 12
2.2 Network Metric Estimation . 14

2.2.1 Generic Problem Statement 14
2.2.2 Illustrative Example . 17
2.2.3 Local Broadcasting . 19
2.2.4 Distributed Service . 20
2.2.5 Generalization . 24

2.3 Convergence and Stability . 25
2.4 Performance Evaluation . 28

2.4.1 Setting the Service Parameters 28
2.4.2 Simulation Results . 29
2.4.3 Experiments With Actual Deployments 33

2.5 Related Work . 36
2.6 Summary . 38

3 Re-active Reconfiguration 39
3.1 The Goal of QoS Provisioning . 40

3.1.1 QoS Provisioning . 40
3.1.2 Terminology . 41
3.1.3 Running Example . 44

3.2 Re-active Reconfiguration for QoS Provisioning 46
3.2.1 Local Impact Calculation 48

iii

iv

3.2.2 Restore Connectivity . 51
3.2.3 Predictive Model . 52
3.2.4 Parameter Adaptation . 54
3.2.5 Model Maintenance . 60

3.3 Quality-of-Service Estimation . 64
3.3.1 Network QoS Estimation 65
3.3.2 Node QoS Estimation . 69

3.4 Controller Performance Analysis 70
3.4.1 Introduction . 70
3.4.2 Parameters . 71
3.4.3 Step Response . 71
3.4.4 Dynamic Setup . 77
3.4.5 Conclusions from Simulations 80

3.5 Experimental Analysis . 81
3.6 Related Work . 84
3.7 Summary . 86

4 Pro-active Reconfiguration 89
4.1 Illustrative Scenarios . 89
4.2 Method Details . 92

4.2.1 Overview . 92
4.2.2 Design-time Steps . 93
4.2.3 Deployment-time Steps . 98
4.2.4 Run-time Steps . 99

4.3 Performance Evaluation of Pro-active Reconfiguration 100
4.3.1 Cow-health Monitoring Scenario 100
4.3.2 Office Monitoring Scenario 102

4.4 Related Work . 105
4.5 Summary . 106

5 Conclusions 109
5.1 Contributions . 110
5.2 Recommendations for Future Work 112
5.3 Concluding Remarks . 113

Bibliography 115

Curriculum Vitae 123

List of Publications 125

Acknowledgments 127

Chapter 1

Introduction

This chapter discusses Wireless Sensor Networks (WSNs) and the challenging
task of configuring them such that the end-user can successfully use the WSN to
perform a task. The central problem of run-time reconfiguration is introduced.
In Section 1.1, we give an overview of the practical interest of WSNs and discuss
the importance of providing sufficient Quality-of-Service (QoS). We furthermore
discuss the dynamic and heterogeneous nature of typical WSNs. In Section 1.2,
we state the problem of efficient QoS provisioning. We elaborate on the impact
both dynamism and heterogeneity have on the complexity of QoS provisioning.
Section 1.3 gives an overview of the QoS provisioning strategy introduced in this
thesis. The contributions of this thesis are presented in Section 1.4. Finally, we
discuss the contents of this thesis in Section 1.5.

1.1 Motivation

A WSN consists of a set of small autonomous devices, called nodes, that collab-
orate to perform a given task. The nodes are small, low cost, devices combining
one or more sensors with a processing unit, storage and wireless communication
interface. Depending on the application, actuators, such as a display or speaker,
may also be incorporated in the nodes. The ever decreasing size of the nodes re-
sults in the application domain of WSNs to be broad and expanding. Due to their
limited size, dependence on batteries or power harvesting devices, and inability to
be easily replaced or maintained, the sensor nodes have significant limitations on
the available processing power, storage capacity and especially power consump-
tion. This, together with the highly cooperative nature of the nodes, makes the
design of WSNs significantly different from traditional wireless ad-hoc networks.

The use of WSN in practice is vastly increasing. We start to encounter WSNs
throughout our entire live; from the cradle unobtrusively monitoring a baby’s
health status to elderly care centers equipped with sensors to, for example, give a

1

2 Section 1.1: Motivation

Figure 1.1: Typical body sensors

warning if the stove is on and left unattended. Almost any scenario that implies
monitoring of sensible phenomena qualifies as a target application for WSNs, of
which examples can be found in [28, 33, 34, 47, 66, 75, 76]. A typical application
is health-monitoring of elderly [15, 57, 74, 78]. Many elderly dread the prospect
that chronic medical issues require them to regularly seek medical assistance by
visiting the doctor. Especially with the increasing percentage of elderly [72], this
will result in large costs for society to support the current health-care system. By
extending the monitoring of health from the doctor’s office and hospital to a per-
sons home, expensive medical assistance and hospital care can be limited by early
detection and prevention of health issues. A wireless sensor network is a suitable
technology enabling convenient, unobtrusive, in-home monitoring. Nodes can be
equipped with several types of sensors and can be attached to body, clothes or
accessories, such as a watch [36]. Figure 1.1 shows some of the typical sensors.
EEG (electroencephalogram) sensors monitor brain activity, ECG (electrocardio-
gram) monitors heart signals and GSR (galvanic skin response) monitors the skin
conductivity, used as a measure of emotional response. Toxicity sensors can be
used to detect dangerous levels of toxins, such as carbon monoxide, in the area
of the monitored person. Accelerometers are used to determine the activity and
mobility of the body. The data collected by the sensors is often collected at a cen-
tral on-body node which communicates with the rest of the network. Besides the
nodes attached to persons, static nodes are deployed at fixed locations throughout
the area in which persons are monitored. Figure 1.2 shows an example deploy-
ment of static nodes, and mobile nodes with fixed limited mobility, as used in an
experiment by the Roessingh Research and Development center [51] to monitor

Chapter 1: Introduction 3

Figure 1.2: Node placement in health-monitoring experiment

persons with COPD (Chronic Obstructive Pulmonary Disease) in the ALwEN
project [1]. For patients with COPD the amount of activity performed during the
day is an important parameter in the treatment of symptoms. Static nodes col-
lect information on, for example, environmental properties, such as temperature
or humidity, and the current activity of the person, such as watching television
or cooking. Data from the static and mobile nodes is propagated to one or more
central locations over one or multiple hops. At a central location, a sink, data is
collected and combined to derive a complete picture of the current health for di-
agnosis. Care takers may predict upcoming health issues and can remotely adjust
the treatment of the monitored persons or suggest changes to their environment,
e.g., temperature setting, or behaviour.

Practical monitoring networks, such as for the health-monitoring application
as described above, are inherently heterogeneous. Nodes differ in their capabili-
ties, such as the attached sensors, processing power and storage capabilities. As
nodes attached to a monitored person are typically required to have a small form
factor they have more stringent resource constraints than static nodes that have
more freedom and space to be deployed at a convenient location. Besides the
difference in hardware, the task performed may vary between nodes. Nodes re-
sponsible for monitoring hearth signals, typically sample ECG sensors a couple of
hundred times a second. The sampling of a temperature sensor can be much less
frequent as it typically only changes slowly over time. As a result, the amount
of data processed and communicated by the nodes varies. Also the location of
a node in the network impacts this data load. Nodes closer to a sink, or in a
part of the network with a higher node density, often need to forward a larger

4 Section 1.2: Problem Statement

amount of data. Finally, external interference due to signal attenuation by fading
and shadowing, and multi-path effects, are environment dependent and typically
non-uniform across the deployment area. Nodes closer to an interference source,
such as a microwave or person walking around, will typically need to spend more
effort to communicate to other nodes. Typical WSNs are furthermore dynamic.
Characteristics of the network are not only heterogeneous, but do also change
during network operation. Microwaves may be turned on and off, persons move
through the monitored area, doors may be opened and closed or events occur that
require an increased frequency of sensor readings. Another important factor is
the mobility of nodes. Moving nodes change the topology of the network. Aspects
such as the node density, link qualities, the distance to the sink, and communi-
cation paths thereby change. All these events affect the environment in which
the node operates. The dynamics in a network vary in frequency and duration.
The impact of environmental properties, such as temperature and humidity, on
wireless communication capabilities is slow and small, while a quickly moving
person can have an immediate large, but relatively short, impact on link qualities
and network topology. A dynamic and heterogeneous monitoring sensor network,
consisting of both static and mobile nodes, is typically found in practice and is
the main focus of this thesis.

To enable the end-users, e.g., the care takers, to successfully use the WSN
for their intended application, e.g., predict upcoming health issues, it is impor-
tant that the WSN meets explicit performance targets, which may change over
time. Performance targets could, for example, relate to the percentage of sensor
data samples that is successfully received at the sink, i.e., end-to-end delivery
ratio. Sufficient ECG samples need to be delivered at the sink to support accu-
rate continuous monitoring of a person’s hearth-rate. The time between sampling
the sensor data and receiving it at the sink allowing it to be analysed, i.e., the
end-to-end latency, is another aspect to be constrained to ensure that changes in
health properties can be observed in time. Furthermore, the power consumption
of all nodes is typically heavily constrained and should be as low as possible to
maximize the network lifetime. We refer to the target values of these network per-
formance metrics as the required network Quality-of-Service. They are expressed
by constraints, e.g., an end-to-end latency of at most 10 seconds, and objectives,
e.g., maximizing the network lifetime. The increasing application of WSNs and
increasing expectations of its end-users emphasize the importance of providing
a sufficient network QoS, making QoS provisioning an important topic in recent
research. This thesis deals with the complex problem of ensuring that the current
network QoS requirements are met by the dynamic heterogeneous WSN.

1.2 Problem Statement

Many steps are involved in designing a WSN to provide the QoS required to
successfully execute an application. In [52] an overview of this extremely large

Chapter 1: Introduction 5

design-space is given. The first step of WSN design is the selection and/or devel-
opment of a set of sensor nodes and communication protocols. Especially in the
early years of WSN research, a lot of effort was put in designing specialized hard-
ware and communication protocols for WSN. Subsequently, a suitable positioning
of the nodes in the area we want to monitor has to be found. This involves many
considerations, such as the density of the network [82]. Before actually deploying
the nodes, the network should be configured for its first use. The configuration
step involves setting all controllable protocol parameters of the network and each
individual sensor node, such as the radio transmission power, buffer sizes, MAC
protocol duty cycle and selected routing parent(s). These controllable parameters
play an important role in how the network behaves. Configuring the network such
that all QoS constraints are met, while objectives are optimized, is non-trivial.
The configuration-space is enormous due to the large number of nodes, parame-
ters and potential values per parameter. Furthermore, improving one aspect of
the system may deteriorate other important characteristics, i.e., trade-offs be-
tween multiple metrics exist. Typical conflicting metrics are end-to-end delivery
ratio and power consumption. Parameters that positively influence the end-to-
end delivery ratio, such as the transmission power of a node, will often negatively
influence the power consumption of that node. Several approaches exist to effi-
ciently find a set of node configurations (i.e., the Pareto points [45]) for the initial
static (heterogeneous) WSN at design-time [6, 13, 16, 22, 40, 87].

In practical scenarios, such as health monitoring, we see that WSNs operate in
a dynamic context where events, such as changing external interference, mobility
of nodes and fluctuating traffic load, constantly influence the behaviour, and
thereby the provided QoS, of the network. On the other hand, QoS requirements
of the application may change. Both may result in an emerging mismatch between
the required and provided network QoS. A potential solution would be to focus on
a design-time solution where we determine the worst-case situation in which the
network could operate, determine the best configuration for that situation, and
use it during the entire operation of the WSN. The main disadvantage is that a
single worst-case configuration is typically not able to provide an efficient trade-
off between the QoS metrics at all times, especially if the network is not often
experiencing its worst-case situation. A worst-case situation may furthermore be
hard to determine due to unknown impact of run-time dynamics. With a worst-
case configuration, we often experience QoS over-provisioning, where constraints
are met, but with a superfluous use of resources, limiting the optimization of
objectives, such as network lifetime.

For efficient QoS provisioning in a WSN with unpredictable dynamics, we
cannot resort to a design-time solution. We therefore focus on run-time QoS pro-
visioning to efficiently tune the behaviour of the network to ensure that the time
the network is providing a sufficient QoS is as high as possible. The adaptation
of parameters is an effective and flexible way to influence the behaviour of nodes
at run-time. Instead of using a single static configuration, the parameters of one
or more nodes are adapted according to a given strategy. Finding a single con-

6 Section 1.2: Problem Statement

figuration for a static deployment is already found to be a difficult task due to
the large configuration space and trade-offs involved. Run-time reconfiguration
significantly increases the problem as it constantly requires to find a suitable con-
figuration for the current dynamics in the network, with only limited time and
resources available.

The main challenge of any run-time reconfiguration approach is to provide a
strategy to decide when and how to adapt controllable parameters. One could
think of either a centralized or distributed strategy. With a centralized approach,
such as, for example, proposed in [26, 86], information on the performance of
the network is collected at a central location after which it is determined how the
controllable parameters of every node should be set to provide sufficient QoS. The
values of the controllable parameters are then communicated to all nodes to inform
them on any changes they should make to their configuration. It allows decision
making based on knowledge of the QoS of the (entire) network, but scalability
is limited. With larger networks, a lot of information needs to be collected and
disseminated. The time needed to respond to a changing QoS may be high as the
effects of dynamics first need to be observed by the central location. Nodes have
to wait for the decisions made and communicated by this central location. For fast
(and frequent) dynamics there is no time to wait for the centralized location to ini-
tiate a reconfiguration. Most current run-time reconfiguration approaches apply
a distributed strategy where nodes themselves observe when and decide how to
adapt parameters. Several examples can be found in [12, 63, 69, 81]. More details
on current work and references to other literature that is associated to specific
parts of this work are given in the respective chapters. In a distributed system,
such as a WSN, distributed reconfiguration is expected to be more efficient, but
sufficient information is needed by every node to make accurate reconfiguration
decisions in a distributed manner. The focus of current distributed run-time re-
configuration approaches is to optimize for one or more local performance metrics,
typically power, instead of the multiple (conflicting) network-level metrics that
are of interest to the end-user. In a dynamic heterogeneous network, a node is
typically not able to make efficient reconfiguration decisions by only focusing on
local metrics, such as the latency to the parent as part of the latency to the
sink. This is because a QoS constraint on a network metrics, e.g., latency to the
sink, can typically not efficiently be translated to fixed QoS constraints on a node
metric, e.g., latency to the parent node for every node on the path to the sink.

In summary, current QoS provisioning approaches are either centralized and
able to support network QoS provisioning, or distributed and aim at local QoS
provisioning. What we need for efficient reconfiguration of dynamic heteroge-
neous WSNs to ensure a QoS defined by multiple conflicting network metrics, is
an approach that is distributed and aims at network QoS provisioning. This re-
quires efficient collaboration between nodes. The reconfiguration strategy should
furthermore be efficient in terms of overhead and flexible to deal with the different
kinds of dynamics present in a WSN.

Chapter 1: Introduction 7

1.3 Approach
In this thesis, we introduce a reconfiguration strategy for QoS provisioning in
dynamic heterogeneous WSNs. We assume the protocol stack to be selected and
to have an interface to adapt the controllable parameters of any of its protocols.
We furthermore assume the network to be initially deployed and configured.

To allow distributed reconfiguration decision making while keeping network
QoS in mind, estimates of the metrics pertaining to the entire network or parts of
the network, such as the latency to the sink or minimum lifetime of the nodes on
a path, are locally used by the nodes. To efficiently solve the non-trivial problem
of estimating network metrics in dynamic heterogeneous WSNs independently
of the protocol using the estimates, we introduce a generic distributed service.
This service can be instantiated to locally estimate any type of network metric
that can be expressed by a recursive equation in terms of old estimates of the
network metric and additional information collected from the network. Dynamism
and heterogeneity complicate the estimation of this kind of information. N -hop
forwarding of information is used to accommodate information exchange between
neighbouring nodes to overcome asymmetric links caused by heterogeneity in the
network. As the values of network metrics change over time, n-hop forwarding
is repeated at a given update interval. The update interval allows a trade-off
between the accuracy of the estimates and the overhead involved. With fast
impact dynamics, more overhead is needed to get accurate estimates compared
to a network with slower dynamics.

Given that nodes have such estimates of the network metrics, nodes can locally
determine whether sufficient QoS is provided by the network. If not, reconfigu-
ration is needed. The first part of our QoS provisioning approach is a re-active
reconfiguration approach, which repeatedly checks current QoS estimates and
directly reconfigures nodes based on discrepancies with the currently required
network QoS. The re-active approach is independent of the dynamics that cause
an impact on QoS and can therefore directly be used in any scenario. Important
for the efficiency of the re-active approach is its responsiveness to QoS errors. The
responsiveness, or speed, of the approach can be influenced by several parameters,
including the parameters of the underlying metric estimation service, and needs
to be set in accordance with the impact and frequency of the dynamics in the
network. The frequency of reconfiguration should be high enough to ensure that
the time spent in a state with insufficient QoS is short enough. To ensure a stable
reconfiguration approach, updates of local estimates of network QoS, propagated
by an instance of our distributed service, should be available fast enough. This
results in a trade-off between the overhead of re-active reconfiguration and its
responsiveness. To determine how to adapt parameters to get the right level of
QoS, adaptive predictive models are used. These models are adapted at run-time
to increase prediction accuracy.

A re-active approach does not exploit the additional a-priori knowledge of net-
work dynamics or application behaviour. A complementary pro-active approach

8 Section 1.4: Contributions

is introduced that explicitly exploits knowledge of the dynamics to adapt the con-
figuration before dynamics affect the QoS. It classifies the current situation, and
adapts the configuration accordingly if needed, using a predetermined response
in terms of adapting controllable parameters. Exploiting a-priori knowledge of
dynamics in the network avoids waiting for a suboptimal QoS, but anticipates for
it by reconfiguring for predefined dynamic changes. With design-time knowledge
of the occurrence of events we can furthermore consider the option of changing
parameters that are set at the network level, equal for all nodes. These network
parameters, such as the duty cycle for some MAC protocols, have a large impact
on the QoS, but require synchronization to be changed.

By using the complementary re-active and pro-active approach in a single QoS
provisioning strategy, we exploit design-time knowledge of the dynamics in the
network, while we are still able to respond to unexpected or unpredictable events
impacting the network QoS.

1.4 Contributions
The overall contribution of this thesis is a run-time reconfiguration approach that
efficiently provides a required QoS, defined by multiple network quality metrics,
in a dynamic heterogeneous WSN. We focus on monitoring networks that consist
of a combination of static and mobile nodes, communicating sensed data to one
or more central locations. The reconfiguration approach combines multiple parts
described below. While these parts combined form an efficient run-time reconfig-
uration approach, on their own, they have their practical use both in- and outside
the area of QoS provisioning. Our contributions can be divided in the following
sub-parts:

• A distributed service to efficiently estimate network-level metric informa-
tion in dynamic heterogeneous WSNs (Chapter 2). Such service is generally
applicable for any protocol that uses local estimates of network-level met-
rics or consensus on network metrics. An initial version of our service is
published in [58].

• A re-active run-time reconfiguration approach in which every node controls
its parameters based on local estimates of network QoS (Chapter 3). It
responds to any deviations in the locally known estimates from the required
network QoS. With this response the heterogeneity in the adaptation impact
on network QoS is considered. Initial work on our re-active reconfiguration
approach has been published in [59].

• A pro-active run-time reconfiguration approach in which every node controls
its parameters based on a-priori defined observable events (Chapter 4). This
knowledge is exploited in the reconfiguration process to adapt controllable
parameters before a change in dynamics affects the network QoS. This work
has been published in [60].

Chapter 1: Introduction 9

1.5 Thesis Overview
The thesis continues in Chapter 2 with the introduction of our generic distributed
estimation service. The problem of distributed estimation of network metrics is
discussed in detail. The service is explained, together with its convergence and
stability properties. Performance of the service is analysed using simulations and
experiments with an actual deployment.

Chapter 3 introduces our re-active run-time reconfiguration strategy. The
re-active approach, and the required instantiations of our service, are discussed
in detail. Simulations and experiments with an actual deployment are used to
explore the parameters of the approach, to analyse its performance and compare
it with current techniques.

In Chapter 4, we introduce our pro-active run-time reconfiguration approach.
Details on the approach are given and we discuss how to integrate a pro-active
approach for a practical cow-monitoring and office-monitoring application. Anal-
ysis of the integration is done using simulations and experiments with an actual
deployment.

Chapter 5 gives directions for future work and concludes this thesis.

10 Section 1.5: Thesis Overview

Chapter 2

Distributed Estimation of Network
Metrics

Many protocols for WSNs rely on sensor nodes to locally have accurate estimates
of metrics pertaining the network as a whole, of which examples can be found
in [21, 24, 32, 41, 43, 54, 83]. Nodes can estimate these network metrics in a
distributed fashion by exchanging information with neighbouring nodes. A typi-
cal example is the minimum-energy path from a node to a given reference node,
used for selecting an energy-efficient routing parent [10, 11, 61, 80]. It can locally
be determined from the minimum-energy path to the reference node of all neigh-
bouring nodes, and the energy needed to reach them. The accuracy of locally
estimated network-level metrics is directly related to the availability of accurate
information. Both dynamism and heterogeneity found in typical WSNs make
the accurate collection and quick dissemination of information a non-trivial task.
Dynamics, such as moving nodes and changing external interference, cause infor-
mation to become outdated. Heterogeneity, due to, for example, heterogeneous
settings of the transmission power, can result in communication links with asym-
metric quality, complicating the information dissemination. Existing protocols
often rely on an ad-hoc local broadcasting approach to estimate network metric
values ignoring the impact of dynamism and/or heterogeneity. In this chapter, we
introduce an efficient generic distributed service for dynamic heterogeneous WSNs
that provides nodes with estimates of metrics pertaining to the entire network.
Nodes disseminate information and manage the validity of received information
to allow iterative computation of accurate estimates. Estimated information can
then be used for the efficient execution of any protocol in the protocol stack. Local
dissemination can employ controlled n-hop forwarding to overcome asymmetric
links. The dissemination of information is repeated at a given interval to avoid
stale information caused by changes in the local information. With the required
information locally available, nodes regularly estimate the network metrics.

11

12 Section 2.1: Importance of Network Metric Estimation

Instantiating our generic service consists of three steps. First, a recursive func-
tion characterizing the network metric to be estimated is defined. This recursive
function is in terms of information collected from one or more other nodes in
the network. Second, convergence and stability of this recursive function needs
to be shown. With a converging and stable recursive function, the distributed
estimation of the service is guaranteed to converge to the correct estimates for all
nodes. Finally, the parameters of the service need to be set to tune its behaviour
for the characteristics of the deployment.

In this chapter, we state the recursive functions, and show how convergence
and stability of the service can be shown, for several specific instances of the
service. The design and parameters of the service allow an easy integration into
existing and new WSN deployments and allow a trade-off between the accuracy of
the estimates and the overhead of the service. The characteristics of the deploy-
ment have a large impact on this trade-off. Using simulations and experiments,
we provide insight in this impact and insight on how to set the parameters of
the service for a required accuracy. We furthermore show that using the service
results in a significant increase in the accuracy of the estimated network metric
information and the efficiency of a protocol using the estimates, compared to the
typically used local broadcasting approach. We position our approach as a ser-
vice, a commonly used abstraction for providing functionality to other protocols,
which works independent of other protocols in the network stack. This relieves
protocols from the non-trivial task of obtaining their own estimates. Information
can furthermore easily be shared among multiple protocols in the stack avoiding
additional overhead.

The remainder of this chapter is organized as follows. In Section 2.1, we elab-
orate on the importance of estimating network metrics. Section 2.2 introduces
our distributed service to estimate network metrics locally on the nodes. In Sec-
tion 2.3, we go into more detail on the convergence and stability of the used
iterative distributed way to estimate network metrics. Section 2.4 discusses the
performance of the service in more detail and shows simulation and experimental
results. In Section 2.5, we discuss related work. Section 2.6 concludes.

2.1 Importance of Network Metric Estimation
A WSN is a distributed system, but protocols often rely on information pertaining
to the (entire) network. Consensus problems cover a large number of problems
where nodes need to reach an agreement regarding a certain quantity of inter-
est that depends on the state of all nodes [43]. A typical example of a quantity
of interest is the maximum residual power in a cluster of nodes as used by, for
example, cluster-head and leader election protocols [21, 83]. The average of mea-
surements done by a set of nodes is used by, for example, data fusion [41] and
clock-synchronization [32] protocols. Many protocols furthermore rely on esti-
mates of the cost of communication paths towards a reference node, where the

Chapter 2: Distributed Estimation of Network Metrics 13

cost can take any form, such as the hop-count or expected energy or latency of
sending a packet over the path. The most obvious use of the minimum-cost path
information is for routing and data collection protocols, where packets are for-
warded to the ‘best’ neighbouring node(s) through which a sink can be reached.
With Directed Diffusion [24] nodes determine their parent, or ‘gradient’, based
on the rate of received interest packets. Gradient-Based Routing (GBR) [54] is
a modified version of Directed Diffusion, where nodes record the number of hops
to reach the sink and packets are only forwarded when received from a node with
a higher hop-count. As energy-efficiency is important for WSNs, many routing
protocols focus on energy-efficient routing [10, 11, 61, 80] and use energy-related
factors, such as communication energy consumption rates and the residual energy
levels, to determine the cost of a path. Furthermore, the Collection Tree Pro-
tocol [17] as currently available in TinyOS [70], depends on information of the
minimum number of transmissions to reach a sink. Besides routing protocols, a
minimum-cost path is also used in localization protocols, for example based on
the well-known ‘DV-Hop’ protocol [42]. This localization protocol derives the
physical location of a node from the number of hops that the node is away from
anchor nodes with a known location.

The above protocols have in common that for the iterative distributed esti-
mation of network metrics, information from other nodes in the network should
be collected. They only differ in the kind of information collected and the way to
compute local estimates from the collected information. For example, the estima-
tion of the maximum value in the network can be done by each node selecting the
maximum value from its own value and that of neighbouring nodes. It is easy to
see how repeating this process in all nodes disseminates this information through-
out the network. Similarly, the cost of the minimum-cost path to a given sink can
be estimated from the estimated minimum-cost to the sink of neighbouring nodes
to which it can send packets and the cost to communicate to them. The network
metric to be estimated can be equal for all nodes, such as the maximum, or differ
per node, such as the minimum-cost-path cost to the sink.

For the correct and efficient operation of protocols, it is important that the
local network metric estimates are accurate. For example, Gradient-Based Rout-
ing [54] depends on local estimates of the minimum number of hops, hop-count,
to send packets to the sink. Packets are only forwarded if received from nodes
with a higher hop-count. If nodes estimate their hop-count higher than it really is,
routing becomes suboptimal and the network load may increase. Underestimating
hop-count can even result in packets not reaching the sink at all.

The accuracy of estimations is directly related to the availability of accurate
information from neighbouring nodes. In most current work, this information is
simply assumed to be available, ignoring the practical challenges of obtaining this
information, or the distribution of the information is done in an ad-hoc manner
as part of the protocol. This is usually done using a local broadcasting approach,
where the information is disseminated by simple broadcasting. It is thus implic-
itly assumed that a broadcast is enough to efficiently communicate to all nodes

14 Section 2.2: Network Metric Estimation

that need the information. For a (homogeneous) deployment with relatively little
asymmetry in the link-quality, this assumption is typically valid. In practice we
often see that the link-quality, for example expressed as a Packet Reception Ra-
tio (PRR) [77], is not symmetric [27, 84, 85]. Asymmetry (and uni-directionality)
exists, for example, due to the use of heterogeneous nodes with different transmis-
sion capabilities and environmental interference. A simple broadcast might not be
sufficient, but communication over multiple hops may be needed to communicate
the information to the intended nodes, to overcome low quality or unidirectional
links. Furthermore, information becomes outdated due to the dynamically chang-
ing behaviour of the WSN. The information, and the neighbouring nodes from
which information should be used in the network metric estimation, dynamically
change over time due to, for example, changing external interference, dynamic
adaptation of parameters, such as the transmission power [29], or node mobility.
The actual network metric value can become better, but also worse over time.
Management of information validity is needed to ensure that accurate estimates
are made.

2.2 Network Metric Estimation

In this section, we introduce the problem of network metric estimation, the lo-
cal broadcasting approach, and our generic distributed service. We first discuss
the generic problem of distributed estimation of network metrics in Section 2.2.1.
In Section 2.2.2, we introduce the estimation of network metric values and used
terminology in more detail with an example. In Section 2.2.3, we discuss the
current approach of local broadcasting and the problems that arise when using
this approach in dynamic heterogeneous WSNs. Section 2.2.4 describes the func-
tionality of our service and parameters involved. For the ease of explanation, we
focus the details of our service on estimating a particular network-level property,
namely the minimum-cost path of a node to a given reference node (such as a
sink or cluster-head). To make it more concrete, we focus on the estimation of
the cost of the path, and the neighbouring node on the path closer to the sink, its
minimum-cost parent. Although we focus on a specific network metric to intro-
duce our service, it can estimate any network metric estimated according to the
general problem statement given in Section 2.2.1. Extensions to the introduced
service illustrating the broader applicability are discussed in Section 2.2.5.

2.2.1 Generic Problem Statement

Network metric values, by definition, depend on the characteristics of multiple or
all nodes in the network. To locally estimate network metric values, (aggregated)
information from one or more other nodes in the network is needed. We consider
a class of metrics that can be expressed as a fixed point of an equation of the form

Chapter 2: Distributed Estimation of Network Metrics 15

x̄ = C(x̄, z̄) (2.1)

where x̄ is a vector with the local estimates of all nodes in the network and z̄
is a vector of additional information locally known, measured or computed by
the nodes. Typical additional information is the cost of using a link, which is
related to the quality of the link. A low quality link for instance, may increase
the likelihood of a packet being lost and thereby may require more retransmis-
sions and hence more time and/or energy to communicate a single packet. Many
different metrics exist to measure the quality of individual links, typically referred
to as Link Quality Estimators (LQEs) [2], based on sent and/or received pack-
ets. Well known examples are the Received Signal Strength Indicator (RSSI),
Signal-to-Noise Ratio (SNR) and Packet Reception Ratio (PRR). Our service is
independent of the specific LQE and therefore, the choice of LQE for a particular
deployment is outside the scope of this chapter. C is a function that characterizes
local estimates of all nodes in terms of the local estimates (of other nodes) and
additional information of all nodes in the network.

The fixed point of this equation can be computed in an iterative fashion:

x̄(0) = C0(z̄(0))

x̄(i+ 1) = C(x̄(i), z̄(i)) (2.2)

The new set of local estimates, x̄(i+1), is a function C of the currently known set
of estimates x̄(i) and current additional information z̄(i) of nodes in the network.
Initially, only the additional information of all nodes, z̄(0), is available to a node
to make an estimate. In general, the initial estimate, x̄(0), can be a function C0

of this additional information. In particular cases it may also be just a constant.
For the distributed iterative calculation by every individual node n from the

set of all nodes N , function C can be decomposed to functions Cn, for every node
n ∈ N , computing the local estimate of node n, xn(i + 1). The new estimate
xn(i+ 1) is a function Cn of the currently known set of local estimates x̄(i) and
information z̄(i) of all other nodes in the network. Similarly, the initial estimate is
a function C0

n of the additional information. The resulting equation is as follows:

xn(0) = C0
n(z̄(0))

xn(i+ 1) = Cn(x̄(i), z̄(i)) (2.3)

Note that in the worst case information from all nodes is locally needed, but
nodes can only communicate to neighbouring nodes. This can be resolved by a
mechanism that transports the information over multiple hops, or, more com-
monly, by defining the equation such that only information from neighbouring
nodes is required. In the latter case, updates iteratively propagate the informa-
tion through the network, which is more efficient and often possible as shown
in the examples discussed next. Furthermore note that the calculation will be
performed completely distributedly without global synchronization.

16 Section 2.2: Network Metric Estimation

Various practical network metrics, including the examples given in the previous
sections, can be expressed according to such an equation. For the local estima-
tion of the maximum value in the network for node n, maxestn (an instance of
consensus, for example used for cluster leader election in [21, 83]), Equation 2.3
is instantiated as follows.

maxestn(0) = valuen

maxestn(i+ 1) = max({maxestx(i)|x ∈ nbn} ∪ {valuen})

The maximum in the network for node n is locally estimated to be the maximum
of all the network-maximum values estimated by the set of neighbouring nodes,
nbn, and the value of node n itself, valuen . Initially, the maximum is estimated to
be equal to its own value. More specifically, Equation 2.3 is instantiated as follows:
function Cn is equal to the maximum, x̄(i) is the set of maximum value estimates
of all nodes, where only the maximum value from the set of neighbouring nodes
is of interest, and z̄(i) only contains the value determined by the node locally,
valuen . C0

n results in the initial estimate of node n to be equal to its own value.
When the network is strongly connected, all nodes will eventually have the correct
estimate. A similar formula can be used to describe the iterative estimation of,
for example, the minimum in the network.

In the case the local values, valuen , change over time, the above consensus
instance estimates the maximum over the entire run-time of the network. In
practice, the maximum in the network may become higher or lower over time due
to changing local values. With a changing maximum, one might be more interested
in periodic consensus. Achieving periodic consensus involves achieving consensus
on a value in a given time interval, for example, a day. Periodic consensus can also
be expressed in the form of Equation 2.3, if time-stamps are added to the local
estimates and observed values. We furthermore assume a synchronized time is
available by every node. For the distributed calculation of periodic consensus on
the maximum value during a day for node n, pmn, we can instantiate Equation 2.3
as follows, where the function sd returns true if and only if the day at which
the received estimate is derived is equal to the day at which the local value is
determined.

pmn(0) = valuen

pmn(i+ 1) = max({pmx(i)|x ∈ nbn ∧ sd(pmx(i), valuen)} ∪ {valuen})

Achieving periodic consensus is similar to achieving consensus as discussed above,
but an extra check is done on the estimates of neighbouring nodes used in the
local estimation. If the estimate of a neighbour has a time-stamp of the same day
as the local value, it is used in the estimation (included in x̄(i)). Estimates from
a different day are not used.

Besides these consensus problems, the estimation of the cost of the minimum-
cost path to a reference node, the sink, also fits in the considered class of problems

Chapter 2: Distributed Estimation of Network Metrics 17

formulated by Equation 2.3. The minimum-cost path of a node is selected from all
possible paths from that node to the sink. Several examples of protocols relying
on minimum path-cost information are given in the previous sections. Given
any monotone recursive function f , expressing path costs in terms of link costs,
the minimum path-cost of node n, costn, can be computed using the following
recursive procedure.

costn =

{
identity(f) if n = Sink

min
x∈neighboursn

f(costx, lcn,x) if n 6= Sink (2.4)

The sink node does not need information from other nodes to locally estimate
its minimum-cost as it is a fixed value. The sink has a minimum-cost equal
to the identity element ε of function f such that f(ε, a) = a for all a, i.e., 0
for summation, 1 for multiplication, etc. For all other nodes, Equation 2.3 is
instantiated with function Cn equal to a combination of the minimum and function
f . x̄(i) are the local estimates of path cost and z̄(i) are the measured link costs of
the neighbours to which it can send packets. lcn,x equals the cost of the link from
node n to neighbour x to which it can send packets. The actual minimum-cost
path cost is the fixed point of Equation 2.4.

With the network metric defined as an instantiation of Equation 2.3, a node
can accurately estimate the network metric if accurate estimates of x̄(i) and z̄(i)
are locally available. It is the goal of any network metric estimation approach
to provide nodes with these accurate estimates. How this is achieved by our
service, and how this improves on the currently used local broadcasting approach,
is discussed in the remainder of this section. The following example is used to
support this discussion and to introduce used terminology.

2.2.2 Illustrative Example
Figure 2.1 gives an example of a six-node WSN deployment with designated sink
node S. The connectivity of a WSN can be described by a weighted directed
graph. The vertices of the graph represent the sensor nodes. The directed edges
of the graph specify the directed communication links between nodes and are
labelled with the current cost associated with using them. One could for example
assume that two nodes are connected if a certain percentage of communications
is successful or if received signal strength exceeds a given threshold; cost could
for example represent energy usage or communication delay. For the example
of Figure 2.1, we assume the cost of a link to represent the expected number
of retransmissions, which is strongly related to the expected energy needed for
sending a packet [55].

Unless it is completely isolated from the rest of the network, every node has
neighbouring nodes from which it can receive packets and/or to which it can send
packets. These neighbouring nodes can be divided into inbound neighbours and
outbound neighbours.

18 Section 2.2: Network Metric Estimation

S A

B

ED

C

(S : 1.2)

(B : 1.8)(S : 1.2)

(C : 2.7)(B : 1.5)

0
.6

0
.9

1
.2

0
.9

0.7

1
.9

1.4 0
.8

0.7

0.6

1.2

0
.3

1.7

Figure 2.1: Minimum-cost path to sink S information

Definition 1. (Inbound neighbour) An inbound neighbour of node n is a
neighbouring node which has a directed edge in the connectivity graph towards
node n, and from which node n thus can potentially receive packets.

Definition 2. (Outbound neighbour) An outbound neighbour of node n is a
neighbouring node towards which node n has a directed edge in the connectivity
graph, and to which it thus can potentially send packets.

The inbound and outbound neighbours are independent of the used routing
algorithm. In Figure 2.1, the only inbound neighbour of node A is node C. The
outbound neighbours of node A are nodes S and C. Note that due to asymmetry
in link quality, the inbound neighbours for a particular node can be different from
its outbound neighbours.

The instance of Equation 2.4 to calculate the minimum sum of retransmissions
on a path for node n, minretransn, is presented below, where nrretransn,x is the
average number of retransmissions expected for the link between nodes n and x.
The recursive function f is summation (with identity element 0).

minretransn =

{
0 if n = Sink

min
x∈outbounds

(minretransx + nrretransn,x) if n 6= Sink

Given this recursive procedure, nodes can estimate the minimum-cost and the
parent on the minimum-cost path in a distributed manner using only (i) the
minimum-cost for all of its outbound neighbours and (ii) the cost of communicat-
ing to those neighbours based on LQE information. In Figure 2.1, the non-sink
nodes have been labeled with their minimum-cost to S and with the parent on
that path. For example, node E has two outbound neighbours. The minimum-
cost path using node C as a parent has cost 1.8 + 0.9 = 2.7, while using node D
would result in a minimum-cost of 1.5+1.7 = 3.2. The minimum-cost is therefore
determined by E to be 2.7 and the parent to be C.

Chapter 2: Distributed Estimation of Network Metrics 19

S A

B

ED

C

(C : 2.3)

(S : 1.4)(S : 1.9)

(D : 3.2)(B : 2.5)

0
.6

0
.9

1
.2

0
.9

0.7

1
.9

1.4 0
.8

0.7

0.6

1.2

0
.3

1.7

Figure 2.2: Incorrect network metric estimation with local broadcasting (assuming
link symmetry)

2.2.3 Local Broadcasting

Providing network metric information to neighbouring nodes would be easy in a
homogeneous static deployment, where links are symmetric, with identical link
quality in both directions, and where link quality does not change over time.
The inbound neighbours of a node are equal to the outbound neighbours and
are always at one hop distance. Furthermore, the cost of communicating to an
outbound neighbour can be derived by every node locally. The currently used
local broadcasting approach would suffice in providing nodes with the required
information on the minimum-cost of all outbound neighbours, and the cost of
communicating to these outbound neighbours, in an iterative fashion.

With the current local broadcasting, every node repeatedly broadcasts the net-
work metric estimates, e.g., the minimum-cost to S in the example of Figure 2.1,
as soon as it is known to inform neighbouring nodes. After information from a
neighbour is received, network metric estimates are updated if needed. In the case
of the example, if using the neighbour from which information is received results
in a path to the sink with a lower cost than the currently known minimum-cost
path, the minimum-cost path is updated.

Figure 2.2 shows the estimated network metric values, in this case the mini-
mum number of retransmissions needed to reach the sink, when applying only local
broadcasting despite asymmetric links. Every node with an estimated minimum-
cost broadcasts it. Nodes receiving this information (possibly inaccurately) as-
sume they can communicate with the node from which they have received the
information at a cost estimated based on the incoming link-cost. The cost of
node B is thus estimated to be 1.9, while it should really be 1.2. The inaccu-
racy is caused by the asymmetric links which violate two assumptions made by
the local broadcasting approach. First, communicating information to inbound
neighbours in the presence of asymmetric links may require more than one hop, in
case of unidirectional links, for example from node S to A. Communicating over

20 Section 2.2: Network Metric Estimation

multiple hops can furthermore have a lower cost (for instance higher probability of
successful transmission) than shorter paths with a bad quality. Second, although
LQEs based on transmitted packets may still allow nodes to determine the cost
of communicating to outbound neighbours locally, the LQEs based on received
packets (most of the well-known LQEs) do not. To allow nodes to accurately
derive their minimum-cost path, nodes with a known minimum-cost path should
therefore communicate both its minimum-path cost and the observed link-cost of
the inbound neighbours to all their inbound neighbours.

This example shows the situation at a particular moment in time. With chang-
ing network metric values it is not only important to communicate the required
information to the appropriate set of nodes, but also to ensure that this informa-
tion stays accurate. A straightforward solution is to let nodes broadcast metric
information every time a (significant) change of it is observed and use the most
recently received information in the estimation. This approach can lead to an
uncontrollable number of packets in the network, as there could be arbitrarily
many changes. Furthermore, a problem arises with the neighbours that are lost
over time, for example because they moved out of range. Nodes should eventually
become aware of the fact that they lost an outbound neighbour to prevent them
from using stale information. The node itself may not be able to observe this
change and the outbound neighbour that does observe this can be out of range.
Management of the validity of received information is needed to ensure that the
estimation performed by node is accurate.

Accurate network metric estimation should consider both the complicated
distribution of information due to asymmetric links and the need for information
accuracy maintenance due to dynamically changing network metric values. For
this we introduce our service.

2.2.4 Distributed Service
Our service consists of two concurrently executed parts: (1) information required
by neighbouring nodes is communicated to them at a given interval, using n-
hop forwarding to overcome any asymmetric links, and (2) the network metric
value is estimated based on the locally collected and up-to-date information of
outbound neighbours, using link-validity management considering dynamically
changing metric values.

Network metric information dissemination To provide inbound neighbours with up-
to-date information on the minimum-cost path, nodes at a given interval, referred
to as the update interval, use a controlled n-hop forwarding approach to commu-
nicate the required information to inbound neighbours. Nodes broadcast infor-
mation and nodes receiving it immediately forward the received information for
a predefined number of hops, n. By using more than one hop, information can
be relayed around unidirectional and low quality links (as long as an alternative
path exists). The n-hop flooding is repeated iteratively to accommodate for lost

Chapter 2: Distributed Estimation of Network Metrics 21

costsenderId inbounds(id, linkCost) htlseqNr

Figure 2.3: Format of the minimum-cost information packet broadcast to neigh-
bouring nodes

Algorithm 1: Receiving minimum-cost information packet

1 for in ∈ inbounds do
2 if (myId = in.id) then
3 Add or update (senderId , cost + in.linkCost , currentTime) in

myOut ;

4 end
5 if (htl > 0 ∧myId 6= senderId ∧ lastSeqNo[senderId] < seqNr) then
6 Broadcast (senderId , cost , inbounds, seqNr , htl − 1);
7 lastSeqNr [senderId] := seqNr ;

packets and changed network metrics. This allows nodes to locally determine
their outbound neighbours and estimate network metrics.

While for local broadcasting it is sufficient to only disseminate the network
metric values, the service needs additional administrative information to be com-
municated to allow nodes to determine whether received packets are from one
of their outbound neighbours and/or should be forwarded to inform more nodes
(also see Algorithm 1 as discussed in more detail later). Figure 2.3 shows the
format of the packet sent by nodes every update interval. Besides the cost of the
network metric, cost , we add the sender’s unique identifier, senderId , and a list
with information about the intended recipients, inbounds(id, linkCost) with the
inbound neighbours’ unique identifiers id and link-cost to reach them, linkCost , to
the packet. The total size of a packet is an important aspect of the overhead and
mainly depends on both the density and the size of the network. These aspects
influence both the average number of inbound neighbours of which information
is included in the packet and the number of bytes needed to uniquely identify a
node. If we assume a network of 1000 nodes, 10 bits would be needed to identify
a node. If we assume that the cost of a link requires at most 10 bits, and a node
has a maximum of 10 inbound neighbours, the size of the packet would stay below
256 bits (= 32 bytes), assuming that the amount of bytes needed to represent the
sequence number and the hops-to-live is low. This is well below the maximum
packet length of commonly used radios such as the CC1100 (255 bytes) or the
CC2420 (128 bytes).

Algorithm 1 shows the steps involved when a broadcast network metric infor-
mation packet is received. For this algorithm, and those in the rest of this thesis,
indentation is used to indicate nesting of statements. The algorithm consists of

22 Section 2.2: Network Metric Estimation

S A

B

ED

C

(S : 1.2)

(B : 1.8)(S : 1.2)

(D : 3.2)(B : 1.5)

0
.6

0
.9

1
.2

0
.9

0.7

1
.9

1.4 0
.8

0.7

0.6

1.2

0
.3

1.7

Figure 2.4: Minimum-cost path information estimated using asymmetry-aware
2-hop forwarding

two steps. The first step is to process the information in the packet if it is received
from an outbound neighbour. If the receiving node is in the list of inbound neigh-
bours of the sending node, as stored in the minimum-cost information packet, this
implies that the packet is received from an outbound neighbour (lines 1 and 2).
Similarly as for the example of Section 2.2.2, we assume the local network metric
estimate to be the sum of the cost of the outbound neighbour to communicate to
the sink, cost , and the cost to reach this outbound neighbour, in.linkCost . The
value for this particular outbound neighbour is updated or added, together with
the unique identifier and the current time, currentTime, to the locally maintained
list of outbound neighbours, myOut (line 3). The current time is later used to
check the validity of the stored information. The second step is to prevent redun-
dant forwarding of packets by not forwarding the same information more than
once. The node checks whether the packet should be forwarded (line 5). This
is needed if the packet still needs at least one hop to travel and is not already
forwarded by this node. The latter is checked by comparing the sequence number
of the packet with the sequence number of the last forwarded packet from this
sender. If a packet is forwarded (line 6), htl of the packet is reduced and the
sequence number of the sender locally stored (line 7).

Figure 2.4 shows the result of using a 2-hop forwarding approach for every
node in the network. While for the local broadcasting approach the cost and the
parent are inaccurate for almost all nodes (compare Figure 2.1 and Figure 2.2),
the accuracy has been significantly increased. This is due to two properties of
the n-hop forwarding approach. First, the cost of outbound and inbound links
is explicitly distinguished (resulting in an increased accuracy for, for example,
node B) and, second, nodes are informed over more than one hop (resulting in an
increased accuracy for node A). Note that, for this example, a 3-hop forwarding
approach would result in an even more accurate solution, which is the optimal
solution, as shown in Figure 2.1.

Chapter 2: Distributed Estimation of Network Metrics 23

Algorithm 2: Update minimum-cost path information

1 minCost :=∞,minParent := null ;
2 for out ∈ myOut do
3 if (out.lastUpdate > (currentTime − validityInterval)) then
4 if (out .pathCost < minCost) then
5 minCost := out .pathCost ,minParent := out .id ;

6 else
7 myOut := myOut \ out;
8 end
9 myCost := minCost ,myParent := minParent ;

Controlled n-hop forwarding allows for a trade-off between the accuracy of
the derived network metric values, and the overhead required to derive it, by
setting the update interval length and the number of hops, n, to forward. On
the one hand, we want to reach as many inbound neighbours as possible to im-
prove accuracy. On the other hand, we do not want to increase the traffic load
in the network too much as this can potentially negatively impact the overall
network performance. The value of n, in the n-hop forwarding approach, trades
off the number of inbound neighbours reached for the overhead incurred. Fur-
thermore, setting the update intervals allows us to influence the trade-off between
the responsiveness to changes in the network, i.e., the temporal accuracy of the
information, with the service overhead. Note that it is not necessary to synchro-
nize the update intervals between the nodes. Appropriate setting of the update
interval is done in conjunction with the validity interval introduced below and
depends on the characteristics of the deployment. Setting the parameter values
and the trade-offs involved are discussed in more detail in Section 2.4.

Estimating network metric information While the controlled n-hop forwarding allows
us to provide inbound neighbours with the required information, the network
metric values may change over time due to changes in the network. This can
make earlier communicated information inaccurate. It is therefore important for
the accuracy of the estimated minimum-cost path information that nodes are
informed about both changes in minimum-cost and in cost of the links towards
any of the outbound neighbours. To control the overhead of the service and
to reduce the likelihood that nodes derive their information based on outdated
information, we use an approach in which we do not assume information to be
valid forever, without reconfirmation, but where received information from an
outbound neighbour has a limited validity interval. This validity interval indicates
how long we trust the received information from outbound neighbours to be valid.

Nodes should regularly check their locally collected outbound neighbour in-
formation to detect changes in the network metrics. It should not only be done

24 Section 2.2: Network Metric Estimation

to check new minimum-cost information after received updates, but also to deter-
mine whether information is still valid. Assuming that the processor time is not
a significant part in the overhead, nodes can check, and update the minimum-
cost path information if needed, at a regular and short interval, say one second.
Algorithm 2 shows the pseudo-code to estimate the required network QoS infor-
mation, i.e., the cost of the minimum-cost path, myCost , and the parent on this
path, myParent . We refer to the information of the set of outbound neighbours,
collected by Algorithm 1, as myOut(id , pathCost , lastUpdate). For every out-
bound neighbour o ∈ myOut, o.id is the unique identifier of the node, o.pathCost
is the cost of using this neighbour to communicate to the sink, and o.lastUpdate
is the time at which the cost information is updated. Initially, we set tempo-
rary values to an extreme value (line 1). We iteratively find the minimum-cost
outbound neighbour by checking whether the cost of a valid neighbour is lower
than the currently known minimum. A neighbour is valid if the last update of the
neighbour is at most as long ago as the defined validity interval, validityInterval ,
(lines 2 and 3). The cost and parent estimates of the node are set to the minimum
found, so far (line 4 and 5). If the neighbour is not valid anymore it is removed
from the set of outbound neighbours (lines 6 and 7). Finally, the minimum-cost
and parent are estimated to be the found minimum (line 9).

2.2.5 Generalization
We discussed a particular instance of our service, where local estimates and link-
costs are propagated to inbound neighbours, over multiple hops if needed, to
provide them with sufficient information to locally determine the minimum-cost
path. The service can be generalized at several levels, using different link quality
metrics, using different definitions of path cost and entirely different network
metrics from the class defined by Equation 2.3.

Our service is independent of the used cost function and the chosen LQE. In
this section, we focused our discussion on LQEs which determine quality by re-
ceived packets, which make up the majority of well-known and most used LQEs.
For LQEs which are based on transmitted packets, such as the Required Num-
ber of Packet transmissions (RNP) [9], nodes can locally determine the cost to
communicate to their outbound neighbours. The controlled n-hop forwarding ap-
proach is still required to overcome asymmetric links and communicate the node’s
cost value, but nodes do not need to communicate their inbound neighbour’s id
and link-cost.

The service can furthermore easily be instantiated to work with path-costs to
multiple reference nodes, by adding the minimum-cost to each of the reference
nodes to the packet. Note that other information, such as the link-cost of the
inbound neighbours, remains the same, which makes this service scale efficiently
to multiple reference nodes. Additional information about the minimum-cost
path can be added, such as the complete set of nodes on the minimum-cost path,
which may be of interest to routing protocols. In that case, every node should

Chapter 2: Distributed Estimation of Network Metrics 25

communicate the unique identifiers of all the nodes on its own minimum-cost path
to its inbound neighbours as well.

Besides its generality for the problem of maintaining minimum-cost path in-
formation, we can further extend the applicability of our service to distributed
maintenance of other network-level properties that fit the pattern of recursive
distributed calculation of Equation 2.3, on the condition that one can show its
convergence and stability. The latter is discussed in the next section. In Chapter 3
the service is used for distributed decision making for run-time reconfiguration.
The service estimates both the maximum-cost for a node to reach the sink using
any of its routing parents and information about the lifetime of all nodes on the
maximum-cost path. Other examples would be the estimation of the maximum
residual energy of any of the nodes in a cluster, the reachability of services pro-
vided by specific nodes in the network or deriving information on connectivity to
other nodes or clusters in the network. The main difference between estimating
the different network-level properties is the metric information that needs to be
disseminated to allow a local estimation.

2.3 Convergence and Stability
Our service is based on continuous distributed updating of a recursive equation.
Nodes update their local estimates based on updates from their neighbours which
they receive asynchronously. To ensure that the service indeed computes the
intended function, we have to show that the distributed update calculations con-
verge to the desired solution of the equation characterizing the network metric
values. Convergence arguments assume that the input to the problem, the val-
ues x̄(i) and z̄(i) of Equation 2.3, do not change over time i. In any practical
scenario, however, this assumption is not satisfied. Therefore, there will typically
not be convergence to a single, constant solution. We want, besides convergence
of the equation with fixed input, to enforce that the approach is stable, i.e., small
changes in the input, do not result in large variations in the estimates. In this
section, we discuss the requirements for our service to converge and provide a
convergence argument, followed by a discussion on the stability of our approach.

Any suitable fixed-point theorem (e.g., Kleene, Banach) [25] or stability the-
orem (e.g., Lyapunov) [31] can be used to demonstrate that a synchronous cal-
culation according to Equation 2.3 converges to a designated fixed point. Such
theorems essentially show that the distance to the fixed-point solution, measured
in some suitable metric, converges to zero. In WSNs, local updates take place
asynchronously, even in synchronized WSNs, due to the unreliable wireless chan-
nel used for communication. As a consequence, we cannot make assumptions
on the order in which information from neighbouring nodes is received and ap-
plied. Therefore, our service falls in the class of asynchronous distributed iterative
processes. Convergence of such processes has been studied among others in [3, 4].

An individual asynchronous update of a local estimate does not by itself nec-

26 Section 2.3: Convergence and Stability

essarily make the distance to the fixed-point solution measurably smaller, but a
collection of updates including all nodes should. Essential for proving the conver-
gence of asynchronous processes is the notion of an iteration. The sequence of all
updates of local estimates is partitioned in subsequences in which every node up-
dates itself at least once. Such a subsequence is called an iteration. Convergence
is proven by first of all showing that every iteration has a finite duration. We
assume that, with the stochastic process of sending packets over the communica-
tion channels in the WSN, every node will eventually receive updated information
from all the required nodes. If not, convergence might still be achieved in practice,
but cannot be guaranteed.

Besides having a finite duration, every iteration should bring the set of es-
timates known by the nodes, x̄(i), significantly closer to the final fixed-point
solution, such that the error between the set of estimates and the final solution
goes to 0. We can define a metric e(i) that defines the error between the set of
estimates and the final solution at time i. It is equal to 0 if and only if the set
of estimates of the nodes are equal to the fixed-point solution of Equation 2.3.
The following equation expresses the difference of the error between subsequent
iterations.

e(i+ 1) ≤ α · e(i) (2.5)

If we can show that α is smaller than 1, then the following equation holds, where
e(0) is the initial sum of errors in the network.

lim
i→∞

e(i) ≤ lim
i→∞

αi · e(0) = 0 (2.6)

With an error that goes to 0, every iteration brings the estimates by the nodes
significantly closer to the final fixed-point solution and convergence to the fixed-
point solution is shown.

The selection of metric e(i) and proving that Equation 2.5 holds for α < 1
depends on the selected function, Cn. We illustrate the process for the service
estimating the maximum value in the network. Informally the argument goes as
follows. Initially, there is (at least) one node which has the maximum value in
the network. By the definition of an iteration, the shortest distance between the
nodes that are unaware of the maximum value in the network and the closest
node that is aware of this value decreases every iteration by at least one hop.
At least one node previously unaware of the maximum has the correct maximum
after every iteration. This reduces the total error of the estimates from the actual
maximum until all nodes are aware the maximum. Metric e(i) can in that case be
defined as follows, where xn(i) is the local estimate of node n at time i, where n
is from the set of all nodes N and 0 ≤ n < |N |, and Lmax is the maximum value
in the network.

e(i) =

|N−1|∑
n=0

(Lmax − xn(i)) (2.7)

Chapter 2: Distributed Estimation of Network Metrics 27

If e(i) = 0, then the estimates of all nodes are equal to the maximum value in the
network and vice versa. If e(i) > 0, then at least one node in each iteration goes
from a state in which xn(i) 6= Lmax to xn(i+ 1) = Lmax. The difference between
xn(i) and xn(i+ 1) for this node is at least |Lmax − Lmax2 |, where Lmax2 is the
second highest value originally in the network. (Note that Lmax2 exists unless
convergence has already occurred.) Then the following equation holds.

e(i+ 1) ≤ e(i)− (Lmax − Lmax2
) (2.8)

To determine for which α Equation 2.5 holds, we first rewrite Equation 2.8:

e(i+ 1) ≤ e(i) ·
(

1− Lmax − Lmax2

e(i)

)
(2.9)

In the worst-case, the (absolute) difference between the estimate of a node and
the maximum value is Lmax. Given that e(i) ≤ |N |Lmax, we rewrite Equation 2.9
to:

e(i+ 1) ≤ e(i) · |N |Lmax − Lmax + Lmax2

|N |Lmax
(2.10)

We have shown that α is equal to
|N |Lmax−Lmax+Lmax2

|N |Lmax
, which is always smaller

than 1. The recursive equation converges and the estimates of all nodes will
eventually become equal to the maximum value in the network.

For showing the convergence of the periodic maximum estimation, the same
reasoning can be used. The main difference is the period in which the convergence
can be achieved. For periodic convergence, the speed of convergence should be
sufficiently high to converge within the given period. A similar reasoning can
also be applied to show convergence of estimating the minimum-cost path, where
in every iteration the distance from the sink to the nodes that have incorrect
estimates increases by at least one. For any node (directly or indirectly) connected
to the sink, the distance is finite and the correct value is obtained after a finite
number of iterations. Note that local estimates might also (correctly) converge to
infinity in the case there is no (multi-hop) connection to the sink, as the absence
of a connection to the sink may cause cyclic dependencies and nodes repeatedly
increasing their minimum-cost estimate.

Besides convergence, we want to show stability. Stability follows directly from
the convergence argument we provided, as the steps in the distributed update
do not enlarge the distance to the fixed point of Equation 2.3 being estimated.
This is visualized in Figure 2.5 for the estimation of the maximum value in the
network. The solid line shows the maximum value in the network, and the dashed
line is the local estimate of the maximum for a given node. As shown before, the
estimate will converge to the actual maximum. At time t the maximum in the
network changes due to one or more dynamic events. The discrepancy between
the estimate and the maximum does not become more than the difference between
the new and old maximum. It directly starts to converge to the new maximum,
resulting in a stable iterative estimation.

28 Section 2.4: Performance Evaluation

0

Network maximum
Local estimate

t time

va
lu
e

Figure 2.5: Stability of local estimates

2.4 Performance Evaluation
In this section, we evaluate the performance of our service. In Section 2.4.1, we
discuss the parameters of our service and provide insights on how to parameterize
the service based on the deployment characteristics. For this we use experience
with extensive simulations and actual deployments. In Section 2.4.2, the perfor-
mance of the service is evaluated for a typical WSN deployment and compared
to the local broadcasting approach with the use of extensive simulations. Simu-
lations allow us to do fast performance analysis of large deployments for various
different parameter settings. Simulations furthermore allow us to control and
replicate the environment to fairly compare and stress-test the two approaches.
With the design of our service we kept in mind an easy integration into existing
and new WSN deployments. In Section 2.4.3, we discuss the integration of our
service in an actual test-bed deployment for two different applications with differ-
ent kinds of protocol stacks and network metric information to estimate. While
this actual deployment makes it harder to compare two approaches, as interfer-
ence and mobility patterns are hard to replicate between experiments, it gives us
insight in the feasibility of using our service in practice.

2.4.1 Setting the Service Parameters
As discussed in the previous section, our service has several parameters making
it flexible for integration into a given WSN deployment.

First, the number n of hops to forward is a parameter that is set based on the
connectivity structure of the network and amount of asymmetry in the network.
In the example of Figure 2.4, increasing n from one to two increased the accu-
racy, but from two to three no further increase is observed. At design-time we can
get a good idea about the connectivity structure and the number of hops needed
to communicate to inbound neighbours by looking at the (worst-case) difference
between transmission range and the potential locations of nodes. In [14], it is
observed that forwarding the information over one or two hops is enough to over-
come the asymmetry in typical deployments. Also for the performed simulations

Chapter 2: Distributed Estimation of Network Metrics 29

and experiments we observed that a number of hops larger than two does not
significantly increase the accuracy of the maintained network metric information.

Second, we set the update interval at which inbound neighbours are informed,
and the related validity interval of received network metric information, according
to the amount of dynamism in the network. The update interval should be selected
to be at most the validity interval to avoid that nodes frequently assume to have
no valid information. To take packet-loss into consideration within the service, we
can furthermore set the update interval such that the nodes are updated multiple
times within the validity interval. The update interval parameter is found to be
the main driver for the trade-off between accuracy and overhead of the service.
Setting the value of the parameter is guided by the amount of dynamic changes
of the link quality. While external interference impacts the link quality over time,
we see from experience, that the speed of mobile nodes is the most important
source of fast dynamic changes to the link quality requiring an adaptation of
the estimated network metrics. Currently, our service is found to be very well
applicable for the speed of mobility that is typically found in WSN used for
monitoring of, for example, persons or animals (see next section), which make
up many of the current WSN deployments. Responding to very high dynamics
requires a very short update interval to provide accurate network metric values,
resulting in a potentially large overhead of our service or any other approach
to estimate network metrics locally. The amount of overhead allowed should be
at least the overhead needed for the service to provide the required estimation
accuracy. The practical use of network-level information, such as the minimum-
cost path, in relatively high dynamic networks is questionable, and currently not
the focus of our service.

Because the service depends on estimates of the underlying LQE, its accuracy
is also influenced by the responsiveness and accuracy of the LQE [2]. The respon-
siveness influences how quickly changes in the link quality are observed by the
LQE, after which it can be disseminated by the service. From our experience we
found that the common time windows for averaging link quality introduces a lag
and results in a trade-off between the responsiveness and accuracy of the LQE.
The accuracy of the LQE is found to be an important and non-trivial aspect in the
complete solution of maintaining accurate network metric estimates. Additional
experiments are needed to explore this trade-off.

2.4.2 Simulation Results
We implemented both the local broadcasting approach and our generic distributed
service as a separate module in OMNeT++ [44], a discrete-event simulation envi-
ronment, with the use of MiXiM [37], a modeling framework created for static and
mobile wireless networks. For the simulations of this section, we instantiate both
the local broadcasting approach and our service to derive the cost and parent of
the minimum-cost path, as defined by Equation 2.4. For the service, we fixed
the validity interval to be two times the update interval. The network metric

30 Section 2.4: Performance Evaluation

is estimated every second based on the locally available information. Simulation
results in this section show both the accuracy of estimated information and its
resulting impact on a minimum-cost routing protocol relying on this information.

We focus on a WSN scenario in which several mobile nodes move through
an area covered with static nodes. We consider a network with a hundred static
nodes positioned in a grid-like fashion with ten meters between them. There are
ten mobile nodes that repeatedly move at walking speed (2 m/s) to a random
location in the 100 by 100 meter area and stay at this location for a random
amount of time, complying to the Random Waypoint Mobility model [23]. At an
interval of one second the mobile nodes send a single packet to the sink, which is
located at the left upper side of the static grid of nodes. The transmission power
of the static nodes is selected to be −5 dBm, which represents a transmission
range of around 12 meter for the used model, allowing the nodes in the grid to be
connected to their direct neighbours. The mobile nodes have a lower transmission
power of −15 dBm with a range of around 7 meter, which is enough to reach at
least one node in the static grid. The fact that static and mobile nodes have
different transmission powers results in communication links with asymmetric or
even unidirectional quality. Due to the mobility of the nodes, the link qualities
and connectivity change over time, resulting in time-varying minimum-cost paths.

The nodes used in the simulated WSN are modeled to have the characteristics
of the popular TelosB nodes [68]. The MAC protocol used by the nodes is the
non-beacon IEEE 802.15.4 protocol without acknowledgments, as provided in
the MiXiM framework. We furthermore implemented a simple minimum-cost
routing protocol, which uses the parent on the minimum-cost path for forwarding
application packets. The goal of this routing protocol is to minimize the packet-
loss, i.e., to reduce the percentage of application packets that do not arrive at
the sink. Assuming single-link transmissions are independent, the probability
of successful delivery is easily calculated by the product of the probabilities of
successful transmission over all links on the path. For the simulations we require
an accurate estimator for the cost of individual links. The average observed Bit-
Error-Rate (BER) received in the last number of seconds equal to the validity
interval is found to result in a good estimation of the cost for the used scenario
model. The BER is a function of the receiver Signal-to-Noise Ratio (SNR), which
is a hardware LQE integrated in the TelosB CC2420 chip-set.

For a single experiment, every mobile node sends 10, 000 messages to the sink.
The nodes start sending packets after an initialization phase, in which nodes
initialize their minimum-cost path information. The measured experimental data
is collected after the initialization until the nodes have sent all their messages
to the sink. To have statistically more reliable results, every experiment was
repeated 10 times and shown results are the average over all runs.

By simulating the above scenario, we observe the cost of the minimum-cost
path derived with both the local broadcasting approach and the service, and
compare it with a simulated oracle that computes the actual minimum cost. With
this knowledge, we derive an error for every node by averaging the absolute error

Chapter 2: Distributed Estimation of Network Metrics 31

0 5 10 15 20 25 30 35 40 45 50 55 60
Interval (s)

0

2

4

6

8

10

12

14

16

E
rr

or
 (

%
) Local broadcasting

Service n=1
Service n=2
Service n=3
Service n=4

Figure 2.6: Impact of approaches on the error between estimated and actual
minimum-cost

between the derived and actual minimum-cost over time. Figure 2.6 shows the
average of this error for the ten mobile nodes for different intervals at which the
nodes inform neighbouring nodes, i.e., the update interval. We also vary the
number of hops used for n-hop forwarding.

The error of the local broadcasting approach is significantly larger than the
one for the service, independent of the chosen interval and number of hops. This
shows that explicitly considering the presence of asymmetric links, compared to
assuming links to be symmetric, has a large impact on the accuracy of the esti-
mates. We also see that reducing the interval at which information is distributed
has a positive effect on the error as the maximum time during which wrong infor-
mation is used is reduced. For the chosen scenario, increasing the number of hops
for n-hop forwarding increases the accuracy, but the effect is found to be much
less than the increased accuracy of taking asymmetry into account.

The main purpose of the service is to provide accurate information to the pro-
tocols that rely on this information. Our routing protocol depends on the parent
derived from the knowledge of the minimum-cost path, to minimize the packet-
loss. It is expected that when the accuracy of the cost derivation is increased,
the packet-loss will reduce as the parent on the path is more accurately chosen.
In Figure 2.7, we can see the results of the average end-to-end packet-loss of the
ten mobile nodes while varying the parameters of the derivation approaches. As
expected from the accuracy results of Figure 2.6, we see that the service results
in a much lower packet-loss, independent of the chosen parameters. While the
accuracy is invariably increased by reducing the update interval and increasing
the number of hops, we see that the packet-loss shows an optimum parameter
value, below which the packet-loss increases again. For this deployment, reduc-

32 Section 2.4: Performance Evaluation

0 5 10 15 20 25 30 35 40 45 50 55 60
Interval (s)

0

20

40

60

80

100

P
ac

ke
t-

lo
ss

 (
%

)
Local broadcasting
Service n=1
Service n=2
Service n=3
Service n=4

Figure 2.7: Impact of approaches on packet-loss

Table 2.1: Number of packets per update interval

Local broadcasting Service n = 1 n = 2 n = 3 n = 4
1 1 4.5 11.8 18.2

ing the update interval to lower than 10 seconds increases the packet-loss even
though the error is reduced. The same holds for increasing the number of hops.
The packet-loss has a minimum when the number of hops is 2, above which the
packet-loss is increased. These effects can be observed better in Figure 2.8, where
we plot the average packet-loss versus the number of hops for the ranges of in-
terest. These effects can be explained by the fact that the interference caused
by the increased overhead of the service outweighs the benefit of the (here small)
increase in accuracy for the simulated scenario.

Both increasing the number of hops and reducing the interval increases the
number of packets a node needs to handle. In Table 2.1, we show the average
number of packets per update interval for the given scenario. From these numbers,
we see that the number of packets is increasing with the number of hops traveled
as expected, due to an increased number of neighbours for which information
needs to be forwarded.

What we have observed from these simulations is that the service can sig-
nificantly increase the accuracy of the maintained minimum-cost path and the
efficiency of the protocol relying on this information at the expense of an amount
of overhead. With (repeated) local broadcasting, accuracy is low and the routing
protocol depending on minimum-cost path information lost more than 70% of the

Chapter 2: Distributed Estimation of Network Metrics 33

1 2 3 4
Number of hops

10

15

20

25

30

35

40

P
ac

ke
t-

lo
ss

 (
%

)

Update interval=1
Update interval=10
Update interval=20

Figure 2.8: Trade-off between accuracy and overhead

packets. We furthermore observed that at some point of the parameter settings,
the accuracy of the service may still increase, but the induced overhead reduces
the efficiency of the protocol. Depending on the packet-loss allowed by the ap-
plication, the overhead can easily be reduced by lowering the update interval or
number of hops to forward at the cost of only a slight increase in packet-loss.
Finally, it is important to note that the amount of overhead as introduced by
our service compared to the local broadcasting approach is inevitable when a lo-
cal broadcasting approach does simply not suffice to provide sufficiently accurate
information.

2.4.3 Experiments With Actual Deployments

We implemented both the local broadcasting approach and our generic distributed
service as a separate module for TinyOS 2.1 [70]. We discuss the results of in-
tegrating our service for two applications using an actual deployment. These
applications differ in both the protocol stack used and the network metric needed
to be estimated by the service. For the first application, the service is used to
derive minimum-cost path information similarly as done for the simulations. The
ability of our service to provide accurate estimates to a minimum-cost routing
protocol is analysed and compared to the local broadcasting approach. For the
second application we take a brief look ahead to the distributed run-time QoS
provisioning approach as introduced in Section 3. The service is used to provide
several estimates of network metrics allowing nodes to make distributed decision
on adapting controllable parameters.

34 Section 2.4: Performance Evaluation

Figure 2.9: Experimental deployment of the 15 static TelosB nodes, monitoring
4 mobile BSN nodes

Minimum-cost routing We experimented with our service and the currently used
local broadcasting approach for a dynamic heterogeneous WSN deployment in
our office building. Four persons, employees, are equipped with a BSN node [8],
which has a similar design as a TelosB node, but has a smaller form-factor and an
integrated accelerometer, making them ideal as mobile nodes. These mobile nodes
communicate packets with a payload of 32 bytes to a sink PC at a rate of 1 every 5
seconds making use of a static network consisting of 15 TelosB nodes covering the
areas of interest for the four monitored employees. We selected the transmission
powers of the nodes to be −15 dBm, which allows a reasonable distance between
the nodes while it is still low in order to preserve energy spent by the radio. As
the antenna characteristics, e.g., size and sensitivity, differ between the BSN and
TelosB nodes, the maximum transmission range of a node depends on the type
of nodes involved in the communication. The observed maximum transmission
range from a TelosB to TelosB node is around 13 meter while being 7 meter from
TelosB to BSN. The maximum range of a BSN node communicating to a TelosB
node is observed to be around 3 meter. The TelosB nodes are deployed such that
the maximum distance between a mobile and static node is at most 2.5 meter in
the areas where we monitor the employees, allowing every mobile node to be able
to directly communicate to the static network. The resulting deployment set-up
is shown in Figure 2.9.

We implemented and used the same protocol stack as used for the simulations,
i.e., the IEEE 802.15.4 MAC without acknowledgments and a simple minimum-
cost routing protocol. We fixed the validity interval of outbound neighbours to
be two times the update interval. Nodes estimate network metric information
every second. Again, our goal is to minimize the packet-loss of the packets sent
by the mobile nodes. After several small-scale experiments we found the average
RSSI value of the packets received in the last interval of time equal to the validity
interval to be a good indication of the link quality. It shows a good correlation

Chapter 2: Distributed Estimation of Network Metrics 35

0 5 10 15 20
Update interval (s)

0

20

40

60

80

100

Pa
ck

et
-lo

ss
 (%

)

Using local broadcasting
Using service

Figure 2.10: Impact of two approaches on packet-loss

with the packet-loss, as also observed in [56].

For a single experiment we let the mobile nodes send packets to the sink for
half an hour after. They start after an initialization phase allowing all nodes
to initially derive their parent. During the experiment the mobile nodes move
through the building based on typical daily activities of the employees, i.e., work
in an office, gather at the meeting areas and walk between these areas. We
tried to replicate the mobility pattern between experiments as good as possible.
After every experiment every node sends packets with statistical information for
performance analysis to the sink PC. The number of controlled flooding hops
used by the service for the shown results is 1. For the experiments done with a
higher number of controlled flooding hops we have seen no significant improvement
and even observed slight increase in packet-loss as well. This is because, for
the asymmetry as observed in this deployment, we see that one hop is typically
sufficient to receive a packet from the parent on the minimum-cost path; multiple
hop forwarding gives only a very limited improvement (similarly as observed in
the simulations). In some cases, this limited improvement might not be enough
to compensate for the increased negative impact of, for example, an increased
packet load.

Figure 2.10 shows the resulting average packet-loss observed in our experi-
ments with the two minimum-cost path estimation approaches while varying the
update interval. For both approaches the packet-loss is fairly high. This mainly
has to do with the chosen protocol stack. We have chosen to focus on a simple
protocol stack that lacks robustness to packet-loss as only a single path to the
sink is considered and no acknowledgment approach is used (as this should also be
adapted to deal with asymmetric links). Even though the packet-losses are high,

36 Section 2.5: Related Work

for the current experiments we clearly see an improvement in the average packet-
loss, up to around 20%, when using our service compared to the local broadcast
approach. This is because our approach takes link asymmetry into account.

Quality-of-Service provisioning In Chapter 3, our service is used to support a dis-
tributed run-time QoS provisioning approach. Estimates of several network met-
rics are used to locally decide on whether and how controllable parameters should
be adapted in order to provide a required network QoS. Experiments are done
with the same set-up as used for the minimum-cost routing scenario (Figure 2.9),
but a completely different protocol stack is used. Chapter 3 discusses in detail
how to instantiate the service for the purpose of QoS provisioning and the result-
ing efficiency of QoS provisioning. For now we want to take a brief look ahead and
mention the main conclusion of the chapter; the QoS provisioning approach allows
a more efficient provisioning of QoS compared to typical alternative configuration
approaches, by exploiting additional network metric information. Experiments
show that the maximum packet-loss in the network is kept at the required level,
while a significant improvement of network life-time is achieved. As the additional
network metric information is provided by the service, these results illustrate the
successful integration of the service in the given protocol stack.

2.5 Related Work
Wireless sensor networks cooperate in a distributed fashion. Local estimates of
the performance of other parts of the network is commonly required by (commu-
nication) protocols. Estimating network metrics is also referred to as setting up a
cost field [79] or gradient field [17, 24, 80]. For the distributed estimation, nodes
broadcast information to inform neighbouring nodes, also referred to as ‘interests’
[24] or ‘advertisements’ [80].

Directed Diffusion [24] forms the basis of many routing protocols. Sinks repeat-
edly broadcast packets indicating its interest for data. Nodes receiving interests
maintain a list of gradients, where the gradient direction is toward the neighbour-
ing node from which the interest is received. Given a criterion to determine the
usefulness, or cost, of a gradient, one or more neighbouring nodes are used to
route data to the sink. The Collection Tree Protocol (CTP) [17] uses expected
transmissions (ETX) as its routing gradient. A root has an ETX of 0. The ETX
of a node is the ETX of its parent plus the ETX of its link to its parent. The
ETX value is communicated using periodic sending of control beacons. A node
selects its parent based on the lowest ETX received. Gradient Based Routing [54]
lets nodes broadcast their hop-count and nodes, in an iterative fashion, determine
their hop-count based on the lowest hop-count received from neighbouring nodes.

With these local broadcasting approaches, nodes broadcast their cost and
nodes estimate their own cost based on all received cost information. In the pres-
ence of communication links with asymmetric quality, caused by heterogeneity in

Chapter 2: Distributed Estimation of Network Metrics 37

the network, a broadcast might not be sufficient to efficiently communicate re-
quired information to neighbouring nodes. Several solutions have been proposed
to deal with specific problems related to asymmetric links in particular protocols
outside the context of network metric estimation. The majority of protocols ig-
nores them altogether [77]. It is desirable to exploit asymmetric links both for
performance and for basic connectivity of wireless networks [53]. To be able to
communicate in the presence of asymmetric links, a technique to relay [14] infor-
mation around these asymmetric links, by using limited forwarding over multiple
hops, can be used. As part of our service, we use a controlled version of this
n-hop forwarding where already forwarded packets are not forwarded again to
avoid extensive packet forwarding.

Dynamism affects the accuracy of the currently collected information from
neighbouring nodes. The information might change or the neighbouring nodes
might not be present anymore. Repeatedly updating information, and validity
management of received information, is needed to ensure nodes use accurate in-
formation for their estimation. From the frequency at which updates are done we
get a trade-off between the accuracy of the locally available information and the
overhead of information communication. Current local broadcasting approaches
typically broadcast at a given fixed interval and do not consider an outdating strat-
egy, but only update estimates as soon as information for neighbouring nodes is
received. Approaches that use an outdating strategy, such as CTP, do not explic-
itly consider the trade-off between accuracy and overhead. With our service we
explicitly consider this trade-off. Our service uses a repeated update of informa-
tion at a given interval and explicitly manages the validity of received information,
and estimates the network metrics accordingly. By setting the update interval,
we adapt the service to the dynamic characteristics of the considered network.
We explore the trade-off with extensive simulations and an actual deployment.

Our work differentiates itself from related work by being a generic service that
combines n-hop forwarding and explicit information validity management. It can
be instantiated for a wide range of metrics to efficiently provide estimates in dy-
namic heterogeneous WSNs. We furthermore explicitly consider the convergence
and stability of our service and explore the trade-off between the accuracy and
overhead of network metric estimation.

Alternative to our service are gossiping protocols [20]. In a simple gossip
protocol, each node periodically and randomly selects a neighbouring node with
whom it exchanges recently observed information. Gossiping can be used for
solving consensus problems. Our service can also be instantiated for consensus
problems, but is more broadly applicable as it can be used to derive network metric
estimates different and dynamically changing for every node in the network, such
as the minimum-cost of a path.

38 Section 2.6: Summary

2.6 Summary
In this chapter, we have introduced a generic distributed service that allows
nodes to accurately estimate network metric information in dynamic heteroge-
neous WSNs. The service can be instantiated by defining a recursive local update
procedure that converges to a fixed point representing the desired metric. We
have shown how stability and convergence of instantiations of our service can be
shown. The service allows nodes to use controlled n-hop forwarding to communi-
cate information across asymmetric links in heterogeneous networks. To maintain
accuracy after dynamic events, the information dissemination and updates of esti-
mates are repeated at a given interval to provide nodes with up-to-date estimates.

The design and flexibility of our service allow it to be easily integrated into
existing and new WSN protocols and deployments. We provided insight on the
characteristics of a deployment that impact the accuracy of derived minimum-cost
path information and the overhead of the service. We furthermore discussed how
to set the parameters of the service accordingly. With extensive simulations and
experiments with actual deployments, we explored the impact of the parameters
on the trade-off between the accuracy and overhead of the service. Simulations
and experiments show a significant increase in accuracy of the estimated network
metric information and efficiency of the protocol using this information compared
to the typically used local broadcasting approach. We showed the feasibility of
our service to be integrated in various protocol stacks providing different kinds of
network metric estimates.

Chapter 3

Re-active Reconfiguration

By instantiating our generic distributed service, we are able to provide nodes with
estimates of the network QoS that is of interest for QoS provisioning. Every node
can thereby locally verify whether sufficient QoS is provided by the network. If
not, a run-time reconfiguration strategy is needed to restore QoS.

In this chapter, we propose a distributed re-active run-time reconfiguration
approach that actively maintains a sufficient QoS at run-time for a heterogeneous
WSN in a dynamic environment. Every node uses a feedback control strategy
which repeatedly compares the currently estimated and required QoS of the net-
work. To resolve an observed difference, nodes react by adapting controllable
parameters of the protocol stack, such as the transmission power and maximum
number of packet retransmissions. Models are used, and maintained at run-time,
to predict the impact of adapting parameters on the QoS.

In Section 3.1, we formalize the goal of QoS provisioning, present an exam-
ple to show the need for a reconfiguration approach, and examine the required
functionality of a re-active mechanism. It furthermore introduces terminology
used throughout this chapter. In Section 3.2, we introduce our distributed run-
time re-active reconfiguration approach. Section 3.3 states how we instantiate
our generic distributed service allowing nodes to estimate the node and network
QoS information needed to support our approach. In Section 3.4, the results of
simulations are discussed. Extensive simulations are used to evaluate the accu-
racy of our re-active reconfiguration approach and give insight in its convergence
and stability. Section 3.5 discusses the results of the integration of our approach
for an actual monitoring scenario. This shows the feasibility of implementing the
approach on resource-constrained nodes. It also shows that, compared to current
(re-)configuration approaches, our approach is able to achieve a more efficient QoS
provisioning, in this case provide the same packet-loss behaviour with a longer
network lifetime. In Section 3.6, we discuss related work. Section 3.7 concludes.

39

40 Section 3.1: The Goal of QoS Provisioning

3.1 The Goal of QoS Provisioning
In this section, we discuss the goal of a re-active run-time reconfiguration ap-
proach for QoS provisioning in a dynamic heterogeneous WSN. In Section 3.1.1,
we formalize the task of QoS provisioning. We introduce the terminology used
throughout this chapter in Section 3.1.2. Section 3.1.3 illustrates the desired func-
tionality of the reconfiguration approach to achieve the goal of QoS provisioning
using an example.

3.1.1 QoS Provisioning
The WSN should provide sufficient QoS to successfully perform the task speci-
fied by the end-user. The performance of individual paths in the network is an
important performance aspect in WSN. It influences the properties of its main
task; communicating packets over a path to one or more sinks. Constraints on
the mostly used network QoS metrics, such as end-to-end latency and end-to-end
packet-loss, are path-based. For example, a maximum end-to-end latency of ev-
ery packet of at most 1 second can be achieved by ensuring that the end-to-end
latency of every path is at most 1 second. With our reconfiguration approach we
aim at network QoS constraints that are defined in terms of the performance of a
path, or can easily be translated to the required path QoS. This enables efficient
distributed reconfiguration, as explained in more detail throughout this chapter.

The configuration of the network, i.e., parameter values of the controllable
parameters for every node, should establish that the current constraints are met,
while the QoS objectives are optimized. Non-conflicting optimization objectives
can be optimized simultaneously. When they are conflicting, we assume a cost
function is provided to state the relative importance between the conflicting ob-
jectives. At least one configuration meeting the constraints is necessary for a
reconfiguration approach to be an effective solution for maintaining network QoS.
If no such configuration exists, reconfiguration aim at providing the best possible
network QoS where the values of constrained metrics are as close as possible to
the constraint. Until a configuration is available to provide sufficient network
QoS, it cannot be avoided that the network to be (temporarily) not satisfying the
expectations of the end-user. If such a situation persists, solutions outside the
area of reconfiguration, e.g., adding more nodes or changing the protocol stack,
may need to be applied.

If controllable parameters are available that influence only a single constrained
metric, finding a configuration meeting the current constraint is fairly straightfor-
ward. Values of the parameters can be set to the best possible value without any
concern of the other QoS metrics. In practice, we often see trade-offs when adapt-
ing parameters. We assume that the configuration of the network involves setting
one or more controllable parameters that result in trade-offs between one or more
contained metrics and the optimization objective. For example, increasing the
transmission power of a node may reduce the latency to communicate a packet

Chapter 3: Re-active Reconfiguration 41

to a particular node, but requires more power and thereby reduces the lifetime of
the node. Given this trade-off, the configuration should be selected such that a
constrained metric, for instance latency to any of the sinks, does not only meet
the constraint, but also is close to the constraint to allow freedom to optimize
the objective, say maximize the lifetime. In practice, we furthermore see that the
QoS metric value of a path, such as the latency to the sink, cannot be matched
perfectly with the constraint, due to the discrete nature of the parameters and
impact on the QoS metric. We therefore focus on keeping constrained QoS met-
rics between given lowerbounds and upperbounds, which we assume to be selected
such that lowerbound ≤ upperbound ≤ constraint (in case a lower metric value is
better). For QoS metrics where a higher value is considered better, such as deliv-
ery ratio, the same approach is taken with the obvious modifications. When the
interval between lower and upper bound is small and close to the constraint, small
deviations may directly violate the constraint. Infrequent and short violations of
the constraint may be tolerated in practice. The upperbound can be selected to
be lower than the constraint to provide a safety margin against violations of the
upper bound. However, a large margin reduces the freedom for trade-offs and
optimization. For our re-active approach, we assume the required lowerbound
and upperbound to be given. The selection of the lower and upper bounds for a
particular deployment, given the constraint, is outside the scope of this chapter.

In summary, our goal of QoS provisioning is defined as follows:

Definition 3. (QoS provisioning) The goal of QoS provisioning is to maintain
the values of all constrained metrics between the respective predefined lowerbounds
and upperbounds, while the QoS objectives are optimized.

3.1.2 Terminology
Figure 3.1 shows a simplified example of a WSN with 9 nodes. The directed edges
(both thin and thick) between two nodes represent the links that are actively
used to communicate packets, either processed by the node itself or required to
be forwarded, towards sink S. Some nodes send packets to multiple neighbouring
nodes. We assume a (loop-free) routing protocol to be available to select these
parents from all neighbouring nodes within a node’s transmission range. Due to
the broadcast nature of wireless communication, packets may be overheard by
nodes that are not acting as parent, but they are ignored and not forwarded by
such nodes. There are multiple paths to the sink present in the network.

Definition 4. (Path) A path is a sequence of nodes, n0 to nk, such that ni
communicates packets to node ni+1 for all 0 ≤ i < k.

For this example, we assume the latency of all packets sent to the single sink
(independent of the route taken) as a constrained QoS metric, and maximizing
the network lifetime to be the optimization objective. In this example, and the
rest of this thesis, we define the network lifetime as the time until the first node

42 Section 3.1: The Goal of QoS Provisioning

S A B

C D E

F G H

125ms,300h 350ms,100h

450ms,100h

1300ms,150h1050ms,400h600ms,350h

25
0m

s,
10
0h

125ms 225ms

25
0m

s
35
0m

s

15
0m

s

22
5m

s

500ms200ms

12
5m

s

40
0m

s

450ms 250ms

95
0m

s,
70
0h

Figure 3.1: Link and critical-path latency and expected remaining lifetime for
9-node sensor network

runs out of battery. Reconfiguration results in a trade-off between these two
metrics. The values next to a link show the latency of sending packets over the
link. The values next to the nodes show the latency of the node’s critical path
for the latency constraint, the latency-critical path, and the expected remaining
lifetime of the node in hours.

Definition 5. (Critical path of node ni for a given QoS constraint)
A critical path of node ni for a given QoS constraint is a path from node ni with
the worst value with respect to the constrained metric, e.g., highest latency to the
sink.

Every node has at least one critical path with respect to each of the constrained
metrics. If multiple critical paths exist, one is randomly selected to be the critical
path considered in the reconfiguration process. The thicker solid lines, in the
example of Figure 3.1, show the links that are part of a latency-critical path.
Node D has two neighbouring nodes, A and C, through which it sends packets to
the sink. Packets sent through node A have a latency of 250 milliseconds to arrive
at the sink, while through C it will cost 450 milliseconds. As a result, its critical
path is the path through node C. We want all of the critical paths to comply
with the constraint. As the latency can only increase with every additional hop,

Chapter 3: Re-active Reconfiguration 43

this is achieved by ensuring that all end-to-end critical paths comply with the
latency constraint. More specifically, for QoS provisioning we want the latency of
these end-to-end critical paths to be maintained between the respective predefined
lowerbounds and upperbounds.

Definition 6. (End-to-end critical path for a given QoS constraint)
An end-to-end critical path for a given QoS constraint is a critical path of a node
ni to sink s, where ni is an end node of the critical paths, i.e., ni has no inbound
neighbours for which ni is part of their critical path.

There are three end-to-end critical paths (for the latency constraint) in Fig-
ure 3.1 with end nodes B, E and H. Every end-to-end critical path consists
of multiple nodes. Adaptation of a node influences its own remaining lifetime
and link-latency to neighbouring nodes and thereby the latency of all end-to-end
critical path(s) it is a part of. Note that nodes can be on multiple end-to-end
critical paths. Node C is on the end-to-end critical paths from nodes E and H to
the sink. As the path from node H has the highest end-to-end latency it is the
most important path to influence by adapting parameters, and defined to be the
end-to-end critical path of node C.

Definition 7. (End-to-end critical path of node ni for a given QoS
constraint) Given a QoS constraint, from all the end-to-end critical paths con-
taining ni, the end-to-end critical path of node ni is the one with the worst value
for the constrained metric, e.g., highest end-to-end latency to the sink.

Note that every node has an end-to-end critical path. If multiple paths have
the same value, one is randomly selected to be the path currently controlled by
our approach. The end-to-end critical path of, for example, node C for the latency
constraint starts from H and for nodes A and B, the end-to-end critical path is
from B to the sink.

Multiple nodes can share the same end-to-end critical path for a given QoS
constraint. These collaborating nodes are involved in adapting the same end-to-
end critical path and address the same goal of ensuring a satisfied QoS metric
constraint for this path.

Definition 8. (Collaborating nodes for a given QoS constraint) A set
of collaborating nodes consists of all nodes which share the same end-to-end critical
path for the given QoS constraint.

For every end-to-end critical path there is a unique set of collaborating nodes.
This set may only consist of one node. In our example, nodes A and B form a
collaborating set (for the end-to-end critical path from B), as well as D and E
(for E), and C, F , G and H (for H).

By the above definitions, the set of collaborating nodes either consist of all
nodes of the end-to-end critical path (for the end-to-end critical path from B and
H) or forms a subpath starting at the end node of the end-to-end critical path

44 Section 3.1: The Goal of QoS Provisioning

until the node that does not share the same end-to-end critical path (for the end-
to-end critical path from E, where node C does not share the same end-to-end
critical path with D and E). We additionally introduce the concepts of a critical
parent and critical child of a node. They are used later to distributively identify
collaborating nodes.

Definition 9. (Critical parent of node ni) Let the end-to-end critical path
of node ni consist of nodes n0 to nk. If ni 6= nk, the critical parent of node ni is
ni+1. If ni = nk then ni is the sink node and has no critical parent.

Definition 10. (Critical child of node ni) Let the end-to-end critical path
of node ni consist of nodes n0 to nk. If ni 6= n0, the critical child of node ni is
ni−1. If ni = n0 then ni is the end node of the end-to-end critical path and has
no critical child.

The critical parent of C is S and its critical child is F . Node B has no
critical child. Every node has at most one single critical parent and critical child.
While the critical parent is the parent through which packets are sent resulting
in the longest latency, the critical child is not necessarily the child from which
the packets with the highest expected end-to-end latency are received. Node E
receives packets from node H, but it has no critical child as these received packets
are not critical in the latency of H.

3.1.3 Running Example
Figure 3.1 shows the QoS of the network after one or more dynamic events.
For this example, we focus on a single trade-off between end-to-end latency and
network lifetime and intuitively show the difficulties and required functionality
of QoS provisioning in a dynamic heterogeneous network. Assume we want a
run-time reconfiguration approach to maintain the latency of all (end-to-end)
critical paths between the lowerbound of 900 milliseconds and upperbound of 1000
milliseconds, while we maximize the network lifetime.

Three situations can cause the goal of QoS provisioning not to be achieved
by the current configuration, i.e., one or more paths have (1) a latency higher
than the upperbound, (2) a latency lower than the lowerbound and lifetime of the
nodes on the path is not optimal, or (3) a latency within range, but the lifetime
of the nodes on the path is not optimal. In the example of Figure 3.1 there is an
instance of each of the three cases. With the local estimate of the latency of the
end-to-end critical path of node i, e2elati , node i can determine if its end-to-end
critical path is in one of these three cases. Each of these cases should be resolved
by the combined effort of collaborating nodes adapting their parameters. The
desired functionality of a node to establish this, is discussed next. For trade-offs
between other QoS metrics, a similar discussion holds.

(1) e2elati > upperbound. The latency of the end-to-end critical path from
node H to the sink is (much) higher than the upperbound . The error with respect

Chapter 3: Re-active Reconfiguration 45

to the required latency range is (1300 − 1000 =) 300 milliseconds. Having a
latency higher than the upperbound is often more harmful than a lower latency,
especially if this results in a latency constraint to be violated (think of the health-
monitoring example). Therefore, this is the first thing we want a reconfiguration
to resolve. Nodes on the path should collectively reduce the latency to solve the
error of 300 milliseconds by trading off a reduction in node lifetime (and thereby
potentially the network lifetime), for the reduction in end-to-end latency. Any
of the collaborating nodes, C, F , G and H, can adapt to achieve this. Since we
want to maximize the minimum lifetime over all nodes, it is preferred that nodes
with a longer remaining lifetime take a larger share of the trade-off compared to
the nodes with a lower lifetime. We, for example, want G to contribute more to
reducing the error than node H.

(2) e2elati < lowerbound and lifetime of the nodes on the path is not optimal
The latency of the end-to-end critical path from node B to the sink is (much)
below the lowerbound . The error is (350 − 900 =) −550 milliseconds. This
could signal an excessive use of power, with a negative impact on the lifetime.
Adaptations where lifetime is increased at the expense of a higher latency may
be possible. For the path from node B to the sink, nodes A and B can adapt and
relax their latency. It is preferred for the lower lifetime nodes, in this case node
B, to get the largest increase in lifetime.

(3) lowerbound ≤ e2elati ≤ upperbound, but the lifetime in the network is
not optimal. The latency of the path from E to the sink is within the required
bounds, but the lifetimes on the path are not balanced. This potentially causes
the maximization of the lifetime of individual nodes to be limited. Node E has a
significantly longer remaining lifetime than D, and they are collaborating nodes.
Node C, however, is not in the same collaborating set. It has more important
things to do, namely improve the latency from H, and should not take part in the
adaptation of the path from E to the sink. A better balancing between nodes D
and E would allow us to increase the lifetime of node D (while keeping the end-
to-end latency within the bounds). This could be achieved by node E reducing
its lifetime and latency, while node D reconfigures to increase its lifetime and
latency.

Note that the adaptation strategy is not based only on the current value of
the local latency to the parent. Instead of providing a good latency for every
hop independent of how much power (or lifetime) this requires, our strategy lets
nodes collaborate in a distributed fashion to reduce the error in latency, while
optimizing the lifetime of the entire network. Parameters are adapted based on
the effort (i.e., lifetime) already spent on providing a good end-to-end latency
compared to others. This results in a balancing of the effort.

The example suggests the network is in a static situation after some dynamic
events. In a real dynamic environment, these events continuously occur and adap-
tations have to be continuously made using estimates of the metrics. In the next
section, we detail how our reconfiguration approach is constructed using the strat-
egy explained above.

46 Section 3.2: Re-active Reconfiguration for QoS Provisioning

Configuration
manager

Predictive
models

WSN
Configuration

C
on

fi
gu

ra
ti

on

Current QoS

E
x
p

ec
te

d
Q

oS

Required QoS QoS error

Model
adaptation

+
-

Figure 3.2: Overview of feedback-control-based QoS provisioning approach

3.2 Re-active Reconfiguration for QoS Provisioning

Figure 3.2 shows a conceptual representation of our approach. The goal is to
match the current network QoS with the required QoS. The required QoS is in
terms of constraints and optimization objectives. The current QoS is defined by
the values of all the QoS metrics of interest. Based on the difference between the
current and required QoS of the network, a configuration manager determines a
new configuration of the network in order to bring the network QoS closed to
the required QoS. Using adaptive predictive models, of how different parameters
influence QoS, the new configuration is selected by adapting controllable parame-
ters. The new configuration influences the behaviour of the WSN and its provided
QoS. The QoS is again compared with the required QoS, closing the feedback loop.
Based on observations of the current QoS and QoS before reconfiguration, the pre-
dictive models are updated to match the current impact of parameter adaptation.
This results in a nested feedback control approach where both the configuration
and predictive models are dynamically adapted at run-time.

We want to achieve this (nested) feedback control in a fully decentralized,
distributed, manner. For this, we implement the feedback control strategy on
every individual node, adapting their own parameters. Adaptations are done
such that, together, the adaptations ensure network QoS. In theory, feedback
control is a continuous process. In practice, it is realized as a repetitive process.
The adaptation of parameters and observing the impact of reconfiguration takes
some processing time. Thus, nodes, at a given periodic interval, a round, perform
an iteration of the reconfiguration approach. As the overhead of comparison and
reconfiguration is typically low, we want to set the time between rounds to a
low value, for example one second. Note that this sets a maximum frequency
of reconfiguration, but does not imply that a node reconfigures every round as
this is determined by the actual error and speed, or loop gain, of the controller,
as explained later. Furthermore note that every node runs its own instance of
feedback control mechanism. In every round, a node decides on how to adapts its

Chapter 3: Re-active Reconfiguration 47

QoS estimates

Local impact
calculation

Required

Parameter

Predictive models

Current

Model adaptation

Re-active reconfiguration

configuration

New
configuration

Existing protocol stack

Radio

MAC

Routing

Distributed network and node QoS estimation

Current
adaptation

...

...

QoS

Restore
connectivity

accurate

!accurate

a
ccu

ra
te

Figure 3.3: Implementation of feedback control mechanism on a node

own parameters based on the locally estimated network QoS error, resulting in
a distributed adaptation of the network configuration when needed. Every node
has its own notion of a round and the beginning of a round does not need to be
synchronized. We do assume that the granularity of adaptation is similar between
nodes to avoid that some nodes wait unnecessarily long for other nodes to adapt
if possible. For the introduction of our controller, and the analysis done in this
chapter, we set the length of a round to the same, low, value for all nodes.

Figure 3.3 shows how the conceptual representation is translated to a practical
implementation running on all nodes. As a basis for the reconfiguration approach,
our distributed service (Chapter 2) is used to locally estimate the current network
QoS. For the discussion in this section we assume a service, instantiated to esti-
mate the required network QoS, to be available. The actual estimation of network
QoS, and additionally required information of the node QoS, is discussed in Sec-
tion 3.3. If the connectivity of the WSN allows for the distribution of information
to locally estimate network QoS, the service will provide accurate network QoS
estimates to a node. With accurate estimates of the current QoS, in every round,
nodes derive how far the current value of every constrained metric is from its
intended range. These errors should be resolved by the collaborating set, as ex-
plained in the previous section for the trade-off between latency and lifetime.
Multiple constrained metrics may be considered at the same time, which all could
have a value outside the desired range. This is discussed in Section 3.2.2. How
much a given node should exactly contribute to influence every constrained met-

48 Section 3.2: Re-active Reconfiguration for QoS Provisioning

ric is based on the error and the amount of effort spent by collaborating nodes.
If a node lacks connectivity to nodes essential for distributed network QoS esti-
mation, e.g., the sink, accurate estimates cannot be determined. Reconfiguration
of the node will in this case focus on restoring connectivity to enable re-active
reconfiguration. A new configuration to locally influence network QoS is selected
using information about the current configuration and the expected impact of
changing any of the controllable parameters. Adaptive predictive models that,
for every parameter, estimate the expected impact on local QoS metrics, e.g., the
link latency to the critical parent, which influences related network QoS, e.g., the
latency to the sink, are used. These models are discussed in Section 3.2.3. Given
the required impact a reconfiguration should have on every constrained metric,
and the impact on the metrics given by the predictable model, a new configura-
tion is selected keeping the optimization objective in mind. This is described in
more detail in Section 3.2.4. The predictive models are dynamically adapted at
run-time to adjust to the dynamics in the network. How this is done is discussed
in Section 3.2.5.

3.2.1 Local Impact Calculation
For the ease of explanation, we assume a single constrained metric, end-to-end
latency, and focus on how much a node should contribute to resolve an error,
given a trade-off with network lifetime. The example of Figure 3.1 is used to
support the discussion. The derivation of the local impact on other constrained
metrics, or considering different optimization objectives, works is similar way.

We assume that a local estimate of the current latency of the end-to-end
critical path is available to node i, e2elati . Based on this estimate, a node can
locally determine if the latency is within the required range. If not, the latency
error should be resolved by the combined adaptation of the collaborating nodes.
If the latency is within range, the collaborating nodes adapt in order to balance
their lifetimes. In Section 3.1.3, we explained which nodes should contribute
more to achieve these goals. With the reconfiguration approach being an iterative
approach, the local impact is expressed as an adaptation rate. The rate defines
the (positive or negative) difference in end-to-end latency that a node is expected
to achieve in every time unit, e.g., a second or the length of a round, by adapting
its parameters. The local rate of adaptation for node i, ratei , is defined as follows.

ratei =
amounti ∗ fraci

ki

This function states that node i should impact the latency of the end-to-end
critical path with a fraction, fraci , of the total amount, amounti . This should
be achieved in a given time ki, defined in the number of time units (or rounds).
With parameter ki, we adjust the overall speed, or loop-gain, of the feedback
control used by the node. Reconfiguration cannot achieve a change in latency
instantaneously as many aspects, such as the impact of an adaptation on the

Chapter 3: Re-active Reconfiguration 49

QoS and the propagation of the feedback, take time. Therefore, the speed of
the controller has an important impact on the behaviour of a feedback control
mechanism, such as the stability. An unstable solution, where the latency drifts
away from the target latency may occur due to excessive adaptation (for example
caused by delayed propagation of latency information). The speed of the controller
furthermore plays a role in the trade-off between the accuracy of the controller in
providing the required latency and the speed of convergence to the target. This
is studied in detail in Sections 3.4 and 3.5.

The values of amounti and fraci differ between the nodes in any of the three
possible cases, as explained in Section 3.1.1, and are discussed in the remainder
of this subsection.

Latency outside required range With the latency of the end-to-end critical path
outside the required latency range (cases (1) and (2) of Section 3.1.3), the task of
the collaborating nodes is to resolve the latency error. The error observed by node
i, errori , is the difference between the node’s own local estimate of the end-to-end
critical latency, e2elati , and the latency range as defined by the lowerbound and
upperbound .

errori =

 e2elati − upperbound if e2elati > upperbound

e2elati − lowerbound if e2elati < lowerbound

To resolve this error, the collaborating nodes have to collaboratively achieve an
impact on the end-to-end latency, amounti , the inverse of this error.

amounti = −errori

The fraction of the total amount of latency, fraci , 0 ≤ fraci ≤ 1, that should be
taken care of by node i (and thereby also the fraction (1− fraci) that is expected
to be solved by the other collaborating nodes together) depends on the extent
of QoS objective optimization, in this case the remaining lifetime, compared to
other collaborating nodes. The fraction is based on several considerations. First
of all, we want Σj∈Nperj = 1, where N is the set of collaborating nodes. This
way, the error is solved by the combined adaptations of the nodes. For the case
that e2elati > upperbound , we furthermore want a higher fraction for a node with
a higher expected remaining lifetime. This establishes the balancing of lifetime,
thereby optimizing the minimum lifetime in the network. For scalability, packet
size, and memory space reasons, we do not want every node to know the lifetime of
all individual nodes, but rely on aggregated information. With an estimate of the
sum of the lifetimes of the collaborating nodes, sumLifei , we can determine the
fraction fraci by comparing a node’s own estimated remaining lifetime, lifetimei

with the sum. This distributed way, not requiring all nodes to know which nodes
are in their collaborating set, used to derive all information related to lifetime is
discussed in the next section. For the opposite case that e2elati < lowerbound we

50 Section 3.2: Re-active Reconfiguration for QoS Provisioning

want a higher fraction for a node with a lower expected remaining lifetime. This
can be achieved with local estimates of the sum of the inverses of the lifetimes of
collaborating nodes, sumInvLifei , and the inverse of the lifetime, lifetime−1 . For
the two cases, fraci is defined by the following equations.

fraci =

lifetimei

sumLifei
if e2elati > upperbound

lifetimei
−1

sumInvLifei
if e2elati < lowerbound

If we look at the path from node H to sink S in the example of Figure 3.1, nodes
C, F , G and H are in the same collaborating set and can assist in solving the
latency error of 300 milliseconds. Using the equations above we have perC =
100/1000, perF = 350/1000, perG = 400/1000 and perH = 150/1000. Node G has the
longest lifetime and takes the biggest share in solving the error. For the critical
path shared by nodes A and B, the fractions are perA = 1/300/4/300 = 1/4 and
perB = 3/4. Node B has the shortest lifetime and takes the biggest share in the
trade-off increasing the latency to increase the lifetime.

Latency within required range As soon as the end-to-end latency is within the re-
quired range, i.e., lowerbound ≤ e2elati ≤ upperbound , situation (3) of the exam-
ple of Section 3.1.3, there is no latency error to be solved by the collaborating
nodes. Instead, a rate is calculated with the goal of balancing the lifetimes of
collaborating nodes. Nodes with a larger remaining lifetime can reduce the end-
to-end latency, allowing nodes with a shorter lifetime to improve their lifetime
by increasing the latency. To reduce the probability of the end-to-end latency to
get outside the target range, the total amount of latency increased should be in
line with the amount reduced. We want Σj∈Nperj = 0 to avoid a strong fluctu-
ation in end-to-end latency. The latter is achieved by determining the fraction,
fraci ,−1 ≤ fraci ≤ 1, as described below, by subtracting the fraction a node
would take in reducing the latency from the fraction it would take in increasing
the latency.

fraci =
lifetimei

−1

sumInvLifei
− lifetimei

sumLifei

Depending on the predominant factor, the fraction is either positive, indicating
that the node wants to increase the latency to increase lifetime, or negative,
indicating a reduction. If the lifetimes of all nodes are equal, while the latency in
within the suitable range, the fraction is 0 for every node.

For solving a latency error, every collaborating node had the same goal of
either reducing or increasing the latency. With balancing, collaborating nodes
can have different goals, i.e., a different assumption on what amounti should be.
amounti should not be too large in this case to avoid strong fluctuations in end-to-
end latency due to the discreet and distributed adaptations. We achieve this by

Chapter 3: Re-active Reconfiguration 51

the following definition of amounti , where the amount to balance depends on the
freedom available between the current latency, e2elati , and the defined bounds,
lowerbound and upperbound . The used bound depends on whether latency is
reduced or increased by the node.

amounti =

 upperbound − e2elati if fraci > 0

e2elati − lowerbound if fraci < 0

Collaborating nodes D and E in the example of Figure 3.1 are on an end-to-
end critical path with a latency in the required range, but their lifetimes are
unbalanced. The positive fraction for node D, perD = 6/8, indicates that this
lowest lifetime node can increase its latency to increase lifetime, while long-lifetime
node E, with a fraction perE = −6/8, reduces its latency.

The rate is expressed in terms of the required impact on the network QoS, i.e.,
latency of the end-to-end critical path. By adapting parameters, nodes can only
impact local QoS, i.e., the latency to the critical parent. Therefore, the adaptation
rate is translated to the local impact that is required on the link latency to achieve
the desired change in end-to-end latency. In general, a function f is applied to
the calculated rate, ratei , to get the local rate, localratei :

localratei = f(ratei)

For the end-to-end latency metric this translation is straightforward as the change
in the local link latency to the parent is directly proportional to the change to
the network latency, i.e., f is the identity function. For other parameters a less
trivial translation might be required. For example, a reduction of the delivery
ratio to the parent of 10% does not result in a reduction of 10% for the entire
path to the sink, unless the remainder of the path has a delivery ratio of 100%.
The global rate has to be multiplied with the packet loss on the remainder of
the path, remainderPathLoss, to get the local rate that is needed to achieve the
global rate, i.e., localratei = remainderPathLoss ∗ ratei .

3.2.2 Restore Connectivity
A reconfiguration or dynamic event, such as an increased distance between nodes,
can result in nodes losing access to the main network. As a consequence, besides
not being able to provide application data packets to the sink, no network QoS
can be estimated and no local adaptation rates can be calculated by all of the
nodes on the unconnected path. To avoid nodes to be in this situation for sig-
nificant amounts of time, fallback reconfiguration is needed to ensure that nodes
can restore connectivity. After being reconnected, network QoS estimates and
adaptation rates can be calculated again.

Restoring the connectivity is activated by a node as soon as it is observed
that the estimates of the network QoS, as provided using the approach discussed

52 Section 3.2: Re-active Reconfiguration for QoS Provisioning

in Section 3.3, are outdated or non-existing. After activation, the configuration
selection procedure is, instead of being provided with a rate, requested to adapt
parameters which have an expected positive impact on the connectivity of a node.
The most obvious one is the transmission power. If more nodes are part of an un-
connected path, all of them will try to get reconnected. After being reconnected,
network QoS and adaptation rate are calculated again, also allowing to revert any
unnecessary reconfigurations.

3.2.3 Predictive Model

A set of controllable parameters is available to the node to change its local QoS,
e.g., latency to the parent and consequently the network QoS, e.g., end-to-end
latency. For a reconfiguration to select appropriate new values for parameters,
it needs a model to predict the expected impact of parameter adaptation. The
advantage of the feedback control strategy in our reconfiguration approach is that
it does not require perfectly accurate models as long as it is known whether a
particular change will increase or decrease a particular QoS metric. If the impact
is higher or lower than expected this will be observed in the feedback and the con-
troller will continue to adapt the latency to the target range. On the other hand,
accurate knowledge of the impact can prevent many unnecessary reconfigurations
needed to recover for adaptations that have a significantly different impact than
expected. Therefore, it is worthwhile to model as accurate as possible, while being
simple enough to be easily stored on the sensor nodes and adapted at run-time.

To investigate how to efficiently model the adaptation impact, we start by
looking at typical impact characteristics. Figure 3.4 sketches the impact of chang-
ing the radio transmission power parameter of a node on the average packet-loss
and latency to the critical parent, and expected network lifetime. An increasing
transmission power reduces the loss as soon as the power is high enough to be
connected and until the point that packet-loss is minimal. Adapting the value af-
ter this point will not reduce the packet-loss, but does reduce the lifetime, which
is of no interest to a reconfiguration approach. A similar thing holds for the la-
tency metric. We refer to the interval in which a change of parameter shows a
significant impact on a trade-off as the suitable range. Defining the significance
of the impact depends on the considered metric.

Definition 11. (Suitable range) The suitable range of a parameter, with re-
spect to a given QoS metric, is the interval between two parameter values in which
parameter adaptation has a significant impact on a trade-off.

Currently, run-time reconfiguration approaches typically rely on simplistic
static impact models, where every adaptation step of a parameter is assumed
to have the same impact on the metrics [59]. For such a static model, only a
single value needs to be stored for every parameter-metric pair and no run-time
overhead is involved with maintaining this model. The main downside is its lack

Chapter 3: Re-active Reconfiguration 53

Transmission Power (mW)

P
ac
ke
t
lo
ss

(%
)

0

(a)

Transmission Power (mW)

L
at
en
cy

(s
ec
on
d
s)

0

(b)

Transmission Power (mW)

L
if
et
im

e
(d
ay
s)

0

(c)

Figure 3.4: Impact of transmission power on (a) packet-loss, (b) latency and (c)
lifetime

of accuracy in dynamic networks. As impact of changing parameters strongly de-
pends on changing run-time properties of the network, such as the topology and
the configuration of other nodes, the suitable range can shift and become smaller
or larger over time.

We propose an adaptive model for every parameter-metric pair to model the
suitable range. The suitable range is approximated by the values, xmin and xmax ,
with xmin ≤ xmax . The value of the QoS metric corresponding to xmin is ymin

and for xmax is ymax . As a result, the model is represented by two points, (xmin ,
ymin) and (xmax , ymax), as shown in Figure 3.5 for a typical packet-loss trend.
Note that, with a decreasing trend, ymin is larger than ymax . Inside the suitable
parameter range we make a linear approximation of the impact on the QoS metric.

Given these models, solving simple linear equations results in the extraction
of the expected QoS given a parameter value, and vice versa. Given the model
parameters for a parameter-metric pair, the following formula extracts the pre-
dicted value of the QoS metric that will be achieved given a parameter value,
parval .

qos(parval) = ymin + (parval − xmin) ∗ ((ymax − ymin)/(xmax − xmin)) (3.1)

The formula assumes that xmin ≤ parval ≤ xmax . The behaviour outside the
suitable range of parameter values depends on the considered metric; it could
remain the same as for the packet-loss and lifetime, jump to an extreme value as
the latency or potentially even invert the trend. The model does not give QoS

54 Section 3.2: Re-active Reconfiguration for QoS Provisioning

0

(xmin, ymin)

(xmax, ymax)

Actual
Model

P
ac
ke
t
lo
ss

(%
)

Transmission Power (mW)

Figure 3.5: Describing adaptation impact on QoS with four parameters

values outside the range, as, by definition, parameter values are expected not to
influence any trade-off with other QoS metrics.

Similarly, the following equation extracts the parameter value that is expected
to achieve a given value of the QoS metric, qosval . It assume that ymin ≤ qosval ≤
ymax or ymax ≤ qosval ≤ ymin , depending on the trend. Achieving a value
outside this range is predicted not to be possible with (only) adapting the current
parameter.

par(qosval) = xmin + (qosval − ymin)/((ymax − ymin)/(xmax − xmin)) (3.2)

In the next subsection, we show how to use the predictive models to select a new
configuration, assuming these models are available for every parameter-metric
pair. How to initially set and dynamically adapt the model to maintain its accu-
racy is discussed in Section 3.2.5.

3.2.4 Parameter Adaptation
To achieve the calculated adaptation rate for every constrained metric, param-
eters are adapted using the predictive models. Instead of directly focusing on
finding a set of parameters that achieves the rates for all metrics, we find pa-
rameters for every individual metric. The combined adaptations for individual
metrics ensures that all metrics are adapted according to their specified rates. In
theory, conflicting adaptation options may be suggested in the same round when
using this approach, i.e., to resolve the error of one metric, increasing the value
of a parameter is suggested, while to resolve the error of another metric, reducing
the value of the same parameter is suggested. Given that a suitable configuration
exists, another parameter should be available to improve at least one of the two
metrics, such that both can converge to their required value range. To avoid that
a conflicting adaptation persists over time, nodes could occasionally select the sec-
ond best adaptation option. An interesting direction for future work is to explore

Chapter 3: Re-active Reconfiguration 55

Table 3.1: Global variables for parameter adaptation

Name Explanation
curV aluep Current value of controllable parameter p
bestParId Identifier of the (current) best parameter

bestParValue Best value of parameter bestParId
bestValueIn Whether bestParValue is within the suitable

range as defined by the predictive model
bestImpactLat Impact on latency of adapting

parameter bestParId to bestParValue
bestImpactLife Impact on lifetime of adapting

parameter bestParId to bestParValue

Algorithm 3: Parameter adaptation for node i

1 ∆Lat := localratei ;
2 rateAchieved := false;
3 while ¬rateAchieved do
4 for all controllable parameters p do
5 (value, inside, lat , life) := getBestValueForPar(p,∆Lat);
6 checkWhetherBestPar(p, value, inside, lat , life);

7 end
8 adaptPar(∆Lat);
9 if (|∆Lat | > |bestImpactLat |) then

10 ∆Lat := ∆Lat − bestImpactLat ;
11 else rateAchieved := true;

12 end

the trade-offs involved with these potential conflicting adaptations performed by
the individual maintenance of metrics.

In this subsection, we describe how to select one or more parameters to
achieve a given latency rate, localratei , calculated according to the strategy of
Section 3.2.1. The selection strategy is similar for any other metric and opti-
mization objective. Selecting the parameter(s) to adapt in this round in order to
achieve a calculated rate consists of three steps. First, the ‘best’ possible value
to for every parameter to achieve the rate is determined. From these adaptation
alternatives the ‘best’ parameter is selected. What defines the ‘best’ options is
explained throughout this subsection. Finally, the selected parameter is adapted
such that the adaptation rate is achieved. If adapting a single parameter is not
sufficient for achieving the adaptation rate, the steps are repeated.

Table 3.1 states the global parameters used by the pseudo-code descriptions

56 Section 3.2: Re-active Reconfiguration for QoS Provisioning

L
at

en
cy

(s
)

0

(xmin, ymin)

(xmax, ymax)

∆Lat

C
ur
re
nt

D
es
ir
ed

L
ow
er

H
ig
he
r

Figure 3.6: Selecting a new parameter value from predictive model

of the three parts. Pseudo-code for the overall adaptation strategy is shown in
Algorithm 3. Before determining the parameters to adapt, we define the change
in latency, ∆Lat , to be achieved this round. Assuming the rate is defined per
round, this change is equal to the (absolute) local rate, localratei , (line 1). As
long as the node is still required to adapt one or more parameters to achieve
the (remaining) change in latency, indicated by rateAchieved (lines 2 and 3), the
best possible parameter is selected from all controllable parameters (line 4). The
function getBestValueForParameter (line 5, later explained using the pseudo-code
of Algorithm 4) determines to which value to adapt parameter p given the required
change in latency. It furthermore determines the characteristics of the proposed
adaptation, i.e., whether the new value is within the suitable range (given by
Boolean value inside) and the predicted impact on latency, lat , and lifetime,
life. This is needed by checkWhetherBestParameter (line 6, Algorithm 5) which
checks whether the current evaluated parameter is the best option so far. Due
to discrete adaptation of parameters, the change of latency achieved by adapting
the best parameter can either be higher or lower than the remaining required
change. A probabilistic adaptation approach, as defined by adaptParameter (line
8, Algorithm 6), is used to determine whether the best parameter should be
adapted in this round. Finally, a check whether the parameter adaptation(s) so
far are sufficient to achieve the rate is performed by checking the expected impact
of the latest adaptation with the remaining required impact on latency (line 9). If
the remaining rate is smaller, we repeat the selection of a parameter to adapt for
the remaining latency (line 10). Else, the reconfiguration of the node is stopped
(line 11).

Chapter 3: Re-active Reconfiguration 57

Algorithm 4: getBestValueForParameter(p,∆Lat)

1 latency := getCurrentLatency(curValuep);
2 desired := getExactParValue(latency + ∆Lat);
3 lower , higher := getDiscreteParValues(desired);
4 xmin , ymin , xmax , ymax := getParsOfPredModel(p, latency);
5

6 value := unknown, lowerPossible := false, higherPossible := false;
7 if ((ymin < ymax ∧∆Lat > 0) ∨ (ymin > ymax ∧∆Lat < 0)) then
8 if (lower 6= unknown ∧ lower 6= curValuep) then lowerPossible := true;
9 if (higher 6= unknown) then higherPossible := true;

10 if (lowerPossible) then value := lower ;
11 else if (higherPossible) then value := higher ;

12 else
13 if (higher 6= unknown ∧ higher 6= curValuep) then

higherPossible := true;
14 if (lower 6= unknown) then lowerPossible := true;
15 if (higherPossible) then value := higher ;
16 else if (lowerPossible) then value := lower ;

17

18 if (value 6= unknown) then
19 inside := xmin ≤ value ≤ xmax ;
20 lat := getLatencyImpactFromModel(value, curValuep);
21 life := getLifetimeImpactFromModel(value, curValuep);

22 return (value, inside, lat , life)

Selecting the best value for a parameter The pseudo-code for the selection of the
best value of parameter p given a required change in latency, ∆Lat , is shown
in Algorithm 4. We illustrate the code using a particular instance of parame-
ter p where the parameter has a decreasing impact trend for the latency metric,
ymin > ymax , shown in Figure 3.6. For this example, we furthermore assume
∆Lat < 0. We start the derivation of the best value by initializing required vari-
ables. Given the current parameter value, the predicted current latency value
is provided by getCurrentLatency (using Equation 3.1) (line 1). Similarly, the
exact desired parameter value to achieve ∆Lat is provided by getExactParValue,
using Equation 3.2, (line 2). Parameter values can typically not be selected from
a continuous space, but are discrete, such as the number of retransmissions. This
leaves two options for the selection of the best new parameter value, i.e., lower or
higher than desired (see Figure 3.6). Note that the selected value for adaptation
can potentially be outside the suitable range. Given the definition of the suitable
range this might be an adaptation we want to avoid. On the other hand, it is
important to keep in mind that a predictive model is just an approximation and

58 Section 3.2: Re-active Reconfiguration for QoS Provisioning

different impact on the QoS than predicted might be observed in practice, espe-
cially in the presence of dynamics. While we initially want to focus on adaptation
within the suitable range, selecting outside the range should not be prohibited.
It is required to explore the boundaries of the modeled suitable range in the pres-
ence of dynamic events, as explained in more detail in Section 3.2.5. The lower
and higher value are assumed to be provided by getDiscreteParValues based on
knowledge of the available discrete adaptation options (line 3). If any of the val-
ues does not exist, for example because the desired value is already higher than
the highest possible option, the value is considered to be unknown, referred to by
a special value unknown. We furthermore use the parameters of the predictive
model that describes the impact of parameter p on the latency, assumed to be
proved by function getParsOfPredModel (line 4). The best adaptation option is
selected from the lower and higher value, starting by checking whether the options
are viable. Initially, both values are not possible and there is no best adaptation
option (line 6). Selecting either the lower and higher value depends on the im-
pact trend of the predictive model and the change in latency to achieve. For our
example, ymin > ymax and ∆Lat < 0 (line 7), the desired value is higher than
the current parameter value. The lower value is a possible adaptation option if
it exists (6= unknown) and is not equal to the current parameter value (line 8).
The higher value is possible if it exists (line 9). No check on equality with the
current value is needed as the higher value is either higher than the current value
(potentially outside the suitable range) or not existing. If possible, the lower
value is selected as the best option (line 10). Using this conservative approach
we first adapt parameters within the suitable range with at most the required
change in latency. Any remaining rate will be achieved by repeating the selection
of the best parameter value. If the lower value is not possible, the higher value is
selected if possible (line 11). The above discussion also holds for the symmetric
case that ymin < ymax and ∆Lat > 0 (added to line 7). For the case that the
newly selected value is lower than the current parameter, things are similar, but
the role of the lower and higher value interchange (lines 12-16). If an adapta-
tion option is available (line 18), its characteristics are determined. It is checked
whether the value is within the suitable range (line 19). Furthermore, the pre-
dicted change in latency (line 20) and lifetime (line 21) is determined using the
predictive models and Equation 3.1. To allow to compare two adaptation options
that are outside the suitable range, it is assumed that the model trend continues
outside the suitable range allowing to calculate the expected impact. If both the
lower and higher value are not possible, the returned best value is unknown (and
its characteristics are not defined) and the parameter will not be considered in
the rest of the adaptation process.

The above discussion implicitly assumed that ∆Lat can be achieved within
the current suitable range of the considered parameter. If not, the desired value
(calculated in line 2) is considered to be the closest value within the suitable
range (leaving all remaining rate to be achieved by adapting other parameters).
Furthermore, we have to consider that the current value of the parameter is not

Chapter 3: Re-active Reconfiguration 59

Algorithm 5: checkWhetherBestParameter(p, value, inside, lat , life)

1 betterOption := false;
2 if (bestParId = unknown) then betterOption := true;
3 else if (¬bestValueIn ∧ inside) then betterOption := true;
4 else if (bestValueIn ∨ ¬inside)) then
5 adaptRatio := lat/life;
6 bestRatio := bestImpactLat/bestImpactLife;
7 if (∆Lat < 0 ∧ adaptRatio > bestRatio) then betterOption := true;
8 if (∆Lat > 0 ∧ adaptRatio < bestRatio) then betterOption := true;

9

10 if (betterOption) then
11 bestParId := i, bestParValue := value;
12 bestValueIn := inside, bestImpactLat := lat , bestImpactLife := life;

within the suitable range at all. The parameter value could previously be selected
outside the suitable range and the range might not be adapted to contain this
value, as discussed in Section 3.2.5. By the definition of the suitable range, no
trade-off is expected by adapting a value outside the suitable range to the closest
boundary value of the suitable range, i.e., xmin or xmax . Given this, we set the
current value (as used in line 1) equal to this closest boundary to be able to
determine an impact on the latency with the model and derive the ‘best’ value of
the parameter using the approach described above.

Determining the best parameter to adapt The pseudo-code to check whether the cur-
rent option is the best so far is shown in Algorithm 5. The current best parameter
value is assumed to be stored in the global parameter bestParId and is unknown if
non existing. Initially, it is assumed that the current option is not better (line 1).
If no best option currently exist, then the first option given is considered to be the
best (line 2). With a best adaptation option, we first prefer adaptations within
the suitable parameter range. If the current best adaptation option suggests to
adapt the value outside the suitable range, defined by global variable bestValueIn,
while the value for i is adapted within range, adapting i is considered to be best
(line 3). If both the current best and suggested adaptation option are outside or
inside the parameter range (line 4), we determine the best option based on the ra-
tio between the expected impact on latency and lifetime of the current parameter
(line 5) and currently known best parameter (line 6). This ratio defines how much
lifetime is needed to achieve a change in latency. If the required adaptation rate
is negative, the best parameter to be adapted should have the lowest negative
impact on lifetime to achieve this reduction of latency. In other words, higher
impact ratios are better (line 7). For a positive rate, we want the highest possible
increase in lifetime, i.e., the lowest impact ratio (line 8). If the newly suggested

60 Section 3.2: Re-active Reconfiguration for QoS Provisioning

Algorithm 6: adaptPar(∆Lat)

1 if (|bestImpactLat | ≤ |∆Lat |) then
2 Adapt(bestParId , bestParValue);
3 else
4 prob := ∆Lat/∆bestImpactLat ;
5 if (randomFloat(0 , 1) < prob) then
6 Adapt(bestParId , bestParValue);

adaptation option is found to be better, this is stored (lines 10, 11 and 12) for
future comparison.

(Probabilistic) Adaptation of best parameter Algorithm 6 shows the steps involved in
determining if the best parameter should be adapted in this round. If the pre-
dicted impact is less than the required impact, the parameter is directly adapted
by informing the protocol stack (lines 1 and 2). We assume function Adapt to be
an interface to the protocol stack to adapt controllable parameters. In the case
that predicted impact is more than required, a probabilistic approach is used. The
probability of adaptation is equal to the ratio of the desired step and the discrete
step (line 4). For example, with a required adaptation rate of 10 milliseconds per
round and an expected impact of adaptation of 100 milliseconds the probability
of adaptation is set to 10%. With the determined probability the parameter is
adapted (lines 5 and 6). In practice, we see that the required change in latency
in a single round is typically low and a probabilistic adaptation is applied.

Besides to achieve a calculated rate, reconfiguration might be needed to re-
store connectivity. If the restoration of connectivity is triggered, as explained in
Section 3.2.2, parameters are adapted that have an expected positive impact on
the connectivity. This might either be fixed if known at design-time or based on
the current predictive models. In the extreme case that adapting parameters is
not possible anymore and a node is still unconnected to the main network, duty
cycling between the most power efficient and most power hungry configuration
(with higher probability of finding outbound neighbours) is performed to avoid
an extensive drain of the battery. Even though situations like this may always
occur in practice, they should be avoided as much as possible by design of the
WSN, e.g., sufficient density of nodes.

3.2.5 Model Maintenance
We require initial predictive models to be available at the start of WSN operation.
For example, simulations can be used to identify an initial model. Our strategy for
the run-time model maintenance is visualized in Figure 3.7, where the horizontal
time-line is divided into rounds. After a reconfiguration of the node, the predictive
model is not adapted until the impact of reconfiguration is reflected in the local

Chapter 3: Re-active Reconfiguration 61

No model adaptation

Node reconfiguration

t (s)

Node reconfiguration

Adapt based on observed impact

Adapt based on QoS estimate

(two reference points)

(one reference point)

Figure 3.7: Model maintenance strategy over time for a given node

estimated network QoS. This takes a particular amount of rounds, depending on
time needed for the propagation of network QoS estimations and the potential
averaging of QoS values. If latency is averaged over the last minute, at least a
minute is needed to see the full effect of a reconfiguration. After this, the model is
adapted based on the two available reference points; the QoS for the value before
reconfiguration and the QoS for the value after reconfiguration (as explained later
in more detail). Parameter adaptations may be infrequent, but allows to update
the model using these two reference points. Afterward, only the local estimates
of QoS metrics for the current parameter value are used to update the predictions
of the model. In this phase, we have only one reference point for model adaption,
but it can be performed whenever accurate estimates are available.

Adapting the model based on observed impact of reconfiguration Figure 3.8(a) visual-
izes the adaptation of the model based on two reference points; the observed QoS,
yold , for the previous parameter value, xold , and the current QoS value, ycur , for
the current parameter value, xcur . The new model parameter values are such that
the two points are predicted by the model. Algorithm 7 shows the pseudo-code
for this step. To save space, only the adaptation for a model with a decreasing
trend, ymin > ymax , is discussed. For the symmetric case, where ymin < ymax ,
the same approach is applied, but the role of min and max interchange. The new
model parameters are initially set to the current values (line 1). The first check
is whether the previous value, xold , is within the suitable range (line 2). If not,
the model is adapted based on only the observed QoS for the current parameter
value, xcur , because no latency predictions can be made for xold (line 3, calling the
function in Algorithm 8). The following statements (lines 4 and 6) check whether
the observed impact is in conflict with the expected trend (in this case decreas-
ing). The trend is assumed to continue if there is at least a predefined minimum
impact observed, minDif , after reconfiguration. If not, there is no continuation
of the trend and the suitable range is reduced, if needed. The suitable range is
reduced to exclude the current parameter value by adapting xmax or xmin , respec-
tively according to the value of the current parameter value with respect to the

62 Section 3.2: Re-active Reconfiguration for QoS Provisioning

Controllable parameter

Q
oS

m
et
ri
c

(xmin, ymin)

(xmax, ymax)

(xnewmin, ynewmin)

(xnewmax, ynewmax)

(xold, yold)

(xcur, ycur)

(a)

Controllable parameter

Q
oS

m
et
ri
c

(xmin, ymin)

(xmax, ymax)

m
ax
Q
oS

m
in
Q
oS

(xnewmin, ynewmin)

(xnewmax, ynewmax)

(xold, yold)

(xcur, ycur) =

(b)

Figure 3.8: Model before (dashed line) and after (solid line) adaptation. (a) Base
case. (b) Current value outside suitable range and considering the minimum and
maximum achievable QoS

Chapter 3: Re-active Reconfiguration 63

Algorithm 7: adaptForImpact(), for ymin > ymax (decreasing trend)

1 xnewmin := xmin , ynewmin := ymin , xnewmax := xmax , ynewmax := ymax ;
2 if (xold < xmin ∨ xold > xmax) then
3 adaptForCurrentQoS();
4 else if (xold < xcur ∧ yold − ycur < minDif ∧ xcur < xmax) then
5 xnewmax := xcur ;
6 else if (xold > xcur ∧ ycur − yold < minDif ∧ xcur > xmin) then
7 xnewmin := xcur ;
8 else
9 s := (ycur − yold)/(xcur − xold);

10 ynewmin := yold + (xnewmin − xold) ∗ s;
11 ynewmax := yold + (xnewmax − xold) ∗ s;
12 if (ynewmin > maxQoS) then
13 xnewmin := maxQoS/s− yold/s;
14 ynewmin := yold + (xnewmin − xold) ∗ s;
15 if (ynewmax < minQoS) then
16 xnewmax := minQoS/s− yold/s;
17 ynewmax := yold + (xnewmax − xold) ∗ s;
18 if (xcur < xmin) then
19 xnewmin := xcur ;
20 ynewmin := ycur ;

21 if (xmax < xcur) then
22 xnewmax := xcur ;
23 ynewmax := ycur ;

24 AdaptModel(xnewmin , ynewmin , xnewmax , ynewmax);

old one (lines 5 and 7). If the trend continues, the model is adapted such that
both reference points are predicted by the model, by adapting ymin and ymax .
With the adaptation of the model, we can additionally take into account (trivial)
bounds, minQoS and maxQoS , on the achievable QoS, such as 0% and 100% for
the packet-loss metric. We limit the extrapolation of predicted latency, as shown
in Figure 3.8(b), for xnewmin and ynewmin (lines 12 until 17). If the current pa-
rameter value is outside the suitable range, while the impact trend is observed
to continue, the range is extended to include the new parameter value (lines 18
until 23). This is shown in Figure 3.8(b), for xnewmax and ynewmax . Finally, the
model is adapted based on the newly calculated parameter values (line 24). This
function can either directly adapt the model to the new parameter values or take
a stepwise approach where the model is adapted with a fraction of the deviation
between the current and new model. The latter avoids that a single observed
extreme QoS for the current parameter value strongly influences the model, as
multiple observations are needed to adapt the model.

64 Section 3.3: Quality-of-Service Estimation

Controllable parameter

Q
oS

m
et
ri
c

(xmin, ymin)

(xmax, ymax)

(xcur, ycur)

(xnewmin, ynewmin)

(xnewmax, ynewmax)

m
ax
Q
oS

m
in
Q
oS

Figure 3.9: Adapting model parameters using current parameter value

Adapting the model based on current QoS Figure 3.9 visualizes how to adapt the
predictive model using only the observed latency, ycur for parameter value xcur .
The model is translated in the vertical direction, maintaining the slope of the
impact trend. Algorithm 8 shows the pseudo-code. Again, the adaptation for
a model with a decreasing trend, ymin > ymax , is discussed. Initially, the new
model parameters are equal to the old model (line 1). The model is only adapted
if the current parameter value is within the suitable range (line 2). By extracting
the predicted latency for xcur from the current predictive model (line 3, using
Equation 3.1), we can determine an error with the actual observed latency (line
4). This error cannot be determined with a parameter value outside the suitable
range. The model is adapted to resolve the error by fitting the observed point on
the line predicted by the model, by adapting the minimum and maximum QoS
value (lines 5 and 6). The expected QoS values are changed without extending
the suitable range. We do reduce the suitable range based on (trivial) lower and
upper bounds on the QoS (lines 7 until 12). This step is applied to xnewmin and
ynewmin in Figure 3.9. Finally, the model is adapted to the newly calculated
parameter values (line 13).

3.3 Quality-of-Service Estimation

Both network and node QoS metric information are needed by the nodes to sup-
port our distributed re-active reconfiguration approach. This network QoS in-
formation is determined and disseminated using our generic distributed service
(Chapter 2). We again focus on the single trade-off between latency and lifetime
and instantiate the service accordingly. Estimating information for other trade-
offs works in a similar way. As explained in the previous section, a node needs

Chapter 3: Re-active Reconfiguration 65

Algorithm 8: adaptForCurrentQoS(), for ymin > ymax (decreasing trend)

1 xnewmin := xmin , ynewmin := ymin , xnewmax := xmax , ynewmax := ymax ;
2 if (xmin ≤ xcur ≤ xmax) then
3 yexpected := getLatencyFromModel(xcur);
4 r := yexpected − ycur ;
5 ynewmin := ymin + r ;
6 ynewmax := ymax + r ;
7 if (ynewmin > maxQoS) then
8 xnewmin := xmin + (ynewmin −maxQoS) ∗ (xmax−xmin

ymax−ymin
);

9 ynewmin := maxQoS ;

10 if (ynewmax < minQoS) then
11 xnewmax := xmax − (minQoS − ynewmax) ∗ (xmax−xmin

ymax−ymin
);

12 ynewmax := minQoS ;

13 AdaptModel(xnewmin , ynewmin , xnewmax , ynewmax);

estimates of the latency of its end-to-end critical path. Additionally, both the
sum and the sum of the inverses of the remaining lifetime of the collaborating
nodes, simply referred to as the sum and inverse sum, are needed. Section 3.3.1
summarizes the relevant aspects of the service and shows the equations charac-
terizing our required network metrics. The local estimation of node QoS required
to compute network QoS is discussed in Section 3.3.2.

3.3.1 Network QoS Estimation

The estimation of the required network QoS information involves several steps.
The first step is for nodes to estimate their maximum latency to the a given sink,
lati,s , which describes the estimated maximum time it takes to send a data packet
from the node (over one or more paths) to the sink. For the end nodes of every
end-to-end critical path, the latency to the sink is equal to the latency of their
end-to-end critical path, e2elati , which is the value we want to keep within certain
bounds. This value is distributed allowing all other nodes to estimate their latency
of the end-to-end critical path to the sink. As soon as the end-to-end critical path
is locally known by all nodes, collaborating nodes can be defined and the sum and
inverse sum of their lifetimes, sumLifei and sumInvLifei , can be estimated.

Latency-related QoS estimation Figure 3.10 shows the flow of information needed
for nodes of a 5 node network (including sink S) to locally estimate the maxi-
mum latency to the sink and the latency of the end-to-end critical path (to the
same sink). The solid lines are links and the number next to them the latency
to communicate over the link. The dashed lines show how the information is
communicated and the order in which this is done. The sink (with known fixed

66 Section 3.3: Quality-of-Service Estimation

S C D
50ms 100ms

A B
125ms

75
m
s

2:
12
5m

s

5:
25
0m

s

2: 150ms

5: 150ms

3: 250ms

4: 250ms

1: 50ms

6: 250ms

50
m
s

4:
0m

s

3:
20
0m

s

Figure 3.10: Distribution of the latency to sink S and latency of the end-to-end
critical path

maximum latency to the sink of 0) starts by observing the latency of the link from
C to be 50 milliseconds and communicates this value added to its own maximum
latency to C (step 1). With this information, node C determines its critical parent
to be S and its maximum latency to the sink to be 50 milliseconds. Using this
maximum latency and the observed latencies of nodes A and D, node C informs
A en D about their maximum-latency to the sink when using C as a parent (125
and 150 milliseconds respectively, step 2). With this information, they determine
their critical parent to be C. Node A and D both individually inform B about
its maximum latency when using them as its parent (step 3). With the latency
through node A being the highest, node B selects A as its critical parent and its
maximum latency to be 250 milliseconds. Note that the maximum is considered
critical as we require the latency of every packet sent to be in between the required
bounds, which is ensured if the path with the longest latency is within bounds.

This procedure of estimating the maximum latency, lati,s , of node i to sink s,
can be characterized by the fixed point of the following recursive definition, with
which nodes can estimate their maximum latency to the sink based on both the
maximum-latency to the sink of all used parents, Pi, and the link-latency to send
packets directly to these nodes, i.e., lli,x to neighbour x. Pi is assumed to be
available by the routing protocol, and pi is the critical parent.

pi = argmax
x∈Pi

(lli,x + latx ,s)

lati,s =

{
0 if i = s

lli,pi + latpi ,s if i 6= s

Chapter 3: Re-active Reconfiguration 67

It is straightforward to show that the equations have a unique solution.
Using the estimates of maximum latency to the sink, and the critical parent,

nodes can estimate the latency of the end-to-end critical path. For the example of
Figure 3.10, node B does not receive packets from other nodes, making its latency
of the end-to-end critical path equal to its own maximum latency to the sink, i.e.,
250 milliseconds. Its critical parent A is part of the same end-to-end path and is
informed about this value. At the same time, a latency value of 0 is communicated
to the non-critical parent, D, to indicate that B is not on their critical path (step
4). Subsequently, node A determines node B to be its critical child and forwards
the received end-to-end latency to C. At the same time, D observes that is has
no critical child(ren), i.e., it is the end node of its end-to-end critical path, and
sends its own maximum latency to its critical parent C (step 5). C has learned
that it is on multiple end-to-end critical paths. The maximum latency path is of
interest and hence the critical child is selected to be A. A informs its own critical
child S about this value (step 6).

The following recursive equation characterizes the local estimates of the la-
tency of the end-to-end critical path, e2elati . Let Chi be the set of children of
node i from which it receives application packets. Ci is the set of nodes for which
node i is the critical parent. From these nodes, the critical child, ci, is selected.
For a node at the end of the critical path, i.e., that has no children which consider
it as their critical parent, the latency of the end-to-end critical path is equal to
its own latency to the sink, lat(i , s). Starting from these end nodes, maximum
end-to-end latency is communicated, allowing connected nodes to determine their
value based on the end-to-end latency of their critical child, ci.

Ci = {x ∈ Chi |px = i}

ci = argmax
x∈Ci

(e2elatx)

e2elati =

{
lati,s if Ci = ∅

e2elatci if Ci 6= ∅

Lifetime-related QoS estimation Given local knowledge of the critical parent and
child, the sets of collaborating nodes are known and the related sum and inverse
sum of their lifetimes can be estimated. Figure 3.11 shows the flow of information
needed to locally estimate the sum and inverse sum for the same 5-node example.
The number next to the nodes represents the remaining lifetime of the node in
hours. Starting at the leaves of the end-to-end critical paths, B and D, having no
critical child, lifetime and inverse lifetime are sent to their critical parent (node A
and C respectively, step 1). Node C responds to the information received by (non-
critical child) node D with a sum and inverse sum of 0 to indicate it is considering
a different end-to-end critical path, and is therefore not a collaborating node of
D. At the same time, node A adds its own lifetime and inverse lifetime to the

68 Section 3.3: Quality-of-Service Estimation

S C

300h

D 50h

A100h B 200h

2:
30
0h

,3
/2
00
h

3:
30
0h

,1
/3
00
h

1: 50h,1/50h

2: 0h,0h

1: 200h,1/200h

4: 400h,4/300h

Figure 3.11: Distribution of the sum and inverse sum of lifetimes of collaborating
nodes

values received from its critical child, and hence its collaborating node, B, and
forwards this information to critical parent C (step 2). Now node D knows it is
not collaborating with any other node and has sufficient information to determine
its sum to be 50 hours and inverse sum to be 1/50 hours. Node C has sink S as
its critical parent, which is assumed to not take part in the reconfiguration and
cannot be a collaborating node. As a result, node C is the end of the path with
collaborating nodes starting at node B. It sends its own lifetime and inverse
lifetime to node A allowing it to determine the sum to be 200 (node B) + 100
(own lifetime) + 300 (node C) = 600, and inverse sum 1/200+ 1/100+ 1/300 = 11/600
(step 3). Node A provides node B with the remaining information needed to
determine the sum and inverse sum of all other collaborating nodes, i.e., A and
C, to that node (step 4).

In contrast to the latency to the sink and the end-to-end critical path, dis-
tributed estimation of the sum and inverse sum, sumLifei and sumInvLifei , re-
quires information about the sum and inverse sum from both the collaborating
nodes on the inbound part of the critical path, sumIni and sumInvIni , and out-
bound part of the end-to-end critical path, sumOuti and sumInvOuti . This is
expressed by the following formulas.

sumLifei = sumIni + lifetimei + sumOuti

sumInvLifei = sumInvIni + lifetime−1
i + sumInvOuti

Recursive equations for estimating the sum and inverse sum of the collaborating
nodes of the inbound and outbound part of the critical path are as follows. Recall

Chapter 3: Re-active Reconfiguration 69

that ci and pi are the critical child and critical parent of node i respectively,
with cpi

thus indicating the critical child of the parent of node i (which is not
necessarily node i itself).

sumIni =

{
0 if Ci = ∅

sumInci
+ lifetimeci

if Ci 6= ∅

sumOuti =

{
0 if Pi = ∅ ∨ pi = s ∨ cpi

6= i
sumOutpi + lifetimepi if Pi 6= ∅ ∧ pi 6= s ∧ cpi = i

sumInvIni =

{
0 if Ci = ∅

sumInvInci + lifetime−1
ci

if Ci 6= ∅

sumInvOuti =

{
0 if Pi = ∅ ∨ pi = s ∨ cpi

6= i
sumInvOutpi

+ lifetime−1
pi

if Pi 6= ∅ ∧ pi 6= s ∧ cpi
= i

The example suggests the network is in a static situation, with bidirectional
links. Presence of any asymmetric, and potentially unidirectional, communication
links [27, 84], requires the information to be disseminated over multiple hops. The
service provides solutions for that using a controlled n-hop forwarding approach
where information is efficiently propagated to the n-hop neighbourhood. The data
dissemination is repeated at a given update interval to avoid stale information due
to dynamic changes in link qualities.

3.3.2 Node QoS Estimation
Node i should know its own link latency to all parents x, lli,x to derive maxi-
mum latency information and a critical parent. An estimated remaining lifetime,
lifetimei , is needed for the derivation of the sum and inverse sum of the lifetimes
of the collaborating nodes.

The latency of a packet can be determined by receiving nodes based on time
stamps added to the packet by the sending side, assuming the presence of a
time synchronization protocol. For the sending nodes to know their latency to
neighbouring nodes, communication of the observed information is needed which
can be combined with the distribution of the latency to the sink, as discussed in
the previous subsection.

Estimating the remaining lifetime, defined by the time until the node runs out
of battery, is non-trivial, because of the unpredictable changes in power consump-
tion due to, among others, future reconfigurations. For our approach, we estimate
the remaining lifetime by dividing the estimated remaining battery capacity (in
mWh) by an estimate of the current power consumption (in mW). This provides
the remaining lifetime, assuming the network stays in the current configuration
(and the estimation of the power is accurate). With our approach, we are inter-
ested in the relative differences between the lifetime of nodes. The absolute value
is of less interest, but may be more accurately estimated using more elaborate

70 Section 3.4: Controller Performance Analysis

models which, for example, make predictions on the future average power if avail-
able. The remaining battery capacity is determined based on recorded average
power consumption since powering up the node and the initial battery capacity,
e.g., an AA battery of 1500mAh at 1.5V. For a node to determine its own power
consumption at run-time is a difficult task. Estimates can be achieved by moni-
toring the amount of time spent in the different radio states, as the radio is the
dominant part of the power consumption [49] and the most important part of the
power controlled by reconfiguration. In TinyOS [70] this monitoring can be done
by adding counters at the appropriate places in the MAC protocol code. Using
knowledge about the power spent in different radio states for the used radio chip
(e.g. [68]) an estimate of the power consumption can be made. This approach
is used for all experiments in this chapter. Note that the node with the high-
est power consumption might not have the lowest expected remaining lifetime,
for nodes with different battery capacities which are potentially also powered on
at different moments in time. This is our main motivation to focus on lifetime,
instead of power consumption, when reconfiguring a heterogeneous network.

3.4 Controller Performance Analysis
We start this section by discussing the approach used for performance analysis
in more detail in Section 3.4.1. In Section 3.4.2, we discuss the parameters that
influence the behaviour of the reconfiguration approach in more detail. We con-
tinue with a qualitative analysis of the behaviour of the feedback control strategy
by looking at the so-called step-response in Section 3.4.3. It gives us impor-
tant insight in the behaviour of our approach and its ability to control the QoS
in a distributed manner, including its interaction with the adaptive predictive
model. Additional experiments focus on the impact of using this particular dy-
namic model, by comparing its accuracy with that of a static model and an ‘oracle’
model using knowledge of the future dynamics.

In Section 3.4.4, we analyse a dynamic monitoring WSN for which the reconfig-
uration approach constantly needs to respond to dynamic events, such as moving
nodes. Here we explore to what extent the amount of the dynamics influences
the behaviour of our approach. Furthermore, we compare our approach with ex-
isting (re-)configuration approaches. Finally, in Section 3.4.5, we summarize the
main conclusions. In this section, we use extensive simulations to evaluate the
performance. Performance analysis using an actual deployment is performed in
the next section.

3.4.1 Introduction

During the distributed feedback control process of our reconfiguration approach
many actions happen at the same time, including the adaptation of parameters,
propagation of network QoS information, and dynamic changes to the predictive

Chapter 3: Re-active Reconfiguration 71

model. The adaptation of parameters is discrete, and propagation of feedback
takes time and is unreliable. The resulting behaviour of the entire network, and
impact on the network QoS, is therefore non-trivial to determine in advance. Due
to the differences between the environment in which we use our controller and
discrepancies with assumptions of common control theory, i.e., fully distributed
control, discrete adaptation steps, feedback propagation that is delayed and un-
reliable and the use of an adaptive predictive model, we cannot resort to the
analytical reasoning of classical control theory, but we use an experimental anal-
ysis approach using simulations in this section and an actual deployment in the
next section. A simulator gives us, in contrast to an actual deployment, a con-
trollable environment where we can easily repeat and compare experiments using
the same environmental characteristics. This helps us to get a good insight in
the behaviour of the approach and the impact of its parameters. For the exper-
iments in this section, we implemented the complete reconfiguration approach,
including the node QoS estimation and service to propagate the required network
QoS, in OMNeT++ [44], a discrete-event simulation environment, with the use
of MiXiM [37], a modeling framework for wireless networks.

3.4.2 Parameters
An important parameter of our reconfiguration approach is the speed of every
node i, ki, of the feedback control strategy (see Section 3.2.1). Note that the
length of a round also impacts the (maximum) speed of reconfiguration (and
model adaptation), but we assume it to be fixed to a low value such that we
can control the speed with only parameter ki. The speed determines how fast
individual nodes respond to changes in QoS. Increasing ki reduces the speed
of the controller. Intuitively it is expected that if a controller is slower, the
configuration will be sub-optimal for a longer time and QoS may differ too much
from the required QoS. On the other hand, if it is too fast, feedback may not
have propagated yet and large fluctuations in QoS may occur due to adaptations
of many nodes at the same time, potentially resulting in never settling of the
required QoS, or even instability of the network.

In our approach, local estimates of network QoS are provided by an underlying
service. The parameters of the service determine the speed at which information
for local estimates becomes available to the nodes. As the availability of network
QoS information forms the basis of our reconfiguration approach, the speed of
propagation is important for the stability, as we show in this section.

3.4.3 Step Response
The step-response is a well-known from of analysis from control theory that in-
vestigates the behaviour of a feedback controller after a single dynamic event [67].
We consider end-to-end packet-loss to be the constrained metric, while we want to
maximize lifetime. This shows the applicability of our approach for other metrics

72 Section 3.4: Controller Performance Analysis

than the latency metric considered so far, but also has practical advantages as,
in contrast with latency measurements, no time synchronization is required. Of
main interest is whether the controller is able to resolve the impact on packet-loss
caused by the dynamic change, i.e., whether and how it gets the network back
into a stable situation. In an unstable situation, the packet-loss diverges from its
target and may fluctuate between its extreme values. In a stable situation this
still needs time, referred to as the convergence time. The amount of variation in
QoS during the stable situation is a measure of the accuracy of the system.

For the analysis of the stability, convergence speed and accuracy we investigate
a network consisting of a 5x5 grid of 25 TelosB nodes [68]. They communicate to a
sink over one or multiple hops using a (dynamic) minimum-cost routing protocol
where the neighbour resulting in the lowest possible packet-loss is selected as
parent. Furthermore, the B-MAC [48] protocol, available in MiXiM, is used to
manage communication over the shared medium. The link quality is modeled by
the commonly used log-normal shadowing path loss model. The objective used in
the experiments is to maximize the minimum remaining lifetime of the nodes in
the network, while the packet-loss to the sink, averaged over the packets in the
last minute, is maintained between 20% and 40%. The nodes send an application
packet to the sink every 5 seconds. We assume the nodes to have the same initial
battery-capacity of 2 x 1500 mAh at 1.5 V. The initial network has 10 meter
distance between neighbouring nodes in the grid and a suitable configuration and
predictive model parameters are selected for this initial situation. These optimal
values are determined using simulations. At the start of the analysis of the step
response (t = 0 for the figures in this section), the distance between adjacent
nodes is increased to 15 meter. This large step enforces a significant change in
QoS for which the network needs to reconfigure. After this step no other external
dynamics are introduced and nodes are only affected by internal dynamics due to
changing their parameters.

We set the length of a round to be 1 second and the service propagates network
QoS information at an update interval of 5 seconds. We assume that this is the
highest update frequency possible given the maximum allowed overhead of the
service. The parameters that we allow to be controlled are the radio transmission
power (any of the values specified in [68]), number of transmissions of a single
packet (between 1 and 10 times) and the number of receive buffer spaces (between
1 and 10). This gives us a useful range of parameters to influence the trade-off
between packet-loss and lifetime.

Impact of controller speed Figure 3.12 shows the step responses for the first 2000
seconds for three experiments with different speeds, i.e., values of ki, for all nodes
in the network.

Figure 3.12(a) shows the step-response for ki = 1, for all nodes. This value
means that the collaborating nodes together try to solve the observed error in a
single round of one second. The step response shows large fluctuations in packet-

Chapter 3: Re-active Reconfiguration 73

0 500 1000 1500 2000
Simulation time (s)

0

20

40

60

80

100

M
ax

im
um

 e
nd

-to
-e

nd
 p

ac
ke

t l
os

s
(%

)

(a)

0 500 1000 1500 2000
Simulation time (s)

0

20

40

60

80

100

M
ax

im
um

 e
nd

-to
-e

nd
 p

ac
ke

t l
os

s
(%

)

(b)

0 500 1000 1500 2000
Simulation time (s)

0

20

40

60

80

100

M
ax

im
um

 e
nd

-to
-e

nd
 p

ac
ke

t l
os

s
(%

)

(c)

Figure 3.12: Packet-loss with controller speed that is (a) fast (ki = 1), (b) suffi-
cient (ki = 90) and (c) slow (ki = 250)

74 Section 3.4: Controller Performance Analysis

0 50 100 150 200 250
Speed of controller (ki)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

ut
 o

f b
ou

nd
s

(%
)

(a)

0 50 100 150 200 250
Speed of controller (ki)

0

100

200

300

400

500

Ne
tw

or
k

lif
et

im
e

(h
)

(b)

Figure 3.13: Impact of controller speed on packet-loss behaviour and expected
network lifetime

loss. Parameters are quickly adapted completely until one end of the suitable
range to reduce the loss, because the impact of a single adaptation step is not
fully observed before the next adaptation. Due to the use of a suitable range in
the predictive model, we do not observe both a repeated under and overshooting
of the target QoS, as was observed with using a static model which allows the
parameter to take every possible value from its range [59]. The dynamic model
does not have the opportunity to adapt (as the time between adaptations is less
than the averaging time of 60 seconds), and the model used for the old situation
is constantly used. This results in instability of the packet-loss and should be
avoided.

Figure 3.12(b) shows the step-response for ki = 90. We see that the distributed
adaptation of parameters is able to keep the packet-loss within the target range,
with only occasional outliers. It quickly converges to a stable situation. Small
fluctuations remain due to discrete steps in the adapted parameter values and
random variations in the packet-loss of the links. Furthermore, inaccuracy in
the predictive model can result in adaptations causing deviations from the target
packet-loss range.

Figure 3.12(c) shows the step-response for ki = 250. The controller converges
to an accurate stable situation, but requires a long time to converge. Every time
dynamics occur that cause the packet-loss to be outside the required range, a
long time is needed to reduce the resulting packet-loss error. Therefore, like a
controller which is too fast, a controller which is too slow is not preferred.

Figure 3.13 shows the percentage of time for the 2000 seconds experiments that
the maximum packet-loss is outside the required range and the expected remaining
lifetime of the network, for a larger range of ki. The results are averaged over 10
simulations per value of ki. The line is a polynomial approximation to show the
trend. The combination of this information is used as a measure of the quality

Chapter 3: Re-active Reconfiguration 75

of QoS provisioning. The remaining lifetime is what we want to optimize in the
end. Note that our approach focuses on the optimization for the given scenario.
If lifetime is still deemed to be insufficient, the scenario itself should be adapted
(reduce amount of communications and size of packets using, for example, data
fusion) to allow a better optimization, which is outside the scope of this work.
Low ki favors lifetime, at a cost of a larger percentage out of bounds. For high ki,
we have a slow convergence where most of the time a configuration is used with
a lower packet-loss than required, costing too much lifetime.

There is a range of speeds with approximately the same low percentage and
high lifetime, in this case between around 75 and 125. For a deployment, we need
to select the speed such that we get the desired behaviour as in Figure 3.12(b),
i.e., to select ki in the range providing the best possible provisioning of QoS.
Closer analysis of the results reveals that the step response, and hence a suitable
value of ki, strongly relates to the (average) time needed to propagate a change
in network QoS information. For a fast controller, with a step-response similar
to Figure 3.12(a), nodes repeatedly adapt based on inaccurate local information
of the network QoS as time between adaptations is often lower than the time
needed to propagate information updates. In other words, instability is caused
by a mismatch between the speed of network QoS propagation of the service and
the controller speed. Furthermore, with the averaging of network QoS informa-
tion, e.g., average packet-loss over one minute, it takes time for the impact of a
parameter adaptation to be fully reflected in the network QoS. In case that the
speed is too slow, local estimates of network QoS are present on the nodes, but
nodes are simply respond too slowly to an observed error.

Consider the case that on the longest critical path in the network, the node
closest to the sink experiences a change in link-latency. Propagation of this change
along the entire path is needed to update the (maximum) latency to the sink of
all nodes (since the maximum occurs at the end of the path). From the end node
of the path, both the end-to-end latency and the sum and inverse sum of the
inbound part of the critical path are communicated till the other end of the path.
At that point, the sum and inverse sum of the outbound part of the path are
propagated over the entire path. In other words, given a length li of the end-to-
end critical path of node i (which has the same value for all nodes on the same
end-to-end critical path) and an update interval of network QoS information of u
seconds, the time needed to update all estimates on the path is 3∗ li ∗u, assuming
bidirectional links and no packet-loss. Losing packets and using multiple hops
to communicate over asymmetric/uni-directional links may increase this time.
On the other hand, several factors also reduce the time needed to propagate
a change. If the critical parent and child are known and do not change due
to the observed packet-loss change, lifetime information is propagated with the
latency information. No lifetime update is needed at all if the collaborating set of
nodes remains the same and lifetime has not significantly changed. Furthermore,
the update intervals do not need to be synchronized between nodes potentially
resulting in less time on average than a complete interval to forward a packet to

76 Section 3.4: Controller Performance Analysis

the next node. Which factors are dominant depends on network characteristics.
The factors combined determine a scaling factor s, which is 1 if the time increasing
and decreasing factors are in balance. Resulting optimal speed of the controller is
s∗3∗ li ∗u. Design-time analysis allows us to approximate s. For the deployment
considered for our simulations, we observe a maximum path-length of 8 and use
an update interval of 5 seconds. A suitable ki is expected to be in the order of
3 ∗ 8 ∗ 5 = 120, with s = 1. From simulations we see that ki can be set lower for
the considered type of networks, since the propagation time is lower on average.
We approximate s = 2/3 and thereby an optimal speed of ki = 2/3∗3∗ li ∗u, and
ki = 80 for our experimental analysis.

At run-time, the impact of the factors influencing the optimal speed may
change. The equation assumes knowledge of the worst-case end-to-end path
length. In practice we may only be able to determine one which may be very
conservative. This results in a controller which is stable, but unnecessary slow.
Therefore, it may be interesting for nodes to set the speed of the controller de-
pending on the current length, or hop-count, of its end-to-end critical path. As
a result, the speed can differ between nodes. Compared to the fixed (worst-case)
speed approach, critical paths consisting of a fewer number of nodes than the
longest path in the network have a speed that better matches the speed at which
network QoS information is available. They thereby adapt earlier than with the
worst-case speed approach avoiding unnecessarily long periods of suboptimal QoS.
For the experimental analysis, we use a fixed s = 2/3 and dynamically changing
li based on the current hop-count of the end-to-end critical path. The approach
can be extended by measuring other run-time factors at run-time, such as the av-
erage packet-loss of a link, to have a more fine-grained influence on the controller
speed by dynamically adapting s as well. With a changing s, the update interval
u can be adapted to maintain the speed of the controller. Additional analysis
is needed to explore the issues involved with this more complex run-time tuning
of the controller speed. Besides using knowledge of the current dynamics in the
network, knowledge of upcoming dynamics helps to pro-actively set the speed and
adapt for upcoming impact of dynamics. One could even think about temporally
stop the re-active reconfiguration, and rely on a single worst-case configuration,
if dynamics get extremely high. In Chapter 4, we go into detail on how to exploit
a-priori knowledge of dynamics to adapt the configuration, including, for example,
the speed of re-active reconfiguration.

Impact of the predictive models An adaptive predictive model is expected to have
a positive impact on the behaviour of the controller (compared to a static model)
at the expense of maintaining the model parameters. The following experiments
focus on the accuracy of the predictive model compared to the static impact
model calibrated for the situation before the step. We furthermore compare to
an ‘oracle’ model which predicts the impact of adaptation based on extensive
simulations with all the possible configurations. This model is used to determine

Chapter 3: Re-active Reconfiguration 77

Static

Adaptive
Optim

al
0

20

40

60

80

100

P
er

ce
nt

ag
e

ou
t o

f b
ou

nd
s

(%
)

(a)

Static

Adaptive
Optim

al
0

50

100

150

200

250

300

N
et

w
or

k
lif

et
im

e
(h

)

(b)

Figure 3.14: Impact of predictive models on packet-loss behaviour and expected
lifetime

the remaining inaccuracy of the dynamic model.

Figure 3.14 shows the average percentage of time the end-to-end packet-loss
is outside the required range and the resulting lifetime using the three predictive
models, for the same set of simulations.

The static model results in a fairly large percentage of time in which the packet-
loss is out of bounds, i.e., either higher or lower than the predefined packet loss
range. With the dynamic approach, the percentage reduces and lifetime increases
compared to the static approach as bounds on both the parameter values and
expected QoS are considered. This results in less over and under-shooting, as
adaptation focuses on parameter values within the range, while the static approach
will continue to adapt parameters even though no significant impact on the metric
is observed. The dynamic model still has some inaccuracy compared to the oracle
model as time is needed to find accurate model parameters, but the deviations
are small, both in packet loss and lifetime.

3.4.4 Dynamic Setup

In the remainder of this section, we consider a dynamic scenario by adding 5
mobile nodes to the setup, which we assume to have half the battery capacity of a
static node. This results in network characteristics of monitoring scenarios, such
as the health monitoring. With the heterogeneity in battery capacity, balancing
the effort to provide the required QoS becomes even more important. The distance
between (adjacent) static nodes is 15 meters and is not changed.

We first investigate the impact of dynamism on the efficiency of our recon-
figuration approach. We assume that the mobile nodes move at walking speed
(2 m/s) for 10 seconds in a random direction within the grid and remain at the
resulting location for a given fixed amount of time. The amount of dynamism is

78 Section 3.4: Controller Performance Analysis

0 200 400 600 800 1000
Interval length (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

ut
 o

f b
ou

nd
s

(%
)

(a)

0 200 400 600 800 1000
Interval length (s)

0

50

100

150

200

250

300

Ne
tw

or
k

lif
et

im
e

(h
)

(b)

Figure 3.15: Impact of amount of dynamics on packet-loss behaviour and expected
lifetime

determined by the length of this time interval between two node movements. It
is expected that the slower and less frequent the dynamics, the more efficient our
approach will be as more time is available to determine network QoS and adapt to
a suitable configuration. We verify and analyze this expectation below. Finally,
we perform simulations to compare the efficiency of our approach with existing
(re-)configuration approaches. For this, we compare with a worst-case static con-
figuration approach, often applied in current practical deployments, and what we
consider to be the most suitable run-time configuration approach, which focuses
on providing local QoS instead of network QoS.

Impact of the amount of dynamics Figure 3.15 shows both the average time the
observed maximum packet-loss to the sink is outside the target range and the
expected network lifetime, for various lengths of the interval between two mobile
node movements. Simulations have a length of 5000 seconds.

With a larger amount of dynamics, the ability of our controller to keep the
maximum packet-loss within the target range reduces. A lower amount of dynam-
ics has a positive effect on the remaining lifetime of the network. For the short
interval lengths there is no clear lifetime trend, as the remaining lifetime depends
on the fluctuating ratio between time spent in situations where the packet-loss is
too low (spending too much lifetime) and too high (not spending enough lifetime).

For the explanation of this behaviour, we have to look at the estimation error
of the packet-loss at the moment an adaptation is done. If a change is not fully
reflected in estimates of other nodes, reconfiguration is done based on outdated
QoS estimates. Moving nodes cause many and large changes in QoS, due to nodes
joining and leaving critical paths. As a result, end-to-end critical paths change
and collaborating sets need to be updated. For a given speed of the controller,
faster movements cause a larger difference between the actual and estimated QoS.

Chapter 3: Re-active Reconfiguration 79

Worst-case

Local Q
oS

Our a
pproach

0

20

40

60

80

100

P
er

ce
nt

ag
e

ou
t o

f b
ou

nd
s

(%
)

(a)

Worst-case

Local Q
oS

Our a
pproach

0

50

100

150

200

N
et

w
or

k
lif

et
im

e
(h

)

(b)

Figure 3.16: Reconfiguration approach comparison

For this particular case, if the time between significant movements of nodes is at
least two minutes, as is the typical case for, for example, health-monitoring, the
controller is able to efficiently provide QoS.

Comparison with existing (re-)configuration approaches To compare our approach
with existing (re-)configuration approaches, we first compare with a single, static,
configuration approach using a configuration based on the worst-case dynamics.
Then, we compare with what we believe is the best approach based on existing
run-time reconfiguration strategies. This approach focuses on local QoS instead of
network QoS. Because there exists no approach directly usable from current liter-
ature that considers adapting multiple parameters to control multiple conflicting
network quality metrics, we construct one with a straightforward integration of
a local QoS provisioning technique. It uses the same predictive model as our
approach but, instead of adapting based on network QoS, the end-to-end packet-
loss in this case, it adapts to provide local QoS, the packet-loss to the immediate
parent, independent of the remaining lifetime and condition of other links. The
number of hops to the sink determines the minimum packet-loss every link should
independently have to have a resulting packet-loss to the sink within the range
between 20% and 40%. As a local approach does not consider this network infor-
mation, we have to make assumptions on this. We assume a maximum number
of hops of 8 to reach the sink and therefore focus on providing the packet-loss of
every link to be as low as 5%. The experiments confirm that this level is necessary
and sufficient.

Figure 3.16 shows the results for simulations of the dynamic set-up with an
interval between movements of 10 minutes, using the three approaches. For the
single, worst-case, configuration, a large percentage of time the packet-loss is
outside the target range; packet delivery ratio is higher than required. The goal
of the worst-case approach is not to keep the packet-loss in the target range, but

80 Section 3.4: Controller Performance Analysis

to have a packet-loss lower than the target in all cases. As a consequence of the
trade-off with lifetime, we observe a very low remaining lifetime. As expected,
very power expensive configurations are used to provide a low packet-loss in all
possible situations, while worst-case situations, for which these configurations are
useful, are rare. The worst-case approach is clearly not a viable option for a
dynamic environment requiring a long lifetime.

The other two approaches consider the trade-off between packet-loss and life-
time, and keep packet-loss in the target range. We do still see the packet-loss to be
occasionally outside the required range. For the local QoS provisioning approach
this percentage is slightly higher, as the packet-loss is often found to be lower
than necessary. This is because local decisions rely on worst-case assumptions
about path-length.

Looking at the remaining lifetime, we see a clear advantage of our approach
from focusing on network QoS, including the overhead involved with network QoS
propagation, instead of local QoS. The main reason is that focusing on control-
ling the packet-loss to the parent, lower lifetime nodes, and the mobile nodes in
particular, have the same packet-loss constraint as the higher lifetime nodes. Low
lifetime nodes spend lifetime on providing a low packet-loss to the parent, inde-
pendent of the ability of other nodes on the path to do this more efficiently. Our
approach balances the lifetime, forcing the higher lifetime nodes to spend more
on obtaining a low packet-loss to the sink providing more flexibility to the lower
lifetime nodes to extend their lifetime.

3.4.5 Conclusions from Simulations

From the simulations we can draw several conclusions. First, our reconfiguration
approach is able to provide sufficient QoS with a proper speed of the feedback
control. Optimal speed is found to be related to the time needed for network QoS
estimates propagation. As the required speed depends on run-time properties,
such as the path length, we suggest to dynamically adjust the speed of a controller
to these run-time properties.

The introduced adaptive predictive model is more accurate than the previously
introduced static approach allowing a better QoS provisioning at the expense of
maintaining only four model parameters for every parameter-metric pair.

There is a relation between the amount of dynamics that is present in a de-
ployment and efficiency of QoS provisioning. Our reconfiguration approach is
found to be most suitable for deployments with frequent changes with small im-
pact and infrequent changes with immediate larger impact on network QoS. This
makes our approach useful for the typical dynamics found in (health-)monitoring
scenarios. Compared to current reconfiguration approaches, our approach shows
significant improvement in the ability to provide QoS, defined by the ability to
keep the packet-loss in a given range, while maximizing the network lifetime.

Chapter 3: Re-active Reconfiguration 81

Figure 3.17: Deployment set-up static nodes

3.5 Experimental Analysis
We implemented our reconfiguration approach, together with the distributed net-
work QoS estimation service, in TinyOS [70] for a WSN deployed in our office
building. It consists of 15 static TelosB [68] nodes deployed as shown in Fig-
ure 3.17. Furthermore, 5 persons, which occasionally move between different
locations in the office building, have a BSN [8] sensor node attached which sends
application packets at a rate of one every 2 seconds to the sink (node 0), using the
static nodes when needed. Together with the protocol stack, the code requires
around 7KB RAM and 40KB ROM for both the TelosB and BSN implementa-
tions, which fits easily on those nodes. Currently, a large amount of data storage
is reserved for link quality estimation. Code optimization may be possible to re-
duce the code size. We want to establish a packet delivery ratio between 60% and
70%. Occasional misses of the constraint are allowed in exchange of a significant
increase in lifetime of the network, which we want to maximize.

The MAC protocol for all nodes is the Low-Power-Listening MAC [38] available
in TinyOS. It is a basic asynchronous MAC protocol which reduces idle listening
by sampling the medium at a given interval. On top of this we use an approach
inspired by [5] where we always retransmit a packet a given number of times and
instead of relying on the receiver to send acknowledgments. This avoids to adapt
the acknowledgment mechanism to deal with asymmetric links. Static nodes
use a fixed (static) node to route data to. The mobile nodes use an approach
of repeatedly requesting packet-loss information from nodes in range. The node
resulting in the lowest packet-loss to the sink is used as parent. The protocol stack
has several controllable parameters and for run-time adaptation we focus on two
of them. Firstly, we consider the transmission power of the radio. An increase in
transmission power can potentially reduce the packet-loss to a given parent and
result in mobile nodes finding neighbouring nodes with a lower packet-loss, at the
expense of a shorter lifetime. Secondly, we look at the number of retransmissions
of the MAC protocol. Extra retransmissions could reduce the link packet-loss,

82 Section 3.5: Experimental Analysis

Worst-case

Local Q
oS

Our a
pproach

0

20

40

60

80

100
P

er
ce

nt
ag

e
ou

t o
f b

ou
nd

s
(%

)

(a)

Worst-case

Local Q
oS

Our a
pproach

0

20

40

60

80

100

N
et

w
or

k
lif

et
im

e
(h

)

(b)

Figure 3.18: Comparison of configuration approaches for (a) percentage out of
bounds and (b) network lifetime

but the radio will be spending more time in transmission and listening modes
requiring more power compared to being idle, resulting in shorter lifetime.

Before the nodes can perform their task, controllable parameters and parame-
ters of the reconfiguration approach, including the distributed service, have to be
initially set. Based on small scale experiments, we select the length of a round of
the service to be 10 seconds and the number of hops used to forward packets to
be 1 to deal with asymmetric links. We set an initial value for the controllable
parameters and determine suitable parameter ranges for the predictive models us-
ing simulations, small scale experiments and experience with the hardware. The
selected values and ranges may be different for every node and may not be opti-
mal. This is not a problem since the configuration and predictive model will be
updated at run-time as needed. However, a good setting does reduce the initial-
ization time in which the approach settles itself in a good configuration. Given
the moderate set-up size and regular structure of the network, manual parameter
selection is feasible. Future work could focus on an automated phase where nodes
calibrate the suitable range. Making use of accurate models of the deployment
could also benefit guided selection of parameter values.

The simulations in the previous section give us good insights in the functional-
ity of the approach. The goal of our experiments with the deployment are mainly
to show the feasibility of the reconfiguration approach to be implemented on re-
source constrained nodes and to be used in practice. We compare the performance
of our controller with existing strategies, also used for the simulations. We assume
a maximum number of 4 hops to reach the sink and therefore steer the packet-loss
of every link to around 10% in the local QoS approach.

Figure 3.18(a) shows the percentage of time that the maximum packet-loss, of
any of the nodes, to the sink is out of the target range, for a 3 hour experiment
of the three approaches. To derive packet-loss information at the sink (connected

Chapter 3: Re-active Reconfiguration 83

to a PC), information about the observed packet-loss to the parent of the sending
node is added to the application packets. Using knowledge of the maximum
amount of received (application and service) packets and interpolating for lost
packets, the sink determines the end-to-end packet-loss for every node every 10
seconds. Note that the figure considers the maximum packet-loss over all nodes in
the network, which does not necessarily refer to the same node during the entire
experiment.

Figure 3.18(b) shows the resulting predicted network lifetime of the static and
mobile nodes in the network. The estimated lifetime is locally calculated and
added to the application packets, similarly to the packet-loss, to be collected by
the sink. The expected lifetime is calculated based on the average power spent
in the last minute and an assumption on the initial capacity of the used battery.
The average power spent by a single node is determined by locally monitoring
the time spent in every radio state, i.e., sending, receiving and idle, and the used
transmission power. This way to determine the power consumption takes all the
packet communication into account, including the additional overhead incurred
by the service used for the propagation of QoS information in our approach. For
the TelosB nodes we assume the initial energy available to be 2 full batteries at
1500mAh at 1.5V and a smaller full 750mAh at 1.5V battery for the BSN nodes.

We can make several observations. First, we have shown that our reconfigura-
tion approach is simple enough to be implemented on resource constrained nodes
and can successfully respond to changes in network QoS in a distributed man-
ner. Similar to the simulations, compared to a single worst-case configuration
approach we see a clear improvement in network lifetime, despite the negative
impact caused by the overhead of network QoS estimation, as we avoid QoS
over-provisioning for the non worst-case situations. Compared to the local QoS
provisioning approach, our approach has a higher network lifetime of about 15%,
while the percentage out of bounds is slightly reduced (around 5%). The local
approach does not consider knowledge of the current state of the system, such
as the actual number of hops a packet has to travel and existing heterogeneity
in (remaining) node lifetime, in the QoS provisioning. As a result, shorter paths
typically show QoS over-provisioning and effort spent by the short lifetime mobile
nodes is the same as the long lifetime static nodes. Compared to the set-up used
for the simulations, this set-up shows less advantage of our approach over the local
QoS approach. This is mainly caused by the more stable single-path routing to the
sink, compared to the multi-path grid deployment used in simulations. The local
approach trade-offs lifetime to ensure a good quality of every link, independent
of whether it is used for routing. Difference between the approaches is expected
to be larger when using more parameters and an increased heterogeneity in the
network. More extensive experiments are required to confirm this.

Looking closer at the experiments we can make more detailed observations
about the functionality of our approach and potential improvements. For both
the run-time reconfiguration approaches we often observe switching between two
configuration. A fairly large difference in packet-loss is sometimes observed be-

84 Section 3.6: Related Work

tween these two configurations, due to a coarse grained discrete parameter value
selection. This results in a good packet-loss on average, but shows consecutive
moments of good and bad packet-loss. Ideally we want the behaviour to be smooth
over time, also when averaging over a longer period. Selecting from a set of param-
eter values with a smaller granularity of the impact on packet-loss could support
this. On the one hand, this may be achieved by using a larger set of parameters to
select from. On the other hand, more fine-grain scalable platforms could be used.
A typical example is the transmission power. The used radio only support a given
set of parameter values, with potentially large impact on the considered metric
between two subsequent values. We observe that in our scenario mobility has
an important impact on the optimality of the used configuration. Mobile nodes
occasionally move between different locations in the network, thereby influencing
the critical path of one or more nodes. The potentially large impact on network
metrics is not directly observed by the nodes, due to both the averaging of packet-
loss over time and the time needed to distribute network QoS information. The
configuration is only slowly adapted and, as a result, potentially sub-optimal con-
figurations are used, until the mobile node resides at a more or less static location,
i.e., the person stays at a given location. In that case the reconfiguration approach
settles for the new situation and reconfigures accordingly. For our current sce-
nario this is still an efficient solution as the time for a node to be mobile is small
compared to the time spent in a relative static situation. To reduce the time of the
response needed the re-active approach can be made faster, i.e., faster propaga-
tion of network QoS and controller speed, thereby increasing the overhead of the
approach. This is no practical solution as the overhead during the times with less
dynamics is much more than needed. Furthermore, a sufficient increase of speed
may not be possible due to limitations on the maximum allowed overhead. If it is
important to quickly respond to infrequent relatively fast dynamics, with a large
impact on network QoS, a re-active approach is inherently less efficient. For that
case, one might resort to a pro-active reconfiguration strategy, such as discussed
in the next chapter. With such an approach, observable network dynamics trigger
reconfiguration before their actual impact on the network QoS. Parameters could
be proactively changed in response to node mobility, such as the validity time of
outbound neighbours, or a completely different routing strategy could be used.
Alternatively, the speed of the controller could be temporarily increased to adapt
for the faster dynamics, if possible. The presented feedback controller can then
fine-tune this proactively selected configuration.

3.6 Related Work

Configuring a WSN to provide a given QoS has become an important topic of re-
search in the last few years. Many approaches exist that incorporate the provision-
ing of QoS in the design of the used protocols before the actual deployment [64].
Other focus on the design-time derivation of a single (worst-case) configuration

Chapter 3: Re-active Reconfiguration 85

independent of the used protocol stack [16, 22]. Design-time approaches require
knowledge of the worst-case characteristics of the network and typically focus on
static networks. The need for (additional) run-time reconfiguration, or adapta-
tion, to respond to unpredictable dynamism in dynamic heterogeneous networks
is recognized by many researchers. Our run-time reconfiguration approach dis-
tinguishes itself from existing work by its combination of being fully distributed,
considering multiple QoS metrics at the network-level and its applicability in
dynamic heterogeneous WSN.

With a centralized run-time reconfiguration approach, such as [26], informa-
tion on the quality of the network is collected and reconfiguration decisions are
made at a central location. The practical applicability of centralized approaches
is limited for WSNs that are heterogeneous, require a low overhead and fast re-
sponse to dynamic changes. With distributed approaches, such as our approach,
nodes locally decide if and how to adapt their own parameters.

The focus of most current distributed run-time reconfiguration approaches is
to optimize for a single network QoS metric, usually power, or only focus on
local metrics instead of the network-level metrics that are of interest to the end-
user. In [69] a feedback control approach is used to guarantee that each node
maintains an average delay for packets transiting a node. In [12] the transmission
power and routing decisions are dynamically adapted based on packet deadlines.
Several MAC protocols exist that adapt their duty-cycle based on the amount
of traffic observed by the node [63, 81]. Considering only a single metric ignores
the fact that important trade-offs exist between different QoS metrics that should
all be considered for the correct execution of the task. The approaches that
do not directly steer the network QoS, but local metrics only, do not consider
heterogeneity in the network and it is unclear if network QoS constraints are met.

There is little existing work on run-time adaptation techniques that consider
multiple QoS metrics at the network-level. The recent work of [86] confirms the
need to consider multiple metrics and proposes a centralized approach determining
how to adapt MAC protocol parameters based on centrally collected network QoS
information. A homogeneous configuration is assumed where all nodes use the
same MAC parameters. We focus on a distributed solution where nodes control
their parameter values independent of each other, which allows for heterogeneity
among nodes. In [46] a distributed adaptive algorithm that minimizes power con-
sumption, while guaranteeing a given successful packet reception probability and
delay is proposed. It only considers the adaptation of the parameters of the IEEE
802.15.4 MAC. The relation between parameter values and the metrics is accu-
rately modeled by mathematical expressions. This model is a suitable predictive
model for the particular case in which our approach is used for the IEEE 802.15.4
MAC. Local optimization of the expression is repeatedly done to find ‘optimal’
parameter values. This results in the optimization of local QoS, while our ap-
proach considers, global, network QoS. For this, nodes need sufficient information
about the network QoS and the status of other nodes, to decide on adaptation
of their parameters. In our approach, the nodes receive this information using

86 Section 3.7: Summary

our distributed service (Chapter 2), which can efficiently propagate information
through dynamic heterogeneous WSNs.

Our approach is furthermore independent of the protocols used and number
of controllable parameters considered. With the cross-layer adaptation of pa-
rameters we exploit the fact that the parameters from all protocols influence the
behaviour of the network [35]. While we adapt controllable parameter to fine tune
the functionality of protocols, and thereby the behaviour of the node, one could
also focus on replacing complete components. With component adaptation, the
functionality of a protocol is modified by adding or replacing a component of the
protocol or the complete protocol itself [39, 65]. Unless the different components
and protocols are known at design-time and stored on the nodes, significant over-
head is needed to consistently perform component adaptation. For infrequent
dynamics with a large impact on network QoS, component adaptation may be
a suitable reconfiguration strategy. Additional analysis is needed to explore the
benefits of combining component adaptation with parameter adaptation.

We adopt ideas from the area of control theory and (decentralized or dis-
tributed) model predictive control [50]. In our case we control a system which
constantly experiences unpredictable dynamics and disturbances. A number of
aspects make this control problem hard. Due to the use of wireless communication
the feedback propagation is delayed and unreliable. Furthermore, we employ a
fully distributed approach where every node uses a nested feedback control strat-
egy to adapt both the configuration and predictive model. For the reconfiguration
we need to rely on discrete adaptation of the parameters. These aspects are all
subjects of active research and the optimal controller synthesis problems have not
yet been solved. We develop a pragmatic solution with a strong focus on the
practical implementation on sensor nodes. We cannot use the existing analytical
analysis approaches in this field of research to analyse our approach and therefore
rely on experimental analysis and evaluation.

3.7 Summary
To ensure that the QoS, expressed by multiple metrics, is maintained at run-time,
adaptation of controllable protocol parameters is needed. In this chapter, we in-
troduced a re-active run-time distributed reconfiguration approach that actively
maintains the required QoS of the network using feedback control. Nodes adapt
their parameters based on deviations between the required and locally estimated
current network QoS. To estimate QoS in a distributed manner, our generic dis-
tributed service is used and instantiated such that estimates of the current network
QoS are available to the nodes. The impact of parameter changes on the QoS
is predicted using an adaptive model. This model is updated using observations
of the impact of reconfiguration on QoS. With simulations, we explored the pa-
rameters and characteristics of the approach. We showed, with analysis of the
step-response, that our distributed control approach is stable, if the speed of the

Chapter 3: Re-active Reconfiguration 87

controller, and the underlying service, is set in accordance with the deployment
characteristics. Experiments with an actual deployment showed that we are able
to implement the controller on resource-constrained nodes and that it provides
appropriate QoS for a dynamic and heterogeneous deployment. Compared to a
worst-case single configuration, and a local adaptation approach which does not
take network QoS knowledge into account, we are able to maintain required packet
delivery ratios and extend the lifetime of the network.

88 Section 3.7: Summary

Chapter 4

Pro-active Reconfiguration

In this chapter, we introduce a pro-active run-time reconfiguration approach which
exploits design-time knowledge of the application scenario dynamics for efficient
QoS provisioning. The approach anticipates for the impact that known dynamic
events can have on the QoS by pro-actively reconfiguring the network immedi-
ately at the moment that changing dynamics will impact the QoS. This approach
is complementary to our re-active approach which is generally applicable with-
out knowledge of the application scenario, but adapts only in response to QoS
errors instead of anticipating for them. We start this chapter by introducing two
practical monitoring scenarios. We show how these scenarios can benefit from a
pro-active reconfiguration strategy and use them as a case-study throughout this
chapter. Section 4.2 introduces our pro-active run-time reconfiguration strategy
and discusses the implementation details for the two practical scenarios. In Sec-
tion 4.3, we discuss the results of extensive simulations and experiments with an
actual deployment. In Section 4.4, we take a look at related work. Section 4.5
concludes.

4.1 Illustrative Scenarios
We use two different scenarios to support the introduction of our pro-active recon-
figuration approach; a cow-health monitoring scenario and an office monitoring
scenario. They differ in their protocol stack, controllable parameters, deploy-
ment and application characteristics, and QoS requirements. In this section, we
discuss the details of these scenarios and how they can benefit from pro-active
reconfiguration.

Cow-health monitoring Health problems of cows often result in decreased mobility.
Therefore, mobility monitoring can lead to an early detection and treatment of
health problems, improving animal well-being and lowering production losses.

89

90 Section 4.1: Illustrative Scenarios

A health-monitoring WSN was proposed in the WASP project [30, 74] where a
sensor node is attached to the leg of a cow. We consider the monitoring of thirty-
eight dairy cows with an attached BSN sensor node [8], in a barn of 40 by 60
meters. Twelve static BSN nodes are placed in a grid to support communication
to a sink location (being a static node at one corner of the barn). When a cow
is walking, acceleration is sampled and transmitted every second, via the static
network, to the sink. This information is used to detect mobility problems, such
as limping. When a cow is stationary, the sink is only informed about the change
of posture of the cow, e.g., standing or laying, to allow activity monitoring. The
required network QoS is a loss of the packets sent to the sink lower than 20%,
while, as it is very inconvenient to regularly remove the nodes from the cows, the
network lifetime is maximized.

The nodes use a basic TDMA MAC protocol with a fixed slot assignment.
Every TDMA frame consists of an active period in which every node has a fixed
slot for sending, while it listens to all other nodes in the other slots. Furthermore,
there is a sleep period in which all the nodes turn off their radio. To get the
packets to the sink, we use Gradient-Based Routing (GBR) [54], where nodes
maintain their hop-count by periodic flooding initiated by the sink. Packets are
only forwarded if received from nodes with a higher hop-count. We consider
several controllable parameters of this protocol stack: the TDMA slot-size, used
for sending and receiving packets, sleep-time, the radio transmission (TX) power
and the flooding interval of GBR, used to update hop-counts.

When looking at the behaviour of the monitored dairy cows, we observe that
during most of the day they stay in the barn with limited mobility and twice a day,
at regular times, the farmer leads them to a milking parlor. The milking procedure
takes up to two hours including the walking. This a-priori knowledge allows us to
identify moments in time after which significant changes to the QoS may arise, and
reconfiguration could help to avoid this change. When we look at the expected
behaviour of the entire network, the process of milking the cows heavily impacts
the traffic load in the entire network and network topology, as during this period
all cows will (slowly) walk to the milking parlor. An increased amount of traffic
and changing topology can result in the overloading of buffers, collisions during
communication, and loosing the option to communicate to intended neighbouring
nodes. As a consequence, packet-loss increases and may potentially violate the
constraint. To avoid this, we can adapt parameters to positively affect the amount
of data able to be handled by the network, for example reducing the TDMA sleep
time. We can furthermore increase the responsiveness to a changed topology by,
for example, increasing the flooding frequency of GBR. These adaptations will
typically increase the power consumption of the nodes. Therefore, we do not
want to constantly use this configuration, but use a low power configuration able
to handle less data, when the cows are not being milked. On a smaller scale, we
can look at the behaviour of individual nodes. The nodes attached to the cows
can be stationary or mobile depending on the activity of the cow. Independent
of whether the cows are being milked of not, these changing dynamics (locally)

Chapter 4: Pro-active Reconfiguration 91

Figure 4.1: Deployment of 15 static TelosB nodes

change the behaviour of the network. When moving, a larger interference is
observed and communication to neighbouring nodes is less reliable. Adapting
parameters, such as the transmission power, can positively influence the reliability
of communicating to neighbouring nodes and prevent an increase in packet loss
while the cow is walking.

Office monitoring From monitoring the locations of persons in a building we could,
for instance, automatically control the lights in every room of the building based
on the presence of persons, potentially reducing the power consumption compared
to the manual (de-)activation of lights by the employees. We can similarly imagine
control of temperature, humidity or other environmental aspects. We consider a
deployment with a static backbone consisting of 15 TelosB nodes [68], which
monitor light intensity and forward packets to the sink, as shown in Figure 4.1.
To monitor the location of employees in the building, a BSN node is carried
by employees, in our case 5 persons, when they start working. They use the
parent node to which they communicate, as an indicator of their location, and
communicate it to the sink every 10 seconds. For this deployment we want an end-
to-end packet delivery ratio of at least 50%, while network lifetime is optimized.

Nodes use the Low-Power-Listening (LPL) MAC [38], available in TinyOS [70],
a basic asynchronous MAC protocol which reduces idle listening by sampling the
medium at a given interval. We furthermore use a tree-based routing approach
where the static nodes have a fixed parent. Mobile nodes determine their parent
(to forward packets to and as an indication for their location) by iteratively broad-
casting a request for hop-count information from the static nodes in range, and
subsequently select the lowest hop-count neighbour. The controllable parameters
are the sampling interval of the MAC protocol, the frequency at which the mobile
nodes check their parent for the routing protocol, and the transmission power of
the radio.

92 Section 4.2: Method Details

Similarly as for the cow-health monitoring scenario, the dynamics of employ-
ees in the office monitoring scenario show several interesting changes for which
we could pro-actively reconfigure. Whether the monitored employee is static or
mobile, impacts the mobility of the node attached to the person. The topology,
and thereby neighbouring nodes to which communication can take place, changes
over time. The request frequency of the routing protocol is an obvious candidate
to increase in case the person starts to walk and updates of routing parents are
needed. If the person is not walking, less effort has to be put in finding a new
parent and the configuration should aim at saving power instead. Furthermore,
there is an obvious daily pattern of office hours and non-office hours. Outside of-
fice hours no or just a limited number of employees need to be monitored, which
drastically reduces the amount of data that is communicated within the WSN.
As for the cow-health monitoring, with the knowledge of a very low data amount
communicated in the network, adapting parameters to trade off the amount of
data that can be handled in the network for a reduction of power, such as the
sampling interval of the MAC protocol, is possible. This can significantly reduce
the power consumption, while the packet-loss constraint is still met.

4.2 Method Details
In this section, we introduce our reconfiguration approach which pro-actively
adapts protocol parameters at run-time to ensure the required network QoS is pro-
vided in a dynamic heterogeneous WSN. We describe the details of our pro-active
approach and discuss the integration into the two illustrative scenarios given in
the previous section. Section 4.2.1 describes the steps involved for designing and
using our pro-active reconfiguration approach. It gives an overview of the design-
time steps, discussed in more detail in Section 4.2.2, the deployment-time steps,
Section 4.2.3, and run-time steps, Section 4.2.4. The integration of the approach
for the two scenarios are analysed, and compared to current (re-)configuration
approaches, in the next section.

4.2.1 Overview

Figure 4.2 gives an overview of the design-time, deployment-time and run-time
steps involved with the construction of our pro-active reconfiguration approach.
The basic concept is as follows. Instead of using a single configuration during
the entire run-time (worst-case) or adapt the configuration once the network QoS
is insufficient (re-active), we define a set of configurations from which the most
appropriate is selected based on expected dynamics in the network. By observing
events that indicate a change in the dynamics of the network, the configuration is
adapted to anticipate for the impact of these changed dynamics. In other words,
the run-time of every node is partitioned into a finite number of modes of oper-
ation which classify the dynamics experienced. Every mode has one associated

Chapter 4: Pro-active Reconfiguration 93

Define potential
observable modes

Determine
configuration

Select set of
operational modes

Store modes Select initial mode

Design-time

Deployment-time

Detect mode Adapt mode Recover, if needed

Run-time

Define recovery
approachper mode

Figure 4.2: Steps involved in pro-active reconfiguration

configuration. These modes are defined at design-time and stored on the nodes
during deployment. At run-time, the approach ensures that every node can detect
the mode in which it should operate. These individual steps of our approach are
discussed in detail, using the two illustrative scenarios introduced before, in the
remainder of this section.

4.2.2 Design-time Steps
At design time, we perform the following four steps to instantiate the pro-active
approach for a given application scenario.

Define potential observable modes The first step is to define potential modes by
analysing the dynamics of the deployment and application scenario. We use a
hierarchical approach to define the different modes in which the network could
operate. First, we identify expected run-time situations which significantly differ
in the dynamics experienced by the entire network, i.e., network modes. Network
modes can, for example, be day and night. Within these network modes, every
node has its own node mode, classifying the dynamics of the individual node.
Typical node modes are, for example, whether a node is moving or stationary.
At any moment in time, the network is operating in one of its potential network
modes, and the node in one of its node modes. The node modes for a given node
can potentially differ per network mode, e.g., a node might experience different
kind of dynamics during the day compared to during the night. From experience

94 Section 4.2: Method Details

with actual deployments we see that modes can often easily be derived using
the designer’s high-level understanding of the WSN deployment and the target
application. Detailed information on, for example, the internal functionality of
the network protocols, is often not required.

To allow run-time switching between modes, we require the beginning of a
defined mode to be observable at run-time by the detection of a predefined event.
Observable events can be related to a large variety of information, for example,
sensor information from one or more nodes, the amount of traffic observed and/or
the current time. For example, significant changes in accelerometer data can
indicate the start of a person walking. The beginning of a node mode is required
to be observable by every node itself. The beginning of a network mode is required
to be detected at a central location, the sink (potentially using information from
other nodes), allowing a coordinated change of the network mode to be initiated
by this central location, as explained later. Observing the start and end of office
hours can, for example, be done by monitoring the wall-clock time of the PC
attached to the sink.

When we look at the cow-monitoring scenario, we can identify at least two
interesting, run-time detectable, network modes; milking and not milking. As
milking periods start and end every day around the same time, observing the be-
ginning of both network modes based on the wall-clock time is the easiest solution.
An alternative would be to, for example, use a dedicated sensor informing the sink
as soon as the milking parlor is used. While in one of these network modes, every
cow can be either walking or stationary, which classify as two node modes. It is
expected that during the milking network mode, the majority of the cows is in
the walking node mode. For the (mobile) nodes to detect whether the monitored
cow is changing its posture from walking to stationary and vice versa, we can use
thresholding on the accelerometer values, obtained from the BSN node. For the
office monitoring scenario, the obvious daily pattern of office hours and non-office
hours results in two potential network modes. We can furthermore define two
node modes: walking and stationary. For detecting modes, the same approach as
for the cow-health monitoring scenario is used. Network modes are observed at
the sink based on the wall-clock time, and the nodes modes are detected using
accelerometer data.

For the integration of the pro-active approach into the two scenarios, we con-
sider the modes described before, but one could think of distinguishing even more
modes. For the cow-monitoring scenario we could, for example, think of addi-
tional modes related to the activity of the cow, e.g., standing, lying or running.
For the office-monitoring scenario, one might also be interested in reconfiguring
for the case that, for example, many persons are in a single room.

Determine configuration per mode After analysing the dynamics of the scenario and
defining the possible modes of operation, we determine a suitable configuration
for every combination of network mode and node mode, simply referred to as

Chapter 4: Pro-active Reconfiguration 95

the mode. For every mode we determine a suitable configuration at design-time,
where we rely on existing techniques, such as analytical approaches [16, 22], sim-
ulations [37, 44], and experience with practical WSN deployments. The configu-
ration consists of defining a value for the controllable parameters of the protocol
stack. This can include the parameters of complementary run-time adaptation
strategies, such as our re-active reconfiguration approach. One could think of
increasing the speed on the re-active approach, and underlying service, with in-
creased dynamics, which improves on the efficiency compared to having the fast
speed during the entire run-time of the WSN. Some situations may also require the
re-active approach to be completely suspended, such as short periods of very high
dynamics where the speed of re-active reconfiguration cannot be set high enough
and we have to rely on a fixed non-adaptive configuration instead. While our
approach is independent of the design-time analysis techniques and controllable
protocol parameters considered, they are important for the overall improvement
obtained from our pro-active reconfiguration approach.

Similarly as the hierarchical definition of network and node modes, we consider
two kinds of controllable parameters. A global parameter is set consistently for
every node in the network, while a local parameter can be set independently for
every node in the network. A consistent value is needed for global parameters
for, for example, the proper functioning of a protocol, such as a MAC protocol.
In the cow monitoring scenario, for instance, we consider the radio transmission
power to be a local parameter, while the TDMA slot-size and sleep-time, and
GBR flooding interval are global parameters. In the office monitoring scenario,
the parent request interval of the mobile nodes and the transmission power are
local parameters, while the MAC protocol sampling interval is a global parameter.
Since changing a global parameter affects the behaviour of every node in the
network it typically has a larger impact on the QoS compared to changing a local
parameter. On the other hand they require more time and effort to change. A
change of global parameter should be coordinated and synchronized to maintain
proper functioning. We keep this in mind with the selection of a configuration,
by only adapting global parameters in response to (infrequent) network mode
changes. As network mode changes, and thereby potential changes to global
parameters, are initiated at a central location, a coordinated and synchronized
adaptation approach is possibly at run-time, as discussed later.

For the cow-health monitoring scenario, the configuration per mode is selected
with the use of simulations. We implemented the scenario in OMNeT++ [44], a
discrete-event simulation environment, with the use of MiXiM [37], a modeling
framework created for wireless networks. We simulated with different parameter
values to get an understanding of the impact of changing different parameters.
Table 4.1 shows the values for the parameters resulting from the configuration-
space exploration to get a packet-loss lower than 20%, while lifetime is optimized,
for the different possible modes. Note that we distinguish different node modes for
the static and mobile nodes. For the static nodes we use only a single node mode
and retain the same local parameter values at all time. The first column shows the

96 Section 4.2: Method Details

Table 4.1: Configurations for cow-health monitoring scenario

Network mode - Not milking Not milking Milking Milking
Node mode (mobile nodes) - Stationary Walking Stationary Walking
Node mode (static nodes) - Static Static Static Static

TDMA slot-size 0.1 s 0.05 s 0.05 s 0.1 s 0.1 s
TDMA sleep-time 0 s 10 s 10 s 0 s 0s

GBR update interval 30 s 60 s 60 s 30 s 30 s
TX power (mobile nodes) -10dBm -10dBm -5dBm -15dBm -15dBm
TX power (static nodes) -15dBm -15dBm -15dBm -15dBm -15dBm

Table 4.2: Configurations for office monitoring scenario

Network mode - Office Office Non-office Non-office
Node mode (mobile nodes) - Stationary Walking Stationary Walking
Node mode (static nodes) - Static Static Static Static

LPL sampling interval 0.5 s 0.5 s 0.5 s 2 s 2 s
Request interval (mobile nodes) 3 s 60 s 3 s 60 s 3 s

TX power (mobile nodes) -15 dBm -15 dBm -10 dBm -15 dBm -10 dBm
TX power (static nodes) -15 dBm -15 dBm -15 dBm -15 dBm -15 dBm

values that we would use when no reconfiguration approach is applied, but just a
single static (worst-case) configuration is used over time. This single configuration
approach is the current state-of-the-art as has been implemented in the WASP
project, and later used as one of the references for performance analysis of the
pro-active approach. With a change to the milking mode, parameters are adapted
to anticipate for the increased amount of data communicated in the network. In
this case, the TDMA slot-size is increased and sleep-time reduced. This allows
more data to be communicated, but reduces the time spent by the radio in the a
low-power idle mode. Furthermore, to anticipate for the changing topology, the
GBR update interval is reduced. In the milking mode, we observe that a lower
transmission power is sufficient compared to the not-milking mode, as cows are
typically closer together. During the milking mode a change of parameters is
found to be not needed when the activity of the cow changes. While a cow is not
being milked, an increase of transmission power is found to be useful when a cow
starts to walk to compensate for increased interference.

For the office monitoring scenario, we determined the parameter values to use
based on experimenting with the actual deployment. With the deployment in
place we determined the impact of changing the parameters on the packet-loss
and network lifetime. This resulted in the parameter value selection shown in
Table 4.2. The first column of the table shows the single configuration used for
a static configuration approach. With the switch between office hours and non-
office hours we adapt the global Low-Power-Listening (LPL) sampling interval
parameter, such that nodes are able to handle the amount of traffic experienced

Chapter 4: Pro-active Reconfiguration 97

during that mode. While walking, the request interval is set to 3 seconds, which is
enough to quickly respond to changing connectivity based on the distance between
the nodes and walking speed. While stationary, nodes do not experience this
change in connectivity and a high value of 60 seconds is selected to reduce the
packet-load in the network. The transmission power is chosen such that a node
can always connect to at least one static node in the monitored environment.
When walking, we observed a higher interference on the sent packets, for which
we compensate by a slightly higher transmission power. Note that we have chosen
not to use this higher transmission power for the single configuration approach.
This is because this higher transmission power is only found to be useful during
the limited time a person is walking, which does not outweigh the disadvantage of
having a high transmission power during all office hours. This shows an additional
benefit of using a set of modes; it allows for a more fine-grained exploitation of
performance trade-offs.

Select set of operational modes After classifying interesting node and network modes
and determining the appropriate configuration per mode, a trade-off between the
benefits of mode switching and the overhead incurred is made to select the set of
modes to actually use at run-time. The local detection of a node mode is cheap,
while a distributed detection where, for example, the sensor data of multiple sen-
sors is collected to determine that a person starts to move, can be expensive.
Similarly, adapting a local parameter is cheap, while the adaptation of a global
parameter is relatively expensive. The frequency of events plays an important
role in the overall configuration overhead. Due to the design-time definition of
the modes, we can already analyse the (expected or maximum) frequency of events
for a given deployment at design-time. In an office monitoring scenario we know
there are two switches between office and non-office hours, while a person starting
to walk occurs much more frequently (but maybe still infrequent enough to change
a global parameter depending on the deployment). Besides reasoning, design-time
techniques, such as simulations, can again be used to get an idea about the over-
head and benefits of changing modes. As a result of this step, initially defined
modes that were expected to be beneficial, but require too much overhead for
limited benefit, are not considered for run-time reconfiguration.

For the cow-health monitoring scenario, the network mode is only changed for
the milking period which happens two times a day at fixed times. The change of
node mode can be completely observed locally and requires only limited run-time
overhead for the detection of events indicating the mode change. In the case that
the cow is milked, no detection is needed at all, as the derived configurations used
when walking or stationary are equal (i.e., effectively there is only one node mode
during the milking network mode). The expected overhead of the reconfiguring
for the considered node modes is therefore negligible and we reconfigure for all
of them. Similarly for the office monitoring scenario, a change of node mode is
observed by every node individually, and the network mode change is observed

98 Section 4.2: Method Details

by the sink and happens only two times per day. The benefits of reconfiguring
for these modes is outweighing the overhead of detection and reconfiguration.

Define recovery approach In a WSN deployment, nodes may experience heavy
external interference for a longer time, may loose connection and need to re-
join the network. This may result in nodes missing a request to change the
network mode. Nodes may also freshly join an existing network and have no
knowledge of the current network mode. Incorrect assumptions on the network
mode may result in the use of inconsistent global parameters leading to nodes not
being able to effectively communicate, e.g., when using different radio channels,
or to reduced efficiency of the communication, e.g., when using different radio
sampling intervals. For the practical applicability of our approach, we define
a recovery approach that recovers the appropriate network mode in the case a
mismatch with other nodes arises. After being unable to communicate to any
other node for a certain amount of time, nodes start recovering the network mode.
In general, nodes can cycle through their different possible network modes and
send packets to confirm the current network mode. In specific cases, nodes may
have more efficient means to observe the global parameter values (and derive
the current network mode) and avoid any communication or time overhead, for
example by overhearing communication while changing radio frequencies in order
to find the appropriate globally used radio channel. Discovering an erroneous
assumed network mode is less obvious when nodes are still able to communicate,
but less efficiently. A node may not be able to make a distinction between using
a wrong mode or experiencing increased interference. In this case nodes should
either regularly synchronize the assumed network mode with neighbouring nodes
or observe it based on overhearing communication. In this work, we want to
emphasize the need of a recovery approach for any practical application. The
concrete approach is likely application specific. Additional experiments are needed
to further explore the trade-offs involved in designing a recovery approach and
the impact of the used protocol stack.

4.2.3 Deployment-time Steps

At the time the network is deployed, the configurations used for the collection of
modes are stored on every node. Every mode is identified by a unique identifier.
This allows easy referencing when reconfiguration of the node is externally trig-
gered, such as with network mode changes. During deployment, the configuration
is initially set for every node such that all nodes use a consistent network mode as
is most appropriate for the dynamics experience at start-up of the WSN. Given
the network mode, the initial node mode is set for every individual node. Note
that even if the modes are selected incorrectly for the dynamics at deployment
time, observing the run-time events will eventually lead to the nodes to be in the
correct network and node mode.

Chapter 4: Pro-active Reconfiguration 99

4.2.4 Run-time Steps

Observable events allowing to detect the beginning of a mode are assumed to be
identified at design-time with the selection of the potential modes. After observing
these events, controllable parameters are adapted according to the configuration
locally stored per mode. For the introduction of the pro-active approach we
implicitly assume the configuration per mode to be static, but our approach is
not limited to this. Additional run-time tuning of the configurations used per
mode may be possible on top of the pro-active approach, for example by using a
complementary re-active reconfiguration approach.

Node mode changes are detected by individual nodes themselves. Nodes may
use information from other nodes, but often only need locally observed (sensor)
information. A node detecting a node mode change can immediately adapt its
local parameters based on the locally stored mode information without the need
to inform or synchronize with other nodes. For example, a node may change its
transmission power after observing significant changes in the acceleration of the
node without any significant overhead. For detecting the events indicating the
changes of the network mode, we rely on a single central location. Unless the de-
tection of the required events is already part of the application, small procedures
need to be written for the nodes to detect the events triggering node and net-
work mode changes. Once decided to change the network mode, all nodes in the
network are informed. As the parameter values used for every mode are locally
accessible, the central location only needs to communicate the predefined unique
identifier of the network mode to all nodes. Because of the small amount of in-
formation to communicate, we can resort to a simple and low overhead flooding
approach, piggybacking on other packets if possible, to inform all nodes about the
mode change. The flooding starts from the central location, the sink. The mode
identifier is broadcast to all of its neighbours and every node receiving the infor-
mation for the first time will broadcast it. With this procedure the information
is disseminated to all nodes in an iterative fashion. After providing neighbouring
nodes with the new mode identifier, the node adapts its (global and/or local)
parameters to the values defined for the new network mode. For the cow-health
monitoring scenario, we observed during simulations that a single flood is enough
to inform all nodes about the change in network mode, due to the small size of
the information packet, the used contention free MAC and large density of the
network. Because of this and the fact that nodes remain connected to the network
throughout the different network modes, a recovery approach is not required for
this scenario. For the office scenario we observed that, a single broadcast is often
not enough to inform all nodes about a changing network mode due to the lack
of redundancy in the deployment and protocols. With more retransmissions we
quickly converge to successfully informing all (connected) nodes. Based on these
results, we conservatively flood five times to ensure a sufficiently small probability
of connected nodes requires recovery. Since the network mode changes only two
times a day, this repeated flooding induces a negligible amount of the total traffic

100 Section 4.3: Performance Evaluation of Pro-active Reconfiguration

load, i.e., 10 packets per node during the entire day. As nodes (re-)joining the
network is an integral part of the application, we do require a recovery approach
for these nodes to determine the globally used parameter values. We implemented
the recovery approach where the node cycles through the different possible global
parameter values, while requesting their parent for the actual network mode, as
soon as they observe that they are entering the network after being disconnected.
Experiments with this approach show that the time needed to find the network
mode is typically less than a second when in range of the network. We did not
implement a repeated check of the network mode for this scenario, accepting the
small probability of a connected node experiencing limited connectivity if a mode
change request is not received.

4.3 Performance Evaluation of Pro-active Reconfiguration
In this section, we discuss results of simulations for the cow-health monitoring
scenario in Section 4.3.1 and experiments with the office building monitoring
deployment in Section 4.3.2. For both scenarios we compare with a worst-case
static configuration approach. We furthermore compare with a re-active approach
and show situations in which pro-active reconfiguration allows more efficient QoS
provisioning compared to the re-active approach.

4.3.1 Cow-health Monitoring Scenario

For the evaluation of the pro-active approach integrated in our cow-health mon-
itoring scenario we use an implementation in the OMNeT++ simulator for de-
termining suitable configurations per mode, as discussed in the previous section.
We compare the pro-active approach with a single worst-case configuration and
a re-active approach, in terms of the maximum end-to-end packet-loss of any
of the nodes to the sink and network lifetime. The configuration for the single
configuration approach and the modes for the pro-active approach are defined in
Table 4.1. For the re-active approach we consider the same configurations, but a
change between these configurations is performed based on re-active response to
deviations in the packet-loss, instead of dynamic events. To meet the packet-loss
constraint of 20%, the re-active approach aims at providing a packet-loss between
a lower bound of 5% and upper bound of 15%. More specific, the transmission
power is increased from −15 dBm to −10 dBm as soon as the observed packet-loss
to the parent is higher than 15%. It is lowered as soon as the loss is below 5%
to trade-off packet-loss for a reduction in power consumption. We respond to
the periods of high data traffic, when milking, by monitoring the amount of data
processed at the sink. Nodes are informed to adapt their global parameter values,
TDMA slot-size, sleep-time and GBR update interval, to the values related to the
milking network mode (see Table 4.1) when it is observed at the sink that at least
80% of the cows is sending at the rate related to walking.

Chapter 4: Pro-active Reconfiguration 101

Single

Re-active

 (
local only)

Re-active

(local+global)
Pro-active

0

20

40

60

80

100

P
ac

ke
t l

os
s

(%
)

(a)

Single

Re-active

 (lo
cal only)

Re-active

(local + global)
Pro-active

0

50

100

150

200

N
et

w
or

k
lif

et
im

e
(h

)

(b)

Figure 4.3: (a) Packet-loss and (b) network lifetime for cow-health monitoring
scenario

The scenario is simulated for a day, in which two milking periods of two
hours occur, for four approaches, i.e., a single (worst-case) configuration, re-active
(adapting only the local parameters and adapting both the local and global param-
eters) and pro-active using a set of modes. To have statistically reliable results,
every experiment was repeated 10 times. The maximum end-to-end packet-loss
and network lifetime are shown in Figure 4.3. The results are the averages over
all runs. The packet-loss is the percentage of the number of packets sent by the
mobile nodes, but not received by the sink. The lifetime of a node is determined
from its simulated power consumption and initial battery capacity. For the power
consumption we focus on the main power consuming part of the node, the ra-
dio [49, 68]. Power consumption, in this case, depends on the TDMA schedule.
We assume an initial battery capacity of the BSN nodes of 750 mAh at 1.5 V.

We observe that the maximum packet loss is lower than 20% for all approaches.
A significant increase of network lifetime is observed when using the pro-active
approach instead of the single static configuration, as the high-power worst-case
configuration is not constantly used. When we look at the results of the re-active
approach we see only a limited improvement, compared to the single configuration,
if we only consider adapting local parameters. This is because the transmission
power is just slightly adapted over time and does not allow a significant impact
on the overall power consumption. As soon as global parameters are re-actively
adapted as well, the network lifetime is increased significantly and is close to the
pro-active approach. By adapting the global parameters, the time spent in the
power-efficient idle mode of the radio is influenced. This shows the importance
of adapting global parameters for this scenario. As the re-active approach is
created to optimize the quality metrics averaged over a long time it is found to
have a similar impact on the metrics due to relatively limited network dynamism.
The most profound difference can be seen when looking in more detail at the

102 Section 4.3: Performance Evaluation of Pro-active Reconfiguration

Static (S
ingle)

Static (P
ro-active)

Mobile (S
ingle)

Mobile (P
ro-active)

0

20

40

60

80

100
P

ac
ke

t l
os

s
(%

)

(a)

Single

Pro-active
0

50

100

150

200

N
et

w
or

k
lif

et
im

e
(h

)

(b)

Figure 4.4: (a) Packet-loss and (b) network lifetime for office monitoring scenario

times that network dynamics occur. With the re-active approach, there is a
delay between observing the high network load and the adaptation of the global
parameters, i.e., TDMA schedule. In this period, packets are lost due to the
limited capacity reserved by the TDMA schedule. The re-active approach first
tries to compensate for a high packet-loss by increasing the transmission power,
which increases power consumption, while the solution lies in the adaptation of
the TDMA schedule. What we furthermore see is that the coordinated change
of the global parameters becomes less efficient due to the high traffic, and more
than one retransmission is needed to successfully propagate the change. This
increases the time until the required adaptation of the network mode. This shows
another advantage of our pro-active approach; it anticipates and adapts for the
high traffic just before it actually occurs, avoiding reconfiguration in the period in
which coordinating a network mode change is more challenging and many packets
can be lost. The difference between the re-active and pro-active approach in their
behaviour around dynamic events is investigated and discussed in more detail for
the office monitoring scenario in the next subsection.

4.3.2 Office Monitoring Scenario
We implemented the office monitoring scenario, and integrated our reconfiguration
approach, using TinyOS for both the (static) TelosB and (mobile) BSN nodes, as
discussed in more detail in the previous section. We did a one day experiment
using the modes and parameter values shown in Table 4.2. We assumed the office
hours to be from 9 AM, after which most employees start working, until 7 PM,
the time at which most employees have ended their working day.

Figure 4.4 shows the results of the pro-active approach compared to the worst-
case single configuration approach, with respect to the maximum end-to-end
packet-loss, where we differentiate between the static and mobile nodes, and net-

Chapter 4: Pro-active Reconfiguration 103

work lifetime. The comparison with the re-active approach is later performed
and discussed in detail. For the static TelosB nodes we assume the initial energy
available to be 2 full batteries at 1500 mAh at 1.5 V and a smaller full 750 mAh
at 1.5 V battery for the (mobile) BSN nodes. Due to the smaller battery, network
lifetime is dominated by the mobile nodes. The results are based on experiments
starting at 8 AM, before all monitored employees started working and 1 hour
before the network mode switch, until 8 PM, after all employees stopped working
and 1 hour after the network mode switch. For practical reasons we could not
leave the nodes over night. For the remaining 12 hours we therefore determine
the lifetime using the packet-loss and power consumption based on experiments
with only the static network in place and assumed it would be similar during the
entire night.

The results first of all show the feasibility of the reconfiguration approach to
be implemented on resource constrained nodes and to be used in practice. The
pro-active reconfiguration furthermore results in a significantly better network
lifetime, while the average packet-loss is maintained, as constantly using a power
inefficient worst-case configuration is avoided. For the mobile nodes, a reduction
of packet-loss is observed due to the increase of transmission power when the node
is mobile, compensating for increased interference.

To focus on the main difference between the re-active and pro-active approach,
their response to network dynamics, we perform additional experiments. We
constructed a scenario in which we control the moments in time at which dynamics
occur. Using the same deployment of static nodes, a single mobile node moves
in 1 minute from one side of the corridor to the other, stays there for 2 minutes,
moves to the other side in 1 minute and stays there for 2 minutes. During the
experiment, the mobile node sends packets to the sink once every 5 seconds, while
the static nodes only forward these packets. The node starts to move and results
are collected after an initialization period of 1 minute. For this experiment, we
integrated both a pro-active and re-active approach in the routing protocol, which
provides the parent to use for communication. The pro-active approach adapts
the local parameters to the walking mode, i.e., the radio transmission power is
increased to −10dBm and the routing request interval reduced to 3 seconds (see
Table 4.1), as soon as significant changes in acceleration data are observed. The
re-active approach adapts to the configuration as used in the walking mode as
soon as a change of parent is observed. If no change of the parent is observed
in the last 30 seconds, the activity of the protocols is relaxed by reducing TX to
−15dBm and the interval to 60 seconds. With our experiment we focus on local
events and retain the same global parameters, i.e., an LPL sampling interval of
500 milliseconds.

Figure 4.5 shows the packet-loss and network lifetime of the mobile node for
the different activities, i.e., walking and stationary, when using the pro-active
approach compared to the re-active approach, where we vary the time the re-
active approach spends on the local analysis of the performance, i.e., a request
interval of 10, 30 and 60 seconds. With the re-active approach, delay in adaptation

104 Section 4.3: Performance Evaluation of Pro-active Reconfiguration

Pro-active (S
tationary)

Pro-active (W
alking)

Re-active 60s (S
tationary)

Re-active 60s (W
alking)

Re-active 30s (S
tationary)

Re-active 30s (W
alking)

Re-active 10s (S
tationary)

Re-active 10s (W
alking)

0

20

40

60

80

100

P
ac

ke
t l

os
s

(%
)

(a)

Pro-active

Re-active 60s

Re-active 30s

Re-active 10s
0

50

100

150

200

N
et

w
or

k
lif

et
im

e
(h

)

(b)

Figure 4.5: (a) Packet-loss and (b) network lifetime for the mobile node in the
small-scale experiment

0 1 2 3 4 5 6

Proactive

Reactive (60s)
Reactive (30s)
Reactive (10s)

t (min)Walking Walking

Figure 4.6: Adaptation responsiveness

results in nodes using an unreachable parent. For the re-active approach we can
therefore see a clear trade-off between the responsiveness to topology changes,
which is reflected in the packet-loss when walking, and network lifetime. Putting
more effort in observing the local performance, during the entire run-time, results
in a better responsiveness to dynamic events, but also requires more power, and
thereby lifetime, during the period in which no dynamics occur. With the pro-
active approach we actively observe the dynamics and this trade-off does not
need to be made, resulting in both a lower packet-loss (when walking) and longer
network lifetime.

To explain these results we take a closer look at the behaviour of the re-
active and pro-active approach during this experiment. Figure 4.6 shows the
reconfiguration moments in time of the different adaptation approaches. While
the pro-active approach accurately adapts during the times it is required, using
a re-active approach introduces a delay for the adaptation. After the node starts
moving a delay arises until a parent change is observed. After the period of

Chapter 4: Pro-active Reconfiguration 105

walking, there is still a small delay due to the introduced interval to be sure that
the topology stopped changing. Reducing this interval can reduce the delay, but
can result in a more frequent, unnecessary, adaptation for slow topology changes
and even instability. For the short and predictable dynamics with a fairly large
impact on the QoS, such as the periods of mobility in this small-scale experiment,
pro-active reconfiguration allows a more efficient QoS provisioning compared to a
re-active strategy.

4.4 Related Work
Our pro-active run-time reconfiguration approach differentiates itself from existing
related work by the combination of its (i) pro-active approach as opposed to the
common re-active approach, (ii) use of both local and global parameters and (iii)
independence of protocol stack.

Existing run-time reconfiguration approaches in the area of WSN react to the
impact on QoS caused by changes in dynamic behaviour. With the use of run-time
techniques, such as feedback control [12, 26, 59, 63, 81], or machine learning [18,
71], these approaches converge to parameter values suited for the current situation.
This makes them generally applicable, but ignores the additional knowledge we
gain from the actual deployment to be reconfigured. We introduce a generic
approach that can be instantiated to exploit the knowledge of the dynamics of a
particular scenario, complementary to these re-active strategies.

In our approach, we consider adapting both local and global parameters, as
well as the issues involved in coordinating and maintaining consistent network
modes, and global parameters. Nodes (frequently) adapt their local parame-
ters in a distributed manner, while we take a centralized approach to coordinate
(infrequent) changes of global parameters. With approaches, such as a re-active
reconfiguration approach, the (maximum) amount of reconfigurations and thereby
the overhead involved with changing network parameters is unpredictable. With
our method, the overhead of the coordination can be assessed and kept under
control with design-time knowledge of the frequency of events.

While many reconfiguration approaches depend on specialized adaptive pro-
tocols, our approach considers the existing protocol stack as a black box with
an interface of changeable protocol parameters. This is common for design-
space exploration approaches which are used to find a single set of parameter
values [16, 22]. It makes our method independent of the used protocol stack and
allows us to change parameters for different protocol layers at the same time,
increasing the applicability for new and existing WSN deployments. The adapta-
tion techniques used by existing approaches are not generally applicable to other
protocols and induce a (possibly large) run-time overhead. The use of design-
time defined modes results in a very low run-time overhead for reconfiguration,
because we only need a lightweight detection of the mode to use and a switching
mechanism for informing on a changing network mode. This makes it very well

106 Section 4.5: Summary

suitable for integration in diverse practical WSN deployments. The results of the
integration for a small-scale cow-health demonstrator for the WASP project are
discussed in [73].

In our approach, we explicitly exploit a-priori knowledge and analysis of the
application scenario for pro-active reconfiguration. In the area of real-time em-
bedded systems the benefits of using a pro-active approach is already recognized.
In [19], scenarios, related to what we call a mode, are defined at design-time in or-
der to reduce resource consumption by the system by predicting in which scenario
the system operates.

Finally, the integration of a recovery approach is emphasized for the use in any
practical deployment. The need of such a recovery approach is recognized [7, 62],
but its current application in practice induces a large overhead as complete chunks
of code need to be communicated and/or stored on the nodes. Compared to
approaches as described in [7, 62] we require a smaller scale recovery of only a
single network mode identifier, thereby limiting the overhead involved with the
recovery.

4.5 Summary
In this chapter, we introduced a pro-active run-time reconfiguration approach for
dynamic heterogeneous WSNs. This approach explicitly exploits a-priori knowl-
edge of the application scenario dynamics to guide a reconfiguration process.

At design time, dynamics affecting the behaviour of the nodes in the network
are identified. Given these dynamics, we define multiple modes in which a node
can operate. We use a hierarchical approach where we differentiate between the
network mode, equal for every node in the network, and the mode of operation
of the node, which can be different for every node. A changing mode indicates
changing dynamics of one or more nodes that will potentially impact the net-
work QoS. Every change of mode is assumed to be observable at run-time by
an event, such as sensor readings or wall-clock time. Using existing design-time
analysis techniques, a suitable configuration, defined by the values of controllable
parameters, for every mode is determined. We distinguish parameters that can be
adapted locally and those that should be considered globally. A change of node
mode results in the adaptation of local parameters, while a change of network
mode can also affect the value of global parameters. The modes are selected at
design time keeping in mind the benefit of using them and the run-time switching
overhead involved in the synchronized adaptation of global parameters. When
deployed, the configuration used per mode is stored locally on the node and an
initial mode is selected. At run-time, nodes locally observe the design-time defined
events which signal the beginning of a node mode and adapt their configuration
accordingly. A central location, such as a sink, observes and initiates the change of
network mode by communicating to all nodes in the network, for which a simple,
low overhead, flooding approach suffices. After being notified about a network

Chapter 4: Pro-active Reconfiguration 107

mode change, nodes adapt their configuration, potentially including global pa-
rameters. Our reconfiguration approach is made robust for practical deployments
by a recovery approach that allows nodes to determine the current network mode
after, for example, (re-)joining the network or missing a network mode request.

We discussed the integration of our pro-active reconfiguration approach for
cow-health monitoring and office monitoring scenarios. With simulations and
experiments with an actual deployment, we have shown a significant positive effect
on the network lifetime, while there is no negative effect on other QoS metrics,
i.e., the packet-loss to the sink, when using a pro-active strategy compared to a
static worst-case configuration. The experiments furthermore show the feasibility
of the reconfiguration approach to be implemented on resource constrained nodes
and to be used in practice. Due to the controlled number of global parameter
changes and design-time definition of the modes, there is only a very low run-time
overhead incurred by our approach. We also compared the performance of pro-
active reconfiguration with a re-active reconfiguration approach, demonstrating
their complementary nature. Re-active reconfiguration is a generally applicable
reconfiguration strategy, but does not exploit any additional knowledge we have
of the application scenario. We have shown that for predictable dynamics with a
fairly large impact on the QoS, pro-active reconfiguration allows a more efficient
QoS provisioning as it avoids phases in which the performance of the network is
limited and re-active reconfiguration would require a significant amount of time
to resolve the QoS error.

108 Section 4.5: Summary

Chapter 5

Conclusions

Since the emergence of Wireless Sensor Networks (WSNs) around fifteen years
ago, a significant amount of research has been done on specialized hardware and
software. Many types of sensor nodes and protocols are readily available and are
used for an increasing number of applications. Typical applications are the mon-
itoring of elderly in an assisted living facility and controlling the environmental
conditions in an office building based on the presence of employees. With the in-
creased practical applicability of WSNs, end-user expectations on the performance
are increasing and the WSN deployments get more complex. Different types of
nodes are used and work together in the same WSN, resulting in heterogeneous
networks. Furthermore, WSNs are integrated in more and more dynamic envi-
ronments, where events such as moving persons and external interference have
a fluctuating impact on the behaviour of the network. This makes the task of
Quality-of-Service (QoS) provisioning, where the network is configured such that
the application is efficiently and accurately executed, an increasingly important
and challenging field of research. QoS provisioning for WSNs that are dynamic
and heterogeneous is a huge and rather unexplored challenge.

This thesis provides an efficient QoS provisioning approach for dynamic hetero-
geneous WSNs. We aim at WSNs for monitoring applications consisting of both
static and mobile nodes. Nodes with different characteristics may be used and can
show significant dynamic behaviour. The dynamic behaviour of the WSN and ap-
plication requires run-time reconfiguration to support efficient QoS provisioning.
By a combination of re-active and pro-active run-time reconfiguration techniques,
controllable parameters are adapted such that the network provides sufficient QoS
to successfully perform the required application. To allow distributed reconfigura-
tion decision making, we introduce and use an efficient generic distributed service
to provide nodes with local estimates of network metrics. The network metrics
are defined by a converging recursive equation expressed in terms of information
exchanged with neighbouring nodes in the network. The validity and applicabil-
ity of the individual parts of the QoS provisioning approach are confirmed with

109

110 Section 5.1: Contributions

simulations and experiments with practical deployments. Practical experiments
furthermore demonstrate that the approach can be implemented on resource con-
strained nodes. Using our QoS provisioning strategy, a significant improvement
in the efficiency of QoS provisioning is shown compared to existing state-of-the-
art configuration approaches, e.g., delivery ratio constraints are satisfied with a
significantly longer lifetime of the network.

The rest of this chapter gives an overview of the contributions made in this
thesis and discusses interesting aspects to consider for future work.

5.1 Contributions
In Chapter 2, we introduced a generic distributed service that allows nodes to ac-
curately estimate network metric information in dynamic heterogeneous wireless
sensor networks. To instantiate the service, a recursive local update procedure
is defined that converges to a fixed point representing the desired metric. The
recursive procedure is defined in terms of information that is locally measured
and provided by neighbouring nodes. For several instantiations of our service, we
showed that the iterative update function is stable and converging. Controlled
n-hop forwarding is used to communicate information across asymmetric links,
which are often found to be present in heterogeneous networks. To maintain ac-
curacy under dynamic changes, the information dissemination is repeated at a
given interval to allow nodes to keep estimates up-to-date. This interval is the
main parameter to influence the trade-off between accuracy and overhead of the
service. It is set in accordance to the amount and speed of dynamics in the de-
ployment. With extensive simulations and experiments with actual deployments,
we explored this trade-off and showed a significant increase in accuracy of the
estimated network metric compared to the typically used local broadcasting ap-
proach. We showed the integration into various protocol stacks requiring different
kinds of network metric estimates.

In Chapter 3, we introduced a re-active reconfiguration method that actively
maintains the required QoS of the network using a distributed feedback control
approach. Nodes adapt their parameters based on observed differences between
the current QoS level (as estimated with the service) and QoS required by the
end-user. The approach is generally applicable in any dynamic scenario as it di-
rectly steers the network QoS the end-user is interested in. As multiple nodes can
influence the network QoS, nodes collaborate to efficiently resolve any QoS error.
This can imply that one node changes its behaviour more actively compared to
others. For example, when considering to meet a packet-loss constraint, while net-
work lifetime is optimized, nodes with a low expected remaining lifetime should
spend less power on reducing packet-loss compared to longer lifetime nodes on the
same path. We have shown how to instantiate our distributed service to collect
network QoS information needed for efficient collaboration. Nodes reconfigure by
adapting controllable parameters of which the impact on the QoS is predicted

Chapter 5: Conclusions 111

using an adaptive model. This model is updated at run-time using information
on observed impact of reconfigurations and the current QoS, to maintain accu-
racy of the predicted impact. Step-response analysis showed that the distributed
feedback control approach is stable, if reconfiguration decisions are based on ac-
curate feedback. The speed of the controller should therefore be set in line with
the speed of feedback propagation performed by the service. Experiments with
an actual deployment showed that it is possible to implement the controller on
resource constrained nodes and to provide QoS for a dynamic and heterogeneous
WSN deployment. Compared to a worst-case single configuration, and a local
adaptation approach which does not take network QoS knowledge into account,
we are able to maintain the same required packet delivery-ratio, while significantly
extending the lifetime of the network.

In Chapter 4, we introduced a pro-active reconfiguration method for QoS
provisioning. Complementary to the re-active approach, this approach explicitly
exploits a-priori knowledge of the application scenario to guide the reconfigura-
tion process. At design-time, multiple modes in which a node can operate are
identified and observable events that signal the start of a mode are defined. For
the definition of the modes we take a hierarchical approach. The mode of op-
eration of the network, shared by every node in the network, defines situations
affecting the dynamic characteristics of the entire network. Network modes can,
for example, be day and night. Within the network mode, the mode of opera-
tion of the node, which can be different for different nodes, defines the dynamic
behaviour of the node. Typical node modes are, for example, whether the node
is mobile or stationary. A change of (node or network) mode indicates changing
dynamics of one or more nodes, potentially impacting network QoS. Using ex-
isting design-time analysis techniques, a suitable configuration for every mode is
determined. For our pro-active approach, we distinguish between parameters that
can be adapted locally and those that should be considered globally. A change
of global parameter should be coordinated and synchronized to maintain proper
functioning. We keep this in mind with the selection of a configuration, by only
adapting global parameters in response to (infrequent) network mode changes.
As network mode changes, and thereby potential changes of global parameters,
are initiated at a central location, a coordinated and synchronized adaptation ap-
proach is required at run-time. The modes to use at run-time are selected keeping
in mind the benefit of using them and the run-time switching overhead involved
in the synchronized adaptation of global parameters. At the time the network is
deployed, the configurations for the defined modes are stored on the nodes and an
initial configuration is selected. At run-time, nodes locally observe events which
signal the change of a node mode and adapt the configuration accordingly. A cen-
tralized location, such as a sink, observes and initiates a change of network mode
by communicating to all nodes in the network, for which a simple, low overhead
flooding approach suffices. After being notified about a network mode change,
nodes adapt their configuration, potentially including global parameters. Our re-
configuration method is made robust by using a recovery approach that allows

112 Section 5.2: Recommendations for Future Work

nodes to determine the current network mode after, for example, (re-)joining the
network or missing a network mode change request. We integrated our pro-active
reconfiguration approach into practical cow-health monitoring and office moni-
toring scenarios. The use of a pro-active approach results in more efficient QoS
provisioning, e.g., a significant positive effect on the network lifetime, while con-
straints on the packet-loss are still met. By comparing with a re-active approach,
we have seen that being pro-active allows an early reconfiguration anticipating
for network dynamics. It thereby avoids a phase in which the performance of the
network is limited. Due to the controlled number of global parameter changes and
design-time definition of the modes, the approach incurs only a very low run-time
overhead.

5.2 Recommendations for Future Work
While this thesis provides a complete and efficient run-time reconfiguration strat-
egy for the QoS provisioning problem for dynamic heterogeneous WSNs, there is
room for extensions.

An interesting step to increase the applicability of our QoS provisioning ap-
proach is to construct an efficient calibration phase which relieves the designer
from the potentially complex task or finding appropriate initial configurations
and parameter values for the re-active and pro-active approaches. We currently
rely on manual setting of the parameters using observations from simulations and
small-scale deployments. This works fine for relatively small networks with a rea-
sonable amount of heterogeneity. Especially when size and heterogeneity in the
network increase, a simply strategy for the initial setting of the WSN is preferred
which does not require the manual setting of every individual node. One could
think of run-time techniques that, for example, require every node to scan its
possible range of parameter values to search for interesting trade-offs and initial
parameter settings.

The distributed service for network QoS estimation in our QoS provisioning
approach assumes the update interval to be identical for every node in the network.
A heterogeneous setting of the update interval significantly increases the design
space, but may be beneficial for reducing the overhead of the service by making
some paths update their network QoS faster than others. For example, for paths
on which nodes do not regularly show changes in their behaviour less updates
may be needed compared to paths with nodes that often affect the path QoS.

If we look at the re-active approach, it aims at keeping values of the constrained
metrics between their respective lower and upperbounds. The relative distances
of these bounds from the constraint are assumed to have been defined, but their
selection involves making a trade-off between the optimization freedom and the
probability of fluctuating metric values to occasionally violate the constraint.
The defined distance between the bounds and the constraint could for example
be influenced by the impact of the expected dynamics. The distance between the

Chapter 5: Conclusions 113

lower and upperbound is also an interesting aspect to investigate. It should be
large enough to avoid the QoS to frequently be outside this range, but it should
be low enough to allow exploiting the performance trade-offs. Exploring the
trade-offs involved with selecting the lowerbound and upperbound for a particular
deployment, and constraint, is an interesting subject.

The optimal speed of the re-active approach is influenced by various run-time
aspects, such as path length and amount of external interference. These aspects
impact the time needed to propagate network QoS information and thereby the
maximum speed for a stable feedback controller. Currently, we consider using
the path length of the end-to-end critical path to dynamically adapt the speed,
allowing shorter paths to reconfigure faster than longer paths. One could think
of various other aspects, such as the quality of links or amount of expected dy-
namism on a path, to influence the speed. More extensive analysis of the aspects
influencing the optimal controller speed can give more insight in the possibility
to automatically, and even more efficiently, set or adapt the controller speed at
run-time.

For the pro-active approach, we rely on design-time analysis, mostly using
the developers and/or end-user’s knowledge of the application scenario, for the
identification of modes. There is a probability of overlooking less obvious, but
exploitable, modes. The more useful modes that are detected, the more efficient
the use of a pro-active reconfiguration can be. More elaborate techniques for the
automated selection of modes, for example, by design-time techniques such as
simulations, or analysis of collected data, or the run-time identification of modes,
are interesting subjects.

As a final recommendation, we suggest to further explore the relation between
the re-active and pro-active approach. The re-active approach is generally appli-
cable for any kind of application scenario, while the pro-active approach explicitly
uses knowledge of the scenario. We discussed the possibility of the re-active ap-
proach using information of the scenario, similarly as done for the pro-active
approach, to adapt the speed of the controller to the mode (or even suspend it
for some time knowing that dynamic changes in a mode are too frequent to follow
adaptively). Furthermore, the re-active approach can be used to tune the config-
urations used in every mode. A hierarchical organization can be used in which
a re-active approach is used in every mode, and can potentially be adapted as
soon as a mode changes. To which extent the two approaches can further benefit
from each other, and an analysis of the trade-offs involved, given a particular
application, are interesting subjects for future work.

5.3 Concluding Remarks
In this thesis, we provided techniques that can be adopted by WSN researchers
and designers to help them construct efficient dynamic heterogeneous WSNs.
With our techniques, we aim at the important task of providing a sufficient level

114 Section 5.3: Concluding Remarks

of QoS for the entire network, allowing the successful execution of a given appli-
cation. The contributions of this thesis can form the basis for future research, for
example along the lines of the future work recommendations given above. Our
efficient QoS provisioning paves the way for more practical WSN deployments
and takes the use of sensor networks to aid us in our daily lives a step forward.

Bibliography

[1] ALwEN (Ambient Living with Embedded Networks) project website.
http://www.alwen.nl. Last visited: June 2013.

[2] N. Baccour, A. Koubaa, M. Ben Jamaa, H. Youssef, M. Zuniga, and M. Alves.
A comparative simulation study of link quality estimators in wireless sensor
networks. In Modeling, Analysis Simulation of Computer and Telecommu-
nication Systems, 2009. MASCOTS ’09. IEEE International Symposium on,
pages 1–10, 2009.

[3] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Nu-
merical Methods. Athena Scientific, 1997.

[4] D. Bertsekas, J. Tsitsiklis, and M. Athans. Convergence theories of dis-
tributed iterative processes: A survey. In Lecture Notes in Control and In-
formation Sciences, volume 76, pages 107–139, 1986.

[5] M. Blagojevic, M. Nabi, M. Geilen, T. Basten, T. Hendriks, and M. Steine. A
Probabilistic Acknowledgment Mechanism for Wireless Sensor Networks. In
Networking, Architecture and Storage (NAS), 2011 6th IEEE International
Conference on, pages 63–72, 2011.

[6] P. Boonma and J. Suzuki. Monsoon: A coevolutionary multiobjective adap-
tation framework for dynamic wireless sensor networks. In Hawaii Interna-
tional Conference on System Sciences, Proceedings of the 41st Annual, pages
497–506, 2008.

[7] S. Brown and C. J. Sreenan. Software Update Recovery for Wireless Sensor
Networks. In Proceedings of the conference on Sensor Applications, Experi-
mentation, and Logistics, volume 29 of SAEL’10, pages 107–125, 2010.

[8] BSN website, ICL London. http://vip.doc.ic.ac.uk/bsn/m621.html. Last
visited: June 2013.

[9] A. Cerpa, J. Wong, M. Potkonjak, and D. Estrin. Temporal properties of low
power wireless links: modeling and implications on multi-hop routing. pages
414–425, 2005.

115

116 BIBLIOGRAPHY

[10] J.-H. Chang and L. Tassiulas. Energy conserving routing in wireless ad-
hoc networks. In INFOCOM 2000. Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE, vol-
ume 1, pages 22 –31, 2000.

[11] J.-H. Chang and L. Tassiulas. Maximum lifetime routing in wireless sensor
networks. IEEE/ACM Transactions on Networking (TON), 12(4):609–619,
2004.

[12] O. Chipara, Z. He, G. Xing, Q. Chen, X. Wang, C. Lu, J. Stankovic, and
T. Abdelzaher. Real-time power-aware routing in sensor networks. In Quality
of Service, 2006. IWQoS 2006. 14th IEEE International Workshop on, pages
83 –92, 2006.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiob-
jective genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Trans-
actions on, 6(2):182–197, 2002.

[14] J. Du, W. Shi, and K Sha. Asymmetry-aware link layer services in wireless
sensor networks. Journal of Embedded Computing, 3:141–154, 2009.

[15] EAGER (An In-Home Health Alert System with Remote Care Coordina-
tion) project website. http://www.eldertech.missouri.edu/docs/Skubic - EA-
GER.html. Last visited: June 2013.

[16] K. P. Ferentinos and T. A. Tsiligiridis. Adaptive design optimization of
wireless sensor networks using genetic algorithms. Computer Networks,
51(4):1031 – 1051, 2007.

[17] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, and A. Woo. TinyOS
TEP 123: The Collection Tree Protocol. August 2006.

[18] A. Forster. Machine Learning Techniques Applied to Wireless Ad-Hoc Net-
works: Guide and Survey. In Intelligent Sensors, Sensor Networks and In-
formation, 2007. ISSNIP 2007. 3rd International Conference on, pages 365
–370, 2007.

[19] S. V. Gheorghita, M. Palkovic, J. Hamers, A. Vandecappelle, S. Mam-
agkakis, T. Basten, L. Eeckhout, H. Corporaal, F. Catthoor, F. Vandeputte,
and K. De Bosschere. System-scenario-based design of dynamic embedded
systems. ACM Transactions on Design Automation of Electronic Systems,
14(1):1–45, 2009.

[20] S. Hedetniemi and A. Liestman. A survey of gossiping and broadcasting in
communication networks. Networks, 18(4):319–349, 1988.

[21] W.B. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan. An application-
specific protocol architecture for wireless microsensor networks. Wireless
Communications, IEEE Transactions on, 1(4):660 – 670, oct 2002.

BIBLIOGRAPHY 117

[22] R. Hoes, T. Basten, C.-K. Tham, M. Geilen, and H. Corporaal. Quality-of-
service trade-off analysis for wireless sensor networks. Performance Evalua-
tion, 66(3–5):191 – 208, 2009.

[23] E. Hyytiä and J. Virtamo. Random waypoint mobility model in cellular
networks. Wireless Networks, 13:177–188, 2007.

[24] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva.
Directed diffusion for wireless sensor networking. Networking, IEEE/ACM
Transactions on, 11(1):2–16, 2003.

[25] S. C. Kleene. On notation for ordinal numbers. The Journal of Symbolic
Logic, 3(4):150–155, 1938.

[26] S. Kogekar, S. Neema, B. Eames, X. Koutsoukos, A. Ledeczi, and M. Maroti.
Constraint-guided dynamic reconfiguration in sensor networks. In Proceed-
ings of the 3rd international symposium on Information processing in sensor
networks, IPSN ’04, pages 379–387, 2004.

[27] D. Kotz, C. Newport, and C. Elliott. The mistaken axioms of wireless network
research. Technical Report TR2003-467, Dartmouth College, July 2003.

[28] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan,
N. Kushalnagar, L. Nachman, and M. Yarvis. Design and deployment of
industrial sensor networks: experiences from a semiconductor plant and the
north sea. In Proceedings of the 3rd international conference on Embedded
networked sensor systems, SenSys ’05, pages 64–75, 2005.

[29] S. Lin, J. Zhang, G. Zhou, L. Gu, John A. Stankovic, and T. He. Atpc: adap-
tive transmission power control for wireless sensor networks. In Proceedings
of the 4th international conference on Embedded networked sensor systems,
SenSys ’06, pages 223–236, 2006.

[30] C. Lokhorst, P.H. Hogewerf, R.M. de Mol, R. Verhoeven, M. Steine, J.J.
Lukkien, and M. Bennebroek. Wireless sensor application for dairy cow activ-
ity monitoring. In Proceedings of the 5th European Conference on Precision
Livestock Farming, ECPLF 11, pages 17–26, 2009.

[31] A. M. Lyapunov. The general problem of the stability of motion. Interna-
tional Journal of Control, 55(3):531–534, 1992.

[32] M.K. Maggs, S.G. O’Keefe, and D.V. Thiel. Consensus Clock Synchroniza-
tion for Wireless Sensor Networks. Sensors Journal, IEEE, 12(6):2269–2277,
2012.

[33] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wire-
less sensor networks for habitat monitoring. In Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications, WSNA
’02, pages 88–97, 2002.

118 BIBLIOGRAPHY

[34] P. J. Marron, S. Karnouskos, D. Minder, and A. Ollero. The Emerging
Domain of Cooperating Objects. Springer, 2011.

[35] T. Melodia, M. C. Vuran, and D. Pompili. The state of the art in cross-layer
design for wireless sensor networks. In Proceedings of the Second interna-
tional conference on Wireless Systems and Network Architectures in Next
Generation Internet, EURO-NGI’05, pages 78–92, 2006.

[36] A. Milenković, C. Otto, and E. Jovanov. Wireless sensor networks for per-
sonal health monitoring: Issues and an implementation. Computer Commu-
nications, 29(13-14):2521–2533, August 2006.

[37] MiXiM website. mixim.sourceforge.net. Last visited: June 2013.

[38] D. Moss and P. Levis. BoX-MACs: Exploiting Physical and Link Layer
Boundaries in Low-Power Networking. Technical report, Stanford Informa-
tion Networks Group Technical Report, 2008.

[39] L. Mottola, G. P. Picco, and A. A. Sheikh. FiGaRo: fine-grained software
reconfiguration for wireless sensor networks. In Proceedings of the 5th Eu-
ropean conference on Wireless sensor networks, EWSN’08, pages 286–304,
2008.

[40] M. Nabi, M. Blagojevic, T. Basten, M. Geilen, and T. Hendriks. Configur-
ing multi-objective evolutionary algorithms for design-space exploration of
wireless sensor networks. In Proceedings of the 4th ACM workshop on Per-
formance monitoring and measurement of heterogeneous wireless and wired
networks, PM2HW2N ’09, pages 111–119, 2009.

[41] E. F. Nakamura, A. A. F. Loureiro, and A. C. Frery. Information fusion
for wireless sensor networks: Methods, models, and classifications. ACM
Comput. Surv., 39(3), 2007.

[42] D. Niculescu and B. Nath. Ad hoc positioning system (APS). In Global
Telecommunications Conference, 2001. GLOBECOM ’01. IEEE, volume 5,
pages 2926–2931, 2001.

[43] R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consensus and Cooperation in
Networked Multi-Agent Systems. Proceedings of the IEEE, 95(1):215 –233,
2007.

[44] OMNeT++ website 2013. www.omnetpp.org. Last visited: June 2013.

[45] V. Pareto. Manuale di economia politica. piccola biblioteca scientifica, milan,
1906. translated into english by ann s. schwier (1971), manual of political
economy. Manual of Political Economy.

BIBLIOGRAPHY 119

[46] P. Park, P. Di Marco, C. Fischione, and K.H. Johansson. Modeling and Op-
timization of the IEEE 802.15.4 Protocol for Reliable and Timely Communi-
cations. Parallel and Distributed Systems, IEEE Transactions on, 24(3):550
–564, 2013.

[47] E.M. Petriu, N. D. Georganas, D.C. Petriu, D. Makrakis, and V.Z. Groza.
Sensor-based information appliances. Instrumentation Measurement Maga-
zine, IEEE, 3(4):31–35, 2000.

[48] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for
wireless sensor networks. In Proceedings of the 2nd international conference
on Embedded networked sensor systems, SenSys ’04, pages 95–107, 2004.

[49] A. Prayati, Ch. Antonopoulos, T. Stoyanova, C. Koulamas, and G. Pa-
padopoulos. A modeling approach on the telosb wsn platform power con-
sumption. Journal on Systems and Software, 83(8):1355–1363, 2010.

[50] A. Richards and J. How. A decentralized algorithm for robust constrained
model predictive control. In American Control Conference, 2004. Proceedings
of the 2004, volume 5, pages 4261 –4266, 2004.

[51] Roessingh Research and Development company website. http://www.rrd.nl.
Last visited: June 2013.

[52] K. Romer and F. Mattern. The design space of wireless sensor networks.
Wireless Communications, IEEE, 11(6):54 – 61, 2004.

[53] L. Sang, A. Arora, and H. Zhang. On link asymmetry and one-way estimation
in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN),
6(2):12:1–12:25, 2010.

[54] C. Schurgers and M.B. Srivastava. Energy efficient routing in wireless sensor
networks. In Military Communications Conference, 2001. MILCOM 2001.
Communications for Network-Centric Operations: Creating the Information
Force. IEEE, volume 1, pages 357 – 361, 2001.

[55] K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari. Energy-efficient
forwarding strategies for geographic routing in lossy wireless sensor networks.
In Proceedings of the 2nd international conference on Embedded networked
sensor systems, SenSys ’04, pages 108–121, 2004.

[56] K. Srinivasan and P. Levis. RSSI is Under Appreciated. In Proceedings of the
3th International Workshop on Embedded Networked Sensors, EmNets ’06,
2006.

[57] J. A. Stankovic, Q. Cao, T. Doan, L. Fang, Z. He, R. Kiran, S. Lin, S. Son,
R. Stoleru, and A. Wood. Wireless sensor networks for in-home healthcare:
potential and challenges. Proceedings of High Confidence Medical Device
Software and Systems Workshop, 2005.

120 BIBLIOGRAPHY

[58] M. Steine, M. Geilen, and T. Basten. Distributed Maintenance of Minimum-
cost Path Information in Wireless Sensor Networks. In Proceedings of the
6th ACM workshop on Performance monitoring and measurement of hetero-
geneous wireless and wired networks, PM2HW2N ’11, pages 25–32, 2011.

[59] M. Steine, M. Geilen, and T. Basten. A Distributed Feedback Control Mech-
anism for Quality-of-Service Maintenance in Wireless Sensor Networks. In
Digital System Design, Architectures, Methods and Tools, 2012. DSD ’12.
15th Euromicro Conference on, pages 739–742, 2012.

[60] M. Steine, C. Viet Ngo, R. Serna Oliver, M. Geilen, T. Basten, G. Fohler, and
J.-D. Decotignie. Proactive Reconfiguration of Wireless Sensor Networks. In
Proceedings of the 14th ACM international conference on Modeling, analysis
and simulation of wireless and mobile systems, MSWiM ’11, pages 31–40,
2011.

[61] I. Stojmenovic and X. Lin. Power-Aware Localized Routing in Wire-
less Networks. Parallel and Distributed Systems, IEEE Transactions on,
12(11):1122–1133, 2001.

[62] M. Strasser and H. Vogt. Autonomous and distributed node recovery in
wireless sensor networks. In Proceedings of the fourth ACM workshop on
Security of ad hoc and sensor networks, SASN ’06, pages 113–122, 2006.

[63] Y. Sun, O. Gurewitz, and D. B. Johnson. RI-MAC: a receiver-initiated
asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless
sensor networks. In Proceedings of the 6th ACM conference on Embedded
network sensor systems, SenSys ’08, pages 1–14, 2008.

[64] P. Suriyachai, U. Roedig, and A. Scott. A survey of mac protocols for mission-
critical applications in wireless sensor networks. Communications Surveys
Tutorials, IEEE, 14(2):240–264, 2012.

[65] M. Szczodrak, O. Gnawali, and L. P. Carloni. Dynamic reconguration of
wireless sensor networks to support heterogeneous applications. In DCOSS
2013. The ninth IEEE International Conference on Distributed Computing
in Sensor Systems. Proceedings. IEEE, pages 52 –61, 2013.

[66] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. An
analysis of a large scale habitat monitoring application. In Proceedings of the
2nd international conference on Embedded networked sensor systems, SenSys
’04, pages 214–226, 2004.

[67] T.T. Tay, I.M.Y. Mareels, and J.B. Moore. High Performance Control.
Springer, 1998.

[68] TelosB Datasheet, Crossbow Inc. www.xbow.com. Last visited: June 2013.

BIBLIOGRAPHY 121

[69] H Tian, J.A. Stankovic, L. Chenyang, and T. Abdelzaher. SPEED: a state-
less protocol for real-time communication in sensor networks. In Distributed
Computing Systems, 2003. Proceedings. 23rd International Conference on,
pages 46–55, 2003.

[70] TinyOS website. www.tinyos.net. Last visited: June 2013.

[71] S. Tomforde, I. Zgeras, J. Hähner, and C. Müller-Schloer. Adaptive control
of sensor networks. In Proceedings of the 7th international conference on
Autonomic and trusted computing, ATC’10, pages 77–91, 2010.

[72] Population ageing and development. Report of United Na-
tions Department of Economic and Social Affairs, 2009.
http://www.un.org/esa/population/publications/ageing/ageing2009.htm.

[73] C. Viet Ngo, R. Serna Oliver, and G. Fohler. SIMOSP: A Simple Mode
Switch Protocol for Wireless Sensor Networks. Technical Report TR10 09,
Technische Universtät Kaiserslautern, October 2010.

[74] WASP (Wirelessly Accessible Sensor Populations) project website.
http://www.wasp-project.org. Last visited: June 2013.

[75] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity
and yield in a volcano monitoring sensor network. In Proceedings of the
7th symposium on Operating systems design and implementation, OSDI ’06,
pages 381–396, 2006.

[76] G. Wittenburg, K. Terfloth, F. L. Villafuerte, T. Naumowicz, H. Ritter,
and J. Schiller. Fence monitoring: experimental evaluation of a use case for
wireless sensor networks. In Proceedings of the 4th European conference on
Wireless sensor networks, EWSN’07, pages 163–178, 2007.

[77] A. Woo, T. Tong, and D. Culler. Taming the Underlying Challenges of
Reliable Multihop Routing in Sensor Networks. In Proceedings of the 1st
international conference on Embedded networked sensor systems, SenSys ’03,
pages 14–27, 2003.

[78] A. Wood, J.A. Stankovic, G. Virone, L. Selavo, Zhimin He, Qiuhua Cao,
Thao Doan, Yafeng Wu, Lei Fang, and R. Stoleru. Context-aware wire-
less sensor networks for assisted living and residential monitoring. Network,
IEEE, 22(4):26–33, 2008.

[79] F. Ye, A. Chen, S. Lu, and L. Zhang. A Scalable Solution to Minimum
Cost Forwarding in Large Sensor Networks. In Computer Communications
and Networks, 2001. Proceedings. Tenth International Conference on, pages
304–309, 2001.

122 BIBLIOGRAPHY

[80] F. Ye, G. Zhong, S. Lu, and L. Zhang. GRAdient broadcast: a robust
data delivery protocol for large scale sensor networks. Wireless Networks,
11(3):285–298, 2005.

[81] W. Ye, J. Heidemann, and D. Estrin. Medium access control with coordinated
adaptive sleeping for wireless sensor networks. Networking, IEEE/ACM
Transactions on, 12(3):493 – 506, june 2004.

[82] M. Younis and K. Akkaya. Strategies and techniques for node placement in
wireless sensor networks: A survey. Ad Hoc Networks, 6(4):621 – 655, 2008.

[83] O. Younis and S. Fahmy. HEED: a hybrid, energy-efficient, distributed clus-
tering approach for ad hoc sensor networks. Mobile Computing, IEEE Trans-
actions on, 3(4):366 – 379, 2004.

[84] J. Zhao and R. Govindan. Understanding packet delivery performance in
dense wireless sensor networks. In Proceedings of the 1st international con-
ference on Embedded networked sensor systems, SenSys ’03, pages 1–13, 2003.

[85] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. Impact of radio
irregularity on wireless sensor networks. In Proceedings of the 2nd interna-
tional conference on Mobile systems, applications, and services, MobiSys ’04,
pages 125–138, 2004.

[86] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele. ptunes:
runtime parameter adaptation for low-power mac protocols. In Proceedings
of the 11th international conference on Information Processing in Sensor
Networks, IPSN ’12, pages 173–184, 2012.

[87] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm for Multiobjective Optimization. In Evo-
lutionary Methods for Design, Optimisation, and Control, pages 95–100.
CIMNE, Barcelona, Spain, 2002.

Curriculum Vitae

Marcel Steine was born in Rotterdam, The Netherlands, on May 5, 1985. In
2006, he received a Bachelor’s degree in Computer Science and Engineering from
the Eindhoven University of Technology (TU/e). In 2008, he received a Master’s
degree (with honors) in Embedded Systems from the TU/e, for a project on pre-
dictable scheduling for multiprocessors performed at NXP Research, Eindhoven.
During his Master program he visited the National University of Singapore for a
project on quality-of-service analysis for sensor networks.
In January 2009, he started working towards a Ph.D. degree within the Electronic
Systems group at the department of Electrical Engineering of the Eindhoven Uni-
versity of Technology. His research was in part funded by the European Com-
mission through project WASP. The results of his research are presented in this
thesis.

123

124 Curriculum Vitae

List of Publications

First Author
• M. Steine, M.C.W. Geilen, T. Basten. A Distributed Feedback Control

Mechanism for Quality-of-Service Maintenance in Wireless Sensor Networks.
In 15th Euromicro Conference On Digital System Design, DSD ’12, Pro-
ceedings, pages 739-742. Cesme, Izmir, Turkey, 5-7 September 2012. IEEE
Computer Society Press, 2012.

• M. Steine, C. Viet Ngo, R. Serna Oliver, M.C.W. Geilen, T. Basten, G. Fohler
and J.-D. Decotignie. Proactive Reconfiguration of Wireless Sensor Net-
works. In 14th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, MSWiM ’11, Proceedings,
pages 31-40. Miami, FL, USA, 31 October - 4 November 2011. ACM Press,
2011.

• M. Steine, M.C.W. Geilen, T. Basten. Distributed Maintenance of Minimum-
cost Path Information in Wireless Sensor Networks. In 6th ACM Interna-
tional Workshop on Performance Monitoring, Measurement and Evaluation
of Heterogeneous Wireless and Wired Networks, PM2HW2N ’11, Proceed-
ings, pages 25-32. Miami, FL, USA, 31 October 2011. ACM Press, 2011.

• M. Steine, M.J.G. Bekooij and M. Wiggers. A Priority-based Budget Sched-
uler with Conservative Dataflow Model. In 12th Euromicro Conference on
Digital System Design, DSD ’09, Proceedings, pages 37–44. Patras, Greece,
27-29 August 2009. IEEE Computer Society Press, 2009.

• M. Steine, M.C.W. Geilen, T. Basten. A Distributed Reconfiguration Ap-
proach for Quality-of-Service Provisioning in Dynamic Heterogeneous Wire-
less Sensor Networks. Under review for journal publication.

• M. Steine, M.C.W. Geilen, T. Basten. Distributed Estimation of Network
Metrics in Dynamic Heterogeneous Wireless Sensor Networks. Under review
for journal publication.

125

126 List of Publications

Co-author

• M. Blagojevic, M. Nabi, M.C.W. Geilen, T. Basten, T. Hendriks and M.
Steine. A Probabilistic Acknowledgment Mechanism for Wireless Sensor
Networks. In 6th IEEE International Conference on Networking, Architec-
ture, and Storage, NAS ’11, Proceedings, pages 63–72. Dalian, Liaoning,
China, 28-30 July 2011. IEEE Computer Society Press, 2011.

• C. Lokhorst, P.H. Hogewerf, R.M. de Mol, R. Verhoeven, M. Steine, J.J.
Lukkien and M. Bennebroek. Wireless Sensor Application for Dairy Cow
Activity Monitoring. In 5th European Conference on Precision Livestock
Farming, ECPLF ’11, Proceedings, pages 17–26. Prague, Czech Republic,
11-14 July 2011.

Acknowledgments

Pursuing a PhD is something you cannot do on your own. This thesis would never
been completed without the support of many colleagues, family and friends.

First of all, I like to thank my promotor, Twan Basten, and daily supervisor
and copromotor, Marc Geilen. Twan has been a great source of inspiration and
motivation during the years of my PhD, but also in the years before when he
supervised my internship and master thesis. I really respect and appreciate his
close involvement with the work of all his PhD’s, even with his increasingly busy
schedule. Our discussions greatly improved the details of my work and helped
me to get a better understanding of the bigger picture. Twan, thanks for your
invaluable guidance. I greatly appreciate all the work that went into my supervi-
sion. Thanks for creating the supportive, friendly and professional environment
to pursue my PhD. I’m very glad to have had Marc as my daily supervisor. With
his immense knowledge he guided me and helped me to improve my research and
engineering skills. Marc, thanks for your patience and allowing me to drop by
your office whenever I needed feedback on my work. Our discussions always pro-
vided me with renewed motivation, solutions and ideas for improvements. Thanks
for showing me very nice mountainbike tracks in Limburg and that I need more
practice to keep up with you next time.

I would like to thank Johan Lukkien, Koen Langendoen and Jean-Dominique
Decotignie for being part of the reading committee and providing detailed com-
ments on the draft version of my thesis. Thanks to Sonia Heemstra for being part
of the defense opposition and Ton Backx for being the chairman for the defense.

My research was partly conducted within the European project WASP. I want
to thank all the members of the WASP project, and in particular Johan Lukkien,
Richard Verhoeven, Jérôme Rousselot, Jean-Dominique Decotignie, Cuong Viet
Ngo, Ramon Serna Oliver and Gerhard Fohler, for the fruitful discussions and
collaboration contributing to an important part of my thesis.

During my PhD, I had the pleasure to work in the Electronic Systems group.
I would like to thank all of its members for creating the perfect working at-
mosphere. During regular group meetings, ongoing work and new ideas were
discussed. I want to thank all the members of the NES group for their valuable
contributions. In particular, I want to thank Majid Nabi and Milos Blagojevic.

127

128 Acknowledgments

We started to work on our PhD around the same time, on similar topics in a field
which was relatively new within our group. Thanks for the very pleasant collab-
oration over the years. I furthermore want to thank the colleagues with which I
had regular coffee breaks and lunches. The discussions we had during these times
were always interesting and relaxing. In particular, I want to thank Raymond
Frijns and Luc Vosters for their valuable contributions to these discussions, and
the great times we had together during many game nights. I’m pleased to have
Raymond and Luc assisting me as my paranymphs during the day of my defense.

I’m glad to have many friends who have been a great support during my PhD.
Friends from the student tennis association Fellenoord with which I spent many
hours in training, tournaments, competition and activities next to the tennis
court. Friends I met during my study. Friends from Zeeland. Colleagues who
became very good friends. Thanks for being there through hard times and for
providing well needed distraction by spending great holidays, weekends, evenings,
sports and parties together. While our future careers and personal lives may
diverge, I will make sure to keep in touch.

Last, but certainly not least, my family. The ones that made me what I am
and provide unconditional support. I especially want to thank my mother and
sister for their endless love, and my father, who often told me how proud he was
of my achievements, but unfortunately cannot see the end result of all the hard
work. I dedicate this thesis to them.

Marcel Steine
September 2013

	Abstract
	Introduction
	Motivation
	Problem Statement
	Approach
	Contributions
	Thesis Overview

	Distributed Estimation of Network Metrics
	Importance of Network Metric Estimation
	Network Metric Estimation
	Generic Problem Statement
	Illustrative Example
	Local Broadcasting
	Distributed Service
	Generalization

	Convergence and Stability
	Performance Evaluation
	Setting the Service Parameters
	Simulation Results
	Experiments With Actual Deployments

	Related Work
	Summary

	Re-active Reconfiguration
	The Goal of QoS Provisioning
	QoS Provisioning
	Terminology
	Running Example

	Re-active Reconfiguration for QoS Provisioning
	Local Impact Calculation
	Restore Connectivity
	Predictive Model
	Parameter Adaptation
	Model Maintenance

	Quality-of-Service Estimation
	Network QoS Estimation
	Node QoS Estimation

	Controller Performance Analysis
	Introduction
	Parameters
	Step Response
	Dynamic Setup
	Conclusions from Simulations

	Experimental Analysis
	Related Work
	Summary

	Pro-active Reconfiguration
	Illustrative Scenarios
	Method Details
	Overview
	Design-time Steps
	Deployment-time Steps
	Run-time Steps

	Performance Evaluation of Pro-active Reconfiguration
	Cow-health Monitoring Scenario
	Office Monitoring Scenario

	Related Work
	Summary

	Conclusions
	Contributions
	Recommendations for Future Work
	Concluding Remarks

	Bibliography
	Curriculum Vitae
	List of Publications
	Acknowledgments

