187 research outputs found

    Improving Kinematic Accuracy of Soft Wearable Data Gloves by Optimizing Sensor Locations

    Get PDF
    Bending sensors enable compact, wearable designs when used for measuring hand configurations in data gloves. While existing data gloves can accurately measure angular displacement of the finger and distal thumb joints, accurate measurement of thumb carpometacarpal (CMC) joint movements remains challenging due to crosstalk between the multi-sensor outputs required to measure the degrees of freedom (DOF). To properly measure CMC-joint configurations, sensor locations that minimize sensor crosstalk must be identified. This paper presents a novel approach to identifying optimal sensor locations. Three-dimensional hand surface data from ten subjects was collected in multiple thumb postures with varied CMC-joint flexion and abduction angles. For each posture, scanned CMC-joint contours were used to estimate CMC-joint flexion and abduction angles by varying the positions and orientations of two bending sensors. Optimal sensor locations were estimated by the least squares method, which minimized the difference between the true CMC-joint angles and the joint angle estimates. Finally, the resultant optimal sensor locations were experimentally validated. Placing sensors at the optimal locations, CMC-joint angle measurement accuracies improved (flexion, 2.8° ± 1.9°; abduction, 1.9° ± 1.2°). The proposed method for improving the accuracy of the sensing system can be extended to other types of soft wearable measurement devices

    Estimating hand-grip forces causing Cumulative Trauma Disorder

    Get PDF
    Wearable sensors have garnered considerable interest because of their potential for various applications. However, much less has been studied about the Stretchsense pressure sensor characteristics and its workability for industrial application to prevent potential risk situations such as accidents and injuries. The proposed study helps investigate Stretchsense pressure sensors\u27 applicability for measuring hand-handle interface forces under static and dynamic conditions. The BendLabs sensors - a multi-axis, soft, flexible sensing system was attached to the wrist to evaluate the wrist angle deviations. In addition, the StretchSense stretch sensors were attached to the elbow joint to help estimate the elbow flexion/extension. The research tests and evaluates the real-time pressure distribution across the hand while performing given tasks and investigates the relationship between the wrist and elbow position and grip strength. The research provides objective means to assess the magnitudes of high pressures that may cause pressure-induced discomfort and pain, thereby increasing the hand\u27s stress. The experiment\u27s most significant benefit lies in its applicability to the actual tool handles outside the laboratory settings

    인간 기계 상호작용을 위한 강건하고 정확한 손동작 추적 기술 연구

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 기계항공공학부, 2021.8. 이동준.Hand-based interface is promising for realizing intuitive, natural and accurate human machine interaction (HMI), as the human hand is main source of dexterity in our daily activities. For this, the thesis begins with the human perception study on the detection threshold of visuo-proprioceptive conflict (i.e., allowable tracking error) with or without cutantoues haptic feedback, and suggests tracking error specification for realistic and fluidic hand-based HMI. The thesis then proceeds to propose a novel wearable hand tracking module, which, to be compatible with the cutaneous haptic devices spewing magnetic noise, opportunistically employ heterogeneous sensors (IMU/compass module and soft sensor) reflecting the anatomical properties of human hand, which is suitable for specific application (i.e., finger-based interaction with finger-tip haptic devices). This hand tracking module however loses its tracking when interacting with, or being nearby, electrical machines or ferromagnetic materials. For this, the thesis presents its main contribution, a novel visual-inertial skeleton tracking (VIST) framework, that can provide accurate and robust hand (and finger) motion tracking even for many challenging real-world scenarios and environments, for which the state-of-the-art technologies are known to fail due to their respective fundamental limitations (e.g., severe occlusions for tracking purely with vision sensors; electromagnetic interference for tracking purely with IMUs (inertial measurement units) and compasses; and mechanical contacts for tracking purely with soft sensors). The proposed VIST framework comprises a sensor glove with multiple IMUs and passive visual markers as well as a head-mounted stereo camera; and a tightly-coupled filtering-based visual-inertial fusion algorithm to estimate the hand/finger motion and auto-calibrate hand/glove-related kinematic parameters simultaneously while taking into account the hand anatomical constraints. The VIST framework exhibits good tracking accuracy and robustness, affordable material cost, light hardware and software weights, and ruggedness/durability even to permit washing. Quantitative and qualitative experiments are also performed to validate the advantages and properties of our VIST framework, thereby, clearly demonstrating its potential for real-world applications.손 동작을 기반으로 한 인터페이스는 인간-기계 상호작용 분야에서 직관성, 몰입감, 정교함을 제공해줄 수 있어 많은 주목을 받고 있고, 이를 위해 가장 필수적인 기술 중 하나가 손 동작의 강건하고 정확한 추적 기술 이다. 이를 위해 본 학위논문에서는 먼저 사람 인지의 관점에서 손 동작 추적 오차의 인지 범위를 규명한다. 이 오차 인지 범위는 새로운 손 동작 추적 기술 개발 시 중요한 설계 기준이 될 수 있어 이를 피험자 실험을 통해 정량적으로 밝히고, 특히 손끝 촉각 장비가 있을때 이 인지 범위의 변화도 밝힌다. 이를 토대로, 촉각 피드백을 주는 것이 다양한 인간-기계 상호작용 분야에서 널리 연구되어 왔으므로, 먼저 손끝 촉각 장비와 함께 사용할 수 있는 손 동작 추적 모듈을 개발한다. 이 손끝 촉각 장비는 자기장 외란을 일으켜 착용형 기술에서 흔히 사용되는 지자기 센서를 교란하는데, 이를 적절한 사람 손의 해부학적 특성과 관성 센서/지자기 센서/소프트 센서의 적절한 활용을 통해 해결한다. 이를 확장하여 본 논문에서는, 촉각 장비 착용 시 뿐 아니라 모든 장비 착용 / 환경 / 물체와의 상호작용 시에도 사용 가능한 새로운 손 동작 추적 기술을 제안한다. 기존의 손 동작 추적 기술들은 가림 현상 (영상 기반 기술), 지자기 외란 (관성/지자기 센서 기반 기술), 물체와의 접촉 (소프트 센서 기반 기술) 등으로 인해 제한된 환경에서 밖에 사용하지 못한다. 이를 위해 많은 문제를 일으키는 지자기 센서 없이 상보적인 특성을 지니는 관성 센서와 영상 센서를 융합하고, 이때 작은 공간에 다 자유도의 움직임을 갖는 손 동작을 추적하기 위해 다수의 구분되지 않는 마커들을 사용한다. 이 마커의 구분 과정 (correspondence search)를 위해 기존의 약결합 (loosely-coupled) 기반이 아닌 강결합 (tightly-coupled 기반 센서 융합 기술을 제안하고, 이를 통해 지자기 센서 없이 정확한 손 동작이 가능할 뿐 아니라 착용형 센서들의 정확성/편의성에 문제를 일으키던 센서 부착 오차 / 사용자의 손 모양 등을 자동으로 정확히 보정한다. 이 제안된 영상-관성 센서 융합 기술 (Visual-Inertial Skeleton Tracking (VIST)) 의 뛰어난 성능과 강건성이 다양한 정량/정성 실험을 통해 검증되었고, 이는 VIST의 다양한 일상환경에서 기존 시스템이 구현하지 못하던 손 동작 추적을 가능케 함으로써, 많은 인간-기계 상호작용 분야에서의 가능성을 보여준다.1 Introduction 1 1.1. Motivation 1 1.2. Related Work 5 1.3. Contribution 12 2 Detection Threshold of Hand Tracking Error 16 2.1. Motivation 16 2.2. Experimental Environment 20 2.2.1. Hardware Setup 21 2.2.2. Virtual Environment Rendering 23 2.2.3. HMD Calibration 23 2.3. Identifying the Detection Threshold of Tracking Error 26 2.3.1. Experimental Setup 27 2.3.2. Procedure 27 2.3.3. Experimental Result 31 2.4. Enlarging the Detection Threshold of Tracking Error by Haptic Feedback 31 2.4.1. Experimental Setup 31 2.4.2. Procedure 32 2.4.3. Experimental Result 34 2.5. Discussion 34 3 Wearable Finger Tracking Module for Haptic Interaction 38 3.1. Motivation 38 3.2. Development of Finger Tracking Module 42 3.2.1. Hardware Setup 42 3.2.2. Tracking algorithm 45 3.2.3. Calibration method 48 3.3. Evaluation for VR Haptic Interaction Task 50 3.3.1. Quantitative evaluation of FTM 50 3.3.2. Implementation of Wearable Cutaneous Haptic Interface 51 3.3.3. Usability evaluation for VR peg-in-hole task 53 3.4. Discussion 57 4 Visual-Inertial Skeleton Tracking for Human Hand 59 4.1. Motivation 59 4.2. Hardware Setup and Hand Models 62 4.2.1. Human Hand Model 62 4.2.2. Wearable Sensor Glove 62 4.2.3. Stereo Camera 66 4.3. Visual Information Extraction 66 4.3.1. Marker Detection in Raw Images 68 4.3.2. Cost Function for Point Matching 68 4.3.3. Left-Right Stereo Matching 69 4.4. IMU-Aided Correspondence Search 72 4.5. Filtering-based Visual-Inertial Sensor Fusion 76 4.5.1. EKF States for Hand Tracking and Auto-Calibration 78 4.5.2. Prediction with IMU Information 79 4.5.3. Correction with Visual Information 82 4.5.4. Correction with Anatomical Constraints 84 4.6. Quantitative Evaluation for Free Hand Motion 87 4.6.1. Experimental Setup 87 4.6.2. Procedure 88 4.6.3. Experimental Result 90 4.7. Quantitative and Comparative Evaluation for Challenging Hand Motion 95 4.7.1. Experimental Setup 95 4.7.2. Procedure 96 4.7.3. Experimental Result 98 4.7.4. Performance Comparison with Existing Methods for Challenging Hand Motion 101 4.8. Qualitative Evaluation for Real-World Scenarios 105 4.8.1. Visually Complex Background 105 4.8.2. Object Interaction 106 4.8.3. Wearing Fingertip Cutaneous Haptic Devices 109 4.8.4. Outdoor Environment 111 4.9. Discussion 112 5 Conclusion 116 References 124 Abstract (in Korean) 139 Acknowledgment 141박

    Wearable Technology Supported Home Rehabilitation Services in Rural Areas:– Emphasis on Monitoring Structures and Activities of Functional Capacity Handbook

    Get PDF
    The sustainability of modern healthcare systems is under threat. – the ageing of the population, the prevalence of chronic disease and a need to focus on wellness and preventative health management, in parallel with the treatment of disease, pose significant social and economic challenges. The current economic situation has made these issues more acute. Across Europe, healthcare expenditure is expected to rice to almost 16% of GDP by 2020. (OECD Health Statistics 2018). Coupled with a shortage of qualified personnel, European nations are facing increasing challenges in their ability to provide better-integrated and sustainable health and social services. The focus is currently shifting from treatment in a care center to prevention and health promotion outside the care institute. Improvements in technology offers one solution to innovate health care and meet demand at a low cost. New technology has the potential to decrease the need for hospitals and health stations (Lankila et al., 2016. In the future the use of new technologies – including health technologies, sensor technologies, digital media, mobile technology etc. - and digital services will dramatically increase interaction between healthcare personnel and customers (Deloitte Center for Health Solutions, 2015a; Deloitte Center for Health Solutions 2015b). Introduction of technology is expected to drive a change in healthcare delivery models and the relationship between patients and healthcare providers. Applications of wearable sensors are the most promising technology to aid health and social care providers deliver safe, more efficient and cost-effective care as well as improving people’s ability to self-manage their health and wellbeing, alert healthcare professionals to changes in their condition and support adherence to prescribed interventions. (Tedesco et al., 2017; Majumder et al., 2017). While it is true that wearable technology can change how healthcare is monitored and delivered, it is necessary to consider a few things when working towards the successful implementation of this new shift in health care. It raises challenges for the healthcare systems in how to implement these new technologies, and how the growing amount of information in clinical practice, integrates into the clinical workflows of healthcare providers. Future challenges for healthcare include how to use the developing technology in a way that will bring added value to healthcare professionals, healthcare organizations and patients without increasing the workload and cost of the healthcare services. For wearable technology developers, the challenge will be to develop solutions that can be easily integrated and used by healthcare professionals considering the existing constraints. This handbook summarizes key findings from clinical and laboratory-controlled demonstrator trials regarding wearables to assist rehabilitation professionals, who are planning the use of wearable sensors in rehabilitation processes. The handbook can also be used by those developing wearable sensor systems for clinical work and especially for use in hometype environments with specific emphasis on elderly patients, who are our major health care consumers

    Assessment of Hand Gestures Using Wearable Sensors and Fuzzy Logic

    Get PDF
    Hand dexterity and motor control are critical in our everyday lives because a significant portion of the daily motions we perform are with our hands and require some degree of repetition and skill. Therefore, development of technologies for hand and extremity rehabilitation is a significant area of research that will directly help patients recovering from hand debilities sustained from causes ranging from stroke and Parkinson’s disease to trauma and common injuries. Cyclic activity recognition and assessment is appropriate for hand and extremity rehabilitation because a majority of our essential motions are cyclic in their nature. For a patient on the road to regaining functional independence with daily skills, the improvement in cyclic motions constitutes an important and quantifiable rehabilitation goal. However, challenges exist with hand rehabilitation sensor technologies preventing acquisition of long-term, continuous, accurate and actionable motion data. These challenges include complicated and uncomfortable system assemblies, and a lack of integration with consumer electronics for easy readout. In our research, we have developed a glove based system where the inertial measurement unit (IMU) sensors are used synergistically with the flexible sensors to minimize the number of IMU sensors. The classification capability of our system is improved by utilizing a fuzzy logic data analysis algorithm. We tested a total of 25 different subjects using a glove-based apparatus to gather data on two-dimensional motions with one accelerometer and three-dimensional motions with one accelerometer and two flexible sensors. Our research provides an approach that has the potential to utilize both activity recognition and activity assessment using simple sensor systems to help patients recover and improve their overall quality of life

    Multimodal human hand motion sensing and analysis - a review

    Get PDF

    Development of an active vision system for robot inspection of complex objects

    Get PDF
    Dissertação de mestrado integrado em Engenharia Mecânica (área de especialização em Sistemas Mecatrónicos)The dissertation presented here is in the scope of the IntVis4Insp project between University of Minho and the company Neadvance. It focuses on the development of a 3D hand tracking system that must be capable of extracting the hand position and orientation to prepare a manipulator for automatic inspection of leather pieces. This work starts with a literature review about the two main methods for collecting the necessary data to perform 3D hand tracking. These divide into glove-based methods and vision-based methods. The first ones work with some kind of support mounted on the hand that holds all the necessary sensors to measure the desired parameters. While the second ones recur to one or more cameras to capture the hands and through computer vision algorithms track their position and configuration. The selected method for this work was the vision-based method Openpose. For each recorded image, this application can locate 21 hand keypoints on each hand that together form a skeleton of the hands. This application is used in the tracking system developed throughout this dissertation. Its information is used in a more complete pipeline where the location of those hand keypoints is crucial to track the hands in videos of the demonstrated movements. These videos were recorded with an RGB-D camera, the Microsoft Kinect, which provides a depth value for every RGB pixel recorded. With the depth information and the 2D location of the hand keypoints in the images, it was possible to obtain the 3D world coordinates of these points considering the pinhole camera model. To define the hand, position a point is selected among the 21 for each hand, but for the hand orientation, it was necessary to develop an auxiliary method called “Iterative Pose Estimation Method” (ITP), which estimates the complete 3D pose of the hands. This method recurs only to the 2D locations of every hand keypoint, and the complete 3D world coordinates of the wrists to estimate the right 3D world coordinates of all the remaining points on the hand. This solution solves the problems related to hand occlusions that a prone to happen due to the use of only one camera to record the inspection videos. Once the world location of all the points in the hands is accurately estimated, their orientation can be defined by selecting three points forming a plane.A dissertação aqui apresentada insere-se no âmbito do projeto IntVis4Insp entre a Universidade do Minho e a empresa Neadavance, e foca-se no desenvolvimento de um sistema para extração da posição e orientação das mãos no espaço para posterior auxílio na manipulação automática de peças de couro, com recurso a manipuladores robóticos. O trabalho inicia-se com uma revisão literária sobre os dois principais métodos existentes para efetuar a recolha de dados necessária à monitorização da posição e orientação das mãos ao longo do tempo. Estes dividem-se em métodos baseados em luvas ou visão. No caso dos primeiros, estes recorrem normalmente a algum tipo de suporte montado na mão (ex.: luva em tecido), onde estão instalados todos os sensores necessários para a medição dos parâmetros desejados. Relativamente a sistemas de visão estes recorrem a uma câmara ou conjunto delas para capturar as mãos e por via de algoritmos de visão por computador determinam a sua posição e configuração. Foi selecionado para este trabalho um algoritmo de visão por computador denominado por Openpose. Este é capaz de, em cada imagem gravada e para cada mão, localizar 21 pontos pertencentes ao seu esqueleto. Esta aplicação é inserida no sistema de monitorização desenvolvido, sendo utilizada a sua informação numa arquitetura mais completa onde é efetuada a extração da localização dos pontos chave de cada mão nos vídeos de demonstração dos movimentos de inspeção. A gravação destes vídeos é efetuada com uma câmara RGB-D, a Microsoft Kinect, que fornece um valor de profundidade para cada pixel RGB gravado. Com os dados de profundidade e a localização dos pontos chave nas imagens foi possível obter as coordenadas 3D no mundo destes pontos considerando o modelo pinhole para a câmara. No caso da posição da mão é selecionado um ponto de entre os 21 para a definir ao longo do tempo, no entanto, para o cálculo da orientação foi desenvolvido um método auxiliar para estimação da pose tridimensional da mão denominado por “Iterative Pose Estimation Method” (ITP). Este método recorre aos dados 2D do Openpose e às coordenadas 3D do pulso de cada mão para efetuar a correta estimação das coordenadas 3D dos restantes pontos da mão. Isto permite essencialmente resolver problemas com oclusões da mão, muito frequentes com o uso de uma só câmara na gravação dos vídeos. Uma vez estimada corretamente a posição 3D no mundo dos vários pontos da mão, a sua orientação pode ser definida com recurso a quaisquer três pontos que definam um plano

    From wearable towards epidermal computing : soft wearable devices for rich interaction on the skin

    Get PDF
    Human skin provides a large, always available, and easy to access real-estate for interaction. Recent advances in new materials, electronics, and human-computer interaction have led to the emergence of electronic devices that reside directly on the user's skin. These conformal devices, referred to as Epidermal Devices, have mechanical properties compatible with human skin: they are very thin, often thinner than human hair; they elastically deform when the body is moving, and stretch with the user's skin. Firstly, this thesis provides a conceptual understanding of Epidermal Devices in the HCI literature. We compare and contrast them with other technical approaches that enable novel on-skin interactions. Then, through a multi-disciplinary analysis of Epidermal Devices, we identify the design goals and challenges that need to be addressed for advancing this emerging research area in HCI. Following this, our fundamental empirical research investigated how epidermal devices of different rigidity levels affect passive and active tactile perception. Generally, a correlation was found between the device rigidity and tactile sensitivity thresholds as well as roughness discrimination ability. Based on these findings, we derive design recommendations for realizing epidermal devices. Secondly, this thesis contributes novel Epidermal Devices that enable rich on-body interaction. SkinMarks contributes to the fabrication and design of novel Epidermal Devices that are highly skin-conformal and enable touch, squeeze, and bend sensing with co-located visual output. These devices can be deployed on highly challenging body locations, enabling novel interaction techniques and expanding the design space of on-body interaction. Multi-Touch Skin enables high-resolution multi-touch input on the body. We present the first non-rectangular and high-resolution multi-touch sensor overlays for use on skin and introduce a design tool that generates such sensors in custom shapes and sizes. Empirical results from two technical evaluations confirm that the sensor achieves a high signal-to-noise ratio on the body under various grounding conditions and has a high spatial accuracy even when subjected to strong deformations. Thirdly, Epidermal Devices are in contact with the skin, they offer opportunities for sensing rich physiological signals from the body. To leverage this unique property, this thesis presents rapid fabrication and computational design techniques for realizing Multi-Modal Epidermal Devices that can measure multiple physiological signals from the human body. Devices fabricated through these techniques can measure ECG (Electrocardiogram), EMG (Electromyogram), and EDA (Electro-Dermal Activity). We also contribute a computational design and optimization method based on underlying human anatomical models to create optimized device designs that provide an optimal trade-off between physiological signal acquisition capability and device size. The graphical tool allows for easily specifying design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. Finally, taking a multi-disciplinary perspective, we outline the roadmap for future research in this area by highlighting the next important steps, opportunities, and challenges. Taken together, this thesis contributes towards a holistic understanding of Epidermal Devices}: it provides an empirical and conceptual understanding as well as technical insights through contributions in DIY (Do-It-Yourself), rapid fabrication, and computational design techniques.Die menschliche Haut bietet eine große, stets verfügbare und leicht zugängliche Fläche für Interaktion. Jüngste Fortschritte in den Bereichen Materialwissenschaft, Elektronik und Mensch-Computer-Interaktion (Human-Computer-Interaction, HCI) [so that you can later use the Englisch abbreviation] haben zur Entwicklung elektronischer Geräte geführt, die sich direkt auf der Haut des Benutzers befinden. Diese sogenannten Epidermisgeräte haben mechanische Eigenschaften, die mit der menschlichen Haut kompatibel sind: Sie sind sehr dünn, oft dünner als ein menschliches Haar; sie verformen sich elastisch, wenn sich der Körper bewegt, und dehnen sich mit der Haut des Benutzers. Diese Thesis bietet, erstens, ein konzeptionelles Verständnis von Epidermisgeräten in der HCI-Literatur. Wir vergleichen sie mit anderen technischen Ansätzen, die neuartige Interaktionen auf der Haut ermöglichen. Dann identifizieren wir durch eine multidisziplinäre Analyse von Epidermisgeräten die Designziele und Herausforderungen, die angegangen werden müssen, um diesen aufstrebenden Forschungsbereich voranzubringen. Im Anschluss daran untersuchten wir in unserer empirischen Grundlagenforschung, wie epidermale Geräte unterschiedlicher Steifigkeit die passive und aktive taktile Wahrnehmung beeinflussen. Im Allgemeinen wurde eine Korrelation zwischen der Steifigkeit des Geräts und den taktilen Empfindlichkeitsschwellen sowie der Fähigkeit zur Rauheitsunterscheidung festgestellt. Basierend auf diesen Ergebnissen leiten wir Designempfehlungen für die Realisierung epidermaler Geräte ab. Zweitens trägt diese Thesis zu neuartigen Epidermisgeräten bei, die eine reichhaltige Interaktion am Körper ermöglichen. SkinMarks trägt zur Herstellung und zum Design neuartiger Epidermisgeräte bei, die hochgradig an die Haut angepasst sind und Berührungs-, Quetsch- und Biegesensoren mit gleichzeitiger visueller Ausgabe ermöglichen. Diese Geräte können an sehr schwierigen Körperstellen eingesetzt werden, ermöglichen neuartige Interaktionstechniken und erweitern den Designraum für die Interaktion am Körper. Multi-Touch Skin ermöglicht hochauflösende Multi-Touch-Eingaben am Körper. Wir präsentieren die ersten nicht-rechteckigen und hochauflösenden Multi-Touch-Sensor-Overlays zur Verwendung auf der Haut und stellen ein Design-Tool vor, das solche Sensoren in benutzerdefinierten Formen und Größen erzeugt. Empirische Ergebnisse aus zwei technischen Evaluierungen bestätigen, dass der Sensor auf dem Körper unter verschiedenen Bedingungen ein hohes Signal-Rausch-Verhältnis erreicht und eine hohe räumliche Auflösung aufweist, selbst wenn er starken Verformungen ausgesetzt ist. Drittens, da Epidermisgeräte in Kontakt mit der Haut stehen, bieten sie die Möglichkeit, reichhaltige physiologische Signale des Körpers zu erfassen. Um diese einzigartige Eigenschaft zu nutzen, werden in dieser Arbeit Techniken zur schnellen Herstellung und zum computergestützten Design von multimodalen Epidermisgeräten vorgestellt, die mehrere physiologische Signale des menschlichen Körpers messen können. Die mit diesen Techniken hergestellten Geräte können EKG (Elektrokardiogramm), EMG (Elektromyogramm) und EDA (elektrodermale Aktivität) messen. Darüber hinaus stellen wir eine computergestützte Design- und Optimierungsmethode vor, die auf den zugrunde liegenden anatomischen Modellen des Menschen basiert, um optimierte Gerätedesigns zu erstellen. Diese Designs bieten einen optimalen Kompromiss zwischen der Fähigkeit zur Erfassung physiologischer Signale und der Größe des Geräts. Das grafische Tool ermöglicht die einfache Festlegung von Designpräferenzen und die visuelle Analyse der generierten Designs in Echtzeit, was eine Optimierung durch den Designer im laufenden Betrieb ermöglicht. Experimentelle Ergebnisse zeigen eine hohe quantitative Übereinstimmung zwischen den Vorhersagen des Optimierers und den experimentell erfassten physiologischen Daten. Schließlich skizzieren wir aus einer multidisziplinären Perspektive einen Fahrplan für zukünftige Forschung in diesem Bereich, indem wir die nächsten wichtigen Schritte, Möglichkeiten und Herausforderungen hervorheben. Insgesamt trägt diese Arbeit zu einem ganzheitlichen Verständnis von Epidermisgeräten bei: Sie liefert ein empirisches und konzeptionelles Verständnis sowie technische Einblicke durch Beiträge zu DIY (Do-It-Yourself), schneller Fertigung und computergestützten Entwurfstechniken

    Tracking hands in action for gesture-based computer input

    Get PDF
    This thesis introduces new methods for markerless tracking of the full articulated motion of hands and for informing the design of gesture-based computer input. Emerging devices such as smartwatches or virtual/augmented reality glasses are in need of new input devices for interaction on the move. The highly dexterous human hands could provide an always-on input capability without the actual need to carry a physical device. First, we present novel methods to address the hard computer vision-based hand tracking problem under varying number of cameras, viewpoints, and run-time requirements. Second, we contribute to the design of gesture-based interaction techniques by presenting heuristic and computational approaches. The contributions of this thesis allow users to effectively interact with computers through markerless tracking of hands and objects in desktop, mobile, and egocentric scenarios.Diese Arbeit stellt neue Methoden für die markerlose Verfolgung der vollen Artikulation der Hände und für die Informierung der Gestaltung der Gestik-Computer-Input. Emerging-Geräte wie Smartwatches oder virtuelle / Augmented-Reality-Brillen benötigen neue Eingabegeräte für Interaktion in Bewegung. Die sehr geschickten menschlichen Hände konnten eine immer-on-Input-Fähigkeit, ohne die tatsächliche Notwendigkeit, ein physisches Gerät zu tragen. Zunächst stellen wir neue Verfahren vor, um das visionbasierte Hand-Tracking-Problem des Hardcomputers unter variierender Anzahl von Kameras, Sichtweisen und Laufzeitanforderungen zu lösen. Zweitens tragen wir zur Gestaltung von gesture-basierten Interaktionstechniken bei, indem wir heuristische und rechnerische Ansätze vorstellen. Die Beiträge dieser Arbeit ermöglichen es Benutzern, effektiv interagieren mit Computern durch markerlose Verfolgung von Händen und Objekten in Desktop-, mobilen und egozentrischen Szenarien

    Tracking hands in action for gesture-based computer input

    Get PDF
    This thesis introduces new methods for markerless tracking of the full articulated motion of hands and for informing the design of gesture-based computer input. Emerging devices such as smartwatches or virtual/augmented reality glasses are in need of new input devices for interaction on the move. The highly dexterous human hands could provide an always-on input capability without the actual need to carry a physical device. First, we present novel methods to address the hard computer vision-based hand tracking problem under varying number of cameras, viewpoints, and run-time requirements. Second, we contribute to the design of gesture-based interaction techniques by presenting heuristic and computational approaches. The contributions of this thesis allow users to effectively interact with computers through markerless tracking of hands and objects in desktop, mobile, and egocentric scenarios.Diese Arbeit stellt neue Methoden für die markerlose Verfolgung der vollen Artikulation der Hände und für die Informierung der Gestaltung der Gestik-Computer-Input. Emerging-Geräte wie Smartwatches oder virtuelle / Augmented-Reality-Brillen benötigen neue Eingabegeräte für Interaktion in Bewegung. Die sehr geschickten menschlichen Hände konnten eine immer-on-Input-Fähigkeit, ohne die tatsächliche Notwendigkeit, ein physisches Gerät zu tragen. Zunächst stellen wir neue Verfahren vor, um das visionbasierte Hand-Tracking-Problem des Hardcomputers unter variierender Anzahl von Kameras, Sichtweisen und Laufzeitanforderungen zu lösen. Zweitens tragen wir zur Gestaltung von gesture-basierten Interaktionstechniken bei, indem wir heuristische und rechnerische Ansätze vorstellen. Die Beiträge dieser Arbeit ermöglichen es Benutzern, effektiv interagieren mit Computern durch markerlose Verfolgung von Händen und Objekten in Desktop-, mobilen und egozentrischen Szenarien
    corecore