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Abstract 
 

Hand dexterity and motor control are critical in our everyday lives because a significant portion 

of the daily motions we perform are with our hands and require some degree of repetition and 

skill. Therefore, development of technologies for hand and extremity rehabilitation is a 

significant area of research that will directly help patients recovering from hand debilities 

sustained from causes ranging from stroke and Parkinson’s disease to trauma and common 

injuries. Cyclic activity recognition and assessment is appropriate for hand and extremity 

rehabilitation because a majority of our essential motions are cyclic in their nature. For a patient 

on the road to regaining functional independence with daily skills, the improvement in cyclic 

motions constitutes an important and quantifiable rehabilitation goal. However, challenges exist 

with hand rehabilitation sensor technologies preventing acquisition of long-term, continuous, 

accurate and actionable motion data. These challenges include complicated and uncomfortable 

system assemblies, and a lack of integration with consumer electronics for easy readout. In our 

research, we have developed a glove based system where the inertial measurement unit (IMU) 

sensors are used synergistically with the flexible sensors to minimize the number of IMU 

sensors. The classification capability of our system is improved by utilizing a fuzzy logic data 

analysis algorithm. We tested a total of 25 different subjects using a glove-based apparatus to 

gather data on two-dimensional motions with one accelerometer and three-dimensional motions 

with one accelerometer and two flexible sensors. Our research provides an approach that has the 

potential to utilize both activity recognition and activity assessment using simple sensor systems 

to help patients recover and improve their overall quality of life. 
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Chapter 1: Introduction 

 

1.1 Background: 

Hand dexterity is a vital part of our everyday lives.  From eating food with a utensil, to swinging 

a baseball bat, to drinking water from a reusable bottle, we humans rely on manually controlling 

our hands for learning essential, occupational, and leisure skills that all help improve the quality 

of our lives.  However, hand dexterity is not something to take for granted, as hand injuries and 

debilities are significantly common and require professional rehabilitation.  

 

In the United States alone, more than 700,000 people suffer a stroke each year, and 

approximately two in three of these individuals actually survive the stroke and require some form 

of motor rehabilitation, which often focuses on hand movement and control [1].  On a larger 

scale, the World Health Organization estimates a worldwide average of 15 million stroke victims 

every year [2].  According to the National Institute of Neurological Disorders and Stroke, “the 

main objectives of rehabilitation are to help survivors become as independent as possible and to 

attain the best possible quality of life” [1].  Hand rehabilitation is not purely limited to stroke 

patients, but also patients seeking motor improvements from Parkinson’s Disease and various 

forms of trauma and common injuries.   

 

For patients with severe hand motor debilitations, reacquiring the ability to perform simple daily 

motions, including eating and writing, is a monumental step towards becoming independent 

again [2].  Learning and performing these motions typically correlates with developing a cyclic, 

natural frequency as a repetitive motor output.  Most people develop and practice these daily 

motions in early childhood and become routinely acclimated to them overtime, yet relearning 

such fundamental, basic skills requires similar conscious practice and effort over long periods of 

time [4].  The NIH further highlights the importance of sustained, consistent exercising for long 

term improvements and retention of movements: “There is a strong consensus among 

rehabilitation experts that the most important element in any rehabilitation program is carefully 

directed, well-focused, repetitive practice—the same kind of practice used by all people when 

they learn a new skill” [1].   
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Not only is the recurrence of a specific hand motion or activity important to improve muscle 

memory and dexterity, it is also crucial to maintaining an acquired skilled motion overtime.  

Therefore, even though clinical rehabilitation within a physical facility under the direct care of a 

rehabilitation specialist may help patients improve in motor control and skill, long term 

improvements and maintenance of practical daily motions necessitates conscientious repetition 

and performance feedback [5].  

 

1.2 Literature Review: 

1.2.1 Existing sensor technologies within the field of extremity rehabilitation  

In the modern field of extremity and hand rehabilitation, many sensor technologies currently 

exist both in terms of various types of motion sensors and larger scale motor rehabilitation 

devices.  In both cases, sensor technologies incorporate one or multiple types of motion sensors, 

and the most widely used sensor technologies include accelerometers, force-based sensors , flex 

sensors , gyroscopes, and magnetometers [3].   

 

Inertial Measurement Units (IMUs) are multi-sensor technologies that incorporate both an 

accelerometer, gyroscope, and magnetometer to track general hand motion and sensor orientation 

[6, 7, 8, 9], while flex sensors are resistive sensors that provide angular data for multi-joint 

movements from the fingers [4, 10, 11, 12].  Additionally, a majority of motion sensors have 

become widely accessible and affordable for research applications, paving the way for new 

technological developments that address more unique, patient-specific consumer needs [2].   

 

Accelerometry is a widely used as a benchmark tool for motion activity recognition and 

assessment within the modern field of hand and extremity rehabilitation.  Researchers at the 

University of California at Santa Barbara developed two different testing apparatuses, with 15 

and 30 accelerometers in each respective apparatus, to measure the spatial patterns of skin tissue 

vibration during hand haptic interactions [13]. The three axis, miniature accelerometers in this 

experiment became of particular interest to our project design because of their versatility and 

high sensitivity in tracking broader hand movement and smaller vibrations and tremors, which 

are both key facets of extremity rehabilitation involving daily cyclic motions [3].   
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1.2.2 Motor Rehabilitation Technologies are Becoming Case Specific  

In the modern field of motor rehabilitation, technologies are becoming increasingly case specific, 

which opens up a realm of opportunities for research and product design that address the 

individual rehabilitation needs and the unique physiology of the patient [3, 15, 5, 16, 17].  Here, 

we will provide a background of existing sensor technologies and suggest relative benefits and 

challenges associated with each technology when considering implementation within benchmark 

cyclic activity recognition and assessment systems for hand rehabilitation.  

 

Researchers from the Institute for Biomedical Technology and Technical Medicine developed a 

hand motion assessment system design that uses inertial and magnetic sensors to create a full 3D 

reconstruction of all finger and thumb joints as well as the absolute orientation of the hand [7].  

The system is highly sensitive and allows for an extensive dynamic range because the 

researchers attach the sensors individually to each finger and thumb joint on the test subject’s 

hand as well as multiple positions on the backside of the hand.  However, the complexity of the 

system design indicates that it can only be replicated and utilized in clinical rehabilitation 

settings through trained professionals.  In addition, the widespread points of attachment for 

sensors would likely inhibit natural dexterous movement and be somewhat uncomfortable for 

sustained patient usage.  The reusability of the system design is also very low since the sensors 

are not incorporated within a wearable device and necessitate individual, manual attachment.  

 

A recent May 2019 research publication from Carnegie Mellon University used ultrasonic 

transducers mounted to a wristband to capture ultrasonic, acoustic beam-forms reflecting off of 

the hand [18].  Ultrasonic beamforming provides a highly sensitive and accurate solution to hand 

gesture recognition, and the transducer assembly on the wrist is practically non invasive because 

it allows for a full range of hand dexterity.  The researchers compiled data from ten different test 

subjects using two gesture sets for both common hand poses and more complex gestures in three 

dimensions.  The two sets achieved accuracies between “86.0% and 89.4...in sessions after the 

band is removed and reworn” [18].  One of the key benefits contributing to the average high 

accuracy is that the localization of sensors onto a rewearable wristband allows for more 

predictable and consistent sensor alignment and calibration.  The only foreseeable drawback for 

the ultrasonic wristband research is that replicating this experiment requires additional 



 4 

manufacturing for the physical hardware that the ultrasonic transducers mount to around the 

wrist.   

 

Data gloves have become one of the most popular sensor integration materials that meet 

dynamic, case-specific needs for wearable gesture sensing technologies, and allow for greater 

user comfort and natural dexterity.  Existing data gloves vary in the type of sensors attached to or 

embedded within the glove material, although most clinical or marketed data gloves most 

commonly use fiber optic sensors, resistive flex sensors, or IMUs [2, 10, 12, 19].  The reusability 

of data gloves is another important element that leads to both better retention of individual model 

accuracy across multiple usages without extensive calibration and a much faster, more 

comfortable system setup [12, 6].  

 

1.2.3 Fuzzy Logic Systems  

Data analysis for activity recognition and assessment over the last decade has increasingly 

shifted towards integrating fuzzy logic systems that simplify the software decision-making 

hierarchies and program operations for specialists.  Within the field of hand and extremity 

rehabilitation, motor rehabilitation systems require significant processing power in order to sift 

through and apply fuzzy logic decision parameters to the large pools of data being collected from 

various sensors [20, 21, 15, 19].   Moreover, active fuzzy logic systems automatically generate 

new decision parameters that account for modeled unknown, or uncertain datasets that do not fall 

into pre-existing parametric classification [21].   

 

Researchers from the Cheng Institute of Technology in Taiwan constructed a wearable heat 

stroke detection device in 2017 that integrates a fuzzy logic control parameter system to evaluate 

the physiological data from the sensor and determine whether the data is parametrically safe or 

crosses risk threshold values [22]. In the latter case, the user is notified that their monitored 

physiology is at risk of heat stroke and should take preventative action in order to lower the risk 

down to safe physiological levels.  The fuzzy logic inference system the researchers 

implemented uses four risk level classification outputs defined by triangular membership 

functions, which are common for classification purposes with non-overlapping measurements 

within each input dataset.  
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A research paper published in 2017 developed an iterative, machine learning framework based 

on fuzzy logic in order to simultaneously account for several experimental constraints including 

“sensor data alignment, data losses, and noise [which] deteriorate[s] data quality and model 

accuracy” [20].  The researchers extracted motion data from an experiment dataset that contains 

over 800,000 data samples from four different test subjects.  In the experiment linked to the 

dataset, eleven triaxial accelerometers and seven inertial sensors were mounted independently in 

thirteen unique placements ranging from lower to upper extremities on the surface of each test 

subject’s body.  The accelerometers collected data at a rapid rate of 30 Hz, which translates to 

the massive number of data samples collected for the four test subjects.   

 

The fuzzy logic inference system can save valuable processing time that would normally be 

squandered running data analysis through every individual data sample because it operates 

“using only a fraction of the data, improving significantly the computation time” [20].  However, 

the downsides to using less data are ensuing decreases in performance accuracy and sensitivity.  

Specifically, the study’s “iterative learning framework produced an average accuracy of 74.08% 

while using only 6.94% of the samples in the input domain for training.  This result compares to 

the average accuracy of 81.07% obtained by the supervised method when using 80% of samples 

for training” [20].  Even though the former study accuracy using 6.94% of the data included 73% 

less sample data than the latter study, there was only a small 7% total difference between sample 

accuracies.  This comparison demonstrates that in clinical applications that warrant faster 

processing and analysis speeds, fuzzy logic systems using optimized sample fractions can deliver 

fairly accurate and slightly less sensitive data analysis.   

 

1.2.4 Summary of Challenges with Hand Rehabilitation Sensor Technologies 

Despite the trends in digitization of health data and case specific technologies for motor 

assessment, challenges still exist with hand rehabilitation sensor technologies.  

 

First, there are issues with interfacing actionable and accurate data because the sensors are 

actively reading and transmitting so much data, that the outputs are often difficult to interpret in 

real time and only understood by healthcare professionals [20, 23]. Simplification of data 
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processing and representation often leads to a loss in accuracy and sensitivity in data analysis 

[20].  

 

Second, many clinical and research-based rehabilitation technologies require a complicated 

assembly that takes extensive amounts of time to set up with the patient and require 10-30 

sensors for higher accuracy clinical assessment [13, 7, 8].  

 

Third, many of the larger hand rehabilitation devices integrating smaller sensor technology 

components have sensors distributed at many points of contact or are uncomfortable to attach, 

which affects the patient’s natural hand movement and dexterity and thus, affects the quality of 

data received [7, 24, 3, 8].  

 

Lastly, there is a lack of integration of hand rehabilitation sensor technologies with consumer 

electronics to streamline the data analysis and visualized results for the benefit of both physician 

and patient [14, 5, 8]. 

 

1.3 Project goals and objectives: 

Our preliminary project goal was to create a wearable system design for intention sensing and 

quality assessment to assist individuals with extremity motion rehabilitation. Intention sensing is 

often referred to as activity recognition within clinical research publications, and is the first step 

in constructing a more comprehensive rehabilitation system that utilizes both activity recognition 

and activity assessment to help patients [25].  Since intention sensing commonly requires a 

hardware sensor setup that either attaches directly to the patient’s skin tissue or is incorporated 

within a wearable device, it is important to keep the patient’s user experience and comfort in 

mind in order to allow for the most natural motor responses from the patient.  Therefore, one 

paramount consideration for our system design was to minimize the number of sensors needed 

for intention sensing because the greater the number of sensors integrated within the system, the 

more likely the system will inhibit the user’s natural dexterous motion.  Additionally, reducing 

the number of sensors lowers the total amount of required materials and contributes to a more 

sustainable project design.  
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Activity recognition through intention sensing also requires the ability to classify a range of 

patient motions within a comprehensive rehabilitation system.  For extremity motion 

rehabilitation, our benchmark activity recognition objective was to accurately identify six 

different motions that included both simple two-dimensional and more complex three-

dimensional motions to account for a diverse, yet empirically accessible range of extremity 

movements and dexterous hand manipulations (Figure 1). 

 

Figure 1: Two and Three-Dimensional Motions. The arrows stemming from the hands above 

diagram the general movement patterns and hand manipulations for our six objective motions. 
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1.4 Project Budget: 

 

Item Quantity Price 

Accelerometer w/ Evaluation Board 1 $39.38 

Arduino Uno 1 $20.00 

Armband 1 $5.00 

Bread Board 1 $5.99 

Dexterous Glove 1 $12.99 

Ecoflex 1 $32.21 

Electrical tape 1 $1.95 

Flex Sensor 2 $15.90 

MATLAB Student license 1 $99.99 

Fuzzy Logic Designer 1 $29.99 

50 cm Jumper Wires (120) 1 $13.99 

Sewing Kit 1 $11.97 

Total $291.31 

 

Table 1: Project Budget. 
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1.5 Project Timeline: 

 

 Fall 2018 Winter 2018 Spring 2019 

Design 

Project 

Activities 

Week 1-

4 

Week 5-

8 

Week 9-

11 

Week 1-

4 

Week 5-

8 

Week 9-

11 

Week 1-

4 

Week 5-

8 

Week 9-

11 

Research          

Brainstorming          

Concept 

formulation 
         

Preliminary 

design review 
         

Conceptual 

design review 
         

Lab training          

Experiment 

Design 
         

Presentation 

Preparation 
         

Practice 

Presentation 
         

Final 

Presentation 
         

Thesis          

 

Table 2: Project Timeline. This table represents a Gantt chart detailing the timeline and tasks of 

our project. 
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Chapter 2: Design Process 

 

2.1 Design Goals: 

The design goals for our project are to prove that we can obtain actionable, accurate data using a 

minimal amount of sensors and concurrently maintain an array design that is user-friendly and 

simplistic enough for interfacing with everyday rehabilitation usage. 

 

2.2 Consumer Needs and System Requirements: 

From our literature searches, we understood that using a large amount of sensors would provide 

us with an abundance of quality data, but we felt that many existing sensor arrays in research and 

clinical settings were uncomfortable, difficult to assemble, and not very user friendly [3, 7, 8, 13, 

20, 23, 24].  Since our system design has the potential to eventually be incorporated within an at-

home rehabilitation activity recognition and assessment device, the consumer needs must revolve 

around patient usage and accessibility.  Therefore, we intend for our system design to serve as a 

benchmark model that maximizes wearable comfort, minimizes the complexity of assembly, and 

simplifies data analysis for user friendly interfacing strategies.  
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2.3 Preliminary Design: 

Our preliminary design was used in all of our initial two-dimensional motion testing, but was not 

successfully implemented during our three-dimensional motion testing stage.  This design 

incorporated a singular accelerometer attached with electrical tape on the back of a nitrile glove. 

 

 

Figure 2: Design Schematic of the Preliminary Testing Apparatus. This image displays the 

testing apparatus used in the testing of our initial two-dimensional motions, detailing the 

components used and how they are connected. 
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2.4 Final Design: 

Our final design was used for all of our three-dimensional motion testing as well as the bulk of 

our two-dimensional motion testing beyond establishing a baseline for classification.  This 

design incorporated a single accelerometer sewn to the back of a dexterous glove.  We also 

incorporated two flex sensors sewn to the base of the knuckle, each finger joint, and the tip of the 

finger to ensure the flex sensor followed the form of the fingers as they bent.  

 

 
 

Figure 3: Design Schematic of the Final Testing Apparatus. This image displays the testing 

apparatus used in the testing of our three-dimensional motions after incorporating flex sensors 

into a reusable, dexterous glove. 
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Chapter 3: Methods and Materials 

 

3.1 Hardware Components: 

In designing our various testing apparatuses, we needed to incorporate several different hardware 

components to achieve the end results we desired.  These hardware components would be 

responsible for transmitting motion data to be further processed and analyzed using software. 

 

3.1.1 Accelerometers: 

Accelerometers are electromechanical devices that measure the forces of acceleration, which is 

classified as the change in velocity over time (𝑎 =  
∆𝑉

𝑡
 m/s2).  By sensing the amount of dynamic 

acceleration, we are able to analyze how the specific device is moving in three dimensions, 

specifically, the X, Y, and Z axes.  Through this information, we are able to determine how a test 

subject using our apparatus is moving their hand.  We chose to use an accelerometer known as 

ADXL335 coupled with the model evaluation board (See Appendix 6 for data sheet) based on a 

previously conducted experiment at the University of California, Santa Barbara [13].  This 

experiment used the same accelerometers to measure the propagation of vibrational patterns 

within an individual’s hand.   

 

Knowing that vibrations generate small-scale accelerations, we determined that if this particular 

accelerometer was effective in detecting the most minute movements, it would be effective in 

capturing the larger movements we would be conducting in our experiments while maintaining a 

high level of sensitivity.  The ADXL335 immediately reads acceleration with gravitational 

acceleration (G = 9.8 m/s2) as the initial unit of measurement.  However, the accelerometer 

yields outputs values in mV using the calibrated function relating both voltage and gravitational 

acceleration, where the ratiometric correlation is defined by 300mV/G.  The preset acceleration 

sampling rate of our ADXL335 sensors was 15 Hz, which implies 15 acceleration readings were 

recorded every second of operation.  
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3.1.1.1 Accelerometer Calibration: 

In order to obtain accurate and consistent results across all of our tests, we had to make sure that 

our device was correctly calibrated.  To do this, we used an Arduino Uno microcontroller board 

to process the acceleration signals, and wrote code in the Arduino software program that would 

first isolate the Z axis, and would then isolate the X axis (See accelerometer calibration code in 

Appendix 1).  By aligning the Z axis of the accelerometer vertically upward, we are ensuring that 

the acceleration in both the X and Y axes are 0 m/s2 since gravity, an acceleration force, is only 

acting in the Z direction.  Once the X and Y axes are calibrated, we perform the same steps, but 

instead place the X axis straight up, allowing us to calibrate the Z axis.  Once these calibration 

values are calculated, we can use them in our software analysis to make sure that the acceleration 

data we are gathering is correctly baselined and does not produce false results. 

 

3.1.2 Flex Sensors: 

Flex sensors are based upon resistive carbon elements and function as a variable resistor within a 

circuit.  As the device is bent, the sensor produces a resistance output corresponding to the angle 

at which it is bent.  By characterizing this correlation, we can use flex sensors to determine how 

an individual’s fingers are moving during different hand motions.   

 

3.1.2.1 Flex Sensor Characterization: 

In order to integrate flex sensors into our system design, we must fully characterize the resistance 

behavior of each individual flex sensor (See Appendix 6 for data sheet.  Characterizing the 

sensors allows us to create a relationship between the sensor’s resistance output and the angle of 

bending.  Each of our flex sensors were tested by securing the sensor to the table, and then 

bending it at a pivot roughly 3 cm from the tip of the sensor, simulating the bending of the sensor 

when attached to the finger (See Figure 4).  The sensors were bent from 0-90° at 10° increments 

in both the forward (0-90°) and backward (90-0°) directions.  We made sure to include both 

directions to ensure that we would be able to record accurate bend angle values during both the 

contraction and extension of the fingers.  Once characterized, our flex sensors were characterized 

(See figure 5) using a multimeter, we were able to integrate them into our sensor arrays. 
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Figure 4: Test Setup for Flex Sensor Characterization. This image indicates how we 

characterized the flex sensors for our experiments. 

 

Figure 5: Flex Sensor Characterization. Average resistance values used were taken from five 

tests at angle increments of 10 degrees from 0-90 degrees.  Error bars were calculated using the 

following equation for standard deviation (𝑎 =  √
Σ(𝑥−𝑥)2

𝑛
) where x = the specific value, x-bar = 

the average value, and n = the number of samples. 
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3.1.3 Wearable Glove Assembly:  

We sewed the accelerometer directly to the top of the right-handed dexterous glove through the 

four holes on the corners of the ADXL335 evaluation board.  We attached two wires to the I/O 

pins at the base of each flex sensor and folded electric tape multiple times around the pins to 

ensure the sensor pins wouldn’t dislodge from the wires during usage.  We then sewed the folded 

electric tape tightly to the glove below the metacarpal joints of the pointer and middle fingers 

and also sewed multiple loops further down each finger to maintain close angular contact 

between the flex sensors and bending fingers.  The Velcro wristband allowed us to alleviate 

tension from the jumper wires directly onto the sensors and move a majority of wires out of 

range of the hand to mitigate any potential hardware interference with the user’s natural hand 

dexterity and motion.  Appendix 5 contains specific diagrams detailing the pin connections and 

circuitry for both the accelerometer and the flex sensor. 

 

Figure 6: Hardware Components in Wearable Glove Assembly. 

 

3.1.4 Data Acquisition Board: 

For our data acquisition and processing transmission, we decided to use the popular Arduino 

Uno microcontroller board.  We selected this particular model because it is relatively 

inexpensive, easily accessible to university researchers in laboratory settings, has a dynamic  

range of input and output capabilities, and our team members were already familiar with it from  
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previous experiences in bioengineering and electrical engineering courses.  The board was 

suitable to both our preliminary design specifications and objectives as well as our final design 

specifications.  For future applications involving motion sensor data processing and 

transmission, we recommend considering the Arduino Mega as a more reasonable, versatile 

option since the greater number of input pins would allow for users to include more sensors in 

their system design. 

 

3.2 Software Components: 

In order to collect, process, and analyze the data from our various hardware components, we 

incorporated several different software components that would be used to translate the 

quantitative motion data into qualitative classifications of movements. 

 

3.2.1 Processing and Arduino: 

Processing and Arduino are two software programs that allowed us to acquire the data being 

transmitted by the accelerometers and flex sensors into a form we could use later in our analysis.  

Arduino is a C/C++ based language that we used to communicate directly with the hardware 

components by taking analog output signals and converting them to digital signals (See data 

acquisition code in Appendix 1).  Digital signals are discrete compared to the continuous analog 

data from the sensors, and therefore are easier to process and interpret when through data 

analysis.  Processing is a Java based language that we used to communicate between the Arduino 

board and our computer (See Processing code in Appendix 2).  Using Processing allowed us to 

compile our accelerometer data into an Excel file for each individual motion test that we could 

then analyze later using MATLAB. 

 

3.2.2 MATLAB: 

MATLAB is a programming language designed specifically with engineers and researchers in 

mind because of its fluidity and ease of use in the realm of computation.  For our project, we 

used MATLAB for all of the data analysis including data transformation into the frequency 

domain and optimization of both data collection and fuzzy logic systems (See Appendix 3 for 

MATLAB code).   
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3.2.2.1 Data Optimization: 

As we began running experiments and trials with our preliminary two dimensional sensor array, 

we found that there were often periods of miscommunication between the Arduino board and the 

Processing software.  This period of delay led to a collection of “blank” values scattered 

throughout our Excel sheets of accelerometer data.  In addition, based on our calibration data and 

our preliminary testing, we decided that accelerometer readings exceeding 500 mV and falling 

below 200 mV were considered to be outliers.  Furthermore, when initially trying on our glove 

sensor apparatus with sewn flex sensors, we physically measured the maximum potential bend of 

flex sensors from the carpometacarpal joint to the proximal interphalangeal joint to be 110°. 

Despite this, transduced flex sensor angular values sometimes exceeded 110°, so we set an 

angular outlier threshold value at 110° for the flex sensor measurements.   

 

In order to accommodate for these discrepancies in our collected data, at any point in the Excel 

file where a blank value or outlier occurred, we programmed MATLAB to remove the entire row 

of data containing the outlier (See data optimization code in Appendix 3).  Through this outlier 

removal process, we ensured that we retained each individual instance of uncompromised data 

that remained. 

 

3.2.2.2 Fourier Transforms: 

A Fourier transform decomposes a complex signal in the time domain into the frequencies of 

individual values that make up the signal and is a widely used linear transformation method 

within the fields of bioanalytics and bioengineering.  Executing a Fourier transform on a 

particular dataset provides us with magnitude values corresponding to a series of frequencies.  

The greater the magnitude at a given frequency within the Fourier spectrum, the greater the 

presence or frequency of a specific measured value in the original signal over a given time 

period.   

 

3.2.3 Fuzzy Logic Designer: 

Fuzzy Logic is a toolbox feature within the MATLAB software that allows us to perform data 

analysis through establishing hierarchical decision-making parameters that enable complex 

pattern recognition.  For each input to the system, we created a group of membership functions to 
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further define the inputs.  Membership functions are curves that define how each point in the 

input space is mapped to a membership value between 0-1.  If a particular input falls within a 

particular membership function, its membership value will be between 0-1, while all of 

membership values for all other membership functions within that input will have a value of 0.  

The use of membership functions is how the fuzzy logic designer is able to determine an output 

from a set of inputs (See figure 7 below).  For our project’s fuzzy logic system in both two and 

three-dimensional motion classification, the accelerometer inputs are the axial ratios of 

frequency and magnitude values from each of the Fourier transforms corresponding with a 

specific trial dataset. The flex sensor inputs for motion classification are the frequency 

magnitude values from each of the Fourier transforms corresponding with a specific trial dataset.  

Each of these inputs, and their significance, are explained more in depth in Chapter 4.  The 

outputs of our fuzzy logic designer are the six motions performed during our testing (circle, 

waving, figure 8, clenching, eating, and pouring).  For each data set, we compile the eight inputs 

into a single matrix, and then run it through our fuzzy logic designer.   
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3.2.3.1 Determining Membership Functions: 

Before writing and organizing a specific hierarchy of rules within the fuzzy logic designer to 

isolate similar motion patterns from multiple datasets, we first need to manually define 

membership functions that segment the various inputs into subsections, as seen in figure 7 below.  

Fuzzy logic designers have the ability to utilize a wide variety of membership functions, ranging 

from triangular to trapezoidal to Gaussian, with each type having inherent strengths and 

weaknesses depending on the type of data you are analyzing.  In the research paper discussing 

the wearable heat stroke detection device, the authors utilized triangular membership functions 

for their outputs and several inputs because of its specificity and simplicity in determining 

whether or not an input fell within a particular membership function [22].  Thus, we specifically 

selected triangular membership functions for our system design because there is no need for 

overlapping of membership functions for our inputs. 

 

 

Figure 7: Membership Function Plots. This image displays the triangular membership 

functions mentioned above for one of our chosen inputs. 
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3.2.3.2 Establishing Rules: 

The rules system within fuzzy logic functions as a grouping of “if...then” statements 

incorporating as many inputs as needed to specify an output.  With the absence of machine 

learning, each individual dataset had to be analyzed by hand, and new rules were written to 

classify each additional dataset.  Each rule requires the user to specify which membership 

function each of the inputs falls into, as well as the intended output (See figure 8 below).  Once a 

rule is specified, if any further datasets result in the same sequence of membership functions, the 

motion will be classified as such.  The more rules established within the system, the more 

accurate your motion classification will be (See Appendix 4 for all of our written rules). 

 

 

Figure 8: Creating Rules for the Fuzzy Logic Designer. This image shows the system used to 

implement new rules within our fuzzy logic designer. 
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3.3 Testing Procedures: 

For both two and three-dimensional motion testing, we designed our experimental protocol 

around the user experience through maximizing the efficiency, comfort, and simplicity of our 

operational system design.  Beyond that, we took into account health and safety considerations to 

make sure that the rewearable glove didn’t collect residual germs and could be sustainably 

reused for an indefinite number of tests.   

 

Testing procedures begin after hardware setup is complete and connected with the Processing 

and Arduino software preprogrammed with our system design code on the professional or 

researcher's computer. For a majority of the two and three-dimensional motion tests, each patient 

performed two or three tests of the same motion before moving onto the next, new motion.   

 

For the researcher or professional conducting the tests, it is important to navigate the subject 

through each step of the process and quickly demonstrate the individual motions before 

beginning the experiment.  The researcher must also make sure to rename each specific test file 

before each 15 second motion tests is conducted, while abiding by the nomenclature described in 

the following testing procedures. 

 

1. Subject washes their hands with soap and water 

2. Subject applies hand sanitizer to their hands to kill off residual germs 

3. Subject slides their right arm through the armband and slides the armband to 

approximately ½ or ⅔ down the forearm towards the elbow before tightening the Velcro 

strap to secure the band 

4. Subject inserts their right hand into the glove and maneuvers their hand and fingers to 

check and adjust for maximum dexterity  

5. For each motion test: 

a. Researcher names the specific test file in Processing using the following 

nomenclature: 

i. Data(Motion)(Date)(Patient’s initials)(Test # of the same motion).csv 

ii. An example would be “DataFig8May6ML3.csv” 

b. Researcher presses “Run” in Processing on the computer  
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c. 2 second delay between pressing “Run” and when sensor data acquisition begins 

d. Subject begins performing the intended motion after the 2 second delay while the 

researcher keeps track the 15 seconds using an external timer 

e. Researcher presses “Stop” in Processing on the computer once the 15 seconds 

have elapsed 

f. Subject stops performing the intended motion 

6. Subject takes off glove and armband 

7. Subject applies hand sanitizer once again  
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Chapter 4: Results 

 

4.1 Hypothesis: 

We will be able to integrate a specific combination and minimal amount of sensors into a 

wearable device that will allow us to use Fourier transform based data analysis and fuzzy logic to 

enable the automation of activity recognition and assessment. 

 

4.2 2-D Motion Testing: 

The first step in our testing process required us to establish a baseline for classifying motions.  

While the end goal of our project was to be able to accurately classify essential, everyday 

motions, we needed to start with a simple preliminary benchmark to ensure that our method of 

classification was both viable and successful.  In order to accomplish this, we chose three 

distinct, cyclic, two-dimensional motions (Figure 9).  We selected cyclic motions because they 

exhibit natural frequencies and are represented clearly through Fourier transforms, our main 

method of data analysis.  By restricting the motions to two dimensions, we kept the motion 

complexity low to prove our strategy could work on a simpler scale before incorporating more 

complex three-dimensional motions. 

 

Figure 9: Two-Dimensional Motions. The arrows stemming from the hands above diagram the 

two-dimensional motions we used in our preliminary testing (circle, waving, figure 8). 
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4.2.1 Acceleration Data: 

Our first data tests were conducted with our preliminary testing design consisting of only a single 

accelerometer.  Figure 10 shows the raw acceleration data displayed within MATLAB from one 

of our preliminary tests.  When broken down into sections and surveyed closely to compare axial 

relationships of acceleration at specific times, we were able to determine that our circular motion 

was indeed represented by the figure below.  Despite this, the raw data was not consistent 

enough from test to test to visually distinguish between motions with confidence.  However, this 

was a crucial step in our research process because it proved we could represent motions 

graphically using an accelerometer as a data source. 

 

 

Figure 10: Raw Acceleration Data of a Circular Motion in MATLAB.  This image depicts 

the acceleration in the X, Y, and Z axes of a repeated circular motion. 

 

4.2.2 Data Analysis using Fourier Transforms: 

After obtaining data from the accelerometers and graphically representing them within 

MATLAB, we performed Fourier transforms on our datasets.  As previously mentioned, Fourier 

transforms break down our complex acceleration signals and simplify them into a collection of 

frequency spectrums.  We found that implementing these Fourier transforms on our data 

provided us with a much more efficient and effective way to distinguish between motions.   
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As you can see in Figures 11-13 below, the Fourier spectrums of the different two-dimensional 

motions showcase distinct variances.  For the initial circle motions, the overwhelming majority 

of our data showed magnitude peaks at the same frequencies as well as a similar magnitude 

values for both the X and Y axes.  In an ideal test, the magnitudes for both the X and Y axes 

would be identical due to the symmetrical nature of a circle.  In contrast, the waving motion also 

shows the peaks at the same frequency, but we see a much higher magnitude in the X axis 

compared to the Y axis.   

 

These results make sense because a waving motion is predominantly planar, and a majority of 

motion occurs along one axis.  In the figure 8 motion, we see the magnitude peaks for the X and 

Y axes occur at different frequencies, indicating a key difference from the other two-dimensional 

motions.  This is primarily because when motioning through one cycle of a figure 8, the hand 

accelerates and changes direction along the X axis four separate times, while only accelerating 

and changing in direction twice along the Y axis.  In all of these graphs, the magnitude for the Z 

axis is negligible since there is no predominant motion along this axis. 

 

 

Figure 11: Fourier Spectrum of a Circular Motion in MATLAB. This image shows the 

magnitude vs. frequency (Hz) for acceleration in each of the three axes (X, Y, and Z). 
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Figure 12: Fourier Spectrum of a Waving Motion in MATLAB. This image shows the 

magnitude vs. frequency (Hz) for acceleration in each of the three axes (X, Y, and Z). 

 

Figure 13: Fourier Spectrum of a Figure 8 Motion in MATLAB. This image shows the 

magnitude vs. frequency (Hz) for acceleration in each of the three axes (X, Y, and Z). 
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4.2.2.1 Significance of Axial Ratios: 

Upon performing Fourier spectrums across a multitude of trials for each of the three two-

dimensional motions, we noticed an inconsistency in the magnitude peak values, as well as the 

frequency at which these peaks occurred across tests of the same motion.  While this was 

initially concerning, we were able to find a distinct, distinguishing factor from these Fourier 

transforms.  While the raw values of magnitude peak and frequency were not consistent for the 

same motion, the ratios of the peak magnitude between axes and the ratio of the frequencies 

between axes were consistent from test to test across datasets with the same motion.  In addition, 

as depicted in Table 3 below, the ratios provide us with a quantifiable metric with which to 

compare motions. 

 

Table 3: Comparing Frequency and Magnitude Ratios of Two-Dimensional Motions.  This 

table shows the significance of the ratios in distinguishing between the various two-dimensional 

motions. 

 

As the table shows, the figure 8 motion is distinguishable from the circle and waving motions by 

reviewing only the values of the frequency ratios.  While the magnitude ratios aren’t essential in 

distinguishing the figure 8 motion, they provide additional parameters to reference in order to be 

certain that the correct motion is being classified.   

 

In the case of distinguishing between the circle and waving motions, the frequency ratios alone 

are not enough since they are identical.  Including the magnitude ratios into our comparison is 

essential to classifying these two motions.  As we can see from Table 3 and Figures 11 and 12, 

the waving motion has significantly higher magnitude peaks on the X axis than either the Y or 

the Z axis, whereas the circular motion we see peaks of similar values corresponding to a ratio 
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between the X and Y axes of 1.  The axial ratios were thus significant to our ability to distinguish 

between various two-dimensional motions, and also served to prove that our minimal sensor 

design consisting of a single accelerometer was sufficient to obtain actionable data. 

 

4.3 3-D Motion Testing: 

Upon successful completion of our preliminary testing using two-dimensional motions, we 

aimed to use a similar methodology to distinguish between three-dimensional motions.  We 

again chose motions that were cyclic in nature, but also made sure that the motions held 

significance in a majority of people's’ everyday lives.  We decided to focus on the motions of 

eating, clenching, and pouring in our three-dimensional testing (See Figure 1).  In conducting 

these experiments, we used our final testing apparatus diagrammed in Figure 3. 

 

4.3.1 Acceleration Data: 

Similar to our two-dimensional motion testing, our three-dimensional motion testing began using 

the same single accelerometer system design depicted in Figure 2.  After several tests across the 

various three-dimensional motions, we discovered that once again the raw acceleration data 

would not be sufficient in classifying the various three-dimensional motions (see Figures 14-16).  

Rather, the raw acceleration data would suffice as an intermediate reference to display the axial 

relationships of motion. 
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Figure 14:  Raw Acceleration Data of a Clenching Motion in MATLAB.  This image depicts 

the acceleration in the X, Y, and Z axes of a repeated clenching motion. 

 

 

Figure 15:  Raw Acceleration Data of an Eating Motion in MATLAB.  This image depicts 

the acceleration in the X, Y, and Z axes of a repeated eating motion. 

 



 31 

 

Figure 16:  Raw Acceleration Data of a Pouring Motion in MATLAB.  This image depicts 

the acceleration in the X, Y, and Z axes of a repeated pouring motion. 

 

4.3.2.1) Data Analysis using Fourier Transforms -- Acceleration Data: 

Similar to our two-dimensional motion testing, we conducted Fourier transforms on the raw 

acceleration data from all of our three-dimensional motions (see Figures 17-19 below).   

 

Figure 17: Fourier Spectrum of Acceleration for a Clenching Motion in MATLAB. This 

image shows the magnitude vs. frequency (Hz) in each of the three axes (X, Y, and Z). 
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Figure 18: Fourier Spectrum of Acceleration for an Eating Motion in MATLAB. This 

image shows the magnitude vs. frequency (Hz) in each of the three axes (X, Y, and Z). 

 

 

Figure 19: Fourier Spectrum of Acceleration for a Pouring Motion in MATLAB. This 

image shows the magnitude vs. frequency (Hz) in each of the three axes (X, Y, and Z). 
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We used the same ratio comparisons as in the two-dimensional motion analysis in order to 

attempt distinguishing between motions.  However, classification proved to be ever more 

complicated with our more complex, three-dimensional motions.  We found that many of our 

trials contained magnitude and frequency ratios similar to those of our two-dimensional motions. 

Thus, distinguishing between all six of the motions became increasingly difficult.  We quickly 

realized that a single, central accelerometer on the back of the hand was not sufficient to 

distinguish between three-dimensional motions and necessitated including an additional 

parameter to aid us in classification.  

 

4.3.2 Flex Sensor Data: 

A critical difference we noticed between the two-dimensional motions and the three-dimensional 

motions were the usage of the fingers in the three-dimensional motions.  In each of the two-

dimensional motions, the fingers of the test subject were either straight, or bent so slightly that it 

could be deemed negligible.  In contrast, all of our three-dimensional motions incorporated a 

substantial amount of finger bending and manipulation, with the eating and pouring motions 

requiring the test subject to grip an object, and the clenching motion requiring the repeated 

bending of the fingers into a fist.  The bending described above is depicted in Figures 20-22 

below. 
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Figure 20:  Raw Flex Sensor Data of a Clenching Motion in MATLAB.  This image depicts 

the angle of finger bending in the index (L) and middle (R) fingers of a repeated clenching 

motion. 

 

Figure 21:  Raw Flex Sensor Data of an Eating Motion in MATLAB.  This image depicts the 

angle of finger bending in the index (L) and middle (R) fingers of a repeated eating motion. 
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Figure 22:  Raw Flex Sensor Data of a Pouring Motion in MATLAB.  This image depicts the 

angle of finger bending in the index (L) and middle (R) fingers of a repeated pouring motion. 

 

We can see from the preceding figures that each of the three-dimensional motions requires the 

use of the fingers in some capacity due to fluctuations in the angle values on the Y axes 

overtime.  Similar to the raw acceleration data, simply looking at the raw flex sensor data was 

not conclusive in distinguishing between different motions.  

 

4.3.2.1 Data Analysis using Fourier Transforms - Flex Sensor Data: 

Given the cyclic nature of our motions, we implemented Fourier transforms once again as 

analysis tools for our data.  As we can see in Figures 23-25 below, the Fourier spectrum 

magnitudes for the three-dimensional motions have a wide range. 
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Figure 23: Fourier Spectrum of Flex Sensor Data for a Clenching Motion in MATLAB. 

This image shows the magnitude vs. frequency (Hz) in the index (L) and middle (R) fingers. 

 

 

Figure 24: Fourier Spectrum of Flex Sensor Data for an Eating Motion in MATLAB. This 

image shows the magnitude vs. frequency (Hz) in the index (L) and middle (R) fingers. 
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Figure 25: Fourier Spectrum of Flex Sensor Data for a Pouring Motion in MATLAB. This 

image shows the magnitude vs. frequency (Hz) in the index (L) and middle (R) fingers. 

 

We noticed that the magnitude of the clenching motion was significantly higher than the 

magnitude of the other two motions.  This is primarily because in the pouring and eating 

motions, the fingers mostly remained bent at the same angle throughout the course of the 

repeated motions, while the clenching motion required repeated bending of the fingers to 

alternate between flat and gripped orientations.   

 

4.3.2.2 Significance of Fourier Spectrum Magnitude: 

From Figures 23-25, we were able to determine that the frequency magnitude from the Fourier 

spectrum for the flex sensors was essential in distinguishing between the two-dimensional and 

three-dimensional motions. 
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Two-Dimensional Motions Three-Dimensional Motions 

Circle Waving Figure 8 Clenching Eating Pouring 

Magnitude 

Range 
0-50 0-150 0-50 >1000 150-1000 100-1000 

Table 4: Comparing the Magnitude Ranges of Fourier Spectrums of Flex Sensor Data.  

This table shows the significance of the magnitude of finger bending in distinguishing between 

two-dimensional and three-dimensional motions. 

 

From the table above, we are able to deduce that incorporating the flex sensors into our sensor 

array has allowed us to successfully distinguish between two-dimensional and three-dimensional 

motions.  Movements that saw overlap from the accelerometer data, like the circle and eating 

motions, are now easily distinguishable by incorporating the additional parameter provided by 

the flex sensor data. 

 

4.4 Motion Classification using Fuzzy Logic: 

After establishing connections between our data (frequency ratios, magnitude peak ratios, and 

magnitude ranges of bending) and our six motions, we used the Fuzzy Logic Designer system 

within MATLAB to classify our data in a more automated fashion.  While we were able to 

visually determine an unknown motion by looking at the graphed data ourselves, this method did 

not give us the precision or speed needed for further applications of our project.  The fuzzy logic 

system provided us with a way to achieve quick results for a large number of data sets.   

 

After establishing the membership functions and rules for the system (details in sections 3.2.3.1 

and 3.2.3.2 respectively) we were able to use each individual ratio (three frequency ratios and 

three magnitude ratios) as well as the magnitude of bending (index and middle finger) as inputs 

to our fuzzy logic inference system adding to a total of 8 inputs for data analysis.  Our system 

contained six total motion outputs, one for each of the unique motions performed in our test 

experiments.  As we run our data sets through our fuzzy logic design system, each data set is 

assigned a numerical output corresponding to a particular motion.  Using this numerical value, 

we can determine the motion performed in each data set (See motion classification code in 
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Appendix 3).  We observe the motion outputs as character strings in the MATLAB command 

window similar to the figure below. 

 

 

Figure 26: Example of Motion Outputs Displayed to the User.  This output represents a series 

of six data sets, where each data set corresponds to one of the six unique motions performed 

during our testing.  In this case, all of the motions were correctly classified. 

 

4.5 Summary of Results 

Upon the conclusion of our testing, we had run a total of 144 two-dimensional tests, and 105 

three-dimensional tests on a total of 25 test subjects.  After constructing membership functions 

and logic rules for each of these data sets, we were able to correctly classify the individual 

motion performed in a specific data set from the larger pool of 249 total tests with 80% accuracy.   

 

These results indicate that an individual who we have already tested would have an 80% chance 

of performing one of our six predefined motions that will be correctly classified by our logic 

system.  While there is still potential to improve upon this number for individuals who have 

already been tested, the biggest potential remaining lies in the ability of our system and logic 

designs to accurately classify the unknown motions of individuals who have never been tested 

before and account for motion uncertainty.  These topics will be discussed more thoroughly in 

our future works section (5.2). 
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Chapter 5: Discussion 

 

5.1 Discussion of Results: 

We have achieved a fairly high level of accuracy in activity recognition through intention 

sensing with our system design, but the ongoing project challenge will be quality activity 

assessment.   

 

Comparing our average classification accuracy of 80% with the higher accuracy classification 

devices from our literature review, we are convinced that more research and experimentation 

must be conducted with our system design to improve the accuracy beyond 95% in order to 

validate further implementation with activity assessment and integration within a more 

comprehensive, clinical-level rehabilitation system [26].  For instance, the iterative learning 

framework for extremity and full body motion classification produced an “ average accuracy of 

81.07%...when using 80% of samples for training” [20].  This means that using a smaller fraction 

of the entire data collection, the researchers were still able to obtain a higher classification 

accuracy.   

 

Moreover, the model accuracy for the ultrasonic transducer wristband device for motion 

recognition is comparatively high (86.0% -  89.4%) for experiments in which the wristband was 

removed and reused by test subjects [5].  The reasoning as to why our average classification 

accuracy falls slightly below these other experimental accuracies remains unclear and 

necessitates further optimization and manipulation of testing variables such as type of wearable 

material and other considerations examined in the “Future Works” section below.  

 

5.2 Future Work: 

Although the results of our research and testing were positive in regards to activity recognition, 

we acknowledge that there is huge potential for integration of our system design within activity 

motion assessment.  Here, we propose various testing procedures and system improvements for 

future progression of our system design framework. 
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5.2.1 Continued Testing on a Wider Body of Subjects: 

In order to further optimize our system design to reach clinical-level accuracies for activity 

recognition, further tests need to be conducted in assessing hand gestures using fuzzy logic. Even 

though we were able to gather hand motion data from 25 different people, our datasets were 

largely homogeneous because the individuals we tested all demonstrated reasonably healthy, 

natural motions and have never required any preceding clinical hand or extremity rehabilitation.  

With more test subjects exhibiting a more diverse range of extremity physiological 

characteristics, we can obtain more quantitative data and expand our system capabilities for case-

specific applications of activity recognition and future assessment. 

 

5.2.2 Incorporation of Machine Learning: 

The fuzzy logic inference system implemented in our current project design is a passive system, 

meaning any new input data that does not fall within existing parametric classification requires 

additional manual changes within the fuzzy logic rules and membership functions.  In an active 

fuzzy logic system, the decision making process transforms into an iterative learning framework 

that utilizes machine learning to automatically assess patient rehabilitation progress and generate 

new classification rules whenever incoming data does not meet existing analysis criteria [27].  

Machine learning can be incorporated into our system design to allow the system to 

automatically process larger amounts of data and streamline the efficiency of data analysis [20].  

 

5.2.3 Testing using Embedded Sensors: 

In our benchmark activity recognition, we have shown how a sensor glove is an ideal rewearable 

system component for minimized sensor attachment that enables us to completely mitigate direct 

sensor-skin contact, while maintaining a fairly high classification accuracy for multiple test 

subjects.  However, our current dexterous glove requires physically sewing the sensors on top of 

the glove material for close attachment, and over repeated usages there is a strong chance that the 

threading will become detached and that the sensors will lose their optimal contact with the 

glove.   

 

A polymer-based glove with embedded sensors would provide quality transmission of data and 

reduce the risks of sensor detachment and compromised data acquisition. Researchers from 
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University of California, Berkeley and Lawrence Berkeley National Laboratory suggest both a 

PDMS tactile sensing glove as well as a PDMS wristband, which allow for a greater probability 

of uncompromised contact and data sensitivity because of the elastic and adhesive properties of 

PDMS [13]. One potential challenge to using PDMS for a manufacturable rehabilitation glove 

device material is that repeated usages can cause the PDMS to fracture.  

 

As a secondary project experiment to evaluate the feasibility of a polymer-based glove within 

our system design, we embedded one flex sensor in between two thin layers of Ecoflex polymer 

material.  To embed the sensor, we used a three-dimensional anatomical hand model as the 

framework to shape and mold the multiple layers of Ecoflex around the flex sensor and output 

wiring.  One drawback to embedded sensors is that once the mold forms around the sensors and 

wiring, it becomes very difficult to adjust or access the hardware components without 

compromising or fracturing the mold itself.  Ecoflex was chosen specifically because it is less 

prone to fracturing as well as its versatile elastic characteristics and ease of manufacturing. 

 

 

Figure 27: Ecoflex Embedded Sensors Glove.  This image shows an Ecoflex glove containing 

a flex sensor embedded within the layers of the material poured over a hand mold. 
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5.2.4 Inclusion of a Wrist-bound Accelerometer: 

Including a wrist-bound accelerometer, we can increase the possible degrees of freedom within 

our system design and allow for data acquisition of a broader range of extremity motions. 

Researchers in [24] organized simple hand motions into five encompassing categories for hand 

motion classification: static gestures, touching, stable grasps without external forces, simple 

shifts, and rotating an object in-hand. Furthermore, they categorized complex hand motions that 

extend beyond our senior design project’s scope of 2-3 dimensional, task-specific motions 

because they involve dynamic movements of multiple fingers and wrist rotations as well. 

Incorporating a wrist-bound accelerometer would increase our system design capabilities to 

recognize and assess more extensive extremity motions, while preserving system accuracy. 

 

5.2.5 Integration of Consumer Electronics and Smart Devices: 

Our system design has widespread potential for future implementation that aligns with the 

increasing shift in the digitization of personal healthcare technologies, with the most interesting 

facet being the integration of sensors and data representation within smart devices and consumer 

electronics.  The latest edition of the Apple Watch not only features an accelerometer to track 

motion, but also an ECG sensor that monitors heart rate [28].  Glucose sensor patches are also 

becoming prevalent, with active wireless communication between the patch and a phone or smart 

device that allows the user to easily read and understand the data [29]. 

 

Within modern rehabilitation, smart devices have great potential to not only serve as hubs for 

data transmission and processing, but to interface directly with the patient or user with diagnostic 

evaluation and rehabilitative instruction [5].  This is primarily because  “providing feedback like 

visual information on smartphones is common and effective, especially for the systems intended 

for remote monitoring” [14].   
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Figure 28: Example of a Potential Application Interface for Future Research. This image 

depicts what we image the user interface might look like if our research was applied to use as a 

rehabilitation application for at home use. 

 

5.2.6 Potential to Test for Tremor Detection: 

Tremor output recognition and assessment would be applicable in both cyclic and static activities 

for patients recovering from stroke and Parkinson’s disease. Resting tremors can be recognized 

and assessed in a static environment, while moving tremor intensity for an individual patient may 

vary between different cyclic motions and would entail a much more dynamic feedback system 

for legitimate rehabilitation feedback [25].  In either case, tremor classification could be 

integrated easily within the fuzzy logic inference system to provide additional rehabilitation 

detection capabilities.  

 

5.2.7 An At-home Rehabilitation Program: 

An at-home device with patient interfacing and instruction would be extremely beneficial to 

patients undergoing rehabilitation.  Researchers from the Adelante Rehabilitation Centre 

evaluated long term patient rehabilitation progress using modern accelerometer-based sensor 

technologies [23]. They also asked oral questions directly to the patients to gain a better 

understanding of how the patient subjectively perceived the status of their motor debilitating 
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conditions and subsequent progress in rehabilitation. This would be a crucial element for 

interfacing within an at home, patient specific rehabilitation device, yet it would not serve as a 

diagnostic replacement. 

 

A future objective for our system design for at home usage would be to compare individual 

patient data on extremity motor function and improvements over time with data pooled from 

other patients that all follow an established or authenticated extremity rehabilitation program [5, 

30]. The program parameters would need to be subcategorized based on the type of rehabilitation 

and motor debilitation specific to the patient in order to generate accurate, validated diagnostic 

feedback and updated rehabilitation protocol.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 46 

Chapter 6: Engineering Standards and Constraints 

 

6.1 Ethical: 

While our current research and experimental design to this point does not pose any major ethical 

concerns, the possibility of future work and applications of our research may bring about further 

ethical considerations.  The potential for our experimental design to be streamlined into an at-

home diagnostic tool could pose issues of misuse resulting in misdiagnosis.  Since the patients 

using the device would not be professionally trained in the field of hand rehabilitation, it would 

be crucial to emphasize the use of our device as a diagnostic tool intended to aid professionals in 

evaluating ongoing rehabilitation progress. 

 

6.2 Science, Technology, and Society: 

In addition to serving as an inexpensive professional diagnostic tool, our system design has the 

potential to become a portable device that allows hand rehabilitation users to periodically 

monitor the functionality and health of their hand motions without requiring excessive routine 

checkups with their rehabilitation professional.  This helps save users time and money that would 

typically be spent covering the cost of attending routine physical checkups and consultations.  

However, the implementation of a portable device to monitor rehabilitation progress and 

function does not substitute the need to continually engage with rehabilitation professionals for 

expert clinical diagnostic feedback and guidance.  The same considerations apply for 

nonprofessional usage of initial diagnostics without previous professional consultation. 

 

6.3 Civic Engagement: 

If used for professional rehabilitation applications, our project system design may need approval 

remarks from the Council on Rehabilitation Education in the United States.  Aside from this, 

rehabilitation doctors and professionals in the United States are required to gain accreditation 

from Healthcare Facilities Accreditation Program.  For nonprofessional usage in an at home 

setting, our system requires would require approval from the U.S. Food and Drug 

Administration.  Since future system design incorporation would lean towards a wearable 

rehabilitation device, it is noninvasive and poses no health concerns aside from the inevitable 
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sanitary issues that come with using rewearable glove, which is addressed in the section “Health 

and Safety”.  Additionally, if our system design has any chance of becoming profitable within a 

wearable glove technology or smart device, we would need to file a patent for innovation and 

intellectual property in the United States and any other country requiring patent registration for 

similar biologically noninvasive rehabilitation products.  

 

6.4 Economic: 

Since our project offers a system design rather than a physical manufacturable product, it allows 

future researchers significant flexibility in selecting and purchasing the system hardware 

components to meet specific hand rehabilitation needs requiring motion classification.  The 

system hardware components, including the wearable sensors and Arduino board, are 

inexpensive and easily accessible on online commercial markets.  The system software 

components, Matlab and Processing, are also relatively affordable and accessible within medical 

rehabilitation fields.  In this regard, our system design is incredibly frugal and economically 

versatile for researchers who either wish to replicate or expand on our system design for 

rehabilitation and extremity sensing applications.  

 

With the potential for creating a manufactured wearable device product for at home 

rehabilitation, the economics of manufacturing are similarly inexpensive in regards to purchasing 

existing inexpensive market accelerometers and flex sensors.  The more notable expenses would 

be the hardware assembly and sensor integration within the reusable device.  For example, if the 

future design were to embed sensors within an Ecoflex or PDMS glove, the cost of constructing 

the machinery for production as well as the time required to successfully embed the sensors 

would be two economic considerations in order to enable large scale manufacturing.  

 

6.5 Health and Safety: 

Reusability of the woven glove with our system design is one potential health concern because 

repeated use by multiple users may leave residual germs if users do not undergo proper 

sanitation procedures both before and after wearing the glove.  To account for this health 

concern, users also have the option of wearing a disposable latex or nitrile glove to prevent direct 

contact between skin tissue and the reusable woven glove containing our array of sensors. In our 
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project, we ran approximately 250 different motion tests with a total of 25 individual test 

subjects, so one way we considered sustainable and healthy reusage was to have users apply 

hand sanitizer to their hands both before and after wearing the glove.  

 

6.6 Manufacturability: 

As mentioned in the “Science, Technology, and Society” section, our system design has the 

potential to become a portable device that allows hand rehabilitation users to periodically 

monitor the functionality and health of their hand motions without requiring excessive, routine 

checkups with their rehabilitation professional.  The hardware components of a portable device 

integrated into our system can be manufactured including the woven glove with imbedded 

sensors, soldered wires, and connection with an Arduino board, or other suitable microcontroller. 

The manufacturing costs would be moderately inexpensive, with the most time consuming 

portions of manufacturing being sewing or embedding the sensors to the dexterous glove and 

soldering the connector cables.  The only potential issues that may arise from manufacturing is 

the bulkiness of the Arduino board.  If our system design reached the manufacturing stage, we 

would likely integrate the sensors with a Bluetooth technology to wirelessly communicate with 

the chosen microcontroller.  This would not only eliminate the need for a majority of wiring 

currently used with the glove, but would also make the device more simplistic and user-friendly. 

 

6.7 Usability: 

At its current stage, our system design is intended for professional and research usage.  The 

physical hardware components of our testing apparatus are clearly defined for professional users 

to purchase and assemble.  Our protocol contains procedures on how to use the software in 

Matlab and Processing as well as instructions to modify current fuzzy logic parameters and rules 

for user specific motion classification.  With all of the given information, informed users with a 

background understanding in the field should be able to successfully use our designs and 

replicate our results. 
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6.8 Sustainability: 

Our system is especially sustainable in the acquisition of hardware materials because many 

professional medical industries and rehabilitation centers have access to both physical sensors, 

connector cables and Arduino boards. These hardware components can also be purchased and 

reused for a variety of other medical industry and technologically related applications. The main 

relevant issue of sustainability with our project is in the reusability of the woven glove with 

embedded sensors because of the residual germ health concerns with repeated usage by multiple 

patients, so wearing disposable latex or nitrile gloves or apply hand sanitizer are useful 

considerations to sustain the longevity of a wearable device with embedded sensors.   

 

6.9 Environmental Impact: 

As mentioned in the previous section on sustainability, the most relevant aspect of sustainability 

and likewise the environmental impact of our system design is in the reusability of the woven 

glove with embedded sensors.  Disposable latex or nitrile gloves were used in the beginning 

stages of our testing, but we eventually moved to a reusable dexterous glove.  In doing so, we 

have limited the environmental impact of our system by ensuring that all of the components can 

be used for long durations, over a large number of tests without needing replacement. 
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Appendices 

Appendix 1: Arduino Code 

Calibration Code: 
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Data Acquisition Code: 
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Appendix 2: Processing Code 

Processing Code for Data Acquisition 
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Appendix 3: MATLAB Code 

Data Optimization -- Lines 411-430 

Motion Classification -- Lines 334-390 
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Appendix 4: Fuzzy Logic Designer Code 

System Setup 

 

Defining Membership Functions for Inputs and Outputs 
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Establishing Rules for the Fuzzy Logic System 
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Appendix 5: Circuit Diagrams 

 

Accelerometer Circuitry Schematic 

 

Flex Sensor Circuitry Schematic 
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Appendix 6: Component Data Sheets 

Accelerometer Data Sheets 
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Flex Sensor Data Sheets 
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Appendix 7: Procedure for Ecoflex Glove 

 

Materials: CAD file for 3D hand, SD card, ABS, Prusa i3 MK3 3D printer, sandpaper, acetone, 

Ecoflex compound 1A(yellow) and 1B(blue), short flex sensor, two male to female jumper 

wires(black and red), electrical tape, Elmer’s glue stick, small x inch plastic cup, scale, x(brand 

of mixer) mixer, scalpel.  

 

3D hand: 

1. CAD files for a human left hand downloaded from website: 

https://grabcad.com/library/human-hand-1  

2. Download CAD files onto a USB drive 

3. Load hand.stl to Ultimaker Cura software 

4. Adjust height to x cm and density to 20% 

5. Export file to an SD card 

6. Insert SD card into the Prusa 3D printer 

7. Verify that there is enough ABS in spool  

8. Power on Prusa 

9. Start print using the selection wheel  

10. Once print is complete, remove 3D hand from platform 

11. Remove printer debris and smoothen using sandpaper and acetone  

 

Flex Sensor:  

1. Attach one black jumper wire and one red jumper wire to flex sensor 

2. Use electrical tape to secure jumper wires to flex sensor 

 

 

 

 

 

 

 

https://grabcad.com/library/human-hand-1
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Ecoflex Glove:  

1. Place a plastic x in. cup on scale and press the tare button 

2. Using a 1A:1B mix ratio, add 25g of mixture A(yellow container) into plastic x in. cup  

3. Add 25g of B(blue container) into the same plastic cup 

4. Adjust x mixer setting to 90g 

a. Need to adjust to 90g because weight of cup holder is 40g 

5. Start mixer 

6. Place aluminum on surface of work area  

7. Place 3D hand in the center of the aluminum foil  

8. Once Ecoflex has finished mixing, evenly pour the viscous liquid onto 3D hand 

9. Allow Ecoflex to dry for 20 minutes 

10. Repeats steps 2-5 

11. Pour second layer 

12. Allow Ecoflex to dry for 20 minutes 

13. Repeat steps 2-5 

14. Coat bottom of flex sensor and wires with Elmer’s glue stick and place sensors on the 

index finger and wires along the top of the Ecoflex covered 3D hand 

15. Pour third layer 

16. Allow Ecoflex to dry for 20 minutes 

17. Repeats steps 2-5 

18. Pour fourth layer 

19. Allow Ecoflex to dry for 20 minutes 

20. Using scalpel, cut off extra Ecoflex that is at the at the base of the 3D hand  
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