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Abstract

Hand-based interface is promising for realizing intuitive, natural and

accurate human machine interaction (HMI), as the human hand is main

source of dexterity in our daily activities. For this, the thesis begins

with the human perception study on the detection threshold of visuo-

proprioceptive conflict (i.e., allowable tracking error) with or without cu-

tantoues haptic feedback, and suggests tracking error specification for re-

alistic and fluidic hand-based HMI. The thesis then proceeds to propose

a novel wearable hand tracking module, which, to be compatible with

the cutaneous haptic devices spewing magnetic noise, opportunistically

employ heterogeneous sensors (IMU/compass module and soft sensor) re-

flecting the anatomical properties of human hand, which is suitable for

specific application (i.e., finger-based interaction with finger-tip haptic

devices). This hand tracking module however loses its tracking when in-

teracting with, or being nearby, electrical machines or ferromagnetic ma-

terials. For this, the thesis presents its main contribution, a novel visual-

inertial skeleton tracking (VIST) framework, that can provide accurate

and robust hand (and finger) motion tracking even for many challeng-

ing real-world scenarios and environments, for which the state-of-the-

i



art technologies are known to fail due to their respective fundamental

limitations (e.g., severe occlusions for tracking purely with vision sen-

sors; electromagnetic interference for tracking purely with IMUs (inertial

measurement units) and compasses; and mechanical contacts for track-

ing purely with soft sensors). The proposed VIST framework comprises a

sensor glove with multiple IMUs and passive visual markers as well as a

head-mounted stereo camera; and a tightly-coupled filtering-based visual-

inertial fusion algorithm to estimate the hand/finger motion and auto-

calibrate hand/glove-related kinematic parameters simultaneously while

taking into account the hand anatomical constraints. The VIST frame-

work exhibits good tracking accuracy and robustness, affordable material

cost, light hardware and software weights, and ruggedness/durability even

to permit washing. Quantitative and qualitative experiments are also per-

formed to validate the advantages and properties of our VIST framework,

thereby, clearly demonstrating its potential for real-world applications.

Keywords: Human motion tracking, tightly-coupled sensor fusion, ex-

tended Kalman filtering, correspondence search, IMU, com-

puter vision, human-computer interaction, human-robot in-

teraction, virtual reality, augmented reality, haptic feedback
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Chapter 1

Introduction

1.1. Motivation

Dexterous use of hands (with fingers) is the defining characteris-

tics of human beings. Integrating the hand would then drastically im-

prove efficiency, intuitiveness and richness of many real-world human

machine (computer/robot) interaction (HMI) applications, including: 1)

VR (virtual reality) and AR (augmented reality), where using the hand

would provide substantially richer and real-life like experience as com-

pared to the currently dominating 6-DOF “fist-based” interface or finger-

tip/gesture-based interfaces; and 2) robotic-hand haptic teleoperation

(Fig. 1.1A), particularly that of anthropomorphic robotic hands ((Bimbo

et al. 2017)), where a remote user can fully utilize their hand and fingers

with some haptic feedback for complex manipulation tasks, instead of re-

lying on (typically only up to 6-DOF (degree-of-freedom)) conventional

haptic devices (Tobergte et al. 2011); 3) collaborative robot interaction

(Fig. 1.1B), where a user can quickly and intuitively provide rich com-

mands and cues to the robot using their hand and fingers, thereby, can

1



Figure 1.1. (A) Robotic hand teleoperation: a remote user can utilize their

hand/fingers with haptic feedback for manipulation tasks of the humanoid

hand (courtesy of DYROS, SNU). (B) Collaborative robot interaction: the

robotic-arm assists in assembly task by delivering a necessary tool based on

gesture recognition. (C) 3D swarm drone interface: users can efficiently control

the complex formation of swarm or define virtual walls to dangerous regions.
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make the interaction much safer and more fluidic as compared to the case

of conventional pendant programming; and 4) 3D (three-dimensional)

drone swarm control (Fig. 1.1C), where a field user can efficiently control

the complex 3D swarm behavior by simply nudging their formation or

quickly defining 3D virtual walls to avoid dangerous regions, all difficult

when relying on conventional 2D tablet interface.

One of the key prerequisites to fully integrate this human hand into

real-world engineering applications is to track the pose and configura-

tion of the hands (with their fingers), accurately, robustly and affordably,

which is still far from being materialized, since: 1) the human hand is

of relatively a small size (i.e., requiring sub-centimeter level accuracy)

with the five fingers, each exhibiting a complex and high-DOF (degree-

of-freedom) motion by itself (e.g., thumb), so that the hand configuration

cannot be completely determined only by a small number of perspective

planes (e.g., cameras) while excluding their self-occlusion; 2) the human

hand is supposed to interact with diverse objects, directly or indirectly

related to the application (e.g., receiving a cell phone during gaming,

tools for smart factory) in an environment, that may be dynamic (e.g.,

ambient lighting during day and night) and cluttered with possibly ad-

versarial objects (e.g., multitude of colorful objects, tablets or machines

interfering magnetic field); and 3) the human hand is all different (i.e.,

different size, shape, color, mechanical property, etc.) and how to use it

even for the same application is also in general all different among users,

making it very difficult to robustly anticipate its motion via interpolation

or learning.

Numerous results have been proposed for this problem, and they

may be categorized into the following three approaches, each, yet, with
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their respective fundamental limitations; occlusion (vision-based track-

ing), magnetic-interference (IMU-based tracking), and mechanical con-

tact (soft wearable tracking), which will be explained more in the next

section. Therefore, the main purpose of this thesis is to develop a novel

hand tracking system, which overcomes every issue of existing systems

and provides accurate and robust tracking results suitable for every real-

world application. Before the development of the novel hand tracking sys-

tem, the allowable error of hand tracking system is clarified in this thesis

via human subject studies, which would be a crucial design specification

for every hand tracking system. In addition, as shown in many studies

about hand tracking, realistic cutaneous haptic feedback is desirable for

finger-based interaction in terms of user experience (realness or prefer-

ence), fatigue, or task performance (accuracy and completion time). The

problems of current hand tracking methods for integration with the cu-

taneous haptic devices are that the devices normally raise issues of visual

distortion (vision-based systems), magnetic-interference from embedded

magnets and operating current (IMU-based system), or contact from the

device (soft wearable system), which leads to the unstable tracking perfor-

mance of existing methods. Thus a novel wearable hand tracking frame-

work compatible with the wearable cutaneous haptic devices is developed

in this thesis utilizing soft and IMU/compass sensors opportunistically.

Expending the above hand tracking result, which is limited for the us-

age of haptic devices, thus, lose its generality for every fundamental issue

of real-world scenarios, we propose a novel visual-inertial sensor fusion

framework, which is accurate, robust, and affordable, thus, suitable for

many real-world engineering applications in daily life.
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1.2. Related Work

• Visual-proprioceptive conflict of hand tracking

The imperfection of proprioceptive sense of humans is revealed in

(Van Beers et al. 1998), which implies that the functioning of a

finger-tracking system would still be proper if its tracking error can

be made below a certain detection threshold of visual-proprioceptive

conflict of users (Welch & Foxlin 2002). Several results have been

proposed on the visual-proprioceptive conflict: static orientation er-

ror (Madsen & Stenholt 2014), effect of latency and noise (Liv-

ingston & Ai 2008), and drift angle of the arm (Burns et al. 2005)

in virtual or mixed reality. It was shown in (Holmes & Spence

2005) that the position perception of the human is determined by a

weighted sum of visual, proprioceptive, and other senses, implying

that the haptic feedback would be able to affect the perception of

finger-tracking error as also aimed for in this thesis. This interplays

between haptic and other senses are also studied: the role of haptic

and visual senses in curvature perception (Drewing & Ernst 2006),

pseudo-haptic effects by modifying visual cues (Jang & Lee 2014),

and the effect of matching visual cues with haptic cues on mod-

ifying felt position of subjects (Folegatti et al. 2009). Yet, to our

knowledge, quantitative (e.g., detection threshold) analysis of the

visual-proprioceptive conflict for complex 3D spatial motion and,

further, quantitative analysis of the effect of haptic feedback on

the visual-proprioceptive conflict threshold has not been explored

before.

• Vision-based hand tracking
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Vision-based hand tracking typically utilize a RGB (red-green-blue),

stereo, or RGB-D (depth) camera to estimate the hand pose and

configuration (e.g., (Zhang et al. 2019a; Mueller et al. 2018; Iqbal

et al. 2018; Moon et al. 2018; Zimmermann & Brox 2017)). They

reconstruct the configuration of hand even in a marker-less fash-

ion while exploiting the recently-burgeoning machine learning tech-

niques (e.g., convolution neural network (CNN)), thus, also show the

improved tracking results (Zimmermann & Brox 2017; Iqbal et al.

2018; Moon et al. 2018) than classical vision-based hand tracking

(Oikonomidis et al. 2011; Tompson et al. 2014). In addition, the

study (Moon et al. 2018) design a novel 3D network structure for

the voxelized data from the RGB-D sensor data, which provides

improved tracking results than other RGB-D-based systems. To

address the generalization issues of machine learning, the gener-

ative adversarial network (GAN) is used recently for hand tracking

(Mueller et al. 2018), which augment the training dataset utilizing

an artificial hand avatar. For more generality, creations of a vast

data set of hand images, which is difficult due to the accurate an-

notations of many joints, are also studied using multi-cameras or

electro-magnetic trackers (Hampali et al. 2020; Sridhar et al. 2016;

Yuan et al. 2017). However, vision-based hand tracking still cannot

circumvent the fundamental issue of occlusion (e.g., error drasti-

cally increased with some parts of hands in self-occlusion or outside

camera FOV (field-of-view)) (Moon et al. 2018; Mueller et al. 2017).

Moreover, the machine learning techniques are well-known for the

issues of generalization (e.g., large error or even diverging possible

for hand size/posture with objects outside the training set), which
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is also addressed in the recent hand tracking challenge (Armagan

et al. 2020).

• Soft wearable hand tracking

Soft wearable hand tracking employ a multitude of soft sensors,

each producing signal according to their deformation, which are

wrapped around the hand to estimate the hand and finger con-

figuration (e.g., (Glauser et al. 2019; Park et al. 2017; Kim et al.

2016; Muth et al. 2014; Chossat et al. 2015)). Flexion/extension of

the finger joints can be measured via stretchable soft sensors em-

bedded on them (Chossat et al. 2015; Muth et al. 2014). The multi-

DOFs joints (e.g., abduction/adduction of carpometacarpal (CMC)

or metacarpophalangeal (MCP)) are also estimated by fabricating

sophisticatedly sensor structure using conductive liquid metal ma-

terials. Optimal placement method of soft sensors is suggested (Kim

et al. 2016) to estimate CMC joint and a deep network which uti-

lizes the spatial structure of the sensor placement and per-user cal-

ibration method is proposed in (Glauser et al. 2019). However, all

soft wearable hand tracking, which only measures the relative mo-

tions of adjacent joints, require with some extra exocentric sensor

(e.g., camera) to measure their pose in the 3D space (Glauser et al.

2019). They also suffers from its inability to distinguish the motion-

induced deformation from that induced by the contact, making it

unsuitable for such applications as smart factory (with tool-holding)

and prosthesis (with daily-life objects), which leads to the difficulty

of calibration (due to the complex coupling among the soft sen-

sors) and the limited ruggedness (e.g., permanent offset from large
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bending, squashing, or washing) (Lee et al. 2019).

• IMU1-based wearable hand tracking

IMU-based hand tracking typically utilize IMU/compass modules,

which are attached to every target link of the hand (e.g., (Lee et al.

2019; Baldi et al. 2017; Santaera et al. 2015; Kortier et al. 2014; Miz-

era et al. 2019)), to measure their 3-DOF (absolute) orientation. The

nonlinear complementary filter (Mahony et al. 2008; Hrabia et al.

2013) or extended kalman filter (Kortier et al. 2014) are mostly uti-

lized for estimating each segment rotation. Erroneous disturbances

such as linear acceleration or magnetic distortion is compensated

by the proposed filter (Lee et al. 2012; Roetenberg et al. 2005). To

track the angles of 1-DOF joints (distal/intermediate joints), soft

sensors are together utilized, which can estimate 1-DOF motion in

simple structure (Lee et al. 2019; Mizera et al. 2019). This wear-

able tracking system is applied to real-world applications such as

haptic interaction (Baldi et al. 2017; Lee et al. 2019). However, due

to the drift of IMU, the wrist position cannot be estimated, which

requires some additional sensor added to refurnish its pose informa-

tion. However, IMU-based hand tracking is particularly susceptible

to a change or interference of magnetic field, as it directly baffles

the magnetometer (Roetenberg et al. 2005; Lee et al. 2019), thus,

impossible to use when near or in contact with ferromagnetic ob-

jects or magnetism-spewing machines (e.g., steel wall, powered tool,

1IMU (inertial measurement unit) typically refers to a combination of a 3-axis ac-

celerometer and a 3-axis gyroscope. In this thesis, we however use this term, IMU, to

refer to a combination of a 6-axis IMU and a 3-axis magnetometer, since, for the hand

tracking, this 9-axis IMU sensor configuration is almost always adopted.
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cell phone, table, laptop).

• Hand tracking compatible with fingertip haptic device

On top of the finger/hand tracking, haptic feedback is also impera-

tive for immersive VR experiences. For this, cutaneous haptic feed-

back (with skin deformation) has received wide attention for wear-

able finger-based haptics for its portability, small form-factor and

affordability as compared to kinesthetic haptic feedback (Kuchen-

becker et al. 2008; Chinello et al. 2015, 2017), and its ability to

supplement or even substitute the kinesthetic feedback (which is

not suitable for wearable finger-based interaction) is studied (Prat-

tichizzo et al. 2012a; Jang & Lee 2014; Quek et al. 2015). Various

finger-tip cutaneous haptic devices have been proposed (e.g., (Mi-

namizawa et al. 2007; Prattichizzo et al. 2010a; Meli et al. 2013;

Leonardis et al. 2015; Schorr & Okamura 2017)). A two-DOF band-

driven cutaneous device is proposed in (Minamizawa et al. 2007),

and later adopted in (Prattichizzo et al. 2010a) and extended to

a three-DOF wire-driven module (Meli et al. 2013). The work of

(Meli et al. 2013) attach three FSR sensors on a contact plate and

use their readings. Combining hand tracking modules with these

cutaneous haptic devices has been researched to build a novel intu-

itive/dexterous/realistic interface for human machine interaction.

The IMU/compass modules are attached on each segment of fin-

gers and 1-DOF voice coil motors are employed on the fingertips

(Baldi et al. 2015, 2017), with utilizing the simple structure of voice

coil motors. However, the motors, which leads to the magnetic-

interference to the compass, simply exerts 1-DOF force, which can-
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not deliver shear force. The work of (Weber et al. 2016) or MANUS

VR glove provides finger tracking and haptic feedback simultane-

ously with IMUs and soft sensor adopted. However, the device of

(Weber et al. 2016) utilizes only a single IMU on the dorsum of the

hand and a single soft sensor for each finger, thus, not able to fully

track large-DOF complex finger motions, and deliver only single-

DOF vibrotactile feedback on the finger-tip, too simple to capture

most of real-life finger/hand interactions. Vision-based hand track-

ing systems are also used to estimate hand motions with cutaneous

haptic devices, several attempts have been made to integrate the

RGB-D sensors or fiducial markers to wearable finger-based hap-

tic systems (Frati & Prattichizzo 2011; Scheggi et al. 2015; Maisto

et al. 2017), which also fundamental issues of occlusions from haptic

devices.

• Vision-inertial sensor fusion for hand/skeleton tracking

The sensor fusion of vision and inertial sensor are widely studied

in robotics, which can be classified into the two categories, accu-

rate/robust but complex tightly-coupled (TC) fusion (Shen et al.

2013; Hesch et al. 2014) and simpler but less accurate/robust loosely-

coupled (LC) fusion (Weiss 2012; Forster et al. 2016), and applied

for mapping/localization of robots such as unmanned ground vehi-

cles (UGV) (Zhang et al. 2019b; Chen et al. 2019) or drones (Lynen

et al. 2013; Faessler et al. 2016). The LC-fusion approach (e.g., only

IMU drift correction, or just add two separate information (Chan

et al. 2018)). The study (Bleser et al. 2011) uses 2 IMUs for each arm

with a chest camera-IMU module, which detect the wrists by a blob
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with different colors (red/green) to correct the drift of the IMU. It

use vision to overcome the magnetic disturbance, yet, not directly

applicable to the problem of hand/finger tracking with many anony-

mous markers. The study in (Chan et al. 2018), which is not really

tracking but hand gesture recognition using RGB-D camera aided

with the IMU information. The AR marker is also utilized for sensor

fusion (Trindade et al. 2012), but just a rigid-body (i.e, palm) not

skeletal tracking of hand, thus, not applicable to the hand/finger

tracking, and (Zhou et al. 2013) also has similar a rigid-body track-

ing only for trajectory tracking, utilizing single camera rather than

AR marker. Extending the area from human hand to upper limb,

(Tao et al. 2007) utilize single skeleton tracking (upper limb) with

multiple IMUs and a single marker at the wrist in a loosely-coupled

manner, since correspondence search not that challenging only for

a single visual marker. In the study (Mallat et al. 2020), three AR-

marker/IMU modules are used to track the motion of human upper

limb motion, where the correspondence search can be easily done

by AR-marker, whose size is too large to be applicable to the case of

hand/finger tracking (with very high-resolution camera, the track-

ing rate would be much slower). In terms of whole-body tracking,

the visual-inertial sensor fusion is studied in (Li et al. 2019) where 6

VIVE (optical) trackers and 17 non-axis IMU sensors are used where

the optical trackers are mainly used to correct the drift of the IMU

sensors, VIVE trackers, yet, not applicable to the hand tracking,

which requires many small anonymous trackers within the small

human hand. In summary, all the approaches of skeletal tracking

rely only on the LC approach (e.g., just add two separate informa-
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tion) rather than TC-fusion, since this LC-fusion suffices for them

due to small number of tagged markers (e.g., AR markers (Mallat

et al. 2020), VIVE trackers (Li et al. 2019), distinguishable color

markers (Bleser et al. 2011; Tao et al. 2007)) are utilized. However,

to robustly/accurately track all large-DOF motions of small-size

hands without problematic compass, correspondence search of many

anonymous marker is required, which necessitate TC approach for

visual-inertial sensor fusion in hand tracking problem.

1.3. Contribution

We begins this thesis with the research about the detection (absolute)

threshold (Colman 2015) of the visual-proprioceptive conflict when per-

forming finger-based operation in the chapter 2 This detection threshold

is important for developing hand tracking system, since human would

perceive the tracking error mainly depending on this as mentioned in the

section 1.2. We also study about the effect of cutaneous haptic feedback

to the detection threshold. To our knowledge, quantitative analysis of

the visual-proprioceptive conflict for hand tracking system has not been

explored, thus, we firstly identify the quantitative detection threshold

(5.11cm) and realistic haptic device can alleviate the human perception

of tracking error (6.05cm) by human subject study in the chapter, which

would be one of crucial design specifications for every hand tracking sys-

tem which currently exists or will be developed in the future.

In the chapter 3, we then propose a wearable finger tracking module,

which overcomes issues of existing hand tracking systems when integrat-

ing with wearable cutaneous haptic devices. Concept of integrating hand

tracking module with these cutaneous haptic devices would be promising,
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yet, the problem is that the integration normally generate issues of visual

distortion (vision-based systems) or magnetic-interference from embed-

ded magnets and operating current (IMU/compass wearable systems),

which cannot be stably tracking by mentioned existing methods. Thus,

we develop a novel hand tracking module, which optimally employ the

heterogeneous sensors (IMU/compass and soft sensors) with taking into

account the anatomical properties of human hand and magnetic disturbed

range from attachment of the cutaneous haptic devices. A novel wearable

cutaneous haptic interface is constructed via successful integration, and

the validity and efficacy of the proposed finger tracking module is verified

through a real VR manipulation task (i.e., peg-in-hole task).

At last, improving the above hand tracking modules, which partially

solves issues of hand tracking specifically in case of wearing haptic de-

vices, we finally develop a novel visual-inertial hand tracking framework

(Fig. 1.2), which would not lose its generality for every fundamental is-

sues of real-world scenarios in the chapter 4. One of the key contributions

of our framework is that the sensor fusion of visual and inertial sensors

in a TC-manner (coexistence of visual-to-inertial (e.g., IMU drift cor-

rection) and inertial-to-visual (e.g., IMU-aided correspondence search in

section 4.4) which can address the peculiarity of hand tracking, that is,

a number of segments by utilizing numerous passive markers. To pro-

vide rich information of the high-DOFs hand motions without compass

while packed in a small form-factor of hand, we attach a large number of

anonymous/passive markers on a wearable sensor glove. Then, the corre-

spondence search of many anonymous markers even with occlusion cases

becomes is very challenging, thus we develop the TC-fusion based sensor

fusion framework in this thesis. To our knowledge, our VIST framework
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Figure 1.2. (A) Overview of hardware setup: the sensor glove (green) with two

layers of the IMUs and visual markers and the stereo camera (blue). (B) Prin-

ciple of our algorithm utilizing complementary aspects of the visual and inertial

sensors. (C) Robustness of our system compared to conventional hand tracking

systems (a vision-based tracking system (Zhang et al. 2019a) and a wearable

tracking system (Lee et al. 2019)) under challenging scenarios: (Left) Handshak-

ing with another person outdoors, which causes severe occlusion and sunlight

interference to external IR sensor employed from many wearable tracking sys-

tems. (Right) Manipulating an electronic device, which causes severe occlusion

and magnetic interference by embedded magnets or ferromagnetic materials.
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is the very first result, that brings in the TC-fusion into the hand track-

ing, thereby, achieving the unprecedentedly accurate and robust tracking

performance as reported in this thesis.

Some of important advantages and properties of our VIST framework,

which will be described and verified in this thesis, can be summarized as

follows:

• superior tracking accuracy due to the TC visual-inertial fusion as

compared to other state-of-the-art approaches;

• robustness against occlusions, visually complex/changing environ-

ments and ambient lighting;

• robustness against electromagnetic interference, mechanical con-

tacts, object manipulation and wearing devices;

• use convenience with the real-time/auto-calibration of anatomical/glove

kinematic parameters integrated into the VIST algorithm; and

• ruggedness (e.g., washable by hand), affordability (e.g., total mate-

rial cost ≈ $100) and wearability (e.g., light weight (52–55 g)).

Our VIST framework may also be used to collect human data for the de-

velopment of reinforcement learning (learning-by-demonstration) strategy

for robotic object manipulation (Andrychowicz et al. 2020); or as a track-

ing module for the feedback-control of soft robotic hand prostheses (Kang

et al. 2019; Kim et al. 2019). Our VIST framework can further be used for

robotic systems with limbs, for which typical proprioceptive sensors are

impossible to deploy (e.g., very thin tendon-driven robot with frequent

impact, soft multi-legged robots with whole-body contact, etc.).

15



Chapter 2

Detection Threshold of Hand Tracking

Error

2.1. Motivation

One of the key challenges for intuitive/dexterous finger-based interac-

tion is how to track the pose of the fingers, which is in fact relevant to all

the finger-based user interfaces in the area of general human-computer

interaction (Pavlovic et al. 1997). Tremendous types of sensors and al-

gorithms are employed and researched for hand/finger motion tracking.

The problem is, regardless of which finger-tracking techniques are used,

it is in general impossible to completely eliminate the tracking error due

to the imperfection of sensor and algorithm. We describe the sources of

tracking error of major currently-available finger tracking systems in the

following paragraphs as more detailed description about them than the

introduction.

Fundamentally, the vision-based methods suffer from the occlusion

problem, i.e., the ray behind objects cannot reach the camera lens. Espe-

cially, since hand has dexterous finger motion with large Degree of free-
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doms (DOFs) in small space, a segment of hand is frequently occluded

by others, which is referred to as self-occlusion. While tracking the self-

occluded segment has been longstanding issues due to the absence of vi-

sual information for the occluded parts (Mueller et al. 2018; Zimmermann

& Brox 2017; Sridhar et al. 2015), even state-of-the-art methods (Moon

et al. 2018) show high tracking error on the occluded joints. Another oc-

clusion problem would occur when some parts of hand is outside the field

of view (FOV) of camera. The pose of the unobserved segments surely can-

not be estimated, worse, simply recognizing human hand would become

impossible since most of machine-learning-based methods assume entire

silhouette of hand is observed. Given the fact that most of commercial

cameras have fairly limited FOV, this outside the FOV issue inevitably

restricts the range of hand motion, which can substantially degrade user

experience of hand tracking system in practical usage. Moreover, vision-

sensor has inferior performance in terms of sampling rate than IMU or

soft sensors. Slower update-rate (normally up to 30 Hz) relative to hand

motions also cause delayed estimation result or motion blur images. The

resolution of vision sensor also cause the inevitable error for tracking al-

gorithm.

Compared to this sensor, IMU-based wearable systems has higher

frame rate (with some proper sensor fusion), immunity to the issue of oc-

clusion (i.e., free from the line-of-sight requirement). The unmodeled sig-

nal/perturbation to acceleration/magnetometer measurement (e.g., linear

acceleration and external magnetic distortion) substantially distort the

hand tracking result as well. Moreover, the principle of IMU measuring

the inertial properties of the attached rigid body (i.e., linear acceleration

and angular velocity) inevitably include drift error from accumulation of
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sensor noise and bias. The IMU-based wearable system estimates the ro-

tation of each joint firstly, then reconstructs the position of each joint by

foward-kinematics. Thus, the erroneous link length of all segments also

bring about accumulative error especially for the distal joints (i.e., the

positions of finger-tips).

For the soft wearable hand tracking systems, the reconstruction of

joint angle is normally estimated from the linear regression with the cali-

brated coefficients (e.g., θ = k1α+k2 where α and θ is raw soft sensor data

and estimated joint angle respectively), thus the miscalibrated parameters

lead to large tracking error. Moreover, since soft sensor is susceptible to

unmodeled contact causing the deformation of the sensor, the aforemen-

tioned issues of the vision-based systems in manipulating other objects

(e.g., grasping a bottle or equipping wearable devices) still exists.

Despite of these inevitable error of all tracking systems, fortunately,

we human cannot precisely perceive the tracking error. Particularly for

the VR applications with HMD (head-mounted display), where the users

can only see the virtual world with the real world visual information

completely blocked by the HMD, human only can perceive the true posi-

tions/configurations of their hand by proprioception. Since human propri-

oceptive perception is not perfect (Van Beers et al. 1998), this implies that

a finger-tracking system would still be adequate if we can make its track-

ing error less than a certain detection threshold of visual-proprioceptive

conflict of the users (Welch & Foxlin 2002).

Moreover, the effect of haptic feedback for finger-based interaction is

also studied in this chapter. Since the improvements of not only task-

performance, but also user experience by modifying the user perception

are verified in many researches. We study particularly study the effect
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of cutaneous haptic feedback (i.e., utilizes motor actuation to provide

contact feedback onto human finger-tip.) for perception of finger-based

tracking error, which, we think, is most adequate form of haptic feedback

for finger-based interaction. There have been researches (Kuchenbecker

et al. 2008; Solazzi et al. 2010; Prattichizzo et al. 2010b) developed var-

ious designs of cutaneous haptic device to offer more realistic cutaneous

sensation. This cutaneous haptic system is more promising for the con-

sumer market as compared to, e.g., finger-based exo-skeleton haptic sys-

tems (e.g., (Fontana et al. 2013; Frisoli et al. 2005)), which are in general

technically difficult to construct, and, therefore, usually too expensive to

be commercially-viable. It has also been reported that, even with the ab-

sence of kinesthetic feedback, the cutaneous haptic feedback alone can

often provide adequate haptic sensation for virtual manipulation, partic-

ularly when the magnitude of the required force feedback is not so large

(Prattichizzo et al. 2012b; Jang & Lee 2014). Since human propriocep-

tive perception is not perfect (Van Beers et al. 1998), this implies that a

finger-tracking system would still be adequate if we can make its track-

ing error less than a certain detection threshold of visual-proprioceptive

conflict of the users (Welch & Foxlin 2002).

The goal of the study in this chapter is to answer the following

two questions related to this visual-proprioceptive conflict for the wear-

able finger-based interaction (and with cutaneous haptics) via suitably-

designed human subject psychophysics study: 1) what is the detection

(absolute) threshold (Colman 2015) of the visual-proprioceptive conflict

when performing finger-based operation in VR (or tolerable error between

the real position of the finger (as proprioceptively perceived by the users)

and its visual presence in the VR scene); and 2) if this detection threshold
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can be enlarged when cutaneous haptic feedback is used (i.e., cutaneous

haptic feedback makes the visual presence of the finger more convincing,

thereby, allowing for larger finger tracking error). Several results have

been proposed on the visual-proprioceptive conflict, e.g.: static orienta-

tion error (Madsen & Stenholt 2014), latency and noise effect (Livingston

& Ai 2008), and arm drive angle in virtual or mixed reality (Burns et al.

2005). It was also shown in (Holmes & Spence 2005) that the position

perception of the human is determined by a weighted sum of visual, pro-

prioceptive and other senses, suggesting that the haptic feedback can in-

deed affect the perception of finger-tracking error as also to be established

in the current thesis. Similarly, the interplay between the haptic feedback

and other sensory stimuli was also studied, e.g.: the role of haptic and

vision in curvature perception (Drewing & Ernst 2006), pseudo-haptics

by modifying visual cues (Jang & Lee 2014) and the effect of matching

visual cues with haptic cues on position perception (Folegatti et al. 2009).

Yet, to our knowledge, quantitative analysis of the visual-proprioceptive

conflict for complex spatial motion and, further, quantitative analysis of

the effect of haptic feedback on the visual-proprioceptive conflict has not

been explored. In summary, we firstly identify the quantitative detection

threshold and the role of haptic feedback on this conflict by means of

human subject study in this chapter.

2.2. Experimental Environment

To perform human subject study of the visual-proprioceptive conflict

and the effect of cutaneous haptic feedback, we utilize the experimen-

tal setup as shown in Fig. 2.1, which consists of motion capture system

(MOCAP), HMD, and wearable cutaneous haptic feedback device on the
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Figure 2.1. Experimental setup to study visual-proprioceptive conflict with

cutaneous haptic feedback : human subjects wear cutaneous haptic device on

their index finger and HMD, with their motions measured by motion capture

system.

subject’s index finger, each of them now detailed below.

2.2.1. Hardware Setup

In order to measure the motions of the human head and finger, we use

VICONr MOCAP system, which provides the position and orientation

of a set of reflective markers by using multiple IR cameras with 200Hz

sampling rate and sub-millimeter spatial resolution. We attach a set of

markers on the HMD to measure its pose (i.e., position and orientation).

We also attach one marker as close as possible to the subject’s finger-tip

on the cutaneous haptic device to measure the finger-tip location.

All the experiments in this thesis are executed in the VR setting, i.e.,

all the visual information of the real world is completely blocked from the

subjects. This is particularly crucial, because real visible hand will directly

inform the subjects where their finger-tip is. To show only the virtual

environment while also providing 3D immersive virtual visual information
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Figure 2.2. Cutaneous haptic feedback device (Jang & Lee 2014): normal force

produced by rotating the two motors in opposite directions, while the shear force

in the same direction.

generated for our experimental purpose, we adopt Oculus Riftr HMD,

which provides 3-D vision with 1200× 800 (640× 800per eye) resolution

and 90 degree field of view, which is one the widest among commercial

HMDs.

For generating haptic feedback on the user’s finger-tip, we utilize a

cutaneous haptic feedback device as shown in Fig. 2.2, which was first pro-

posed in (Minamizawa et al. 2007) and later adopted in many researches

(e.g., (Prattichizzo et al. 2010b; Jang & Lee 2014)). Our cutaneous haptic

device has two motors (Maxon DCX motor, φ = 10mm, 3W, 16:1 gear

ratio) with encoder providing the control axis with the resolution of 1024

count/rev. The motors are connected to a desktop PC via US Digitalr

USB4 DAQ board and Arduinor board, with the sampling rate of about

1kHz. The rubber block attached between the finger-tip and the band is

manipulated by the motors. We can then transmit normal or shear force

by controlling the two motors to their respective designated angles - see

Fig. 2.2.
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2.2.2. Virtual Environment Rendering

The virtual environment for our experiments is constructed using the

above equipments and OpenGLr. In the virtual environment, the virtual

sphere, which represents the position of the index finger-tip is shown

to the subjects by measuring the relative position of the HMD and the

finger-tip by using the MOCAP system. The subjects are noticed that the

marker on the cutaneous haptic device will represent their finger-tip, thus,

they should consider this marker as their finger-tip position throughout

all the experiments. The radius of this finger-tip sphere is set to 1cm

which is the same as the radius of the marker. During the experiments,

the human subjects can freely move their hands and head.

To generate the contact force with this finger-tip sphere, we create a

virtual half cylinder fixed in the virtual environment as the contact target

for task of following experiments as used in (Drewing & Ernst 2006). The

reason why we choose this cylindrical shape is that the contact force with

this shape can be fully implemented by combination of shear and normal

force which can be generated by our 2-DOF cutaneous haptic device. The

radius and height of the cylinder is set to be 25cm and 50cm respectively.

This size of the cylinder is chosen to accommodate the human motion

during the human subject study experiments in following sections. The

details of generating contact force will be explained in Sec. 2.4. See Fig.

2.3 for how the subjects see the virtual environment, the finger sphere

and the half cylinder in the HMD.

2.2.3. HMD Calibration

If we directly measure the pose of the real finger-tip w.r.t. the pose of

the real HMD by using the MOCAP system, and render it to the user via
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Figure 2.3. Virtual environment as seen from the HMD with the sphere of

user index finger-tip position and the half-cylinder for performing contact task.

the HMD in the HMD frame {H} as measured by using MOCAP system,

we find the rendered image appears often too close to the human eyes

than how it should appear in the real world. This we think is because

the graphics of the HMD, as perceived by the user, is not rendered w.r.t.

the physical HMD frame {H}, but rather w.r.t. another abstract frame,

which we denote by {G} and call it graphics rendering frame. See Fig.

2.4. In order to reduce this pose-difference between the HMD frame {H}

and the graphics rendering frame {G}, we perform the HMD calibration

as follows.

First, we assume that the main factors dictating the distortion of the

graphics rendering in the HMD is related to the translation and orienta-

tion of {G} w.r.t. {H} because of the kinematic discrepancy between the

HMD frame (i.e., randomly attached MOCAP markers) with the exact

graphic rendering frame. We can then relate the two frames {H} and

{G} by a rigid body transformation with the relative translation offset

pHG ∈ <3 and the relative rotation offset RHG ∈ SO(3) from G to H. Fur-

ther, if we denote by pcmd
f ∈ <3 the graphics rendering command of a
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point pf in the HMD, what we would have is:

RHG p
cmd
f + pHG = pHf (2.1)

where note that pcmd
f is applied to the spot where pGf should be, as, here,

again, we assume the graphics rendering reference frame is located at {G}

not {H} based on our observation.

Now, in order to estimate pHG and RHG , we perform the following

reaching-without-seeing task, which utilizes human proprioception as a

sensing mechanism. More precisely, we randomly generate a virtual sphere

at pcmd
f ∈ <3 and ask the subjects to move their finger-tip to this rendered

sphere as close as possible. During this task, only the virtual sphere is ren-

dered as a gray sphere, while the user finger-tip is not rendered (i.e., they

move their finger-tip only by relying on their proprioceptive perception).

This subject’s finger-tip position can then be measured by the MOCAP

system w.r.t. the physical HMD frame {H}, which can be written by

pHf ∈ <3.

We can then utilize (2.1) to identify pHG and RHG , since pcmd
f is the

known command and pHf is measured by the MOCAP system. In fact,

(2.1) reduces to a linear equation of pHG and RHG in this case. Thus, by

repeating this reaching-without-seeing task many times, we can produce

a data set of pcmd
f , pHf , and, using this data set and (2.1), we can estimate

RHG , p
H
G , thereby, completing the HMD calibration.

For this calibration and also throughout the following experiments,

we utilize the spherical coordinate system (r, θ, φ) as shown in Fig. 2.4.

The radius r, the azimuth θ and the elevation φ of the virtual sphere are

randomly chosen from the following ranges: θ, φ ∈ [−30◦, 30◦] and r ∈

[30, 50]cm. These ranges are chosen, as the majority of our experiments
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error 

Figure 2.4. HMD frame {H} and graphics rendering frame {G}: if graphics is

rendered w.r.t. {H} as defined by HMD manufacturer, in reality, it is rendered

w.r.t. abstract frame {G}. We also use spherical coordinate (r, θ, φ) attached at

{H} throughout this thesis.

(and other typical tasks in the VR with the HMD) is performed around

their corresponding regions. Five subjects participate in the calibration

task and take 100 trials each, making total 500 data points. We then use

the results in (Besl & McKay 1992) for obtaining the least square solution

of the rigid-body transformation.

2.3. Identifying the Detection Threshold of Tracking Error

The Experiment #1 is “Identifying the Detection Threshold of Track-

ing Error”, the purpose which is to measure the detection threshold of

the tracking error (i.e., visual-proprioceptive conflict) human can per-

ceive in the virtual environment while moving their finger without haptic

feedback. We measure this threshold by asking subjects to differentiate

the measured position of their finger-tip by using the MOCAP system

(i.e., true finger sphere) from the one intentionally perturbed with some

position error from the measured finger position (i.e., false finger sphere).
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2.3.1. Experimental Setup

Eight human subjects participate in the Experiment #1. They are all

male, from the age of 22 to 32, right-handed with no known perception

disorder and use their index finger of dominant hand for this experiment.

The virtual environment, displayed to participants through the HMD,

primarily consists of the the true and false finger spheres and the half

cylinder as mentioned in Sec. 2.2.2. The half cylinder is also rendered

horizontally with its center locating at (r, θ, φ) = (45cm, 0◦,−60◦) and

extending toward far from the subject. During the Experiment #1, the

cutaneous haptic device is turned off to exclude the effect of haptic feed-

back. In contrast, Experiment #2, detailed in Sec. 2.4, is performed with

this haptic feedback turned on, and, to minimize any bias stemming from

the order of these two experiments, we randomly alter between them for

each subject after the initial familiarization phase as explained below, re-

sulting in the 4 subjects starting with the Experiment #1 and the other

4 subjects with the Experiment #2.

2.3.2. Procedure

Before performing Experiment #1, the subjects are given enough time

to be familiar with the virtual environment to minimize learning effect

during the experiment (i.e., initial familiarization phase). They are able to

move their finger-tip freely in empty space or touch the cylinder with no

haptic feedback. They then proceed to Experiment #1, which consists of

the following three phases as illustrated in Fig. 2.5: adaptation phase,

blind phase and answer phase.

In the adaptation phase, the subjects are asked to swipe the surface

of the cylinder from side to side. This adaptation phase lasts for 5 seconds
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Figure 2.5. Experiment #1: (1) adaptation phase (left): subjects freely swipe

the surface of cylinder; (2) blind phase (middle): subjects move their finger

following yellow arrow with the virtual environment blacked out; (3) answer

phase (right): subjects answer which sphere corresponds to their real finger-tip

after the cylinder swiping task with true and false finger spheres.

to reaffirm the mapping between the visual cue in the virtual environment

and the proprioception in the real world of the subject, which is acquired

during the pre-experiment familiarization phase as stated above. During

this phase, the false finger sphere is not rendered.

In the blind phase, which lasts for 3 seconds, all the virtual envi-

ronment and the true finger sphere are blacked out. Instead, in the black

screen of the HMD, an arrow is rendered in a pre-defined position to in-

form the subject of one of the four directions - up, down, left and right.

See Fig. 2.4. This direction of the arrow is updated every 1 second based

on the location of the subject’s real finger-tip (not shown to them) in

such a way to minimize the distance from the center line of the HMD

screen (i.e., θ = φ = 0), but not strictly enforcing it, so that the sub-
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ject can start the next answer phase with their finger suitably positioned.

The main role of this blind phase is to separate the adaptation phase and

the answer phase by nullifying the subject’s perception of the true finger

sphere during the adaptation phase.

The virtual environment and the true finger sphere appear again in

the answer phase similar to the case of adaptation phase. However, in

the answer phase, the false finger sphere is also rendered, whose position

is defined by perturbing that of the true finger sphere with randomly

generated error. More precisely, we define a sphere, whose center is at that

of the true finger sphere and whose radius is randomly chosen from the

range from 1.5cm to 7.5cm with the interval of 1.5cm. This range is chosen

based on a pilot experiment, in which we found the detection threshold

would exist within this range. The center of the false finger sphere is then

(continuously) randomly generated on the surface of the sphere with this

randomly-chosen radius and centered at that of the true finger sphere -

see Fig. 2.5. The color of the true and false fingers is also chosen randomly

between blue and red for each trial of the experiment. Once this relative

vector of the false finger sphere is set from the true finger sphere, the

two spheres are rendered to move together under the subject motion

command, except when one (or both) of them makes contact with the

cylinder, during which the penetration of each of the spheres into the

cylinder is graphically removed (see also Fig. 2.7).

The human subjects are then asked to carry out the classical Two

Alternative Forced Choices (2AFC) with those two spheres, while moving

the spheres and making contact on the surface of the cylinder with them.

For each trial, the subjects are instructed to consider one of the two

spheres as if it is their real finger-tip and perform the swiping task. They
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Figure 2.6. Result of Experiment #1: mean and variance of the average rate of

each subject choosing the true finger sphere over the false finger sphere (fitted

by the psychometric curve).

are then asked to repeat this task while considering the other sphere

(with different color) as their real finger-tip position. After each trial of

this task, the subjects are asked to choose which finger sphere (i.e., blue

or red) represents the true position of their finger-tip. The subjects are

told to make their decision as soon as possible, but also told that making

a correct decision is more important. If they say they need more trials to

answer the question, we allow them to do so. For each subject, 8 trials

(or answers if the subject requested more trials) of the above 2AFC test

are performed with each of the 5 error steps between the true and false

finger spheres, resulting in the total 40 answers of 2AFC of each subject

for the Experiment #1.
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2.3.3. Experimental Result

The mean and variance of the average correct answer rate of each sub-

ject choosing the true finger sphere over the false finger sphere are plotted

by the blue markers and lines in Fig. 2.6. As expected, the rate of correct

answer of choosing the true finger sphere increases as the perturbation

error becomes large. The detection threshold of this visual-proprioceptive

conflict is then defined to be the value where the correct choice occurs

with the rate of 75% (Allin et al. 2002). To estimate the tracking error

corresponding to this detection threshold, we fit the obtained data to the

Weibull function (Wichmann & Hill 2001). We then obtain the detection

threshold value to be 5.11cm, when the operation takes place about 30cm

away from the subject’s eyes (i.e., w.r.t. {G} in Fig. 2.4).

2.4. Enlarging the Detection Threshold of Tracking Error

by Haptic Feedback

The Experiment #2 is “Enlarging the Detection Threshold of Track-

ing Error by Haptic Feedback”, the main objective of which is to quantita-

tively analyze the effect of the cutaneous haptic feedback on the detection

threshold of the visual-proprioceptive conflict as obtained in Experiment

#1 of Sec. 2.3.

2.4.1. Experimental Setup

The set of participants is the same between Experiment #1 and Ex-

periment #2. The order of Experiment #1 and #2 is counterbalanced.

The setting of the experiment is also the same as that of Experiment

#1 in Sec. 2.3, except that the cutaneous haptic feedback is activated.

To mitigate bias associated with the order of the trials with or without
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True False 

Figure 2.7. Haptic feedback generation for Experiment #2: (top) when the

sphere penetrates the cylinder (gray sphere), haptic feedback is generated using

the vertical distance from surface, whereas penetration removed from graphics

shown to human subjects (red sphere); (bottom) during the answer phase, sub-

ject perceives haptic feedback of the randomly-chosen sphere, not necessarily

same as true finger sphere as illustrated here.

the haptic feedback, we randomly select Experiment #1 and Experiment

#2 for each subject after the initial familiarization stage as explained in

Sec. 2.3.

2.4.2. Procedure

The same procedure as in Experiment #1 is used for Experiment #2,

except that the cutaneous haptic feedback is turned on during the adap-

tation phase (for the true finger sphere) and during the answer phase (for

the randomly-chosen true or false finger sphere). When the sphere makes

contact with the cylinder surface, the corresponding contact force is gen-

erated and conveyed to the subject as a combination of the normal and

shear forces as shown in Fig. 2.7. For this, we use the initial magnitude
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Figure 2.8. Result of Experiment #2: mean and variance of average rate of

each subject correctly identifying the true finger sphere with haptic feedback

either on true or false sphere.

force , when contact begins, as 0.45N and the stiffness K = 0.042N/cm

for the contact force generation, to simulate within the range of our hap-

tic device’s force generation capability. Since the human subjects do not

know where the haptic feedback is generated from, either from the true

or false finger sphere, we can investigate how the correct (i.e., randomly-

chosen sphere = true finger sphere) or false (i.e., randomly-chosen sphere

= false finger sphere) cutaneous haptic feedback affects the human detec-

tion threshold of the visual-proprioception conflict. The same number of

2AFC as for the Experiment #1 for each subject is also performed in this

Experiment #2. See also Fig. 2.7 for depiction of some haptic feedback

generation procedures for Experiment #2.
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2.4.3. Experimental Result

The results of Experiment #2 are shown in Fig. 2.8 with the curve in

Fig. 2.6 from Experiment #1 also shown there, where the x-axis is the

magnitude of perturbation error between the true and false finger spheres.

Then, we can see from Fig. 2.8 that, with the haptic feedback on the

true finger sphere, the rate of correctly identifying the true finger sphere

increases as compared to the case of no haptic feedback (i.e., middle

line in Fig. 2.8). On the other hand, with the haptic feedback on the

false sphere, the rate of correctly identifying the true sphere decreases as

compared to the case of no haptic feedback. We can further compute the

detection threshold for the cases of correct and false haptic feedback as

done for the Experiment #1 by fitting their data as shown by the top

and bottom curves in Fig. 2.8. For this, we use linear interpolation instead

of using Weibull function as done for the Experiment #1, since the two

curves necessitate the violation of typical form of the Weibull function

with the rate required to converge to 50% with no stimuli. Based on

the linear interpolation, we can then obtain the detection threshold of

visual-proprioceptive conflict to be 3.28cm for the case of correct haptic

feedback (i.e., haptic feedback on true finger sphere) and 6.05cm for the

case of false haptic feedback (i.e., haptic feedback on false finger sphere).

2.5. Discussion

From Fig. 2.8, we can see that: 1) with the haptic feedback on the

true finger sphere, the rate of correctly identifying the true finger sphere

increases, which we believe is because the correct haptic feedback would

re-enforce the human’s correct perception of the true finger of the case

with no haptic feedback (i.e., middle curve of Fig. 2.8); and 2) with the
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haptic feedback on the false sphere, the rate of correctly identifying the

true sphere decreases, suggesting that the false haptic feedback can con-

fuse human subjects, thereby, enlarging their detection threshold (i.e.,

becoming less sensitive) of the visual-proprioceptive conflict.

This is quantitatively evidenced by their respective detection thresh-

olds, that is, as compared to the detection threshold 5.11cm for the case

of no haptic feedback (i.e., middle curve in Fig. 2.8), that for the case

with the correct haptic feedback decreases to 3.28cm (i.e., top curve in

Fig. 2.8), whereas that with the false haptic feedback increases to 6.05cm.

This then means that, for VR applications with no haptic feedback, hu-

man users would likely perceive the rendered finger-tip (i.e., false finger

sphere) as their real finger-tip (i.e., true finger sphere) not any more, if the

finger tracking error becomes larger than 5.11cm, whereas this tolerable

tracking error will be increasing by about 1cm if the VR applications in-

volve cutaneous haptic feedback. On the other hand, with the cutaneous

haptic feedback on the real finger-tip (i.e., true finger sphere), it would

be much more difficult to “fool” the human users to believe the rendered

sphere (i.e., false finger sphere) as their real finger-tip, as evidenced by

the sharp decrease (i.e., about 2cm) of the detection threshold from the

middle to the top curves in Fig. 2.8.

More precisely, consider the bottom curve of Fig. 2.9, which is more

useful for our purpose here as it specifies how probable human users would

perceive the rendered avatar (i.e., false finger sphere) when haptic feed-

back is synchronized with its motion. The indicator, which may be most

useful to design the tracking performance specification, would then be

the error with 50% rate of subjects choosing the false sphere as their real

finger-tip (i.e., 3.50cm in Fig. 2.9). This is because, if the finger track-
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Figure 2.9. Rate of subjects choosing the (true or false) sphere with the

haptic feedback as their real finger-tip position.

ing performance error is less than this value, the human users would not

be able to distinguish the rendered finger sphere from their real finger

sphere, defining minimum performance for the tracking system. Due to

this reason, we call this 50% rate point of the curve in Fig. 2.9 maxi-

mum allowable tracking error for the finger-based haptically-enabled VR

applications. Note from Fig. 2.9 that, to be useful for our finger-based

haptic system setting, the tracking system should at least perform with

its tracking error less than 3.50cm.

To closely investigate the effect of cutaneous haptic feedback, we ob-

tain the graph in Fig. 2.9 from Fig. 2.8, which shows the rate of subjects

choosing the sphere with the haptic feedback as their real finger-tip, al-

though the haptic feedback may be exerted on the false (or true) finger

sphere. From Fig. 2.9, we can then see that, the smaller the perturbation

error is, the more dominant the role of the haptic feedback is on the hu-

man’s perception on their finger-tip location, as evidenced by that about
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70% of the subjects choose the (true or false) sphere as their real finger-

tip as long as it has the haptic feedback (i.e., relying more on the haptic

feedback than proprioceptive perception). This is in fact true both for

the cases of the correct and false haptic feedback, breaking the 50% rate

of choosing either of the sphere for the case of no haptic feedback (see

Fig. 2.6). As the visual-proprioceptive error becomes larger (i.e., larger

perturbation error), the dominance of the haptic feedback seems to cede

to the proprioception, as can be seen from the rapid decrease of choosing

the false finger sphere as the real finger-tip position, even if the haptic

feedback is still on the false sphere. This changing role of the cutaneous

haptic feedback depending on the perturbation error is also reaffirmed by

one way ANOVA test, for which we choose the type of haptic feedback

(i.e., no, correct and false haptic feedback) as independent factor and the

answer rate of subjects correctly identifying the true sphere as the depen-

dent variable. Then, in the case of perturbation error 7.5cm, no significant

difference is found (F2,15 = 1.6, p > 0.05), while significant difference is

found for the perturbation error 1.5cm (F2,15 = 6.9, p < 0.0001).
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Chapter 3

Wearable Finger Tracking Module for

Haptic Interaction

3.1. Motivation

The efficacy of haptic feedback for finger-based interaction has been

studied and verified in recent years (Meli et al. 2018; Bimbo et al. 2017;

Baldi et al. 2015; Gleeson et al. 2010; Scheggi et al. 2015). The result

of the previous chapter (i.e., enlarging the detection threshold by haptic

feedback) also would be one of great examples, which alleviate the error

perception of finger-tracking system via haptic feedback. In this context,

wearable haptics for VR has received great attention and been under ac-

tive investigation by many research groups and companies around the

globe. Among many forms of wearable haptics, particularly promising is

the multi-finger-based wearable haptics, since it allows for the VR realiza-

tion of many real-life scenarios and interactions, which typically involve

heavy usage of fingers and hands. In fact, using the fingers and hands is

argued as one of the key characteristics of our human being itself, thus,

we believe that finger-based wearable haptics is crucial to attain truly

38



Figure 3.1. Multi-fingered virtual manipulation with the proposed finger track-

ing module (FTM) integrated with cutaneous haptic device (CHD): a peg inser-

tion task into a horizontally-placed hole.

immersive, multifarious and real-life like VR experiences. Especially the

cutaneous haptic devices (CHDs) are widely adopted and researched as

its smaller form-factor and structure suitable for finger-based interac-

tion than kinesthetic haptic devices (Pacchierotti et al. 2012; Jang & Lee

2014).

For this finger-based wearable haptics for VR, the primary require-

ment is reliable tracking of multiple fingers and hands in various motions

and postures as mentioned in the previous chapter. Many methodologies

have been proposed for this multi-finger tracking. Vision-based technol-

ogy (e.g.,(Oikonomidis et al. 2011; Kim & Park 2015; Meli et al. 2014;

Maisto et al. 2017)) has attracted many researchers for tracking the hand

with haptic devices. However, due to the visual distortion from additional

haptic devices equipped on the user’s hand (e.g., kinesthetic haptic de-

vices (Wang et al. 2018; Prachyabrued & Borst 2015), cutaneous haptic

devices (Pacchierotti et al. 2012; Chinello et al. 2017; Perez et al. 2016),

vibrotactile haptic devices (Maereg et al. 2017)), vision-based tracking
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often fails to track the fingers when some extra devices are attached on

them. This is because, the vision-based method, which dominantly are

based on machine-learning-based methods, would not properly work un-

der conditions (i.e., generalization issues). This issue is also well addressed

in the recent hand tracking challenge (Armagan et al. 2020), which give

a few tasks to verify how well generalized a vision tracking algorithm is

in terms of four generalization factors; individually different hand shape

(size, color, texture, etc.), articulation (hand gesture), camera viewpoint,

and object. A fair number of state-of-the-art vision-based methods show

miserable performance and even winner of each task (Zhang et al. 2020;

Iqbal et al. 2018) shows fairly dropped accuracy (about 2-4 times scaled

error) for untrained conditions, which can clearly imply the fact that the

current-available vision-based method based on bare hand cannot be com-

patible with most of haptic devices (Lee et al. 2019; Baldi et al. 2017),

even, with any extra devices (e.g., wearing glove for the disabled (In

et al. 2015; Kim et al. 2019), sports, or safety). In this context, most of

current vision-based tracking systems are trained from a vast dataset of

bare human hand (Mueller et al. 2018; Zimmermann & Brox 2017), thus,

the visual distortion of human hand induced by attaching extra wearable

haptic devices would largely degrade the performance of hand tracking.

IMU-based system (with compass) would be alternative way to be

compatible with haptic devices partially. However, this type of system

also has issue of magnetic-interference (i.e., instability near the magnetic

objects) for compass as mentioned in the introduction. The problem when

integrating the CHDs with IMU-based tracking system is the fact that

the cutaneous haptic devices normally has dc-motors or servo-motors for

generating the force feedback or the finger-tip. The embedded motors or

40



their operating current surely disturb the magnetism reading of the com-

pass, which is the reason why IMU-based tracking system has difficulty

to integrate with CHDs purely.

Along this reasoning, in this chapter, we propose a novel glove-type

finger tracking module (FTM), which opportunistically utilizes IMU

sensors and soft sensors to estimate multi-DOFs finger/hand motion while

being free from the electromagnetic interference issue of the IMUs and

the complex sensor wrapping/arrangement issue of the soft sensors. The

proposed FTM is designed in the simple glove-form for easy integrated (or

separate) usage with haptic devices and straightforward implementation.

We determine the attaching locations of each sensor to minimize the sys-

tem complexity while also carefully observing the finger/hand anatomy

different sensing capabilities and characteristics of each sensor. Our pro-

posed FTM also only requires a simple three-step known-pose calibration.

We combine this FTM with the CHDs improved from our previous

work (Jang & Lee 2014), which can generate high-performance three-

DOF finger-tip haptic feedback by utilizing miniatured DC motors with

accurate feedback control with FSR and soft sensors. By combination

of these FTM and CHD, we construct wearable cutaneous haptic in-

terface (WCHI) as shown in See Fig. 3.1, which can facilitate dexter-

ous/immersive multi-finger haptic interaction. The versatility of our pro-

posed FTM for haptic interaction is verified in this chapter. A few re-

searches study about the way to finger tracking with extra haptic devices

(i.e., accurate finger tracking while delivering haptic feedback), however,

1) the device of (Weber et al. 2016) utilizes only a single IMU on the

dorsum of the hand and a single soft sensor for each finger, thus, not able

to fully track large-DOF complex finger motions; 2) Commercial prod-
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ucts (e.g., MANUS VR ®) glove can fully track the thumb motion, yet,

not the adduction-abduction (AA) motion of index/middle fingers, which

turns out to substantially affect VR experience, particularly it involves

complex/dexterous finger motion (see Sec. 3.3.3); and 3) both of these

devices provide only single-DOF vibro-tactile feedback on the finger-tip,

too simple to capture most of real-life finger/hand interactions, and which

are free from catastrophic magnetic-interference problem when adopting

more dexterous/accurate cutaneous haptic modules. In contrast to this,

our proposed WCHI can fully track complex/dexterous large-DOF fin-

ger/hand motions including the finger AA motion, while also providing

three-DOF cutaneous finger-tip haptic feedback. The FTM is also de-

signed in such a way that they can easily integrated with the CHD into

the WCHI without mechanical and functional interferences or used sepa-

rately.

3.2. Development of Finger Tracking Module

3.2.1. Hardware Setup

To design our finger-tracking module compatible with the haptic de-

vice, the key issues of vision-based hand tracking are summarized again

that: 1) the large-DOF finger motion within a small region, thus, such

commercial systems as HTC VIVE, Kinect or VICON, which can fairly

well track “larger” arm or wrist motions, cannot be directly used; and 2)

the dexterous finger motion, combined with omni-directional wrist mo-

tion, frequently induces the issue of occlusion, which is fundamental for

any vision-based systems (e.g., LeapMotion) and has not yet been over-

come. Due to these reasons, in this thesis, we aim to develop FTM (finger

tracking module) with IMUs and soft sensors, all attached in the glove
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Figure 3.2. Finger tracking module (FTM) consists of IMUs and soft sensors

embedded in the form of glove (hand model with links and joints also illustrated).

form, so that large-DOF/small-size finger motion can be tracked while

avoiding the issue of occlusion. See Fig. 3.2, where we assume the wrist

position information is provided by a commercial external vision sensor

(e.g., HTC VIVE) and also anatomical constants (i.e., link length, joint

position, etc.) given from off-line identification (Chang & Pollard 2008).

The FTM fully tracks each segment of the thumb, index and middle fin-

gers. To determine which sensor is attached to which segment, we carefully

consider the DOF of each joint, which varies from one to three.

More precisely, we decide the joints, the finger segments and the sen-

sor arrangement for the FTM as shown in Fig. 3.2, where: 1) hand dor-

sum/carpus is with three-DOF rotation (e.g., wrist rotation); 2) three-

DOF carpometacarpal (CMC) joint with FE (flexion-extension), PS (pronation-

supination) and AA (abduction-adduction) motions; and 3) two-DOF

metacarpophalangeal (MCP) joint of the index/middle fingers with FE

and AA motions. To estimate the (relative) orientations of these joints

with a single sensor attachment, we attach four MEMS IMUs (InvenSesner

MPU9250) on the dorsum of the hand, on the first metacarpal of the

thumb, and the proximal phalanges of the index and middle fingers, re-
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Figure 3.3. Hand model with the joints, links, and coordinate frames: thumb

possesses three-DOF CMC joint, single-DOF MCP and IP joints; whereas index

and middle fingers each possesses two-DOF MCP joint, single-DOF PIP and IP

joints.

spectively. We choose these IMUs over soft sensors here, since: 1) they

can provide three-DOF global rotation information at once; and 2) their

attachment point is more flexible than soft sensors, that must be attached

wrapping over the joint. These IMUs are fastened by rubber bands in the

form of glove. We also attach the IMUs as far from the finger-tip CHD

as possible to avoid electromagnetic interference between the motors of

CHMs and the magnetometers of the IMUs (see Sec. 3.3 for interference

test result). On the other hand, we utilize three capacitive type soft sen-

sors (StretchSense™) and embed them inside the glove of each finger, to

estimate the single-DOF bending angles of the thumb MCP joint and the

proximal interphalangeal (PIP) joints of the index/middle fingers. Here,

we consider the thumb MCP joint to be single-DOF with FE motion,

since its AA motion caused by its inter-connection with the CMC joint is

relatively small (Hollister et al. 1995; Kim et al. 2002) especially during

the finger grasping and manipulation.

In addition, we utilize the musculoskeletal dependency (i.e., synergy)
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to estimate the motion of the thumb interphalangeal (IP) joint and distal

interphalangeal (DIP) joints of the index/middle fingers from the thumb

MCP joint and index/middle finger PIP joints. Note that we utilize the

synergy not only for index/middle fingers but also for the thumb. This

synergy was investigated in (Hrabia et al. 2013) and later employed in

(Baldi et al. 2015). Hrabia et al. (Hrabia et al. 2013) showed that the

synergy of the thumb MCP joint (R2 = 0.59) is weaker than that of

index finger’s DIP joint (R2 = 0.77), yet, still similar to that of little

finger (R2 = 0.63). In this chapter, we adopt this thumb synergy with its

strength determined by trial-and-error, which turns out to be adequate

for our purpose, that is, the FTM for VR applications, where believ-

able graphics and haptic sensations are enough as evidenced/illustrated

through our (rather extensive) experiments (see Sec. 3.3) in contrast to,

e.g., medical applications, where accuracy is more weighted. Utilizing the

soft sensors and the synergies for single-DOF joints and IMUs for multi-

DOF joints, we can reduce the number of the sensor attachments, re-

sulting in simpler estimation algorithm and lesser electromagnetic inter-

ference when integrated with the CHD. In addition, we employ five-DOF

thumb model, which represent each thumb joint as single-DOF (IP, MCP)

or three-DOF (CMC).

3.2.2. Tracking algorithm

In order to reconstruct the poses of three fingers and hand from FTM,

the forward kinematics is applied to each joint of the fingers and the hand.

Let pss,h ∈ <3 be the position vector from the origin of the inertial frame

{s} to that of the hand frame {h} expressed in {s}-frame, where {h}-

frame is attached to the hand dorsum as shown in Fig. 3.3. In this thesis,
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we use an external low-cost vision sensor (e.g., HTC VIVE tracker) to

measure this pss,h. Denote the pose of the {h}-frame relative to the {s}-

frame by the homogeneous transformation ḡss,h ∈SE(3), i.e.,

ḡss,h(Rss,h, p
s
s,h) =

Rss,h pss,h

0 1

 ∈ SE(3)

where the Rss,h ∈ SO(3) is the rotation of {h} w.r.t. {s}, which is to be

measured by the IMU/compass attached to the {h}-frame as shown in

Fig. 3.3.

More specifically, we adopt a singular value decomposition method

(Markley 1988) to provide prior estimation of the IMU/compass. The

sensor data of accelerometer and compass in current body frame {h}

is compared with the reference sensor data, which represent the gravity

and earth-magnetic field direction in inertial frame {s}. This rotational

estimation, yet, only is valid for low frequency signals, since the high

frequency erroneous factors such as IMU noise or linear acceleration are

reflected in the estimation. Thereby, the gyroscope, which can provide

accurate information of high frequency motions in the form of angular

rate, should be integrated with the prior estimation, through the estima-

tion algorithm such as complementary filter, extended Kalman filter. We

also adopt a nonlinear complementary filtering algorithm (Mahony et al.

2008) to fuse the low frequency estimation (accelerometer/compass) and

high frequency estimation (gyroscope) opportunistically.

From the above rotational estimation results, the methods to estimate

motions of each finger by forward-kinematics are different from the case

of thumb finger motion and the cases of index/middle finger motion. For

the thumb motion, we attach the frames {fe} and {aa} to the CMC joint

and {mp} to the metacarpal bone between the MCP and CMC joints to
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respectively express the FE motion θfe, the PS motion θps, and the AA

motion θaa of the CMC joint with the offset among their axes also taken

into account - see Fig. 3.3. We then have the following kinematics of the

{mp}-frame expressed in the {s}-frame:

ḡss,mp = ḡss,h · ḡhh,mp(Rhh,mp, phh,mp) ∈ SE(3) (3.1)

with

Rhh,mp = Rhh,feR
fe
fe,aaR

aa
aa,mp = Rs,Ts,hR

s
s,mp (3.2)

phh,mp = phh,fe +Rhh,fep
fe
fe,aa +Rhh,aap

aa
aa,mp

where Rhh,fe = exp(θfee2), R
fe
fe,aa = exp(θpse1), and Raaaa,mp = exp(θaae3)

with the corresponding frames initially aligned with each other, Rhh,aa =

Rhh,feR
fe
fe,aa, exp(·) the exponential map (Richard M. Murray & Sastry

1993), and ei ∈ <3 the unit basis vector; and phh,fe, p
fe
fe,aa and paaaa,mp

are the anatomical lengths, which are assumed constant and known with

pfefe,aa = de1 = [d; 0; 0] (i.e., offset d along the PS motion axis - see Fig.

3.3. Here, with the IMU sensors attached to the {h}-frame and the {mp}-

frame (see Fig. 3.2), we can directly measure Rss,h and Rss,mp, and, conse-

quently, Rhh,mp(θfe, θps, θaa) from (3.2). By solving the inverse kinematics

for Rhh,mp(θfe, θps, θaa) with θfe, θps and θaa being the pitch, roll and yaw

angles, we can decode (θfe, θps, θaa) from Rhh,mp (Richard M. Murray &

Sastry 1993), which are then in turn used to compute the full thumb pos-

ture. In this thesis, (phh,fe, p
fe
fe,aa, p

aa
aa,mp) (and similar length parameters)

are also off-line tuned to produce graphically-plausible motion during all

of our experiments - how to on-line calibrate them is a research topic by

itself and a topic of our future research as well.

On the other hand, to describe the posture of the index and middle

fingers, we attach the {fe}-frame and {aa}-frame to the two-DOF MCP
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joint and the {pp}-frame to the proximal phalange as shown in Fig. 3.3.

Then, similar to (3.1) with Rfefe,aa = I and d = 0 (i.e., {fe}-frame is

the same as {aa}-frame for the MCP joint), We can obtain the following

kinematics similar:

ḡss,pp = ḡss,h · ḡhh,pp(Rhh,pp, phh,pp)

where

Rhh,pp = Rhh,feR
fe
fe,pp = Rs,Ts,hR

s
s,pp

phh,pp = phh,fe +Rhh,fep
fe
fe,pp

where Rss,h and Rss,pp are measured by the IMU sensors attached respec-

tively to the {h}-frame and the {pp}-frame, Rhh,fe = exp(θfee2) and

Rfefe,pp = exp(θaae3) with (θfe, θaa) decodable via the inverse kinemat-

ics of Rhh,pp(θfe, θaa) similar for the thumb motion. Finally, for the MCP

joint of the thumb or PIP joint of the index/middle fingers, one soft

sensor is attached to provide the angle measurement θi or θj (along the

e2-direction). We can then obtain ḡmpmp,pp or ḡpppp,ip with Rmpmp,pp = exp(θie2)

or Rpppp,ip = exp(θje2) and pmpmp,pp or ppppp,ip, with which we can complete

the posture estimation of the thumb/index/middle fingers.

3.2.3. Calibration method

Each person has different size/shape of the finger/hand. Thus, the

sensor attachments would be all different among different users, even if

they wear the same FTM. To solve this issue, we perform a known-pose-

based sensor calibration. First, the soft sensor has a linear relationship

between the relative joint angle and its measurement ρi ∈ <, i.e.,

θi = β0 + β1ρi
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where β0, β1 ∈ < are coefficients. To find these coefficients, we need to take

at least two known poses while measuring ρi with corresponding θi (e.g.,

ρi at 0◦ and 90◦). On the other hand, the IMU sensors provide orientation

information expressed in the {s}-frame. However, whenever attached to

the FTM and worn by the user, their real attachment is unknown and,

in general, not the same as the target finger/hand segment as shown in

Sec. 3.2.2. In other words, for each IMU, we have the following relation:

Rss,f = Rss,bR
b
b,f

where Rss,f , R
s
s,b, R

b
b,f ∈ SO(3) are the rotation of the finger/hand seg-

ment expressed in the {s}-frame, the measurement of the IMU, and the

misalignment between the finger segment and the IMU sensor frame, re-

spectively. Then, by letting user to assume an known pose, Rss,f is known,

Rss,b is measured, thus, we can estimate Rbb,f . Now, note that the number

of unknowns is three (for IMUs) and two (for soft sensors). Thus, if we

ask the user to assume three known poses, we can calibrate those three

(or two) unknown quantities for each sensor. This is captured by the three

calibration procedure with the three known postures, that is, 1) Align the

direction of the tip of each index/middle finger and hand while keep them

straight (i.e., θi = 0◦). 2) Align the direction of the tip of the thumb to

be parallel to the direction of the step 1 while keep it straight. 3) Bend

each PIP joint of the index/middle fingers and MCP joint of the thumb

to be 90◦.
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Figure 3.4. Comparison of ZYX Euler angles (EA) of the IMU (left) and sin-

gle-DOF joint angle tracking of the soft sensor (right). Reference Euler angles

are captured from MOCAP and palm-shaped (IMU) and index-finger-shaped

(soft sensor) 3D printed mock-up. The mean angle errors are 1.567◦ and 0.0685◦

respectively.

3.3. Evaluation for VR Haptic Interaction Task

3.3.1. Quantitative evaluation of FTM

To precisely evaluate the performance of the FTM, we make 3D printed

mock-ups while employing the MOCAP system (Optitrack) for the ground

truth data acquisition. For the performance evaluation of the FTM, we

first check the rotation estimation performance of the IMU. We rotate

the IMU about 90◦ with respect to X/Y/Z-axis directions respectively

to clearly check roll/pitch/yaw angle estimations, while attaching IR-

markers for the MOCAP rotation tracking. In Fig. 3.4, we display the

rotation tracking performance of the IMU expressed by the Euler angle.

The mean Euler angle estimation error compared to the MOCAP is given

as 1.567◦. The small error may be originated from the imperfect calibra-

tion of the IMU (Markley 1988) and the latency of SO(3) filter (Mahony

et al. 2008) which we use. On the other hand, we show the single-DOF

joint angle tracking performance of the capacitive-type soft sensor em-

ployed, e.g., for the PIP joint of index finger. we achieves 0.0685◦ mean
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Figure 3.5. Wearable cutaneous haptic interface (WCHI) with finger tracking

module (FTM) and cutaneous haptic device (CHD).

error where the small error mainly comes from the signal noise and the

delay due to the 1st order low pass. Note that the smaller error than

IMU may that we assume well-calibrated scenario of soft sensor (i.e.,

3D-printed mock-up motion and apply it for only single-DOF motion).

However, these accurate performance would imply that the rotational

accuracy of FTM fair enough for finger-based interaction verified again

by the previous results (chapter 2). While propagating these errors with

the middle finger length in (Peters et al. 2002) (i.e., total 10.5 [cm]), the

finger-tip position error would be 0.15 [cm]. and less than 3.64 [cm] which

is the indistinguishable threshold under haptic feedback in VR as proven

earlier.

3.3.2. Implementation of Wearable Cutaneous Haptic Interface

So far, we introduce the hardware configuration and its estimation of

FTM. Then, the integrated WCHI for multi-fingered haptic interaction is

presented by attaching the CHD to the finger-tip of the glove of the FTM

since both modules do not interfere functionally and mechanically with
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Figure 3.6. By using 3D-printed mock-up and changing the relative distance

and rotation between IMUs and DC-micromotors, magnetic interference is eval-

uated by observing sensor measurements. Sensor measurements changes when

the distance between the motor and the IMU becomes closer. However, it is

observed that the interference is only significant if the distance is less than one

centimeter.

each other. Here, the functional interference (i.e., electromagnetic inter-

ference between IMUs and DC-micromotors) is validated experimentally

as shown in Fig. 3.6. For this, we make a 3D-printed mock-up where the

motor is fixed with different orientations (i.e., 0◦, 45◦, and 90◦) and the

MEMS IMU moves along a fixed trajectory. We measure the relative dis-

tance with MOCAP and the IMU’s magnetic flux readings, and educe

the safe distance to be above 10 [mm] which is incorporated on design of

each module and the integration for WCHI. Note that this safe distance

is guaranteed even during full folding the fingers since the CHMs, thus

DC-micromotors, are on the finger-tips while IMUs are on the proximal

phalanges.

We also utilize two MCU boards (e.g., Arduino Nano) for the data

acquisition of each IMUs and soft sensors of the FTM, which run at 200

[Hz] and 1 [kHz] respectively. One MCU board (i.e., Arduino Uno with
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the Adafruit Motor Shield V2 and standard op-amp circuit for sensor

signal) is also employed for the control and the data acquisition of the

CHM, which runs at 120 [Hz].

3.3.3. Usability evaluation for VR peg-in-hole task

Now, we conduct the user study to assess the effectiveness of the

WCHI for VR application. We emulate a virtual manipulation task, in-

serting a breakable peg into a horizontally placed hole as shown in Fig.

3.7. The peg is 186.2 [mm] in height, 25.84 [mm] in radius, and 500 [g] in

weight, which models a round bottle as a daily object. This peg inserting

task is chosen here since, to manipulate its attitude and do the task, more

complex finger control is required. All the subjects also attempt finger-tip

manipulation, instead of power grasping, since it is fairly difficult to prop-

erly control the motion and insertion force without no haptic feedback on

the palm. Our hypothesis is that the AA motion will be more important

for this kind of real-life like complex task as compared to, e.g., the needle

insertion (Meli et al. 2013) or the delivery task of simple object such as

an egg, since the peg attitude should be controlled precisely to be in-

serted. On the other hand, we set the peg to be broken with large contact

force (i.e., > 5N). Therefore, subjects have to utilize the haptic feedback,

even though it only exists at finger-tips, to successfully perform the task.

The virtual hand is then controlled via the virtual coupling technique

(Kim et al. 2017) where the desired hand motion is obtained from the

FTM. The three-DOF contact force between the virtual hand and peg is

fed back through CHD. Consequently, the test setup consists of WCHI,

Oculus Rift HMD, soundproof earmuffs, and two HTC VIVE trackers to

locate global position of a wrist and HMD respectively in a designated
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Figure 3.7. For each trial of the virtual peg-in-hole task, we randomly change

both initial starting point of the peg and location of the hole (1). Then, a subject

picks up and manipulates the peg to do the insertion task (2). The subject can

see whether the peg is broken or not with the change of its color (3).

space as shown in Fig.3.1.

We design four different test settings to evaluate the performance

of WCHI, especially the importance of the three-DOF cutaneous haptic

feedback and the AA tracking motion of a hand for the VR application

since typical VR hand interfaces have at best single-DOF haptic feed-

back and/or hand tracking without AA motion (e.g., MANUS VR glove,

etc.). We intentionally turn on and off the actuation for with and with-

out cutaneous haptic feedback (wHF or woHF) from CHM, and also turn

on and off the allowance of AA tracking motion (wAA or woAA) of the

FTM during the tests. As a result, the four settings are: 1) wHF wAA,

2) wHF woAA, 3) woHF wAA, and 4) woHF woAA. We then measure

the task completion time for each trial and consider it as a performance

measurement of the given task.

Then, the user study procedure consists of three phases: 1) famil-

iarization, 2) main task, and 3) subjective questionnaire. During the fa-

miliarization, we introduced WCHI to users and verbally explain overall

information about the task. We informed that there were four differ-

ent settings, yet we did not provide details of each setting, not to make
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presuppose superiority and/or inferiority of each setting and try to dis-

tinguish them intentionally. Here, we also calibrate the WCHI, especially

the FTM, to fit each subject’s hand motion as in Sec. 3.2.

After the explanation and calibration, the 6 minutes of familiarization

phase consists of two scenarios to gradually learn about the WCHI and

HMD worn VR environment. For the first 3 minutes, users were instructed

to touch and grasp the peg, which is suspended in the air by spring, and

feel corresponding haptic feedback. We set the breaking force threshold

of peg to be 5 [N] (i.e., 0 6 |λN | 6 10 [N]) and change the peg color

from white to blue (See (3) of Fig. 3.7). Users can learn an appropriate

grasping force by matching the visual information and haptic feedback.

In the next 3 minutes, users were asked to gently lift and rotate the peg

from the ground to become accustomed to the peg manipulation with

different hand postures. Throughout this phase, we provided users the

full haptic feedback and hand tracking, i.e., setting 1 (wHF and wAA).

After then, each user experienced total 20 main tasks with repeated 4

different randomized settings for 5 times to minimize the learning effect.

We also randomly (yet not too much) change the hole position and the

starting point of the peg, again to minimize the learning effect. During

the task, once the peg is broken down, it has to move back to a starting

point while task time is continuously running. One thing to mention here

is that we considered first 4 tasks as an extension of familiarization phase

for the main task. Thus, we took account the results of last 16 tasks as a

valid data for the analysis.

Ten users participated in the study including 9 male and 1 female in

average 25.3±2.0 years old. All of them were right-hand except two users.

All users did not have any physical or mental difficulty to complete the
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Figure 3.8. Normalized mean time and standard deviation results of ten users

according to 4 different settings (left) and haptic feedback oriented user (user

5, red/right), AA tracking motion oriented user (user 4, green/right), and both

condition oriented user (user 9, blue/right). There exists statistically significant

difference between each setting except between setting 2 and setting 3 using the

Bonferroni method (p = 1.000).

given test.

To evaluate the difference between each setting, we collected the total

160 trials data from ten users. The normalized mean time and standard

deviation of ten users for each setting are depicted in Fig.3.8. As a result,

the normalized mean time of setting 1 (0.678) takes about 2.1 times less

than that of setting 4 (1.414). Also, the standard deviation of setting

1 (0.176) is 4.8 times less than that of setting 4 (0.838). On the other

hand, the normalized mean time and the standard deviation of setting

2 (0.939 ± 0.488) and setting 3 (0.969 ± 0.507), where neither one of

the conditions was not allowed, do not show significant difference. Both

setting 2 and setting 3 take less time than setting 4 while taking more

time than setting 1.

In further analysis, the normalized time is tested with one-way re-
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peated measures ANOVA with the Greenhouse-Geisser correction (ε =

0.672). The analysis determines that the normalized time has statisti-

cally significant difference between four settings on the peg-in-hole task,

(F (2.018, 78.684) = 13.076, p = 0.000012). Post hoc tests using the Bon-

ferroni method revealed that there exists statistically significant differ-

ence between each setting except between setting 2 and setting 3 as

shown in Fig.3.8. This result does not change when we employ the Holm-

Bonferroni method, which is known to be less conservative than the Bon-

ferroni method. This is because, for our post hoc test, the p-value between

setting 2 and setting 3 is one (i.e., p = 1.000). We illustrate every p-values

between four settings in Fig. 3.8.

3.4. Discussion

We develop a novel wearable FTM, which is compatible with haptic

devices. The successful integration with CHDs is presented and the effi-

cacy of finger tracking and finger-tip haptic feedback accurately generated

thanks to our FTM is also studied through the user test for dexterous VR

task. Through the experimental results and we can deduce some insight

for VR manipulation. First of all, on VR environment, each user uses

and is affected by different conditions (or information). Three users are

more likely to be affected by the role of haptic feedback than AA tracking

motion. We called them haptic feedback oriented users. These users tend

to depend more on haptic feedback on or off conditions than existence

of AA tracking motion to complete the trials. Conversely, two users were

affected by the role of AA tracking motion than haptic feedback, called

them AA tracking oriented users. These users depend more on allowance

of the AA tracking motion on VR manipulation than haptic feedback.
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Rest users do affect by both conditions similarly. Above all, all ten users

still performed consistently best with setting 1 where both haptic feed-

back and AA motion are provided. This result clearly shows that both

haptic feedback and AA tracking motion are important for the virtual

manipulation task.

Second, when we compare the haptic feedback and the AA motion,

the difference in p-value size can be interpreted that the haptic feedback is

more likely to be effective than the AA motion. For example, the p-value

between setting 3 and setting 4 is 0.044476 which is larger and similar

to the significance level while the p-value between setting 2 and setting 4

is 0.003276. This tendency is also found when we compare setting 2 and

setting 3 to setting 1. This interpretation is consistent with the research

context that many studies have focused more on the haptic feedback than

on the AA motion, and can be an explanation of why the AA motion

gets less attention for a hand interface while the haptic feedback is often

pointed out for constructing immersive and informative VR interaction.
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Chapter 4

Visual-Inertial Skeleton Tracking for

Human Hand

4.1. Motivation

The wearable FTM in the previous chapter can fairly provide ac-

curate tracking result (multi-DOFs motion (including AA motion) by

IMU/compass and single-DOF motion by soft sensor) compatible with

haptic devices. However, the proposed FTM cannot overcome the limita-

tions of existing methods fundamentally. This is because the developed

module is truly not fusing the complementary sensors, but only deploys

the heterogeneous sensors for specific purpose (i.e., multi-fingered haptic

interaction). Thus, the issues of each sensor remain unsolved, which means

facing any issue of each sensing modality would lead to the unstable per-

formance of the FTM For example, every problem oriented from compass

(e.g., interaction with electronics), sensor drift, bias, different hand shape

of users, dependency to external positioning sensor are still existing in the

system, this is the motivation of developing a novel hand tracking frame-

work, which overcome every issue of existing methods (occlusion (vision

59



sensor), magnetic interference (IMU/compass), and mechanical contacts

(soft sensor)), by developing complete sensor fusion framework.

To solve these issues, we propose a novel sensor fusion algorithm which

would not require problematic compass or soft sensor, and rather utilize

visual sensor, which has complementary aspects with IMU. Thanks to fus-

ing visual information into inertial information, many parameters/disturbance

can be eliminated from the system, or estimated precisely in real-time.

In other words, we propose a novel visual-inertial skeleton tracking

(VIST) system and its algorithm for accurate, robust and affordable

hand tracking, while overcoming all the fundamental limitations of the

other methods.

More specifically, we construct a sensor glove with seven IMUs and

thirty-seven visual markers (of four different colors) attached on that and

also with a head-mounted stereo camera; and a filtering-based visual-

inertial hand tracking algorithm with hand anatomical constraints taken

into account and also with auto-calibration of hand/sensor-related pa-

rameters. The stereo camera is used here merely owing to its availability

and compatibility with VR/AR headsets; other vision sensors are equally

applicable to our proposed VIST framework as explained in Sec. 4.2.3.

One of the key innovations of our VIST framework is that we fuse

the visual and inertial sensors in a tightly-coupled (TC) manner (i.e.,

not only from visual to inertial (e.g., IMU drift correction (Tao et al.

2007; Bleser et al. 2011)), but also from inertial to visual (e.g., IMU-

aided correspondence search in chapter 4.3). This TC-fusion is crucial to

cope with the peculiarity of hand tracking, that is, a number of skeletons

(i.e., fingers) are moving fast with occlusions among them in a small-

size space (i.e., on the palm). This then necessitates us to utilize passive
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markers (for implementation/cost affordability), which are anonymous

(up to different colors), as the space is too small to accommodate tagged

visual markers (e.g., AR markers (Mallat et al. 2020), VIVE trackers

(Li et al. 2019)), and whose number should be as many as possible for

robustness against the occlusions. With these many anonymous visual

markers, their correspondence search problem, central to the accurate

vision processing, becomes very challenging, and, if it were not for this

TC-fusion, our VIST algorithm simply fails the correspondence search

with the tracking becoming unstable (See chapter 4.8).

In this chapter, we present detailed description about every compo-

nent of hardware and algorithm of the proposed VIST framework. Then,

the thorough evaluation for the developed VIST is performed in quantita-

tive and qualitative manners. The experiments are designed to cover every

possible scenarios for universal hand tracking system, that is, across from

the case of normal free hand motion to the challenging scenario (visually

complex background, object-interaction, wearing CHDs, and outdoor en-

vironment). The comparative studies with other existing methods are also

presented to clearly show the superiority of our VIST.
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4.2. Hardware Setup and Hand Models

4.2.1. Human Hand Model

The human hand is modeled as a segment-joint skeleton model (Wong

et al. 2015) as shown in Fig. 4.1-A, where the types of the joints are

determined according to their anatomical structures. This segment-joint

model is widely adopted in many model-based hand tracking systems with

vision, IMU/compass or soft sensors (Baldi et al. 2017; Lee et al. 2019;

Mueller et al. 2017; Tkach et al. 2017). In this thesis, we choose the target

tracking segments to be the dorsum of the hand and the three (thumb,

index and middle) fingers, which play key roles in our daily activities

and influence the motions of the ring/little fingers (Santello et al. 1998).

We also assume the musculoskeletal dependencies (i.e., synergy (Hrabia

et al. 2013; Baldi et al. 2017; Lee et al. 2019)) to estimate the angle

of the interphalangeal (IP) joint from the metacarpophalangeal (MCP)

joint for the thumb, and that of the distal interphalangeal (DIP) joints

from the proximal interphalangeal (PIP) joints for the index and middle

fingers. Since our VIST algorithm is applicable to any skeletal tracking

with segments and joints, its extension to the ring/little fingers or to the

case of no synergy can be straightforwardly done.

4.2.2. Wearable Sensor Glove

We fabricate a sensor glove based on our previous work (Lee et al.

2019), comprising of the two layers: an inner glove layer with seven IMUs

(on the dorsum of the hand, metacarpal/proximal phalanges of the thumb,

and proximal/intermediate phalanges of the index/middle fingers) and an

outer glove layer with thirty-seven visual markers (fabric blobs with four

different colors (red, blue, green and yellow). The sensor configuration is
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Figure 4.1. Schematic view of the wearable sensor glove: (A) Adopted anatom-

ical model of the human hand and (B) Assignment of the coordinate frames and

attachment of the IMUs.

Figure 4.2. (A) A snapshot of the inner glove on which seven IMUs are at-

tached. The sensor glove is fabricated by covering this inner glove with the outer

glove where the visual markers are attached. (B) A snapshot of the smaller

sensor glove attached with circular visual markers. Their length from the wrist

to the middle finger-tip and the width from the thumb MCP to the right side

of the hand are described in the figure. (C) A snapshot of the bigger sensor

glove attached with square visual markers. Their length and the width are also

described in the main text.
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slightly modified from the previous one such that seven IMUs are attached

as shown in Fig. 4.2.

We can then define two types of coordinate frames: the coordinate

frame of the i-th hand segment {Bi} (i = 0, 1, 2, ..., 9) and the coordinate

frame of the j-th IMU {Ij} (j = 0, 1, 2, ..., 6), where the IMU frame index

j is the same as that if its corresponding hand-segment index i whenever

relevant - see Fig. 4.1-B.

The origin of {Bj} is attached to its parental joint, each axis of which

is along the axes of flexion/extension (y-axis), abduction/adduction (z-

axis), and twisting (x-axis). One the other hand, each {Ij} is attached

to its IMUs, whose pose (i.e., position and orientation) is not necessar-

ily matched with corresponding {Bj}. Thus, many IMU-based tracking

systems attempt to align {Ii} with {Bj} when attaching IMUs or require

calibration before the operation through a sequence of indicated postures

(Yuan et al. 2013; Luinge et al. 2007; Seel et al. 2014). However, mis-

alignment error is inevitable when attaching IMUs, while the calibration

is often not precise as there is always some human error to take the in-

dicated postures. In contrast to that, our VIST algorithm contains the

auto-calibration of such errors in real-time (see chapter 4.5), thereby, sig-

nificantly improves tracking performance.

A user is recommended to wear a sensor glove slightly smaller than

their hands to avoid sensor slippage on the hand from wearing larger

gloves. The glove itself is made with spandex fabric, which has sufficient

elasticity to stretch with the human hand. Despite such elasticity, there

is a limit on the hand size that a glove can cover, so we construct two

sensor gloves of different sizes (Fig. 4.2). The length from the wrist to

the middle finger’s tip and width from the thumb MCP joint to the right
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side of hand are 18.3 cm and 9.4 cm for the smaller glove and 20.0 cm and

10.5 cm for the larger one. The total weight of the sensor gloves, including

the markers, IMUs, and MCUs are only 52 g and 55 g, respectively.

We deploy low-cost commercial IMUs, MPU9250 (Invensense®), and

connect them to a custom-built microcontroller unit (MCU) board based

on ATmega328. This board collects the IMU data and sends it to the

computer operating the main algorithm. The data acquisition from each

IMU is at 100 Hz, and the data are sent through SPI communication

protocol.

We adopt color blobs (circular/square color patches made from fabric)

as the visual passive markers since they can be simply attached to the

gloves without extra electronic installations (power, wire, or diode). Other

types of anonymous markers are equally possible to the proposed VIST

framework, according to the operating environment (e.g., gloves made

with pattern-printed fabrics, IR/UV LEDs, reflective markers with IR

cameras, or deep-learning-based features). The color blobs are attached

to the designated positions of the sensor gloves (including positions di-

rectly above the IMUs), which are determined to ensure that appropriate

numbers of markers could be seen from any viewpoint of the camera em-

pirically. Fabric patch with four distinct hues (red, yellow, green, and

blue) are employed in fabricating the markers. We attach different shapes

of markers (square and circle) to the two different gloves. The length of

one side of square marker and diameter of the circular marker are both

12 mm, and a total of 37 color blobs were attached to each glove.
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4.2.3. Stereo Camera

We utilize Stereolabs® ZED Mini as the stereo camera, which is man-

ufactured with affordable weight, size, and baseline to be comfortably

equipped with a HMD: 62.9 g weight, 90° (H) x 60° (V) FOV, 63 mm base-

line, and 1280x720 resolution for each image. Note that other types of vi-

sion sensors (e.g., monocular camera, depth/IR camera with IR markers)

are also applicable for the proposed VIST framework by slightly modify-

ing the marker detection/stereo matching processes, which are not core

but replaceable module of the proposed algorithm. We assume the stereo

camera mounted on the user’s head part (e.g., equipped with a HMD,

AR glass, or safety goggle), since this configuration makes our system

fully portable without installing external sensors and comparable to re-

cent commercial HMDs, which are normally equipped with two or more

cameras (e.g., HTC vive pro, windows MR, Hololens).

4.3. Visual Information Extraction

Using the mentioned models, we design our VIST algorithm to be

composed of the following two parts (Fig. 4.3-A): visual information

extraction and visual-inertial hand motion estimation. The visual

information extraction process comprises three sub-processes (Fig. 4.3-

B): marker detection in raw images, left-right stereo matching, and IMU-

aided correspondence search, through which the 3D positional observa-

tions of the visual markers are robustly matched to the actual markers

on the glove.
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Figure 4.3. (A) Overview of the proposed visual-inertial skeleton tracking

(VIST) algorithm: IMU-predicted information (left-down) are fused with the

visual information (left-up). (B) Pipeline of the visual information extraction:

(1) marker detection: only blobs satisfying color and shape requirements are

recognized as 2D observations, R and L. (2) left–right stereo matching: R and L

are triangulated as 3D positional observations O. (3) IMU-aided correspondence

search: O are assigned to actual markers on the glove M based on observation

probabilities.
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4.3.1. Marker Detection in Raw Images

To detect the visual markers (i.e., color blobs) in the raw stereo im-

ages, we utilize the following two requirements standard in the field of

computer vision: 1) hue-saturation-values (HSVs) requirement, that is,

we extract only the visual blobs having HSV within the predefined inter-

vals of the blob colors; 2) shape requirements (i.e., size, convexity and

circularity), that is, we extract only the visual blobs with reasonable

size and shape based on their real size and the distance from the cam-

era. The centroids of the blobs satisfying both the HSV and the shape

requirements are then determined as the 2D pixel observation sets of

the markers, i.e., R = {r1, r2, ...rNR
} ∈ <2NR for the right image and

L = {l1, l2, ...lNL
} ∈ <2NL for the left image, respectively.

4.3.2. Cost Function for Point Matching

To fuse visual-inertial sensor data, two sequential sub-processes, that

is the stereo matching and the correspondence search which will be de-

scribed in the following sections, should be solved. We formulate two

sub-processes as point set registration problem, which finds the transfor-

mation parameter θ (translation, rotation, scale, etc.) to overlap a scene

point set S = {s1, s2, ...sN} with a model point set Y = {y1, y2, ...yM}.

Among the point set registration algorithms, we deploy coherent point

drift algorithm (CPD) introduced in (55 ), which represents the model

set Y as the Gaussian mixture model (GMM) and finds the transforma-

tion parameter by maximizing the GMM posterior probability, which is

given by

p(S|Y, θ) =

N∏
i=1

p(si|Y, θ) (4.1)
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Given the model set Y, the observation probability of a scene point

si is determined by the product of the probability where si corresponds

to each model point yj or outlier, which is given by

p(si|Y, θ) = (1− w)
M∑
j=1

p(yj)p(si|yj , θ) + w/N (4.2)

p(si|yj , θ) ∼ N (T (yj , θ),Σ) (4.3)

where T (yj , θ) is the transformation of the point yj using the parameter

θ, w is the parameter determining outlier ratio, Σ is the covariance matrix

of the scene points and p(yj) is the prior probability which is assumed to

be even probability 1/M .

4.3.3. Left-Right Stereo Matching

We obtain the 3D positional observations of the visual markers by

matching/triangulating each pair of points in the left and right obser-

vation sets, L and R. For this, we utilize coherent point drift (CPD)

algorithm (Myronenko & Song 2010), which is a classical point set reg-

istration method. More specifically, to match two point sets, the CPD

algorithm represents one point set as a Gaussian mixture model (GMM)

and determines the solution (i.e., transformation and correspondences

between the two point sets) using Expectation Maximization (EM) al-

gorithm to maximize the product of the correspondence probability and

the transformed GMM probability of the other point set. We choose the

CPD algorithm in this thesis due to its simplicity in the rigid point set

registration. Other methods (e.g., (Hirose 2020; Gao & Tedrake 2019))

may also be used depending on the matching complexity.
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In the stereo matching, without loss of generality, we represent the ob-

servation set of the right image R as a GMM, and define a transformation

parameter between L and R as ζ ∈ <1 to represent the 1-DOF horizontal

parallax between the right/left point sets and neglecting vertical trans-

formation as the raw stereo images are assumed to be rectified. Given

the right observation set R and transformation ζ, the GMM likelihood

function of the left observation set L is defined as

p(L|R, ζ) =

4∏
h=1

NL,h∏
i=1

p(li,h|Rh, ζ) (4.4)

where h = {1, 2, 3, 4} are the indexes of the four hues, and NL,h is the

number of left observed markers for each hue h. Note that we divide the

2D marker observation sets into four groups based on the color hues (i.e.,

red, blue, green, and yellow).

Since R is the model point set represented by the GMM centroids,

the probability of each left observation li,h ∈ L is given as

p(li,h|Rh, ζ) = (1− ws)
∑
j∈Rh

p(rj)p(li,h|rj , ζ) + ws/NL,h (4.5)

p(li,h|rj , ζ) ∼ N (T (rj , ζ),Σs) (4.6)

where T (rj , ζ) is the transformation of the right point rj using parameter

ζ, ws is the parameter determining the outlier ratio of stereo matching, Σs

is the covariance matrix of pixel observation noises of the adopted camera

(tuned by pilot tests), and p(rj) is the prior probability assumed to be the

even probability of 1/NR,h. The transformation parameter ζ is obtained

by maximizing the likelihood function (4.4) using the EM algorithm.

The transformation parameter ζ is then obtained by using the EM

algorithm as in (Myronenko & Song 2010). Once ζ is determined, each
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left point li has a matched candidate rj,min, which is the closest right

point when transformed by ζ. As it is plausible that only one blob is

observed from a (left or right) camera, we define two additional conditions

to identify such blobs as outliers: distance from the closest point is less

than a predefined threshold ||li − T (rj,min, ζ)||2 < δ1; ratio of the first

to second closest points rj,min2 is less than another predefined threshold

||(li − T (rj,min, ζ))/(li − T (rj,min2, ζ))||2 < δ2. When li and rj,min satisfy

the two conditions simultaneously, the points are matched; otherwise, li is

identified as an outlier. Then, the matched points are triangulated using

mechanical specifications (i.e., focal length and baseline) of the adopted

camera, which constructs the positional observations of the markers O =

{o1, o2, ... , oNO} ∈ <3, where NO is the number of final matched points

from the stereo images.

Once ζ is determined, each left point li ∈ L has a matched candidate

rj,min ∈ R, which is the closest right point when transformed by ζ. As

it is plausible that only one blob is observed from one (left or right)

camera, we define two additional conditions based on Euclidean distance

to identify such a blob as outliers. Mathematical equations related to

the stereo matching are described as follows. When li and rj,min satisfy

the two conditions simultaneously, the points are matched; otherwise,

li is identified as an outlier. Then, the matched points are triangulated

using the mechanical specifications (i.e., focal length and baseline) of

the adopted camera and the 3D positional observations of the markers,

O = {o1, o2, ... , oNO
} ∈ <3, are constructed, where NO is the number of

the matched points from the stereo images.
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4.4. IMU-Aided Correspondence Search

This process aims to find the correspondence of the set of the stereo-

matched markers O to the set of the IMU-predicted positions of the visual

markers (via EKF propagation in following chapter),M = {m1,m2, ...mNM
} ∈

<3, where NM = 37 (i.e., the number of all the visual markers attached

to the glove). We then again apply the CPD algorithm to match O and

M, by defining M as a GMM and finding the transformation parameter

η ∈ <3 between O and M, which is the 3-DOF translation between the

two sets assuming that the rotations of the predicted marker set M and

the latest observation set O are aligned well, since the rotation of M

can be updated fairly precisely with the gyroscope over a short period of

time (Lee et al. 2019). The GMM likelihood function of the set O is then

defined as

p(O|M, η) =
4∏

h=1

NO,h∏
i=1

p(oi,h|Mh, η) (4.7)

where NO,h is the number of marker observations for each hue h ∈

{1, 2, 3, 4} (i.e., red, blue, green and yellow).

SinceM is represented as the GMM centroids, the probability of each

marker observation oi,h ∈ O is given by

p(oi,h|Mh, η) = (1− wc)
∑
j∈Mh

p(mj)p(oi,h|mj , η) + wc/NO,h (4.8)

p(oi,h|mj , η) ∼ N (T (mj , η),Σc) (4.9)

where T (mj , η) ∈ <3 is the transformation of the point mj ∈ M using

the parameter η ∈ <3, wc ∈ [0, 1] is the parameter determining the outlier

ratio of the correspondence search, and Σc ∈ <3×3 is the covariance matrix

of observation noises of the marker triangulation, which is obtained by

pilot tests (Fig. 4.9).
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A B

Figure 4.4. Example figure depicting how to obtain the observation probability

of a marker mj from the right camera (A) The probability from camera-facing

factor: when the normal vector of the marker ~nGmj
is computed by IMU-predicted

hand pose, the probability pn,R(mj) is determined by the angle between this

vector with the camera ray pGG,C −mj . αmin, αmax are defined according to the

adopted type of the visual marker (e.g., αmin = 45◦ and αmax = 90◦ for our

color blob marker through a pilot test). (B) The probability from FOV factor:

when the 2D projected position m∗
j and the projected covariance σ∗

j of the visual

marker mj is predicted by IMU, the FOV probability pf,R(mj) is determined by

accumulating the area inside the camera FOV of the probability distribution.
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It is typical that only less than one third of all the (thirty seven)

makers survive the stereo matching (i.e., average(NO) = 10.44 - see Sec.

4.6. Further, since those markers in O are anonymous (up to different

colors) and the 3D motion of each finger is precarious/fast, if we attempt

the correspondence search only with the vision information via CPD (i.e.,

Ôt−1 → Ot, where Ôt−1 ∈ <3×37 is the computed positions of all the

markers based on the hand motion estimated at the previous time t− 1,

while Ok ∈ <3NO is the stereo-matched markers at the current time t), the

search very often ends up being an outlier and the hand tracking becomes

unstable/chattering (see Fig. 4.8-D). To circumvent this, we compute the

prior p(mj) of each marker from the latest IMU-predicted hand pose

(mj ∈ M) and perform the correspondence search Mt → Ot. This then

renders our VIST algorithm TC-fusion with its accuracy and robustness

drastically improved. More precisely, we consider the following factors:

camera-facing factor and FOV factor (Fig. 4.4).

The camera-facing factor considers a marker as difficult to observe

when its normal vector is in the direction opposite to the camera center.

The observation probability pn(mj) for the camera-facing factor is defined

as

pn(mj) =


1, for αmj 6 αmin

(αmax − αmj )/(αmax − αmin), for αmin < αmj 6 αmax

0, for αmax < αmj

(4.10)

where (αmin, αmax) is the visible angular range of the adopted marker

type, and αmj is the angle between the normal vector and the camera ray

(i.e., line from camera center to marker) of the marker mj .
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The FOV factor excludes any visual markers outside the FOV from

the correspondence search, thus enhancing the tracking robustness when

the hand is partially observed around the edge of the FOV. Given the

IMU-predicted marker position mj ∈ <3 and its covariance matrix Σj ∈

<3×3 from the estimator, we compute the image-plane projected marker

position m∗j ∈ <2 and its covariance matrix Σ∗j ∈ <2×2. Near the edge of

the FOV, the observation probability pf (mj) for the FOV factor is given

by integrating the area inside the FOV of the Gaussian distribution of

m∗j , which is defined as

pf (mj) =

∫ dj

−∞
(e−(x

2)/(2σ∗j
2))/(

√
2πσ∗j

2)dx (4.11)

where dj ∈ < is the distance between m∗j and the nearest edge of the

FOV, and σ∗j is an element of Σ∗j corresponding to the direction of dj .

Using the camera-facing factor (4.10) and the FOV factor (4.11), the

final observation probability of the marker mj is the product of these two

probabilities for both cameras, that is,

p(mj) =
∏
c=R,L

pn,c(mj)pf,c(mj) (4.12)

where c is the index of both the right and left cameras. We also eliminate

an marker mj occluded from the other segments in the point matching

(i.e., p(mj) becomes 0), if the image-plane projected marker position m∗j

is inside the projected shape of another segment and the marker is farther

away than the segment. This prior probability of each marker p(mj) is to

compute the posterior probability (4.8) for the correspondence search.

Once the transformation parameter η ∈ <3 for (4.7) is computed using

the EM algorithm, an observation oi ∈ O is assigned to the IMU-predicted

marker mj ∈ M with the maximum matching probability p(mj |oi) from
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all the markers M = {m1,m2, ...mNM}, that is defined as

p(mj |oi) = p(oi|mj)p(mj)/p(oi) = (p(oi|mj)p(mj))/(

NM∑
j=1

p(oi|mj)p(mj))

(4.13)

An observation oi is assigned to marker mj with the maximum matching

probability p(mj |oi) from among all markers M = {m1,m2, ...mNM}.

However, this corresponds to multiple observations {oi, oj , ...} for the

marker mj . To reject pairs with duplicate matches as in stereo match-

ing, we introduce thresholding condition based on Euclidean distance to

identify outliers as follow. Only one pair with the minimum Euclidean

distance is selected, and if its matching probability p(mj |oi) is less than

the predefined threshold δ3, oi is identified as an outlier (i.e., false ob-

servation for the visual marker). Then, finally, we attain the IMU-aided

correspondence search: M ⊃ Ẑ → Z ⊂ O, where Ẑ and Z are the sets

of the corresponded markers in M and O with the same dimension and

will be used for the EKF update (4.26).

4.5. Filtering-based Visual-Inertial Sensor Fusion

For the visual-inertial sensor fusion with a large number of states

at a rate faster than the sensor sampling rate, we deploy the extended

Kalman filter (EKF), which is the most common estimator for nonlinear

systems and exhibits reasonable performance with limited computation

load (Table 4.2). This EKF consists three sub-processes: prediction with

IMU information, correction with visual information, and correction with

anatomical constraints.
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Figure 4.5. (A) The simplified figure depicting the k-th and l-th seg-

ments which are connected on the pivot joint Ja. (B) The scale parameter

λBk
:= [λBk,X ;λBk,Y ;λBk,Z ] ∈ <3 represents the size of the corresponding seg-

ment with respect to the segment body frames {Bk}. (C) The vectors of two

markers (m1,m2) and the IMU (Ik) relative to the attached segment {Bk} are

predesignated in the fabrication process. Note that these vectors are multiplied

by estimated hand scale λBk
in the correction step for marker measurement

as described in the main text. (D) The parameter for IMU attachment offset

qIkIk,Bk
∈ <4 is a unit quaternion, which represents the misalignment between the

body coordinate frame {Bk} and the IMU coordinate frame {Ik}.
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4.5.1. EKF States for Hand Tracking and Auto-Calibration

We define the EKF states for each segment of the hand (total seven

segments) as

x := [xs;xp] ∈ <23 (4.14)

where xs := [pGG,I ; v
G
G,I ; q

G
G,I ; bg; ba] ∈ <16 is the motion-related states of

the segment, which includes the position, velocity, unit quaternion of the

the IMU coordinate frame {I} in the global coordinate frame {G}, and the

IMU biases adopting the model of (Trawny & Roumeliotis 2005). On the

other hand, we define the states for the auto-calibration of hand/sensor-

related kinematic parameters s.t.,

xp := [λB; qII,B] ∈ <7 (4.15)

where λB ∈ <3 is the scale factor of the attached segment {B}, which

is dependent on the user hand size, and qII,B ∈ <4 is the quaternion for

misalignment between {I} and {B}, which is dependent on the user hand

shape and may also changes for each fitting (Fig. 4.5).

Inclusion of this auto-calibration is one of the key strengths of our

VIST framework. Vision-based tracking systems with machine-learning

techniques are well-known for their fragility and loss of performance

for hand shapes/configurations outside the training sets; whereas those

based on IMUs/compass or soft sensors rely on the assumption that users

can/will precisely reproduce all the indicated poses, which is of course

not true in practice and results in typically less accurate calibration

and finger-tip position tracking. In contrast, due to the real-time/auto-

calibrations of xp utilizing the visual-inertial fusion, our proposed VIST

framework can substantially improve tracking accuracy and use conve-

nience as compared to the other systems.
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4.5.2. Prediction with IMU Information

In the prediction step, the nominal state and its covariance matrix are

predicted with the IMU information using the following kinematic model

for each hand segment:

˙̂x = f(x̂, am, wm) (4.16)

where am ∈ <3 and wm ∈ <3 are respectively the accelerometer and

gyroscope data of the IMU, and x̂ ∈ <23 is the predicted state with the

IMU information.

More specifically, this kinematic model (4.19) is derived as follows. The

motion-related state xs = [ pGG,I ; vGG,I ; qGG,I ; bg; ba] ∈ <16 is predicted

using inertial measurements from IMUs. We define the kinematic model

of the true-state xs adopting the renowned model (Trawny & Roumeliotis

2005), that is,

ṗGG,I(t) = vGG,I(t)

v̇GG,I(t) = RGG,Ia
I
G,I(t) + gG

q̇GG,I(t) = 0.5Ω(wIG,I(t))q
G
G,I(t)

ḃg(t) = nbg(t)

ḃa(t) = nba(t)

(4.17)

where gG is the gravity vector expressed in the global reference frame

{G}, aIG,I(t) and wIG,I(t) are the true acceleration and angular velocity of

the sensor respectively at time t, RGG,I is the rotation matrix converted

from the quaternion qGG,I and Ω(ξ) is the matrix for the product of a

vector ξ ∈ <3 with a quaternion. The sensor biases are assumed to be a

slow-varying drifts with zero-mean, white Gaussian noise processes nbg,
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nba, the values of which are stated in the data sheet of the deployed IMU

model.

The relationships between the true inertial value aIG,I(t), w
I
G,I(t) and

the measurements am(t), wm(t) from the IMUs are modeled as

wm(t) = wIG,I(t) + bg(t) + ng(t)

am(t) = RII,G
T

(aIG,I(t)− gG) + ba(t) + na(t)
(4.18)

where the IMU noise ng and na are zero-mean, white Gaussian noise

processes, which are also described in the data sheet.

The kinematic model of nominal-state x̂s is given by

˙̂pGG,I(t) = v̂GG,I(t)

˙̂vGG,I(t) = R̂GG,I â
I
G,I(t) + gG

˙̂qGG,I(t) = 0.5Ω(ŵIG,I(t))q̂
G
G,I(t)

˙̂
bg(t) = 03×1

˙̂
ba(t) = 03×1

(4.19)

where the estimated angular velocity is given by ŵIG,I(t) = wm(t)− b̂g(t)

and the estimated linear acceleration is given by âIG,I(t) = am(t)− b̂a(t).

We adopt error-state representation to reduce the computational load

and guarantee the minimal system similar in (Trawny & Roumeliotis

2005). The nominal-state and error-state are defined by

x̃s = [ p̃GG,I ; ṽGG,I ; δθGG,I ; b̃g; b̃a ] ∈ <15

x̃p = [ λ̃B; δθII,B ] ∈ <6
(4.20)

where all the error states employ the additive error model except δθ which

is the multiplicative attitude error. The kinematic model of the error-state

80



x̃s is defined by

˙̃pGG,I(t) = ṽGG,I(t)

˙̃vGG,I(t) = − R̂GG,I [âIG,I(t)×]θ̃GG,I(t)− R̂GG,I b̃a(t)− R̂GG,Ina(t)
˙̃
θGG,I(t) = − [ŵIG,I(t)×]θ̃GG,I(t)− b̃g(t)− ng(t)

˙̃
bg(t) = nbg(t)

˙̃
ba(t) = nba(t)

(4.21)

where [ξ×] is the skew-symmetric matrix of the vector ξ ∈ <3.

The kinematics of the nominal-state x̂p and error-state x̃p relating to

the parameter xp are defined by

˙̂
λB(t) = 03×1 ˙̂qII,B(t) = 04×1

˙̃
λB(t) = nλ(t)

˙̃
θII,B(t) = nq(t)

(4.22)

where nλ ∈ <3 and nq ∈ <3 are zero-mean, white Gaussian noise pro-

cesses, assuming to have slow-varying property similar to the IMU biases.

The error-state propagation model is defined by linearizing the afore-

mentioned error-state dynamic model, that is,

˙̃x =

 ˙̃xs

˙̃xp

 =

 Fs 015×6

06×15 06

 x̃+Gn (4.23)

Fs =



03 I3 03 03 03

03 03 −R̂GG,I [âIG,I(t)×] 03 −R̂GG,I
03 03 −[ŵIG,I(t)×] −I3 03

03 03 03 03 03

03 03 03 03 03


(4.24)
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G =


03 03 03×12

−R̂GG,I 03 03×12

03 −I3 03×12

012×3 012×3 I12

 (4.25)

where Fs is the error-state transition matrix corresponding to the IMU

sensor state, G is the input noise matrix, 0n×m is a n×m zero matrix and

0n and In is a n×n zero matrix and identity matrix respectively. The sys-

tem noise n is the sum of noise vectors defined by n = [na; ng; nbg ; nba ; nλ; nq; ] ∈

<18. Since the IMU measurements are sampled at the IMU sampling rate,

we discretize the continuous-time prediction model for the VIST imple-

mentation.

4.5.3. Correction with Visual Information

The IMU-predicted motion of each segment is in general inaccurate

owing to the lack of compass information, sensor noise and uncalibrated

parameters (i.e., bg, ba, λB, q
I
I,B). Thus, we correct this IMU-predicted

hand segment motion and also the uncalibrated parameters using the

correspondence-matched marker measurements Z ⊂ O. More specifically,

we utilize the linearized error model of the measurement equation s.t.,

z̃mj = zmj − ẑmj ' Hmj x̃+ nz (4.26)

where zmj ∈ <3 is the measurement of oj ∈ Z ⊂ O with respect to the

global coordinate frame, ẑmj = h(x̂) ∈ <3 is that of the IMU-predicted

marker mj ∈ Ẑ ⊂ M, which corresponds to oj at the current time, and

nz ∈ <3 is the noise from triangulated marker measurements, which is

modeled as a zero mean white Gaussian and follows the covariance matrix

Σc ∈ <3×3 in the equation (4.9). The observation matrix Hmj ∈ <3×21 is

the Jacobian of the measurement equation h(x̃) with respect to x̃.
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Detailed derivations of these measurement equations are derived as

follows. Among all the segments, only the k-th segment attaching the j-

th marker is affected by the j-th marker measurement. For the simplicity

of expression, we represent observation matrix with respect to the state

of the k-th segment and abbreviate the segment index k.

While the marker measurements are obtained with respect to the cam-

era coordinates {C}, the sensor state xs = [ pGG,I ; vGG,I ; qGG,I ; bg; ba]

is defined with respect to the global frame {G}. Thus, the measurement

mj of the j-th marker is converted to zmj with respect to the global

coordinate frame as

zmj = pGG,C +RGG,Cmj (4.27)

where pGG,C and RGG,C are the transition and rotation matrices of the cam-

era from {G}. To obtain the camera poses pGG,C and RGG,C , we assume that

a modularized camera localization algorithm, such as SLAM, VINS, or

built-in localization algorithms is utilized, which are standard techniques

for recent stereo cameras or HMDs. Note that if a camera localization al-

gorithm adoption is unavailable, the proposed algorithm still tracks hand

motions relative to the camera by simply modifying the reference coor-

dinate frame of the sensor state xs = [ pGG,I ; vGG,I ; qGG,I ; bg; ba] from

{G} to {C}.

Then, the marker measurement equation is given as follows:

ẑmj = p̂GG,I + R̂GG,IR̂
I
I,Bd(λ̂B)LBI,mj

(4.28)

where d(ξ) refers to the 3 × 3 diagonal matrix of a vector ξ ∈ <3, and

LBI,mj
is the designated position of the marker mj when fabricating the

sensor glove (Fig. 4.5). One assumption for this measurement is that the
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surface of the glove is stretched proportional to the hand scale λB, as

described in the Materials and Methods.

Given the marker measurement equation above,

z̃mj = zmj − ẑmj
(4.29)

The observation matrix Hmj of the j-th marker is defined by the lin-

earization of this measurement equation, that is,

Hmj = [Hp̃GG,I
03×3 Hθ̃GG,I

03×6 Hθ̃II,B
Hλ̃B

] (4.30)

Hp̃GG,I
= − I3×3

Hθ̃GG,I
= R̂GG,I [R̂

I
I,Bd(λ̂B)LBI,Mj

×]

Hθ̃II,B
= R̂GG,IR̂

I
I,B[d(λ̂B)LBI,Mj

×]

Hλ̃B
= R̂GG,IR̂

I
I,Bd(LBI,Mj

)

(4.31)

where Hχ are the Jacobian of the measurement equation with respect

to the error-state χ and [ξ×] is the skew-symmetric matrix of the vector

ξ ∈ <3.

Moreover, for delay-free estimations even in the case of fast hand mo-

tions, (Weiss 2012), we employ a ring buffer to synchronize the current

IMU data with the delayed visual data (delay of about tens of millisec-

onds).

4.5.4. Correction with Anatomical Constraints

Although we estimate the motion of each segment independently as

a free rigid body as stated above, their motions are not independent

and rather anatomically correlated. We thus formulate some anatomical

constraints of the human hand as the measurement equations to be used
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in the EKF correction stage. We first define the positional constraint

to force anatomically-adjacent segments to be connected at their pivot

joint (e.g., intermediate and proximal phalanges connected at the PIP

joint) by enforcing their global positions to be the same. Total six of

such positional constraints are applied (CMC/MCP joints for the thumb;

MCP/PIP joints for the index and middle fingers). We also define the

rotational constraint (e.g., PIP joint cannot rotate about the x-axis (i.e.,

no twisting)). Total seven of such rotational constraints are applied (no

x-axis rotation of MCP joints for the three fingers; no x/z-axes rotations

of the PIP joints for the index and middle fingers) following the adopted

anatomical model (Fig. 4.1).

The observation matrix for both the positional and rotational con-

straints is derived as follows. First, the positional constraint is defined

to force adjacent segments to be connected at the pivot joints (e.g., the

intermediate and proximal phalanges are connected at the PIP joint),

which means that the global position of the connecting joint is the same

when estimated from the adjacent segments. The measurement equation

of the positional constraint for the joint a, which connects the adjacent

segments k and l, is given as

z̃Ja,p = zJa,p − ẑJa,p = −ẑJa,p

ẑJa,p = p̂GG,Ik + R̂GG,IkR̂
Ik
Ik,Bk

d(λ̂Bk
)LBk

Bk,Ja
− (p̂GG,Il + R̂GG,IlR̂

Il
Il,Bl

d(λ̂Bl
)LBl

Bl,Ja
)

(4.32)

where zJa,p has always zero value since this measurement is a virtual

measurement forcing the two segments connected on the pivot joint. Thus,

z̃Ja,p is same with the estimated residual of the constraint ẑJa,p with the

negative sign.
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The observation matrix for this measurement HJa,p is defined by the

linearization of this measurement equation. Note that, different from the

marker measurement equation, this measurement equation is related to

the states of the both segments k and l at the same time, which results

in the block matrices HJa,k,p for xk and HJa,l,p for xl. The block matrix

HJa,k,p for the segment k is given by

HJa,k,p = [Hp̃GG,Ik

03×3 Hθ̃GG,Ik

03×6 H
θ̃
Ik
Ik,Bk

Hλ̃Bk
] (4.33)

Hp̃GG,Ik

= − I3×3

Hθ̃GG,Ik

= R̂GG,Ik [R̂IkIk,Bk
d(λ̂Bk

)LBk
Ik,Mj

×]

H
θ̃
Ik
Ik,Bk

= R̂GG,IkR̂
Ik
Ik,Bk

[d(λ̂Bk
)LBk

Ik,Mj
×]

Hλ̃Bk
= R̂GG,IkR̂

Ik
Ik,Bk

d(LBk
Ik,Mj

)

(4.34)

The block matrix HJa,l,p for the segment l has a much similar form with

the HJa,k,p, which also can be defined by partially differentiating the mea-

surement equation.

Second, the other constraint is the rotational constraint (i.e., the PIP

joint cannot be rotated about the x-axis (twisting)). whose measurement

equation is given as

ẑJa,q = β qBk
Bl

= 0

qBk
Bl

= ((qIkBk
)−1 ⊗ (qGIk)−1 ⊗ (qGIl )⊗ (qIlBl

))
(4.35)

where ⊗ represents quaternion multiplication, and β is a 1× 4 row basis

vector representing the nonrotatable axis (e.g., β = [1, 0, 0, 0] when

joint Ja has no DOFs in the x-axis).

The observation matrix for this measurement, HJa,q is also defined by

linearization for the both segments k and l, which results in the block
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matrices HJa,k,q and HJa,l,q. The block matrix HJa,k,q for the segment k

is given by

HJa,k,q = [03×6 Hθ̂GG,Ik

03×6 H
θ̂
Ik
Ik,Bk

03×3] (4.36)

Hθ̂GG,Ik

= β [q̂Bk
Ik

]L [q̂IkBl
]R

 −I3/2
0


H
θ̂
Ik
Ik,Bk

= β [q̂Bk
Bl

]R

 −I3/2
0

 (4.37)

Similarly, the block matrix HJa,l,q for the segment l is given by

HJa,l,q = [03×6 Hθ̂GG,Il

03×6 H
θ̂
Il
Il,Bl

03×3] (4.38)

Hθ̂GG,Il

= β [q̂Bk
Il

]L [q̂IlBl
]R

 I3/2

0


H
θ̂
Il
Il,Bl

= β [q̂Bk
Bl

]L

 I3/2

0

 (4.39)

where the [q]L and [q]R are respectively the left and right quaternion

product matrices.

4.6. Quantitative Evaluation for Free Hand Motion

4.6.1. Experimental Setup

We evaluate the tracking performance of our proposed VIST frame-

work for the free hand motion, which is a standard scenario for evaluation

adopted by many other results. For the quantitative evaluations, we em-

ploy Optitrack® MOCAP system and attach IR reflective markers on the
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four keypoints (Fig. 4.6-A). Subjects are instructed to sit on a chair sur-

rounded by the MOCAP camera, where the stereo camera is positioned in

front of the subject on a table facing downward at about 60 degrees. The

camera is fixed during the experiment so that the tracking errors of the

hand motions relative to the camera {C} can be purely measured. This is

because most existing vision-based studies also track their hand motions

with respect to the camera (Yang & Ramanan 2012; Mueller et al. 2018;

Moon et al. 2018; Iqbal et al. 2018).

We attach motion capture (MOCAP) markers to four keypoints of the

glove (three at the fingertips and one on the hand dorsum). We choose

the key points in this way, since: 1) fingertips typically exhibit larger

tracking error than finger midpoints (e.g., MCP, DIP, or PIP (Mueller

et al. 2018; Moon et al. 2018)), thus, smaller errors with our keypoints

would imply better tracking even if the measured points are different; and

2) our MOCAP system cannot track robustly more than four markers, as

they are anonymous and moving within a small size space (although our

VIST system can handle a much larger number of markers thanks to its

TC-fusion).

The participated fifteen subjects are all right-handed in the age range

of 22 to 31 years, with no known perception disorders and have various

hand shapes, as shown in Fig. 4.7. The experiments are conducted in

accordance with the requirements of the Helsinki Declaration.

4.6.2. Procedure

As shown in Fig. 4.6-A, a subject is instructed to sit on a chair sur-

rounded by the MOCAP camera, and to duplicate a hand configuration

randomly chosen from a large hand image set (Mueller et al. 2018; Zhang
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Figure 4.6. (A) The setup for the quantitative experiment. The subjects are

instructed to follow randomly-displayed hand images on the monitor. The track-

ing error of the keypoints are measured from the surrounding MOCAP system.

(B) The attachment configuration of MOCAP markers on the sensor glove.

Figure 4.7. Snapshots of the hand shapes of all the subjects with their length

from wrist to middle finger-tip and the width from thumb MCP to right side of

the hand, which are plotted with respect to the length and width.
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et al. 2017) displayed on the monitor every 3 seconds during 5 minutes.

The displayed images were randomly selected from two large datasets of

synthetic hands (Mueller et al. 2018) and real hands (Zhang et al. 2017)

Since these images are adopted from other vision-based methods (Mueller

et al. 2018; Iqbal et al. 2018) for evaluations. By deploying these datasets,

we indirectly compare our results with other up-to-date systems. The time

interval for the next random image are decided as 3 seconds through a

pilot test, where if the time interval between random images is too short,

subjects cannot follow the displayed images correctly, while too long time

interval leads to an underestimation of the tracking error. We found that

this time interval is an adequate time interval for subjects to follow the

referenced images correctly and quickly at the same time.

4.6.3. Experimental Result

We analyze the tracking performance with two metrics: mean tracking

error and percentage of correct keypoints (PCK), which is the percentage

of the frames from all the frames, for which the maximum tracking error

of all the keypoints is within a certain error threshold (Yang & Ramanan

2012). This PCK is a popular criterion adopted by many hand tracking

systems (Armagan et al. 2020; Mueller et al. 2018; Moon et al. 2018;

Zimmermann & Brox 2017).

As shown in table 4.1, the mean errors of all subjects for each joint

are measured as 8.93 mm, 11.08 mm, 11.87 mm, and 10.89 mm, and the

mean value of these errors (i.e., the tracking error of VIST) is obtained as

10.69 mm. We also compute percentage of correct keypoints (PCK) met-

ric, which is the percentage of the frames (scenes) from all the frames, for

which the maximum tracking error of all the keypoints is within a certain
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Figure 4.8. (A) The 3D PCK analysis of each keypoint. (B) The histogram of

frames (blue) and the mean error (red) with respect to the number of observed

markers. (C) Unstable tracking with TC-fusion (i.e., IMU-aided correspondence

search) deactivated.

error threshold (Yang & Ramanan 2012). This PCK is a popular criterion

adopted by many hand tracking systems (Armagan et al. 2020; Mueller

et al. 2018; Moon et al. 2018; Zimmermann & Brox 2017). The PCK met-

ric of our system is obtained as 84 % within 20 mm error, and about 99 %

within 35 mm (Fig. 3B). The SDs of the tracking errors are only about

1.57 mm (between subjects) and 0.41 mm (for overall data) as shown in

(Fig. 3C), despite of different hand shapes of all subjects (Fig. S6). Given

that individually-different hand shapes are one of the most challenging

issues in vision-based systems (i.e., larger error for hand shapes not in the

training set (Armagan et al. 2020)), our small value of SD certifies that

our VIST clearly overcome the generalization issues of existing vision-
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Keypoint Mean Joint SD SD 95 % CI

(Free Motion) Error (Subjects) (Overall Data) for Mean Error

Dorsum 8.93 1.74 0.45 [ 8.05 , 9.81 ]

Thumb 11.08 1.69 0.44 [ 10.22 , 11.93 ]

Index 11.87 1.52 0.39 [ 11.10 , 12.64 ]

Middle 10.89 1.34 0.35 [ 10.21 , 11.57 ]

Mean 10.69 1.57 0.41 [ 9.90 , 11.49 ]

Table 4.1. The experimental results with statistical analysis of each keypoint

from the quantitative evaluation for free hand motion. The mean joint error,

standard deviations (SD) between subjects and overall data, and 95 % confidence

interval (CI) for mean error.

based approaches. The absolute errors and percentage errors along the

lengths of the hand lengths are also shown, which also verifies the robust-

ness/accuracy of our VIST regardless of the hand shapes. The 95 % CI

of the mean error is obtained from 9.90 mm to 11.49 mm and this narrow

width of the CI certifies that the experimental results are statistically

confident.

Moreover, in comparison to the latest hand-tracking challenge (Arma-

gan et al. 2020), our VIST shows slightly improved metric than the winner

of the challenge (13.66 mm (Zhang et al. 2020)) among RGB-D vision-

based tracking systems, which have limitations of demanding computa-

tion, heavier hardware, higher power consumption, and limited-outdoor

usage as compared to our framework. The mean error is computed as

10.14 mm, which is much smaller than state-of-the-art RGB-camera-only

methods (about 50 mm (Mueller et al. 2018)). The PCK metric of the
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VIST framework also can be compared with those of the state-of-the-art

vision-based systems (Mueller et al. 2018; Zhang et al. 2020). The PCK of

our system within 20 mm error is obtained as 80 %, which is higher than

the compared algorithms, where the PCKs are only about 45 % or less

at the 20 mm error threshold. These fairly improved PCK metric implies

the enhanced user experience of the tracking system in terms of human

perception as presented in the previous chapter 2. The more discussion

in terms of human perception of tracking accuracy of our VIST will be

addressed in the following discussion section.

We present the mean error and histogram for frames with respect to

the number of observed markers (Fig. 4.6B). The mean error does not

substantially increase as the number of visible markers decreases (except

the rare case where only one marker is observed), as opposed to general

vision-based systems wherein the tracking errors sharply deteriorate with

occlusions (Armagan et al. 2020; Moon et al. 2018; Mueller et al. 2018).

This robustness against occlusions is because our VIST framework can

still estimate the occluded segments by opportunistically exploiting the

IMU information. Note also that the histogram of frames with respect to

the number of observed markers clearly follows a normal distribution, in-

dicating that the displayed hand images in the experiment are not biased.

This demonstrates that the robustness of our system is applicable to not

only certain/specific but also general/diverse postures of the hand.

We also perform experiments with the TC-fusion off and the hand

tracking simple becomes unstable/chattering due to the issue of corre-

spondence search as stated in chapter 4.3 (Fig. 4.6C); and evaluate the

stereo camera and the IMU-only EKF individually and they show much

poorer performance than our VIST (i.e., camera: mean error 12.7 mm
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Figure 4.9. Experimental setup (left) for measuring the positional accuracy and

tracking error (right) of each sensing modality. (A) The mean error from the

visual marker/sensor is computed as 12.70 mm, which is larger than 10.14 mm

of the proposed VIST algorithm, (B) The mean error estimated from IMU-only

EKF drastically diverges in seconds owing to uncalibrated parameters of the

IMU (drift, bias, noise, or disturbance).

with 30Hz rate; IMU-only EKF quickly diverging) even for merely a

single point tracking (Fig. 4.9). These all clearly manifest the impor-

tance/cruciality of the TC-fusion for our proposed VIST framework.

During the experiment, runtime performance of the proposed algo-

rithm is also measured as shown in table 4.2. The frequency (the number

of iterations per second) and the execution time per iteration of each sub-

process of the proposed VIST algorithm in real-time operation. Mainly

94



Subprocess Frequency [ Hz ] Execution Time [ µs ]

IMU Data Acquisition 91 9374

Prediction " 1210

Images Acquisition 26 8825

Marker Detection " 2931

Stereo Matching " 85

Correspondence Search " 93

Correction " 2021

Table 4.2. The Runtime performance of the proposed algorithm.

two threads (an IMU thread (up) and a vision thread (down)) are run-

ning, where the raw data acquisition processes from each sensor (including

waiting time for arrival of next-step sensor data) account for most of the

execution times, which shows the computational affordability of our al-

gorithm. All the process only takes up less than 25% CPU usage in Intel

i7-7700HQ/2.80 GHz laptop without requiring high-end GPU.

4.7. Quantitative and Comparative Evaluation for Chal-

lenging Hand Motion

4.7.1. Experimental Setup

Using the same setup in Sec. 4.6, we conduct quantitative experi-

ments for the two scenarios, object-interaction and wearing haptic de-

vices, which raise challenging issues of severe occlusion, magnetic in-

terference, or mechanical contact. Our experiments aim to verify the

performance/robustness of the tracking algorithms for general/various

hand motions, thus, we generate large instruction sets of hand images
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Figure 4.10. Quantitative evaluation setup for (A) object-interaction, which

display random object-interaction images from instruction set and (B) wearing

haptic devices, which display virtual circle instruction where user can receive

haptic feedback via CHDs.

(for displaying random hand images) and assign all different instruc-

tion sequences for each subject. The experiments are performed using

the setup with random instruction (Fig. 4.10, the detailed description of

which would be presented in following section.

4.7.2. Procedure

In case of the experiment for object-interaction, we construct a large

instruction set of diverse objects (i.e., an apple, mug, cosmetic, racket,

book, earphone case, portable fan, and hand-drill). Those objects are se-

lected as experimental objects, since we frequently interact in daily life.

The dataset of each object consists of hundred of hand images (i.e., eight

hundred images for the instruction set) including possible configurations

of hands when interacting with the object. The experiment for a sub-
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Figure 4.11. Snapshots of an instruction set for object-interaction experiment.

The set includes images of various hand poses interacting with diverse daily

objects including mangetic objects (earphone case, portable fan, and hand-drill).

The instruction set of each object consists of hundred of hand images.

ject consists three sets, where the target objects are selected randomly

among instructional objects (Fig. 4.10A). In each set, the subject con-

ducts ten trials of hand motions, where, same with Sec. 4.6, the subject

is instructed to duplicate a displayed image on the monitor, which is ran-

domly sampled every three seconds from the dataset of the target object.

The time interval between trials is three seconds, and, including transi-

tional motions to the target object of the next set, the duration of each
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set is forty seconds, thus, the total duration of each experiment is two

minutes. To obtain robust/generalizable experiments results, total fifteen

subjects participate in experiments with various hand shapes (Fig. 4.7)

same with the previous experiment. All the number of data is amount to

45K (about 3K data for each subject) for each experiment, which certify

statistically significance of our experiments

In case of the experiment for wearing haptic devices, we construct an

instructional program where the range of haptic feedback is randomly dis-

played (Fig. 4.10B). In each trial, the range of haptic feedback is displayed

upon the raw left images real-time, which take forms of a translucent cir-

cle and the location/radius of the circle is randomly determined. When

displaying the haptic range, the subjects are asked to their finger-tips to

the center of range. Through the CHDs, the haptic feedback is delivered

on the finger-tip, where the magnitude of the feedback increases as the

finger-tips are closer to the center of the circle. The time interval between

trials is also three seconds and each subject conducts forty trials of hand

motions, thus, the total duration of each experiment is also two minutes,

which amount to about 30K data and fifteen participants participate in

the two experiments same with Sec. 4.6.

4.7.3. Experimental Result

The experimental results with statistical analysis are shown in ta-

ble 4.3 and 4.4. The mean errors (SDs) of all joint errors are measured

as 12.68 mm (1.66 mm) for the object-interaction experiment (table 4.3)

and 10.89 mm (1.53 mm) for the haptic device experiment (table 4.4),

and the PCKs of all joints are presented comparing with the previous

results of free hand motion (Fig. 4.12). The 95 % CIs of the mean errors
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Figure 4.12. (A) 3D PCK analysis of the experiments (object-interaction and

wearing haptic devices) in comparison with the previous free motion result (left)

and other tracking methods for free motion (Iqbal et al. 2018; Zhang et al. 2020),

which is the winners of the tracking challenge (Armagan et al. 2020). (B) The

histogram of frames (blue) and the mean error (red) with respect to the number

of observed markers.

are computed in narrow ranges, by [11.36 mm, 13.76 mm] and [9.82 mm,

12.51 mm] respectively, which verify that the obtained mean errors are

statistically significant for general users.

For the experiment of object-interaction, compared to the winner of

the RGB vision-based hand tracking with objects (Iqbal et al. 2018) in

the challenge (Armagan et al. 2020), our VIST system shows the much

improved PCK metric and mean errors. Given the difficulty of even de-

tection of the bounding box of the human hand, in case of large occlusion
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Keypoint Mean Joint SD SD 95 % CI

(Object-Interaction) Error (Subjects) (Overall Data) for Mean Error

Dorsum 9.85 1.51 0.39 [ 9.08 , 10.61 ]

Thumb 12.29 1.88 0.48 [ 11.34 , 13.24 ]

Index 14.04 1.54 0.40 [ 13.26 , 14.82 ]

Middle 14.52 1.71 0.44 [ 13.66 , 15.39 ]

Mean 12.68 1.66 0.43 [ 11.84 , 13.52 ]

Table 4.3. The experimental results with statistical analysis of each keypoint

from the quantitative evaluation for object-interaction.

Keypoint Mean Joint SD SD 95 % CI

(w/ Haptic Device) Error (Subjects) (Overall Data) for Mean Error

Dorsum 9.14 1.64 0.42 [ 8.31 , 9.97 ]

Thumb 10.82 1.52 0.39 [ 10.05 , 11.59 ]

Index 12.22 1.41 0.36 [ 11.50 , 12.93 ]

Middle 11.38 1.56 0.40 [ 10.59 , 12.17 ]

Mean 10.89 1.53 0.40 [ 10.11 , 11.66 ]

Table 4.4. The experimental results with statistical analysis of each keypoint

from the quantitative evaluation for wearing haptic devices.
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(thus, the challenge also provides the ground-truth position of the hand),

these contrasting results can verify that superior performance/robustness

of our VIST with objects. In case of wearing haptic devices also cause

occlusion by wearing haptic devices, which leads to the visual distortion

of human hands from the dataset for the vision-based systems.

Note that the CHDs and the three instructional objects (i.e., hand-

drill, earphone case, and portable fan) comprise of ferromagnetic ma-

terials (e.g., steel, magnets) or generate operating current, which cause

electro-magnetic interfere to magnetometers. Thus, tracking hands wear-

ing the devices or interacting with those objects (e.g., electronic devices)

are challenging for IMU/compass wearable systems, for the same hand

motions from the VIST experiment, while our VIST exhibits the ro-

bust performance for those scenarios as mentioned earlier. In summary,

through these experiments, we can again verify the superior performance

and robustness of our proposed VIST system and its promise for many

challenging real-world applications.

4.7.4. Performance Comparison with Existing Methods for Challenging

Hand Motion

In order to compare the different algorithms fairly, we think, by doing

so the superior performance of our VIST can clear be shown, the same

dataset of hand motions should be applied to the different algorithms.

Unfortunately, feeding the exactly same raw data for the different meth-

ods (i.e., vision-based tracking or IMU/compass wearable tracking) with

our VIST data is impossible, due to the sensor configuration is completely

different. To be more specific, the training sets of vision-based systems

mostly are generated from bare hand images, yet, the hand images from
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our experiment wearing the sensor glove, thus, cannot be directly applied

to vision-based methods. In addition, a strength of the proposed VIST

is free from the problematic magnetometers, thus, the wearable sensor

glove is fabricated only with the accelerometers and gyroscopes, which

also allows for improvement of sampling rate of our sensor glove.

Especially, compared to the previous experiments of free hand mo-

tion, which extract instructional images from one dataset of the compared

method (Zhang et al. 2019a), thus the result can be generalizable only

for the dimension of hand configuration. On the contrary to this, for the

challenging scenarios, the dimension of the hand motions are increased

(e.g., for various types of objects) and the similar dataset are absent for

the existing methods (e.g., wearing CHD). Thus, although exact same

hand motion is not tested, we alternatively conduct comparative study

for the same instructional motions to show that our VIST outperforms

other methods for the challenging scenarios. We gather datasets of hand

motions as similar as possible for same subjects, and compare the different

algorithms by feeding the similar datasets.

A public library of vision-based tracking (Zhang et al. 2019a) is tested

for the object-interaction (book, racket, and mug) and wearing CHD.

The tracking error of the method is also measured with the MOCAP

system, by attaching four MOCAP markers on the same position with

the previous experiment, and calibrating it from the vision-based tracking

results. The tracking results are shown in Fig. 4.13. To compare with

our VIST results, the hand motions from the same instruction in the

experiment (Sec. 2.4.5) is tested. When the hands are interacting with

the objects or wearing the haptic devices, the tracking results (green

line) becomes much unstable (distorted from real hand). The measured
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Figure 4.13. Snapshots (top) and tracking error obtained by MOCAP (bottom)

of a vision-based method [9] in cases of object-interaction ((A) hand-drill, (B)

mug, (C) racket) or (D) wearing haptic devices (errors of thumb/index fingers

(yellow, red) are explicitly increased due to the presence of CHDs).

tracking error (black) is reasonable at some extent in free motion, but

when self-occlusion occurs, the tracking error largely increased from the

stable result. Moreover, when the hands are interacting with the objects or

wearing the haptic devices (red area), the tracking error sharply increased

(even up to tens of cm more than their hand size), which clearly shows

the limitations of the vision-based method to occlusion.

We alternatively conduct comparative study for the same instruc-

tional motions to show that our VIST outperforms other methods for

the challenging scenarios. For the case of magnetic-interference, we also

conduct the running test for the same instructional most of VIST. Then

we save all the calibrated sensor data of compass, adopting the same sen-
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A B C D

Figure 4.14. Snapshots (top) and calibrated sensor data (middle, bottom) of

the compasses (on the metacarpal phalanx of the thumb finger (middle) and the

proximal phalanx of the index finger (bottom)) when cases of object-interaction

((A) hand-drill, (B) portable fan, (C) earphone case) or (D) wearing haptic

devices.

sor configuration with the FTM in the previous chapter 3. As explained

earlier, the compass should be pre-calibrated to provide global yaw in-

formation by measuring earth magnetic field, thus, after the calibration

the magnitude of compass reading should be one (unit vector for direc-

tional information). However, as shown in Fig. 4.14, the magnitude of the

calibrated reading data (black line) sharply increased due to the strong

magnetic field from objects (hand-drill, portable fan, earphone case) or

CHDs. This means the compass data would hamper the rotational estima-

tion when the hands wear the haptic devices or interacting with magnetic

objects (e.g., electronics, still-wall, magnets), which shows the unstable

performance of IMU/compass wearable systems.
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4.8. Qualitative Evaluation for Real-World Scenarios

We perform qualitative evaluations of our VIST framework for real-

world challenging scenarios, that defy existing hand tracking methodolo-

gies. These scenarios include the above representative challenging hand

motions (i.e., object-interaction and wearing CHDs in Sec. 4.7), and other

real-world scenarios, which can cause problems for existing methods (i.e.,

visually complex background (vision-based systems) or outdoor environ-

ment (both vision-based and wearable-sensor based systems). For this,

we visualize the estimated hand pose/configuration in VR deploying the

cross-platform game engine Unity® in the following figures.

4.8.1. Visually Complex Background
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Figure 4.15. Qualitative evaluations for visually complex background: (A)

Colorful objects in the background or manipulated by hands and (B) Colorful

painting background.

It is challenging for vision-based systems to track the human hand

with objects or in the background with similar appearances/colors (Mueller

et al. 2018; Zimmermann & Brox 2017; Sridhar et al. 2015). To evaluate

robustness against such situations, we design qualitative experiments with

colorful objects (magazines, fruits, stationery) and a painting (“Bedroom
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in Arles’’) in the background with visually similar colors/patterns to the

glove markers. In addition to free hand motions, we also perform experi-

ments of interaction with daily objects (banana and scissors).

As shown in Fig. 4.15, despite the visually adversarial objects/backgrounds,

our VIST system robustly tracks the hand motion. This is because our

VIST algorithm accurately detects visual markers from the background

using the HSV and shape requirements (size, convexity, and circularity)

simultaneously. Moreover, using the IMU-aided correspondence search, it

can robustly eliminate outliers (i.e., color blobs in backgrounds with sim-

ilar colors/shapes as the true markers) and match marker observations O

with the IMU-predicted anonymous markers on the gloveM, thereby, en-

suring this stable performance with visually complex objects/backgrounds.

4.8.2. Object Interaction

As noted earlier, occlusions are the fundamental limitations of the

vision-based systems. Self-occlusion has sometimes been addressed, yet,

still remains unsolved even in the state-of-the-art results (Moon et al.

2018; Mueller et al. 2017; Sridhar et al. 2016). When the hand is partially

outside the FOV, the vision-based tracking cannot articulate the invisible

segments or even recognize the human hand in a scene (Mueller et al.

2017, 2018). Therefore, we design a hand tracking experiment comprising

a set of substantially self-occluded hand postures (e.g., fingers invisible

behind palm or middle finger abduction behind index finger, which almost

all vision-based tracking systems cannot handle). We also instruct the

subjects to make various motions of the fingers substantially outside the

FOV.

Our VIST system can track self-occluded hand poses accurately even
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Figure 4.16. Qualitative evaluations for various occlusion types: (A) Outside

the FOV, (B) Self-occlusion, (C) Severe occlusion from surroundings, (D) In-

teraction with various objects, (E,F) Robustness of VIST framework against

magnetic-interference/contact/occlusion from the tablet and comparison with

other tracking methods (Zhang et al. 2019a; Lee et al. 2019).
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when half the hand is unobserved in the scenes (Fig. 4.16-B). This re-

sult clearly verifies the robustness of our system to self-occlusion and is

consistent with the low error in the quantitative results regardless of the

number of occluded markers. Moreover, our VIST system can track the

poses of invisible segments outside the FOV (Fig. 4.16-A) as the IMUs

with precisely real-time/auto-calibrated hand/sensor-related parameters

can provide the required pose information. This property noticeably in-

creases the usability of our system by allowing users to move their hands

freely regardless of the FOV of the camera (e.g., for the camera used in

our system, the operable area increases by about 50 % at a distance of

25 cm from the camera).

When human hands interact with objects, occlusion can be particu-

larly challenging for the vision-based tracking. This is because it is in-

feasible to include all the daily objects with accurate annotations in the

training set, or the tracking error typically worsens about 2–4 times for

those untrained objects (Armagan et al. 2020). Even for objects in the

training set, many systems fail to track hand motions with large objects

(Mueller et al. 2017; Sridhar et al. 2016; Zimmermann & Brox 2017; Pan-

teleris & Argyros 2017). Such object interaction is also problematic for

soft wearable hand tracking, as the object may deform some soft sensors,

which can then distort their signals related purely to the hand motion,

thereby, causing bias or even instability in the estimated hand motion.

On the other hand, the IMU/compass-based wearable tracking systems

can be compromised in the case of interaction with objects containing fer-

romagnetic materials (e.g., metallic products, electronic components with

magnets) or with electronic devices having substantial internal currents

(e.g., powered tools, workstations), as the compasses of the systems are

108



to be breached in this case.

In contrast, as shown in Fig. 4.16-C,D, our VIST framework retains

accurate hand tracking even when the hand is occluded by, or interacting

with, various objects (e.g., when behind the ping-pong racket or pressing

the gampad buttons). Our VIST system can also track the hand under

the table, thereby, verifying its robustness to occlusions from the sur-

roundings. Additionally, we also conduct experiments to manipulate a

tablet PC, which possesses embedded magnets and ferromagnetic mate-

rials (against IMU/compass tracking), form-factor prone to cause occlu-

sions (against vision-based tracking) and contact on many parts of the

hand (against soft-sensor tracking).

As shown in Fig. 4.16-E, our VIST system can still retain its tracking

even with the tablet, whereas other existing systems fail as shown in Fig.

4.16-F.

4.8.3. Wearing Fingertip Cutaneous Haptic Devices

The vision-based hand tracking systems, which utilize datasets based

on bare hands for the training, generally cannot track the hands when the

user wears gloves or devices/attachments on the hand, as the appearance

of the bare hand is then changed/distorted. The soft wearable tracking

systems are also vulnerable to those extra devices/attachments as the

soft sensor signals are distorted by their contacts. Large deformations

due to the attachments can even cause permanent offset errors in the soft

sensors. On the other hand, the IMU/compass wearable tracking systems

can be severely interfered when the devices include magnets or actuators

(Lee et al. 2019; Baldi et al. 2017).

To verify again the robustness of our VIST framework against such
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Figure 4.17. Qualitative experiments with CHDs in VR: (A) Experimental

setup with virtual rabbit, (B) Construction of 3-DOF CHDs and wearing con-

figuration, (C) Robustness of VIST framework against visual distortion, me-

chanical contacts and electromagnetic interference from CHDs and comparison

with other tracking methods (Zhang et al. 2019a; Lee et al. 2019).

extra modules/gloves, we perform experiments with the CHDs same with

the previous experiment, (Fig. 4.17B), which are developed to impose

3-DOF (i.e., sheer/normal) force feedback on the fingertip using three

motors and a control plate for immersive VR experience. For the experi-

ment, we also build a VR environment for haptic exploration task, where

the human users can receive 3-DOF haptic feedback when touching a vir-

tual rabbit (Fig. 4.17A). The users wear two CHDs on the thumb/index

fingertips and the 3-DOF contact force is delivered on each of the fin-

gertips. As shown in Fig. 4.17C and explained in the previous section

4.7, existing systems become unstable with the CHDs due to the visual

distortion/occlusion of the hand or due to the magnetic interference from

the magnets and current in the motors. In contrast, our proposed VIST
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Figure 4.18. Qualitative experiments in outdoor environments: (A) Lawn,

(B) Campus and (C) Parking lot.

system maintains the accurate hand tracking during the VR experiments.

4.8.4. Outdoor Environment

The IMU/compass or soft wearable hand tracking systems (Lee et al.

2019; Baldi et al. 2017; Glauser et al. 2019) typically require extra wrist

position sensing, which is often based on IR-based tracker, that however is

known to be affected by the ambient IR components in the sunlight. The

RGB-D vision-based hand tracking systems are typically not suitable for

outdoor environments either, since their structured IR rays can interfere

with the sunlight as well (Meilland et al. 2015; Abbas & Muhammad

2012). For the outdoor operations, the RGB vision-based tracking systems

also show lower accuracy, since their training sets are typically acquired

indoors (Hampali et al. 2020; Zimmermann & Brox 2017; Zhang et al.

2017).

We thus design experiments in some challenging outdoor environments

(i.e., lawn, campus, parking lot). In the outdoor lawn scenario, external
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power sources or powerful computing units (e.g., high-end GPUs (graphics

processing units)), which are necessary for the external wrist sensors (for

wearable hand tracking) or machine-learning techniques (for vision-based

hand tracking), are unavailable. In the campus scenario, experiments are

performed at sundown with drastically different light conditions from in-

doors, particularly detrimental for the RGB vision-based tracking. In the

parking lot experiments, we include some everyday activities (opening

car door, shaking hands), which are, yet, challenging for existing hand

tracking methodologies owing to the ferromagnetic materials in vehicles

(IMU/compass wearable tracking), mechanical contacts with people or

objects (soft wearable tracking), or occlusions with different light condi-

tion (vision-based tracking). Our VIST system, in contrast, can robustly

track the hand motion in all these experiments - see Fig. 4.18.

4.9. Discussion

Through the experiments, the superior performance of the proposed

VIST frame work is quantitatively evaluated and verified. For the evalu-

ation of free hand motion, the mean joint error is measured as 10.69 mm.

Compared to the accuracy of other vision-based methods (e.g., 13.66 mm

(Zhang et al. 2020)) of the winner of RGB-D vision-based tracking chal-

lenge (Armagan et al. 2020) or about 50 mm (Mueller et al. 2018) of

recent RGB-only method), our obtained tracking accuracy shows the en-

hanced accuracy of VIST. The 3D PCK metic of all joint is measured as

84 % within 20 mm error, and about 99 % within 35 mm, which is fairly

improved than those of existing systems The PCK metric of the VIST

framework also can be compared with those of the state-of-the-art vision-

based systems (Mueller et al. 2018; Zhang et al. 2020), which is higher
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than the compared algorithms, where the PCKs are only about 45 % or

less at the 20 mm error threshold. Considering the PCK is the metric ef-

fectively how human user really perceive a tracking system, these results

presents the superiority of our VIST in terms of human perception.

The efficacy of our VIST framework in terms of human perception can

be more deduced reflecting the results of the previous chapter 2. In the

chapter, when tracking the index fingertip in VR, human users cannot

perceive tracking errors of the fingertip under 5 cm. Moreover, according

to (Tan et al. 2007), they cannot discriminate angular difference of the

index finger joints less than 1.7° based on the proprioception. Since the

PCK of the VIST system within 5 cm error is 99 % and the rotation

tracking error of the VIST system would be less than 1.57°, which is the

rotational accuracy of purely IMU/compass-based tracking in (Lee et al.

2019) with no visual-inertial EKC/TC-fusion, our VIST framework would

likely allow users to perceive their VR hands accurately following their

real hands.

Figure 4.19. Tracking errors of each subject along with the their hand lengths.

The absolute mean joint error (left), which is constant and the percentage er-

ror (i.e., mean joint error / hand length), which is downward slopping (linear

regression result (red).
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The SDs of the mean joint errors are computed as 1.57 mm (between

subjects) and 0.41 mm (for overall data), 95 % CI are measured as 9.90 mm

to 11.49 mm. This small value of SD and width of CI proves the statistical

significance of our experimental results (i.e., generality to every user).

Note that the tracking error is consistent with all different hands (Fig.

4.7) of the subjects although the hand size/shape is considerable factors of

errors for existing systems (generalization issue for vision-based systems

or accumulative error of forward kinematics for IMU/compass or soft

wearable systems). On the contrary, as shown in the Fig. 4.19 (left), out

VIST shows the consistency of absolute tracking error along with the hand

size. This tendency can be more clear when the percentage error with the

hand length is plotted (Fig. 4.19 (right)) where the linear regression line

of the experimental data decreases.

In addition to free hand motion, we again verify the performance of

VIST for challenging scenarios in quantitative manner (Sec. 4.7). These

object-interaction case or wearing CHDs are still challenging difficult due

to object-induced occlusion or magnetic interference. However, the mean

error of VIST is still low value 12.68 mm for the object-interaction exper-

iment and 10.89 mm for the haptic device experiment (table 4.3 and4.4).

The results are also statistically meaningful given the small value of SDs

(1.66 mm and 1.53 mm) and width of CIs for mean value ([11.36 mm,

13.76 mm] and [9.82 mm, 12.51 mm]), respectively. The gap of the tracking

accuracy would become more distinct from the existing systems, which

is natural since our VIST overcome the limitations of the systems. To

present the superior performance of our system, we conduct a compara-

tive studies of up-to-date vision-based method (Zhang et al. 2019a) and

IMU/compass wearable system (Lee et al. 2019). For the hand motions of
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subjects/objects/instructions same with the VIST experiments, the sys-

tems shows sharply increased tracking error or unstable compass reading

even after calibration, which exhibits the failure cases of existing systems

compared to our VIST.

The key reason of the superior performance of our VIST framework

is that we alleviate the inherent issues of each sensor by visual-inertial

TC-fusion. The VIST framework circumvents the fundamental issues of

vision-based systems (occlusion, generalization, slow-update (Armagan

et al. 2020; Mueller et al. 2017; Sridhar et al. 2016)), as the motion of the

occluded parts can still be accurately estimated by using the IMU infor-

mation at a high rate (about 100 Hz) with the real-time/auto-calibrated

hand/sensor-related parameters, anatomical constraints and still-visible

markers. Our VIST system also overcomes the issues of drift or mag-

netic interference of IMU/compass-wearable systems by exploiting the

visual information in conjunction with the anatomical constraints; and

also the issues of unmodeled contacts for soft-sensor wearable systems,

as the camera and IMUs are immune to them. Moreover, the integrated

auto-calibration endows our VIST framework with improved accuracy

and convenience as compared to existing IMU/compass or soft-sensor

wearable systems, where those parameters are calibrated once before the

operation while the user taking several indicated poses, which is inevitably

with human errors (Yuan et al. 2013; Luinge et al. 2007; Seel et al. 2014).
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Chapter 5

Conclusion

As stated in the introduction, natural user interfaces based on hand mo-

tion tracking are promising for many current-burgeoning fields of hu-

man machine interaction such as robotics, VR/AR, rehabilitation, as we

human mainly utilize hand to interact with objects and environments

in daily life. Thus, in order to figure out the design specifications for

hand tracking system, we study about the human perception of visual-

proprioceptive conflicts (chapter 2), and suggest the design criteria (i.e.,

allowable error) for hand tracking system. Based on the findings, then,

we develop the wearable finger tracking module (chapter 3) applicable for

finger-based haptic interaction (with haptic devices). This hand tracking

module partially solves the magnetic-interferecne issues only for haptic

device, and loses its generality when interacting with other magnetic ob-

jects (steel-wall, electronics, powered-tool), thus, we consequently develop

the first tightly-coupled visual-inertial tracking framework with its exper-

imental evaluation(chapter 4), which is much more accurate, robust, and

generalizable for any challenging hand tracking application.
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In the chapter 2, the detection threshold of finger tracking error, which

would be a significant design specification for every hand tracking system,

is revealed from the human subject studies. From the mean and variance

of the average correct answer rate of discriminating the true finger-tip, we

can obtain the detection threshold of this visual-proprioceptive conflict

(i.e., trackiin error). The obtained detection threshold value to be 5.11cm

from the human subject study. This value would be meaningful for de-

signing hand tracking system since every hand tracking should satisfy at

least for the applications where the tracking error would not substantially

degrade user perception.

Moreover, in case of delivering the realistic haptic feedback to the

human subjects, as compared to the detection threshold 5.11cm for the

case of no haptic feedback, the detection threshold is increased to This

is quantitatively evidenced by their respective detection to 6.05cm. This

finding manifest that suitable usage of haptic feedback in finger-based in-

teraction would be desirable in terms of user experience and allowing for

lower tracking accuracy of hand tracking system, which is the reason we

construct the finger tracking module compatible with haptic device in the

next chapter. Given the fact that any tracking system can never be perfect

due to the limitation of the deployed sensors, (e.g., vision-based tracking

systems or wearable-sensor-based systems), we believe the above findings

would be very useful to design the performance specification of finger

tracking system with haptic feedback, which. The exact numbers associ-

ated to our findings would depend on the specifics of the experiments and

their setup, e.g., size of finger spheres, construction of the virtual environ-

ment, dynamic perturbation error, etc. Even so, we strongly believe that

the (vivid) trends of our findings and also the framework to obtain those
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would still be relevant and equally useful to other haptically-enabled VR

applications in practice as well.

Based on the above findings and intuition about hand tracking, in

chapter 3 we introduce novel wearable finger tracking module, FTM,

which can show the reasonable tracking performance compatible with

haptic devices. The existing hand tracking techniques have fundamen-

tal limitations especially integrating with the additional extra devices,

that is, occlusion and visual distortion for vision-based tracking systems,

magnetic-interference for IMU/compass wearable systems, and complex

arrangement/packing to estimate multi-DOFs joint for soft wearable sys-

tems. To address these issues, we utilize complementary wearable sensors

(IMU/compass module and soft sensor) and deploy the sensors oppor-

tunistically considering the anatomical characteristic of human hands.

Since our developed FTM is based on the heterogeneous sensors (i.e., soft

sensors, IMUs), this sensor configuration allow for multi-DOF anatomically-

consistent dexterous finger/hand motion tracking while avoiding motor-

IMU magnetic interference in small-size form factor. The quantitative

evaluation for tracking performance of each sensing modality is conducted

by MOCAP system.

We then integrate the wearable FTM with the 3-DOF CHDs and con-

struct the wearable cutaneous haptic interface, WCHI. The ped-in-hole

task, which is difficult task successfully fulfilled in VR due to require-

ment of fair dexterity and precision, is implemented in VR and tested

through the WHCI. We conduct human subject study to verify the per-

formance/capability of the proposed FTM, and also desire to certify the

efficacy of the integrated WCHI (i.e., wearable finger-based interface with

ability to track finger motion precisely and deliver haptic feedback simul-
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taneously) for real VR applications. In the experiments, the subjects re-

port that when the abduction-adduction (AA) motion is precisely tracked

(cf. which requires complex packing of soft sensors), the task is more

achievable, which shows the validity of our FTM for real finger-based in-

teraction. Moreover, the haptic feedback for the multi-fingered interaction

is verified as a crucial factor to increase/enhance the user experience and

task performance. This result clearly exhibits that both haptic feedback

and accurate tracking are important for the finger-based manipulation

task, which reinforces the necessity of accurate hand tracking.

However, the proposed FTM also solves the issues of existing method

restrictively, since the system fundamentally employs the heterogeneous

sensors (IMU/compass and soft sensor), not performs the sensor-fusion

of the both sensors utilizing complementary aspects. To be more spe-

cific, the FTM well address the issues when attaching the CHDs, for the

most problematic cases of each sensor, that is, interacting with magnetic

objects which can be completely solved by eliminating the problematic

compass, or mechanical contacts with objects of soft-sensor. The many

erroneous factors of each sensing modality also remain such as drift prob-

lem (IMU), linear disturbance (IMU), limited ruggedness (soft sensor),

dependency to external sensor due to no global positioning (both sen-

sors), or sensor-attachment error (both sensors). Due to the existence of

these issues, we aim to develop a novel complete hand tracking frame-

work, which is immune to every stated issue and improve accuracy and

robustness simultaneously, via the sensor fusion of complementary as-

pects, which is motivation for developing visual-inertial tracking system

(VIST) for human hand.

In the chapter 4, we propose a novel framework, VIST, applicable to
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general skeleton tracking system, which has the superior performance (ac-

curacy and robustness) and overcomes all the issues of existing systems.

Representatively, the vision-based tracking systems and IMU/compass

wearable tracking systems are widely used, thus, mainly compared with

our VIST. The vision-based systems have fundamental issues of occlusion

(self-occlusion, outside the FOV, object occlusion) and dataset-dependency,

which refrain the applicability to the daily activities (where our hands are

interacting with a myriad of daily objects) and general users in various

environments (where all users has all different hand shapes in all different

backgrounds). The IMU/compass wearable systems not only have lower

accuracy than vision-based systems (yet much better immunity to occlu-

sion than vision-based systems) but also have fundamental limitations of

magnetic interference owing to the high dependency on compass sensor,

which largely decreases the usability of the system (requiring frequent

calibrations) and range of usage only for magnetic-free object (not in-

cluding steel/magnets/electronics) or environment (not in smart factory,

near steel wall).

On the contrary, our proposed VIST is immune to all the issues

above, which means the first hand tracking system suitable for any ob-

ject/user/environment, even with much improved tracking accuracy and

robustness. Through the chapter 4, the hardware setup and algorithm are

thoroughly described to explain what is the technological/methodological

contributions of our VIST and why our framework achieves the improved

performance. The vision sensor and IMU sensor, which has the comple-

mentary aspects (i.e., sensitive to occlusion, fast motion but drift-free

information (vision) and high frequency rate with erroneous drift/bias),

thus already widely used for many other estimation algorithm (e.g., local-
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ization and mapping for robots (Qin et al. 2018; Hesch et al. 2014; Chen

et al. 2019)) are integrated and fused effectively in our VIST framework.

The hardware setup of VIST, which employs multiple IMUs, many,

passive and anonymous visual markers, and a stereo camera, is optimized

solution for tracking the human hand, which has peculiarity of large-

DOFs in small size. Through this setup, we can estimate large DOFs

motions without problematic compass sensor, by acquiring rich visual in-

formation of hands via a large number of markers. The type of markers

are adopted as a passive type (color fabric), which has merit of simple

implementation without electronic installation (e.g., VIVE tracker, LED)

or large form-factor (e.g., AR marker, feature-based marker), simulta-

neously maximizing the number of markers attached on the small-size

human hand.

The sensor fusion of these numerous markers with inertial information

from IMUs, yet, are much difficult since most of markers are frequently un-

observed for skeletal systems, particularly for hands, since the markers are

all anonymous and frequently occluded (self-occlusion, object-occlusion)

due to the mentioned peculiarity of human hands. Thus, we firstly propose

the systemic framework of visual-inertial sensor fusion for skeletal system,

which adopts TC-fusion framework. In the TC-fusion, where the vision

and IMU module are tightly-coupled (i.e., coexistence of inertial-to-vision

and vision-to-inertial loops), visual and inertial information can robustly

be matched and optimally fused for enhanced hand tracking. Through

the inertial-to-vision loop (i.e., IMU-aided correspondence search in Sec.

4.4), inertial information of IMUs are utilized to estimate observation

probability of each marker, which facilitates maximum-likelihood match-

ing of many anonymous markers even in case of occlusions or outside the
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FOV. Via the visual-to-inertial loop (i.e., visual information based cor-

rection and filtering in Sec. 4.5), visual information, which is not anony-

mous but matched with the hand from above correspondence search, are

utilized to estimate a large number of hand skeletons with out com-

pass information, and even the erroneous kinematic-related parameter

(i.e., hand scale, sensor-attachment error, IMU sensor biases) automati-

cally real-time, which mainly degrade tracking accuracy and usability of

IMU/compass (or even soft-sensor) wearable systems.

Through the experiments in the chapter 4.6 and chapter 4.8 with

their mean error and PCK measures given in the figures, our VIST frame-

work significantly outperforms other state-of-the-art vision-based systems

(Mueller et al. 2018; Zimmermann & Brox 2017; Iqbal et al. 2018; Zhang

et al. 2020), particular for some challenging scenarios (e.g., visually com-

plex backgrounds/objects), for which existing vision-based methods even

cannot work stably, whereas the VIST framework still retains its track-

ing performance. The successful tracking with CHDs (Lee et al. 2019)

also manifest that our VIST framework can be easily ported for appli-

cations requiring extra wearable devices/attachments (e.g., robotic hand

teleoperation with CHDs, soft prosthesis (Kang et al. 2019)).

We also show stable performance of the VIST framework for different

types of occlusions and magnetic interference. Specifically, motion track-

ing while interacting with diverse objects has been an issue for existing

hand tracking systems: vision-based systems not robust for untrained ob-

jects (Armagan et al. 2020) or severe object-occlusion (Hampali et al.

2020; Mueller et al. 2017); soft-sensor wearable systems susceptible to ob-

ject mechanical contact (Park et al. 2017; Kim et al. 2016); IMU/compass

or magnetic wearable systems (Lee et al. 2019; Baldi et al. 2017; Ma et al.
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2011) fragile to objects with magnets or internal currents. Given that

human hands ceaselessly interact with various objects in daily life, the

robust hand tracking of our VIST framework implies its applicability for

a variety of real-world applications with diverse objects, that have defied

other approaches so far (e.g., daily activity monitoring for rehabilitation,

skill training/assessment of equipment/tools).

In addition, we verify that the VIST system can robustly track hand

motion outdoors, which is tough for most existing systems, as the sunlight

interferes with many types of IR sensors (e.g., RGB-D camera (Sridhar

et al. 2015; Mueller et al. 2017), external IR tracker required for wearable

tracking systems (Lee et al. 2019; Baldi et al. 2017)), whereas outdoor

hand-tracking datasets for machine learning are extremely scarce. Our

outdoor experiments verify not only the complete portability of the VIST

system in terms of hardware/algorithm but also its feasibility for promis-

ing outdoor applications (e.g., intuitive interface for 3D drone swarm

control).

In conclusion, to our knowledge, our VIST framework solves those

fundamental limitations of existing hand tracking systems for the first

time. This superior performance can be achieved by fusing the comple-

mentary aspects of visual and inertial sensors in TC-fusion, which turns

out crucial to properly address the peculiarity of the hand (and finger)

tracking. With the ruggedness, portability and affordable cost, our VIST

system would allow for many promising real-world applications based on

hand motion tracking.
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Qingfu, Li, Shile, Yang, Linlin, Lee, Dongheui, Yao, Angela,

Zhou, Weiguo, Mei, Sijia, Liu, Yunhui, Spurr, Adrian, Iqbal,

Umar, Molchanov, Pavlo, Weinzaepfel, Philippe, Brégier, Ro-

main, Rogez, Gregory, Lepetit, Vincent & Kim, TaeKyun 2020

124



Measuring generalisation to unseen viewpoints, articulations, shapes and

objects for 3d hand pose estimation under hand-object interaction. In

Proc. European Conference on Computer Vision, pp. 85–101.

Baldi, Tommaso Lisini, Mohammadi, Mostafa, Scheggi, Stefano &

Prattichizzo, Domenico 2015 Using inertial and magnetic sensors for

hand tracking and rendering in wearable haptics. In Proc. IEEE World

Haptics Conference, pp. 381–387.

Baldi, Tommaso Lisini, Scheggi, Stefano, Meli, Leonardo, Moham-

madi, Mostafa & Prattichizzo, Domenico 2017 Gesto: A glove for

enhanced sensing and touching based on inertial and magnetic sensors for

hand tracking and cutaneous feedback. IEEE Transactions on Human-

Machine Systems 47 (6), 1066–1076.

Besl, Paul J & McKay, Neil D 1992 Method for registration of 3-d shapes.

In Proc. Sensor Fusion IV: Control Paradigms and Data Structures, pp.

586–606.

Bimbo, Joao, Pacchierotti, Claudio, Aggravi, Marco, Tsagarakis,

Nikos & Prattichizzo, Domenico 2017 Teleoperation in cluttered en-

vironments using wearable haptic feedback. In Proc. IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pp. 3401–3408.

Bleser, Gabriele, Hendeby, Gustaf & Miezal, Markus 2011 Using ego-

centric vision to achieve robust inertial body tracking under magnetic

disturbances. In Proc. IEEE International Symposium on Mixed and Aug-

mented Reality , pp. 103–109.

Burns, Eric, Razzaque, Sharif, Panter, Abigail T, Whitton, Mary C,

McCallus, Matthew R & Brooks, Frederick P 2005 The hand is

slower than the eye: A quantitative exploration of visual dominance over

proprioception. In Proc. IEEE Virtual Reality Conference, pp. 3–10.

Chan, Ting Kwok, Yu, Ying Kin, Kam, Ho Chuen & Wong, Kin Hong

2018 Robust hand gesture input using computer vision, inertial measure-

125



ment unit (imu) and flex sensors. In Proc. IEEE International Conference

on Mechatronics, Robotics and Automation, pp. 95–99.

Chang, Lillian Y & Pollard, Nancy S 2008 Method for determining

kinematic parameters of the in vivo thumb carpometacarpal joint. IEEE

Transactions on Biomedical Engineering 55 (7), 1897–1906.

Chen, Yiming, Zhang, Mingming, Hong, Dongsheng, Deng,

Chengcheng & Li, Mingyang 2019 Perception system design for

low-cost commercial ground robots: Sensor configurations, calibration,

localization and mapping. In Proc. IEEE/RSJ International Conference

on Intelligent Robots and Systems, pp. 6663–6670.

Chinello, Francesco, Malvezzi, Monica, Pacchierotti, Claudio &

Prattichizzo, Domenico 2015 Design and development of a 3RRS

wearable fingertip cutaneous device. In Proc. IEEE/ASME International

Conference on Advanced Intelligent Mechatronics, pp. 293–298.

Chinello, Francesco, Pacchierotti, Claudio, Malvezzi, Monica &

Prattichizzo, Domenico 2017 A three revolute-revolute-spherical

wearable fingertip cutaneous device for stiffness rendering. IEEE Trans-

actions on Haptics 11 (1), 39–50.

Chossat, Jean-Baptiste, Tao, Yiwei, Duchaine, Vincent & Park,

Yong-Lae 2015 Wearable soft artificial skin for hand motion detection

with embedded microfluidic strain sensing. In Proc. IEEE International

Conference on Robotics and Automation, pp. 2568–2573.

Colman, Andrew M 2015 A dictionary of psychology . New york, NY: Oxford

University Press.

Drewing, Knut & Ernst, Marc O 2006 Integration of force and position

cues for shape perception through active touch. Brain Research 1078 (1),

92–100.

Faessler, Matthias, Fontana, Flavio, Forster, Christian, Mueggler,

Elias, Pizzoli, Matia & Scaramuzza, Davide 2016 Autonomous,

126



vision-based flight and live dense 3d mapping with a quadrotor micro

aerial vehicle. Journal of Field Robotics 33 (4), 431–450.

Folegatti, A., de Vignemont, F., Pavani, F., Rossetti, Y. & Farné,
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Dan, Oulasvirta, Antti & Theobalt, Christian 2016 Real-time

joint tracking of a hand manipulating an object from rgb-d input. In Proc.

European Conference on Computer Vision, pp. 294–310.

Tan, Hong Z, Srinivasan, Mandayam A, Reed, Charlotte M &

Durlach, Nathaniel I 2007 Discrimination and identification of finger

joint-angle position using active motion. ACM Transactions on Applied

Perception 4 (2), 10–es.

Tao, Yaqin, Hu, Huosheng & Zhou, Huiyu 2007 Integration of vision and

inertial sensors for 3d arm motion tracking in home-based rehabilitation.

International Journal of Robotics Research 26 (6), 607–624.

Tkach, Anastasia, Tagliasacchi, Andrea, Remelli, Edoardo, Pauly,

Mark & Fitzgibbon, Andrew 2017 Online generative model personal-

ization for hand tracking. ACM Transactions on Graphics 36 (6), 1–11.

Tobergte, Andreas, Helmer, Patrick, Hagn, Ulrich, Rouiller,

Patrice, Thielmann, Sophie, Grange, Sébastien, Albu-
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인간 기계 상호작용을 위한 강건하고

정확한 손동작 추적 기술 연구

서울대학교 대학원

기계항공공학부

이 용 석

요 약

손 동작을 기반으로 한 인터페이스는 인간-기계 상호작용 분야에서 직

관성, 몰입감, 정교함을 제공해줄 수 있어 많은 주목을 받고 있고, 이를 위해

가장 필수적인 기술 중 하나가 손 동작의 강건하고 정확한 추적 기술 이다.

이를 위해 본 학위논문에서는 먼저 사람 인지의 관점에서 손 동작 추적 오

차의 인지 범위를 규명한다. 이 오차 인지 범위는 새로운 손 동작 추적 기술

개발시중요한설계기준이될수있어이를피험자실험을통해정량적으로

밝히고, 특히 손끝 촉각 장비가 있을때 이 인지 범위의 변화도 밝힌다. 이를

토대로, 촉각 피드백을 주는 것이 다양한 인간-기계 상호작용 분야에서 널리

연구되어 왔으므로, 먼저 손끝 촉각 장비와 함께 사용할 수 있는 손 동작

추적 모듈을 개발한다. 이 손끝 촉각 장비는 자기장 외란을 일으켜 착용형

기술에서 흔히 사용되는 지자기 센서를 교란하는데, 이를 적절한 사람 손의
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해부학적 특성과 관성 센서/지자기 센서/소프트 센서의 적절한 활용을 통

해 해결한다. 이를 확장하여 본 논문에서는, 촉각 장비 착용 시 뿐 아니라

모든 장비 착용 / 환경 / 물체와의 상호작용 시에도 사용 가능한 새로운 손

동작 추적 기술을 제안한다. 기존의 손 동작 추적 기술들은 가림 현상 (영

상 기반 기술), 지자기 외란 (관성/지자기 센서 기반 기술), 물체와의 접촉

(소프트 센서 기반 기술) 등으로 인해 제한된 환경에서 밖에 사용하지 못

한다. 이를 위해 많은 문제를 일으키는 지자기 센서 없이 상보적인 특성을

지니는 관성 센서와 영상 센서를 융합하고, 이때 작은 공간에 다 자유도의

움직임을 갖는 손 동작을 추적하기 위해 다수의 구분되지 않는 마커들을

사용한다. 이 마커의 구분 과정 (correspondence search)를 위해 기존의 약

결합 (loosely-coupled)기반이아닌강결합 (tightly-coupled기반센서융합

기술을 제안하고, 이를 통해 지자기 센서 없이 정확한 손 동작이 가능할 뿐

아니라 착용형 센서들의 정확성/편의성에 문제를 일으키던 센서 부착 오차

/사용자의손모양등을자동으로정확히보정한다.이제안된영상-관성센

서 융합 기술 (Visual-Inertial Skeleton Tracking (VIST)) 의 뛰어난 성능과

강건성이 다양한 정량/정성 실험을 통해 검증되었고, 이는 VIST의 다양한

일상환경에서 기존 시스템이 구현하지 못하던 손 동작 추적을 가능케 함으

로써, 많은 인간-기계 상호작용 분야에서의 가능성을 보여준다.

주요어: 손동작 추적, 강결합 센서 융합, 비선형 칼만 필터링, 정보 일치

탐색, 관성 센서, 컴퓨터 비전, 인간-컴퓨터 상호작용, 인간-로봇

상호작용, 가상 현실, 증강 현실, 촉각 피드백

학 번: 2013-23082
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