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Abstract

The ubiquity of modern computers in the form of smartphones, smartwatches, and virtual
and augmented reality glasses has lead to the need to create new ways of computer input.
Conventional input devices like the keyboard and the mouse can no longer be used for such
emerging devices. The human hands are highly dexterous and could provide an always-
on input capability through the use of gestures. In this thesis, we introduce new methods
for markerless tracking of the full articulated motion of hands and using tracked motion for
gesture-based computer input.

First, we contribute to computer vision-based markerless tracking of hands for use in
computer input. This is a hard problem due to occlusions, uniform skin color, fast motions,
and scene clutter. We show that combining novel representations for model-based tracking
with discriminative learning techniques can result in mutually exclusive failure modes that
help overcome some of the challenges. We show the benefit of our contributions in a variety
of scenarios including varying number of cameras, viewpoints, and run-time requirements.
We also show that our contributions can scale with scene complexity—it can be used, to our
knowledge for the first time, to jointly track hands interacting with objects.

Second, we contribute to gesture-based input driven by markerless hand tracking. The
design of appropriate interaction techniques and gestures is a hard problem because of the
large design space, and human factors such as ergonomics. We show that gestures elicited
from users can be used to develop interaction techniques for 3D navigation tasks. We then
identify limitations with elicitation studies and propose a novel method for computational
gesture design. This allows designers, for the first time, to automatically generate gestures
satisfying criteria such as speed or accuracy. Finally, we show that even limiting hand track-
ing to only fingertips can enable new input methods for small form factor devices such as
smartphones. We conclude the thesis with a critical discussion about limitations and direc-
tions for future work.





Kurzfassung

Die Omnipräsenz von modernen Computersystemen wie etwa Smartphones, Smartwatches
und Head-Mounted Displays zum Eintauchen in die virtuelle und erweiterte Realitẗ führt
dazu, dass neue Eingabemodalitäten benötigt werden. Konventionelle Eingabegeräte, wie
etwa die Tastatur oder Maus, können nicht länger in Verbindung mit diesen neuen Geräten
verwendet werden. Die menschlichen Hände hingegen sind sehr ausdrucksstark und stehen
dem Benutzer immer zur Verfügung. In dieser Arbeit werden Verfahren vorgestellt, welche
die markerlose Bewegungserfassung der vollständigen artikulierten Hand und der Verwen-
dung dieser Informationen für die Gestensteuerung von Computern ermöglichen.

Zuerst stellenwir neuemarkerlose Bewegungsschätzungsverfahren fürHände vor, welche
zur Computersteuerung verwendet werden können. Das zugrundeliegende Problem ist auf-
grund von starkenVerdeckungen, der gleichmäßigen Farbe der Hand, schnellen Bewegungen
und einer hohen Variabilität des Hintergrundes sehr anspruchsvoll. Zusätzlich zeigen wir,
dass eine Kombination von modellbasierten Verfahren und datenbasierten Lernverfahren,
aufgrund von unterschiedlichen Stärken und Schwächen dieser beiden Ansätze, einige dieser
Hürden meistern können. Wir zeigen die Vorteile unserer Verfahren anhand einer Vielzahl
von Beispielen, unter anderem für die Bewegungsschätzung mittels unterschiedlich vieler
Kameras, aus verschieden Blickwinkeln und unter Laufzeitbeschränkungen. Wir zeigen
auch, dass unsere Verfahren sich an die Szenenkomplexität anpassen lassen. So können
diese zum Beispiel auch dazu verwendet werden, gleichzeitig sowohl eine Hand als auch die
Bewegung eines manipulierten Objektes zu schätzen.

Als nächstes stellen wir ein Verfahren vor, dass die Gestensteuerung von Computern
basierend auf den rekonstruierten Bewegungsabläufen realisiert. Die Erstellung von gut
geeignet Interaktionstechniken und Gesten ist ein anspruchsvolles Problem, da der Raum
der in Frage kommenden Gesten sehr groß ist und Ansprüche an die Ergonomie mit in Be-
tracht gezogen werden müssen. Zusätzlich erlaubt es die Gestensteuerung dem Benutzer, im
dreidimensionalen Raum zu navigieren. Wir zeigen Limitierungen von aktuellen Benutzer-
studien auf und stellen ein neues Verfahren vor, dass es erlaubt, Gesten zu entwerfen. Dieses
ermöglicht es zum ersten Mal, neue Gesten unter Berücksichtigung bestimmter Kriterien,
wie zum Beispiel Geschwindigkeit oder Genauigkeit, automatisch zu entwerfen. Schließlich
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zeigen wir, dass die Analyse der Bewegung der Fingerspitzen es ermöglicht, kleine Geräte,
wie zum Beispiel Smartwatches, zu bedienen. Abschließend werfen wir einen kritischen
Blick auf die verbleibenden Limitierungen der vorgestellten Verfahren und Möglichkeiten
für zukünftige Forschungsprojekte.
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Chapter 1

Introduction

Computing devices are becoming increasingly ubiquitous in human society. Until a decade
ago, the most common computers were servers, workstations, PCs, or laptops. Recent ad-
vances in electronics miniaturization, display technology, and battery capacity, however,
have lead to a profound change in the form factors of computers. Today smartphones, smart-
watches, smartglasses (for virtual or augmented reality), and smart-televisions have become
or are becoming common sight. This trend is expected to continue eventually leading to
a world where every physical object has compute capability and is interconnected—the so
called internet of things (IoT).

In order to benefit from this explosion of ubiquitous computers, humans need to be able to
effectively interchange information with these devices. First, computers need to be capable
of efficient information output. Typically electronic displays (visual), speakers (auditory),
or motorized feedback devices (tactile) are used for this purpose. Users also need to be
able to input information for storage or for instructions. For example, the keyboard and the
mouse are widely adopted for text entry and graphical user interface (GUI) interaction. It
is useful to view these input and output channels from an information theoretic perspective.
In Figure 1.1, the black hourglass shape represents the human–computer interface channel
which is affected by the design of the sensor (input device) and its sources of noise. One
of the grand challenges in human–computer interaction (HCI) is to increase the throughput
of this channel (e.g., green dotted lines) to allow faster and more efficient communication
with computers. This thesis presents some ways of increasing throughput by exploiting the
dexterity of the human hand and fingers for computer input.

Increasing the throughput of human–computer interaction is critical not only for improv-
ing efficiency in existing devices but also for effective computer input in emerging devices.
As users adopt smartphones, smartwatches, and smartglasses, traditional notions of input
are challenged. For example, multitouch interaction on smartwatches is hard due to small
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Figure 1.1 The human–computer communication system (input only). The black hourglass
shape represents the currently available throughput of the human–computer input channel.
This thesis presents some ways of increasing the throughput and expressiveness of input
(green dotted line). We present sensing methods, interaction techniques, empirical data,
user studies, and working examples to support our claims.

size of the display. Traditional input devices such as the keyboard or the mouse cannot be
used in such mobile scenarios.

Figure 1.2 Simplified illustration of the
bones and joints in the hand.

In this thesis, we ask the question of whether
we could use the hand, together with its inter-
action with the environment, as the input device.
Doing so has many advantages such as increased
dexterity due to the many DOFs, and mobility.
However, it also requires solving several hard,
unsolved problems in computer vision and HCI.
In this thesis, we present, to our knowledge, the
first of their kind solutions to hard computer vi-
sion problems such as markerless hand tracking
with a single camera, and hard HCI problems
such as automatic gesture design. We present
sensing methods, interaction techniques, empiri-
cal data, user studies, and working examples that support our thesis that the hand can indeed
be used as an input device.

1.1 The Human Hand
The human hand is the most dexterous of the human extremities with over 26 DOFs [59].
Figure 1.2 is a simplified illustration of bones and joints in the hand. The metacarpopha-
langeal (MCP) joints in each finger have 2 DOFs while the proximal interphalangeal (PIP)
and distal interphalangeal (DIP) joints have 1 DOF each. These DOFs are controlled by 38
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Figure 1.3 Human hands can convey information through gestures, dexterously employ tools
(e.g., for writing), perform fine motor movements, and manipulate objects with skill.

muscles in the hand and the forearm allowing the hand to articulate, i.e., move the 27 bones
in a coordinated manner. Due to biomechanical constraints, each DOF has a limited range
of motion. The motion of fingers is often expressed as flexion, i.e., movement that decreases
the angle between a finger segment and its proximal segment (and vice versa for extension).
Abduction refers to a motion that pulls the fingers away from the center of the hand while
adduction refers to the opposite.

The DOFs of the hand cannot all be independently controlled. Inspite of this limitation,
hands are capable of dexterous movements such as gesturing, and tool manipulation. Part of
this dexterity comes from the high cortical sensorimotor capacity allocated to the hand [59].
This allows the hand to perform motor movements such as prehension (grasping), and non-
prehensile skilled movements. Together, these movements lead to an immense range of
everyday actions such as gesturing for communication, tool use for building, and sleight of
hand (see Figure 1.3 for examples).

1.2 Challenges
Using the expressive capacity of the hand for computer input has been a prime goal for re-
search on input devices and interaction techniques. However, sensing and design challenges
have prevented extensive research and use of hand gesture-based computer input. In this
thesis, we address these two challenges.

First, sensing or tracking the movement of hands in action poses difficulty due to fast
motions. Many sensing technologies such as wired gloves, miniature radar1, mechanical
exoskeletons2, and camera-based methods have been proposed. Methods that require users
to wear gloves or markers prevent use in everyday scenarios because they hinder free hand
motion. Non-contact sensing methods such as camera-based computer vision methods work
best because they do not require users to wear markers or gloves. Sensing hand motion using
cameras is a hard problem because of fast motions, uniform skin color, self-occlusions, and

1https://atap.google.com/soli
2http://www.dextarobotics.com

https://atap.google.com/soli
http://www.dextarobotics.com
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environmental clutter. In addition, for use in computer input, high accuracy, and low latency
and runtime are crucial.

Given high accuracy and low latency tracking of hands, the second challenge is the design
of appropriate gestures that are fast, accurate, and intuitive for users. Literature that uses
markerless camera-based hand tracking for interaction is sparse. Thus, an understanding
of what hand motions are fast, accurate, and intuitive are missing. Furthermore, designing
gestures based on these criteria is a much harder problem because of the immense size of
the interaction space.

1.3 Research Problem
Our main research problem is the design of high throughput gesture-based computer input
using markerless hand tracking. Previous work on markerless tracking often does not con-
sider the implications and requirements that their use in gesture-based input entails. To be
useful for input, methods have to be robust, accurate, have low latency, and high speed. Con-
versely, the lack of markerless tracking methods suitable for gesture-based input has made
it hard to investigate high throughput gestures. Gesture design must take the benefits and
limitations of hand trackers into account, be intuitive, memorable, fast, accurate, and also
easily trackable by hand trackers. In this thesis, we aim to advance the state of the art in both
markerless tracking of hands and gesture-based input by informing the development of one
by the other.

1.4 Contributions and Structure
This thesis contributes to both computer vision-based tracking and gesture-based human–
computer interaction research. We list the contributions in detail by dividing them into two
categories: (1) tracking hands in action, and (2) gesture-based computer input. Please see
Section 1.5 for a full list of publications where some of these contributions were originally
reported.

1.4.1 Part I: Tracking Hands in Action
In Part I, we contribute to computer vision research by presenting new non-contact, mark-
erless algorithms for tracking hands in action. In Chapter 2 we define the problem and intro-
duce basic terminology and concepts that are essential to understanding our contributions.
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Chapters 3–6 present four different tracking algorithms each suited for a particular sce-
nario. The supported tracking scenarios can be identified based on three criteria:

• No. of Cameras: Multiple cameras (Chapter 3, 4) or single camera (Chapters 5, 6)
• Run-time: Interactive (Chapter 3) or real-time (Chapter 5)
• Scene Complexity: Hands-only (Chapter 5) vs. hands and objects (Chapter 6)

Together these methods support a range of tracking scenarios previously not supported by
other methods: (1) we can track hands in static desktop-based settings more accurately and
robustly than previous approaches, (2) we can track hands in real-time from a single depth
camera thereby allowing moving egocentric setups, (3) we can, to our knowledge for the first
time, also jointly track hands interacting with objects in real-time from a single depth sensor.

In Chapter 3 we focus on multi-camera tracking of only hands at interactive frame rates.
We first discuss a traditional pose optimization framework that uses special representations
for generative tracking. We show that using only this approach for tracking hands results in
catastrophic failure. We propose a hybrid approach that combines generative tracking with
a novel part-based, discriminative pose retrieval strategy. We further improve accuracy of
this method by presenting a new shape representation called the 3D Sum of Anisotropic
Gaussians (SAG) in Chapter 4. To evaluate these contributions, we introduce an extensive,
annotated benchmark dataset consisting of challenging handmotion sequences. Results from
validation on this dataset shows that our new shape representation together with the hybrid
approach is superior to previous work and allows robust and accurate real-time hand tracking.

In Chapter 5, we shift our attention to tracking hands using a single depth camera. We
contribute by proposing a novel shape representation for depth that allows efficient, accu-
rate, and robust tracking of a hand at real-time frame rates. This representation is compact,
mathematically smooth and allows us to formulate pose estimation as a 2.5D generative op-
timization problem in depth. While pose tracking on this representation could run in excess
of 120 frames per second (FPS) using gradient-based local optimization, this often results
in a wrong local pose optimum. For added robustness we incorporate evidence from trained
randomized decision forests that label depth pixels into predefined parts of the hand. The
part labels include discriminative detection evidence into generative pose estimation. This
enables the tracker to better recover from erroneous local pose optima and prevents temporal
jitter common to detection-only approaches. The robustness of this approach allows to track
the full articulated 3D pose of the hand under different poses such as pinching and those
with self-occlusions. Because it uses only a single depth camera, our approach is one of
the first methods to track from moving head-mounted cameras and other similar egocentric
viewpoints.
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Finally, in Chapter 6 we present a first-of-its-kind method to address the harder prob-
lem of jointly tracking hands and objects using a single RGB-D camera at real-time frame
rates. Jointly tracking hands and objects poses new challenges due to the difficulty in seg-
menting hands from objects, and handling additional occlusions due to objects. We propose
a multi-layered random forest architecture to address the segmentation problem and incor-
prate additional energy terms specific to the hand grasping objects. Once again, extensive
evaluation and comparisons show that our method achieves high accuracy in spite of running
at 30 FPS. To our knowledge, this is the first method to support real-time joint tracking of
hands and objects.

1.4.2 Part II: Gesture-based Computer Input
In Part II, we contribute to HCI research by presenting new forms of gesture-based com-
puter input enabled by markerless hand and finger tracking. In Chapter 7, we present our
first approach to continuous gesture-based computer input. We show how gestures elicited
from users (i.e., through elicitation studies) can be used to create interaction techniques
suitable for 3D navigation tasks using purely freehand gestures. User studies indicated that
our interaction techniques were comparable to existing techniques supported by devices like
the mouse. Elicitation studies, however, have limitations which we discuss.

Informed by the lessons learned in creating continuous freehand gestures, we present
an approach for computational gesture design in Chapter 8. Computational gesture de-
sign refers to the process of automatically designing gestures for an interaction task to suit
designer-specified criteria. We present one of the first approaches for computational gesture
design which is informed by the characteristics of hand trackers such as the those presented
in Part I. We base our computational approach on data about the dexterity of the hand which
includes speed and accuracy of the movement of fingers, comfortable motion ranges of fin-
gers, and individuation of fingers. Our investigation was informed by an extensive user study
that measured the components of dexterity in the context of markerless hand tracking. We
present design recommendations based on the data we collected. We show how the data on
dexterity can be used to inform the computational design of mid-air gestures. In particular,
we focus on mid-air text entry and show that an approach similar to fingerspelling can lead
to predicted text entry rates of over 50 words per minute (WPM). We formulate mid-air text
entry as a combinatorial optimization problem and show that our data can drive the optimiza-
tion of gestures based on criteria chosen by the designer. We finally present validation of the
approach on users. Although we applied our approach to a discrete input task (i.e., text entry)
our dexterity model is broadly applicable to continuous input tasks such as 3D navigation or
pointing.
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Finally, Chapter 9 discusses combining on- and above-skin input in the context of small
form factor devices such as smartwatches. Interaction on devices with small displays poses
problems because of small touch area and occlusions, the so called fat finger problem. We
present an approach, called WatchSense, that supports extending the input space to areas
around wearable devices like smartwatches. Our prototype takes a lightweight approach to
hand tracking eschewing full hand pose estimation and instead relying on fingertip and touch
detection. WatchSense enables tracking fingertip positions near the back of the hand (BOH)
close to a smartwatch. We also support detection of touch points on the BOH which can
be used to create a rich set of expressive gesture-based interaction. This enables, to our
knowledge for the first time, simultaneous mid-air and multitouch gestures on the BOH. We
show through technical evaluations and applications that our approach is accurate, robust,
and does indeed provide benefits for more expressive interaction.

Chapter 10 concludes the thesis with a critical discussion of the limitations of our tracking
and gesture-based input contributions, several directions for future work, and concludes the
thesis with some final thoughts.

1.5 List of Publications
Some of the contributions in Part I of the thesis were originally reported in the following
publications.

1. Srinath Sridhar, Antti Oulasvirta, Christian Theobalt. Interactive Markerless Artic-
ulated Hand Motion Tracking using RGB and Depth Data. International Conference
on Computer Vision 2013 (ICCV 2013 [131]).

2. Srinath Sridhar, HelgeRhodin, Hans-Peter Seidel, Antti Oulasvirta, Christian Theobalt.
Real-time Hand Tracking Using a Sum of Anisotropic Gaussians Model. International
Conference on 3D Vision 2014 (3DV 2014 [132]).

3. Srinath Sridhar, Franziska Mueller, Antti Oulasvirta, Christian Theobalt. Fast and
Robust Hand Tracking Using Detection-Guided Optimization. Conference on Com-
puter Vision and Pattern Recognition 2015 (CVPR 2015 [129]).

4. Srinath Sridhar, Franziska Mueller, Michael Zollhöfer, Dan Casas, Antti Oulasvirta,
Christian Theobalt. Real-time Joint Tracking of a Hand Manipulating an Object from
RGB-D Input. European Conference on Computer Vision 2016 (ECCV 2016 [130]).

Some of the contributions in Part II of the thesis were originally reported in the following
publications.
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1. Srinath Sridhar, Anna Maria Feit, Christian Theobalt, Antti Oulasvirta. Investigat-
ing the Dexterity of Multi-Finger Input for Mid-Air Text Entry. SIGCHI Conference
on Human Factors in Computing Systems 2015 (CHI 2015 [127]).

2. Srinath Sridhar, Gilles Bailly, Elias Heydrich, Antti Oulasvirta, Christian Theobalt.
FullHand: Markerless Skeleton-based Tracking for Free-Hand Interaction. MPI-I-
2016-4-002. Saarbrücken: Max-Planck-Institut für Informatik 2016 ([126]).

3. Srinath Sridhar, Anders Markussen, Antti Oulasvirta, Christian Theobalt, Sebastian
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I-2016-4-003. Saarbrücken: Max-Planck-Institut für Informatik 2016 ([128]).
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Tracking Hands in Action





Chapter 2

Problem Definition and Preliminaries

In Part I of this thesis, we deal exclusively with markerless computer vision-based tracking
of hands in action. The ultimate goal of hand tracking is to be able to detect and track hands
for different users, under general conditions using a single camera. This is an extremely
challenging problem due to fast motions, occlusions, changing lighting conditions, scene
clutter, uniform skin color, and the relatively small size of the hand in images. Additionally,
methods have to run in real-time with low latency for use in HCI.

Given the challenges, we start by solving a relatively less challenging problem of inter-
active hand tracking from multiple RGB cameras in Chapter 3. In subsequent chapters we
address increasingly harder problems by improving accuracy, imposing runtime constraints,
reducing the number of cameras, and increasing scene complexity. Chapter 4 addresses
more accurate multi-camera tracking in real-time using a new input and model represen-
tation. Chapter 5 further adds the single camera constraint and shows real-time results at
50 FPS. Finally, Chapter 6 looks into tracking hands together with objects in cluttered envi-
ronment.

In this chapter, we formally define the hand tracking problem, introduce mathematical
concepts and terminology that are used in the rest of the thesis.

2.1 Problem Definition and Terminology
We assume that the term hand tracking implies markerless tracking of the full articulated
3D posture of the hand and fingers without the use of gloves or reflective markers. This
explicit definition is essential since many previous work that track only the position of the
hand as a whole (a much easier problem) also use the term hand tracking. We also assume
that a non-contact vision-based aproach is preferable to a contact-based approach (e.g., ex-
oskeletons) for convenient gesture-based input. The input to such a hand tracker can be in
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Figure 2.1 The goal of markerless hand tracking is to estimate the position and orientation
(pose) of the hand given input in the form of RGB and/or depth images. Hand pose is usually
parametrized by joint angles and can be represented as a vector Θ.

the form of many color and/or a single depth image. The goal is to estimate the position
and orientation (pose) of the hand given input images (see Figure 2.1). In order to denote
hand pose, we need a formal representation that can be used mathematically as well as to
represent the articulations of the hand. To this end, we use a hierarchical kinematic skeleton
representation [90].

Figure 2.2 Kinematic skele-
ton of the hand (red). We
use 32 joints and 26 DOFs.

Kinematic Skeleton: A kinematic skeleton is a hierar-
chy of 3D rigid transforms where each transform represents an
equivalent to a joint in the human hand. In order to capture the
articulations of the hand we model it as a kinematic chain con-
sisting of 32 joints (see Figure 2.2). We model the 26 DOFs
of the hand using parameters Θ = {𝜃𝑖}, where 0 ≤ 𝑖 ≤ 25
(20 joint angles, 3 global rotations, and 3 global translations).
Each joint angle is limited to a fixed range, 𝜃𝑖 ∈ [𝑙𝑖𝑚𝑖𝑛, 𝑙𝑖𝑚𝑎𝑥],
taken from studies of the hand [123].

Given this formal representation for hand pose, we now
have the tools for pose estimation. Pose estimation methods
in literature can be broadly classified into generative and dis-
criminative approaches.

GenerativeMethods: Generative methods employ a hand model (e.g., kinematic skele-
ton) and synthesize a pose for the model that best explains the input (e.g., [86, 96]). For
instance, Oikonomidis et al. [99] used a depth sensor and a model of the hand for tracking.
Generative methods usually employ pose optimization techniques for convergence to the
correct pose (e.g., particle swarm optimization in [99]). In this thesis, we use a Gaussian
mixture formulation [57] and gradient-based methods for pose optimization.

Discriminative Methods: Discriminative methods use prior knowledge about hands
(e.g., pose database) and find the closest example in this knowledge base. There are several
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Figure 2.3 Different shape representations used in tracking. Left to right: 2D card-
board [163], spheres [108], collection of primitive shapes [96], truncated quadrics [133],
full mesh [13], Gaussian mixtures (Chapters 3–6).

ways of achieving the closest search such as using a database lookup (e.g., [153]) or using
machine learning (e.g., [119]). More detailed reviews of related work can be found within
every chapter in Part I.

2.1.1 Shape Representations for Tracking
Generative methods usually employ amodel of the hand which includes the kinematic skele-
ton to control articulation and, additionally, a shape attached to the skeleton. In computer
graphics, it is common to use a mesh that is attached to the skeleton and deforms with it
(i.e., a rigged mesh). However, using a full mesh for generative tracking can be computa-
tionally expensive, so many methods resort to simpler representations. Figure 2.3 shows
some shape representations that have been used in previous work.

Some of the earliest works in hand tracking used simple 2D shapes to represent hand
shape [163]. Using a full mesh [13] or superquadrics [133] could lead to better model fit-
ting, but computational overheads prevent their widespread adoption. Many methods use
approximations of the hand volume with primitive shapes such as spheres [108] or cylin-
ders [96].

In this thesis, we use a Gaussian mixtures representation that has several advantages
compared to previous work. As shown in Figures 2.2 and 2.3, we approximate the volumetric
extent of the hand with a collection of un-normalized volumetric Gaussians. Each Gaussian
in the collection can be modeled as an isotropic (i.e., uniform variance, see Chapters 3, 5,
6) or anisotropic Gaussian (see Chapter 4). Together this collection can be represented as a
Gaussian mixture, 𝒞. The Gaussian mixture is rigidly attached to the underlying kinematic
skeleton and moves with it. Although we visualize the Gaussians as spheres or ellipsoids
(see Chapter 4), they have infinite support. In some parts of the thesis, we use the terms
Sum of Gaussians (SoG) or Sum of Anisotropic Gaussians (SAG) to refer to isotropic or
anisotropic Gaussian mixtures, respectively.
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Gaussianmixtures are well suited for pose estimation because they have amathematically
continuous representation that makes optimization more convenient i.e., we can compute
analytical gradients for an appropriately defined objective function. Additionally, only a
few Gaussians are sufficient to represent shape as opposed to thousands of vertices for a
full mesh model. Finally, as we show next, Gaussian functions have favorable mathematical
properties that make themwell suited for transformations such as perspective projection, and
comparison with other similar functions.

2.1.2 Properties of Gaussian Distributions
In this section, we provide some basic properties of Gaussian functions useful for better
understanding of the different methods we present in Part I of this thesis.

Product of Two Gaussian Distributions: Let normalized Gaussian functions in 𝑘-
dimensions be represented as

𝑁(𝜇,𝛴) ∶= 1
√(2𝜋)𝑘|𝛴|

exp [−1
2(x − 𝜇)𝑇𝛴−1(x − 𝜇)] , (2.1)

with 𝑘 = dim(𝛴). Here the mean is 𝜇 and the covariance matrix is 𝛴. This Gaussian can
be visualized as a 𝑘-dimensional ellipsoid.

The product of two Gaussians 𝑁(𝜇𝑝,𝛴𝑝)⋅𝑁(𝜇𝑞,𝛴𝑞) with means 𝜇𝑝,𝜇𝑞 and covariance
matrices 𝛴𝑝,𝛴𝑞, respectively, is given as [3]

𝑁(𝜇𝑝,𝛴𝑝) ⋅ 𝑁(𝜇𝑞,𝛴𝑞) = 𝑐 ⋅ 𝑁(𝜇𝑐,𝛴𝑐), (2.2)

where𝛴𝑐 = (𝛴−1
𝑝 + 𝛴−1

𝑞 )−1 and 𝜇𝑐 = 𝛴𝑐(𝛴−1
𝑝 𝜇𝑝 +𝛴−1

𝑞 𝜇𝑞) and normalization constant

𝑐 = 1
√|2𝜋(𝛴𝑝 + 𝛴𝑞)|

exp [−1
2(𝜇𝑝 − 𝜇𝑞)𝑇 (𝛴𝑝 + 𝛴𝑞)−1(𝜇𝑝 − 𝜇𝑞)] . (2.3)

Integration of the Product of Two Gaussian Distributions: Using the above re-
sult and ∫Ω 𝑁(𝜇,𝛴)𝑑x = 1, it follows that the integral of two normalized Gaussians is
∫Ω 𝑁(𝜇𝑝,𝛴𝑝) ⋅ 𝑁(𝜇𝑞,𝛴𝑞)𝑑x = ∫Ω 𝑐 𝑁(𝜇𝑐,𝛴𝑐)𝑑x = 𝑐.

If we need to compute the same similarity measure for un-normalized Gaussians of the
form

𝐺(𝜇𝑝,𝛴𝑝) ∶= exp [−1
2(x − 𝜇)𝑇𝛴−1(x − 𝜇)] , (2.4)
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we need to account for the missing constant. Considering this and using the fact |2𝜋𝛴| =
(2𝜋)𝑘|𝛴|, the integral of two un-normalized Gaussians is given as

∫
Ω

𝐺(𝜇𝑝,𝛴𝑝) ⋅ 𝐺(𝜇𝑞,𝛴𝑞)𝑑x = 𝑐 √(2𝜋)𝑘|𝛴𝑝|√(2𝜋)𝑘|𝛴𝑞| = 𝑐 √(2𝜋)2𝑘|𝛴𝑝𝛴𝑞|, (2.5)

where 𝑐 is as defined in the normalized Gaussians case and 𝑘 = dim(𝛴𝑝) = dim(𝛴𝑞). This
provides an efficient formula for measuring the similarity of two general Gaussians which is
given as

𝐸𝑝𝑞 =
√(2𝜋)𝑘|𝛴𝑝𝛴𝑞|

√|(𝛴𝑝 + 𝛴𝑞)|
exp [−1

2(𝜇𝑝 − 𝜇𝑞)𝑇 (𝛴𝑝 + 𝛴𝑞)−1(𝜇𝑝 − 𝜇𝑞)] . (2.6)

The similarity measure and properties described above will find use in Chapters 3–6.

2.1.3 Perspective Projection of Gaussian Functions
In many of themethods presented in this thesis, we project Gaussian functions from 3D to 2D
using a perspective camera projection model. Without loss of generality, we assume that this
projection operation on Gaussian functions is equivalent to projection of a general ellipsoid,
which represents the isosurface of a general Gaussian function at 1 standard deviation along
each dimension. In Chapters 3, 5, and 6, we assume that the Gaussian functions are isotropic
(i.e., can be visualized as spheres instead of ellipsoids). In Chapter 4, we use anisotropic
Gaussians (i.e., can be visualized as ellipsoids). In this section, we show the general case of
ellipsoid projection which subsumes sphere projection as well.

Figure 2.4 Sketch of the perspective projection
of ellipsoids as the intersection of the image
plane with the cone formed by the camera cen-
ter and the ellipsoid.

The perspective projection of an ellip-
soid is an ellipse defined by the intersec-
tion of the elliptical cone, formed by the rays
originating from the camera center and tan-
gential to the ellipsoid, with the image plane
(see Figure 2.4). The projection equation is
best explained in four separate steps. We as-
sume a perspective pin hole camera model
for this projection.

World–Camera Transformation: The
extrinsic camera parameters are the orienta-

tion R𝑤𝑐 and position c of the camera. They transform the ellipsoid (𝛴ℎ,𝜇ℎ) to the camera
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coordinate system by

𝛴𝑐 = R𝑤𝑐𝛴ℎR𝑇
𝑤𝑐

𝜇𝑐 = R𝑤𝑐(𝜇ℎ − c), (2.7)

such that the origin is at the camera center and the 𝑧 direction is aligned with the camera
view direction.

Construction of Elliptical Cone: We are interested in a mathematical expression for
the elliptical cone that is formed by the rays originating at the camera center c and tangential
to the ellipsoid (see Figure 2.4). According to [35] all points on this cone satisfy

x⊤Mx = 0, (2.8)

where the cone matrix M is

M = 𝛴−1
𝑐 (𝜇𝑐 − c)𝜇⊤

𝑐 𝛴−1
𝑐 − (𝜇⊤

𝑐 𝛴−1
𝑐 𝜇𝑐 − 1) 𝛴−1

𝑐 . (2.9)

Intersection of the Elliptical Cone with the Image Plane: The points that form the
projected ellipsoid on the canonical image plane 𝐼 are those points that satisfy both Equa-
tion 2.8 and the image plane equation (see Figure 2.4). For a canonical image plane, the
image plane equation is 𝑧 = 1. We can derive an expression for the intersection of 𝐼 and
Equation 2.8 as follows.

The second degree polynomial representation of a conic section is given as [6]

𝑝𝑥2 + 𝑞𝑥𝑦 + 𝑟𝑦2 + 𝑠𝑥 + 𝑡𝑦 + 𝑢 = 0,

where x = [𝑥, 𝑦, 1]𝑇 . The above equation is equivalent to Equation 2.8 where M can be
written as

M = ⎡
⎢
⎣

𝑝 𝑞/2 𝑠/2
𝑞/2 𝑟 𝑡/2
𝑠/2 𝑡/2 𝑢

⎤
⎥
⎦

= ⎡
⎢
⎣

𝑚1 𝑚2 𝑚3
𝑚2 𝑚4 𝑚5
𝑚3 𝑚5 𝑚6

⎤
⎥
⎦

. (2.10)

Here 𝑚𝑘 represent the elements of the symmetric matrix M. Let M33 represent the 2 × 2
submatrix of M excluding the 3𝑟𝑑 row and 3𝑟𝑑 column. The canonical parameters of the



2.1 Problem Definition and Terminology 17

ellipse are given by

̃𝜇𝑝 = 1
(4𝑝𝑟 − 𝑞2) [ (𝑞𝑡 − 2𝑟𝑠)

(𝑠𝑞 − 2𝑝𝑡) ] = 1
|M33| [ |M31|

−|M23| ] , (2.11)

𝛴𝑝 = − |M|
|M33|M

−1
33 . (2.12)

For a general camera with intrinsics matrix K (as defined in [50]), the projected ellipse
(𝛴𝑝, ̃𝜇𝑝) from the canonical image plane is transformed to a general image plane. The trans-
formed ellipse parameters are

𝜇𝑝 = K33 ̃𝜇𝑝 + [ 𝑘13
𝑘23

] ,

𝛴𝑝 = K33𝛴𝑝 K𝑇
33. (2.13)

We utilize this ellipsoid projection formulation to project the 3D Gaussian mixture model to
a 2D image Gaussian mixture.

2.1.4 Random Forests for Per-Pixel Classification
Several methods reported in this thesis rely on per-pixel classification of the input image. For
this segmentation problem, we use per-pixel classification forests which have been shown
to produce state-of-the-art results in human pose estimation and other segmentation prob-
lems [122, 64, 129]. We provide a brief overview and refer the reader to [30] for further
details.

Figure 2.5 An ensemble of random decision trees forms
a random forest.

Figure 2.5 illustrates a sam-
ple random decision forest (or ran-
dom forest). A random forest con-
sists of many binary decision trees,
each of which is trained on a ran-
dom subset of the input data (hence
the name random decision trees).
Having an ensemble of decision
trees helps improve generalization
to unseen examples. At test time,
input data points are passed from
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the root node to a leaf node of a tree. At each split node, a decision is made about which
child the data point must pass through. Therefore, at train time, decisions that need to be
made at the split nodes are optimized. This binary decision made at a split node is called a
feature response and a weak learner is employed to prevent overfitting. Arbitrary informa-
tion about the data points can be stored at a leaf node. Typically, an empirical distribution
about all the data points that reach a leaf node are stored.

Figure 2.6 A depth image of the hand (left) is segmented into 12 hand parts with a depth
classification forest.

In per-pixel classification forests, the goal is to train a forest to label each input pixel into
a class label (e.g., part of a human body). At train time, the decisions at the split nodes are
optimized based on thousands of training examples. For the task of depth-based classificaion
we use the feature response function

𝑓(𝐼, x) = 𝑑𝐼 (x + u
𝑑𝐼(x)) − 𝑑𝐼 (x + v

𝑑𝐼(x)) ,

where 𝐼 is the input depth image, x is the pixel location, u and v are randomly chosen offsets
from the current pixel location, and 𝑑(.) denotes the depth at a certain location on the image.
At test time, for each input pixel, a tree in the forest makes a prediction about which part
it likely belongs to (see Figure 2.6). The output from all trees in the forest is aggregated to

provide a final prediction about the pixel’s class as 𝑝(𝑐 | 𝐼, x) = 1
𝑇

𝑇
∑
𝑡=1

𝑝𝑡(𝑐 | 𝐼, x), where 𝑝
is the predicted class distribution for the pixel x and 𝑇 is the number of random trees that
makes a prediction 𝑝𝑡.



Chapter 3

Interactive Multi-Camera Hand
Tracking

Figure 3.1 Our approach combines two
methods: (1) Generative pose estimation
on multiple RGB images using local opti-
mization (bottom row and top left) (2) Part-
based pose retrieval on five finger databases
indexed using detected fingertips on a sin-
gle depth image (top right).

Tracking hands in action has several applica-
tions in human–computer interaction, teleop-
eration, sign language recognition, and virtual
character control among others. An ideal hand
tracker that can be used for these applications is
a markerless method that tracks handmotion in
real-time, using a single camera under chang-
ing lighting and scene clutter. As a first step
towards solving this hard problem, we address
the relatively less difficult problem of mark-
erless, interactive (i.e., tracking at near-real-
time framerates), multi-camera hand tracking
in this chapter. Parts of this chapter appeared
in a previous publication [131]. In subsequent
chapters, we show how to solve hand tracking
under progressively harder scenarios such as
faster runtime, less cameras, and more com-
plex scenes.
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Figure 3.2 Overview of our interactive multi-camera hand tracking approach. SoG stands
for Sum of Gaussians.

3.1 Introduction
Interactive markerless tracking of articulated hand motion is an important problem with
a wide range of applications. Marker or glove-based solutions exist for tracking the articu-
lations of the hand [153], but they constrain natural hand movement and require extra user
effort. Recently, many commercial sensors have been developed that detect 3D fingertip
locations without using markers but these sensors do not recover a semantically meaningful
skeleton model of the hand. In this chapter, we describe a novel markerless hand motion
tracking method that captures a broad range of articulations in the form of a kinematic skele-
ton at near-realtime frame rates.

Hand tracking is inherently hard because of the large number of degrees of freedom
(DoF) [59], fast motions, self-occlusions, and the homogeneous color distribution of skin.
Most previous realtime markerless approaches (see Section 3.2) capture slow and simple ar-
ticulated hand motion since reconstruction of a broader range of complex motions requires
offline computation. Our algorithm follows a hybrid approach that combines a generative
pose estimator with a discriminative one (Figure 3.1). The input to our method are RGB im-
ages from five calibrated cameras, depth data from a monocular time-of-flight (ToF) sensor
and a user-specific hand model (Section 3.3). The output of our method are the global pose
and joint angles of the hand represented using 26 parameters.

Our approach is inspired by the robustness and accuracy of recent hybrid methods for
realtime full-body tracking [7]. However, using the same strategy for hand tracking is chal-
lenging because of the absence of sufficiently discriminating image features, self-occlusions
caused by fingers, and the large number of possible hand poses.

Figure 3.2 gives an overview of our algorithm. We use multiple co-located RGB cameras
and a depth sensor as input to our method. Similar to previous work in full-body motion
tracking [7, 156, 167], we instantiate two pose estimators in parallel. First, the generative



3.2 Related Work 21

pose estimator uses local optimization and a similarity metric based on the Sum of Gaussians
(SoG) model [135] to find the pose that best explains the input RGB images (Section 3.4).
Second, the discriminative pose estimator is a part-based retrieval technique that allows us
to recover poses spanning a large hand articulation space while dealing with self-occlusions.
Our discriminative pose estimation method first detects fingertips on the depth image from a
single depth sensor using a linear SVM classifier (Section 3.5.3). The detected fingertips are
then used in a hypothesize-and-test framework alongwith five finger pose databases to obtain
multiple pose hypotheses, each of which is tested using two criteria (Section 3.5.4). The final
(complete or partial) hand pose is the pose that has the least error between the estimated and
observed fingertip positions. This is then used as initialization for local optimization in the
generative pose estimator. This part-based approach reduces the database size dramatically
as only the articulations of each finger need to be indexed. The evidence from both pose
estimators are fused using an error metric to obtain a final hand pose (Section 3.6).

To critically assess our method, we report evaluations using challenging, kinesiologi-
cally motivated datasets. While there are numerous benchmark datasets for full-body pose
estimation, we know of none for handmotion tracking. We therefore created seven annotated
datasets recorded using multiple calibrated sensors. The motions cover the full abduction–
adduction and flexion–extension ranges of the hand. Quantitative results show that we can
cover a broad range of motions with an average error of around 13 mm. Our approach com-
pares favorably in terms of accuracy and computational cost to a previous state-of-the-art
approach [99]. To sum up, the primary contributions of this chapter are:

• A hybrid approach that combines a generative pose estimator based on local optimiza-
tion with a novel part-based pose retrieval strategy.

• A near-real-time framework that captures hand motions (from multiple RGB cameras
and a depth sensor) with a level of precision and speed necessary for interactive appli-
cations.

• An extensive, annotated benchmark dataset consisting of general hand motion se-
quences.

3.2 Related Work
One of the first kinematics-based hand motion tracking methods was presented by Rehg
and Kanade [111]. The first study of size of the motion space of hand articulations when
using kinematic skeletons was done by Lin et al. [78, 163]. They identified three types
of constraints: joint angle limits (type I), intra-finger constraints (type II) and naturalness
of hand motion (type III). Subsequent surveys of vision-based hand tracking methods [37]
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have divided methods into two categories—generative methods based on local or global
optimization and discriminativemethods based on learning from exemplars or exemplar pose
retrieval.

Generative Methods: Oikonomidis et al. [99] presented a method based on parti-
cle swarm optimization for full DoF hand tracking using a depth sensor. They reported a
frame rate of 15 fps with GPU acceleration. Other generative approaches have been pro-
posed that use objects being manipulated by the hand as constraints [46, 47, 96, 114]. One
such approach by Ballan et al. [13] used discriminatively learned salient features on fin-
gers along with edges, optical flow, and collisions in an optimization framework. How-
ever, this method is unsuitable for interactive applications due to its large computation time.
Other model-based global optimization approaches suffer from the same runtime perfor-
mance problem [80, 133].

Discriminative Methods: A method for 3D hand pose estimation framed as a database
indexing problem was proposed by Athitsos and Sclaroff [5]. Their method used a database
of 26 hand shapes and a chamfer distance metric to find the closest match of a query in
the database. The idea of using a global pose retrieval from a database of hand poses was
explored by Wang et al. [152, 153]. However, in order to cover the whole range of hand
motions the size of the database required would be large. Keskin et al. [63] proposed a
method for hand pose estimation by hand part labeling but not as a kinematic skeleton.

Full-Body Motion Tracking: Given the similarity, volume, and success of existing
research in full-body tracking, it would be natural to adopt one of those techniques for hand
motion tracking. Several methods produce a 3D mesh and/or kinematic skeleton as their
output [88, 107]. Some techniques, such as Stoll et al. [135], rely on multiple RGB cameras
while many others use depth information from time-of-flight (ToF) or structured light depth
cameras [7, 41, 121]. However, direct application of these methods to hand tracking is not
straightforward because of homogeneous skin color, fast motions, and self-occlusions.

Our approach takes inspiration from hybrid approaches to full-body pose estimation, such
as Ye et al. [167], Baak et al. [7], and Wei et al. [156]. However, our discriminative pose
estimator uses a part-based pose retrieval technique as opposed to global pose retrieval.

3.3 Input Data and Hand Modeling
Figure 3.2 shows our setup consisting of multiple RGB cameras and a monocular ToF depth
sensor. The image data from RGB cameras provides high visual accuracy for tracking. The
complementary single-view depth data helps us to retrieve poses effectively, as we can re-
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solve depth ambiguities and detect fingertip features in the 2.5D data. Retrieval efficiency is
also supported by having to consider monocular image data only.

RGB Images: We use multiple, synchronized, and calibrated cameras to obtain RGB
image data. We position 𝑛𝑘 cameras in an approximate hemisphere such that typical hand
motions within this hemispherical space would be visible in multiple cameras. All cameras
are calibrated to obtain both the intrinsic and extrinsic parameters. We denote the RGB
image produced by each camera as 𝐼𝑘

𝑟 . In all our experiments we used five Sony DFW-V500
cameras set at a resolution of 320 × 240 and a frame rate of 30 fps.

(a) (b) (c)

Figure 3.3 (a) Hand model consisting of a kine-
matic skeleton and attached 3D Gaussians visu-
alized as spheres with a radius of 1 standard de-
viation. (b, c) Quadtree clustering of input image
into 2D SoG.

Depth Data: The other input to
our method comes from a single time-
of-flight (ToF) depth camera. The ToF
camera is placed such that the hand mo-
tion space is within its range and is ex-
trinsically calibrated along with the RGB
cameras. We denote the depth image pro-
duced by the ToF camera as 𝐼𝑑 and the
unprojected point cloud representation of
the scene as 𝐶𝑑. We used the Creative
Interactive Gesture Camera as our ToF
depth data sensor.

HandModeling: In order to capture the articulations of the hand, we model it as a kine-
matic chain consisting of 32 joints (see Figure 3.3). We model the 26 degrees-of-freedom
(DoF) of the hand using parameters Θ = {𝜃𝑖}, where 0 ≤ 𝑖 ≤ 25 (20 joint angles, 3
global rotations, and 3 global translations). Each joint angle is limited to a fixed range,
𝜃𝑖 ∈ [𝑙𝑖𝑚𝑖𝑛, 𝑙𝑖𝑚𝑎𝑥], taken from studies of the hand [123]. Since we use a SoG model based
generative tracking approach, we also augment the kinematic skeleton with 30 uniform 3D
Gaussians with a fixed mean, variance, and color (c.f. [135]). Finally, we attach a 3D mesh,
ℳ, consisting of 1774 vertices to the skeleton. The final output of our method are the pa-
rameters Θ of the kinematic skeleton.

3.4 Generative Hand Pose Estimation
Generative tracking estimates the hand pose parameters Θ𝐺 that best match a given set of
𝑛𝑘 input RGB images according to a consistency energy. We adopt a local energy max-
imization approach similar to that of Stoll et al. [135] which we modified to account for
hand motions which are different from full-body motion. In this approach both the hand
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and the input measurements are modeled using a Sum of Gaussians (SoG) representation.
SoGs are mathematically smooth, yield analytical expressions for the energy functional and
its derivative thereby facilitating fast pose optimization. Our consistency energy is given as

ℰ(Θ) = 𝐸(Θ) − 𝑤𝑙𝐸𝑙𝑖𝑚(Θ), (3.1)

where 𝐸(Θ) is a model-to-image similarity measure (Section 3.4.1). The second term,
𝑤𝑙𝐸𝑙𝑖𝑚(Θ), is a soft constraint on skeleton joint limits and has the same formulation as
Stoll et al. . The weight parameter 𝑤𝑙 was set to be 0.1 in all of our experiments.

3.4.1 Model-to-Image Similarity Measure
Given a 3D SoG based model of the hand and multiple input RGB images, we want to have a
measure of similarity between the model and the images. We approximate each image with
a 2D SoG model by performing quadtree clustering into regions of similar color, and fitting
a 2D Gaussian with an average color to each region (Figure 3.3). Given two 2𝐷 SoGs 𝒦𝑎
and 𝒦𝑏 with associated colors c, their similarity is defined as [135],

𝐸(𝒦𝑎, 𝒦𝑏) = ∫
Ω

∑
𝑖∈𝒦𝑎

∑
𝑗∈𝒦𝑏

𝑑(c𝑖, c𝑗)ℬ𝑖(x)ℬ𝑗(x)dx

= ∑
𝑖∈𝒦𝑎

∑
𝑗∈𝒦𝑏

𝐸𝑖𝑗, (3.2)

where ℬ(x) is an un-normalized Gaussian basis function

ℬ(x) = exp(−‖x − 𝜇‖2

2𝜎2 ) . (3.3)

𝐸𝑖𝑗 is the similarity between a pair of Gaussians ℬ𝑖 and ℬ𝑗 given their colors c𝑖 and c𝑗 and
is defined as

𝐸𝑖𝑗 = 𝑑(c𝑖, c𝑗) ∫
Ω

ℬ𝑖(x)ℬ𝑗(x) dx

= 𝑑(c𝑖, c𝑗)2𝜋 𝜎𝑖
2𝜎𝑗

2

𝜎𝑖2 + 𝜎𝑗2 exp(− ‖𝜇𝑖 − 𝜇𝑗‖2

2 (𝜎𝑖2 + 𝜎𝑗2)) . (3.4)

The color similarity function 𝑑(c𝑖, c𝑗) measures the Euclidean distance between c𝑖 and
c𝑗 in the HSV color space and feeds the result into a Wendland function [160]. This renders
𝑑, a smooth function bounded in [0,1] (0 for dissimilar input and 1 for similar input).
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Using the above defined similarity measure, we can find how similar a particular pose
of the 3G SoG hand model is to the observed RGB images. To this end, the 3D Gaussians
are projected onto the images using a projection operator Ψ(𝒦𝑚) [135]. We now define the
final similarity measure as

𝐸𝑠𝑖𝑚(𝒦𝐼 , 𝒦𝑚(Θ)) = ∑
𝑖∈𝒦𝐼

min⎛⎜
⎝

⎛⎜
⎝

∑
𝑗∈Ψ(𝒦𝑚)

𝑤𝑚
𝑗 𝐸𝑖𝑗⎞⎟

⎠
, 𝐸𝑖𝑖⎞⎟

⎠
,

where𝑤𝑚
𝑗 is a weighting factor for each projected 3DGaussianΨ(𝒦𝑚). With this parameter

we control the relative influence of each 3D Gaussian on the final similarity.
To prevent overlapping projected 3D Gaussians from contributing multiple times in the

above sum and distorting the similarity function, we clamp the similarity to be at most 𝐸𝑖𝑖,
which is the similarity of the image Gaussian with itself. This can be seen as a simple
approximation of an occlusion term.

The offline step in this optimization method is to perform person-specific customization
of the handmodel’s shape and dimensions, once for each actor. We adopt the semi-automatic
process described by Stoll et al. [135] to our default hand skeleton template. We captured
four static hand poses in which joints were clearly visible, and manually positioned our de-
fault hand skeleton to fit the poses. After this step, the position, variance, and color of the
3D Gaussians and bone lengths are optimized. This hand model is used in all stages of our
method.

3.4.2 Optimization
The goal of the optimization step is to estimate the pose parameters Θ𝑡 at every time instant.
We adapted the gradient ascent local optimization method proposed by Stoll et al. which en-
ables realtime estimation of the pose parameters at every time instant 𝑡, as analytical gradi-
ents can be computed for our energy function. Each iteration of the optimization is initialized
by extrapolating the estimated pose from two previous times steps as

Θ𝑡
0 = Θ𝑡−1 + 𝛼(Θ𝑡−1 − Θ𝑡−2), (3.5)

where 𝛼 is set to 0.5. In Section 3.5, we describe how our part-based pose retrieval strategy
can be used to initialize the optimization.

Even though the generative pose optimization method is fast and proven to be reliable for
full-body tracking, it quickly reaches its limits during hand tracking and fails by converging
to local pose optima from which it cannot recover. This is because the hand exhibits a higher
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articulation complexity than the body (thus allowing for a much wider range of poses in a
small space), faster motions, and homogeneous color. The consequences are frequent self-
occlusions and large visible displacements of the hand between two frames which challenge
a local pose optimizer. Furthermore, the uniform skin color of the bare hand makes model-
to-image associations much more ambiguous than in the case of humans wearing colored
clothing. We therefore complement our generative tracker with an efficient discriminative
hand pose estimation algorithm described in the following sections. It generates hand pose
hypotheses in parallel to the generative method and is able to re-initialize it in case of con-
vergence to a wrong pose.

3.5 Part-based Pose Retrieval
The goal of our discriminative pose estimation method is to estimate a complete or partial
pose, Θ̃𝐷, of the hand from a single depth image 𝐼𝑑. We do this by adopting a part-based
strategy i.e., instead of trying to recover the full hand pose, we separately recover the pose
of each finger Θ𝑓

𝐷. This is achieved by extracting fingertips on the depth image using a lin-
ear SVM classifier, and by using the detected positions to find the closest match in multiple
exemplar finger pose databases. Having separate databases for each finger has several ad-
vantages. First, for combinatorial reasons, the articulation space that we are able to represent
in a pose database of necessarily limited size is much larger than when using a single pose
database with exemplars for the entire hand (Section 3.5.1). Second, our approach has the
advantage of being able to recover a partial hand pose (i.e., missing some finger poses) even
when some of the fingers are occluded. The recovered finger poses are then assembled using
a hypothesize-and-test framework to form a complete or partial pose Θ̃𝐷.

3.5.1 Multiple Finger Pose Database Generation
We brieflymotivate the need for using multiple finger databases as opposed to a single global
pose database. The global pose retrieval method of Wang and Popović [153] uses 18, 000
poses sampled from real hand motion. Although one of their goals was to avoid oversam-
pling, the size of their database is still insufficient to span the range of articulations that
can occur in natural motion. One way to quantitatively assess the relationship between the
range of articulations and the size of the database is to consider discretizations of joint angles
within allowable joint limits. Ignoring global motion, we model the hand using 21 joint an-
gles (DoFs). If each joint angle were discretized into 3, then for global pose retrieval the size
of the database would be of the order of 1010. On the other hand, part-based pose retrieval
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would need five databases, each with a size of 81. Thus, part-based pose retrieval results in
much smaller databases for the hand than global pose retrieval. This prevents oversampling
while still keeping the articulation space large.

Previous approaches [7, 153] that use global pose retrieval capture real data using mo-
tion capture systems for generating a pose database. However, complex hand motions are
difficult to capture using mocap systems because of self-occlusions and glove constraints.
We therefore obtain our finger pose database by synthetically generating the poses over dis-
cretizations of all joint angles for each finger. To this end we use the person-specific model
of the hand obtained earlier (Section 3.4.1)

For each synthetic pose generated per finger, Θ𝑓
𝑆, we compute the end effector position x𝑓

𝑠
with respect to a local skeleton coordinate system (see Section 3.5.2). We use the computed
3D end effector position as our database indexing feature since it uniquely identifies a pose
of the finger and can be detected comparatively easily on depth data. We use a k-d tree for
indexing the features. In all our experiments we used a database size of 4096 corresponding
to a joint discretization of 8 levels per DoF.

3.5.2 Palm and Hand Orientation Estimation

(a) (b) (c)

Figure 3.4 (a) Palm extracted from the point
cloud (white) and hand orientation normaliza-
tion (arrows). (b) Fingertips detected using a
linear SVM classifier. (c) Estimated partial or
complete hand pose.

Since our finger pose databases are indexed
based on features relative to the handmodel,
we need to normalize the detected query fea-
tures so that they lie in the same frame of ref-
erence. To this end, we extract the palm and
its orientation from the depth data. We first
apply a box filter on the depth image 𝐼𝑑 to
extract the depth image, 𝐼𝑏, and unprojected
point cloud, 𝐶𝑏, corresponding to the hand
only. We use the morphological operations
erode and dilate on 𝐼𝑏 to remove fingers but
retain the palm. The result is a binary mask
of the palm which is used to obtain a basic segmented point cloud of the palm, 𝐶𝑠. However,
𝐶𝑠 might contain fingers that lie on the line of sight between the sensor and the palm. We
therefore fit a plane, 𝑃 , to 𝐶𝑠 using RANSAC with a consensus threshold of 5 mm to obtain
the final segmented point cloud of the palm, 𝐶𝑝. We compute the center of the palm as the
point that lies on 𝑃 and is the centroid of the axis aligned bounding box of 𝐶𝑝. We then
perform principal component analysis (PCA) of 𝐶𝑏 projected onto the plane 𝑃 to find the
principal directions of the hand and palm. As a final step, we use a Kalman filter in order to
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reduce jitter in the estimated orientation. The detected palm center and orientations serve to
stabilize the results of the finger pose database look up (see Figure 3.4).

3.5.3 Fingertip Detection
For our part-based pose retrieval strategy, we need to reliably detect the end effector posi-
tions in the depth data. Previous work in full-body pose estimation has used features such
as Geodesic extrema [7, 105] which do not work well for the hand and result in spurious
extrema which are difficult to disambiguate from the real extrema. In order to overcome this
problem, we use a machine learning approach to detect fingertips using a linear SVM clas-
sifier and HOG descriptors as features. We follow the object detection framework of Dalal
and Triggs [32] on depth images instead of RGB images. For training our linear SVM we
used a combination of manually annotated real sequences, annotated synthetic sequences,
and rotated versions of both (4 orientations). We use a fingertip detection window size of
32 × 32. Because of the high cost of not detecting a fingertip in the pose retrieval step we
adjusted the parameters of the linear SVM for higher recall rates. We found that most false
positives could be eliminated using assumptions about the position of the finger i.e., a fin-
gertip cannot lie far away or too close to the center of the palm. After elimination, we obtain
five or less fingertip candidate points x𝑓

𝑐 . Figure 3.1 shows one depth frame with detected
fingertips overlaid and Figure 3.4 shows the filtered fingertips on the point cloud.

3.5.4 Finger Pose Estimation
The final step of discriminative pose estimation is to find the complete or partial pose of
the hand, Θ̃𝐷. However, in order to query the finger pose databases we would need to
label each detected fingertip. This is a hard problem since there is tremendous variation
in fingertip appearance in depth or RGB images. We instead adopt a hypothesize-and-test
framework to test all elements in the set of permutations of labels, Σ, using two criteria.
First, for each permutation 𝜎𝑖 ∈ Σ we reject a hypothesized pose early based on the distance
of each detected fingertip to the nearest neighbor in the finger pose database corresponding
to the current labeling for that fingertip. We set a distance threshold 𝜇 = 20 mm in all
our experiments. Only those hypotheses that pass the first stage are tested with the distance
measure which is given as

𝛿(𝜎𝑖, Θ̃) = 1
𝑟‖x𝑖 − x𝑓

𝑐 ‖2, (3.6)
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where 𝑟 is the number of detected fingertips, x𝑖 is the position of a fingertip corresponding to
a candidate fingertip x𝑓

𝑐 and Θ̃ is the current hypothesis pose. The pose that has the lowest
distance measure is selected as the best pose Θ̃𝐷. In the case of less than five detected
fingertip locations, a partial pose with the lowest distance is still recovered since partial
poses are also part of the permutations set Σ.

3.6 Pose Candidate Fusion
At this stage, we have two hand pose candidates, Θ𝐺 and Θ̃𝐷, from the generative and
discriminative methods. In order to combine them together to find the best pose, we first ini-
tialize a second instance of the generative tracker with Θ̃𝐷 instead of extrapolation. Those
pose parameters that are not part of Θ̃𝐷 are extrapolated using Equation 3.5. Upon opti-
mization we obtain the pose Θ𝐷 and an associated optima energy ℰ(Θ𝐷). The final pose,
Θ𝐹 , is the pose that has the higher energy given by

Θ𝐹 = argmax
Θ∈{Θ𝐺,Θ𝐷}

{ℰ(Θ𝐺), ℰ(Θ𝐷)}. (3.7)

3.7 Results
We implemented and tested our method, algorithmic variants of it, and a related algorithm
from literature [99] on a computer with a clock speed of 3.30 GHz, 8 GB of RAM, and an
Nvidia NVS 300 GPU. On this machine, our method achieved an interactive frame rate of
10 fps. With our unoptimized C++ code, the most time consuming components were the
local optimization for generative pose estimation (53 ms) and multiscale fingertip detection
(40 ms).

We will now present results from extensive experimental evaluation that we conducted
using our method on a variety of sequences. Unlike previous approaches that used a com-
bination of synthetic and real data for evaluation, we used a large corpus of real data. We
collected seven real sequences consisting of synchronized and calibrated multi-view RGB
images, as well as monocular ToF and Kinect data (see Figure 3.2). All sequences were
manually annotated to mark fingertip and palm center positions in the depth data. In total,
our test sequences consist of 2137 frames of data containing both slow and fast motions
with a static background and general illumination conditions. The sequences that we cap-
tured span a range of hand movement from flexion–extension (e.g., fingerwave, flexex1,
pinch, fingercount), abduction–adduction (e.g., abdadd), and included random motions
(e.g., random, fingerwave).
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Overall quantitative results from our experiments show that our approach of combining a
generative pose estimation method with a discriminative part-base pose retrieval technique
(SoG + PBPFingertip) performs better than other alternatives in most cases. Our algo-
rithm is stable and all results were recorded using the same parameters. We compared our
approach with several algorithmic alternatives—(a) generative pose estimation with SoG
model only (SoG), (b) generative pose estimation method combined with a global pose re-
trieval technique based on normalized depth images (SoG + GPImage), and (c) publicly
available implementation of the method proposed by Oikonomidis et al. [99] (FORTH, one
sequence only).

Evaluation Metric: To enable relative comparison with other methods we adopted an
error metric similar to that used by Oikonomidis et al. [96]. The Euclidean distance between
the estimated and ground truth fingertip positions and palm center positions are computed
for each frame for all datasets. We find the average error, Δ̃, over all frames within each
dataset.

Quantitative Results: Figure 3.5a compares our result (SoG + PBPFingertips) with us-
ing only SoG and SoG + GPImage. Our hybrid method produces better results and achieves
an accuracy of 13.24 mm on average which is close to the best offline methods [13]. This
can be attributed to the fact that each time generative pose estimation fails, the discrimina-
tive part-base pose retrieval strategy re-initializes it appropriately. This becomes clear in
Figure 3.5b which shows the error as a function of the frame number. The error starts accu-
mulating in the generative method at about frame 25 and never goes down. But our method
periodically re-initializes so as to maintain a constant error rate even in long sequences. Most
notably, towards the end of the sequence our method produces errors that are not too differ-
ent from the first few frames. One surprising result here is that SoG + GPImage produces a
higher error than SoG only which indicates that image based global retrieval is sensitive to
noise in the depth data.

We also tested the FORTHmethod on a dataset containingmotions similar to fingerwave
but under different illumination conditions as we were unable to get their method to work
on any one of our seven sequences. Their method is based on GPU acceleration and runs
at only 2.5 fps compared to our 10 fps on the same machine indicating that optimization of
our code could lead to faster frame rates. We then computed the error measure, Δ̃, for the
FORTH method over the entire (similar) sequence and found it to be 10.31 mm. This com-
pares favorably with the mean error of our method which was 13.24 mm. Thus, our method
performs well for similar datasets while using less computational budget than FORTH.
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(a) The average position error over the entire
dataset for SoG only, SoG + GPImage and SoG
+ PBPFingertips (ours).

(b) The average position error over the
fingerwave dataset for SoG only and SoG +
PBPFingertip (ours).

(a) (b)

(c) (d)

Figure 3.6 Qualitative results of our method as seen from two camera views. Results in (a),
(b) show general slow motion. Results in (c) show successful tracking even in the presence
of fast motion. Result (d) shows a failure case due to fast motion.

3.8 Discussion
In this chapter, we presented a novel method for tracking the full articulated 3D motion of
the human hand using a hybrid method from multiple RGB and depth cameras. Our method
advances the state of the art by demonstrating high accuracy across a large corpus of motions
with a runtime that is sufficient for many interactive applications. Our main contribution was
the use of a new method for part-based pose retrieval in conjunction with image-based pose
optimization. Part-based pose retrieval enables recovery and stable tracking of poses with
self-occlusions that are characteristic of hand motion, and enables a dramatic reduction of
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the pose database size. This allows our method to track difficult hand poses more accurately
and robustly than previous approaches while running at interactive speeds.

3.9 Conclusion
Although our method achieves good performance on real sequences there is still room for
improvement. In particular the accuracy and runtime of our method can be improved consid-
erably. To improve accuracy, we will explore the use of newmodel and input representations
in Chapter 4. Later in Chapter 7, we show how our method can also run considerably faster
beause the SoG representation lends itself well for parallelization. Our calibrated multi-
camera setup requires time to setup. Therefore, in Chapter 5, we explore reducing the num-
ber of cameras and incorporating depth data into generative pose optimization. In the next
chapter, we discuss the use of novel representations for the input data and the hand model to
achieve real-time tracking with more accuracy.



Chapter 4

Real-time Hand Tracking with Multiple
RGB Cameras

In order for hand tracking to be useful for gesture-based computer input some key require-
ments are accuracy, real-time performance and low latency. Most approaches from the lit-
erature frequently fail to track even moderately fast and complex hand motion in real-time.
High accuracy approaches tend to be slow. In this chapter, we present an approach that
achieves accurate, real-time (>25 FPS) tracking for complex hand motion. Parts of this
chapter appeared in a previous publication [132].

4.1 Introduction

Figure 4.1 Qualitative results from our SAG-based
tracking method. We achieve a framerate of 25 fps
which is suitable for interactive applications.

Previous methods for hand tracking can
be broadly classified into either gen-
erative methods [99, 133, 80] or dis-
criminative methods [5, 153, 152, 63].
Generative methods usually employ a
dedicated model of hand shape and ar-
ticulation whose pose parameters are
optimized to fit image data. While
this yields temporally smooth solu-
tions, real-time performance necessi-
tates fast local optimization strategies which may converge to erroneous local pose optima
of the non-convex objective function. In contrast, discriminative methods detect hand pose
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from image features, e.g., by retrieving a plausible hand configuration from a learned space
of poses, but the results are usually temporally less stable.

In the previous chapter, we presented a hybrid method that combines generative and dis-
criminative pose estimation for hand tracking frommulti-view video and a single depth cam-
era (Chapter 3). In that work, generative tracking is based on an implicit Sum of Gaussians
(SoG) representation of the hand, and discriminative tracking uses a linear SVM classifier
to detect fingertip locations. This approach showed increased tracking robustness compared
to prior work but was limited to using isotropic Gaussian primitives to model the hand.

In this chapter, we build on this previous method and further develop it to enable fast,
more accurate, and robust articulated hand tracking at real-time rates of 25 fps using only
multi-view RGB images. We contribute a fundamentally extended generative tracking algo-
rithm based on an augmented implicit shape representation.

The original SoG model is based on the simplifying assumption that all Gaussians in 3D
have isotropic covariance, facilitating simpler projection and energy computation. How-
ever, in the case of hand tracking this isotropic 3D SoGmodel reveals several disadvantages.
Therefore we introduce a new 3D Sum of Anisotropic Gaussians (SAG) representation (Fig-
ure 4.3) that uses anisotropic 3D Gaussian primitives attached to a kinematic skeleton to
approximate the volumetric extent and motion of the hand. This step towards a more general
class of 3D functions complicates the projection from 3D to 2D and thus the computation of
the pose fitting energy. However, it maintains important smoothness properties and enables
a better approximation of the hand shape with less primitives (visualized as ellipsoids in
Figure 4.3). Our approach, in contrast to previous methods ([135, 131], Chapter 3), models
the full perspective projection of 3D Gaussians. To summarize, the primary contributions
of this chapter are:

• An advancement of the method presented in Chapter 3 that generalizes the SoG-based
tracking to one based on a new 3D Sum of Anisotropic Gaussians (SAG) model, thus
enabling tracking using fewer primitives.

• Utilization of a full perspective projection model for projection of 3D Gaussians to 2D
in matrix-vector form.

• Analytic derivation of the gradient of our pose fitting energy, which is smooth and
differentiable, to enable real-time optimization.

We evaluate the improvements enabled by SAG-based generative tracking over previous
work. Our contributions not only lead to more accurate and robust real-time tracking but
also allow tracking of objects in addition to the hand.
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4.2 Previous Work
Following the survey of Erol et al. [37], we review previous work by categorizing them into
eithermodel-based trackingmethods or single frame pose estimationmethods. Model-based
tracking methods use a hand model, usually a kinematic skeleton with additional surface
modeling, to estimate the parameters that best explain temporal image observations. Single
frame methods are more diverse in their algorithmic recipes, they make fewer assumptions
about temporal coherence and often use non-parametric models of the hand. Hand poses are
inferred by exploiting some form of inverse mapping from image features to a space of hand
configurations.

Model-based Tracking: Rehg and Kanade [111] were among the first to present a
kinematic model-based hand tracking method. Lin et al. [78, 163] studied the constraints of
hand motion and proposed feasible base states to reduce the search space size. Oikonomidis
et al. [99] presented a method based on particle swarm optimization for full DoF hand
tracking using a depth sensor and achieved a frame rate of 15 fps with GPU acceleration.
Other model-based methods using global optimization for pose inference fail to perform at
real-time frame rates [133, 80].

Primitive shapes such as spheres and (super-)quadrics have been explored for tracking
objects [69], and, recently, for tracking hands [108]. However, perspective projection of
complex shapes is hard to represent analytically and therefore fast optimization is hard. In
this work we use anisotropic Gaussian primitives with analytical expression for perspec-
tive projection. An overview of perspective projection of spheroids, which are conceptually
similar to anisotropic Gaussians, can be found in [35].

Tracking hands with objects imposes additional constraints on hand motion. Methods
proposed by Hamer et al. [47, 46], and others [96, 114, 13] model these constraints. How-
ever, these methods require offline computation and are unsuitable for interaction applica-
tions.

Single Frame Pose Estimation: Single framemethods estimate hand pose in each frame
of the input sequencewithout taking temporal information into account. Somemethods build
an exemplar pose database and formulate pose estimation as a database indexing problem [5].
The retrieval of the whole hand pose was explored by Wang and Popović [153, 152]. How-
ever, the hand pose space is large and it is difficult to sample it with sufficient granularity for
jitter-free pose estimation. Sridhar et al. [131] proposed a part-based pose retrieval method
to reduce the search space. Decision and regression forests have been successfully used in
full body pose estimation to learn human pose from a large synthetic dataset [121]. This
approach has been recently adopted for hands [63, 142, 165, 140]. These methods gener-
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Figure 4.2 Overview of the our tracking framework. We present a novel generative tracking
method that models the hand as a Sum of Anisotropic Gaussians. We obtain better accuracy
and robustness than previous work.

ally lack temporal stability and recover only joint positions or part labels instead of a full
kinematic skeleton.

Hybrid Tracking: Hybrid frameworks that combine the advantages of model-based
tracking and single frame pose estimation can be found in full body pose estimation [167, 7,
156] and early hand tracking [115]. A hybrid method that uses color and depth data for hand
tracking was proposed in Chapter 3 and [131]. However, this method is limited to studio
conditions and uses isotropic Gaussian primitives. In this chapter, we extend this method by
introducing an improved (model-based) generative tracker. This new tracker alone leads to
higher tracking accuracy and robustness than the baseline method it extends while running
in real-time.

4.3 Tracking Overview
Figure 4.2 shows an overview of our tracking framework. The goal is to estimate hand
pose robustly by maximizing the similarity between the hand model and the input images.
The tracker developed in this chapter extends the generative pose estimation method of the
tracking algorithm in [131].

The input to our method are a set of RGB images from 5 video cameras (Point Grey Flea
3) of resolution 320× 240 (see Figure 4.2). The cameras are calibrated and run at 60 fps. The
hand is modeled as a full kinematic skeleton with 26 degrees-of-freedom (DOF), and unlike
other methods that deliver only joint locations or part labels in the images, our approach
computes full kinematic joint angles Θ∗ = {𝜃∗

𝑗}.
Our method maximizes the similarity between the 3D hand model projected into all RGB

images, and the images themselves, by means of a fast iterative local optimization algo-
rithm. The main novelty and contribution of this work is the new shape representation and
pose optimization framework used in the tracker (Section 4.4). Our pose fitting energy is
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smooth, differentiable and allows fast gradient-based optimization. This enables real-time
hand tracking with higher accuracy and robustness while using fewer Gaussian primitives.

4.4 SAG-based Generative Tracking
The generative tracker from Chapter 3 is based on a representation called a Sum of Gaus-
sians (SoG) model, that was originally proposed in [135] for full body tracking (also see
Chapter 2). The basic concept of the SoG model is to approximate the 3D volumetric extent
of the hand by isotropic Gaussians attached to the bones of the skeleton, with a color asso-
ciated to each Gaussian (Figure 4.3 (c)). Similarly, input images are segmented to regions
of coherent color, and each region is approximated by a 2D SoG (Figure 4.4 (b-c)). A SoG-
based pose fitting energy was defined by measuring the overlap (in terms of spatial support
and color) between the projected 3D Gaussians and all the image Gaussians. This energy
(Equation 4.9) is maximized with respect to the degrees of freedom to find the correct pose.

Unfortunately, a faithful approximation of the hand volume with a collection of isotropic
3DGaussians often requiresmanyGaussian primitives with small standard deviation, a prob-
lem akin to packing a volume with spherical primitives. With SoG, this leads to sub-optimal
hand shape approximation and increased computational complexity due to a high number
of primitives in 3D (Figure 4.3). In this chapter, we extend the SoG model and represent
the hand shape in 3D with anisotropic Gaussians, yielding a Sum of Anisotropic Gaussians
model (see Figure 4.1). This not only enables a better approximation of the hand shape with
less 3D primitives (Figure 4.3), but also leads to higher pose estimation accuracy and ro-
bustness. The move to anisotropic 3D Gaussians complicates their projection into 2D where
scaled orthographic projection [135, 131] cannot be used. But we show that the numerical
benefits of the SoG representation hold equally for the SAG model: 1) We derive a pose
fitting energy that is smooth and analytically differentiable for the SAG model under per-
spective projection that allows efficient optimization with a gradient-based iterative solver;
2) We show that occlusions can be efficiently approximated with the SAG model within our
energy formulation. This is in contrast to many other generative trackers where occlusion
handling leads to discontinuous pose fitting energies.

4.4.1 Fundamentals of SAG Model
We represent both the volume of the hand in 3D, as well as the RGB images with a collection
of anisotropic Gaussian functions. A Sum of Anisotropic Gaussians (SAG) model thus takes
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the form:

𝒞(x) =
𝑛

∑
𝑖=1

𝒢𝑖(𝜇i,𝛴i), (4.1)

where 𝒢𝑖(.) denotes an un-normalized, anisotropic Gaussian

𝒢(𝜇i,𝛴i) ∶= exp [−1
2(x − 𝜇𝑖)𝑇𝛴𝑖

−1(x − 𝜇𝑖)] , (4.2)

with mean 𝜇𝑖 and covariance matrix is 𝛴𝑖 for the 𝑖𝑡ℎ Gaussian. Each Gaussian also has an
associated average color vector c𝑖 in HSV color space.

Using the above representation, we model the hand surface as a sum of 3D anisotropic
Gaussians (3D SAG), where x ∈ ℝ3. We also approximate the input RGB images as a
sum of 2D isotropic Gaussians (2D SoG), where x ∈ ℝ2. This is an extension of the SoG
representation proposed earlier in [135, 131], which was limited to isotropic Gaussians.

3D Hand Modeling: We model the volumetric extent of the hand as a 3D sum of
anisotropic Gaussians model (3D SAG), where x ∈ ℝ3. Each 𝒢𝑖 in the 3D SAG is attached
to one bone of the skeleton, and thus moves with the local frame of the bone (Figure 4.3).
A linear mapping between skeleton joint angles and a pose parameter space, Θ = {𝜃𝑗},
is constructed. The skeleton pose parameters are further constrained to a predefined range
of motion reflecting human anatomy, 𝜃𝑗 ∈ [𝑙𝑗𝑚𝑖𝑛, 𝑙𝑗𝑚𝑎𝑥]. The use of anisotropic Gaussians,
whose spatial density is controlled by the covariances, enables us to approximate the general
shape of the hand with less primitives than needed with the original isotropic SoG model
(Figure 4.3). This is because we can create a better packing of the hand volume with more
generally elongated Gaussians, particularly for approximating cylindrical structures like the
fingers. The Gaussians in 3D have infinite spatial support, which is an advantageous property
for pose fitting, as explained later, but also means that the SAG does not represent a finite
volume (𝒞(x) > 0 everywhere). We therefore assume that the hand is well modeled by a 3D
SAG if the surface passes through each Gaussian at a distance of 1 standard deviation from
the mean.

Hand Model Initialization: The hand model for tracking requires initialization of the
skeleton dimensions, Gaussian covariances that control their shapes, and associated colors
for an actor before it can be used for tracking. Our method accepts manually created hand
models which could be obtained from a laser scan. Alternatively, we also provide a fully
automatic procedure to obtain a hand model to fit each person. This method uses a greedy
optimization strategy to optimize for a total of 3 global hand shape parameters and 3 inde-
pendent scaling parameters (along the local principal axes) for each of the 17 Gaussians in
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(a) (b) (c) (d)

Figure 4.3 (a) Our 3D SAG hand model with 17 anisotropic Gaussians visualized as ellip-
soids with radii equal to the standard deviation. (c) A 3D SoG hand model with 30 isotropic
Gaussians visualized as spheres. (b) Visualizes the SAGmodel density when projected into
2D; with less primitives, the shape of the hand is much better approximated than with the
SoG model (d) Visualization of SoG model density.

the hand model. We observed that starting with a manual model and then using the greedy
fitting algorithm works best.

2D RGB Image Modeling: We approximate the input RGB images using a 2D SoG,
𝒞𝐼 , by quad-tree clustering of regions of similar color. While it would also be possible
to approximate the image as 2D SAG, the computational expense of the non-uniform region
segmentationwould prohibit realtime performance. We found in our experiments that around
500 2D image Gaussians were generated for each camera image.

4.4.2 Projection of 3D SAG to 2D SAG
Pose optimization (Section 4.4.3) requires the comparison of the projections of the 3D SAG
into all camera views, with the 2D SoG of each RGB image. Intuitively (for a moment ignor-
ing infinite support), SAG and SoG can be visualized as ellipsoids and spheres, respectively.

The perspective projections of spheres and ellipsoids both yield ellipses in 2D [35]. For
the case of isotropic Gaussians in 3D, like in the earlier SoG model, projection of a 3D
Gaussian can be approximated as a 2D Gaussian with a standard deviation that is a scaled
orthographic projection of the 3D standard deviation (see Chapter 2 and [131, 135]). This
simple approximation does not hold for our anisotropic Gaussians.

Therefore, we utilize an exact perspective projection Π of ellipsoids, in order to model
the projection of the 3D SAG hand model, 𝒞𝐻 , into its 2D SAG equivalent, 𝒞𝑃 . Given an
ellipsoid in ℝ3 with associated mean, 𝜇ℎ and covariance matrix, 𝛴ℎ, its perspective pro-
jection can be visualized as an ellipse in ℝ2 with parameters 𝛴𝑝 and mean 𝜇𝑝. Figure 4.4
(a) sketches the perspective projection, intuitively, Π can be thought of as the intersection
of the elliptical cone (formed by the ellipsoid and the camera center) with the image plane.
Without loss of generality, we assume the camera to be at the origin with a camera matrix,
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P = K [ I | 0 ]. The parameters of the projected Gaussian are given by

𝜇𝑝 = 1
|M33| K33 [ |M31|

−|M23| ] + [ 𝑘13
𝑘23

] , (4.3)

𝛴𝑝 = − |M|
|M33| K33M−1

33 K𝑇
33, (4.4)

where

M = 𝛴−1
ℎ 𝜇ℎ𝜇𝑇

ℎ𝛴
−⊤
ℎ − (𝜇⊤

ℎ𝛴
−1
ℎ 𝜇ℎ − 1)𝛴−1

ℎ , (4.5)

|M| is the determinant of M, A𝑖𝑗 is a matrix A with its 𝑖𝑡ℎ row and 𝑗𝑡ℎ column removed,
and 𝑘𝑖𝑗 is the element at the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column ofK. This more general projection also
leads to a more involved pose fitting energy with more involved derivatives than for the SoG
model, as explained in the next section.

4.4.3 Pose Fitting Energy

Figure 4.4 Sketch of the perspective projection
of ellipsoids as the intersection of the image
plane with the cone formed by the camera cen-
ter and the ellipsoid.

We now define an energy that measures the
quality of overlap between the projected 3D
SAG 𝒞𝑃 = Π(𝒞𝐻), and the image SoG
𝒞𝐼 , and that is optimized with respect to
the pose parameters Θ of the hand model.
Our overlap measure is an extension of the
SoG overlap measure [135] to a SAG (see
also Chapter 2). Intuitively, we assume that
two Gaussians in 2Dmatch well if their spa-
tial support aligns, and their color matches.
This criterion can be expressed by the spa-

tial integral over their product, weighted by a color similarity term. The similarity of any
two sets, C𝑎 and C𝑏, of SAG or SoG in 2D (including combined models with both isotropic
and anisotropic Gaussians) can thus be defined as

𝐸(C𝑎,C𝑏) = ∑
𝑝∈C𝑎

∑
𝑞∈C𝑏

𝑑(c𝑝, c𝑞) ∫
Ω

𝒢𝑝(x)𝒢𝑞(x)dx

= ∑
𝑝∈C𝑎

∑
𝑞∈C𝑏

𝑑(c𝑝, c𝑞)𝐷𝑝𝑞 = ∑
𝑝∈C𝑎

∑
𝑞∈C𝑏

𝐸𝑝𝑞 (4.6)
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where 𝐸𝑝𝑞 is the integral overlap measure mentioned earlier, 𝑑(c𝑝, c𝑞) measures color simi-
larity using the Wendland function [160], and 𝐸𝑝𝑞 = 𝑑(c𝑝, c𝑞)𝐷𝑝𝑞. Unlike the SoG model,
for the general case of potentially anisotropic Gaussians, the term 𝐷𝑝𝑞 evaluates to

𝐷𝑝𝑞 =
√(2𝜋)2|𝛴𝑝𝛴𝑞|

√|(𝛴𝑝 + 𝛴𝑞)|
e− 1

2 (𝜇𝑝−𝜇𝑞)𝑇 (𝛴𝑝+𝛴𝑞)−1(𝜇𝑝−𝜇𝑞). (4.7)

Using this Gaussian similarity formulation allows us to compute the similarity between the
image SoG 𝒞𝐼 and the projected hand SAG 𝒞𝑃 .

We also need to consider occlusions of Gaussians from a camera view. Computing a
function that indicates occlusion analytically independent of pose parameters is generally
difficult and may lead to a discontinuous similarity function. Thus, we use a heuristic ap-
proximation of occlusion [135] that yields a continuous fitting energy defined as follows

𝐸𝑠𝑖𝑚 [𝒞𝐼 , 𝒞𝐻] = ∑
𝑞∈𝒞𝐼

min⎛⎜
⎝

∑
𝑝∈Π(𝒞𝐻)

𝑤ℎ
𝑝 𝐸𝑝𝑞, 𝐸𝑞𝑞⎞⎟

⎠
, (4.8)

where 𝑤ℎ
𝑝 is a weighting factor for each projected 3D Gaussian of the hand model. 𝐸𝑞𝑞 is the

overlap of an image Gaussian with itself. With this formulation, an image Gaussian cannot
contribute more to the overlap similarity than by its own footprint in the image. To find the
hand pose, 𝐸𝑠𝑖𝑚 is optimized with respect to Θ, as described in the following section. Note
that the infinite support of the Gaussians is advantageous as it leads to an attracting force
between the projected model and the image of the hand, even if they do not overlap in a
camera view.

4.4.4 Pose Optimization
The final energy that we maximize to find the hand pose takes the form

ℰ(Θ) = 𝐸𝑠𝑖𝑚(Θ) − 𝑤𝑙 𝐸𝑙𝑖𝑚(Θ), (4.9)

where 𝐸𝑙𝑖𝑚(Θ) penalizes motions outside of parameter limits quadratically, and weight 𝑤𝑙
is empirically set to 0.1. With the SoG formulation, it was possible to express the energy
function (with a scaled orthographic projection) in a closed form analytic expression, and to
derive the analytic gradient. We have found that 𝐸𝑠𝑖𝑚(Θ) in our SAG-based, even with its
full perspective projection model, can still be written in closed form with analytic gradient.
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We derive the analytical gradient of 𝐸𝑠𝑖𝑚 with respect to the degrees of freedom Θ in
three steps. For each Gaussian pair (ℎ, 𝑞) and parameter 𝜃𝑗 we compute

(𝜕𝛴ℎ
𝜕𝜃𝑗

, 𝜕𝜇ℎ
𝜕𝜃𝑗

)
𝑎)
−→ ( 𝑑M

𝑑𝜃𝑗
)

𝑏)
−→ (𝑑𝛴𝑝

𝑑𝜃𝑗
, 𝑑𝜇𝑝

𝑑𝜃𝑗
)

𝑐)
−→ (𝑑𝐷𝑝𝑞

𝑑𝜃𝑗
) . (4.10)

We exemplify the computation at hand of step a); the input to a) is the change of the ellipsoid
covariance matrix 𝜕𝛴−1

ℎ and the change of position 𝜕𝜇ℎ with respect to the DOF 𝜃𝑗. In this
step we are interested in the total derivative

𝑑M
𝑑𝜃𝑗

= ∑
𝑖∈{1,2,3}

𝜕
𝜕𝜇ℎ𝑖

𝜕𝜇ℎ𝑖
𝜕𝜃𝑗

+ ∑
𝑘∈{1,⋯,6}

𝜕
𝜕𝛴ℎ

−1
𝑘

𝜕𝛴ℎ
−1
𝑘

𝜕𝜃𝑗
. (4.11)

The partial derivatives of the cone matrix M with respect to 𝜇ℎ,𝛴ℎ are

𝜕
𝜕𝜇ℎ𝑖

=𝛴−1
ℎ (e𝑖𝜇⊤

ℎ + e𝑖𝜇⊤
ℎ )⊤𝛴−1

ℎ

− ((e𝑖⊤𝛴−1
ℎ 𝜇ℎ) + (e𝑖⊤𝛴−1

ℎ 𝜇ℎ)⊤)𝛴−1
ℎ ,

𝜕
𝜕𝛴ℎ

−1
𝑘

= 𝐻 + 𝐻⊤ − 𝜇ℎ
⊤S𝑘𝜇ℎ𝛴−1

ℎ

− (𝜇⊤
ℎ𝛴

−1
ℎ 𝜇ℎ − 1)S𝑘, (4.12)

with 𝑒𝑖 the 𝑖𝑡ℎ unit vector, 𝜇ℎ𝑖 the 𝑖𝑡ℎ entry of 𝜇ℎ, H = S𝑘𝜇ℎ𝜇⊤
ℎ𝛴

−⊤
ℎ , where 𝑘 indexes

the unique elements of the symmetric matrix𝛴−1
ℎ , and S𝑘 is the symmetric structure matrix

with the 𝑘𝑡ℎ elements equal to one, and zero otherwise. The total similarity energy 𝐸𝑠𝑖𝑚
is the weighted sum over all 𝜃𝑗 and 𝐷𝑝𝑞 according to Equation 4.8. Combined with the
analytical gradient of 𝐸𝑙𝑖𝑚(Θ) we obtain an analytic formulation for 𝜕

𝜕Θℰ(Θ). As sums of
independent terms, both ℰ and 𝜕

𝜕Θℰ lend themselves to parallel implementation.
Even though evaluation of fitting energy and gradient is much more involved than for the

SoG model, both share the same smoothness properties and can be evaluated efficiently, and
thus an optimal pose estimate can be computed effectively using a standard gradient-based
optimizer. The optimizer is initiliazed with an extrapolation of the pose parameters from the
two previous time steps. The SAG framework leads to much better accuracy and robustness
and requires far fewer shape primitives to be compared, as validated in Section 4.5.
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4.5 Experiments
We conducted extensive experiments to show that our SAG-based tracker outperforms the
SoG based method it extends. We also compare with another state-of-the-art method that
uses a single depth camera [140]. We ran our experiments on the publicly availableDexter 1
dataset (see Chapter 3 and [131]) which has ground truth annotations. This dataset contains
challenging, slow and fast motions. We processed all 7 sequences in the dataset and, while
[131] evaluated their algorithm only on the slow motions, we evaluated our method on fast
motions as well.

For all results we used 10 gradient ascent iterations. Our method runs at a framerate of 25
fps on an Intel Xeon E5-1620 running at 3.60 GHz with 16 GB RAM. Our implementation
of the SoG-based tracker of [131] runs slightly faster at 40 fps.

Figure 4.5 This figure shows a comparison of
tracking error for SAG and SoGwith 2 to 5 cam-
eras. A total of 156 runs were required for SAG
and SoG with different camera combinations.
The results show that SAG outperforms SoG.
Best viewed in color.

Accuracy: Figure 4.6 shows a plot
of the average error for each sequence in
our dataset. Over all sequences, SAG had
an error of 24.1 mm, SoG had an error of
31.8 mm, and [140] had an error of 42.4 mm
(only 3 sequences). The mean standard de-
viations were 11.2 mm for SAG, 13.9 mm
for SoG, and 8.9 mm for [140] (3 sequences
only). Our errors are higher than those re-
ported in Chapter 3 because we performed
our experiments on both the slow and fast
motions as opposed to slow motions only.
Additionally, we discarded the palm center
used by [131] since this is not clearly de-
fined. We would like to note that [140] per-
form their tracking on the depth data in Dex-
ter 1, and use no temporal information. In
summary, SAG achieves the lowest error and is 7.7 mm better than SoG. This improvement
nearly covers the width of a finger thus making it a significant gain in accuracy.

Error Frequency: Table 4.1 shows an alternative view of the accuracy and robustness
improvement of SAG. We calculated the percentage of frames of each sequence in which the
tracking error is less than 𝑥 mm, where 𝑥 ∈ {15, 20, 25, 30, 45}. This experiment shows
clearly that SAG outperforms SoG in almost all sequences and error bounds. In particular, the
improvement in accuracy is measured by the increased number of frames with error smaller
than 15 mm, and the robustness to fast motions by the smaller number of dramatic failures
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Figure 4.6 Average errors for all sequences in the Dexter 1 dataset. Our method has the
lowest average error of 24.1 mm compared to SoG (31.8 mm) and [140] (42.4 mm). The
dashed lines represent average errors over all sequences. Best viewed in color.

Error < adbadd fingercount fingerwave flexex1 pinch random tigergrasp
SoG SAG SoG SAG SoG SAG SoG SAG SoG SAG SoG SAG SoG SAG

15 34.5 70.7 13.1 8.7 11.0 16.7 5.2 50.0 10.8 34.0 3.3 10.5 11.2 10.2
20 48.1 97.5 35.2 33.4 31.0 34.3 12.1 79.4 30.78 66.3 5.3 21.4 25.6 25.6
25 61.0 99.4 54.1 61.0 45.8 47.0 29.7 91.0 50.3 89.9 6.9 34.7 43.8 51.7
30 70.7 99.4 65.4 79.4 58.5 59.4 45.0 96.5 81.0 98.7 10.9 46.4 50.2 58.7
45 93.4 99.7 90.1 99.1 82.0 90.4 86.6 98.9 100.0 100.0 40.2 72.1 83.3 82.3

Table 4.1 Percentage of total frames in a sequence that have an error of less 𝑥 mm. We
observe that SAG outperforms SoG in all sequences and error bounds. The values in bold
face indicate the best values for a given error bound.

of errors larger than 30mm. For example, in the adbadd sequence 70.7% of frames are better
than 15 mm for SAG while only 34.5% of frames for SoG. Note that when 𝑥 = 100 mm, the
percentage of frames < 𝑥 mm is 100% for SAG.

Influence of Number of Cameras: To evaluate the scalability of ourmethod to the num-
ber of cameras we conducted an experiment where each camera was progressively disabled
with total active cameras ranging from 2 to 5. This leads to 26 possible camera combinations
for each sequence and a total of 156 runs for both the SAG and SoG methods. We excluded
the random sequence as it was too challenging for tracking with 3 or less cameras.

Figure 4.5 shows the average error over all runs for varying cameras. Clearly, SAG pro-
duces lower errors and standard deviations for all camera combinations. We also observe
a diverging trend and hypothesize that as the number of cameras is increased the gap be-
tween SAG and SoG will also increase. This may be important for applications requiring very
precise tracking such as motion capture for movies. We associate the improvements in ac-
curacy of SAG with its ability to approximate the users’ hand better than SoG. Figure 4.3 (b,
d) visualizes the projected model density and reveals a better approximation for SAG.

Qualitative Tracking Results: Finally, we show several qualitative results of tracking
in Figure 4.7 comparing SAG and SoG. Since our tracking approach is flexible we are also
able to track additional simple objects such as a plate using only a few primitives.
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Figure 4.7 First Two Rows: Comparison of SAG (left) and SoG (right) for two frames in
the Dexter 1 dataset. In the first row, SAG covers the hand much better during a fast motion
of the hand in spite of using fewer primitives. In the second row, a challenging motion is
performed for which SAG performs better. Bottom Row: Realtime tracking results for one
hand with different actors, and two hands.

4.6 Discussion
We presented a method for articulated hand tracking that uses a novel Sum of Anisotropic
Gaussians (SAG) representation to track hand motion. Our SAG formulation uses a full
perspective projection model and uses only a few Gaussians to model the hand. Because of
our smooth and differentiable pose fitting energy, we are able to perform fast gradient-based
pose optimization to achieve real-time frame rates. Our approach produces more robust and
accurate tracking than previous methods while featuring advantageous numerical properties
and comparable runtime. As demonstrated in the above experiments, our method advances
state of the art methods in accuracy and is suitable for real-time applications.

4.7 Conclusion
The method presented in this chapter is a purely generative approach that could lose tracking
because of fast hand motions. Like other hybrid methods, we could augment our method
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with a discriminative tracking strategy similar to the approach presented in Chapter 3. The
generality of our method allows easy integration into such a hybrid framework.

Our method uses multiple calibrated cameras which could hinder adoption by users for
interactive applications. These limitations could be overcome if we rely only on the depth
data from a single camera. In the next chapter, we present a method that uses purely depth
data from a single camera for real-time hand tracking.

While we track the hand at more than 25 fps, it might be insufficient for applications in
gesture-based input. In the next chapter, we also show how we can achieve tracking speeds
of 50 fps which make it more useful for interactive applications.



Chapter 5

Real-time Hand Tracking from a Single
Depth Camera

In this chapter, we show how we can add an important constraint to the problem—the use
of only a single camera for hand tracking. Because of the ambiguities inherent in single
RGB images, we use a depth camera which provides a depth value at every pixel. Our
algorithm is one of the first methods that uses only the depth channel to track complex hand
poses at 50 FPS while running completely on the CPU. This enables new HCI applications
that require real-time user interaction and low latency. Parts of this chapter appeared in a
previous publication [129].

5.1 Introduction
There is increasing interest in using markerless hand tracking in human-computer interac-
tion, for instance when interacting with 3D applications, augmented reality, smart watches,
and for gestural input [65, 75, 152]. However, flexible, realtime markerless tracking of hands
presents several unique challenges. First, natural hand movement involves simultaneous
control of several (≥ 25) degrees-of-freedom (DOFs), fast motions with rapid changes in di-
rection, and self-occlusions. Tracking fast and complex finger articulations combined with
global motion of the hand at high framerates is critical but remains a challenging prob-
lem. Second, many methods use dense camera setups [96, 131] or GPU acceleration [99],
i.e., have high setup costs which limits deployment. Finally, applications of hand tracking
demand tracking across many camera-to-scene configurations including desktop, egocentric
and wearable settings. This chapter presents a novel method for hand tracking with a single
depth camera that aims to address these challenges. Our method is extremely fast (nearly
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equalling the capture rate of the camera), reliable, and supports varying close-range camera-
to-hand arrangements including desktop, and moving egocentric (camera mounted to the
head).

Figure 5.1 Overview of our detection-guided tracking method. We develop a novel represen-
tation for depth data and hand model as a mixture of 2.5D Gaussians. This representation
allows us to combine the benefits of model-based generative tracking and discriminative
part detection. Pixels classified using a trained decision forest are directly incorporated as
evidence in detection-guided pose optimization. Dashed lines indicate offline computation.
Best viewed in color.

Themain novelty in our work is a new detection-guided optimization strategy that com-
bines the benefits of two common strands in hand tracking research—model-based generative
tracking and discriminative hand pose detection—into a unified framework that yields high
efficiency and robust performance and minimizes their mutual failures (see Figure 5.1). The
first contribution in this strategy is a novel, efficient representation of both the input depth
and the hand model shape as a mixture of Gaussian functions. While previous work used
primitive shapes like cylinders [99, 96] or spheres [108] to represent the hand model, we
use Gaussian mixtures for both the depth data and the model (see Chapter 2). This compact,
mathematically smooth representation allows us to formulate pose estimation as a 2.5D gen-
erative optimization problem in depth. We define a new depth-only energy, that optimizes
for the similarity of the input depth with the hand model. It uses additional prior and data
terms to avoid finger collisions and to preserve the smoothness of reconstructed motions.
Importantly, since the energy is smooth, we can obtain analytic gradients and perform rapid
optimization. While pose tracking on this energy alone could run in excess of 120 fps using
gradient-based local optimization, this often results in a wrong local pose optimum.

The second contribution in our strategy is thus to incorporate evidence from trained ran-
domized decision forests that label depth pixels into predefined parts of the hand. Unlike
previous purely detection-based approaches [38, 121], we use the part labels as additional
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constraints in an augmented version of the aforementioned depth-only energy, henceforth
termed detection-guided energy. The part labels include discriminative detection evidence
into generative pose estimation. This enables the tracker to better recover from erroneous
local pose optima and prevents temporal jitter common to detection-only approaches. The
precondition for recovery is reliability of the part labels. However, even with large training
sets it is hard to obtain perfect part classification (per-pixel accuracy is usually around 60%).
Thus, pose estimation based on this additional discriminative evidence is also not sufficient.

Our third contribution therefore, is a new late fusion approach that combines particle-
based multi-hypothesis optimization with an efficient local gradient-based optimizer. Pre-
vious work has used particle-based optimizers, but they tend to be computationally expen-
sive [99, 96]. Our approach is fast because we combine the speed of local gradient-based
optimization with the robustness of particle-based approaches. At each time step of depth
video, a set of initial pose hypotheses (particles) is generated, from which a subsequent lo-
cal optimization is started. Some of these local optimizers use the depth-only pose energy,
some others use the detection-guided energy. In a final late fusion step the best pose is chosen
based on the pose fitting energy.

Our approach results in a temporally stable and efficient tracker that estimates full artic-
ulated joint angles of even rapid and complex hand motions at previously unseen frame rates
in excess of 50 fps, even with a CPU implementation. Our tracker is resilient to erroneous
local convergence by resorting to the detection-guided solution when labels can be trusted,
and it is not misled by erroneous detections as it can then switch to the depth-only tracking
result.

We show these improvements with (1) qualitative experiments, (2) extensive evaluation
on public datasets, and (3) comparisons with other state-of-the-art methods.

5.2 Related Work
In this review, we focus on previous approaches to markerless hand tracking from depth
images. First, we briefly discuss marker-based and multi-camera techniques. Gloves fitted
with retro-reflective markers or color patches were used to estimate the kinematic skeleton
using inverse kinematics [137, 153, 172]. Research onmarkerless trackingwasmade popular
in the early 2000s (e.g., [5, 163]). Some recent solutions assume a multi-camera setup
with offline processing [13, 96, 154], while others track at interactive rates [131, 152] of
up to 30 fps [132]. However, calibrated multi-camera setups make these methods difficult
to adopt for practical applications. The recent introduction of consumer depth sensors has
resulted in a number of methods that require only a single depth camera. Some commercial
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solutions exist, such as the Leap Motion1. Although Leap Motion is fast, the approach uses
strong priors and fails with complex self-occlusions and non-standard motions (we show an
example in Section 5.7).

The main approaches to real-time hand tracking can be divided into two classes: (1)
generative and (2) discriminative methods.2 First, a method to track a hand manipulating
an object that takes 6.2 s/frame was proposed in [47]. Oikonomidis et al. [99] proposed a
model-based method that made use of particle-swarm optimization. This method requires
GPU acceleration to achieve 15 fps and uses skin color segmentation which is sensitive to
lighting. They showed an extension to interacting hands, although only offline [97, 98].
Melax et al. [86] proposed a tracking method directly in depth by efficient parallel physics
simulations. While this method is fast, finger articulations are often incorrectly tracked,
as we demonstrate later. Recent real-time surface tracking methods from depth [173] were
applied to hands, but are limited to simple motions with no occlusions.

Second, decision forests were used with great success for full body tracking [42, 121]
and later adopted to hand tracking with varying success. Keskin et al. [62] proposed a
method for recognizing finger spelling in depth data using classification forests. Many oth-
ers [38, 140, 142, 165] also proposed methods based on variants of random forests. Tomp-
son et al. [144] track hand motion from depth at ≤ 25 fps using feature detections from a
convolutional network and further pose refinement through inverse kinematics. However,
a common problem with these approaches is jitter due to missing temporal information at
each time step. We provide a direct comparison with one recent method [140] to demon-
strate this. Moreover, most methods estimate joint positions with temporally varying bone
lengths, limiting applicability.

In Chapter 3, we proposed combining discriminative and generative hand pose estima-
tion. This approach detected only fingertips, which could easily be occluded or misdetected.
Offline tracking in RGB-D using a combination of discriminative and generative pose es-
timation was shown in [147]. Qian et al. [108] proposed a method based on optimization
in combination with discriminative fingertip detection, achieving 25 fps. However, tracking
would be hard with this method when one or more of the fingertips are occluded.

In this chapter we present a method that combines decision forests and pose estimation in
a unified optimization framework. To our knowledge, ours is the first method to track rapid
articulations at 50 fps using a single depth camera and yet achieve state-of-the-art accuracy.

1https://www.leapmotion.com/
2There are algorithmic parallels to full-body tracking [7, 41, 70, 121].

https://www.leapmotion.com/
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5.3 Input and Model Representation
In the past, representations such as spheres or cylinders have been used to represent the hand
model [99, 108]. Similarly, downsampled images [152, 153] or silhouettes [13] have been
used as representations of input data. However, such representations make pose optimization
energies discontinuous and difficult to optimize. Our novel representation of depth and 3D
model data uses a mixture of weighted Gaussian functions to represent both depth data and
the hand shape. We were inspired by [135] who use multiple 2D RGB images and [70]
who use depth data. Both methods rely on a uniformly weighted Gaussian mixture, and a
2D or 3D error metric for pose estimation. However, we make important modifications that
allows representing 3D depth data using a 2.5D formulation since data from depth sensors
contains information only about the camera-facing parts of the scene. Thus, we enable pose
estimation based on alignment to a single depth image using a 2.5D error metric.

An instance of the input depth or the hand model can be represented as a mixture of
Gaussian functions

C(x) =
𝑛

∑
𝑖=1

𝑤𝑖G𝑖(x; 𝜎,𝜇), (5.1)

where G𝑖(.) denotes a unnormalized Gaussian function with isotropic variance, 𝜎2, in all
dimensions of x ∈ ℛ𝑛, and mean 𝜇. The Gaussian mixture representation has many advan-
tages. First, it enables a mathematically smooth pose estimation energy which is analytically
differentiable. Second, only a few Gaussians are needed for representing the input depth and
the handmodel, an implicit data reduction whichmakes optimization extremely fast. Finally,
it provides a natural way to compute collisions using an analytically differentiable energy.
We show later that collisions are important for pose estimation (Section 5.4). To aid visual-
ization, we henceforth represent each Gaussian in the mixture as a sphere (x ∈ 𝑅3) or circle
(x ∈ 𝑅2) with a radius of 1 𝜎. However, Gaussians have infinite support (C(x) > 0 every-
where) and can produce long range attractive or repulsive force during pose optimization.

5.3.1 Depth Data Representation
The depth camera outputs depth maps, i.e., each pixel has an associated depth value. Depth
maps contain only the camera-facing parts of the scene and information about occluded
parts is unavailable. We therefore only represent the camera-facing pixels using Gaussian
mixtures, which are computed in real-time (see also Figure 5.2).

First, we decompose the depth image into regions of homogeneous depth using a quadtree.
The quadtree recursively decomposes depth image regions further, until the depth difference
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between the furthest and nearest point in a region is below a threshold 𝜖𝑐 (𝜖𝑐 = 20 mm in all
experiments). To each quad in the tree, we fit a Gaussian function with 𝜇 set to the center of
the quad, and 𝜎 = 𝑎/

√
2, where 𝑎 is the side length of the quad. We also set each Gaussian

function to have unit weight 𝑤𝑖 since we consider all input data to be equally important.
This leads us to an analytic representation of the camera-facing surface of the input depth,
C𝐼(x) = ∑𝑛

𝑞=1 G𝑞(x), where x ∈ ℛ2 and 𝑛 is the number of leaves in the quadtree. Addi-
tionally, each quad has an associated depth value, 𝑑𝑞, which is the mean of all depth pixels
within the quad. Figure 5.1 illustrates the process of converting input depth to a Gaussian
mixture.

5.3.2 Hand Model
We model the volumetric extent of the hand analytically using a mixture of 3D Gaussian
functions, Cℎ(x) = ∑𝑚

ℎ=1 𝑤ℎGℎ(x) where x ∈ ℛ3 and 𝑚 is the number of Gaussians. We
assume that the best fitting model has Gaussians whose isosurface at 1 𝜎 coincides with the
surface of the hand. In Section 5.6 we present a fully automatic procedure to fit such a hand
model to a user. Additionally, Cℎ, is attached to a parametric, kinematic skeleton similar
to that of [123], i.e., each 3D Gaussian is attached to a bone which determines its mean
position in 3D. We use |Θ| = 26 skeletal pose parameters in twist representation, including
3 translational DOFs, 3 global rotations, and 20 joint angles.

Model Surface Representation: C𝐼 is a representation of the camera-facing surface
while Cℎ represents the full volumetric extent of the hand. In order to create an equivalent
representation of the hand model that approximates the camera-facing parts, which we later
use in pose optimization (Section 5.4). For each model Gaussian in Cℎ, we create a new
projected Gaussian such that the projected hand model has the form C𝑝 = ∑𝑚

𝑝=1 𝑤𝑝G𝑝(x)
where x ∈ 𝑅2 and 𝑤𝑝 = 𝑤ℎ ∀ℎ. C𝑝 is a representation of the hand model as seen from
the perspective of the depth camera and is defined over the depth image domain. The pa-
rameters of each Gaussian G𝑝 are set to be (𝜇𝑝, 𝜎𝑝), where 𝜇𝑝 = K [ I |0 ]𝜇ℎ. Like [135]
we approximate the perspective projection with a scaled orthographic projection, yielding
2D Gaussians with 𝜎𝑝 = 𝜎ℎ 𝑓/ [𝜇𝑝]𝑧. Here 𝑓 is the focal length of the camera, and [𝜇𝑝]𝑧
denotes the 𝑧-coordinate of the Gaussian mean.

5.4 Hand Pose Optimization
In this section we describe our new formulation of pose estimation as an optimization prob-
lem using the Gaussian mixture representation of 2.5D depth data (See Figure 5.1). Our
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algorithm uses two variants of a model-to-image similarity energy, one that is only based on
depth data (Section 5.4.1), and another that is guided by decision forest-based part detection
(Section 5.4.3). Pose estimates obtained with each energy are used by a late fusion approach
to find the final pose estimate (Section 5.5). Input to pose optimization at each time step
of depth video is the 2.5D mixture of Gaussians representation of a depth image C𝐼 . The
latter is computed after median filtering the depth (to remove flying pixels in time-of-flight
data), and for a constrained working volume in depth between 150 mm and 600 mm from
the camera. The 3D Gaussian mixture of the hand model is denoted by Cℎ and its projected
version is denoted by C𝑝.

5.4.1 Depth-Only Pose Optimization
Our goal is to optimize for the skeleton pose parameters Θ that best explain the input data
and are anatomically plausible. We frame an energy that satisfies our goal while being math-
ematically smooth and differentiable. These properties make the energy ideal for fast opti-
mization.

5.4.2 Objective Function
Our new energy has the following general form:

ℰ(Θ) = 𝐸𝑠𝑖𝑚 − 𝑤𝑐 𝐸𝑐𝑜𝑙 − 𝑤𝑙 𝐸𝑙𝑖𝑚 − 𝑤𝑠 𝐸𝑠𝑚𝑜, (5.2)

where 𝐸𝑠𝑖𝑚 is a measure of 2.5D similarity between C𝐼 and C𝑝, 𝐸𝑐𝑜𝑙 is a penalty for colli-
sions between Gaussians in Cℎ, 𝐸𝑙𝑖𝑚 enforces a soft constraint on the skeleton joint limits,
𝐸𝑠𝑚𝑜 enforces smoothness in the tracked motion. In all our experiments, we used fixed
weighting factors chosen by searching for the best accuracy over the dataset: 𝑤𝑐 = 1.0,
𝑤𝑙 = 0.2, and 𝑤𝑠 = 1.0. Before describing each of the terms in detail we first introduce
a measure of similarity between two Gaussian mixtures which is the basis for many of the
terms in the objective.

Gaussian Similarity Measure: We define a similarity measure between any two pairs
of Gaussian mixtures C𝑎 and C𝑏 as,

𝐸(C𝑎,C𝑏) = ∑
𝑝∈C𝑎

∑
𝑞∈C𝑏

𝐷𝑝𝑞, (5.3)

where, 𝐷𝑝𝑞 = 𝑤𝑝 𝑤𝑞 ∫
Ω
G𝑝(x)G𝑞(x)dx, (5.4)
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Ω denotes the domain of integration of x. This Gaussian similarity measure has a high value
if the spatial support of the two Gaussian mixtures aligns well. It bears resemblance to the
Bhattacharyya Coefficient [16] used to measure the similarity of probability distributions
while being computationally less expensive.

Depth Similarity Term (𝐸𝑠𝑖𝑚):
The 2.5D depth similarity term measures the quality of overlap between the projected

model Gaussian mixtureC𝑝 and the image Gaussian mixtureC𝐼 . Additionally, this measure
also incorporates the depth information available for eachGaussian in themixture. Figure 5.2
explains this term intuitively. TwoGaussians that are close (in 2D pixel distance) in the depth
image obtain a high value if their depth values are also close. On the other hand, the same
Gaussians obtain a low value if their depths are too far apart. Formally, this term is defined
as,

𝐸𝑠𝑖𝑚(C𝑝,C𝐼) = 1
𝐸(C𝐼 ,C𝐼) ∑

𝑝∈C𝑝

∑
𝑞∈C𝐼

Δ(𝑝, 𝑞)𝐷𝑝𝑞 (5.5)

where 𝐷𝑝𝑞 is as defined in Equation 5.4 and the depth similarity factor is

Δ(𝑝, 𝑞) =
⎧{
⎨{⎩

0, if |𝑑𝑝 − 𝑑𝑞| ≥ 2𝜎ℎ
1 − |𝑑𝑝−𝑑𝑞|

2 𝜎ℎ
, if |𝑑𝑝 − 𝑑𝑞| < 2𝜎ℎ

. (5.6)

Here, 𝑑𝑝 and 𝑑𝑞 are the depth values associated with each Gaussian in C𝑝 and 𝐶𝑞 re-
spectively, and 𝜎ℎ is the standard deviation of the backprojected model Gaussian Gℎ. The
surface depth value of each Gaussian in 𝐶𝑝 is computed as 𝑑𝑝 = [𝜇ℎ]𝑧 − 𝜎ℎ. The factor
𝐸(C𝐼 ,C𝐼) is the similarity measure from Equation 5.3 of the depth image with itself and
serves to normalize the similarity term. The Δ factor has a support in the interval [0, 1] thus
ensuring the similarity between a projected model Gaussian and an image Gaussian is 0 if
they lie too far apart in depth.

Collision Penalty Term (𝐸𝑐𝑜𝑙): The fingers of a hand are capable of fast motions and
often come in close proximity with one another causing aliasing of corresponding depth
pixels in the input. Including a penalty for collisions avoids fingers stickingwith one another
and Gaussian interpenetration. The 3D Gaussian mixture representation of the hand model
(Cℎ) offers an efficient way to penalize collisions because they implicitly act as collision
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Figure 5.2 Depth Similarity Term: Consider the similarity value (𝐸𝑠𝑖𝑚) for a cylindrical
shape represented by 3 Gaussians (𝑥 ∈ ℛ3). The top figure shows a case where the value
of 𝐸𝑠𝑖𝑚 is high since the image overlap is high and the depth difference Δ𝑝𝑞 is low. The
bottom figure shows a case where the image overlap is moderate but Δ > 2 𝜎ℎ thus making
𝐸𝑠𝑖𝑚 = 0.
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proxies. We define the penalty for collisions as,

𝐸𝑐𝑜𝑙(Θ) = 1
𝐸(Cℎ,Cℎ) ∑

𝑝∈Cℎ

∑
𝑞∈Cℎ
𝑞>𝑝

𝐷𝑝𝑞, (5.7)

where 𝐸(Cℎ,Cℎ) is the similarity measure from Equation 5.3 for the hand model and serves
to normalize the collision term. The collision term penalizes model Gaussians that collide
with others but not if they collide with themselves. As we show in the results, the collision
term has a large impact on tracking performance.

Joint Limit Penalty Term (𝐸𝑙𝑖𝑚): We add a penalty for poses that exceed predefined
joint angle limits. This forces biomechanically plausible poses to be preferred over other
poses. The joint limit penalty is given as,

𝐸𝑙𝑖𝑚(Θ) = ∑
𝜃𝑗∈Θ

⎧{{
⎨{{⎩

0, if 𝜃𝑙
𝑗 ≤ 𝜃𝑗 ≤ 𝜃ℎ

𝑗
||𝜃𝑙

𝑗 − 𝜃𝑗||2, if 𝜃𝑗 < 𝜃𝑙
𝑗

||𝜃𝑗 − 𝜃ℎ
𝑗 ||2, if 𝜃𝑗 > 𝜃ℎ

𝑗

(5.8)

where 𝜃𝑙
𝑗 and 𝜃ℎ

𝑗 are the lower and higher limits of the parameter 𝜃𝑗 which is defined based
on anatomical studies of the hand [123]. The result is a tracked skeleton that looks biome-
chanically plausible.

Smoothness Penalty Term (𝐸𝑠𝑚𝑜): During frame-by-frame pose optimization, noise
is introduced which manifests as jitter in tracking. To prevent this we penalize fast motions
by adding a penalty as done by [135]. This term is given as,

𝐸𝑠𝑚𝑜(Θ) =
|Θ|−1
∑
𝑗=0

(0.5 (Θ𝑡−2
𝑗 + Θ𝑡

𝑗) − Θ𝑡−1
𝑗 )2 (5.9)

where, Θ𝑡 denotes the pose at time 𝑡. This term acts as a regularizer and prevents jitter in
the tracked pose.

5.4.3 Detection-Guided Pose Optimization
To increase chances of recovery when the estimated pose is at a wrong local pose optima, we
use a second pose optimization energy that includes evidence from hand part detection. In
particular, we use pixel labels computed with a trained random forest [30]. Decision forests
have been used before for 3D pose and joint position detection [62, 140, 142, 165]. We are
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interested in part labels and therefore follow an approach similar to [121] and [62]. The
evidence from the part labels is incorporated in our tracking.

We use 12 part labels for the hand (see Figure 5.1) and found this to be an ideal trade-off
between classification accuracy and sufficient evidence for detection-guided optimization.
We adopt the same depth features as [121]. We use 50,000 labeled training images spanning
the hand pose space. As opposed to previous work [62] that use synthetic data, we use
real hand motions with part labels which were obtained using the depth-only version of our
method and tracking motions slowly without causing tracking failure. During training we
trained 3 trees, each with a maximum depth of 22. For each training image, we sampled
2000 random, foreground pixels, and evaluated 4000 candidate threshold-feature response
pairs.

During quadtree clustering of the depth (Section 5.3.1) each quad is endowed with a part
label, 𝑙𝑞 which is the label with the highest number of votes among all pixels in the quad. We
can now tightly integrate the part labels in the optimization by defining a pose fitting energy
identical to Equation 5.2 with one exception: the depth similarity factor from Equation 5.6
is replaced by the following label similarity factor.

Δ𝑙(𝑝, 𝑞) =
⎧{
⎨{⎩

0, if 𝑙𝑝 ≠ 𝑙𝑞 or |𝑑𝑝 − 𝑑𝑞| ≥ 2𝑅𝑖
1 − |𝑑𝑝−𝑑𝑞|

2 𝑅𝑖
, if 𝑙𝑝 = 𝑙𝑞

,

where 𝑙𝑝 and 𝑙𝑞 are the part labels, 𝑑𝑝 and 𝑑𝑞 are the depth values, 𝑅𝑖 refers to the radius
of influence which is set to 200 mm in all our experiments. Intuitively, Δ𝑙 has a value of
zero if the labels are different and a value of one if the two Gaussians have identical labels
and are perfectly aligned in 2.5D. The labels 𝑙𝑝 are obtained from preassigned labels of each
Gaussian in the hand model.

5.5 Late Fusion
The goal of optimization is to find the pose Θ such that ℰ(Θ) is maximized. Our energies—
both with and without detection—are well suited for gradient based optimization because
we can derive the analytic gradient with respect to the DOFs Θ. For efficiency, we adopt the
fast gradient-based optimizer with adaptive step length proposed by [135].

To improve robustness, especially with changes in direction and global rotation, we use
multiple pose particles for optimizing each frame. Multiple particles improve the chances
of a good initialization for optimization. Each particle 𝑃𝑖 is initialized using the pose pa-
rameters from two previous time steps Θ𝑡−1 and Θ𝑡−2 with different extrapolation factors
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Figure 5.3 Automatic fitting of user specific hand model for 4 subjects, one of whom is
wearing a thick glove to simulate variability in hand dimension. The red spheres denote 3D
Gaussians.

𝛼𝑖𝑗 for each DOF 𝑗. This is given as 𝑃𝑖 = 𝜃𝑡−1
𝑗 + 𝛼𝑖𝑗 𝜃𝑡−2

𝑗 , ∀𝑗. We sample 𝛼𝑖𝑗 from a
normal distribution with mean fixed at the initial value of 𝜃𝑗. All but one of these particles is
optimized using the depth-only energy. Finally, the pose particle which converges with the
best energy value is chosen as the winning pose. In all our experiments, we found that 2–3
particles were sufficient to obtain more robust results. Increasing the number of particles
had a negative effect and caused jitter in the final pose. Each particle used 10–30 iterations
per frame. We justify the choice of these parameters in Section 5.7.

5.6 User Specific Hand Modeling
Accounting for the fact that there are large variations in anthropometric dimensions, our pose
optimization method works best with a customized hand model for each user. Our method
does not necessitate laser scans, manual tuning of the model, or semi-automatic bone model
optimization as used by existing methods [135, 131].

We observed in our experiments that the primary variations in hand dimensions are finger
thickness, hand length and width. We developed a simple strategy where a default hand
model is scaled using three parameters: hand length, width, and variance of Gaussians. To
find the scaling parameters for a user, we perform a greedy search over a fixed range for each
scaling parameter. At each point on this parameter grid we evaluate the energy function value
from Equation 5.2. The parameters that obtain the best energy are selected as the model
scaling parameters. This method is fast and takes less than a second to find a user-specific
hand model. Figure 5.3 shows some qualitative results from our model fitting strategy for
different users.
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5.7 Results and Evaluation
We provide quantitative and qualitative evidence for performance with fast motions and fin-
ger articulations. Evaluation of hand tracking algorithms is challenging because ground truth
data is difficult to obtain. Marker-based motion capture is often problematic due to self-
occlusions. Many methods have therefore resorted to evaluation on synthetic data [99, 96]
which, however, is not representative of real hand motions. There are also no established
benchmark datasets with accepted error metrics, and only a few implementations have been
made public.

We use the dataset from [131] which consists of seven challenging sequences (abduction–
adduction, finger counting, finger waving, flexion–extension, pinching, random motions,
grasping) that are further split into slow and fast parts. The fingertips are annotated man-
ually in the depth data thus making it possible to compare with the multi-view approaches
of [131] and [132]. Additionally, we also compare with the discriminative method of [140]
on 3 sequences. We also motivate the need for our fusion strategy, parameter selection in
optimization, and analyze the effects of different components of our objective function. We
also provide details about our framerate and qualitative evidence of improvements over [86]
and the Leap Motion.

Error Metrics: Our evaluations concern the average fingertip localization error which
correlates well with overall pose accuracy. For each sequence, we compute Euclidean error
of the 5 fingertip positions averaged over all frames. Additionally, we use a second error
metric [108] which is the percentage of frames that have an error of less than 𝑥 mm where
𝑥 ∈ {15, 20, 25, 30}. This is a stricter measure that highlights reliability.

5.7.1 Quantitative Evaluation
Accuracy: Figure 5.4 shows our average error comparedwith that of [131], [132], and [140].
Our method produces the lowest average error of 19.6 mm while using only a single depth
camera. The multi-view approaches of [132] and [131] have errors of 24.1mm and 31.8mm
respectively. The detection-based discriminative method of [140] has an error of 42.4 mm
(3 sequences only) highlighting the need for using temporal information. We observe that
our method does particularly well for motions that involve articulation of fingers such as
flexex1. Our worst performance was on the random sequence involving fast global hand
rotation.

Error Frequency: Table 1 confirms the trend that our method performs well for finger
articulations. In 6 out of 7 sequences, our method results in tracking errors of less than
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Figure 5.4 Average error over the 7 sequences in Dexter 1 and comparison with the multi-
view methods of [131] and [132], and the detection-based method of [140]. Our method
achieves the lowest error on 5 of the 7 sequences and the best average error (19.6 mm).

Error < (mm) adbadd fingercount fingerwave flexex1 pinch random tigergrasp
15 56.6 50.0 56.2 53.7 56.7 19.1 62.9
20 70.6 66.5 71.2 68.1 83.9 40.7 80.6
25 76.2 77.7 78.3 76.7 93.1 59.0 87.3
30 84.9 85.8 85.0 85.5 97.4 70.6 91.8

Table 5.1 Percentage of total frames in a sequence that have an error of less 𝑥 mm.

30 mm in 85% of the frames. A closer examination shows that these sequences contain
complex finger articulations.

Robustness: We measure robustness as the ability of a tracker to recover from tracking
failures. To demonstrate how our late fusion strategy and the different terms in the energy
help achieve this, we show the frame-wise error over the flexex1 sequence (Figure 5.6).
Using the depth-only energy with all terms except 𝐸𝑠𝑖𝑚 disabled (2 particles) results in
catastrophic tracking failure as shown by the accumulating error. Adding the other terms,
especially the collision penalty (𝐸𝑐𝑜𝑙) term, improves accuracy but results are still unsatis-
factory. The results from the late fusion approach show large gains in accuracy. The errors
also remain more uniform which results in temporally stable tracking with less jitter.

Number of Particles and Iterations: Figure 5.5 shows the effect of varying the number
of particles and iterations during optimization. As the number of particles increased we
noticed very little increase in accuracy. In fact, the best accuracy was with 2 particles which
we use throughout. We noticed a reduction in error when using more number of iterations
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Figure 5.5 Effect of varying the number of particles and iterations during optimization. We
found that increasing the number of particles resulted in diminishing returns.

Figure 5.6 Plot of the error for the depth-only tracking and late fusion approach. Each ap-
proachwas runwith only the similarity term𝐸𝑠𝑖𝑚 andwith all terms. Notice the catastrophic
tracking failure with the depth-only energy. The late fusion strategy is robust and prevents
error accumulation. The collision penalty term also results in large accuracy gains. Best
viewed in color.

per particle but at the expense of runtime. We therefore fixed the number of iterations to 10.

Tracking Speed: We tested the tracking speed of different variants of our method on a
3.6 GHz Intel Processor with 16 GB of RAM. Our method was parallelized using OpenMP
but no GPU was used. All tests were done with the Intel Senz3D depth camera with a
depth resolution of 320 × 240 and capture rate of 60 fps. The decision forest when loaded
in memory used 1 GB because the trees were stored as full trees. This can be avoided by
loading only nodes that are valid. The depth-only energy when used with 1 particle, and
10 iterations per particle ran at 120 fps. When 2 particles were used, the speed came down
to 60 fps. The late fusion approach, when used with 2 particles (10 iterations per particle),
achieved a framerate of 50 fps. Image acquisition, part labeling, preprocessing, and creating
theGaussianmixture representation took 2ms. The optimization took between 18 and 20ms.

5.7.2 Qualitative Results
We present several qualitative results from realtime sequences in Figure 5.7. The examples
show motions with a wide range of finger articulations involving abduction, adduction, flex-
ion, extension, and considerable occlusions. They also include common gestures such as the
v-sign and pointing. In the boxes, we also show comparison with [86] and the Leap Motion
on similar poses. We observe a finger sliding effect in both these methods. Pinching is an
important gesture, but the Leap Motion produces sliding fingertips which makes it hard to
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Figure 5.7 Qualitative results from our tracking approach (top row and four leftmost in the
second row). The highlighted boxes show comparison with [86] and the Leap Motion both
of which produce a finger sliding effect. Our method tracks the pinch faithfully.
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Figure 5.8 Tracking from egocentric viewpoint. Our method supports egocentric hand track-
ing of gestures like pointing and grasping.

detect pinching gestures from the tracked skeleton. Our method reproduces pinching faith-
fully as is evident from the skeleton overlaid on the depth image. Occasional tracking failures
occur with large global rotations but the detection-guided energy eventually reinitializes to
the correct pose.

5.8 Discussion
In this chapter, we presented a method for realtime hand tracking using detection-guided
optimization. Our method is robust and tracks the hand at 50 FPS without using a GPU.
We contribute to vision-based hand tracking research by proposing a novel representation
of the input data and hand model using a mixture of Gaussians. This representation allows
us to formulate pose estimation as an optimization problem and efficiently optimize it using
analytic gradient. We also showed how additional evidence from part detection can be in-
corporated into our tracking framework to increase robustness. We evaluated our method on
a publicly available dataset and compared with other state-of-the-art methods.

5.9 Conclusion
While our method can track hands from a single depth camera under reasonable background
conditions, it would fail under heavy background clutter. There are two approaches to ad-
dressing this issue: (1) model clutter in the background and track them jointly with the hand,
(2) segment background clutter completely, perhaps using multiple, layered random forests.

In the next chapter, we show how the first approach can be used to jointly track both
objects and the hand. This brings the additional advantage of being able to use tracked object
motion in interactive applications in addition to full 3D hand pose. We will also show that
the strong analytic formulation offered by our method naturally extends to the hand-object
tracking problem.





Chapter 6

Real-time Joint Tracking of a Hand
Manipulating an Object

Thus far in this thesis, we have focussed on tracking only free hand motions. However,
the human hand evolved not only for free hand motions but also for tool manipulation and
interaction with the environment. Being able to track both hand motions and that of objects
that it interacts with has the potential to create new interaction opportunities.

In this chapter, we solve the considerably harder problem of tracking objects in conjuction
with the hand. To our knowledge, this is the first approach to achieve this under real-time
tracking conditions. Parts of this chapter appeared in a previous publication [130].

6.1 Introduction
The human hand exhibits incredible capacity for manipulating external objects via gripping,
grasping, touching, pointing, caging, and throwing. We can use our hands with apparent
ease, even for subtle and complex motions, and with remarkable speed and accuracy. How-
ever, this dexterity also makes it hard to track a hand in close interaction with objects. While
a lot of research has explored real-time tracking of hands or objects in isolation, real-time
hand-object tracking remains unsolved. It is inherently more challenging due to the higher
dimensionality of the problem, additional occlusions, and difficulty in disambiguating hand
from object. A fast, accurate, and robust solution based on a minimal camera setup is a
precondition for many new and important applications in vision-based input to computers,
including virtual and augmented reality, teleoperation, tangible computing, and wearable
computing. In this chapter, we present a real-time method to simultaneously track a hand
and the manipulated object. We support tracking objects of different shapes, sizes, and
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Figure 6.1 Proposed real-time hand-object tracking approach: we use a single commodity
depth camera (left) to classify (top) and track the articulation of a hand and the rigid body
motion of a manipulated object (bottom)

colors. Previous work has employed setups with multiple cameras [13, 96] to limit the in-
fluence of occlusions which restricts use to highly controlled setups. Many methods that
exploit dense depth and color measurements from commodity RGB-D cameras [47, 72, 73]
have been proposed. However, these methods use expensive segmentation and optimization
steps that make interactive performance hard to attain. At the other end of the spectrum,
discriminative one-shot methods (for tracking only hands) often suffer from temporal insta-
bility [62, 140, 166]. Such approaches have also been applied to estimate hand pose under
object occlusion [114], but the object is not tracked simultaneously. In contrast, the approach
proposed here is the first to track hand and object motion simultaneously at real-time rates us-
ing only a single commodity RGB-D camera (see Fig. 6.1). Building on recent work in single
hand tracking and 3D point set registration, we propose a 3D articulated Gaussian mixture
alignment strategy tailored to hand-object tracking. Gaussian mixture alignment aligns two
Gaussian mixtures and has been successfully used in 3D pointset registration [57]. It can be
interpreted as a generalization of ICP and does not require explicit, error-prone, and compu-
tationally expensive correspondence search [22]. Previous methods, such as those presented
in Chapter 5, have used articulated 2.5D Gaussian mixture alignment formulations that are
discontinuous. This leads to tracking instabilities because 3D spatial proximity is not con-
sidered. We also introduce additional novel regularizers that consider occlusions and enforce
contact points between fingers and objects analytically. Our combined energy has a closed
form gradient and allows for fast and accurate tracking. For an overview of our approach, see
Figure 6.2. To further increase robustness and allow for recovery of the generative tracker,
we guide the optimization using a multi-layer random forest hand part classifier. We use a
variational optimization strategy that optimizes two different hand-object tracking energies
simultaneously (multiple proposals) and then selects the better solution. The main contribu-
tions are:
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Figure 6.2 We perform classification of the input into object and hand parts. The hand and
object are tracked using 3D articulated Gaussian mixture alignment.

• A 3D articulated Gaussian mixture alignment approach for jointly tracking hand and
object accurately.

• Novel contact point and occlusion objective terms that were motivated by the physics
of grasps, and can handle difficult hand-object interactions.

• A multi-layered classification architecture to segment hand and object, and classify
hand parts in RGB-D sequences.

• An extensive evaluation on public datasets as well as a new, fully annotated dataset
consisting of diverse hand-object interactions.

6.2 Related Work
Single Hand Tracking Single hand tracking has received a lot of attention in recent years
with discriminative and generativemethods being the twomain classes of methods. Discrim-
inative methods for monocular RGB tracking index into a large database of poses or learn
a mapping from image to pose space [5, 162]. However, accuracy and temporal stability of
these methods are limited. Monocular generative methods optimize pose of more sophisti-
cated 3D or 2.5D hand models by optimizing an alignment energy [52, 20, 33]. Occlusions
and appearance ambiguities are less problematic with multi-camera setups [13]. In [154], a
physics-based approach to optimize the pose of a hand using silhouette and color constraints
at slow non-interactive frame rates is presented. In Chapter 3 we showed how multiple RGB
cameras and a single depth camera can be used to track single hand poses in near real-time
by combining generative tracking and finger tip detection. More lightweight setups with a
single depth camera are preferred for many interactive applications. Among single camera
methods, examples of discriminative methods are based on decision forests for hand part
labeling [62], on a latent regression forest in combination with a coarse-to-fine search [140],
fast hierarchical pose regression [138], or Hough voting [166]. Real-time performance is fea-
sible, but temporal instability remains an issue. Oikonomidis et al. [99] generatively track



68 Real-time Joint Tracking of a Hand Manipulating an Object

a hand by optimizing a depth and appearance-based alignment metric with particle swarm
optimization (PSO). A real-time generative tracking method with a physics-based solver
was proposed in [86]. The stabilizaton of real-time articulated ICP based on a learned sub-
space prior on hand poses was used in [139]. Template-based non-rigid deformation tracking
of arbitrary objects in real-time from RGB-D was shown in [173], very simple unoccluded
hand poses can be tracked. Combining generative and discriminative tracking enables recov-
ery from some tracking failures [119, 147, 131]. In Chapter 5, we showed real-time single
hand tracking from depth using generative pose optimization under detection constraints.
Similarly, reinitialization of generative estimates via finger tip detection [108], multi-layer
discriminative reinitialization [119], or joints detected with convolutional networks is feasi-
ble [144]. Tang et al. [141] employ hierarchical sampling from partial pose distributions and
a final hypothesis selection based on a generative energy. None of the above methods is able
to track interacting hands and objects simultaneously and in non-trivial poses in real-time.

Tracking Hands in Interaction Tracking two interacting hands, or a hand and a manipu-
lated object, is a much harder problem. The straightforward combination of methods for ob-
ject tracking, e.g. [8, 143], and hand tracking does not lead to satisfactory solutions, as only a
combined formulation can methodically exploit mutual constraints between object and hand.
Wang et al. [152] track two well-separated hands from stereo by efficient pose retrieval and
IK refinement. In [97] two hands in interaction are tracked at 4Hz with an RGB-D camera by
optimizing a generative depth and image alignment measure. Tracking of interacting hands
from multi-view video at slow non-interactive runtimes was shown in [13]. They use gener-
ative pose optimization supported by salient point detection. The method in [139] can track
very simple two hand interactions with little occlusion. Commercial solutions, e.g. Leap
Motion [1] and NimbleVR [2], fail if two hands interact closely or interact with an object.
In [96], a marker-less method based on a generative pose optimization of a combined hand-
object model is proposed. They explicitly model collisions, but need multiple RGB cameras.
In [47] the most likely pose is found through belief propagation using part-based trackers.
This method is robust under occlusions, but does not explicitly track the object. A tempo-
rally coherent nearest neighbor search tracks the hand manipulating an object in [114], but
not the object, in real time. Results are prone to temporal jitter. Kyriazis et al. [72] perform
frame-to-frame tracking of hand and objects from RGB-D using physics-based optimization.
This approach has a slow non-interactive runtime. An ensemble of Collaborative Trackers
(ECT) for RGB-D based multi-object and multiple hand tracking is used in [73]. Their accu-
racy is high, but runtime is far from real-time. Pham et al. [103] infer contact forces from a
tracked hand interacting with an object at slow non-interactive runtimes. In [100] and [146],
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Figure 6.3 Three stage hand part classification. Stage 1: Viewpoint selection, Stage 2:
color-based object segmentation, Stage 3: two-layer hand part classification.

methods for in-hand RGB-D object scanning are proposed. Both methods use known gen-
erative methods to track finger contact points to support ICP-like shape scanning. Recently,
[145] introduced a method for tracking hand-only, hand-hand, and hand-object (we include
a comparison with this method). None of the above methods can track the hand and the
manipulated object in real-time in non-trivial poses from a single depth camera view, which
is what our approach achieves.

Model-based Tracking Approaches A common representation for model tracking are
meshes [13, 139]. Other approaches use primitives [73, 108], quadrics [134], 2.5D Gaus-
sians (see Chapter 5), or Gaussian mixtures [57]. Gaussian mixture alignment has been
successfully used in rigid point set registration [57]. In contrast, we propose a 3D articu-
lated Gaussian mixture alignment strategy. [168] relate template and data via a probabilistic
formulation and use EM to compute the best fit. Different from our approach, they only
model the template as a Gaussian mixture.

6.3 Discriminative Hand Part Classification
As a preprocessing step, we classify depth pixels as hand or object, and further into hand
parts. The obtained labeling is later used to guide the generative pose optimization. Our
part classification strategy is based on a two-layer random forest that takes occlusions into
account. Classification is based on a three step pipeline (see Fig. 6.3). Input is the color 𝒞𝑡
and depth 𝒟𝑡 frames captured by the RGB-D sensor. We first perform hand-object segmen-
tation based on color cues to remove the object from the depth map. Afterwards, we select
a suitable two-layer random forest to obtain the classification. The final output per pixel is a
part probability histogram that encodes the class likelihoods. Note, object pixel histograms
are set to an object class probability of 1. The forests are trained based on a set of training
images that consists of real hand motions re-targeted to a virtual hand model to generate syn-
thetic data from multiple viewpoints. A virtual object is automatically inserted in the scene
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to simulate occlusions. To this end, we randomly sample uniform object positions between
the thumb and one other finger and prune implausible poses based on intersection tests.

Viewpoint Selection We trained two-layer forests for hand part classification from differ-
ent viewpoints. Four cases are distinguished: observing the hand from the front, back, thumb
and little finger sides. We select the forest that best matches the hand orientation computed
in the last frame. The selected two-layer forest is then used for hand part classification.

Color-Based Object Segmentation As a first step, we segment out the object from the
captured depth map 𝒟𝑡. Similar to many previous hand-object tracking approaches [99],
we use the color image 𝒞𝑡 in combination with an HSV color segmentation strategy. As we
show in the results, we are able to support objects with different colors. Object pixels are
removed to obtain a new depth map �̂�𝑡, which we then feed to the next processing stage.

Two-Layer Hand Part Classification We use a two-layer random forest for hand part
classification. The first layer classifies hand and arm pixels while the second layer uses
the hand pixels and further classifies them into one of several distinct hand parts. Both
layers are per-pixel classification forests [121]. The hand-arm classification forest is trained
on 𝑁 = 100𝑘 images with diverse hand-object poses. For each of the four viewpoints a
random forest is trained on 𝑁 = 38𝑘 images. The random forests are based on three trees,
each trained on a random distinct subset. In each image, 2000 example foreground pixels are
chosen. Split decisions (see Chapter 2) at nodes are based on 100 random feature offsets and
40 thresholds. Candidate features are a uniform mix of unary and binary depth difference
features [121]. Nodes are split as long as the information gain is sufficient and the maximum
tree depth of 19 (21 for hand-arm forest) has not been reached. On the first layer, we use 3
part labels: 1 for hand, 1 for arm and 1 to represent the background. On the second layer,
classification is based on 7 part labels: 6 for the hand parts, and 1 for the background. We
use one label for each finger and one for the palm, see Fig. 6.3c. We use a cross-validation
procedure to find the best hyperparameters. On the disjoint test set, the hand-arm forest has
a classification accuracy of 65.2%. The forests for the four camera views had accuracies of
59.8% (front), 64.7% (back), 60.9% (little), and 53.5% (thumb).

6.4 Gaussian Mixture Model Representation
Joint hand-object tracking requires a representation that allows for accurate tracking, is ro-
bust to outliers, and enables fast pose optimization. Gaussian mixture alignment, initially
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proposed for rigid pointset alignment (e.g. [57]), satisfies all these requirements. It features
the advantages of ICP-like methods, without requiring a costly, error-prone correspondence
search. We extend this approach to 3D articulated Gaussian mixture alignment tailored to
hand-object tracking. Compared to this 3D formulation, the 2.5D formulation in Chapter 5 is
discontinuous. This causes instabilities, since the spatial proximity between model and data
is not fully considered. We quantitatively show this for hand-only tracking (Section 6.8).

6.5 Unified Density Representation
We parameterize the articulated motion of the human hand using a kinematic skeleton with
|𝒳ℎ| = 26 degrees of freedom (DOF). Non-rigid hand motion is expressed based on 20 joint
angles in twist representation. The remaining 6 DOFs specify the global rigid transform
of the hand with respect to the root joint. The manipulated object is assumed to be rigid
and its motion is parameterized using |𝒳𝑜| = 6 DOFs. In the following, we deal with the
hand and object in a unified way. To this end, we refer to the vector of all unknowns as
𝒳. For pose optimization, both the input depth as well as the scene (hand and object) are
expressed as 3D Gaussian Mixture Models (GMMs). This allows for fast and analytical
pose optimization. We first define the following generic probability density distribution
ℳ(x) = ∑𝐾

𝑖=1 𝑤𝑖𝒢𝑖(x|𝜇𝑖, 𝜎𝑖) at each point x ∈ ℝ3 in space. This mixture contains 𝐾
unnormalized, isotropic Gaussian functions 𝒢𝑖 with mean 𝜇𝑖 ∈ ℝ3 and variance 𝜎2

𝑖 ∈ ℝ. In
the case of the model distribution, the positions of the Gaussians are parameterized by the
unknowns 𝒳. For the hand, this means each Gaussian is being rigidly rigged to one bone of
the hand. The probability density is defined and non-vanishing over the whole domain ℝ3.

Hand and Object Model The three-dimensional shape of the hand and object is repre-
sented in a similar fashion as probability density distributions ℳℎ and ℳ𝑜, respectively.
We manually attach 𝑁ℎ = 30 Gaussian functions to the kinematic chain of the hand to
model its volumetric extent. Standard deviations are set such that they roughly correspond
to the distance to the actual surface. The object is represented by automatically fitting a pre-
defined number 𝑁𝑜 of Gaussians to its spatial extent, such that the one standard deviation
spheres model the object’s volumetric extent. 𝑁𝑜 is a user defined parameter which can be
used to control the trade-off between tracking accuracy and runtime performance. We found
that 𝑁𝑜 ∈ [12, 64] provides a good trade-off between speed and accuracy for the objects
used in our experiments. We refer to the combined hand-object distribution as ℳ𝑠, with
𝑁𝑠 = 𝑁ℎ + 𝑁𝑜 Gaussians. Each Gaussian is assigned to a class label 𝑙𝑖 based on its se-
mantic location in the scene. Note, the input GMM is only a model of the visible surface



72 Real-time Joint Tracking of a Hand Manipulating an Object

of the hand/object. Therefore, we incorporate a visibility factor 𝑓𝑖 ∈ [0, 1] (0 completely
occluded, 1 completely visible) per Gaussian. This factor is approximated by rendering an
occlusion map with each Gaussian as a circle (radius equal to its standard deviation). The
GMM is restricted to the visible surface by setting 𝑤𝑖 = 𝑓𝑖 in the mixture. These operations
are performed based on the solution of the previous frame 𝒳𝑜𝑙𝑑.

Input Depth Data We first perform bottom-up hierarchical quadtree clustering of adjacent
pixels with similar depth to convert the input to the density based representation. We cluster
at most (2(4−1))2 = 64 pixels, which corresponds to a maximum tree depth of 4. Cluster-
ing is performed as long as the depth variance in the corresponding subdomain is smaller
than 𝜖𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 30 mm. Each leaf node is represented as a Gaussian function 𝒢𝑖 with 𝜇i
corresponding to the 3D center of gravity of the quad and 𝜎2

𝑖 = (𝑎
2 )2, where 𝑎 is the back-

projected side length of the quad. Note, the mean 𝜇i ∈ ℝ3 is obtained by backprojecting the
2D center of gravity of the quad based on the computed average depth and displacing by 𝑎 in
camera viewing direction to obtain a representation that matches the model of the scene. In
addition, each 𝒢𝑖 stores the probability 𝑝𝑖 and index 𝑙𝑖 of the best associated semantic label.
We obtain the best label and its probability by summing over all corresponding per-pixel
histograms obtained in the classification stage. Based on this data, we define the input depth
distribution ℳ𝑑ℎ(x) for the hand and ℳ𝑑𝑜(x) for the object. The combined input distribu-
tion ℳ𝑑(x) has 𝑁𝑑 = 𝑁𝑑𝑜 + 𝑁𝑑ℎ Gaussians. We set uniform weights 𝑤𝑖 = 1 based on the
assumption of equal contribution. 𝑁𝑑 is much smaller than the number of pixels leading to
real-time hand-object tracking.

6.6 Multiple Proposal Optimization
We optimize for the best pose 𝒳∗ using two proposals 𝒳∗

𝑖 , 𝑖 ∈ {0, 1} that are computed by
minimizing two distinct hand-object tracking energies:

𝒳∗
0 = argmin

𝒳
𝐸𝑎𝑙𝑖𝑔𝑛(𝒳), 𝒳∗

1 = argmin
𝒳

𝐸𝑙𝑎𝑏𝑒𝑙(𝒳) . (6.1)

𝐸𝑎𝑙𝑖𝑔𝑛 leverages the depth observations and the second energy 𝐸𝑙𝑎𝑏𝑒𝑙 incorporates the dis-
criminative hand part classification results. In contrast to the optimization of the sum of the
two objectives, this avoids failure due to bad classification and ensures fast recovery. For
optimization, we use analytical gradient descent (10 iterations per proposal, adaptive step
length) [135]. We initialize based on the solution of the previous frame 𝒳𝑜𝑙𝑑. Finally, 𝒳∗ is
selected as given below, where we slightly favor (𝜆 = 1.003) the label proposal to facilitate
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fast pose recovery:

𝒳∗ =
⎧{
⎨{⎩

𝒳∗
1 if (𝐸𝑣𝑎𝑙(𝒳∗

1) < 𝜆𝐸𝑣𝑎𝑙(𝒳∗
0))

𝒳∗
0 otherwise

. (6.2)

The energy 𝐸𝑣𝑎𝑙(𝒳) = 𝐸𝑎(𝒳) + 𝑤𝑝𝐸𝑝(𝒳) is designed to select the proposal that best ex-
plains the input, while being anatomically correct. Therefore, it considers spatial alignment
to the input depth map 𝐸𝑎 and models anatomical joint angle limits 𝐸𝑝, see Section 6.7. In
the following, we describe the used energies in detail.

6.7 Hand-Object Tracking Objectives
Given the input depth distribution ℳ𝑑, we want to find the 3D model ℳ𝑠 that best ex-
plains the observations by varying the corresponding parameters 𝒳. We take inspiration
frommethods with slow non-interactive runtimes that used related 3D implicit shape models
for full-body pose tracking [106, 71], but propose a new efficient tracking objective tailored
for real-time hand-object tracking. In contrast to previous methods, our objective operates
in 3D (generalization of ICP), features an improved way of incorporating the discriminative
classification results, and incorporates two novel regularization terms. Together, this pro-
vides for a better, yet compact, representation that allows for fast analytic pose optimization
on the CPU. To this end, we define the following two objective functions. The first energy
𝐸𝑎𝑙𝑖𝑔𝑛 measures the alignment with the input:

𝐸𝑎𝑙𝑖𝑔𝑛(𝒳) = 𝐸𝑎 + 𝑤𝑝𝐸𝑝 + 𝑤𝑡𝐸𝑡 + 𝑤𝑐𝐸𝑐 + 𝑤𝑜𝐸𝑜 . (6.3)

The second energy 𝐸𝑙𝑎𝑏𝑒𝑙 incorporates the classification results:

𝐸𝑙𝑎𝑏𝑒𝑙(𝒳) = 𝐸𝑎 + 𝑤𝑠𝐸𝑠 + 𝑤𝑝𝐸𝑝 . (6.4)

The energy terms consider spatial alignment 𝐸𝑎, semantic alignment 𝐸𝑠, anatomical plau-
sibility 𝐸𝑝, temporal smoothness 𝐸𝑡, contact points 𝐸𝑐, and object-hand occlusions 𝐸𝑜,
respectively. The priors in the energies are chosen such that they do not hinder the respec-
tive alignment objectives. All parameters 𝑤𝑝 = 0.1, 𝑤𝑡 = 0.1, 𝑤𝑠 = 3⋅10−7, 𝑤𝑐 = 5⋅10−7

and 𝑤𝑜 = 1.0 have been empirically determined and stay fixed for all experiments. We op-
timize both energies simultaneously using a multiple proposal based optimization strategy
and employ a winner-takes-all strategy (see Section 6.6). We found empirically that using
two energy functions resulted in better pose estimation and recovery from failures than us-



74 Real-time Joint Tracking of a Hand Manipulating an Object

ing a single energy with all terms. In the following, we give more details on the individual
components.

Spatial Alignment We measure the alignment of the input density function ℳ𝑑 and our
scene model ℳ𝑠 based on the following alignment energy:

𝐸𝑎(𝒳)=∫
Ω

[(ℳ𝑑ℎ(x)−ℳℎ(x))2+(ℳ𝑑𝑜(x)−ℳ𝑜(x))2]𝑑x . (6.5)

It measures the alignment between the two input and two model density distributions at
every point in space x ∈ Ω. Note, this 3D formulation leads to results of higher accuracy
(see Section 6.8) than the 2.5D formulation presented in Chapter 5.

Semantic Alignment In addition to the alignment of the distributions, we also incorporate
semantic information in the label energy 𝐸𝑙𝑎𝑏𝑒𝑙. In contrast to Chapter 5, we incorporate
uncertainty based on the best class probability. We use the following least-squares objective
to enforce semantic alignment:

𝐸𝑠(𝒳) =
𝑁𝑠
∑
𝑖=1

𝑁𝑑
∑
𝑗=1

𝛼𝑖,𝑗 ⋅ ||𝜇i − 𝜇j||22 . (6.6)

Here, 𝜇i and 𝜇j are the mean of the 𝑖𝑡ℎ model and the 𝑗𝑡ℎ image Gaussian, respectively. The
weights 𝛼𝑖,𝑗 switch attraction forces between similar parts on and between different parts
off:

𝛼𝑖,𝑗 =
⎧{
⎨{⎩

0 if (𝑙𝑖 ≠ 𝑙𝑗) or (𝑑𝑖,𝑗 > 𝑟𝑚𝑎𝑥)
(1 − 𝑑𝑖,𝑗

𝑟𝑚𝑎𝑥 ) ⋅ 𝑝𝑖 else
. (6.7)

Here, 𝑑𝑖,𝑗 = ||𝜇i − 𝜇j||2 is the distance between the means. 𝑙𝑖 is the part label of the most
likely class, 𝑝𝑖 its probability and 𝑟𝑚𝑎𝑥 a cutoff value. We set 𝑟𝑚𝑎𝑥 to 30cm. 𝑙𝑖 can be
one of 8 labels: 6 for the hand parts, 1 for object and 1 for background. We consider all
model Gaussians, independent of their occlusion weight, to facilitate fast pose recovery of
previously occluded regions.

Anatomical Plausibility The articulated motion of the hand is subject to anatomical con-
straints. We account for this by enforcing soft-constraints on the joint angles 𝒳ℎ of the
hand:

𝐸𝑝(𝒳) = ∑
𝑥𝑖∈𝒳ℎ

⎧{{
⎨{{⎩

0 if 𝑥𝑙
𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑢

𝑖
||𝑥𝑖 − 𝑥𝑙

𝑖||2 if 𝑥𝑖 < 𝑥𝑙
𝑖

||𝑥𝑢
𝑖 − 𝑥𝑖||2 if 𝑥𝑖 > 𝑥𝑢

𝑖

. (6.8)
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Here, 𝒳ℎ are the DOFs corresponding to the hand, and 𝑥𝑙
𝑖 and 𝑥𝑢

𝑖 are the lower and upper
joint limit that corresponds to the 𝑖𝑡ℎ DOF of the kinematic chain.

Temporal Smoothness We further improve the smoothness of our tracking results by in-
corporating a temporal prior into the energy. To this end, we include a soft constraint on
parameter change to enforce constant speed:

𝐸𝑡(𝒳) = ||∇𝒳 − ∇𝒳(𝑡−1)||22 . (6.9)

Here, ∇𝒳(𝑡−1) is the gradient of parameter change at the previous time step.

Contact Points We propose a novel contact point objective, specific to the hand-object
tracking scenario:

𝐸𝑐(𝒳) = ∑
(𝑘,𝑙,𝑡𝑑)∈𝒯

(||𝜇k − 𝜇l||2 − 𝑡2
𝑑)

2
. (6.10)

Here, (𝑘, 𝑙, 𝑡𝑑) ∈ 𝒯 is a detected touch constraint. It encodes that the fingertip Gaussian
with index 𝑘 should have a distance of 𝑡𝑑 to the object Gaussian with index 𝑙. We detect
the set of all touch constraints 𝒯 based on the last pose 𝒳𝑜𝑙𝑑. A new touch constraint is
added if a fingertip Gaussian is closer to an object Gaussian than the sum of their standard
deviations. We then set 𝑡𝑑 to this sum. This couples hand pose and object tracking leading
to more stable results. A contact point is active until the distance between the two Gaussians
exceeds the release threshold 𝛿𝑅. Usually 𝛿𝑅 > 𝑡𝑑 to avoid flickering.

Occlusion Handling No measurements are available in occluded hand regions. We stabi-
lize the hand movement in such regions using a novel occlusion prior:

𝐸𝑜(𝒳) =
𝑁ℎ
∑
𝑖=0

∑
𝑗∈ℋ𝑖

(1 − ̂𝑓𝑖) ⋅ ||𝑥𝑗 − 𝑥𝑜𝑙𝑑
𝑗 ||22 . (6.11)

Here, ℋ𝑖 is the set of all DOFs that are influenced by the 𝑖-th Gaussian. The global rotation
and translation is not included. The occlusion weights ̂𝑓𝑖 ∈ [0, 1] are computed similar to
𝑓𝑖 (0 occluded, 1 visible). This prior is based on the assumption that occluded regions move
consistently with the rest of the hand.
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6.8 Experiments and Results
We evaluate and compare our method onmore than 15 sequences spanning 3 public datasets,
which have been recorded with 3 different RBG-D cameras. Additional live sequences (see
Fig. 6.8) show that our method handles fast object and finger motion, difficult occlusions and
fares well even if two hands are present in the scene. Our method supports commodity RGB-
D sensors like the Creative Senz3D, Intel RealSense F200, and Primesense Carmine. We
rescale depth and color to resolutions of 320×240 and 640×480 respectively, and capture
at 30Hz. Furthermore, we introduce a new hand-object tracking benchmark dataset with
ground truth fingertip and object annotations.

Comparison to the State-of-the-Art We quantitatively and qualitatively evaluate on two
publicly available hand-object datasets [145, 146] (see Fig. 6.8). Only one dataset (IJCV
[145]) contains ground truth joint annotations. We test on 5 rigid object sequences from
IJCV. We track the right hand only, but our method works even when multiple hands are
present. Ground truth annotations are provided for 2D joint positions, but not object pose.
Our method achieves a fingertip pixel error of 8.6px, which is comparable (difference of only
2px) to that reported for the slower method of [145]. This small difference is well within the
uncertainty of manual annotation and sensor noise. Note, our approach runs over 60 times
faster, while producing visual results that are on par (see Fig. 6.8). We also track the dataset
of [146] (see also Fig. 6.8). While they solve a different problem (offline in-hand scanning),
it shows that our real-time method copes well with different shaped objects (e.g., bowling
pin, bottle, etc.) under occlusion.

New Benchmark Dataset With the aforementioned datasets, evaluation of object pose is
impossible due to missing object annotations. We therefore introduce, to our knowledge,
the first dataset1 that contains ground truth for both fingertip positions and object pose. It
contains 6 sequences of a hand manipulating a cuboid (2 different sizes) in different hand-
object configurations and grasps. Wemanually annotated pixels on the depth image tomark 5
fingertip positions, and 3 cuboid corners. In total, we provide 3014 frames with ground truth
annotations. As is common in the literature [119, 140, 129, 108, 139], we use the average
3D Euclidean distance 𝐸 between estimated and ground truth positions as the error measure.
Occluded fingertips are excluded on a per-frame basis from the error computation. If one of
the annotated corners of the cuboid is occluded, we exclude it from that frame. In Fig. 6.4a
we plot the average error over all frames of the 6 sequences. Our method has an average

1http://handtracker.mpi-inf.mpg.de/projects/RealtimeHO/

http://handtracker.mpi-inf.mpg.de/projects/RealtimeHO/
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(a) We achieve low errors on each of the 6 se-
quences in our new benchmark dataset.

(b) Tracking consistency of the best, worst
and average case.

Figure 6.4 Quantitative hand-object tracking evaluation on ground truth data. The object
contributes a higher error.

Table 6.1 Average error (mm) for hand and object tracking in our dataset

Rigid Rotate Occlusion Grasp1 Grasp2 Pinch Overall (mm)
Fingertips 14.2 16.3 17.5 18.1 17.5 10.3 15.6
Object 13.5 26.8 11.9 15.3 15.7 13.9 16.2

Combined (𝐸) 14.1 18.0 16.4 17.6 17.2 10.9 15.7

error (for both hand and object) of 15.7mm. Over all sequences, the average error is always
lower than 20mm with standard deviations under 12mm. Average error is an indicator of
overall performance, but does not indicate how consistent the tracker performs. Fig. 6.4b
shows that our method tracks almost all frames with less than 30mm error. Rotate has the
highest error, while Pinch performs best with almost all frames below 20mm. Table 6.1
shows the errors for hand and object separately. Both are in the same order of magnitude.

Figure 6.6 Ablative analysis.

Ablative Analysis Firstly, we show that the ar-
ticulated 3D Gaussian mixture alignment formu-
lation is superior (even for tracking only hand)
to the 2.5D formulation described in Chapter 5.
On the Dexter dataset [131], [129] report an av-
erage fingertip error of 19.6mm. In contrast, our
method (without any hand-object specific terms)
is consistently better with an average of 17.2mm
(maximum improvement is 5mm on 2 sequences). This is a result of the continuous artic-
ulated 3D Gaussian mixture alignment energy, a generalization of ICP, which considers 3D
spatial proximity between Gaussians.

Secondly, we show that the average error on our hand-object dataset is worse with-
out viewpoint selection, semantic alignment, occlusion handling, and contact points term.
Fig. 6.6 shows a consistency plot with different components of the energy disabled. Using
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Figure 6.5 Top row: Input depth, an object occludes the hand. Middle row: Result of our
approach (different viewpoint). Our approach succesfully tracks the hand under heavy oc-
clusion. Bottom row: Result of [129] shows catastrophic failure (object pixels were removed
for fairness)

only the data term often results in large errors. The errors are even larger without viewpoint
selection. The semantic alignment, occlusion handling, and contact points help improve ro-
bustness of tracking results and recovery from failures. Fig. 6.5 shows that [129] clearly
fails when fingers are occluded. Our hand-object specific terms are more robust to these
difficult occlusion cases while achieving real-time performance.

Runtime Performance All experiments were performed on an Intel Xeon E5-1620 CPU
with 16GB memory and an NVIDIA GTX 980 Ti. The stages of our approach take on
average: 4ms for preprocessing, 4ms for part classification, 2ms for depth clustering, and
20-30 ms for pose optimization using two proposals. We achieve real-time performance of
25-30Hz. Multi-layer random forests ran on the GPU while all other algorithm parts ran
multithreaded on a CPU.

Limitations Although we demonstrated robustness against reasonable occlusions, situa-
tions where a high fraction of the hand is occluded for a long period are still challenging. This
is mostly due to degraded classification performance under such occlusions. Misalignments
can appear if the underlying assumption of the occlusion heuristic is violated, i. e. occluded
parts do not move rigidly. Fortunately, our discriminative classification strategy enables
the pose optimization to recover once previously occluded regions become visible again
as shown in Fig. 6.9. Further research has to focus on better priors for occluded regions,
for example grasp and interaction priors learned from data. Also improvements to hand part
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(a) Rotate sequence from our dataset (b) Grasp2 sequence from our dataset

(c) Real-time tracking results with various object shapes and different users

(d) Results on the IJCV dataset [145]. Notice how our method tracks the hand even if multiple hands
are in view. Tracked skeleton in green and object in light blue

Figure 6.7 (a, b) show tracking results on our dataset. (c) shows real-time results with dif-
ferent object shapes and colors. (d) shows results on a public dataset

Figure 6.8 Subset of tracked frames on the dataset of [146]. Our method can handle objects
with varying sizes, colors, and different hand dimensions. Here we show how even a
complex shape like a bowling pin can be approximated using only a few tens of Gaussians
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Figure 6.9 Occlusion error and recovery.

classification using different learning approaches or the regression of dense correspondences
are interesting topics for future work. Another source of error are very fast motions. While
the current implementation achieves 30 Hz, higher frame rate sensors in combination with
a faster pose optimization will lead to higher robustness due to improved temporal coher-
ence. We show diverse object shapes being tracked. However, increasing object complexity
(shape and color) affects runtime performance. We would like to further explore how mul-
tiple complex objects and hands can be tracked.

6.9 Discussion
In this chapter, we have presented the first real-time approach for simultaneous hand-object
tracking based on a single commodity depth sensor. Our approach combines the strengths
of discriminative classification and generative pose optimization. Classification is based on
a multi-layer forest architecture with viewpoint selection. We use 3D articulated Gaussian
mixture alignment tailored for hand-object tracking along with novel analytic occlusion and
contact handling constraints that enable successful tracking of challenging hand-object in-
teractions based on multiple proposals. Our qualitative and quantitative results demonstrate
that our approach is both accurate and robust. Additionally, we have captured a new bench-
mark dataset (with hand and object annotations) and make it publicly available.

6.10 Conclusion
Future work in joint hand and object tracking needs to address several issues. First, we
track only a limited set of objects with known shapes. For any approach to have practical
applications a wide variety of object classes need to be tracked. Future work also needs
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to address difficult occlusions that occur when objects occlude fingers. We feel that strong
priors for occluded hand parts will play an important role.

Part I of this thesis has presented methods for hand tracking from multiple RGB cameras
and single depth sensors. We presented one of the first methods to track hands in real-time
from a single depth camera in Chapter 5. In this chapter, we showed how real-time joint
hand and object tracking is achievable. These methods form the basis for the gesture-based
input techniques that will be described in Part II of this thesis.





Part II

Gesture-based Computer Input





Chapter 7

Continuous Computer Input

Part I of the thesis dealt with the computer vision problem of tracking hands in action un-
der different conditions and run-time requirements. We showed how multiple cameras or
a single depth sensor can be used to track the fine motion of hands and also objects that
it interacts with. The solution to the hand tracking problem encompasses only half of the
challenges involved in gesture-based computer input. In order to realize the final goal of
using hand motion for computer input, we need to devise methods to transform tracking data
(e.g., parameters of the kinematic skeleton) into meaningful interactions.

In Part II of this thesis, we introduce ways of gesture-based computer input. We do so
by introducing new interaction techniques, and presenting empirical data, user studies and
working examples. We divide this part into 3 chapters loosely based on the type of input:
continuous, discrete, and combined.

In this chapter, we present, FullHand, a method to map hand motions to continuous
computer input for use in games and virtual globe navigation. We assume that tracked hand
motion data in the form of pose parameters of a kinematic skeleton are available. Any of the
methods described in Part I can be used for this purpose. In this chapter, we use and further
develop the method presented in Chapter 3. We show how elicitation studies, i.e., asking
several users to perform gestures that occur to them naturally for a certain task, can be used
to design interaction techniques for 3D navigation tasks. Parts of this chapter appeared in an
earlier publication [126].

7.1 Introduction
Exploiting the exceptional dexterity of the human hand for computer input has been a prime
goal for research on input devices and interaction techniques. Hand articulation refers to
the coordinated movement of the 27 bones controlled by 38 muscles in the hand and the
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Figure 7.1 (a) FullHand can track one or both hands with all fingers. (b, c) FullHand enables
free-hand interactions for many applications such as virtual globes and first-person shooters.
(d) We envision miniature multi-camera setups for hand tracking in the future. The blue
cylinders represent cameras.

forearm [59]. Fingers are the most precisely controllable parts of the body in spite of high
angular velocity in their movement. Although all DOFs cannot be independently controlled,
individuation of finger control becomes virtually perfect with practice [59]. However, com-
mon input devices used today, such as the mouse, tap only into a fraction of the hand’s
capacity.

Several tracking methods have been proposed to capture the articulation of the hand
for interactive applications. They can be classified into two categories. (1) Contact-based
methods measure joint angles with instrumented gloves, or they use fiducial markers on the
skin tracked by cameras [172, 137]. However, these methods restrict free motion of the
hand, and they can be uncomfortable and unpractical for users. (2) Non-contact methods,
typically based on computer vision, do not require contacting sensors. However, existing
methods have limitations related to the set of DOFs they capture or interactive performance.
For instance, the Leap Motion tracks only salient points like fingertips, and only succeeds
under a constrained range of hand orientations. This restricts designers to a narrow set of
free-hand interactions.

In this chapter, we present FullHand, a system for hand motion tracking and interaction.
FullHand tracks the motion of the hand using a kinematic skeleton that captures the major
rotational and translational degrees of freedom of the hand using a modified version of the
method presented in Chapter 3. FullHand has several advantages over previous methods:
(1) it captures the motion of the hand with all fingers, (2) achieves a framerate of 50 FPS for
one hand, (3) has a low latency, (4) achieves high levels of precision, (5) can reliably recover
from tracking errors, (6) supports two-handed interaction and (7) enables rapid development
of interaction techniques by offering an abstraction (skeleton).

Markerless tracking of finger motion (articulations) for HCI is a challenging problem
because of the absence of discriminating image features, rapid motions, self-occlusions, the
large number of possible poses and homogeneous colour distribution. At the same time,
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tracking fingers is essential for enabling free-hand interactions. Previous approaches have
avoided this problem by using ad-hoc solutions to directly detect gestures without tracking
fingers [161]. The input to ourmethod are RGB images from a calibrated camera video setup,
monocular time-of-flight depth data and a hand model adapted to a person. The output are
the global pose and joint angles of the hand as a skeleton. The kinematic skeleton provides
a means for rapid design of free-hand interactions.

We describe how the tracker from Chapter 3 was developed to allow (1) low latency, (2)
high precision, (3) coverage of typical motions in HCI, and (4) two-handed interaction. Re-
sults from a technical evaluation show an accuracy of 87% on a dataset of 19 annotated video
sequences. Results from a gesture elicitation study to confirm the usefulness of FullHand
for interaction tasks. FullHand allows users to perform gestures and multi-finger controls
that were not possible with previous systems [152].

After presenting the technical contribution, we discuss the design of free-hand interac-
tions using the kinematic skeleton. We build on previous work in 3D interaction and human
factors to derive guidelines for free-hand interactions that exploit finger articulations. We
designed and implemented free-hand interactions for navigation in 3D scenes, simulation of
input devices, mid-air menu techniques and games. The designed interactions explore differ-
ent capabilities of hand motion including finger articulations (upto 8 fingers) and global hand
motion. For example, we demonstrate a mid-air menu selection technique that uses several
fingers and terrain level flying with global hand motion (Figure 7.1). To critically assess
if such interactions can be tracked and be beneficial for user performance, we conducted a
study of virtual globe navigation.

To sum up, the primary contributions of this chapter are:

• An extension to a previous hybrid approach (Chapter 3) for skeleton-based hand track-
ing for interactive applications.

• The design and implementation of interactive applications demonstrating the use of
FullHand for hand and finger motion controls.

• A user study and a gesture elicitation study to validate the proposed approach.

7.2 Related Work
Free-hand tracking for interaction is an old topic dating back to as early as 1979 [14, 18].
Several initial approaches, e.g., for virtual reality or robotics, were based on gloves [172,
137] to ease the problem of hand tracking. However, users may be reluctant to put gloves,
especially during long work sessions or when they have to switch with other devices such as
the mouse or the keyboard.
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Markerless capture of free-hand motion and gestures with non-contact tracking is more
challenging. As a result, only a few gesture sets have been proposed and most of the interac-
tion techniques [10, 40, 161] are limited to pinching with one or two hands [161, 40]. This
posture can easily be recognized even with RGB cameras but is sensitive to hand orientations
and occlusion and does not exploit rich finger coordination.

With the introduction of infrared-based depth sensors like the Kinect, it has become eas-
ier and more robust to detect hand gestures. It has been used in large variety of applications
such as tabletops [53], distant displays [11], and 3D desktops [75]. For instance, Keskin et
al. [62] proposed a method for recognizing finger spelling in depth data. While these meth-
ods work well for application-specific hand interactions, they do not generalize and capture
the full range of hand motions.

Markerless high DOF free-hand motion tracking for interaction has only recently been
explored by Wang et al. [152] for 3D CAD modelling. However, this method uses only
part of the hand motion space for interaction (6 DOF). Articulated hand motion tracking
continues to be a challenging computer vision problem which has restricted its application
in interaction scenarios. Techniques for hand tracking can be divided into generative and
discriminative methods [37].

Generative methods employ a hand model (e.g., kinematic skeleton) and synthesize a
pose for the model that best explains the input (e.g. [86, 96]). For instance, Oikonomidis et
al. [99] used a depth sensor and a method based on particle swarm optimization to achieve
a frame rate of 15 fps. Other generative approaches [13, 133, 80] suffer from large compu-
tations times and are thus unsuitable for interaction.

Discriminative methods use prior knowledge about hands (e.g., pose database) and try
to explain the input images based on this knowledge. One such method that uses a pose
database was proposed by Athitsos and Sclaroff [5]. This idea was further explored byWang
and et al. in both color glove-based [153] and markerless variants [152].

Recently, a hybrid method for single hand tracking in a motion capture setting was pro-
posed by Sridhar et al. [131] (see also Chapter 3). This method was able to track one hand
at 10 fps which is insufficient for interactive applications. In this chapter, we extend their
hybrid method to realtime (50 fps), single and bimanual hand motion tracking. We also
demonstrate our method for interaction on a wide range of applications.

7.3 Hand Motion Tracking
In this section, we describe our method for articulated hand tracking that is inspired by the
hybrid approach presented in Chapter 3. We chose this particular hybrid approach because
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it is well suited for interaction applications. The generative component of the hybrid method
lends itself for fast optimization which is suitable for interaction but prone to local optima
issues leading to wrong hand and finger pose. But when combined with a discriminative
component this issue is alleviated leading to better hand and finger pose. We now describe
our setup, briefly summarize the hybrid method and explain specific extensions that we have
made to enable fast bimanual tracking.

7.3.1 Physical Setup

Figure 7.2 Our tabletop setup requires 5 RGB cam-
eras and 1 depth sensor.

Figure 7.2 shows the physical setup
for hand motion tracking and inter-
action. It consists of 5 RGB cam-
eras and 1 depth sensor. The im-
age data from RGB cameras provides
high visual accuracy for tracking. The
complementary single-view depth data
helps us to retrieve poses effectively.
The setup also consists of a large tele-
vision screen for interaction and visual
feedback. The setup requires calibra-
tion of the cameras for intrinsic and ex-
trinsic camera parameters.

While we realize that such a setup is
currently cumbersome to setup, we be-
lieve that in the future, miniature cam-
eras (see Figure 7.1) and ambient cameras in homes and offices will become widely avail-
able. Moreover, as we show in Chapter 5, the number of required cameras can be reduced
removing the need for camera calibration completely.

7.3.2 Tracking Algorithm
Markerless optical hand tracking is our approach of choice as it requires no interference
with or instrumentation of the hand in any form. However, it is an inherently hard problem
because of the large number of DOFs, fast motions, homogeneous skin color distribution
and self-occlusions. In the past, numerous approaches for hand tracking have been proposed,
which can be roughly classified into generative and discriminative methods. However, both
classes of methods in isolation suffer from issues that make them unsuitable for interaction
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Figure 7.3 The tracking algorithm is a combination of a generative and discriminative
method.

tasks. Generative methods optimize a 3D model-to-image consistency measure, 𝐸. Fast
generative trackers use local optimization of this energy that tends to converge to erroneous
local pose optima, e.g. leading to sticky fingers – two fingers overlapping each other on the
image. Discriminative methods aim to infer hand poses from a learned space of plausible
poses by means of extracted features. In this context, many approaches index into the hand
pose space, and suffer from scaling problems due to exponential database sizes for high
DOF models. In this chapter, we adopt the hybrid approach described in Chapter 3 which
combines generative and discriminative tracking, and which exploits their non-congruent
failure modes for mutual benefit.

Estimation of the hand pose parameters (see Figure 7.3), Θ, at a time step of video is
performed by running two tracking strategies in parallel. The first strategy is a generative
tracker that uses multi-view color images, and that relies on a Sum-of-Gaussians scene rep-
resentation, originally introduced by Stoll et al. [135]. It represents the hand in 3D by a
kinematic bone skeleton, to the bones of which a discrete set 3D Gaussian functions are
attached. Each Gaussian function is assigned a color, too. Similarly, each 2D image is de-
composed into regions of similar color by means of a quad-tree decomposition, and to each
region a 2D Gaussian with associated average color is fitted. The hand pose is found by op-
timizing the overlap between the 3D hand SoG model with all 2D image SoG models. The
SoG representation enables the definition of a 3D-2D consistency measure that has analytic
derivatives. In addition, the consistency measure can be defined as a smooth function, lends
itself to efficient parallelization, and can be effectively optimized with a fast conditioned
gradient ascent solver that is initialized with an extrapolated solution from preceding time
steps.

The second strategy is a discriminative pose estimation algorithm that uses images from
the depth camera. It relies on a part-based strategy that estimates the pose of each finger sep-



7.3 Hand Motion Tracking 91

arately rather than the full pose simultaneously. This is achieved by extracting fingertips on
the depth image using a linear support vector machine (SVM) classifier, and by using the de-
tected positions to find the closest match in multiple exemplar finger pose databases. Having
separate databases for each finger has several advantages. The part-based strategy enables
compartmentalization of the database and effective indexing into a much more densely sam-
pled pose space than with a database storing full hand poses. Further on, with our method
even partial hand poses can be found, for instance if some fingers are occluded.

Both tracking strategies yield a pose hypothesis for the hand. The final pose hypothesis is
either (1) the solution from generative tracking, or (2) the solution from generative tracking
initialized with the outcome of discriminative pose estimation. A final voting step selects
the best solution based on the generative consistency measure, 𝐸.

7.3.3 Fast Bimanual Tracking in a Tabletop Setting
We have improved the above tracking strategy in several ways to enable fast one and two
handed tracking. First, we enable realtime, low latency tracking by exploiting the algo-
rithmic design of the tracking. Second, we enable two handed tracking which captures the
articulations of all fingers. Finally, we show that the hybrid method can be optimized to
work well in a tabletop setting instead of a controlled studio environment that was used in
Chapter 3.
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Figure 7.4 Plot of the computation times for
one and two hands.

Both the generative and discriminative
components of the algorithm lend them-
selves well for parallelization which we ex-
ploit. For the generative method, we use the
structure of the consistency measure that al-
lows parallel computation during pose op-
timization. The discriminative method de-
tects fingertips on the depth image using the
sliding window technique. We run multiple
sliding windows on non-overlapping parts
of the image in parallel which leads to lower
computations times. Moreover, the two in-
stances of the generative method run in par-
allel for even more gains. Overall, our average computation times were 3 to 4 times better
than those reported in Chapter 3. Figure 7.4 shows a plot of the computation times of the
tracker averaged over 3, 1000 frame runs with a user performing slow and fast hand motions.
The average time to process one frame was 19 ms (50 fps).
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For bimanual tracking, we created a kinematic skeleton for both hands which together
consist of 65 joints and 53DOFs. Since the computation times are proportional to the number
of DOFs of the hands and the fingertips to be detected on the depth image, our computational
performance reduces to 20-40 fps. However, this is still sufficient for realtime interaction.
Figure 7.4 shows a comparison of our computational performance for both single and two
hands. For interacting with applications we send the tracked hand (along with gestures which
are described later) over the network on aWebSocket protocol. Figure 7.4 shows the network
latencies along with the tracking performance.

Finally, we setup our cameras in a tabletop setting (Figure 7.2) to match real world con-
ditions. By tuning the parameters of the Sum-of-Gaussians representation we were able to
achieve tracking performance comparable to that reported in Chapter 3. et al. Section 7.4
shows a plot of tracking accuracy for our gesture elicitation study. Figure 7.5 show sample
tracking results with one and two hands.

7.4 Gesture Elicitation Study and Accuracy Assessment
In order to understand the kind of gestures that users prefer for interaction and the tracker’s
capability in covering these, we conducted a gesture elicitation study. In this context we
define a gesture to be a semantically meaningful motion of the hand within a given temporal
period (e.g. pinching). We chose 6 student volunteers to participate in this study. All partici-
pants were right-handed males with a mean age of 29.2 (SD = 5.0). None of the participants
had prior experience using or developing free-hand gestures.

7.4.1 Method
We prepared static images of interaction scenarios representative of the four interaction sub-
tasks.

1. Navigation: Participants were presented with images of a virtual globe in both space
and terrain viewpoints. They were asked to visualize navigating to cities and flying
through buildings and valleys.

2. Selection: Participants were presented with images of a grid menu with 16 items and
instructed to simulate selection of three highlighted items.

3. Manipulation: Three primitive objects were shown at random positions on the screen.
The participants were instructed to simulate selecting and moving these objects so that
they aligned vertically.



7.4 Gesture Elicitation Study and Accuracy Assessment 93

4. System Control: Participants were shown images of window switching and photo flip-
ping and were asked to simulate this using hand gestures.

We presented static images instead of video sequences because we found in a pilot study
that the interaction technique used in the video (eg. mouse for navigation) biased the kind of
gestures that participants elicited. We gave participants 3–5 minutes to think of the gesture
that they wanted to perform for each task. They were then asked to orally explain their
gesture. Finally, we recorded them performing that gesture using our multi-camera setup.

7.4.2 Results

Task One
Hand

Two
Hands

Avg. No.
of Active
Fingers

Navigaton 3 3 1.5
Selection 6 0 2.3
Manipulation 5 1 2.0
System Con-
trol

5 1 1.2

Table 7.1 Results from the elicitation study
showing number of participants who used one
or two hands.

Participants were allowed to use global hand
motion, all finger motion and both hands.
When participants repeated the same ges-
ture for two tasks theywere asked to perform
a different one. In all, we recorded a total
of 28 sequences consisting of 22061 multi-
view image frames. Table 7.1 shows a clas-
sification of the elicited gestures based on
the type, number of hands and fingers that
participants used for each task. In Table 7.1
we summarize the results of the elicitation
study based on the number of hands and fingers that participants used. Users performed ges-
tures that included pointing for navigation, finger waving for the selection, swipe-like gesture
for manipulation and wrist rotation for system control.
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Figure 7.5 Plot of accuracy defined as the percent-
age of frames with error <15 mm.

Since we recorded all elicited ges-
tures, we also gained a large multi-view
image sequence corpus as a dataset
for evaluating the accuracy of hand
tracking. While a few datasets ex-
ist for measing hand tracking perfor-
mance, our dataset is specifically of
users performing gestures for interac-
tion tasks. In order to show that our
tracking method is able to track the
gestures elicited, we manually anno-
tated (fingertip and palm locations) the
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elicited gestures for 3 out of the 4 tasks. Because of the large size of our dataset, we sub-
sampled the data by annotating once every 10 frames. We adopted the tracking error of
Oikonomidis [99] which measures average fingertip error. We then measured the tracking
accuracy to be the percentage of total frames in a sequence that had an error of less than
15 mm. A plot of this measure averaged over all datasets for each user is given in Figure 7.5.
We were able to track an average of 86% of the total frames at an accuracy 15 mm or better
(after subsampling). The dataset that we have recorded is useful both from the user per-
spective and the tracking perspective. To our knowledge, such a large dataset with specific
free-hand gestures for markerless free-hand tracking is not currently available.

7.5 Designing Free-Hand Interactions
Skeletal representation of hand motion provides a rich and flexible means for designing free-
hand interactions. This section outlines the design problem and collects guidelines from
previous literature. We then present multiple examples of interactions designed for FullHand
using these heuristics and guidelines to demonstrate the capability of hand tracking and the
effectiveness of the skeleton-based approach.

The problem in designing free-hand interactions is that themotion space is large and there
are multiple ways to map them. Based on previous literature, the design problem can be split
into four sub problems: Task Description, Gesture Definition, Gesture Mapping (assigning
of a gesture to a task) and parameter optimization.

First, a task can be split into multiple sub-tasks. Previous work suggests splitting each
sub-task into two- or three-dimensional tasks [61, 92]. Each sub-task, in turn, can address
Navigation, Selection, Manipulation, or System control [19]. Second, designers should de-
fine the set of gestures they want to use. Selection of gesture sets depends on many fac-
tors including ergonomic considerations and technical constraints of the gesture recognizer.
Third, the designer has to map appropriate gestures to a UI control task. Finding the right
assignment of gestures to tasks and sub-tasks is not an easy problem. Different users use
different kinds of interactions for the same task and one way to find commonality is through
elicitation studies such as the one we conducted 7.4.

Finally, once a mapping has been defined, designers need to optimize the technique and
choose appropriate transfer functions between hand motion and virtual motion for each sub-
task. A small amplitude gesture can trigger a small or large displacement on the screen.
This requires user trials and constant improvement by the designer. To further inform de-
sign choices, we collected several guidelines from previous literature on hand interaction,
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Finger individuation
F1. The principal motions of the digits of the hand are extension/flexion, apposition/opposition
of the index and the thumb, and the abduction/adduction of digits [94]
F2. Use index finger and thumb for independent controls [59]
F3. Avoid simultaneous control by middle, ring, and little finger [59]
F4. Allow tremor [59]
Motor control
L1. For higher skill, favor motions that are familiar [59]
L2. Only use the necessary maximum of degrees of freedom [152]
L3. Choose memorable gestures [152]
L4. Directions of motion should be congruous between hand and VE
L5. Performance increases when shoulder muscles can contribute to control [95]
Ergonomics
E1. Avoid hyperextension of fingers
E2. To minimize muscular loading, reduce global motion [152]
E3. Avoid continuous isometric tension of large muscles [23]
E4. Provide a rest for elbow and forearm [152]
E5. Elbow angle should be around 90 degrees [23]
E6. Place the display for comfortable body posture [152]

Table 7.2 Guidelines for free-hand interaction design from previous literature.

human hand functioning, and motor control. Table 7.2 presents several guidelines under
these categories.

In the above discussion we have not mentioned the effect of the hand tracking or gesture
recognition component in designing interactions. Often, limitations in hand motion tracking
or gesture recognition leads designers to come up with gestures that are easier to detect rather
than easier for users. In this context, FullHand offers more flexibility because we track the
continuous skeleton motion of the hand and detect gestures on the tracked skeleton. In our
current work we adopt a heuristics-based approach which is quick to implement and robust
enough to enable interactions. For instance, to detect pinch gestures, we use the position of
the thumb tip and the fore finger tip as a measure.

7.6 Free-Hand Interaction Applications
In order to demonstrate the capability of the tracker and the skeleton-based approach for
interaction, we show applications that (1) span different kinds of tasks (navigation, manipu-
lation, selection and system control) and (2) employ fingers, one hand and bimanual input for
interaction. Table 7.3 lists the applications based on the type of control task and the number
of hands and fingers involved. We now discuss each in turn.
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7.6.1 Navigation + Selection: Space Invaders
Space Invaders, a popular arcade game, combines a one dimensional navigation (maneuver-
ing) and discrete selection (shooting) task. We use a pinch gesture similar to that shown in
Figure 7.7 where it is used as a discrete selection event to shoot. To move the spaceship on
the screen, we use the raw hand position data we receive from the tracker. Qualitative tests
of this interaction technique showed that users were able to successfully complete the game
which meant that users destroyed all enemy spaceships.

7.6.2 Two-Handed Interaction: Menu Selection
In this application we show that users are able use both their hands for interacting for amenu
selection task. We simulate a menu consisting of 8 items and use a pinch gesture recognizer
to detect pinching of all fingers with the thumb. Each pinch gesture is a discrete event and
is mapped to one item on the menu. The technique demonstrates two-handed interaction for
selecting commands without requiring the visual modality.

7.6.3 Emulation of Input Devices: Mouse
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Space Invaders 1 2
Menu Selection 2 8
Mouse 1 2
Virtual Globe 1 3
FPS 1 3

fully covered partially covered not covered
Table 7.3 Comparison of different applications based on the
sub-tasks involved.

FullHand can also be used
to emulate existing input de-
vices such as the keyboard
or the mouse which capture
less DOFs. Virtual input de-
vices have the advantage of
reducing the cost for switch-
ing from one device to another
one. By capturing slightly ex-
aggerated versions of typical
hand and finger motions re-
quired for e.g., a mouse, Full-
Hand is able to stand-in for
that device’s functionality. Moreover, FullHand provides more degrees of freedom than
existing hand trackers such as the Leap motion, making it possible to emulate this input
device.
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Figure 7.6 Examples of interaction applications made possible by FullHand.

Figure 7.7 Interaction techniques for virtual globe in space viewpoint.

7.6.4 3D Navigation: Virtual Globe
Virtual globes, such as Google Earth or NASA WorldWind1, are an example of a 3D navi-
gation task. They benefit from free-hand control because of the nature of the task involving
multiple degrees of freedom. In this example, we used NASA WorldWind and connected it
using WebSocket to obtain the raw joint angle parameters and recognized gestures.

We divide virtual globe navigation into two distinct viewpoints and propose two tech-
niques to control navigation in each viewpoint. Although they are different techniques, they
are compatible with each other.

Space Viewpoint: This mode is active when the camera is 4 km or above the globe’s
surface. In this viewpoint, there are three parameters that are controllable – the latitude,
longitude and altitude. To control altitude (zooming) users perform a pinch gesture as shown
in Figure 7.7. The distance between the thumb and the forefinger on the tracked skeleton
defines a rate based control of zooming. A dead zone (a region where motion is ignored)
of 30 mm centered around the natural arched distance between thumb and forefinger is used
when no control is wished. The pinch gesture is one of the principal hand motions and is
easy to perform for users.

To control latitude and longitude (panning), users can choose between two gestures –
one that involves clutching and one that does not. The clutch-based gesture uses the flexion
angle of the middle finger as a delimiter that enables panning relative to the current position
of the hand. We observed that this gesture is a good delimiter since it can be moved without
affecting the fore finger and the thumb and is seldom performed accidentally by users. For a

1http://worldwind.arc.nasa.gov/

http://worldwind.arc.nasa.gov/
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Figure 7.8 Interaction techniques for virtual globe in terrain viewpoint.

comfortable flexion angle, a pilot study shows that 45 degrees is a good compromise between
robutness and comfort. For the clutchless gesture, the position of the hand on the table
relative to a predefined center indicates both the direction of the pan and the speed as shown
Figure 7.7. Furthermore, we introduced a circular dead zone of 200 mm diameter which
worked well for many users. In designing this interaction technique for the space viewpoint,
we followed several of the guidelines introduced earlier in designing this interaction (F1, L1,
L3 and E1).

Terrain Viewpoint: This viewpoint is automatically activated below 4 km and has 7
camera parameters that are controllable (pitch, roll, yaw, latitude, longitude, heading and
altitude). Figure 7.8 shows the gestures for controlling the camera parameters. The pitch,
roll and yaw are controlled by the same metaphor as a flying vehicle which is familiar to
many users. However, we also allow users to fly forwards and backwards by means of a
delimiter which is the flexion of the thumb. This interaction choice was a direct result of
a pilot study that we conducted that showed that the flying vehicle metaphor was the most
natural for users.

We provide users with a visual cue by means of a smooth camera transition when the
4 km mark is reached. The user can then seamlessly switch from one technique to another.
We refer the reader to section 7.7 for a user study conducted using the interaction techniques
described here.

7.6.5 Multiple Controls: First-person Shooter
In order to demonstrate that we are able to track more complex tasks that involves navigation
and selection in a time-critical environment, we created free-hand interactions for a first-
person shooter game. General movement of the character was performed by isometric hand
motions similar to the Virtual Globe’s space viewpoint. For instance, once the middle finger
is clutched moving the hand to the left would cause the character to sidestep to the left.
Aiming was performed akin to the Virtual Globe’s terrain viewpoint, for shooting a pinching
gesture analog to Space Invaders was used. Figure 7.6 shows screenshots from many of the
above examples.
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7.7 Study of Virtual Globe Navigation

(a) Continents Task (b) Terrain Task

Figure 7.9 Tasks used in the Virtual Globe study.

To evaluate the capability of
the tracking approach for fin-
ger articulations in interaction,
we conducted a user study with
the virtual globe application.
We compared performance in
four navigation tasks against the
default mouse-based interaction
option in WorldWind. The
mouse controlled virtual globe navigation through the left, right and middle buttons along
with motion. Free-hand interactions are pinching for zooming, hand motion with clutching
for panning and palm orientation for orientation as in Figures 7.7 and 7.8.

We chose the mouse as the baseline, because it provides a hard benchmark. Most com-
puter users have thousands of hours of experience in mouse pointing, including uses for
navigation tasks and 3D environments. To our knowledge, this is the first comparative user
study using a markerless approach for articulated hand tracking.

7.7.1 Method
The participants were six postgraduate student volunteers, all male and right handed, with
a mean age of 29.5 years (SD = 4.93 years). All participants confirmed that they use the
mouse on a daily basis. The four navigation tasks, illustrated in Figure 7.9, were:

1. Cities: Flying between cities in different continents with city-sized target circles of
size 1 km. The route length was in the order of 20000 km. This task was repeated 5
times.

2. Continents: Moving between continents in the space viewpoint where the entire globe
is visible. The circle target size was of the order of 1000 km. The route length was of
the order of 15000 km. This task was repeated 10 times.

3. Villages: Moving between regional towns. The average route length was 50 km. This
task was repeated 10 times.

4. Terrain: Moving along valleys and rivers at the terrain level. The average route length
was 150 km. This task was repeated 3 times.

In tasks 1-3, the user had to move the camera viewpoint through a predefined sequence of
areas that were highlighted as circles on the globe’s surface. Task 4 involved moving the
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camera through ring-shaped posts at a terrain level where natural formations like mountains
and rivers serve as visual assists. The sizes of the areas ranged from continent-sized to about
one kilometer radii. A waypoint was considered selected when a crosshair in the center of
the display was brought on top of it. Since the users had no previous experience with hand
tracking, each task was repeated multiple times with both interfaces. To eliminate order
effects, half of the participants performed the tasks with the mouse first, while the other half
started with the tracker. The order of Tasks 1-4 was randomized.

7.7.2 Results

Figure 7.10 Development of task performance for
mouse vs. free-hand interactions in four navigation
tasks with the Virtual Globe. Vertical bars denote 95%
confidence intervals.

The analyzed dataset has alto-
gether 327 trials. For statistical
testing, we performed a 4 (Task)
× 24 (Interface) repeatedmeasures
ANOVA. Figure 7.10 provides an
overview of the trends with 95%
confidence intervals. Not surpris-
ingly, the effect of task was signif-
icant, F(1, 319)=302.5, p<0.001.
We also obtained a significant ef-
fect of Interface, F(1, 319)=11.7,
p=0.001. Alas, performance with
the mouse was better. However, a
closer analysis of the tasks showed
that this difference is attributable
to Task 1. The interaction effect
Task × Interface was significant,
F(3, 319)=7.5, p=<0.01. Figure 7.10 suggests that user performance in Tasks 2-4 was equal
with the mouse in the latter half of the repetitions. In contrast, in Task 1, performance with
the mouse was always better. A Post Hoc comparison (Bonferroni) against the two showed
a statistically significant difference between the mouse and free-hand interactions only for
Task 1 (p<0.001).

To sum up, parallel performance was achieved for 3 out of 4 tasks. Given the small
number of trials and the lack of previous experience with hand tracking, we consider this
result promising. Furthermore, we learned that the poor performance with the tracker in
Task 1 is due to hand tremor caused by the absense of an arm rest.
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7.8 Discussion
FullHand extends the method presented in Chapter 3 to track hand articulation, and espe-
cially finger articulation, for interactive applications. It follows a hybrid approach and uses
a multi-camera setup to track the skeletal motion of 26 degrees of freedom with a low la-
tency. Whereas previous trackers have shown point designs without critical evaluation, we
subjected the method to both technical and empirical assessments. Results from a motion
elicitation study suggest that combining finger articulation with global hand motion is nat-
ural to users. The hand tracking algorithm had an error of <15 mm in 87% of the datasets
that we collected. A broad range of interactive techniques were designed to further explore
this capability. Our examples range from menu selection that uses multiple finger motion of
two hands to first-person shooter where 3 fingers and global hand motion are simultaneously
used for playing.

We developed one of the interaction techniques further to be used in a real application,
a 3D virtual globe. Results from a controlled user study show that although interaction was
difficult at first, users’ performance in three out of four tasks rapidly developed to a level
comparable with the mouse. Although the study has a limited sample size, it demonstrates
that the capability of the tracker can be actually used for free-hand interactions. To our
knowledge, it is the first controlled study of interactive applications of markerless hand ar-
ticulation tracking that report objective measures of user performance.

Previous markerless free-hand interaction technologies imposed constraints on designers
regarding the type of interactions that they could create due to technical limitations. Since we
track a kinematic skeleton new interaction techniques can quickly and efficiently be detected
and used for interaction. We regard these results favorable to the idea of using the hybrid
tracking approach presented in Chapter 3 for HCI.

7.9 Conclusion
Presently, our hand model creation process is semi-automatic, and we plan to improve this
by adopting automatic methods for hand shape estimation. The discriminative component
of our method would also fail when multiple hands are present since this would affect fin-
gertip detection. Finally, we also require users to wear a black sock for image segmentation
purposes. The approach presented in Chapter 5 could be used to overcome these limitations.
The problem of gorilla arm, i.e., arm fatigue due to extended gesture use, also needs to be
investigated further.
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In this chapter, we have showed continuous gesture input with a hand tracker driven by
elicitation studies. Eliciation studies, however, can suffer from small sample sizes. The
designer will need to perform numerous iterations before finding gestures that are most suit-
able. In the next chapter, we show how a computational, optimization-driven approach can
be used for this purpose.



Chapter 8

Computational Gesture Design

In the previous chapter, we have seen how elicitation studies (i.e., eliciting gestures from
users) can enable us to create continuous gesture-input for 3D navigation applications. Eli-
cation studies, however, can be hard to generalize, can be affected by sample size limitations,
be hard to implement in practice, and are time consuming. In order to structure this prob-
lem and overcome the limitations of elicitation studies we discuss computational gesture
design in this chapter. Computational gesture design refers to the process of automatically
designing gestures for an interaction task to suit designer-specified criteria. This has the
potential to find optimal gestures from the huge gesture space. In our approach, we build a
model of hand movement that allows formulating gesture design as an optimization task. We
base our model on the investigation of hand dexterity: i.e., how fast and accurate fingers can
move, how individuated can they move, and what are their comfortable movement ranges.
While we show how to use our model to design gestures for a discrete input task (text entry)
our approach can also be used for continuous gesture design. Parts of the work presented in
this chapter appeared previously in [127].

Figure 8.1 We investigate the dexterity of using multiple fingers for mid-air input. This
chapter reports performance and individuation characteristics of fingers and deploys them to
the design of a mid-air text entry method using multi-objective optimization. Here we show
an example of the word ‘hand’ being typed using one of our automatically obtained designs.
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8.1 Introduction
This chapter investigates an emerging category of input enabled by progress in computer
vision-based hand tracking: input by free motion of the hand involving any and all fingers.
Until recently, computer vision-based input was limited to gross movements of the arm and
a few basic hand poses like pinching [10, 161]. However, methods to track full hand articu-
lation using a single depth camera are now available such as the one presented in Chapter 5
(see also [86, 108]). Leveraging the hand’s capacity “directly” without intermediary devices
like joysticks or buttons has always appealed to HCI researchers. With its many degrees of
freedom, and fast and precise movements, the hand is the most dexterous of the extremi-
ties [59, 83]. Furthermore, freehand motion could provide an always-on input method, as
only a camera is required. The method could alleviate the known input limitations of wear-
able or mobile devices.

Our goal is to inform the design of high performance input using multiple fingers in
mid-air. High performance is decisive in activities like text entry, virtual reality, command
selection, and gaming. However, previous work, such as that presented in Chapter 7, has
focused on eliciting intuitive multi-finger gestures from users (see also [89, 104]). This
leaves out many issues, including performance characteristics of gestures involving single
and multiple fingers simultaneously. To push the field forward, designers need to know some
key factors affecting performance: How fast can users move their fingers? Can all fingers be
moved independently and accurately? What are their movement ranges? How to combine
fingers with different properties in one gesture?

Our work focuses on chord-like motions in mid-air as shown in Figure 8.1. These are
easy-to-perform and familiar gestures, and among the few gesture categories that current
computer vision sensors can reliably track. In this input gesture, there is no external target
like a button (cf. most previous work on mid-air text entry [4, 84, 93, 120]). The involved
fingers are extended or flexed at a single joint to a discriminable end posture. Although this
input method can be used with visual feedback, it allows for eyes-free input after memoriza-
tion.

We extensively study the dexterity of single fingers in a target selection task. Users were
asked to move a finger quickly and accurately between two angular targets (e.g., from a
neutral resting position to the maximum position “down”). We assess each finger separately
to report on three critical factors:

• Speed and accuracy of angular motions of fingers measured by Fitts’ law models
[81].
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• Individuation of fingers, as measured by the so-called Schieber index [117]. It cap-
tures the extent to which non-instructed fingers remain still when a finger is moved.

• Comfortable motion ranges of fingers reported by users.

The results afford several insights. First, we report performance characteristics of each
finger. The data show differences of up to 50% in movement times. Second, we asked users
to move fingers comfortably and report on their motion ranges when using computer vision
tracking. Third, to our knowledge, this is the first work to report individuation indices for
joints in HCI. For the middle and ring finger, coactivation can be so high that input may be
compromised by false activations. In contrast, coactivation of other fingers while moving
the thumb is virtually non-existent. We argue that individuation is a critical consideration in
multi-finger input in mid-air which lacks physical resistance.

Our second contribution is to propose how to use this data in the design of high-throughput
gesture sets. While our study considered only single joints, we attempt to apply our findings
in the design of multi-finger input. The approach builds on literature in motor learning and
assumes that multi-finger performance is limited by the slowest joint [60, 116]. Moreover,
we exploit the fact that individuation constraints do not apply if co-dependent fingers par-
ticipate together in a gesture. The benefit of these two assumptions is that the derivation of
models to inform hand gestures is significantly less expensive than a study that tried to look
at all combinations of fingers. Even with only three discretization levels per joint such an
approach would have to cover roughly 1010 gestures. Finally, we use our findings to con-
struct a proof-of-concept objective function called PALM to optimize text entry in mid-air.
PALM considers performance (P), anatomical comfort (A: i.e., individuation), learnability
(L), and mnemonics (M) to optimize multi-finger gestures. First investigations of a text en-
try method optimized for one-handed input show entry rates of 22 WPM. However, we note
that users’ performance was limited by brief training times, individuation constraints, and
relatively limited performance of the tracker.

To summarize, this chapter informs the computational design of high-performance input
methods in mid-air by

1. providing ready-to-use models and look-up tables on performance, individuation and
movement ranges of fingers, and

2. showing the applicability of the results by proposing an extension to multi-joint ges-
tures and exploring its use in the multi-objective optimization of mid-air text entry
methods.
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8.2 Background: Characteristics of Finger Motion
Our investigation of multi-finger input is informed by hand anatomy, the degrees of freedom
of its joints, the performance of finger motion, and the limitations posed by dependencies on
finger movement.

8.2.1 The Kinematic Skeleton
The skeleton of the human hand has 27 bones, the interfaces of which form the wrist and
finger joints [59, 116] (see Chapter 1 and Figure 8.2a).

(a)Left: Aspects of human hand anatomywith bones (green)
and joints (blue). Right: We focus on flexion-extension of
the five fingers.

Together, this results in more
than 25 degrees of freedom (DOFs)
for the hand. In this chapter, we fo-
cus on a subset of these DOFs. As
humans we can describe hand ges-
tures with terms like thumbs up or
v sign. However, a formal repre-
sentation is needed for study and
use in computer vision-based in-
put. We use a kinematic skele-
ton [90] to parametrize gestures.
The hand skeleton configuration 𝛩 can be specified by angles of the joints connecting the
bones, i.e., 𝛩 = [𝜃1, 𝜃2, … , 𝜃𝑖]T, 𝜃 ∈ ℛ.

8.2.2 Movement Performance
Finger movement performance can be quantified by movement time 𝑀𝑇 which is the time
it takes for an end-effector to reach a target from a given distance. Fitts’ law has been
highly successful for predicting 𝑀𝑇 with traditional input devices [81]. It estimates the
upper bound of pointing performance achievable after practice. Given a target of width
𝑊 and distance 𝐷, Fitts’ law states that the 𝑀𝑇 to reach the target is given by 𝑀𝑇 =
𝑎 + 𝑏 log2(𝐷/𝑊 + 1), where the free variables 𝑎 and 𝑏 need to be estimated experimentally.
Fitts’ law has also been used previously to quantify performance differences in fingers, wrist,
and forearm [12, 31, 74, 82, 109]. However, in this work, we use angular motions at joints
instead of translation [67]. Considering the angular target width 𝛼𝑊 and distance 𝛽𝐷, we
get:

𝑚𝑡𝜃 = 𝑎𝜃 + 𝑏𝜃 log2 ( 𝛼𝐷
𝛽𝑊

+ 1) . (8.1)
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To acquire the 𝑎 and 𝑏 parameters, we conduct an experiment that employs a unidimensional
pointing task. We address speed–accuracy trade-off in this task by using effective width �̄�
and distance �̄� (see [159] for details).

8.2.3 Inter-Finger Dependencies
Movements of the hand act overmultiple joints whichmakes coactivation of non-contributing
joints common [59]. For example, many people cannot move their ring finger without coac-
tivated movement of the little finger. More generally, coactivation is known to be larger
among the metacarpophalangeal and the proximal interphalangeal joints [59, 117]. Hand
gestures should minimize the extent of unintended coactivation of non-instructed fingers.
Coactivations can be hard to inhibit and can cause recognition errors.

Schieber [117] proposed an index of individuation that indicates how independently an
instructed finger can be moved from all others. The index was modeled for monkeys and
humans [45]. A fully independent finger does not involve coactivation of other fingers dur-
ing its activation, or vice versa. The individuation index is widely known in neuroscience,
but largely disregarded in HCI. In order to compute it for every finger, the position of the
non-instructed digit is plotted as a function of the instructed digit’s position. The resulting
trajectories are typically linear and the slope of a line fitted to these data points serves as
a measure for the relative coactivation: the extent to which a non-instructed finger moves
relative to the instructed finger. Given the coactivation 𝐶𝑖𝑗 of finger 𝑖 during the movement
of finger 𝑗, the individuation index of 𝑗 is

𝐼𝑗 = 1 − [(
𝑛

∑
𝑖=1

∣ 𝐶𝑖𝑗 ∣ −1)/(𝑛 − 1)], (8.2)

where 𝑛 = 5 is the number of fingers. 𝐼𝑗 = 1 indicates perfectly individuated movement,
and 𝐼𝑗 = 0 if all non-instructed fingers move simultaneously with 𝑗. The original study
of individuation was reported for fingers, but it can be extended to multiple joints used in
multi-finger input.

8.3 Experiment: Finger Dexterity
The goal of this experiment is to quantify the components of finger dexterity i.e., speed and
accuracy of finger movements, finger individuation, and comfortable movement ranges. To
achieve this goal we setup an experiment to gather data for all three components simultane-
ously. Our experimental method is based on the reciprocal selection task used in Fitts’ law
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studies [81]. As shown in Figure 8.3, users move a finger between two targets. Instead of
extrinsic targets (e.g., buttons), the target here is a joint angle. Visual feedback is provided
on a monitor with high refresh rate. In contrast to most Fitts’ law studies, we track not only
the endpoints of movements but the full motion of the hand. This allows us to quantify three
aspects of the dexterity of finger motion: performance (speed and accuracy), individuation
(unwanted motion of non-instructed fingers), and comfortable motion ranges. In addition,
the data allow us to look at the range of individual differences.

Figure 8.3 The experiment investigates the dexterity of six joints
that can be reliably tracked with the Leap Motion sensor. The
user is asked tomove a finger between two target angles indicated
on a display. Full hand motion was tracked. The color coding for
joints is used in the Results section. Note that the CMC joint of
the thumb is a special case, as it can be independently moved in
two directions.

We chose to focus on
six joints spanning seven
degrees of freedom (see
Figure 8.3). This selec-
tion is motivated by the
capabilities of present-
day trackers and our pur-
suit of studying joints
that could be a “class” of
input motions. We con-
ducted a pilot study of
the Leap Motion sensor1
and learned that individu-
ated motions of interpha-
langeal joints are not well
tracked, except for the
thumb. (The work in this
chapter preceded the de-
velopment of the tracker
described in Chapter 5,
and thus we were restricted to using the Leap Motion.) Therefore, we decided to focus
on the flexion/extension of the MCP joints of the fingers and the CMC joint of the thumb,
which intuitively correspond to “up” and “down” movements when the hand is in a neutral
pose. Moreover, we included the IP joint of the thumb which was the only interphalangeal
joint that could be moved and tracked well. Figure 8.3 also shows our naming convention
and color coding used in the rest of the chapter. For the thumb we use Thumb-Down and
Thumb-Right to denote “up-down” and “left-right” movement of the CMC joint.

1https://www.leapmotion.com/

https://www.leapmotion.com/
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8.3.1 Participants
The study was conducted with 13 participants (8 male and 5 female) at two different lo-
cations. All participants were right-handed and had an age ranging from 22 to 32 (mean
27). Due to technical issues, one of the participants completed only 4 of the 7 joint condi-
tions. The experiment took 1.5–2 hours per participant. Participants from one location were
compensated with cinema vouchers. The trials were carried out under controlled lighting
conditions with no distractions.

8.3.2 Experimental Design
The experiment followed a 7×4 within-subjects design with 7 DOFs and 4 index of difficulty
(𝐼𝐷) conditions. To minimize order effects, the DOFs and 𝐼𝐷 conditions were randomized
for each participant. Pre-trial practice was employed and breaks were provided after the trial
for each joint.

8.3.3 Task, Materials, and Procedure
The task was a unidimensional target selection task. Participants had to move a pointer up
and down between two targets on a screen and were instructed to move as fast and accurately
as possible without moving non-instructed fingers too much. Control occurred by angular
motions of joints that were linearly mapped to a pointer on the display. A trial would start
from a comfortable neutral pose. The target region turned green when the pointer reached
it and the user had to change direction to select the previous target again. In each condition,
users had to perform 50 repetitions. Auditory feedback was given in the form of a low-
frequency click. Throughout, participants placed their hand in a horizontal position over the
sensor with their arm resting on a support.

Because of anatomical differences, we determined the movement range of each user ex-
perimentally, and used it to determine concrete target widths and distances for each user.
Therefore, we first recorded the user-specific angular limits of each joint at the beginning of
each task. We asked the participants to flex and extend the joint without moving the other
fingers too much. The corresponding movement range was then uniformly divided into 2, 3,
4, and 5 bins. This gave us the same four unique 𝐼𝐷s for every user: 1, 1.6, 2 and 2.3. Over
all discretization levels there were 10 different target pairs for each joint, resulting in 7 × 10
= 70 conditions.
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8.3.4 Apparatus
The joint angles were tracked using the LeapMotion by transforming its output to a kinematic
skeleton. The software for tracking and display of the task ran on a fast desktop computer
(3.1 GHz Intel i7 at one place, 3.1 GHz Intel i5 at the other). We showed visual feedback on
high refresh rate monitors (112 Hz CRT and 120 Hz LCD respectively) and the Leap Motion
was capable of tracking at up to 100 Hz.

8.3.5 Analysis
Performance: The design and evaluation of the Fitts’ law task was done according to [125].
Movements with a movement time or distance beyond 3 SD of the median were excluded.
Accuracy was adjusted to allow an error rate of 5%, a rate common in high-performance
tasks such as text entry. Based on the remaining movements, we determined the effective
target width �̄�5% and distance �̄�5% which was used to compute the effective index of dif-
ficulty (𝐼𝐷𝑒) of each task: 𝐼𝐷𝑒 = 𝑙𝑜𝑔2(�̄�5%

�̄�5%
+ 1). This indicates the actual difficulty of

the performed task and captures the speed–accuracy trade-off. To account for individual
differences, we cluster the effective 𝐼𝐷s into 5 equally sized bins and compute the average
movement time within each bin. For this purpose, we excluded data points with an effective
𝐼𝐷 of 3 SD beyond the median. Least-squares linear regression was then used to determine
the slope and intercept of the Fitts’ law model.

Individuation: We followed the protocol described in [117] to determine individua-
tion indices. We first plotted, separately for each user, the normalized angle of every non-
instructed joint as a function of the normalized angle of an instructed joint. The resulting
500 trajectories were then averaged by taking the median. Outliers beyond 3 SD of the me-
dian were excluded. The slopes of the resulting data were determined by least-squares linear
regression. While linear movement trajectories were the norm, there were a few outliers
where a linear relationship could not be determined. We observed two reasons: (1) Prob-
lems in tracking the joint angle (Figure 8.5 (b)) and (2) drifting of fingers, a phenomenon
in which the non-instructed joint gradually changes its angle due to fatigue, inattention, or
corrective behavior (Figure 8.5 (c)). To account for this, we excluded models with a fit (coef-
ficient of determination) of 𝑅2 < 0.5. As suggested by Schieber, we averaged the absolute
value for each slope, to generalize the relative individuation over all participants. These
values were then used to compute the individuation index. In the next section, we report
findings for performance, individuation, and movement ranges.
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Figure 8.4 Performance models for each joint as given by Fitts’ law. Overall, Index is the
fastest, while Thumb and Little finger are the slowest.

8.4 Results

8.4.1 Performance: Fitts’ Law Models
Fitts’ law models and fitness scores for the joints are given in Table 8.1. The 𝑅2 values
range from high (0.82) to excellent (0.99). One-way repeated measures ANOVA showed
statistically significant differences among the joints for 𝑀𝑇 : 𝐹(6, 60) = 3.3, 𝑝 < 0.05.
Overall, Index had the highest performance, while Thumb-IP was the worst.

Joint Intercept a Slope b R2

Index 75.140 126.77 0.95
Middle 49.940 155.03 0.93
Ring 88.450 126.79 0.99
Little 176.52 95.510 0.87
Thumb-Down 8.1900 174.26 0.82
Thumb-Right 84.590 138.44 0.97
Thumb-IP 202.73 91.590 0.93

Table 8.1 Fitts’ Law models for each joint, given
by intercept and slope.

More subtle differences can be ob-
served by looking at the cross-over
points of the slopes in Figure 8.4.
The Index finger was the fastest for
most part of the 𝐼𝐷 range. However,
for small 𝐼𝐷s, corresponding to large
neighboring targets, Thumb-Down out-
performed Index.

We also observe that for small 𝐼𝐷s,
𝑀𝑇 s are spread for the different fingers
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Instructed Index of Relative Coactivation
Joint Individuation Index Middle Ring Little Thumb-Down Thumb-Right Thumb-IP
Index 0.819 1 0.24 0.20 0.19 0.29 0.11 0.06
Middle 0.817 0.16 1 0.41 0.14 0.20 0.11 0.07
Ring 0.808 0.16 0.20 1 0.36 0.15 0.22 0.06
Little 0.806 0.18 0.35 0.29 1 0.14 0.12 0.08
Thumb-Down 0.792 0.12 0.12 0.10 0.08 1 0.69 0.14
Thumb-Right 0.853 0.07 0.09 0.10 0.09 0.27 1 0.26
Thumb-IP 0.889 0.11 0.13 0.11 0.09 0.12 0.12 1

Table 8.2 Individuation index and relative coactivation describe the involuntary motion of
joints. The individuation index is an aggregate that describes the independence of a finger
when averaged over all other fingers (1 = perfect individuation). Relative coactivation de-
notes the movement of a non-instructed joint when the instructed joint (each row) is moving.
A value of 1 denotes that the two joints always move together.

Joint Min° (SD) Max° (SD) Range (SD)
Index 48.39 (12.25) −21.19 (8.70) 69.58 (11.81)
Middle 37.58 (11.95) −18.69 (8.02) 56.27 (12.54)
Ring 44.66 (8.320) −12.24 (7.70) 58.90 (11.46)
Little 39.47 (15.78) −20.81 (8.64) 60.28 (14.89)
Thumb-Down 27.31 (1.680) −6.280 (6.54) 33.58 (7.130)
Thumb-Right 22.18 (10.53) −11.99 (8.43) 31.32 (12.59)
Thumb-IP 62.97 (12.94) −27.41 (4.37) 90.38 (13.93)

Table 8.3 Angular limits and movement range of each joint. The table shows values averaged
over all users together with standard deviations.

(difference of 112 ms, 𝐼𝐷 = 1) while they become more condensed for larger 𝐼𝐷s (51
ms, 𝐼𝐷 = 2.5). In other words, there is more variation for “easy” movements. Significant
individual differences could be observed. Differences in 𝑀𝑇 for the same joint were as large
as 418 ms. The top performance was 91 ms for 𝐼𝐷 = 1, while the worst user performed at
a speed of 509 ms per movement 𝐼𝐷 = 1.

8.4.2 Individuation: Schieber Indices
Table 8.2 provides an overview of the findings. We report aggregate indices per finger and
by finger-pair coactivation.

Individuation Index: The individuation index for each finger can be found in the second
column of Table 8.2. The values range from 1 for perfect individuation to 0 for perfect
coactivation. Thumb-IP was found to be the most individuated joint, while Thumb-Down
seemed to be the one with the highest coactivation. The individuation indices of the MCP
joints showed only marginal differences.
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Relative Coactivation: While the individuation index provides an elegant way to sum-
marize the independence of each finger, greater insight is provided by the relative coactiva-
tion of joints, which denotes the movement of an non-instructed finger when the instructed
finger is moved. In Table 8.2, we present the relative coactivation averaged over all users.
It ranges from 0 to 1, where 1 is perfect coactivation, i.e., the non-instructed finger moves
exactly along with the instructed finger. Note that the value range is the opposite to the
individuation index, where 1 is better. We observe that Thumb-Down is closely correlated
with Thumb-Right, explaining why it has the lowest individuation index. This indicates
that the two DOFs of the thumb’s CMC joint cannot be reliably distinguished and should be
combined when implementing thumbmovements for gestural input. Particularly high values
were also observed for the movement of Ring during instructed movement of Middle, and
the other way around (Figure 8.6). Thumb-IP shows low values throughout all joints which
explains the good individuation index.

8.4.3 Comfortable Movement Ranges
The average angular limits and movement range for each joint are given in Table 8.3. The
values represent joint limits that are comfortable for the user in this setting and reachable
without moving the other joints too much. One-way repeated measures ANOVA (subjects
with missing data excluded) showed statistically significant differences between movement
ranges: 𝐹(6, 60) = 39.19, 𝑝 < 0.0001. We observe that the CMC joint of the thumb has
the smallest movement range in both movement directions (34°and 31°). The range of the
MCP joints is twice that, and Index has the largest range (70°). Thumb-IP has overall the
largest movement range with an average of 90°.

8.4.4 Observations on Individual Differences
Large differences among users were observed. Some users were able to keep their non-
instructed finger nearly static (slope close to 0), while others moved them to a large extent
along with the instructed joint (slope = 0.4). Figure 8.7 shows the coactivation of Index
relative toMiddle. Movement strategies vary too, resulting in a positive slope (moving along
with the instructed joint) or even a negative slope (moving opposite to the instructed joint).
If a joint could not be kept static, users either moved it along with the instructed joint or
opposite to it. Attempts at “counteracting” movement like this were also observed in the
original work by Schieber [117]. It may represent a strategy for preventing non-instructed
fingers from moving along instructed digits. This suggests that these strategies are applied
unconsciously.
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Figure 8.5 Raw data for movement of Index relative to instructed movement of Thumb-
Down. Left (a): Example of high individuation, Middle (b): Tracking errors (red box), and
Right (c): “drifting finger”.

We also observed what we denote as the drifting finger effect: the position of non-
instructed fingers may change gradually over time for some users, as they “forget” to keep the
finger still. For some users, this poses no problem, they are able to produce the exact same
movement over and over (Figure 8.5 (a)). We show raw data of this “drifting finger” problem
in Figure 8.5 (c). Due to user-specific differences like this, the linear model of Schieber does
not always fit to a user’s motion. On average, an 𝑅2 of 0.77 (SD 0.14) was found, ranging
from 0.5 to excellent fits of 0.99. As discussed above, we excluded the data where no suffi-
cient linear relationship could be found. On average, this amounted to excluding data from
4 users per joint-joint condition.

Finally, despite our efforts to ensure the ergonomics of the posture and to provide enough
breaks, some users complained about fatigue, especially with their wrist or arm getting tired.
This suggests that these motions are tiring even if they do not require the use of large forces.

8.5 Application to Text Entry
The results of the study offer a nuanced picture of the two characteristics of finger motions.
The performance and independence of fingers differ and are inter-connected in subtle ways.
In this section, we present a proof-of-concept that shows how to use the results to design
multi-finger gestures for a high-performance input task. We chose to focus on text entry
by mapping static mid-air hand postures to letters. We use the terms ‘gesture’ and ‘pos-
ture’ interchangeably in this section to denote static postures. Mid-air input is a promising
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Figure 8.6 Average coactivation of all joints relative to the instructedmovement of themiddle
finger. The slopes are the average of the absolute values over all users.

input modality for emerging devices like smartwatches and heads-up displays [84]. In con-
trast to previous mid-air text entry methods which used extrinsic key targets or handwriting
gestures [4, 84, 93, 120], we focus on chord-like gestures controlled by angular motions.
Although more complex than single finger input, it has been shown that a large number of
chords can be memorized [118] and used for text entry (e.g., [36, 79]), as well as on multi-
touch displays [9].

Since the space of possible posture-letter mappings is (exponentially) large, we follow an
optimization approach (e.g., [34, 170]). We outline a novel objective function called PALM
that can be used to optimize mappings for four objectives. In addition to performance and in-
dividuation constraints, it considers learnability and mnemonics. The outcomes can be used
to enter text with any hand tracker and gesture recognizer. Our approach has four main steps,
which serve as a roadmap for designing tasks other than text entry: (1) Discretizing Joint
Angles, (2) Generalizing to Multi-Joint Gestures, (3) Formulating an Objective Function,
and (4) Optimization.
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Figure 8.7 Differences among users (denoted by four digit user ID) in the movement of
the index finger relative to the middle finger. A positive slope indicates that it follows the
instructed joint, negative slope that it moves in the opposite direction.

8.5.1 Step 1: Discretizing Joint Angles
We first need to select the number of discretization levels of angular motion that each joint
can afford. This is determined by the robustness of the hand tracker and by performance data
we obtained. Our estimate for angular discretization when using the LeapMotion is between
2 and 5 levels per joint angle. For each joint, an integer from 0–𝑘 is used to represent the
current joint angle, where 𝑘 is the highest level. Thus, the posture of the hand can be com-
pactly represented using a string of numbers which we call a bin address. For instance, the
posture corresponding to the letter ‘h’ in Figure 8.1 can be denoted by the string [0,0,1,1,0]
(using 5 joints). We also define a neutral pose for the hand, which is a comfortable position,
and calibrate such that it corresponds to the bin address [0,0,0,0,0].

8.5.2 Step 2: Generalizing to Multi-Joint Gestures
Since the findings from our study are for single joints, we make two assumptions to gener-
alize to multi-joint gestures. First, to estimate movement time (𝑀𝑇 ) for gestures involving
multiple joints, we assume that it is bounded by the performance of the slowest contributing
joint. We base this on evidence that movement of arm joints are timed so that all joints reach
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their final positions simultaneously [60, 116]. Thus, we estimate the time for a multi-joint
gesture as the maximum over each of the 𝑀𝑇 s of all joints involved. Formally, we define
time for moving from one posture to another as,

𝑀𝑇 = max{𝑚𝑡𝜃𝑖}, 𝜃𝑖 ∈ Θ, (8.3)

where 𝑚𝑡𝜃 corresponds to the movement time of one joint as given in Equation 8.1.
Second, to estimate individuation constraints of a multi-finger gesture, we extend the in-

dividuation index of Schieber to take into account the fact that coactivation between fingers
is not an issue when those fingers are used in the same gesture. The middle finger, for exam-
ple, has a poor individuation index, which is mainly dominated by the relative coactivation
of the ring finger. A gesture involving both fingers can therefore be performed with higher
individuation than a gesture involving only one of the fingers. To this end, we define the
coactivation 𝐶𝑖𝐺 of a joint 𝑖 relative to a gesture (or posture) 𝐺 as the maximal coactivation
of 𝑖 relative to any joint 𝑗 involved in the gesture: 𝐶𝑖𝐺 = max𝑗∈𝐺 𝐶𝑖𝑗. Then, following the
original Equation 8.2, we compute the individuation index for any multi-joint gesture as

𝐼𝐺 = 1 − [(
𝑛

∑
𝑖=1

|𝐶𝑖𝐺| − |𝐺|)/𝑛 − |𝐺|], (8.4)

where |𝐺| denotes the number of actively involved joints, and 𝑛 is the total number of joints.

8.5.3 Step 3: Objective Function Formulation
Our design task is to maximize the usability 𝑈 of a letter assignment, i.e., the mapping
of each character in a character set to a unique posture (gesture) of the hand. To charac-
terize 𝑈 , we formulate a multi-term objective function for mid-air text entry called PALM
which addresses four factors affecting mid-air text entry with multiple fingers: Performance,
Anatomical comfort (individuation), Learnability, and Mnemonics. In addition to perfor-
mance and individuation, we formalize learnability and mnemonics based on existing liter-
ature.

Usability 𝑈 is thus defined as a weighted sum of four normalized (i.e., ∈ [0, 1]) terms2.
Formally, we write our usability objective as

𝑈 = 𝑤𝑝 ̂𝑃 + 𝑤𝑎 ̂𝐴 + 𝑤𝑙 �̂� + 𝑤𝑚 �̂� , (8.5)
2Normalized variables are marked with a hat.
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where the positive weights 𝑤𝑝, 𝑤𝑎, 𝑤𝑙, and 𝑤𝑚, which are set by the interaction designer
based on their criteria, sum up to 1. The remaining terms in the objective function are
described below in turn.

Performance Term (P)

Our performance score 𝑃 is measured in words per minute (WPM). Following previous
work on keyboard optimization [34, 170], we use Fitts’ law models to predict the time 𝑚𝑡𝑘ℓ
to articulate a joint from letter 𝑘 to letter ℓ by computing the movement time as described in
Equation 8.3.

We then compute WPM with 5 % error rate as:

𝑃 = 60/(∑
𝑘

∑
ℓ

𝑓𝑘ℓ𝑚𝑡𝑘ℓ) × 5, (8.6)

where 𝑓𝑘ℓ is the frequency of bigram 𝑘ℓ, where 𝑘 and ℓ are over the letters of the alphabet.

Anatomical Comfort Term (A)

For each gesture, we use Equation 8.4 to estimate how well it individuates. An index of 1
corresponds to perfect individuation where none of the non-instructed joints moves along
with the joints involved in the gesture, a value of 0 would mean that all fingers move to
the same extent, even if they are not part of the gesture. Thus, ̂𝐴 takes the value of the
individuation index.

Learnability Term (L)

Learnability is an important factor to consider for any activity involving rapid and careful
articulation of multiple joints. To develop a score for learnability of a gesture, we build on
some prevalent theories of motor learning that view learning as a hierarchical combination of
primitives [87]. According to this view, the brain simplifies multi-dimensional motor control
by collapsing it into a few dimensions. Practicing a complex gesture gradually increases
hierarchical organization and decreases reliance on feedback. This has two consequences.
First, the fewer DOFs a gesture involves, the easier it will be to learn. For instance, gesturing
with one finger is easier to learn than a gesture using three fingers. We name the number of
involved DOFs 𝑢dofs. Second, if the involved digits involve the same end posture, it will be
easier to learn because the articulations can be represented with a single learning primitive.
For example, it is easier to extend all digits by 40° than to extend some by 20° and others
by 40°. We denote the number of DOFs for which a target angle is defined in a gesture by
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𝑢targets. Our learnability score combines these two aspects:

𝐿 = 1 − ∑
𝑘

(0.5 �̂�targets, k + 0.5 �̂�dofs, k). (8.7)

Mnemonics Term (M)

Studies of human memory suggest that categorization, chunking, and mnenomics help form-
ing more durable long-term memory traces among otherwise unrelated materials [149]. Our
mnemonics score 𝑀 considers the memorability of a letter assignment as a whole. We call
a mnemonic set a set of similar gestures, such as gestures that all have a neighboring finger.
To identify finger mnemonics, we build on a recent study of multi-finger chord gestures that
showed a positive effect on learning [149]. We take the mnemonic principles presented there
and extend them from three fingers to five. In particular, we include the following mnemon-
ics rules: neighboring fingers (e.g., thumb and little finger together), base (e.g., thumb or
index with other fingers), and single finger.

The𝑀 -score considers two aspects: (1) the proportion of gestures belonging to amnemonic
set 𝑚coverage and (2) how few mnemonic sets are required 𝑚sets, which is the inverse of the
proportion of all mnemonic sets being in use. We define 𝑀 = 0.5 (𝑚coverage + 𝑚sets). 𝑀
thus rewards designs where a large proportion of gestures belong to a few mnemonics sets.
While our learnability score 𝐿 looks at motor learning “from scratch”, this score focuses on
the benefit of the set consisting of easily recognizable gestures.

8.5.4 Step 4: Optimization
To optimize the multi-term objective function we use techniques from multi-dimensional
Pareto optimization [110]. Instead of searching for a global optimum in a single run, we use
a multi-start local search method. Local search starts from a random position in the search
space and randomly samples its neighborhood. When search converges, we store the current
best solution to a file and restart search. A similar approach was used in a previous paper
addressing a multi-objective task [34]. Our implementation reaches reasonable designs in
minutes while good ones take about one day on a cluster computer.

8.6 Design Cases
This section presents mappings optimized for fast performance, learnability, as well as for
different character sets. Apart from this, we present solutions with multiple discretization
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levels for the joint angles. This demonstrates how the approach can be used across varying
design interests. Finally, we present a preliminary evaluation of one of our designs.

Before discussing the designs, we report our experiences regarding the value of optimiz-
ing for all four objectives of PALM. To learn if performance and individuation are compatible
design goals, we optimized for P, A, and P+A goals separately. The results showed that the
benefit of optimizing for only one of the goals is negligible. In other words, performance and
individuation may not always be competitive goals for design. The P-only design has fewer
multi-joint gestures, whereas both A-only and P+A have more gestures involving neighbor-
ing fingers. This encouraged further exploration of the multi-objective design space.

Bin Address Character Bin Address Character
0,1,0,0,0 _ 1,1,0,0,0 n
1,0,0,0,0 a 1,0,0,1,0 o
0,0,1,0,1 b 0,0,0,1,1 p
1,1,0,1,0 c 0,1,1,1,1 q
0,1,1,1,0 d 0,1,0,1,0 r
0,0,0,1,0 e 0,1,1,0,0 s
1,1,1,1,0 f 0,0,1,0,0 t
0,1,0,0,1 g 0,0,0,0,1 u
0,0,1,1,0 h 1,0,0,1,1 v
1,0,1,0,0 i 1,0,0,0,1 w
0,1,1,0,1 j 0,0,1,1,1 x
1,1,0,0,1 k 0,1,0,1,1 y
1,1,1,0,0 l 1,0,1,0,1 z
1,0,1,1,0 m

Table 8.4 FastType was optimized favoring Performance. The bin addresses describe each
gesture, see text for explanation. Observe how commonly occurring letters like ‘a’ are as-
signed to easy postures such as flexing the thumb.

Table 8.5 lists all outcomes along with two alternative text entry methods: Engelbart’s
chording keyboard [36] and a fingerspelling method (American Sign Language). Words per
minute is predicted considering expert motor performance only, using Equation 8.6. Due to
space limitations we report the full mapping only for FastType in Table 8.4.

Standard Character Sets: NumPad is a solution that maps the numbers from 0–9 to
postures formed by the 5 joints, one per finger. Each joint angle is discretized into 2 levels.
The predicted performance for this mapping is the highest at 113.0 WPM due to the small
character set. FastType is a solution with the letters a–z (including space), and 5 joints each
with 2 discretization levels. This mapping was optimized for typing speed and uses chord-
like movements with a predicted performance of 54.7WPM.We show this mapping in Table
8.4. In the table, we use the concept of bin address as explained earlier. The joints are ordered
from Thumb to Little. For example, [0,0,0,0,1] would mean flexing Little but keeping the
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rest in a neutral pose. BalanceType, a variant with balanced weights for the four objective
function weights had a predicted performance of 50.1 WPM.

Extended Character Sets: FullType is optimized to map all letters of the alphabet,
numbers, and special characters for a total of 48 characters. The predicted performance was
50.7 WPM with 5 joints and 5 discretization levels per joint. While this mapping has a good
predicted performance, we hypothesize that it is hard to perform because of 5 discretization
levels for joint angles. Finally, ThreeType optimizes a full keyboard to the three fingers with
the highest individuations: Thumb, Index, Middle. It, too, assumes 5 discretization levels
which is presently impossible with the Leap Motion and would require a long time to learn.

We also represented fingerspelling in American Sign Language using our bin address
notation. For the represented mapping, our objective function predicts an entry rate of
43.9 WPM which is surprisingly close to the empirically observed rate of 40–45 WPM for
experienced practitioners [112].

Mapping Character
Set

Joint Dis-
cretization

Weights (PALM) Objective values
(PALM)

Predicted
WPM

NumPad 0–9 2, 2, 2, 2, 2 0.30, 0.30, 0.05, 0.05 0.27, 0.03, 0.22, 0.22 113.0
FastType a–z 2, 2, 2, 2, 2 0.50, 0.10, 0.10, 0.30 0.53, 0.03, 0.18, 0.50 54.7

BalanceType a–z 5, 5, 5, 4, 4 0.25, 0.25, 0.25, 0.25 0.42, 0.02, 0.19, 0.17 50.1
FullType 0–9, a–z 5, 5, 5, 5, 5 0.20, 0.20, 0.20, 0.20 0.41, 0.14, 0.19, 0.33 50.7
ThreeType a–z 5, 5, 4 0.40, 0.40, 0.20, 0.00 0.38, 0.01, 0.28, 0.00 65.1

Fingerspelling a–z 4, 3, 3, 3, 3 0.25, 0.25, 0.25, 0.25 0.51, 0.02, 0.28, 0.80 43.9
Engelbart’s Chord

Kbd
a–z 2, 2, 2, 2, 2 0.25, 0.25, 0.25, 0.25 0.58, 0.03, 0.17, 0.69 49.0

Table 8.5 An overview of optimized mappings and predicted WPM. The bottom part shows
predictions for two existing methods.

8.6.1 First Observations on User Performance: FastType
In order to estimate if the predicted performance is indeed achievable with mid-air text entry,
we conducted a preliminary evaluation of FastType with 10 users. We followed a word-level
paradigm previously used by Zhai et al. [17]. Here, a randomly sampled word is practiced
until performance peaks. The benefit of this is that the upper boundary of entry performance
can be estimated even without having to learn the full gesture set.

Method: 10 right-handed participants took part in the experiment (9male, 1 female; ages
from 21 to 39, mean 26). The experiment took 1.5–2 hours and all participants were com-
pensated. We randomly sampled 4–8 character strings from the Enron Email Dataset [148]
for the stimulus. Each contained 1–2 frequently entered words and also included the space
character. A task consisted of repeatedly entering a word. At the beginning, participants
were allowed to practice the word by going through the gestures for all letters and exploring
the fastest transitions between each gesture. As soon as they could memorize the mapping
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of the corresponding letters, the task started. The task was terminated by the experimenter
when a performance plateau could be observed.

Prototype: We built a prototype that allowed users to enter text, and recorded perfor-
mance of typed words. Our gesture recognizer used joint angle data from the Leap Motion,
and used a combination of dwell times and signal peak detection to detect when users made
a particular posture which was converted to text. A custom-built application displayed in-
formation to the user as well as recorded data for analysis. The hardware used was identical
to the first experiment.

Result: Overall, 10 users entered 53words at an average peak performance of 22.25WPM
(SD 8.9). For analyzing the peak performance of each word, we extracted the top 3 repeti-
tions with an error rate less than 15% (measured by Damerau-Levenshtein distance). Three
words had to be excluded due to this restriction. The remaining words were typed with an
average error rate of 2.3% (SD 0.04). A one-way ANOVA on WPMs showed a statistically
significant difference among users: 𝐹(9, 49) = 7.68, 𝑝 < 0.001. Average peak perfor-
mances ranged from 13 WPM to 38.1 WPM. This large performance range clearly shows
the influence of individual differences in performance, individuation and anatomical limita-
tions found in our first experiment. While these results serve as a first exploration of PALM,
further detailed studies are needed to validate the effectiveness of our model.

8.7 Discussion
The results presented in this chapter deepen the understanding of multi-finger input in mid-
air. The findings show that multi-finger input has potential for high throughput. While it was
known previously that differences existed in performance and individuation between fingers,
they were not quantified in a setting that is representative of modern computer vision-based
input. Our results were obtained by adapting the familiar methodology of Fitts’ law studies
along with a measurement of individuation adopted from motor control research. This is in
contrast to existing work in gesture design that has considered elicitation methods to learn
about user preferences, intuitiveness, and social acceptability [89, 104, 113].

In a proof-of-concept, we demonstrated the applicability of our results by computa-
tionally optimizing a mid-air text entry method. Based on prior work on motor perfor-
mance [60, 116], we extended our findings from single fingers to multi-joint gestures. The
P and A terms of PALM are based on the empirical results, whereas the L and M terms are
derived from prior work on human memory and motor learning [87, 149]. While further
evaluation is needed to prove the validity of these assumptions, we show how our findings
can serve in the search for good solutions among millions of designs.
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To analyze the outcomes, we built a prototype and explored the performance for one of
the optimizedmappings which showed an entry rate of 22WPM.While the performance pre-
dicted by Equation 8.6 was surprisingly close to the observed performance in fingerspelling,
FastType falls short of the predicted rate of 54.7 WPM. As Equation 8.6 only predicts ex-
pert motor performance, this can be partially attributed to the lack of training and limited
performance of the Leap Motion. We think that using the approach presented in Chapter 5
would already lead to better text entry performance. However, further evaluation is needed
to investigate learning over time and cognitive effort involved in mid-air input.

8.8 Conclusion and Future Work
In this chapter, we presented, to our knowledge, the first investigation of the dexterity of
human fingers for mid-air input. The results provide insights into the performance of indi-
vidual fingers and their coactivation. The findings suggest that mid-air input is a promising
input modality, but there are limitations to the capacity of the human hand.

The physiology and cognitive skills of humans pose two critical constraints that future
work should consider. First, the learnability of gestures is a pragmatic obstacle for multi-
finger input. If a gesture set for text entry is prohibitively time consuming to learn it will
affect large-scale adoption. With PALM, we propose the first method to computationally
design gestures and optimize for objectives such as learnability. However, further evaluation
is needed to investigate the influence of the L and M term on performance and learnability,
and evaluate the involved models. Second, the effect of fatigue in multi-finger input is not
fully understood yet. Users in both our studies reported discomfort in their arm and wrist.

The technological challenges of hand tracking without markers pose additional con-
straints to mid-air input. Since the work in this chapter preceded the tracker described in
Chapter 5, we were limited to using the Leap Motion sensor which has shortcomings when
tracking hand pose. We restricted our study to 6 joints since the Leap Motion could not
reliably track certain finger joints. We are confident that we can achieve better accuracy and
text entry speed if we use our method due to its faithful reconstruction of difficult poses (see
Figure 5.7 for a comparison).

Our evaluation showed that users were limited in their speed by errors in tracking all
joint angles under fast motion. We assume that some of these issues arise from assumptions
about finger individuation used by the tracker.

While no visual feedback is needed for our text entry method, it is unknown if propri-
oception alone suffices to perform fast and accurate mid-air gestures. As an alternative,
tactile feedback was shown to improve performance on touch screens [54] and new tech-
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nologies such as UltraHaptics [24] provide a way to bring non-contact haptic feedback to
mid-air input.

This chapter has contributed the first known empirically derived models of performance
factors involved in mid-air input and a proof-of-concept approach to design. Our optimizer
allows finding designs that strike desirable trade-offs in this demanding design landscape.
We believe that when the outstanding human and technological issues are solved, this cate-
gory of input can achieve performance that is currently seen only for physical keyboards. In
the next chapter, we present an approach for continuous and discrete gesture input for small
factor devices like smartphones. We show how limiting hand tracking to only two fingertips
can still enable expressive forms of input for wearable devices.



Chapter 9

On- and Above-Skin Sensing for
Continuous and Discrete Input

In the previous two chapters, we discussed two different paradigms to gesture-based input
design: elicitation studies and computational design. We showed applications of elicita-
tion studies to continuous 3D navigation tasks and computational gesture design to discrete
text entry. Even though we did not show examples, computational design can also inform
continuous gesture design.

In this chapter, we investigate the combined use of both discrete and continuous gestures
for input to small form factor devices (e.g., smartwatches). We also assume simpler tracking
conditions by relying only on fingertip positions instead of full hand pose. We show that even
under these simpler conditions, we can enable a rich set of expressive input for emerging
devices. To our knowledge, ours is the first approach to support mid-air and multitouch
interactions on- and above-skin. Parts of this chapter previously appeared in [128].

9.1 Introduction
This chapter discusses novel input capabilities enabled by computer vision sensing on small
wearable devices such as smartwatches. Every new generation of these devices features
better displays, processors, cameras, and other sensors. However, their small form factor
imposes severe limitations on the efficiency and expressiveness of input. Touch input is
restricted to a tiny surface, and gesture input may require moving a whole body part [15].
We address these challenges by investigating a class of emerging sensing techniques that
support extending the input space to the space next to a wearable device. This could solve
the problems caused by small surface area. Additionally, it may enable a new possibility
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Figure 9.1 (a) WatchSense enables on- and above-skin input on the back of the hand (BOH)
through a wrist-worn depth sensor. (b) Our prototype mimics a smartwatch setup by attach-
ing a small depth camera to the forearm. (c) WatchSense tracks the 3D position of fingertips
as well as touch on the BOH in real-time on consumer mobile devices. This enables a com-
bination of mid-air and multitouch input for interactive applications on the move.

for multi-device interaction: controlling not only the wearable device itself but also relay-
ing sensed input to allow interaction with nearby devices, such as TVs, smartphones, and
virtual/augmented reality (VR/AR) glasses [55, 85].

We contribute to an emerging line of research exploring richer use of finger input sensed
through a wearable device. In particular, we look at smartwatches, which have previously
been supplemented by mid-air finger input [49, 66, 68, 76]. Recent work propose using the
palm or forearm for gestures or touch input (e.g., [91, 150, 151, 158]). This enlarges the size
of input space in which gestures can be comfortably performed. However, previous work
focused on either touch or mid-air interactions. We address the combination of these two
modalities, with the aim of increasing the efficiency and expressiveness of input. Recent
advances in depth sensor miniaturization have led to the exploration of using both touch
and mid-air interactions above smartphones [28]. To our knowledge, there is no work that
explores the use of both touch and mid-air input in smaller, wearable form factor devices
such as smartwatches.

Our second contribution is to address the technical challenges that arise from sensing of
fingers that touch the skin and/or hover above the skin near a smartwatch with an embedded
depth sensor. Recent improvements to real-time finger tracking in mid-air [65, 119, 129,
161] cannot directly be employed due the oblique camera view and resulting occlusions
which are common in body-worn cameras. To address these challenges we propose a novel
algorithm that combines machine learning, image processing, and robust estimators. Our
method accurately detects and estimates 3D positions of interacting fingertips and robustly
detects fingertips touching the back of the hand (BOH). Our prototype (Figure 9.1 (b, c)),
which mimics the viewpoint of future embedded depth sensors, can detect fingertips and
touch events in real-time (> 250 Hz on a laptop and 40 Hz on a smartphone). Additionally,
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Figure 9.2 (a, b)WatchSense tracks fingertips in mid-air, touch, and position of touch on the
back of the hand (BOH). (c) It also distinguishes between different fingers. In our prototype
we can recognize the index finger and thumb. (d) The technical capabilities of WatchSense
enable more expressive interactions such as purely mid-air (top right), purely touch (bottom
left), and combinations of them.

technical evaluations show that our approach is accurate and robust for users with varying
hand dimensions.

The capability enabled by our approach allows for simultaneous touch and mid-air input
using multiple fingers on and above the BOH. Supporting both modalities with the same
sensing approach is not only beneficial for users but provides more options to design and
opens up new application possibilities. We show through several applications that this novel
input space (or volume) can be used for interaction on the move (e.g., to the smartwatch
itself or to other nearby devices), complementing solutions with touch or mid-air alone. In
summary, this chapter contributes by:

• Exploring the interaction space of on- and above-skin input near wearable devices,
particularly smartwatches.

• Addressing the technical challenges that make camera-based sensing of finger posi-
tions and touch a hard problem.

• Demonstrating the feasibility of our approach using a prototype, technical evaluations,
and interactive applications.

9.2 WatchSense
Figure 9.1 (a) illustrates the vision ofWatchSense. We assume that smartwatches will embed
a depth sensor on their side, overseeing the back of the hand (BOH) and the space above it.
In this section, we first outline the vision of embedded depth sensors and how we prototype
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this vision. Then, we outline the new interaction opportunities afforded byWatchSense, and
present the arising tracking challenges.

9.2.1 Embedded Depth Sensors
Advances in time of flight (TOF) imaging technology has led to rapid miniaturization of
depth cameras. A few years ago, the smallest TOF sensor (Swissranger SR40001) had a size
of 65×65×68mm. Today, the PMDCamBoard PicoFlexx2 measures only 68×17×7.25mm.
While these sensors do not yet fit into a smartwatch, the trend indicates that smaller sensors
will be integrated into smartwatches in the near future.

To study the utility of such embedded sensors already, we created a prototype with view-
ing angles close to a hypothesized integrated depth sensor. Figure 9.1 (b) shows our proto-
type setup: a small depth sensor is attached to the user’s forearm facing the wrist. Due to
near range sensing limitations of these sensors (usually designed for sensing up to 2 m) we
had to place them at a distance of 20 cm from the wrist. However, we envision specially
designed future TOF sensors will allow better near range sensing capabilities.

9.2.2 Input Capabilities
WatchSense is capable of sensing fingertip positions (of the interacting hand) on and above
the BOH. This opens up new interaction opportunities for multi-finger interactions – both
while touching the BOH as well as in mid-air. The resulting input space provides higher
expressiveness and degrees of freedom than skin-based touch. While this is interesting for
input directly to smartwatches, we envision the watch to be the input sensing device for a
large variety of other interactive devices (see Application section for examples). Figure 9.2
highlights the possible combinations with WatchSense.

Touch and Mid-Air Tracking: With WatchSense, the BOH can be used as a touchpad
with the same operations: sensing when a touch operation began, when the finger moved
(reporting its 𝑥, 𝑦 coordinates in the plane, where 𝑧 is 0), and when it is lifted (see Figure 9.2
(a)). Additionally, sensing the space above the BOH allows for using mid-air gestures (see
Figure 9.2 (b)). Here, however, the sensor reports 3D 𝑥, 𝑦, 𝑧 coordinates. Thus,WatchSense
offers 3 degrees of freedom (DoF) per finger. Transitioning between touch and mid-air input
allows for similar interactions as shown in Air+Touch [28].

Finger Identification: WatchSense supports the identification of fingers (see Figure 9.2
(c)). For instance, this allows for assigning different interactions to different fingers (i.e.,

1Swissranger SR4000: http://hptg.com/industrial/
2CamBoard PicoFlexx: http://pmdtec.com/picoflexx/

http://hptg.com/industrial/
http://pmdtec.com/picoflexx/
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touching or gesturing with the thumb has a different meaning than when doing so with the
index finger). While we envision to identify all five fingers, we here focus on showcasing
the opportunities using the thumb and index finger.

Multi-Finger Touch &Mid-Air: Combining finger identification with touch and mid-
air sensing (and the resulting 3 DoF per finger) enables compound interactions. The matrix
in Figure 9.2 (d) showcases the possible combinations, and the examples presented later in
this chapter highlight their use. Essentially, when the interacting hand is present, each finger
is either touching the BOH, or positioned in mid-air. We use the following terminology
throughout the chapter: the overall interaction state is described by a tuple containing the
thumb’s state and the index state (i.e., if the thumb is touching, and the index is not, the
overall state is Touch + Mid-Air).

These combinations can be used with large variation. For example, in Touch + Mid-air,
the hand can be utilized as joystick, where the thumb acts as base, while the index finger
rotates around that base. In Touch + Touch, the BOH is utilized as multi-touch surface. Mid-
air + Touch is often utilized when using the BOH as a touchpad in single-touch interactions.
However, the thumb’s mid-air position (and distance to the index finger may be used for
value-changing operations (e.g., adjusting the volume of a music player). Lastly, in Mid-air
+Mid-air, both fingers can gesture freely in 3D.We, however use this last state as a delimiter
for entry/exit to other states.

9.2.3 Resulting Challenges
We assume that a camera obtains an oblique depth map of the BOH and the space directly
above it. This differs greatly from previous approaches that use depth sensing for multitouch
input. Imaginary Phone [44] andOmniTouch [48] assumed a near-perpendicular view of the
surface, easing separation of the interaction surface from the interacting hand. These sys-
tems showed limited accuracy when distinguishing touch and hover states (e.g., OmniTouch
reports 20 mm accuracy). Other systems, such as Air+Touch [28] rely on a perfectly planar,
touch-sensitive surface on a smartphone in addition to the depth sensor.

Realizing our scenario without additional sensors on the hand poses new challenges:
(1) the oblique view of the BOH causes perspective distortion and additional occlusions,
(2) the BOH (as well as the forearm) is not a flat surface but curved, which complicates
touch detection. (3) multi-finger interaction requires the discrimination and identification of
fingertips, both when touching and hovering, and (4) compute limitations on mobile devices
require the sensing technique to be fast with low latency. WatchSense supports simultaneous
and continuous touch and mid-air interactions from an oblique view of the BOH in real-
time—even in the presence of these challenges.
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9.3 Related Work
The work presented in this chapter builds on recent approaches for interacting on smart-
watches and on associated limbs, mid-air interaction techniques around wearable devices, as
well as hand and finger tracking.

Touch Interaction On and Around Smartwatches: Interaction with consumer smart-
watches is generally limited to touch and speech. Two main strategies have been explored to
extend the capabilities of such devices: (1) on-device interaction, and (2) on-body interac-
tion.

On-device interactions beyond the touchscreen employ other parts of the smartwatch.
Pasquero et al. [101] extended input to the device’s bezel. Xiao et al. [164] use the entire
watch face for additional input, e.g., through tilting, twisting or panning it. WatchIt uses
the wristband as alternative input canvas for simple gestures [102]. WatchMI [169] uses
existing sensors to support pressure touch, twisting, and panning gestures. While shown to
be beneficial, they all consider input only directly on the device.

Smartwatches have mostly planar body parts in close proximity (e.g., the hand and fore-
arm). Thus, there is a large body of research on skin-based input to free the interaction from
thewatch itself. iSkin uses a thin skin overlay to detect touch and strokes [157]. Skinput’s bio-
acoustic sensing array allows for detecting a touch directly on the skin. SkinTrack [171] uses
the body as an electrical waveguide to support touch near smartwatches. Laser-based range
scanners [151, 150] as well as infrared sensors placed at the device’s borders [21, 91, 136]
are vision-based approaches to detect on-skin touch and gesture interaction around a device.

Most related, however, is the use of depth cameras to detect skin-based input. Imagi-
nary Phone used a depth camera to detect interaction on the palm [44] to operate a mobile
phone which is not in sight. OmniTouch used a very similar setup to turn arbitrary (planar)
surfaces (also the user’s palm or wrist) into projected, interactive surfaces [48]. WatchSense
is inspired by these systems but we go beyond by recognizing fingertip positions, identities,
and touch on- and above-skin.

Gestural Interaction Around Wearable Devices: Mid-air space around wearable de-
vices has also been investigated for input. Initially, researchers used that space for simple
gestural input. Gesture Watch [66], AirTouch [76], and HoverFlow [68] used an array of
infrared sensors to execute simple commands through eyes-free gestures. More recently,
researchers began exploring techniques that rely on more accurate mid-air tracking. Here,
they relied on magnetic tracking (e.g., FingerPad [26], Abracadabra [49], and uTrack [27]),
or small infrared cameras (e.g., Imaginary Interfaces [43]). To test a set of interaction tech-
niques, researchers often relied on sophisticated external tracking systems (e.g., [58, 51]).
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Finally, there is research on using the fingers for gestural input, either using a vision-based
approach [65, 155], or through strain sensors on the back of the hand [77].

The aforementioned systems solely used gestural input without considering touch, which
is a key feature of WatchSense. One of the few systems considering both touch and mid-air
during an interaction is Air+Touch [28]. Their focus is on sequential interactions near smart-
watches, where mid-air interaction occurs before, after or in between touches. In contrast,
WatchSense allows for simultaneous use of touch and mid-air.

Vision-based Tracking of Hands and Fingers: With the advent of commodity depth
sensors, research on articulated hand tracking (e.g., Digits [65]) has gained more atten-
tion [64, 119]. We presented an approach in Chapter 5. These approaches aim at recon-
structing hand pose from depth data, and would be, at first glance, an ideal solution for
our scenario. Unfortunately, these methods fail under oblique views, occlusions, or addi-
tional objects in the scene. In addition, they are not well-suited for detecting (multi-)touch
events. To bypass these issues, existing systems (that make use of finger input) often simplify
the problem: first, systems avoid fully articulated hand tracking and only require detecting
discrete touch points (e.g., [161, 21, 10, 28]). Second, several systems build on heuristic
assumptions of the depth camera’s location in relation to the interaction surface which is
hard to realize in practice. For example, both OmniTouch [48] and Imaginary Phone [44]
assume a perpendicular view of the interaction surface, easing separation of the interaction
surface from the interacting hand. In addition, these systems have limited accuracy when dis-
tinguishing touch and hover states (e.g., OmniTouch reports 20 mm accuracy [48]). Other
systems, such as Air+Touch rely on a perfectly plain, touch-sensitive interaction surface (a
smartphone) [28].

In comparison, our work builds on less heuristic assumptions while accurately detecting
fingertips on and above the interacting surface. Taking inspiration from [124, 48, 76] we
use a combination of machine learning, image processing, and robust estimators to solve the
challenging vision problem. Our approach is flexible and can be retrained to fit a wide range
of depth sensor positions (e.g., in the device itself), surfaces (e.g., upper arm). Additionally,
we obtain information about finger identity that increases the expressiveness of interactions
possible with our approach.

9.4 Implementation
We now describe our depth camera-based method for supporting the expressive mid-air and
multitouch interactions. Our focus is on fingers interacting on and above the BOH from an
arm-worn camera. Our approach is fast and accurate—we can track the position of fingertips



132 On- and Above-Skin Sensing for Continuous and Discrete Input

to within 15mm, and touch points to within 10mm. Our approach is also flexible—it can be
reused with only a few changes to suit other wearable cameras, and viewpoints.

Previous methods [48, 76] for near-surface finger interaction support estimation of the
following: (1) 3D hover/touch positions of fingertips, and (2) exact detection of finger touch
events. Our approach supports these and additionally also (3) automatically and robustly
identifies fingertips (currently index finger and thumb). This allows us to support a richer
set of mid-air and multitouch interactions. Our approach also delivers better touch detection
tolerances than previous work.

9.4.1 Prototype System
Our prototype can run on desktops, laptops, tablets, and smarphones and relays sensed fin-
gertips positions, labels, and touch events through a WebSocket connection. Clients such
as smartwatches, smartphones, public displays, or smartglasses can obtain this information
wirelessly.

In our prototype, we use the PMD CamBoard PicoFlexx camera (see Figure 9.1), which
is currently the smallest commercially available depth sensor. We found its size, resolution,
and noise characteristics suitable for the BOH scenario. However, we also support other
close range sensors like the Intel Senz3D depth, and the Intel RealSense F200. We position
the sensor on the forearm (20 cm above the wrist) facing the BOH (see Figure 9.1). Placing
the sensor closer to the wrist was not possible because commercial TOF cameras have lim-
ited near range sensing capability. Their infrared illumination source—designed for ranges
>50 cm—saturates pixels with depth less than 20 cm thus making depth estimation unre-
liable. Specially designed cameras with less intense illumination sources will allow nearer
sensing ranges.

9.4.2 Algorithm Description
Estimating fingertip positions, and touch events from an oblique view of the BOH is a hard
problem. Even state-of-the-art articulated RGB-D hand trackers would fail under these con-
ditions [129]. We use a detection rather than tracking strategy to help recover in case of
failure. Our approach features a novel combination of random forests, advanced image pro-
cessing, and robust estimators to achieve stable and accurate fingertip and touch detection.
Figure 9.3 provides an overview of our approach. While the algorithms we use are known
in the computer vision community, their novel combination and specific application to this
problem has many unique contributions as we describe below.
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Figure 9.3 Overview of WatchSense implementation. After pre-
processing the input depth image we use random forests to seg-
ment interacting hand from the BOH, and detect fingertips. The
segmentation masks are used together with robust estimators and
flood filling to obtain fingertip positions, and touch points.

Random Forests for
Classification: We use
random forests for per-
pixel classification which
have been shown to pro-
duce state-of-the-art re-
sults in human pose es-
timation and other seg-
mentation problems [122,
64, 129]. We provide
a brief overview and re-
fer the reader to Chap-
ter 2 and [30] for more
details. Our contribution
is to show that random
forests in combination with other techniques enable new interaction opportunities for on-
and above-skin wearable interaction.

Given an image, a classification forest is trained to label each pixel into a class label
(e.g., part of a human body). At test time, for each input pixel, a tree in the forest makes a pre-
diction about which part it likely belongs to. The output from all trees in the forest is aggre-

gated to provide a final prediction about the pixel’s class as 𝑝(𝑐 | 𝑥, 𝜏) = 1
𝑇

𝑇
∑
𝑡=1

𝑝𝑡(𝑐 |𝑥, 𝜏𝑡),
where 𝑝 is the predicted class distribution for the pixel 𝑥 given forest hyperparameters 𝜏 ,
𝑇 is the number of random trees that makes a prediction 𝑝𝑡. We use depth-based feature
response functions similar to the one described in [122].

Input Preprocessing and Segmentation: The input depth map encodes real-world
depth at each pixel. Noise in the depth map is removed using morphological erosion and a
median filter to produce a filtered depth map [39]. To make subsequent steps in our method
more robust, we first use a binary classification forest that segments the two interacting hands
into BOH and interacting hand (see Figure 9.3). This segmentation generates two depth
maps—one contains only the BOH and the other contains only the interacting hand.

Fingertip Detection and Recognition: The goal of this part is to detect and estimate
the 3D position of interacting fingertips. In our prototype, we assume that only two fingers
interact (i.e., index finger and thumb)—however our approach is flexible and can support
more than two fingertips. Additionally, we trained our method to be robust to false positives
on unsupported fingers. The key improvement over previous work is our ability to detect
fingertips and also their unique identity even after periods of occlusion. In contrast, [76]
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Figure 9.4 Fingertip detection. (a) Training time: Different users wear colored fingertip caps
to provide pixel training data for fingertip locations. (b, c) Testing time: Fingertips and their
respective labels are accurately detected from only depth images in at real-time.

uses only one finger while [48] uses heuristics to assign unique IDs without knowing finger
identity. As we show in the applications section, fingertip identity allows us to create more
expressive interactions previous not possible.

We rely on a random forest that classifies pixels into one of three classes: IndexFinger,
Thumb, Background. More classes can be added if needed. At training time, we collected
color and depth image pairs from multiple users interacting with the BOH wearing colored
markers (see Figure 9.4). These markers were automatically detected in the color image
and mapped onto the depth image. This provides labels for the forest to be trained on—we
collected 20000 image pairs from different users to maximize forest generalization.

At test time, given an input depth image, the forest classifies pixels into one of the three
classes. The result, shown in Figure 9.4, produces a group of pixels that are labelled into
one of the fingertips. We remove noise in the resulting pixels by a median filter and morpho-
logical erosion. We then obtain a robust estimate for the 2D fingertip position on the image
by applying the MeanShift algorithm [29] which is robust to outliers. The final 2D position
is then backprojected using the depth map to obtain the 3D fingertip position along with its
identity (Figure 9.4).

Our approach is resilient to temporary tracking failures since the fingertips are detected
frame-by-frame. For added stability, we filter the final positions with the 1€filter [25]. Be-
cause we identify fingertips uniquely we can support more expressive interactions previously
not possible, as we show in our interactive applications.

Touch Detection: The second goal is to robustly detect touching of the fingertips on
the BOH. This is a hard because depth sensors have limited precision and much noise. The
oblique camera view, general BOH shape, and camera motion make it even harder. We ex-
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perimented with various techniques including distance computation from a plane fitted to the
BOH. However, we found that flood filling, similar to the approach used by OmniTouch [48],
worked best.

Figure 9.5 illustrates touch detection with flood filling. For each detected fingertip, we
seed the flood filling process at the 2D fingertip position. We then fill a fixed mask around
the fingertip such that pixels of certain depth in front and behind the fingertip (i.e., towards
or away on the camera 𝑧-axis) are filled. We empirically chose the near and far thresholds to
be 50 mm and 20 mm from the 3D fingertip position, respectively, which we found to cover a
wide range of motion of the BOH, users, and finger orientations. Whenever more than 40%
of the mask is filled, we activate a touch event. For robustness, we activate a touch event
only when more than 10 frames (at the device runtime framerate) in sequence were detected
as touching. As we show later, this method’s touch detection tolerance varied from 1 mm to
about 10 mm for different users which is better than the 20 mm reported by [48].

Figure 9.5 Touch detection. (a) When there is no touch, flood fill is restricted to filling only
in parts of the finger. (b, c) When the finger touches flood fill grows into the BOH filling a
larger area (White: seed point, Brown: flood filled pixels).

9.5 Technical Evaluation
In addition to assessing tracking speed, we evaluated several key performance aspects: (1)
accuracy of fingertip tracking while touching the BOH and hovering above it; (2) reliable
minimum distances (tolerance) between finger and the BOH to separate touch and hover;
and (3) classification accuracy of the random forest. We first report our method’s runtime
performance.
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(a) Senz3D Index Sitting (b) Senz3D Index Standing (c) Senz3D Thumb Sitting (d) Senz3D Thumb Standing

(e) PicoFlexx Index Sitting (f) PicoFlexx Index Standing (g) PicoFlexx Thumb Sitting (h) PicoFlexx Thumb Stand-
ing

Figure 9.6 Evaluation of touch accuracy on the BOH. Each image represents the 2D touch
position distribution for a particular finger, condition, and camera [Senz3D is (a)–(d), Pi-
coFlexx is (e)–(h)]. The plots contain all touch points recorded by the tracker during each
trial. Ground truth positions are marked with a black plus symbol, and ellipses denote 95%
confidence intervals. The index finger performed best for both sitting and standing condi-
tions for all cameras. We attribute the relatively worse performance of the thumb to the lack
of sufficient training data for the fingertip classification forest.

9.5.1 Runtime Performance
Our approach runs in real-time on ab Intel Core i7 laptop at >250 Hz, at >40 Hz on a recent
smartphone (OnePlus 3), and at 35 Hz on a tablet (Nexus 9). However, we cap the output
to 50 Hz to prevent flooding clients. All components of our method run completely on the
CPU. Given the simplicity of our method and the increasing compute of smartphones, we
expect to be able to run our method directly on smartwatches in the future.

9.5.2 Touch Accuracy
The goal of this evaluation is to assess the accuracy of fingertip position and touch detection.
We model our evaluation on OmniTouch [48] and SkinTrack [171].

Method: We recruited 13 right-handed volunteers (2 female) from our institution, rang-
ing in age from 23 to 36 years (mean 28.1 years). Their backs of the hand widths varied from
70 mm to 90 mm, and lengths varied from 60 to 80 mm (mean dimension was 82×70 mm).
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The length of index fingers ranged from 69 to 86 mm (mean 79 mm), and the thumb length
was between 55 mm and 70 mm (mean 63.5 mm). Since skin color affects depth and noise at
each pixel, we recruited participants with diverse skin colors. An evaluation session took ap-
proximately 15 minutes. Data from one participant had to be excluded because of a software
bug that affected the camera.

Design and Task: The touch accuracy task measures how accurately we can detect
touch points on the BOH. We had two conditions in this task: (a) in the seated condition,
participants were seated and their forearm was supported by the desk, (b) in the standing
condition, participants stood without any arm-support. Participants then had to repeatedly
touch dots on the back of their hand using either the thumb or their index finger. The com-
puter next to the participants showed the dot they had to touch. The experiment began when
participants pressed the spacebar, which would cause the first dot to be highlighted. Then
participants had to touch that dot on the back of their hand, and subsequently press the space-
bar to switch to the next trial. If there was no touch recorded prior to pressing the space-bar,
participants could not advance to the next trial, and an error was recorded. We recorded 𝑥,
𝑦, 𝑧-coordinates for both fingers, and whether or not a finger (and which) was touching.

Apparatus: In the seated condition, participants rested their arm on a desk. The desk
and chair used in our experiment were height-adjustable. The setup was replicated at two
locations. Both seated and standing conditions took place in the front of a 55” 4K display or
a 25” full HD display. The display and tracker was run on an Intel Xeon Dual Core (2.5 GHz)
or on an Intel Xeon E3-1246 (3.5 GHz) machine. Half the participants were assigned to use
the Creative Senz3D depth sensor while the other half used the PMD CamBoard PicoFlexx.

Procedure: In each of the two stages, participants either began with the index finger or
the thumb, and performed all trials with that finger, before changing to the other finger. Half
of our participants started with the index finger (the other half started with the thumb). The
presentation of order in which the nine dots had to be touched was randomized for all tasks.
In both touch accuracy tasks, each dot was touched 6 times per finger, resulting in 2 (Tasks)
× 2 (Fingers) × 9 (Dots) × 6 (Repetitions) = 216 data points.

Before the experiment began, participants filled in a questionnaire containing demo-
graphic information. We then measured the size of their hands as well as the length of their
thumbs and index fingers. Afterwards, we fitted the prototype on the forearm, and added
3×3 dots on a participant’s back of the hand using a stencil to ensure equal separation of
those dots (dots were separated by 20 mm).

Results: Figure 9.6 plots the distribution of touch points on the BOH, separately for
standing and sitting, and for the two cameras used. Black crosses represent ground truth
positions. The plots show that accuracy for index finger touch positions is high in sitting and
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standing conditions as well as for the two cameras. For the Senz3D, the mean standard devi-
ation for the index finger was 4.1 mm for sitting and 3.7 mm for standing. For the PicoFlexx
sensor, the mean standard deviation for the index finger was 5.2 mm for sitting and 3.7 mm
for standing. The thumb performed slightly worse for both cameras. For the Senz3D, the
mean standard deviation for the thumb was 7.7 mm for sitting and 8.4 mm for standing. For
the PicoFlexx sensor, the mean standard deviation for thumb finger was 6.0 mm for sitting
and 7.6 mm for standing. We attribute this difference to the lack of sufficient samples for
the thumb during random forest training. However, we observe that the PicoFlexx camera
performed better for the thumb than Senz3D. We would also like to highlight that our stan-
dard deviations improve over previous work [48] in spite of a smaller inter-dot distance of
20 mm instead of 30 mm.

9.5.3 Touch Tolerance
The purpose was to assess the hover interval, in which touch and hover detection can be
ambiguous. Since we had no automated way of obtaining ground truth information for hover
states, the evaluation was conducted through a series of manual measurements.

Participants: We recruited two right-handed volunteers (62 and 66 years). An evalua-
tion session took 30 minutes.

Design, Task, and Procedure:: In order to provide as reliable measurements as possi-
ble, two tables were used to support the participant’s arms during the evaluation. Participants
were seated, resting their arm on one table, the other arm was resting on an adjacent eleva-
tion table with the hand hanging over the edge of the table. Before starting the evaluation,
the participant’s hand was annotated with 9 dots in the same way as in the touch accuracy
evaluation.

The measurements were recorded through a five step procedure: (1) The elevation table
was lowered until the finger touched the BOH; (2) The BOH and finger were aligned to touch
a particular dot; (3) The table was elevated to a non-ambiguous hover state; (4) The finger
was then lowered in small steps (<1 mm) through the area of ambiguity and stopped when
a touch state was obtained for more than 2 seconds; and (5) The finger was then elevated in
similar steps until a hover state was obtained for more than 2 seconds. Measurements were
recorded at the end of step (4) and (5). The procedure was repeated for all of the nine dots
for both fingers. A total of 72 dots were recorded.

Results: All measurements of non-ambiguous touch and hover states fell withing an
interval between 1 mm and 10 mm. This indicates that our algorithm is capable of reliably
detecting a touch state at 1 mm distance from the BOH. Further, it reliably detects hovering
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when the finger is 10 mm away from the surface. Compared to previous state of the art [48],
which reported their interval to be between 10mm and 20mm, this is a notable improvement.

9.5.4 Random Forest Classification Accuracy
Additionally, we also report accuracy of using random forests for classification. When train-
ing our classification forests, we adopted a rigorous cross-validation procedure to tune the
parameters. For the best parameters chosen the per-pixel classification accuracy was 77%
for fingertip detection, and 98.8% for hand segmentation. We note that these numbers are
comparable to those reported in [122].

9.6 WatchSense-Enabled Applications

Figure 9.7 Some interactive applications enabled by WatchSense. (a) Single-touch input
allows for panning a map on a smartwatch. (b) Multitouch allows for zooming/resizing a lens
on a large display. (c) Compound touch and mid-air interactions allow for more expressive
input for emerging mixed reality devices. Here we show a user interacting with virtual boxes
through a HoloLens.

To illustrate the novel input capabilities enabled byWatchSense, we built several demon-
strator applications. We thus explore how WatchSense can support existing multitouch in-
teractions such as pinch-to-zoom, as well as open up completely new opportunities, thanks
to finger identification and compound interactions.

To further showcase flexibility, we show our prototype running on different hardware
platforms and depth sensors. We also show cross-platform interaction, i.e., WatchSense
can run on a mobile device but be used for interaction with another surrounding device
(e.g., HoloLens), or even several surrounding devices simultaneously.

Music Controller: When the WatchSense app runs on any mobile device (running An-
droid), it provides a music player controller feature by default. We use the PicoFlexx camera
connected to a mobile device. It enables users to control three functions: (1) adjust volume,
(2) change sound track, and (3) toggle music playing. Because of the unique capability of
recognizing fingertips, we support the above functions with simple interaction techniques.
To adjust the volume, users can touch the BOH with their index finger (Mid-air + Touch)
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Figure 9.8 CardboardBoxes game for VR/AR. (a) User gazes at a box and uses index finger
to select it (Mid-air + Touch). (b) Thumb touching while index finger in mid-air allows trans-
lating the selected box freely (Touch + Mid-air). (c) Both fingers touching while pinching
scales the box (Touch + Touch).

to increase the volume or with their thumb (Touch + Mid-air) to decrease it. Touching the
BOH with both fingers (Touch + Touch) toggles music playback or pausing. Finally, users
can swich to the previous or next tracks by swiping with the index finger either towards or
away from the fingers (Mid-air + Touch).

Virtual/Augmented Reality (VR/AR) Input: We built a game for virtual or augmented
reality glasses called CardboardBoxes. Users can play with tens of cardboard boxes strewn
across the a virtual or real environment. This game showcases the 3D interaction capabilities
of WatchSense. Users can select a box from the scene by gazing at an object and touching
the BOH with their index finger (Mid-air + Touch, see Figure 9.8). Once selected, boxes
can be moved around the scene or scaled. Moving is achieved by a Touch + Mid-air gesture
with the index finger’s 3D position relative to the thumb being used for mapping the box’s
3D position relative to the observer. Scaling the box can be achieved by pinching on the
BOH with both fingers (Touch + Touch).
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In VR mode, tracking runs on a smartphone as a background app. We use the Google
Cardboard API to render the game on the same device. In AR mode, tracking can run on
any device which relays sensed input to a heads-up display (we run it on a smartphone for
mobility). The game is rendered on a HoloLens3 which allows us to naturally interact with
the game as well as the environment around the user. The default HoloLens interaction
modality of using free hand gestures to move objects can be fatiguing for users. In contrast,
our approach allows users to move objects with only finger movements. Additionally, with a
pinch gesture on the BOH users can scale objects—this task is not easily doable with current
HoloLens freehand gestures.

Map on a Watch: By combining on-BOH and mid-air input, we created more expres-
sive interactions for a map application than a smartwatch allows. Our solution uses three
interactions: (1) touching the BOH using the index finger (Mid-air + Touch), allowing for
single-touch interactions much like on the screen (i.e., dragging the map); (2) likewise, when
both fingers touch the back of the hand (Touch + Touch), users zoom in or out; (3) when only
the thumb is touching (Touch + Mid-air), a pop-up menu is shown allowing for switching
display modes (map, transit, and satellite). Selection is performed by changing the distance
between the two fingers through moving the index finger.

Image Exploration on a Large Display: This application maps inputs to a large display
showing a satellite image for an exploration task (see Figure 9.7 (b)). There are four modes
of interaction: (1) using only the index finger (Mid-air + Touch) on the BOH allows for
dragging the entire image across the display; (2) when touching the BOH with the thumb
only (Touch + Mid-air), a fisheye lens is shown, which can be moved by moving the thumb;
(3) touching the BOH with both thumb and index finger (Touch + Touch) allows for resizing
the lens (unlike zooming the map in the watch application); and (4) having the thumb touch
the BOH with the index finger in mid-air allows for changing the zoom level within the lens.
Again, this solution is more expressive than what would be possible with touch or mid-air
alone.

Controlling a Game: WatchSense enables also joystick-like input for a wearable device.
This is achieved by touching the BOH with thumb and controlling pitch (forward/backward
tilt of the hand) and roll (left/right tilt of the hand). Figure 9.9 shows this Touch + Mid-
air gesture: the interacting hand forms a joystick with the thumb as base and the index
finger acting as the top. Our game is a space game involving space navigation and shooting
other spaceships and asteroids. Three interactions were implemented: (1) pitch controls the
forward and backward motion of the spacecraft (up/down on the display); (2) roll controls
the left and right movement of the spacecraft; and (3) the index finger in air controls firing

3https://www.microsoft.com/microsoft-hololens

https://www.microsoft.com/microsoft-hololens
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by quickly moving it down and up again in a trigger-like fashion. To our knowledge, this is
a novel way of using the hand as a joystick to control a game with a wearable device.

9.7 Discussion

Figure 9.9 WatchSense allows for joystick-like direc-
tional control for gaming. Here a 2D spacecraft shoot-
ing game is controlled by compound Touch + Mid-air
gesture. The spaceship fires when the index finger is
quickly moved towards the BOH and up again.

WatchSense is a solution for fast
and expressive multitouch and
mid-air input on and above the
BOH. In particular, it supports new
combinations of the two types of
input. To make interaction even
more fluid and expressive future
work will need to address some
limitations of WatchSense.

First, our prototype has to be
worn about 20 cm from the wrist
due to depth sensor limitations. Future work should explore depth sensing technology for
near-surface sensing. Second, although our algorithm achieves better accuracy for fingertip
position than previous work, there is room for improvement. Third, it might be possible to
extend our algorithm to support input on and above arbitrary surfaces to broaden potential
applications. Future work should also look at hand-object interactions to further explore new
interaction avenues.

Finally, the interactions that we propose represent only a subset of the possible interac-
tion space. More research is needed to explore how detection of fingertips, their identities,
and touch can enable richer input. We restricted out interactions to linear gestures. Future
work should also look at more complex gesture patterns that can be tracked by WatchSense.
This introduces new challenges such as gesture segmentation [28]. Moreover, further work
is needed to see if the contributions of this chapter can be combined with full hand pose
estimation techniques presented in Chapters 5–6. This would lead to a much broader and
expressive set of input techniques for gesture-based interaction.

9.8 Conclusion
This chapter has contributed to methods for extending the interaction capabilities of small
form factor wearable computers. WatchSense allows extending the input space on wearable
devices to the back of the hand and the space above it. The BOH offers a natural and always-
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available surface for input, which now can be utilized in different postures and even if the
hand is carrying an object. BecauseWatchSense estimates fingertip locations, identities, and
touch positions, it can support interactions that were previously not possible. In particular,
continuous interaction and familiar multitouch gestures like pinch can be carried out on the
back of the hand and combined with mid-air gestures thus increasing the expresiveness of
input. Finger identification adds the possibility to trigger events and map controls to index
and thumb separately.

Tracking fingertips, their identities, and touch on the BOH in real-time from the view-
point of a depth camera in a smartwatch is a hard computer vision problem. Our algorithm
has shown advances by using a combination of machine learning, image processing, and
robust estimators. It tackles the issues posed by oblique viewpoint, occlusions, fast motions,
and fingertip ambiguity.

Finally, we demonstrated that the back of the hand may not only serve as an input device
for wearable computers, but could show potential as an input device for other displays and
devices in the users’ surroundings. We have shown that contact with skin can be detected
reasonably well with a close-range depth sensing approach. This, combined with finger iden-
tification and real-time tracking, may enable using areas of skin and rigid surfaces flexibly
to control near-by devices.





Chapter 10

Conclusions and Future Work

This thesis has presented solutions to several important and unsolved problems in computer
vision-based hand tracking and gesture-based computer input. Markerless tracking of hands
is a hard problem due to fast motions, occlusions, uniform skin color, and high dimension-
ality of the optimization task. We presented some of the first techniques that allow tracking
of the full 3D articulated pose of the hands, even together with objects, under different sen-
sor setups such as multiple RGB cameras or a single depth sensor. Designing gesture-based
input driven by markerless hand tracking is an equally challenging problem because of the
large design space and human factors. We have showed through qualitative and quantitative
results, new optimization frameworks, user studies, evaluations, and interactive applications
(e.g., 3D navigation) that gesture-based input is a viable means of input.

In Part I, we started by solving a relatively less difficult (due to fewer occlusions) version
of the hand tracking problem with multiple cameras and interactive runtime requirements
(Chapter 3). Results from this chapter indicated that real-time multi-camera tracking with
higher accuracy was attainable with further work. We demonstrated this in Chapter 7, which
showed real-time tracking at 50 FPS.We further improved accuracy in themulti-view setting,
as we describe in Chapter 4, by using a new Sum of Anisotropic Gaussians representation
while still running at over 25 FPS. In Chapter 5 we addressed the harder problem of tracking
from a single depth camera within a Gaussian mixture framework and yet attained real-time
performance without using additional hardware. This allowed us to track hands, for the
first time, from a single moving depth sensor such as those in head-mounted cameras. Our
approach could also support fine grained motions and poses with self-occlusions. Finally,
in Chapter 6 we addressed the much harder problem of joint hand and object tracking in
real-time. Our approach is, to our knowledge, the first to simultaneously track both a scene
object and a hand interacting with it from a single depth camera.
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In Part II, we presented methods for gesture-based input enabled by markerless hand
tracking. In Chapter 7, we investigated the use of elicitation studies for continuous gesture
input. We showed many examples of 3D navigation tasks where users could interact with
their fingers and yet achieve similar performance to traditional input devices like the mouse.
Interaction techniques driven by elicitation studies have their limits, however. In Chapter 8,
we showed one of the first methods for computational gesture design. To this end, we col-
lected data from users on finger dexterity. We showed that this data can be used in a novel
combinatorial optimization framework to automatically design appropriate gestures mid-air
text entry. Finally, we showed that restricting tracking to only fingertips can still enable new
expressive forms of input for small form factor devices such as smartwatches (Chapter 9).
WatchSense enabled interactions which were previously not possible by simultaneously sup-
porting both mid-air and multitouch gestures on the back of the hand.

10.1 Future Directions and Outlook
This thesis has advanced the state of the art in both computer vision-based hand tracking and
gesture-based input. There are several directions for future work that are natural progressions
of the work presented in this thesis. We summarize some of these directions below.

10.1.1 Single RGB Camera
In Chapter 5, we showed how a single depth camera can be used for real-time hand tracking.
Depth cameras, however, may be harder to integrate into small devices, consume a lot of
power, and may not work in general outdoor conditions. Color cameras, on the other hand,
are ubiquitous on devices like smartphones and tablets. Tracking 3D hand pose with only
color cameras has potentially large benefits but is a hard problem due to varying lighting con-
ditions. Recently, convolutional neural networks (CNNs) have achieved surprisingly good
results for full body 2D pose estimation in RGB images. We believe that extending this to
3D pose estimation is an interesting direction for future work.

10.1.2 Tracking in Cluttered Scenes from Different Viewpoints
We showed in Chapter 5 that tracking a single hand in scenes with relatively little background
clutter works well. When there is scene clutter, however, our approach would fail. The
problem of segmenting hand from background or clutter is difficult due to lighting changes,
and similar local shape. In order for hand tracking to be used for everyday interaction, it
is essential to track hands in cluttered scenes. Furthermore, the negative effect of clutter is
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compounded when different viewpoints are used e.g., egocentric viewpoints from head- or
body-mounted cameras. We believe that machine learning-based approaches in conjunction
with model-based generative tracking can partially solve the segmentation and viewpoint
problems along with strong priors about hand pose.

10.1.3 Tracking Hands in Conjunction with Full Body
In this thesis, we showed hand tracking together with and without different objects they are
manipulating. Tracking hands in conjunction with full body pose could have numerous med-
ical, and virtual reality (VR) applications. The challenges in achieving this include the small
size of the hand in relation to the body, occlusions, and limited data for the hands. We think
that advancements in depth sensing technology and improvements to existing algorithms
will be required for this to work.

10.1.4 Tracking Multiple Strongly Interacting Hands
In everyday life, humans greet each other with gestures such as a handshake, a clap, or a
high five. These gestures involve the interaction of two or more hands belonging to the same
or different persons. The ability to track this interaction opens a range of applications in
human activity and gesture recognition. As can be expected, occlusions can cause major
challenges to this problem. While there has been some work in this direction [97], tracking
interacting hands under real-time constraints remains an unsolved problem. We believe that
strong priors for how hands interact will be critical to solving this problem.

10.1.5 Computational Gesture Design for Continuous Input
In Chapter 8, we showed how computational gesture design can be used for a discrete input
task (i.e., text entry). Our model of hand dexterity, however, can also be used for continuous
gesture input design. It would be interesting to create new interaction techniques based on
our model of hand movement performance and evaluate them. There are many challenges
to doing this including making sure that gestures are ergonomic, memorable, and easy to
perform.

10.1.6 Application Specific Tracking for Interaction
As we showed in Chapter 9 limiting tracking to only a subset of the full hand pose can have
many benefits. Firstly, it reduces the computational complexity of the tracking algorithm
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enabling tracking to run on small form factor devices. Secondly, it enables a richer set of
novel input for specific applications such as input to smartwatches. We think that many such
new expressive interactions can be enabled by limiting the space of tracking parameters.
Other examples include near surface finger tracking which could turn any surface into a
touchscreen or on- and above-skin input from different parts of the body.

10.1.7 Tangible Computer Input
The concept of coupling the interaction bits with everyday physical objects and architectural
surfaces was proposed by TangibleBits [56]. When algorithms for tracking hands together
with objects reach a sufficient level of accuracy it might be possible to truly realize the vision
of TangibleBits. It could be possible to use everyday objects as input devices. Computers
would automatically be able to digitize what we write on paper. A smartphone could have
no touch sensitive sensors and instead rely completely on finger and surface tracking.

In this thesis, we have made contributions to solving some important problems in en-
abling gesture-based input for human–computer interaction. We believe that this will con-
stitute an important foundation for future work including the directions mentioned above.
The success of next generation computers including smartwatches, and smartglasses depend
on efficient means of input. We believe that hands and their interaction with their surround-
ings will play an important role in the future of ubiquitous computers.
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