인간 기계 상호작용을 위한 강건하고 정확한 손동작 추적 기술 연구

Abstract

학위논문(박사) -- 서울대학교대학원 : 공과대학 기계항공공학부, 2021.8. 이동준.Hand-based interface is promising for realizing intuitive, natural and accurate human machine interaction (HMI), as the human hand is main source of dexterity in our daily activities. For this, the thesis begins with the human perception study on the detection threshold of visuo-proprioceptive conflict (i.e., allowable tracking error) with or without cutantoues haptic feedback, and suggests tracking error specification for realistic and fluidic hand-based HMI. The thesis then proceeds to propose a novel wearable hand tracking module, which, to be compatible with the cutaneous haptic devices spewing magnetic noise, opportunistically employ heterogeneous sensors (IMU/compass module and soft sensor) reflecting the anatomical properties of human hand, which is suitable for specific application (i.e., finger-based interaction with finger-tip haptic devices). This hand tracking module however loses its tracking when interacting with, or being nearby, electrical machines or ferromagnetic materials. For this, the thesis presents its main contribution, a novel visual-inertial skeleton tracking (VIST) framework, that can provide accurate and robust hand (and finger) motion tracking even for many challenging real-world scenarios and environments, for which the state-of-the-art technologies are known to fail due to their respective fundamental limitations (e.g., severe occlusions for tracking purely with vision sensors; electromagnetic interference for tracking purely with IMUs (inertial measurement units) and compasses; and mechanical contacts for tracking purely with soft sensors). The proposed VIST framework comprises a sensor glove with multiple IMUs and passive visual markers as well as a head-mounted stereo camera; and a tightly-coupled filtering-based visual-inertial fusion algorithm to estimate the hand/finger motion and auto-calibrate hand/glove-related kinematic parameters simultaneously while taking into account the hand anatomical constraints. The VIST framework exhibits good tracking accuracy and robustness, affordable material cost, light hardware and software weights, and ruggedness/durability even to permit washing. Quantitative and qualitative experiments are also performed to validate the advantages and properties of our VIST framework, thereby, clearly demonstrating its potential for real-world applications.손 동작을 기반으로 한 인터페이스는 인간-기계 상호작용 분야에서 직관성, 몰입감, 정교함을 제공해줄 수 있어 많은 주목을 받고 있고, 이를 위해 가장 필수적인 기술 중 하나가 손 동작의 강건하고 정확한 추적 기술 이다. 이를 위해 본 학위논문에서는 먼저 사람 인지의 관점에서 손 동작 추적 오차의 인지 범위를 규명한다. 이 오차 인지 범위는 새로운 손 동작 추적 기술 개발 시 중요한 설계 기준이 될 수 있어 이를 피험자 실험을 통해 정량적으로 밝히고, 특히 손끝 촉각 장비가 있을때 이 인지 범위의 변화도 밝힌다. 이를 토대로, 촉각 피드백을 주는 것이 다양한 인간-기계 상호작용 분야에서 널리 연구되어 왔으므로, 먼저 손끝 촉각 장비와 함께 사용할 수 있는 손 동작 추적 모듈을 개발한다. 이 손끝 촉각 장비는 자기장 외란을 일으켜 착용형 기술에서 흔히 사용되는 지자기 센서를 교란하는데, 이를 적절한 사람 손의 해부학적 특성과 관성 센서/지자기 센서/소프트 센서의 적절한 활용을 통해 해결한다. 이를 확장하여 본 논문에서는, 촉각 장비 착용 시 뿐 아니라 모든 장비 착용 / 환경 / 물체와의 상호작용 시에도 사용 가능한 새로운 손 동작 추적 기술을 제안한다. 기존의 손 동작 추적 기술들은 가림 현상 (영상 기반 기술), 지자기 외란 (관성/지자기 센서 기반 기술), 물체와의 접촉 (소프트 센서 기반 기술) 등으로 인해 제한된 환경에서 밖에 사용하지 못한다. 이를 위해 많은 문제를 일으키는 지자기 센서 없이 상보적인 특성을 지니는 관성 센서와 영상 센서를 융합하고, 이때 작은 공간에 다 자유도의 움직임을 갖는 손 동작을 추적하기 위해 다수의 구분되지 않는 마커들을 사용한다. 이 마커의 구분 과정 (correspondence search)를 위해 기존의 약결합 (loosely-coupled) 기반이 아닌 강결합 (tightly-coupled 기반 센서 융합 기술을 제안하고, 이를 통해 지자기 센서 없이 정확한 손 동작이 가능할 뿐 아니라 착용형 센서들의 정확성/편의성에 문제를 일으키던 센서 부착 오차 / 사용자의 손 모양 등을 자동으로 정확히 보정한다. 이 제안된 영상-관성 센서 융합 기술 (Visual-Inertial Skeleton Tracking (VIST)) 의 뛰어난 성능과 강건성이 다양한 정량/정성 실험을 통해 검증되었고, 이는 VIST의 다양한 일상환경에서 기존 시스템이 구현하지 못하던 손 동작 추적을 가능케 함으로써, 많은 인간-기계 상호작용 분야에서의 가능성을 보여준다.1 Introduction 1 1.1. Motivation 1 1.2. Related Work 5 1.3. Contribution 12 2 Detection Threshold of Hand Tracking Error 16 2.1. Motivation 16 2.2. Experimental Environment 20 2.2.1. Hardware Setup 21 2.2.2. Virtual Environment Rendering 23 2.2.3. HMD Calibration 23 2.3. Identifying the Detection Threshold of Tracking Error 26 2.3.1. Experimental Setup 27 2.3.2. Procedure 27 2.3.3. Experimental Result 31 2.4. Enlarging the Detection Threshold of Tracking Error by Haptic Feedback 31 2.4.1. Experimental Setup 31 2.4.2. Procedure 32 2.4.3. Experimental Result 34 2.5. Discussion 34 3 Wearable Finger Tracking Module for Haptic Interaction 38 3.1. Motivation 38 3.2. Development of Finger Tracking Module 42 3.2.1. Hardware Setup 42 3.2.2. Tracking algorithm 45 3.2.3. Calibration method 48 3.3. Evaluation for VR Haptic Interaction Task 50 3.3.1. Quantitative evaluation of FTM 50 3.3.2. Implementation of Wearable Cutaneous Haptic Interface 51 3.3.3. Usability evaluation for VR peg-in-hole task 53 3.4. Discussion 57 4 Visual-Inertial Skeleton Tracking for Human Hand 59 4.1. Motivation 59 4.2. Hardware Setup and Hand Models 62 4.2.1. Human Hand Model 62 4.2.2. Wearable Sensor Glove 62 4.2.3. Stereo Camera 66 4.3. Visual Information Extraction 66 4.3.1. Marker Detection in Raw Images 68 4.3.2. Cost Function for Point Matching 68 4.3.3. Left-Right Stereo Matching 69 4.4. IMU-Aided Correspondence Search 72 4.5. Filtering-based Visual-Inertial Sensor Fusion 76 4.5.1. EKF States for Hand Tracking and Auto-Calibration 78 4.5.2. Prediction with IMU Information 79 4.5.3. Correction with Visual Information 82 4.5.4. Correction with Anatomical Constraints 84 4.6. Quantitative Evaluation for Free Hand Motion 87 4.6.1. Experimental Setup 87 4.6.2. Procedure 88 4.6.3. Experimental Result 90 4.7. Quantitative and Comparative Evaluation for Challenging Hand Motion 95 4.7.1. Experimental Setup 95 4.7.2. Procedure 96 4.7.3. Experimental Result 98 4.7.4. Performance Comparison with Existing Methods for Challenging Hand Motion 101 4.8. Qualitative Evaluation for Real-World Scenarios 105 4.8.1. Visually Complex Background 105 4.8.2. Object Interaction 106 4.8.3. Wearing Fingertip Cutaneous Haptic Devices 109 4.8.4. Outdoor Environment 111 4.9. Discussion 112 5 Conclusion 116 References 124 Abstract (in Korean) 139 Acknowledgment 141박

    Similar works