1,265 research outputs found

    Search Results: Predicting Ranking Algorithms With User Ratings and User-Driven Data

    Get PDF
    The purpose of this correlational quantitative study was to examine the possible relationship between user-driven parameters, user ratings, and ranking algorithms. The study’s population consisted of students and faculty in the information technology (IT) field at a university in Huntington, WV. Arrow’s impossibility theorem was used as the theoretical framework for this study. Complete survey data were collected from 47 students and faculty members in the IT field, and a multiple regression analysis was used to measure the correlations between the variables. The model was able to explain 85% of the total variability in the ranking algorithm. The overall model was able to significantly predict the algorithm ranking discounted cumulative gain, R2 = .852, F(3,115) = 220.13, p \u3c .01. The Respondent DCG and Search term variables were the most significant predictor with p = .0001. The overall findings can potentially be useful to content providers who focus their content on a specific niche. The content created by these providers would most likely be focused entirely on that subgroup of interested users. While it is necessary to focus content to the interested users, it may be beneficial to expand the content to more generic terms to help reach potential new users outside of the subgroups of interest. User’s searching for more generic terms could potentially be exposed to more content that would generally require more specific search terms. This exposure with more generic terms could help users expand their knowledge of new content more quickly

    PREDICTION OF RESPIRATORY MOTION

    Get PDF
    Radiation therapy is a cancer treatment method that employs high-energy radiation beams to destroy cancer cells by damaging the ability of these cells to reproduce. Thoracic and abdominal tumors may change their positions during respiration by as much as three centimeters during radiation treatment. The prediction of respiratory motion has become an important research area because respiratory motion severely affects precise radiation dose delivery. This study describes recent radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems. In the first part of our study we review three prediction approaches of respiratory motion, i.e., model-based methods, model-free heuristic learning algorithms, and hybrid methods. In the second part of our work we propose respiratory motion estimation with hybrid implementation of extended Kalman filter. The proposed method uses the recurrent neural network as the role of the predictor and the extended Kalman filter as the role of the corrector. In the third part of our work we further extend our research work to present customized prediction of respiratory motion with clustering from multiple patient interactions. For the customized prediction we construct the clustering based on breathing patterns of multiple patients using the feature selection metrics that are composed of a variety of breathing features. In the fourth part of our work we retrospectively categorize breathing data into several classes and propose a new approach to detect irregular breathing patterns using neural networks. We have evaluated the proposed new algorithm by comparing the prediction overshoot and the tracking estimation value. The experimental results of 448 patients’ breathing patterns validated the proposed irregular breathing classifier

    Semantic image retrieval using relevance feedback and transaction logs

    Get PDF
    Due to the recent improvements in digital photography and storage capacity, storing large amounts of images has been made possible, and efficient means to retrieve images matching a user’s query are needed. Content-based Image Retrieval (CBIR) systems automatically extract image contents based on image features, i.e. color, texture, and shape. Relevance feedback methods are applied to CBIR to integrate users’ perceptions and reduce the gap between high-level image semantics and low-level image features. The precision of a CBIR system in retrieving semantically rich (complex) images is improved in this dissertation work by making advancements in three areas of a CBIR system: input, process, and output. The input of the system includes a mechanism that provides the user with required tools to build and modify her query through feedbacks. Users behavioral in CBIR environments are studied, and a new feedback methodology is presented to efficiently capture users’ image perceptions. The process element includes image learning and retrieval algorithms. A Long-term image retrieval algorithm (LTL), which learns image semantics from prior search results available in the system’s transaction history, is developed using Factor Analysis. Another algorithm, a short-term learner (STL) that captures user’s image perceptions based on image features and user’s feedbacks in the on-going transaction, is developed based on Linear Discriminant Analysis. Then, a mechanism is introduced to integrate these two algorithms to one retrieval procedure. Finally, a retrieval strategy that includes learning and searching phases is defined for arranging images in the output of the system. The developed relevance feedback methodology proved to reduce the effect of human subjectivity in providing feedbacks for complex images. Retrieval algorithms were applied to images with different degrees of complexity. LTL is efficient in extracting the semantics of complex images that have a history in the system. STL is suitable for query and images that can be effectively represented by their image features. Therefore, the performance of the system in retrieving images with visual and conceptual complexities was improved when both algorithms were applied simultaneously. Finally, the strategy of retrieval phases demonstrated promising results when the query complexity increases

    ROBUST LOW-RANK MATRIX FACTORIZATION WITH MISSING DATA BY MINIMIZING L1 LOSS APPLIED TO COLLABORATIVE FILTERING

    Get PDF
    In this age of information overload and plethora of choices, people increasingly rely on automatic recommender systems to tell them what suits their needs. A very effective approach for creating recommender systems is collaborative filtering, which is the task of predicting the preference/rating that a user would assign to an item based on preference data of that user and preference data of other users. One way to conduct collaborative filtering is through dimensionality reduction. The underlying concept of the approach lies in the belief that there are only a few features (reduced dimensions) that influence the user’s choice. In this paper we use low rank matrix factorization for dimensionality reduction. Singular Value Decomposition (SVD), which is minimizing the L2 norm is the most popular technique to perform matrix factorization. However, in most recommendation system data sets, often the users only rate a small amount of items, which creates missing data. As a result SVD fails. In recent years L1 norm has gained much importance and popularity because it is robust to outliers and missing data. In this thesis we use alternate convex optimization to perform L1 norm minimization to solve the matrix factorization problem and apply it to collaborative filtering. We also review some of the major challenges that collaborative filtering faces today and some of the other techniques used. Additionally, this thesis discusses the importance and future of collaborative filtering in medical applications that concerns the database of patient history (prescriptions/symptoms) and how it can be used as a predictive task for the future of the patient

    PERSONALIZED INDEXING OF MUSIC BY EMOTIONS

    Get PDF
    How a person interprets music and what prompts a person to feel certain emotions are two very subjective things. This dissertation presents a method where a system can learn and track a user’s listening habits with the purpose of recommending songs that fit the user’s specific way of interpreting music and emotions. First a literature review is presented which shows an overview of the current state of recommender systems, as well as describing classifiers; then the process of collecting user data is discussed; then the process of training and testing personalized classifiers is described; finally a system combining the personalized classifiers with clustered data into a hierarchy of recommender systems is presented

    Context-Specific Preference Learning of One Dimensional Quantitative Geospatial Attributes Using a Neuro-Fuzzy Approach

    Get PDF
    Change detection is a topic of great importance for modern geospatial information systems. Digital aerial imagery provides an excellent medium to capture geospatial information. Rapidly evolving environments, and the availability of increasing amounts of diverse, multiresolutional imagery bring forward the need for frequent updates of these datasets. Analysis and query of spatial data using potentially outdated data may yield results that are sometimes invalid. Due to measurement errors (systematic, random) and incomplete knowledge of information (uncertainty) it is ambiguous if a change in a spatial dataset has really occurred. Therefore we need to develop reliable, fast, and automated procedures that will effectively report, based on information from a new image, if a change has actually occurred or this change is simply the result of uncertainty. This thesis introduces a novel methodology for change detection in spatial objects using aerial digital imagery. The uncertainty of the extraction is used as a quality estimate in order to determine whether change has occurred. For this goal, we develop a fuzzy-logic system to estimate uncertainty values fiom the results of automated object extraction using active contour models (a.k.a. snakes). The differential snakes change detection algorithm is an extension of traditional snakes that incorporates previous information (i.e., shape of object and uncertainty of extraction) as energy functionals. This process is followed by a procedure in which we examine the improvement of the uncertainty at the absence of change (versioning). Also, we introduce a post-extraction method for improving the object extraction accuracy. In addition to linear objects, in this thesis we extend differential snakes to track deformations of areal objects (e.g., lake flooding, oil spills). From the polygonal description of a spatial object we can track its trajectory and areal changes. Differential snakes can also be used as the basis for similarity indices for areal objects. These indices are based on areal moments that are invariant under general affine transformation. Experimental results of the differential snakes change detection algorithm demonstrate their performance. More specifically, we show that the differential snakes minimize the false positives in change detection and track reliably object deformations

    Web-based strategies in the manufacturing industry

    Get PDF
    The explosive growth of Internet-based architectures is allowing an efficient access to information resources over geographically dispersed areas. This fact is exerting a major influence on current manufacturing practices. Business activities involving customers, partners, employees and suppliers are being rapidly and efficiently integrated through networked information management environments. Therefore, efforts are required to take advantage of distributed infrastructures that can satisfy information integration and collaborative work strategies in corporate environments. In this research, Internet-based distributed solutions focused on the manufacturing industry are proposed. Three different systems have been developed for the tooling sector, specifically for the company Seco Tools UK Ltd (industrial collaborator). They are summarised as follows. SELTOOL is a Web-based open tool selection system involving the analysis of technical criteria to establish appropriate selection of inserts, toolholders and cutting data for turning, threading and grooving operations. It has been oriented to world-wide Seco customers. SELTOOL provides an interactive and crossed-way of searching for tooling parameters, rather than conventional representation schemes provided by catalogues. Mechanisms were developed to filter, convert and migrate data from different formats to the database (SQL-based) used by SELTOOL.TTS (Tool Trials System) is a Web-based system developed by the author and two other researchers to support Seco sales engineers and technical staff, who would perform tooling trials in geographically dispersed machining centres and benefit from sharing data and results generated by these tests. Through TTS tooling engineers (authorised users) can submit and retrieve highly specific technical tooling data for both milling and turning operations. Moreover, it is possible for tooling engineers to avoid the execution of new tool trials knowing the results of trials carried out in physically distant places, when another engineer had previously executed these trials. The system incorporates encrypted security features suitable for restricted use on the World Wide Web. An urgent need exists for tools to make sense of raw data, extracting useful knowledge from increasingly large collections of data now being constructed and made available from networked information environments. This explosive growth in the availability of information is overwhelming the capabilities of traditional information management systems, to provide efficient ways of detecting anomalies and significant patterns in large sets of data. Inexorably, the tooling industry is generating valuable experimental data. It is a potential and unexplored sector regarding the application of knowledge capturing systems. Hence, to address this issue, a knowledge discovery system called DISKOVER was developed. DISKOVER is an integrated Java-application consisting of five data mining modules, able to be operated through the Internet. Kluster and Q-Fast are two of these modules, entirely developed by the author. Fuzzy-K has been developed by the author in collaboration with another research student in the group at Durham. The final two modules (R-Set and MQG) have been developed by another member of the Durham group. To develop Kluster, a complete clustering methodology was proposed. Kluster is a clustering application able to combine the analysis of quantitative as well as categorical data (conceptual clustering) to establish data classification processes. This module incorporates two original contributions. Specifically, consistent indicators to measure the quality of the final classification and application of optimisation methods to the final groups obtained. Kluster provides the possibility, to users, of introducing case-studies to generate cutting parameters for particular Input requirements. Fuzzy-K is an application having the advantages of hierarchical clustering, while applying fuzzy membership functions to support the generation of similarity measures. The implementation of fuzzy membership functions helped to optimise the grouping of categorical data containing missing or imprecise values. As the tooling database is accessed through the Internet, which is a relatively slow access platform, it was decided to rely on faster Information retrieval mechanisms. Q-fast is an SQL-based exploratory data analysis (EDA) application, Implemented for this purpose
    • …
    corecore