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Radiation therapy is a cancer treatment method that employs high-energy radiation beams 

to destroy cancer cells by damaging the ability of these cells to reproduce.  Thoracic and 

abdominal tumors may change their positions during respiration by as much as three 

centimeters during radiation treatment.  The prediction of respiratory motion has become 

an important research area because respiratory motion severely affects precise radiation 

dose delivery. This study describes recent radiotherapy technologies including tools for 

measuring target position during radiotherapy and tracking-based delivery systems.  

In the first part of our study we review three prediction approaches of respiratory motion, 

i.e., model-based methods, model-free heuristic learning algorithms, and hybrid methods.  

In the second part of our work we present a phantom study—prediction of human motion 

with distributed body sensors—using a Polhemus Liberty AC magnetic tracker.  In the 

third part of our work we propose respiratory motion estimation with hybrid 

implementation of extended Kalman filter. The proposed method uses the recurrent 

neural network as the role of the predictor and the extended Kalman filter as the role of 

the corrector.  In the fourth part of our work we further extend our research work to 



 

 xiii

present customized prediction of respiratory motion with clustering from multiple patient 

interactions. For the customized prediction we construct the clustering based on breathing 

patterns of multiple patients using the feature selection metrics that are composed of a 

variety of breathing features. In the fifth part of our work we retrospectively categorize 

breathing data into several classes and propose a new approach to detect irregular 

breathing patterns using neural networks. We have evaluated the proposed new algorithm 

by comparing the prediction overshoot and the tracking estimation value. The 

experimental results of 448 patients’ breathing patterns validated the proposed irregular 

breathing classifier. 
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CHAPTER 1 INTRODUCTION 

 
Rapid developments in radiotherapy systems open a new era for the treatment of thoracic 

and abdominal tumors with accurate dosimetry [1]. For accurate treatment planning and 

target motion acquisition, radiotherapy systems should take into consideration not only 

technical limitations, but also physiological phenomena, especially respiratory motion [1] 

[2]. The delivery system cannot respond instantaneously to target position measurement 

since this measurement itself takes some time. Target prediction method due to respiratory 

motion is proposed as a solution to increase targeting precision before or during radiation 

treatments [1] [3]. The significant merit of predicting respiratory motion is that 

radiotherapy can be delivered more accurately to target locations, reducing the volume of 

healthy tissue receiving a high radiation dose [1]. The objective of this study is to deliver a 

comprehensive review of current prediction methods for respiratory motion and propose a 

new prediction method of respiratory motion.  

Respiratory motion severely affects precise radiation dose delivery because thoracic and 

abdominal tumors may change locations by as much as three centimeters during radiation 

treatment [3] [79] [80]. A number of methods to mitigate the effect of respiratory motion 

are widely used in radiotherapy systems [1]. Respiratory gating methods can deliver 

radiation treatment within a specific part of the patient’s breathing cycle (referred to as 

gate), where radiation is activated only when the respiratory motion is within a predefined 

amplitude or phase level [2] [81]. Breath-hold methods, exemplified by the deep inspiration 

breath hold, have been prominently used for lung cancer radiotherapy, where the therapists 

may turn on the beam only if the target breath-hold level is reached; otherwise, the 

treatment is withheld [1]. 
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Real-time tumor tracking is a more advanced technique to dynamically adjust the 

radiation beam according to the change of tumor motion [1], where variations in tumor 

motion caused by respiratory motion should be minimized with the precise patient 

positioning system [58]. If the acquisition of tumor position and the repositioning of the 

radiation beam are not well synchronized, a large volume of healthy tissue may be 

irradiated unnecessarily and the tumor may be underdosed [20] [21] [89] [90] [91] [92]. 

There exists a finite time delay (or system latency) between measuring and responding to 

real-time measurement [1] [47] [51] [54]. Due to the magnitude of the time delay, for 

real-time tumor tracking, the tumor position should be predicted, so that the radiation 

beams can be adjusted accordingly to the predicted target position during radiation 

treatment [8] [37] [93]. 

The state-of-the-art prediction of respiratory motion has been widely addressed [4] [5] [7] 

[31] [32] [33] [34] [35] [36] [37]. Although there have been many proposed 

methodologies of prediction algorithms for respiratory motion, they lack the overall 

survey or benchmark studies among the methods [44]. The main problem of comparing 

all the studies is involving the complexities from a combination of radiation technologies 

and algorithms, which makes it hard to identify which approach is the best one [4] [5] 

[35] [43] [45]. Thus, in this study, we intend to list all of the relevant items in a 

systematic manner so that the reader can get to know all significant and representative 

approaches [44].    

Research studies on the prediction of respiratory motion were carried out in the areas of 

medical physics or biology to give precise treatments to remove tumor or cancer cells 

without unnecessarily irradiating healthy tissues in intensity-modulated radiation therapy 
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[1] [2] [3] [4] [5] [6] [8] [9] [10] [11] [12] [13] [23] [24] [25] [26] [27] [31] [32] [33] [34] 

[35] [36] [37] [38] [39] [40] [41] [42] [43]. Several IEEE Transactions journals, 

including Transactions on Medical Imaging [14] [15] [16] [17] [100] [101], Biomedical 

Engineering [19] [20] [21] [22] [78], and Nuclear Science [76], have presented a variety 

of prediction and modeling methods based on fiducial markers and computed 

tomography (CT) images. For example, Sarrut et al. showed a strategy and criteria to 

determine the correctness of breathing motion tracking from CT imaging [16]. By 

providing background information, this research will stimulate the interest of readers in 

biomedical applications and encourage collaborative research activities in the biomedical 

and medical physics areas [102].  

The objective of this study is to deliver a comprehensive review of current prediction 

methods of respiratory motion and propose a new method to predict respiratory motion 

with variable breathing features. Before we start to describe the prediction methods, we 

will present basic radiotherapy technologies for the brief understanding of radiotherapy 

and previous prediction methods of respiratory motion in Chapter 2. This study will show 

three prediction methods of respiratory motion, including model-based, model-free, and 

hybrid prediction algorithms in Chapter 2. In the following chapter, we will show a 

phantom study—prediction of human motion with distributed body sensors—using a 

Polhemus Liberty AC magnetic tracker. In Chapter 4, we propose hybrid implementation 

based on EKF (HEKF) for respiratory motion estimate. Here, the recurrent neural 

network (RNN) performs the role of the predictor and the extended Kalman filter (EKF) 

performs the role of the corrector. In Chapter 5, we further extend our research work to 

present customized prediction of respiratory motion with multiple patient interactions 
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using neural network (CNN). For the pre-procedure of prediction for individual patient, 

we construct the clustering based on breathing patterns of multiple patients using the 

feature selection metrics that are composed of a variety of breathing features. In the intra-

procedure, the proposed CNN used neural networks (NN) for a part of the prediction and 

EKF for a part of the correction. In Chapter 6, we retrospectively categorize breathing 

data into several classes and propose a new approach to detect irregular breathing 

patterns using neural networks, where the reconstruction error can be used to build the 

distribution model for each breathing class. The sensitivity, specificity and receiver 

operating characteristic (ROC) curve of the proposed irregular breathing pattern detector 

was analyzed. 
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CHAPTER 2  REVIEW: PREDICTION OF RESPIRATORY MOTION 

 
Radiation therapy is a cancer treatment method that employs high-energy radiation beams 

to destroy cancer cells by damaging the ability of these cells to reproduce [55]. In 

external beam radiotherapy (EBRT), specific parts of the patient’s body are exposed to 

the radiation emanating from a treatment machine [50] [55] [122]. The X-ray beams have 

to penetrate other body tissues to reach the target area during treatment process. This 

leads to unnecessary irradiation of healthy tissues around the tumors. Accordingly, 

prediction of respiratory motion is a very critical issue in EBRT.  Radiation technologies 

can consist of two major approaches: 1) tools for measuring target position during 

radiotherapy [11] [18] [19] [20] [39] [92], where patient-specific treatment parameters 

including acquisition of respiratory patterns, treatment simulation, and target area 

planning are determined for treatment preparation, and 2) tracking-based delivery 

systems [43] [79] [86] [106] [107], where the patient is placed under the linear 

accelerator and radiation is delivered using real-time tracking methods under free 

breathing conditions. 
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2.1 TOOLS FOR MEASURING TARGET POSITION DURING RADIOTHERAPY 

Measuring target position for treatment planning in radiotherapy is heavily dependent on 

image processing and patient-specific interpretation methods for medical data and images 

[7] [14] [15] [16] [17] [70] [71] [72] [73] [76] [78].  There exist several measuring tools 

for the target position.  Once the target is identified, it is easy to track this defined target 

in most imaging modalities [1]. A number of medical imaging, such as radiographs, 

fluoroscopy, computed tomography (CT), magnetic resonance imaging (MRI), and optical 

imaging can provide real-time information in company with outstanding visualization to 

improve the treatment results during beam delivery [73]. It is difficult to detect the target 

directly in images. The fiducial markers are often employed to act as surrogates for optical 

signal tracking. 

2.1.1 RADIOGRAPHS 

Radiographs (referred to as plain X-rays) are photographic images produced by the 

activity of X-ray or nuclear radiation to view a non-uniformed physical object. The rays 

may penetrate the human body through the different density and structure of the object. 

The rays that pass through are recorded behind the object with a detector which can 

display the different density and structure of the body.  Generally, radiographies are 

generated by X-ray beams, whereas in nuclear medicine gamma rays are involved [151]. 

Radiographs are unceasingly used and employed as a major tool to detect and measure 

the target position [54]. 
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2.1.2 FIDUCIAL MARKERS 

Fiducial markers located around the tumor position are often employed to act as 

surrogates for optical signal tracking, to synchronize the internal and external breathing 

motion signals, and to provide real-time information during beam delivery [1] [2] [6] [49] 

[93] [108] [109]. In real-time tumor tracking, multiple implanted fiducial markers are 

detected as surrogate on the images of fluoroscopy systems for accurate tumor location, 

but their use can be limited due to the risk of pneumothorax during marker implantation 

[6, 108-109]. External fiducial markers are also attached on the patient's chest for 

respiratory gated radiotherapy, where they can be used to correlate internal breathing 

motion with external optical signal based on the infrared tracking system [1] [50] [159]. 

 

2.1.3 FLUOROSCOPY 

Fluoroscopy is a method for obtaining real-time moving images of deep body structures 

using fluoroscope [1].  A patient is placed between an X-ray tube and fluorescent screen 

during fluoroscopic procedures.  Modern fluoroscopes are associated with an image 

intensifier and video camera so that they can display a continuous series of images with 

maximum 25-30 images per second [152].  Fluoroscopy is often used not only to watch 

the digestive track but also to track moving organs during therapeutic procedures [49] 

[54] [58]. 

 

2.1.4 COMPUTED TOMOGRAPHY 

Computed Tomography (CT) [11] [34] [38] [73] is a specialized X-ray imaging method 

employing a series of individual small X-ray sensors with computer processing.  Here, 
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medical data come together with multiple angles, and a computer treats this information 

to generate an image (referred to as “cut”).  The vision of body images is similar to the 

vision of a sliced bread loaf. CT images are widely used for diagnostic purposes, 

especially for diagnosing a variety of tumors including lung, pancreas, liver, and other 

thoracic and abdominal tumors, because using CT images can not only validate that 

tumors exist, but they also determine tumor position and size to provide clear images for 

radiation treatment planning [18] [39] [90]. X-ray computed tomography (CT) including 

computed axial tomography (CAT) and cone beam CT (CBCT) uses rotating X-ray 

equipment with a digital computer to produce a clear medical image for all types of 

tissues [117]. 

 

2.1.5 MAGNETIC RESONANCE IMAGING 

Magnetic Resonance Imaging (MRI) is a medical imaging method that uses the property 

of nuclear magnetic resonance, instead of radiative delivery to the patient to visualize the 

internal organs and tissues for diagnosis and therapy planning.  MRI aligns the protons in 

the water atoms within the patient using a strong magnetic field.  Then, a very sensitive radio 

antenna detects the resonance signal of the protons that are activated by the electromagnetic 

pulse of the scanner [151].  In MRI, the picture of body images looks similar to a “cut” in CT. 

MRI provides good contrast between the different soft tissues compared with X-ray CT, so 

that it can create a highly detailed image of the scanned body structures in the soft tissues 

[118]. The integrated and hybrid MRI modalities also proposed to improve the treatment 

outcome [73] [118]. 
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2.1.6 OPTICAL IMAGING 

Optical Imaging is a non-invasive imaging method that takes photographs of biological 

tissues or organs using visible, ultraviolet, and infrared wavelengths for clinical diagnosis 

[153]. Unlike X-ray photons that penetrate the entire biological tissue, optical photons 

interact with biological tissue medium by the property of absorption and elastic scattering 

[154]. Advanced optical imaging modalities have been recently developed, so they can 

provide cost-effective and much higher resolution images than current CT and MRI 

images [153]. Optical imaging system consisting of infrared cameras and external 

markers can also provide accurate position of target tracking during the treatment process 

in real-time [103]. 
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2.2 TRACKING-BASED DELIVERY SYSTEMS 

Conventional radiotherapy systems used linear accelerators with gantry mechanism to 

delivery the radiation beam to the targeting areas [10]. Due to the breathing-induced 

tumor motion, breath-holds and gating methods are used to reduce underdosing of tumor 

parts and overdose to surrounding critical parts [155].  Multileaf collimator (MLC)-based 

and couch-based tracking methods also have been developed for real-time tumor tracking 

under free breathing conditions [42] [43] [49] [86] [142] [155] [156] [157] [158]. 

 

2.2.1 LINEAR ACCELERATOR 
 
Linear Accelerator (Linac) is the medical device to generate the therapeutic beam for 

EBRT treatment [10]. Linacs accelerate electrons by high-voltage electric fields, and then 

let these electrons collide with source target to produce high-energy X-ray beams. Linacs 

may be equipped with specialized blocks or a multileaf collimator (MLC) in the head of 

machine to conform fields to the shape of the patient’s tumor. Finally, the customized 

beam can be delivered by a gantry mechanism (such as robotic arms) to specific parts of 

the patient to destroy the malignant tumors [10] [92]. 

For example, CyberKnife is a well-known image-guided radiosurgery system for Linac 

applications [56]. The two main elements of the system are the linear particle accelerator 

to generate radiation for treatment, and a robotic arm to allow the radiation to be 

delivered at any target area of the body with six degrees of freedom [54]. Advanced 

image guidance technology, e.g., X-ray sources to generate orthogonal X-ray images, is 

used to detect the bony landmarks location, implanted fiducials or soft tissue tumors. IR 
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tracking system synchronized with the tumor motion can reduce safety margins for 

respiratory gating or breath-hold techniques, as shown in Fig. 1 [10] [50] [124]. 

 

 
Figure 1. CyberKnife System.  
X-ray source with low energy is used to detect soft tissue tumors or implanted fiducial markers during the 
treatment. IR tracking system synchronized with the tumor motion can reduce safety margins for 
respiratory gating or breath-hold techniques [10] [56].  
 

The simple treatment process includes planning, repetition of verification and targeting, 

and treatment delivery. In the planning process, X-ray image scanning and advanced 

treatment planning are prepared. In the repetition of verification and targeting process, 

the image-guided radiosurgery system verifies clinical tumor location. If any variation is 

detected in the tumor position, the robotic arm is replaced according to the tumor 

movement based on a frame. In the treatment process, the sophisticated radiation beam 

for radiosurgery is delivered to the tumor [56]. The synchrony respiratory tracking 

system is widely used to continuously synchronize the delivery of radiation beam to the 

motion of the tumor for real-time tumor tracking [32] [33] [36] [84] [85] [86] [124] [136] 

[138]. 
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Table 1. Instrumentations for Radiation Therapy 
Radiotherapy systems Development 

CyberKnife robotic treatment [56]  Accuray, Inc., Sunnyvale, CA 
Varian Real-time Position Management system [57] [75] RPM system, Varian Medical, Palo Alto, CA 
Real-time tumor-tracking system [51] [52] RTRT system, Mitsubishi Electronics Co., Ltd., Tokyo 
Elekta system [41] [42] [43] [77] Elekta Ltd, Stockholm, Sweden 
Siemens Radiation Oncology system [66] [67] Siemens AG, Munich, Germany 

There are many radiation therapy equipments to support prediction of respiratory motion 

with advanced radiotherapy technologies [144]. The outline of all the radiotherapy 

systems is out of scope in this study. Among many radiation therapy systems, some 

radiotherapy equipments are widely used for the management of respiratory motion [1], 

such as CyberKnife robotic treatment device (Accuray, Inc., Sunnyvale, CA) [56] [124], 

Real-time Position Management system (RPM system, Varian Medical, Palo Alto, CA) 

[57] [75], Real-time tumor-tracking system (RTRT, Hokkaido University) [51] [52] [74], 

Elekta system (Elekta Ltd, Stockholm, Sweden) [41] [42] [43] [77], and Siemens 

Radiation Oncology system (Siemens AG, Munich, Germany) [66] [67]. Therefore, we 

describe five main radiotherapy equipments as shown in Table 1.  

 

2.2.2 MULTILEAF COLLIMATOR 

Multileaf collimator (MLC) is a sophisticated system for radiation therapy dose delivery, 

made up of separate leaves that can move independently in and out of a particle beam 

path to form a desired field shape as shown in Fig. 2. The advantage of MLC is that it can 

simply change an individual leaf for the field shape with controlling remote computer and 

save treatment preparation time by eliminating clinician’s entering the treatment room 

[142]. 
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Figure 2. A multileaf collimator (MLC) with a desired field shape. 
MLC is made up of separate leaves that can move independently in and out of a particular beam path to 
form a desired filed shape. 
 
Sawant et al. proposed an integrated system by combining an independent position 

monitoring system and an intensity-modulated radiotherapy (IMRT) delivery system 

based on dynamic MLC (DMLC). In [86], they investigated two important parameters, 

i.e., system latency and geometric accuracy. To reduce the system latency, the tracking 

algorithm used a modified linear adaptive filter with continuous megavoltage X-ray 

images of three implemented transponders at approximately seven frames per second. 

The geometric accuracy was calculated by comparing the aperture center of each image 

frame with the target motion trajectories. MLC-based tracking method may increase the 

treatment accuracy and decrease the treatment time compared to breath-holds and gating 

methods [156] [157]. 

 

2.2.3 ROBOTIC COUCH 

A robotic couch can be used to compensate for breathing-induced tumor motion with 

extra degree of precision for patients in real time [42] [43]. For the couch-based tracking 

method, a robotic couch system consists of stereoscopic infrared cameras and the couch 
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system moves in response to any changes in angle and position of organ motion detected 

by the cameras during treatment delivery [49] [155].  

 

Figure 3. External view of robotic couch with six degree of freedom. 
The couch system consists of top (moving) frame linked with a fixed base frame using independent 
mechanical legs. Here the top platform is defined by six independent position-orientation variables – 
coordinates (x, y, z, α, β, γ) [43]. 

 

Fig. 3 shows HexaPOD robotic couch with six degrees of freedom. The couch system 

consists of top (moving) frame linked with a fixed base frame using independent 

mechanical legs.  Here the top platform is defined by six independent position-orientation 

variables – coordinates (x, y, z, α, β, γ) [43] [158]. The commercially available robotic 

couches can arrange the patient position according to the treatment procedure with highly 

accurate level; however, they lack compensation for the respiratory and cardiac motion 

[42-43]. 
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2.3 PREDICTION ALGORITHMS FOR RESPIRATORY MOTION 

 
A number of prediction methods for respiratory motion have been investigated based on 

surrogate markers and tomography images [12] [14] [18] [31] [32] [33] 34] [37] [46] [47] 

[48] [53]. The previous methods can be categorized into three approaches:  1) model-

based approach [31] [32] [33] [34] [46] [48] which uses a specific  biomechanical or 

mathematical model for respiratory motion functions or models; 2) model-free approach  

[35] [36] [37] [41] [46] heuristic learning algorithms that are trained based on the 

observed respiratory patterns ; 3) hybrid approach [40] [45], which uses united methods 

to combine more than two methods, resulting in outperforming the previous solitary 

method. These three approaches are described in the following Chapters 2.3.1, 2.3.2, and 

2.3.3 respectively.  Fig. 4 shows the key studies, which have more than 30 references in 

the last 10 years, representing the salient algorithms covered. 

Finite element [34]

Year

# of Cited

2004 2005 2006 2007 2008 2009 2010 20110

10

20

30

40

50

60

70

110

Adaptive & Sinusoidal [37]

Linear & Kalman filter
& Artificial NN [46]

Adaptive NN [35-36]

Deformation from orbiting views [14]

ARMA [47-48]

Optical flow deformable [38]

Adaptive tumor 
tracking system [41]

MLC-based [86]

Single-imager
DMLC [85]

Local circular
motion [12]

Hidden Markov [31]

Kernel density [32]

Diaphragm-based [82]

Surrogate-based [83]

Quaternion-based [115]

Support vector regression [33]

Adaptive motion [100]

IMM [45]

Model-based Model-free Hybrid Enhanced

Local regression [87]

Adaptive neuro fuzzy [40]

Adaptive NN [8]

Vector based [126]

Finite state [53]

Patient-specific [18]

Hybrid Extended
Kalman filter [7]

Finite element [34]

Year

# of Cited

2004 2005 2006 2007 2008 2009 2010 20110

10

20

30

40

50

60

70

110

Adaptive & Sinusoidal [37]

Linear & Kalman filter
& Artificial NN [46]

Adaptive NN [35-36]

Deformation from orbiting views [14]

ARMA [47-48]

Optical flow deformable [38]

Adaptive tumor 
tracking system [41]

MLC-based [86]

Single-imager
DMLC [85]

Local circular
motion [12]

Hidden Markov [31]

Kernel density [32]

Diaphragm-based [82]

Surrogate-based [83]

Quaternion-based [115]

Support vector regression [33]

Adaptive motion [100]

IMM [45]

Model-based Model-free Hybrid EnhancedModel-based Model-free Hybrid EnhancedModel-based Model-free Hybrid Enhanced

Local regression [87]

Adaptive neuro fuzzy [40]

Adaptive NN [8]

Vector based [126]

Finite state [53]

Patient-specific [18]

Hybrid Extended
Kalman filter [7]

 
Figure 4. Variable prediction algorithms for respiratory motion. 
This figure shows the key studies, which have more than 30 references in the last 10 years, representing to 
the salient algorithms covered. 
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2.3.1 MODEL-BASED PREDICTION ALGORITHMS 

Generally, model-based methods include 1) linear prediction [31] [37] [44] [46], 2) 

Kalman filter [4] [12] [31] [44] [45] [46] [128], 3) sinusoidal Model [37] [44], 4) finite 

state model [31] [44] [53], 5) autoregressive moving average model [44] [47] [48], 6) 

support vector machine [20] [33] [44] [137] [138] [139] [140], and 7) hidden Markov 

model [31] [53].  Especially, linear approaches and Kalman filters are widely used for the 

fundamental prediction approach of respiratory motion among a variety of investigated 

methods [14] [18] [31] [32] [33] [34] [37] [38] [46] [47] [48] [53] [82] [83] [87] [115] 

[126]. 

1) Linear Prediction 

A linear prediction is a mathematical system operation where future output values are 

estimated as a linear function of previous values and predictor coefficients, as follows 

[44] [46]: 

∑
=
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i
in itxantxatxaatx
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where x̂ (t) is  the predicted value or position at time t. 

 
Figure 5. Linear predictor with tapped-delay line. 
The predicted value is a linear combination of previous observations x(t-n) and predictor coefficients an that 
are not changing over time. 

 x(t) 

 z-1 

 

 

z-1 

z-1 

 

 

 

 

Σ a0 

a1 

a2 

an 

)(ˆ tx



 

 17

 
The predicted value is a linear combination of previous observations x(t−n) and predictor 

coefficients an that are not changing over time, as shown in Fig. 5. In a linear prediction, 

it is a significant task to solve a linear equation to find out the coefficients an that can 

minimize the mean squared error between the predicted values and previous values [46]. 

The linear model is widely used in the early stage to compare the prediction performance 

with other models, e.g. neural network prediction and Kalman filtering [31] [46]. Sharp et 

al. revealed that the root mean squared error (RMSE) for the prediction accuracy is 

around 2.2mm with 200ms latency [46].  The limitation of this model is that it is not 

robust to some changes from one linear state to another [31]. This model can be enhanced 

into nonlinear (sinusoidal) and adaptive models as shown in Fig. 4 [37]. 

2) Kalman Filter 

The Kalman filter (KF) is one of the most commonly used prediction methods in real-

time filtering technologies [4] [12] [31] [44] [45] [46]. KF provides a recursive solution 

to minimize mean square error within the class of linear estimators, where linear process 

and measurement equations to predict a tumor motion can be expressed as follows [128]: 

VtxHtzWtButFxtx +=+−+−= )(ˆ)(,)1()1()(ˆ ,    (2) 

where we denote the state transition matrix as F, the control-input matrix as B, and the 

measurement matrix as H. u(t) is an n-dimensional known vector, and z(t) is a 

measurement vector. The random variables W and V represent the process and 

measurement noise with the property of the zero-mean white Gaussian noise with 

covariance, E[W(t)W(t)T] = R(t) and E[V(t)V(t)T] = Q(t), respectively. The matrices F, B, 

W, H, and V are assumed known and possibly time-varying. 



 

 18

 
Figure 6. Roles of the variables in the Kalman filter. 
 u(t) is an n-dimensional known vector, and z(t) is a measurement vector. The next state is calculated based 
on the dynamic equation, such as x(t+1)=Fx(t) + Bu(t) + V. Here, V and W are process noise and 
measurement noise with covariance R and Q. 

 
In KF, the predicted position x̂ (t) can be derived from the previous state x(t-1) and the 

current measurement z(t) [44] [128]. Sharp et al. showed that RMSE for the prediction 

accuracy is around 2.5mm with 200ms latency [46]. Because of state update process with 

new data, KF is effective for linear dynamic systems, but prediction accuracy is degraded 

when breathing patterns change from one linear state to another [31]. KF was enhanced 

to interactive multiple model (IMM) filter with constant velocity (CV) and constant 

acceleration (CA) based on KF by Putra et al. in Fig. 4 [4] [45]. Hong et al. also 

suggested the first-order extended Kalman filter (EKF) can be used to process and update 

the state estimate [12]. 

3) Sinusoidal Model 

Regular respiratory motion shows a continuous sinusoidal pattern with respect to the time 

sequence. This sinusoidal curve can be adjusted to respiratory motion over signal history 

length (SHL). We show Fig. 7 to clarify the ideas of SHL, response time (Δ), and 

prediction error for a single point of respiratory motion trace. Let x(t) denote the actual 

respiratory motion curve at time t after SHL. Vedam et al. represented a sinusoidal wave 

model to estimate the predicted position for a given response time (Δ), as follows [37]: 
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[ ])()()()( txtxtxtx SHLSHLactpred −Δ++=Δ+ ,     (3) 

 

where xSHL(t) is a fitted sinusoidal curve including SHL, given by xSHL(t)=Asin(Bt+C)+D 

with time sequences from t-SHL to t (t>SHL, and A, B, C, and D are the parameters of 

sinusoidal waveform model) [37]. 

 
Figure 7. Explanation of signal history length (SHL) 
Explanation of SHL, response time (Δ) and prediction error with respect to the current data point. Let x(t) 
denote the actual respiratory motion curve at time t after SHL. The predicted position xpred(t+Δ) can be 
calculated based on the sinusoidal curve fit model over SHL. 

 

Vedam et al. evaluated that the prediction error with 200ms latency is less than 2mm. 

This model also has a limitation with 1-dimensional prediction and the prediction 

accuracy degrades with long latency [37] [44]. 
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The breathing motion can be analyzed based on its natural understanding of breathing 

states [53]. In finite state model (FSM), a regular respiratory motion is subdivided into 

three states − exhale (EX), end-to-exhale (EOE), and inhale (IN), as shown in Fig. 8 [44] 

[53]. The other motions are categorized as irregular breathing (IRR) except the above 

three states in this approach. Wu et al. represented the finite state automation for the 

transition from one state to another [53]. Line segments for finite states in Fig. 8 are 

determined by the velocity of tumor motion and the average amplitude for two connected 

directed line segments. Let X(t) = {x0, x1,..., xn} as an n-dimensional vector point at time t. 

The length of a directed line segment from X(t0) to X(t1) is expressed as follows: 

∑ =
−=

n

i ii xxXX
1

2
0110 )(|||| .        (4) 

The velocity of tumor motion is calculated with two vector points (X(t0) and X(t1)), as 

follows: 

10
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=→ .         (5) 

 This method provides not only a statistically quantitative analysis of motion 

characteristics, but also good prediction results, i.e., average RMS error less than 1mm. 

However, the study on FSM is restricted to a one dimension model. This method was 

enhanced into a three dimension version with hidden Markov model by Kalet et al. [31]. 
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Figure 8. Finite state model with regular breathing cycles. 
The breathing motion patterns are modeled with irregular (IRR), exhale (EX), end-to-exhale (EOE), and 
inhale (IN) breathing states [53]. State transitions are initiated by the velocity of tumor motion with two 
vector points X(t0) and X(t1). 
 
 

5) Autoregressive moving average model 

Autoregressive moving average (ARMA) model is a  mathematical generalization of the 

linear model with time series data and signal noise, and widely used to predict motion 

patterns of a time series from past values [44] [47] [48]. ARMA consists of two models: 

1) an autoregressive (AR) model represented by a weighted sum of the present and past 

positions with a polynomial order p, i.e., ϕ1x(t−1) +⋅⋅⋅+ ϕpx(t−p), and 2) a moving average 

(MA) model represented by a weighted sum of the present and past signal noise with a 

polynomial order q, i.e., θ1ε(t−1) +⋅⋅⋅+θqε(t−q) [44] [47]. The mathematical notation 

ARMA (p, q) with polynomial orders of p AR and q MA is expressed as follows [48]: 
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where we define ϕi as the parameter of the AR model, and θi as the parameter of MA 

model, respectively. The error terms ε(t) are the white noise assuming to be independent 

and identically distributed random variables. The order of ARMA model was built on the 

combination of p and q with maximizing the Akaike information criterion. There is no 
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limitation with sampling data and processing time to select the orders p and q. However, 

McCall et al. demonstrated that up to ARMA (4, 4) models were preferred and the 

ARMA (2, 1) models achieved the optimized mean prediction errors over all the latency 

investigated [48].  Ren et al. also showed that the standard deviation of the position is 

below 2.6mm with prediction in contrast with 4.6mm without prediction [47]. 

6) Support Vector Machine 

Support vector machines (SVMs) are supervised learning methods that are widely used 

for classification and regression analysis [33] [137] [138] [139] [140]. For medicine 

applications, they have been used to predict lung radiation-induced pneumonitis from 

patient variables and compute the future location of tumors from patient geometry and 

clinical variables [20] [44] [140].  Let define G(x) as an unknown function (truth) with d-

dimensional input vector x,= [x1,...,xd] , F(x, ŵ) as a function with estimation ŵ derived 

from minimizing a measurement error between G(x) and F(x, ŵ). Using N training 

samples vi, i = 1,..., N,  the primal objective function with a loss function L(⋅) can be 

expressed, as follows [139]: 

 2

1

ˆ)]ˆ,([ wwvFyLC
N

i
ii +−∑

=

,        (7) 

where, C is a control value to adjust a balance, yj is the observation of G(x) in the 

presence of noise. The function L(⋅) is a general loss function with user defined threshold 

ε, as shown in Fig. 9, i.e., if the observation is within the threshold (|yi-F(xi, ŵ)|<ε), the 

loss is zero; otherwise, the loss is the amount of the difference between the predicted 

value and the threshold ε, such as (|yi-F(xi, ŵ)|−ε) [137] [139]. Based on the loss function 

and the threshold, the objective function (7) is calculated by solving the optimization 

problem as follows: 
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Figure 9. Parameters for Support vector regression. 
 Let define ε as a user defined threshold, and vi (i=1,..., N) as N training samples. The loss function is 
defined using the threshold ε, such as if the observation is within the threshold, the loss is zero; otherwise, 
the loss is the amount of the difference between the predicted value and the threshold (|yi-F(vi, ŵ)|−ε). 

 

)(
2
1min

11

* wwC t
N

i
i

N

i
iw

+⎟
⎠

⎞
⎜
⎝

⎛
+ ∑∑

==

ξξ ,        (8) 

where ξi and ξi
* are slack variables as shown in Fig. 9.  A control value C is used to 

adjust the balance between the error term and the weight concentration [139]. This 

optimization problem can be resolved by the Lagrangian relaxation using Lagrangian 

multipliers [137] [139]. 

 Riaz et al. implemented an SVM regression model to predict the future location of the 

tumor, and showed that the prediction performance of RMSE was less than 2mm at 

1000ms latency [33]. However, the prediction error using machine learning increased 

monotonically with fewer data points in the training samples. In addition, initial model 

parameters at the beginning of a treatment required to be adjusted due to the pattern 

change of a patient respiration [33] [138]. That resulted in the high computational 

complexity and the slow response time of prediction [137]. 
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7) Hidden Markov model 

A hidden Markov model (HMM) is a statistical probability model with invisible state 

transition, where states are not directly visible, but a particular state can generate one of 

observations based on observation probabilities [31]. In [31], state distributions of the 

finite state model (FSM) − irregular (IRR), exhale (EX), end-to-exhale (EOE), and inhale 

(IN) in three dimension [53] − are used to create HMM with transition state matrix (A) 

and current state probability (B) based on the fractional time of a particular breathing 

cycle. Each state is determined by the previous state, and is distinguished with velocity 

(vi). We denote aij as the transition state probability from the present state i to the next 

state j, such that Σjaij=1, bi as the current state probability to be calculated based on the 

time percent in a particular breathing cycle, such that Σibi(t)=1, as shown in Fig. 10 [31]. 

The transition probability in Fig. 10 assumes that there is no possibility of physical 

movement from EOE state to EX state, or from IN state to EOE state, and so on. To 

eliminate these transition elements, the transition state matrix can be expressed by 

replacing those values with zero, as follows: 

 
Figure 10. Probabilistic predictive model based on Hidden Markov model. 
The transition state probability aij from the present state i to the next state j summarized to unity, such that 
Σjaij=1. The current state probability is calculated based on the time percent in a particular breathing cycle, 
such that Σibi(t)=1. 
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 To predict motion with HMM, the future position of an observation is calculated using 

the velocity parameter (vi) based on FSM, 

∑+−=
l

lvtxtx τ)1()(ˆ ,        (10) 

where variable τ  (= 1/RT) consists of the sampling rate (R) and the estimated cycle 

period (T), and l represents the dimension. Kalet et al. showed that the RMSEs of ideal 

HMM and linear prediction are 1.88mm and 2.27mm with 200ms latency. The limitation 

of this model is that the implemented algorithm is based on stochastic process so that the 

prediction results can be different even with the same data [31]. We summarized the 

prediction accuracy and a representative feature for each method of the model-based 

approach, as shown in Table 2. 
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Table 2. Model-based Prediction Algorithms of Respiratory Motion 
Methods Prediction error and  Evaluation metrics Features (System) 

Linear Predictor [46] Around 2.2mm with 200ms latency, RMSE RMSE at 10 Hz  (RTRT) 
Kalman filter [46] Around 2.5mm with 200ms latency, RMSE RMSE at 10 Hz (RTRT) 

Sinusoidal Model [37] Less than 2mm with 200ms latency, 
Standard deviation 

1- Dimensional 
prediction (RPM) 

Finite state model [53] Less than 1.5mm, RMSE Three line segments 
(EX-EOE-IN) (RTRT) 

Vector model based 
on tidal volume and airflow [126] 0.28−1.17mm Standard deviation 

(Digital spirometer) 
Patient-specific 

 model using PCA [18] 
Around 2−3mm 
Standard deviation 

Respiration- 
correlated CT (RPM) 

Autoregressive 
moving average  model [47, 48] 

0.8mm with 200ms latency, 
Standard deviation 

Image rate: 1.25-10 Hz 
(RTRT, RPM) 

Deformation from orbiting views [14] 2.5mm (LR),  1.7mm(SI) 
Standard Deviation Cone-beam CT 

Local regression method [87] 2.5mm Local weighted regression, 
RMSE (RPM) 

Optical flow deformable algorithm 
[38] 1.9mm Standard deviation 

(Philips CT scanner) 

Finite element method [34] 3mm (end expiration − end inspiration), 
2mm (end expiration – midrespiration) 

Patient-specific Models 
(Philips CT Scanner) 

Surrogate-based Method [83] 2.2−2.4mm(carina),  
3.7−3.9mm(diaphragm) Standard Deviation (RPM) 

Diaphragm-based Method [82] 2.1mm Standard Deviation (RPM) 
Support vector Regression 

Method [33] Less than 2mm at 1000ms latency, RMSE 30 Hz sample frequency 
(CyberKnife) 

Quaternion-based method [115] 2.5 (Standard Deviation) Phantom Matching Error  
(PME) 

Hidden Markov Model [31] 1.88ms at 200ms latency, RMSE Various latency: 
33 ms ~ 1000 ms (RTRT) 

Kernel density estimation-based [32] 1.08mm at 160ms, 2.01mm at 570ms, 
RMSE 

Multidimensional 
Prediction (CyberKnife) 

Local circular motion model [12] Less than 0.2 (nRMSE) at 200ms 
Normalized RMSE 

First-order EKF, 
5, 10, 15, 20 Hz (RPM) 

 

2.3.2 MODEL-FREE PREDICTION ALGORITHMS 

Model-free heuristic learning algorithms, exemplified by linear adaptive filters and neural 

networks variables, can be used for the respiratory prediction for compensating for the 

impaired breathing signal with a variety of breathing patterns [8] [35] [36] [37]. These 

heuristic learning algorithms can adjust their coefficients/weights or configurations to 
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reproduce newly arrived breathing signals without a priori models of signal history [8]. In 

this Chapter, we will explain two representative learning algorithms and adaptive systems 

for tumor prediction including 1) adaptive filters [3] [8] [35] [36] [37] [129], and 2) 

artificial neural network [8] [35] [36] [44] [46]. 

1) Adaptive Filters 
 
An adaptive filter is a self-adaptive system that can adjust its coefficient values over time 

according to an optimization process incurred by an error signal, such as least mean 

squares (LMS) and recursive least squares (RLS) algorithms [130]. The adaptive filter 

depicted in Fig. 11 shows the basic adaptive filtering process for prediction. 

 
Figure 11. Basic adaptive filtering process for prediction. 
 The predicted position is calculated using the combination of previous respiratory motion x(t-i) multiplied 
by its coefficient values wi(t). Here the coefficient values are time-variable according to an optimization 
process incurred by an error signal e(t). 
 

The predicted position x̂ (t) can be expressed by a vector of previous respiratory motion 

x(t−i) and a vector of filter coefficients wi(t), as follows: 

∑
=

−=
n

i
i itxtwtx

1
)()()(ˆ ,        (11) 

where filter coefficients change over time. Adaptive filters were widely used to predict 

the tumor motion [8] [35] [36] [37] [129]. Vedam et al. proved that adaptive filter models 

have the prediction accuracy with less than 2mm and outperform sinusoidal models [37]. 

Although the adaptive filter has a limitation with 1-dimensional prediction, it is extended 
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into multi-dimensional adaptive filer [33]. Adaptive models can also be adjusted to 

update the weights of neural networks to improve the prediction accuracy [3] [35] [36]. 

2) Artificial Neural Network 
 
An artificial neural network (ANN), commonly called neural network (NN), is a 

mathematical or computational function technique that is inspired by the biological 

neuron process [46]. A neural network consists of input, hidden, and output layers 

interconnected with directed weights (w), where we denote wij as the input-to-hidden 

layer weights at the hidden neuron j and wjk as the hidden-to-output layer weights at the 

output neuron k, as shown in Fig. 12 [44] [46]. 

 

 
Figure 12. An artificial neural network with bias input and one hidden layer. 
 The network consists of input, hidden, and output layers interconnected with directed weights (w), where 
we denote wij as the input-to-hidden layer weights at the hidden neuron j and wjk as the hidden-to-output 
layer weights at the output neuron k. 
 
 
In Fig. 12, the input layer is a sequence history of breathing motions (ni) with 3-

dimensional positions. In the hidden layer, the intermediate value (yj) is calculated with 

the history of breathing motions (3ni) and bias unit using the nonlinear activation function, 

as follows [46]: 
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where we denote xi as input values, and yi as hidden values, respectively. The additional 

input unit (bias) is used to bias the linear portion of the computation. The practical 

prediction of respiratory motion is calculated with hidden values in the output neuron (zk), 

as follows: 

∑
=

=
hn

j
jjkk ywz

1
,         (13) 

where output values zk denote predictions of breathing motions, and neural weights (wij 

and wjk) in the network are generally resolved by numeric optimization. Sharp et al. 

showed that the RMSE of NN predictor is less than 2 mm with low latency (33 ms) [46].  

But they only considered the form of stationary prediction. 

For the adaptive filter training, Isaksson et al. used a feed-forward neural network with 

two input neurons and one output neuron using the least mean square scheme [8]. Here, 

the external markers were used as surrogates to predict the tumor motion. This two-layer 

feed-forward neural network was used for predicting irregular breathing pattern by 

Murphy et al. as well [35] [36] [44]. The network was trained by a signal history from the 

beginning of the patient data record using back-propagation algorithm, and kept updating 

the network weights with new test data samples to adjust newly arrived breathing signals 

[35] [36]. This adaptive filter showed much better prediction error than stationary filter, 

e.g., RMSE of 0.5−0.7mm for the most predictable cases and of 1.4−1.7mm for the 

hardest cases with 200ms latency [36]. 

We summarized the prediction accuracy and a representative feature for each method of 

the model-free approach, as shown in Table 3. 
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Table 3. Model-free Prediction Algorithms of Respiratory Motion 
Methods Prediction error and Evaluation metrics Features (System) 

Adaptive filter [37] Less than 2mm with 200ms latency, Standard deviation  1-Dimensional 
prediction (RPM) 

Artificial neural 
Networks [46] 

Around 2.5mm with 200ms latency, RMSE RMSE at 10 Hz (RTRT)

Adaptive neural 
network [8] [35] [36] 

1.4–1.7mm with 200ms latency, Normalized RMSE 
30 Hz sample 

Frequency (CyberKnife)

 

2.3.3 HYBRID PREDICTION ALGORITHMS 

Hybrid prediction algorithms used united methods to combine more than two methods or 

approaches to obtain outstanding results, compared to a previous solitary method. This 

method includes 1) adaptive neuro-fuzzy interference system (ANFIS) [40] [143], 2) 

hybrid model with adaptive filter and nonlinear model (Adaptive Tumor Tracking 

System) [41] [141], and 3) interacting multiple model (IMM) filter [4] [12] [45]. 

1) Adaptive Neuro-Fuzzy Inference System 

A adaptive neuro-fuzzy inference system (ANFIS) is a hybrid intelligent system with 

combining both learning capabilities of a neural network and fuzzy logic reasoning, to 

find a specific model in association with input breathing motion and target prediction. 

The proposed neuro-fuzzy model ANFIS in [40] is a multilayer neural network-based 

fuzzy system in combination with two layers of adaptive nodes (layer 1 and 4) and three 

layers of fixed nodes (layer 2, 3, and 5), as shown in Fig, 9 [40]. 
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Figure 13. Adaptive Neuro Fuzzy Inference System with the total five layers.  
Based on the incoming elements (x and y), this system is composed with two layers of adaptive nodes 
(layers 1 and 4) and three layers of fixed nodes (layers 2, 3, and 5). The layer 1 is characterized by a 
membership function μ(⋅) that assigns each incoming element to a value between 0 and 1. Layer 4 is trained 
by a least squares method. 

 

The first layer is distinguished by a fuzzy set (A1, A2, B1, B2) that is expressed by a 

membership function to assign each incoming element to a membership value between 0 

and 1, as the following equation: 
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where I (x and y) are incoming elements, and three parameters (ai, bi, ci) (referred to as 

premise parameters) are continuously updated by training samples using a gradient 

descent method [40] [143]. Each node in the second layer is a fixed node, characterized 

by the product (Π) of all the incoming signals, such as wi = μAi(x)⋅μBi(y), i = 1, 2. Each 

node in the third layer is a fixed node, characterized by the normalized ratio (N), such as 

ŵi = wi/(w1+w2), i = 1, 2. Each node in the fourth layer is an adaptive node with a node 

function, such as ŵifi = (pix + qiy + ri), i = 1, 2, where the parameter set (pi, qi, ri) (referred 

to as consequent parameters) are trained by a least squares method. The single node in the 

last layer calculates the overall output by aggregating all incoming signals, such as f = Σi 
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ŵifi, i = 1, 2. Kakar et al. validated that the prediction accuracy (RMSE) of respiratory 

motion for breast cancer patients was 0.628mm with coached breathing and 1.798mm 

with free breathing. This method required simpler and fewer remodeling decorations to 

implement its nonlinear ability in comparison to neural networks. However, for other 

conditions, exemplified by lung patients and respiration monitoring using spirometry or 

abdominal straps, it should associate the breathing signal with the target motion [40]. 

2) Hybrid Model with Adaptive Filter and Nonlinear Model 

To compensate breathing tumor motion in the lung, an adaptive tumor-tracking system 

(ATTS) was proposed by Ma et al. with an adaptive filter and a nonlinear method [141]. 

Instead of only one signal, this adaptive system used two independent signals to detect 

the lung tumor motion during irradiation: 1) direct signal, i.e., imaging of irradiated 

region using megavoltage imaging of the treatment beam [147], and 2) indirect signal, i.e., 

optical marker with an infrared camera, as shown in Fig. 14 [41] [141]. The tumor 

position is directly visualized and located by the acquired portal image (direct signal) 

using a tumor tracking algorithm without internal fiducial markers [147]. Infrared camera 

signals (indirect signal) are used to predict respiratory signals using the adaptive filter, 

and these respiratory signals are correlated with the portal image to predict the tumor 

motion. A nonlinear dynamic system is reconstructed by the system history based on the 

previous measurement [141]. 
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Figure 14. Adaptive tumor tracking system with two independent signals. 
 The tumor position is directly visualized and located by the acquired portal image (direct signal) using a 
tumor tracking algorithm without internal fiducial markers [41] [147]. Infrared camera signals (indirect 
signal) are used to predict respiratory signals using the adaptive filter, and these respiratory signals are 
correlated with the portal image to predict the tumor motion [141]. 

 

The adaptive filter continuously updated the coefficient parameters using least mean 

square method to predict the respiratory motion, as follows: 

)()()( tuqBty = ,         (15) 

where y(t) is prediction of the respiratory motion, B(q) is a linear model including the 

delay operator q with B(q)=b0q0+b1q-1+⋅⋅⋅+bn-1q-n+1, and u(t) is the history information 

including the past n samples of the infrared camera. In addition, ATTS modeled the 

correlation between two signals using means of nonlinear methods to determine the 

tumor position. That means dynamic nonlinear system examines the current indirect 

signal in the past samples using x(and y)-coordinate motion range (mm), maximum 

velocity of x(and y)-coordinate (mm/s), and mean cycle period (s) and then the best-

fitting direct signals were adapted to predict the tumor motion [41]. Wilbert et al. showed 

that the maximum standard deviation was 0.8mm for x-coordinate and 1.0mm for y-

coordinate. However, there are limits in velocity range between 8.5mm/s (y(and z)-
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coordinate) and 9.5mm/s (x-coordinate), so that the amplitude acquired below these limits 

will not lead to efficient prediction with such a linear model [41]. 

3) Interacting Multiple Model Filter 

An interacting multiple model (IMM) filter can be used as a suboptimal hybrid filter for 

respiratory motion prediction to combine different filter models with improved control of 

filter divergence [4] [12] [45]. It makes the overall filter recursive by modifying the 

initial state vector and covariance of each filter through a probability weighted mixing of 

all the model states and probabilities, as shown in Fig. 15. [4] [45]. 

 
Figure 15. An interactive multiple model for respiratory motion prediction.  
In the interaction step, model and mixing probabilities are initialized and updated. In the filtering step, the 
mixed filtering prediction (xi) of target position and the associated covariance (Pi) are updated within each 
model. In the combination step, the actual prediction of target position is computed for output purposes 
with the mixing probability. 
 

Fig. 15 shows a recursive filter of IMM with a constant velocity (CV) model and a 

constant acceleration (CA) model, where three steps − interaction, filtering, and 

combination − are repeated by each time instant t. In the interaction step, model 

probability (μj(t)) and mixing probability (μi|j(t)) are initialized and updated based on a 

2×2 Markovian transition matrix (Π) with its component πij that represents the transition 
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probability from model i to model j, satisfied with Σjπij = 1 for i = 1, 2, as follows [4] 

[45]: 

)(/)1()(,)1()( |
2

1
ttttt jiijjii iijj μμπμμπμ −=−= ∑ =

,     (16) 

where we denote μj(t) as the predicted probability for model j at time step t, and μi|j(t) as 

the weight for the conditional transition probability from model i for the previous time 

step t−1 to model j for the current time step t. In the filtering step, the mixed filtering 

prediction of target position ( x̂ j(t)) and the associated covariance (Pj(t)) are updated with 

Kalman gain, likelihood update (Λj) and model probability (μj(t)), shown in Fig. 15 [45]. 

In combination step, the actual prediction of target position, i.e., combination of estimates 

and covariance, is computed for output purposes with the mixing probability, such as 

estimation x̂ (t+1) = Σj x̂ j(t+1)μj(t), and covariance P(t+1) = Σj{Pj(t)+[ x̂ j(t)− x̂ (t)][ x̂ j(t)− 

x̂ (t)]T}μj(t) [4]. 

Putra et al. showed that the prediction of IMM filter was better than the prediction of the 

Kalman filters with CV and CA model, and that the errors of the IMM filter were less 

than 0.98mm with 200ms latency [45]. The limitation of this method is that the above 

hybrid method was proposed for dynamic iteration in one dimensional prediction, so that 

independent parallel filters should be implemented for 3-dimensional motions [4]. 

Furthermore, IMM method was investigated to compare with a prediction method based 

on the first-order extended Kalman filter by Hong et al. [12]. Breathing variation, such as 

deep or fast breathing, results in a relatively low accuracy of breathing motion prediction.  

King et al. showed that a multiple sub-model method based on breathing amplitude can 

provide an adaptive motion model with adjusting basic sub-models [100]. They validated 
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that the combined models with multiple sub-models can show the prediction errors of 

1.0–2.8mm. 

4) Hybrid Extended Kalman Filter (HEKF) 

Kalman filters are widely used for training nonlinear function of the state estimation and 

prediction for desired input-output mappings [4] [12] [45]. Kalman filter can also be used 

for supervised training framework of recurrent neural networks using nonlinear 

sequential state estimators. The prediction and correction property is an intrinsic property 

of Kalman filter. In Hybrid Extended Kalman filter (HEKF), recurrent neural network 

(RNN) performs a role of the predictor with network nonlinear function including input 

vector (u), recurrent network activities (v), and adaptive weight state vectors (w), whereas 

EKF performs a role of the corrector with innovation process in a recursive manner, as 

shown in Fig. 16 [145] [146]. 

 
Figure 16. Closed-loop feedback system incorporating EKF for RNN.  
RNN performs a role of the predictor with network nonlinear function, whereas EKF performs a role of the 
corrector with innovation process in a recursive manner in this system. 
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The recurrent network is expressed by the network nonlinearity function b(⋅,⋅,⋅) with input 

vectors u(t), the internal state of the recurrent network activities v(t), and the weight state 

vector ŵ(t|t−1). The innovation process α(t) of EKF is expressed as follows: 

  ))(),(),1|(ˆ()()( tutvttwbtdt −−=α ,      (17) 

where b(⋅,⋅,⋅) is the network nonlinear function of vector-value measurement. The weight 

state vector is updated with the Kalman gain G(t) and the innovation process [146]. 

Puskorius et al. proposed a Decoupled EKF (DEKF) as a practical solution for the 

computational resource management of covariance value with EKF for RNN [145]. Suk 

et al. applied DEKF to the prediction of respiratory motion. They evaluated that the 

prediction accuracy of the proposed HEKF and DEKF were less than 0.15 and 0.18 

(nRMSE) with 200ms latency, respectively. They also validated that HEKF can improve 

the average prediction overshoot more than 60%, compared with DEKF. This method 

comprehensively organized the multiple breathing signals with adapting the coupling 

technique to compensate the computational accuracy, whereas the computational 

requirements were increased to improve the prediction accuracy [7]. We summarized the 

prediction accuracy and a representative feature for each method of the hybrid approach, 

as shown in Table 4. 

 
Table 4. Hybrid Prediction Algorithms of Respiratory Motion 

Methods Prediction error and  Evaluation metrics Features (System) 

Adaptive neuro-fuzzy  
inference system [40] 

0.628mm (coached), 1.798mm (non-coached), RMSE 
25 Hz sample 

Frequency (RPM) 

Adaptive tumor tracking 
system [41] 

0.8mm (x-max), 1.0mm (y-max), Standard deviation 
Megavoltage imaging 
with infrared system 

(ELEKTA) 

Interacting multiple  0.98mm with 200ms latency for 5Hz, RMSE Kalman CV and CA, 
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model filter [45] Markovian transition 
(RPM) 

Adaptive Motion Model 
[100] 1.0–2.8mm Standard deviation 

Hybrid extended 
Kalman filter [7]  

Less than 0.15 with 200ms latency, Normalized RMSE 
26 Hz sample frequency

(CyberKnife) 
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2.4 OPEN QUESTIONS FOR PREDICTION OF RESPIRATORY MOTION 

Variable open questions on the prediction of respiratory motion are still remained to be 

solved in a foreseeable future. In this Chapter, we will point out general open questions 

for the advanced radiotherapy technology, but open issues are not limited to the following 

issues described in this study. 

 

2.4.1 CHANGES OF RESPIRATORY PATTERNS 

The respiratory patterns identified in the treatment preparation may be changed before or 

during the treatment delivery. A real-time tracking method may compensate for changes 

of respiratory pattern during treatment delivery, but this method can be interrupted by 

other parameters, e.g., cardiac and gastrointestinal motion, baseline shifts, tumor 

deformation, highly fluctuating amplitudes of respiratory motion, and so on [1]. 

Therefore, it requires clinical solutions to adjust or construct changes of respiratory 

patterns. 

 

2.4.2 TUMOR DEFORMATION AND TARGET DOSIMETRY 

Lung deformation derived from respiration may change tumor shapes, or a tumor may 

change its own shape by itself [150]. Some studies investigated that irregular breathing 

patterns required more extended clinical target volume compared with regular breathing 

patterns [3]. Sophisticated target dosimetry based on tumor deformation also should be 

considered for the optimized treatment delivery. 
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2.4.3 IRREGULAR PATTERN DETECTION 

A real-time tumor-tracking method, where the prediction of irregularities really becomes 

relevant [35], has yet to be clinically established. In the thoracic radiotherapy, other 

parameters including cardiac and gastrointestinal motion can affect the prediction of 

respiratory patterns. Respiratory patterns of some patients may have dramatically 

irregular motions of peaks and valleys position, compared with others [148]. It requires a 

new strategy or standard for irregular breathing classification depending on a degree of 

breathing irregularity for each patient. Irregular pattern detection may be used to adjust a 

margin value, e.g., the patients assigned with regular patterns would be dealt with tight 

margins to prevent health tissues from irradiating by high-dose treatment. For the patients 

assigned with irregular patterns, safety margins should be determined by patient-specific 

irregularity to compensate for the baseline shifts or highly fluctuating amplitudes that are 

not covered by standard safety margins [3] [149]. 
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2.5 SUMMARY 

 
In this Chapter, we have showed current radiotherapy technologies including tools for 

measuring target position during radiotherapy and tracking-based delivery systems 

including Linacs, MLC, and robotic couch. We have also explained three prediction 

approaches including model-based, model-free, and hybrid prediction algorithms.  In the 

previous Chapter, we have described some questions that still remain to be solved in the 

future, exemplified by changes of respiratory patterns, tumor deformation target 

dosimetry, and irregular pattern detection. Open questions are not limited to the issues 

described in the study. 
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CHAPTER 3 PHANTOM: PREDICTION OF HUMAN MOTION WITH DISTRIBUTED BODY 

SENSORS 

Tracking human motion with distributed body sensors has the potential to promote a 

large number of applications such as health care, medical monitoring, and sports 

medicine. In distributed sensory systems, the system architecture and data processing 

cannot perform the expected outcomes because of the limitations of data association. For 

the collaborative and complementary applications of motion tracking (Polhemus Liberty 

AC magnetic tracker), we propose a distributed sensory system with multi-channel 

interacting multiple model estimator (MC-IMME). To figure out interactive relationships 

among distributed sensors, we used a Gaussian mixture model (GMM) for clustering. 

With a collaborative grouping method based on GMM and expectation-maximization 

(EM) algorithm for distributed sensors, we can estimate the interactive relationship of 

multiple sensor channels and achieve the efficient target estimation to employ a tracking 

relationship within a cluster. Using multiple models with improved control of filter 

divergence, the proposed MC-IMME can achieve the efficient estimation of the 

measurement as well as the velocity from measured datasets with distributed sensory data. 

We have newly developed MC-IMME to improve overall performance with a Markov 

switch probability and a proper grouping method. The experiment results showed that the 

prediction overshoot error can be improved in the average 19.31% with employing a 

tracking relationship. 
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3.1 INTRODUCTION 

Prediction human motion with distributed body sensors has the potential to improve the 

quality of human life and to promote a large number of application areas such as health 

care, medical monitoring, and sports medicine [7] [160] [161]. The information provided 

by distributed body sensors are expected to be more accurate than the information 

provided by a single sensor [7] [162]. In distributed sensory systems, however, the 

system architecture and data processing cannot perform the expected outcomes because 

of the limitations of data association [163] [164] [165] [166] [167] [168] [169] [170] 

[171] [172].  As shown in Fig. 17, individual sensory system using IMME shows the 

position estimate values of benign motion for the human chest. The typical problem 

showed in this figure is that the prediction overshoots at the beginning of tracking 

estimation can result in a significant prediction error. This initial estimate error has 

motivated us to develop an appropriate method that would reduce the initial prediction 

estimate error. Therefore, we propose a new method to reduce the initial prediction 

estimate error by employing a tracking relationship of data association [173] [174] [175] 

[176] [177] [178] [179] [180] [181] [182] [183]. 
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Figure 17. Prediction Overshoot of IMME. 
 This figure shows the position estimation of benign motion for the human chest. The upper bound and 
lower bound can be derived from adding the marginal value to the measurement and subtracting the 
marginal value from the measurement, respectively [26]. 
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As a unique solution to prevent significant prediction overshoots from initial estimate 

error, we adopt multiple sensory systems with grouping method based on GMM for 

clustering. Clustering is a method that enables a group to assign a set of distributed 

sensors into subsets so that distributed sensors in the subset are executed in a similar way. 

A variety of studies have been investigated for clustering methods based on k-means, 

spectral clustering, or expectation-maximization (EM) algorithm [160] [185] [186] [187] 

[188] [189] [190] [191] [192] [193] [194] [195] [196].  However, a known limitation of 

these clustering methods is that the cluster number must be predetermined and fixed. 

Recently, Bayesian nonparametric methods with Dirichlet process mixture have become 

popular to model the unknown density of the state and measurement noise [197] [198]. 

But, because of the relatively small set of samples, it will not adequately reflect the 

characteristics of the cluster structure [188]. For the time sequential datasets of 

distributed body sensors, we would like to add a prior distribution on the cluster 

association probability [199] [200]. We refer to this prior information as hyper-

parameters [199]. Therefore, we proposed a new collaborative grouping method for 

distributed body sensors. 

Multiple models (MM) may have multiple possible dynamic models for multi-sensor 

systems with Markov model switches.  In such a hybrid system, the possible models 

make multiple sensors supply the information about the interested variable, and thus are 

collaborative and complementary. The basic idea of all MM approaches is that 

complicated target movements are made up of random variations originating from basic 

(straight-line) target motion. Due to the difficulty in representing this motion simply with 

a single model, MMs including potentially dynamic models operate in a parallel way with 
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Markov switch probability [173]. The proposed solution is to employ a tracking 

relationship among distributed body sensors by adding switching probability for multiple 

models and grouping method to figure out the interactive relation within the sensors. 

IMME algorithm can be used to combine different filter models with improved control of 

filter divergence. As a suboptimal hybrid filter [173] [174] [175], IMME makes the overall 

filter recursive by modifying the initial state vector and covariance of each filter through a 

probability weighted mixing of all the model states and probabilities [176] [177] [178] 

[179] [180] [181] [182] [183]. 

The overall contribution of this research is to minimize the prediction overshoot 

originating from the initialization process by newly proposed Multi-channel IMME (MC-

IMME) algorithm with the interactive tracking estimation. MC-IMME can estimate the 

object location as well as the velocity from measured datasets using multiple sensory 

channels. For this MC-IMME, we have extended the IMME to improve overall 

performance by adding switching probability to represent the conditional transition 

probability and a collaborative grouping method to select a proper group number based 

on the given dataset. The technical contributions of this study are twofold: First, we 

propose a cluster number selection method for distributed body sensors based on 

Dirichlet hyper-prior on the cluster assignment probabilities. Second, we present a new 

prediction method to reduce the initial estimate error by employing a tracking 

relationship among distributed sensory data. For the performance improvement, we added 

switching probability to represent the conditional transition probability from a previous 

channel state to a current channel state and a collaborative transition probability to select 

a proper group number based on the given datasets. 
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This Chapter is organized as follows. In Chapter 3.2, the theoretical background for the 

proposed algorithm is briefly discussed. In Chapters 3.3 and 3.4, the proposed grouping 

criteria with distributed sensors placement based on EM algorithm and the proposed 

estimate system design for distributed body sensors are presented in detail, respectively. 

Chapter 3.5 presents and discusses experimental results of proposed methods—grouping 

methods and adaptive filter design. A summary of the performance of the proposed 

method is presented in Chapter 3.6. 
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3.2 RELATED WORK 

3.2.1 KALMAN FILTER 

The Kalman filter (KF) provides a general solution to the recursive minimized mean 

square estimation problem within the class of linear estimators [201] [202]. Use of the 

Kalman filter will minimize the mean squared error as long as the target dynamics and 

the measurement noise are accurately modeled. Consider a discrete-time linear dynamic 

system with additive white Gaussian noise that models unpredictable disturbances. The 

problem formulation of dynamic and the measurement equation are as follows, 

)()()()(
),()()()()()1(
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ii

iii

+=
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      (18) 

where x(k) is the n-dimensional state vector and u(k) is an n-dimensional known vector 

(which is not used in our application). The subscript i denotes quantities attributed to 

model Mi. v(k) and w(k) are process noise and measurement noise with the property of the 

zero-mean white Gaussian noise with covariance, E[v(k)v(k)T] = Q(k) and  E[w(k)w(k)T] = 

R(k), respectively. The matrices F, G, H, Q, and R are assumed known and possibly time-

varying. That means that the system can be time-varying and the noise non-stationary. 

The Kalman filter estimates a process by using a form of feedback control. So the 

equations for the Kalman filter divide into two groups: time update equations and 

measurement update equations. The estimation algorithm starts with the initial estimate 

x̂ (0) of x(0) and associated initial covariance P(0). The problem formulation of the 

predicted state and the state prediction covariance can be written as: 

).()()()()1(
),()()(ˆ)()1(ˆ

kQkFkPkFkP
kukGkxkFkx

T +=+

+=+
        (19) 



 

 48

For the proposed MC-IMME, we use Eqs. (18) and (19) with a different model of filters, 

i.e., a constant velocity model and a constant acceleration model. 

 

3.2.2 INTERACTING MULTIPLE MODEL FRAMEWORK 

Multiple model algorithms can be divided into three generations: autonomous multiple 

models (AMM), cooperating multiple models (CMM), and variable structure multi-

models (VSMM) [172] [173].  The AMM algorithm uses a fixed number of motion 

models operating autonomously. The AMM output estimate is typically computed as a 

weighted average of the filter estimates. The CMM algorithm improves on AMM by 

allowing the individual filters to cooperate. The VSMM algorithm has a variable group of 

models cooperating with each other. The VSMM algorithm can add or delete models 

based on performance, eliminating poorly performing ones and adding candidates for 

improved estimation. The well-known IMME algorithm is part of the CMM generation 

[173].  

The main feature of the interacting multiple model (IMM) is the ability to estimate the 

state of a dynamic system with several behavior models. For the IMM algorithm, we have 

implemented two different models based on Kalman filter (KF): 1) a constant velocity 

(CV) filter in which we use the direct discrete-time kinematic models, and 2) a constant 

acceleration (CA) filter in which the third-order state equation is used [181] [182] [183] 

201] [203] [204] [205]. The IMME is separated into four distinct steps: interaction, 

filtering, mode probability update, and combination [201]. Fig. 18 depicts a two-filter 

IMM estimator, where x̂  is the system state, P is the filter estimate probability, z is the 

measurement data, and μ are mixing probabilities. Note that the previous state of each 
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model is reinitialized by the interaction stage each time the filter iterates. In IMME, at 

time k the state estimate is computed under each possible current model using CV or CA.  

 
Figure 18. Interacting Multiple Model Estimator 
The IMME has a four-step process in a way that different state models are combined into a single estimator 
to improve performance. 
 
 

In Fig. 18, the mixing probability (μij) represents the conditional transition probability 

from state i to state j. With an initial state of each model ( ix̂ (k–1)), new filter state is 

computed to estimate the mixed initial condition ( ix 0ˆ (k–1)) and the associated covariance 

(P0i(k−1)) according to the mixing probability. The above estimates and the covariance are 

used as input to the likelihood update matched to Mj(k), which uses the measurement data 

(z(k)) to yield ix̂ (k) and Pi(k). The likelihood function corresponding to each model i (Λi) 

is derived from the mixed initial condition ( ix0ˆ (k–1)) and the associated covariance 

(P0i(k−1)). After mode probability update based on a likelihood function (Λi), combination 

of the model-conditioned estimates and covariance is computed for output purposes with 

the mixing probability. For our distributed sensory system of target estimation, each filter state 

of IMM is dedicated for each sensor, and distributed target estimations independently progress 

according to each IMME. 
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3.2.3 CLUSTER NUMBER SELECTION USING GAUSSIAN MIXTURE MODEL (GMM) AND 
EXPECTATION-MAXIMIZATION  (EM) ALGORITHM 

For industrial applications of motion tracking, distributed body sensors placed on target 

surface with different positions and angles can have specific correlation with others. That 

means distributed body sensors can cooperate with each other as a group with clustering. 

Recently, several clustering algorithms have been developed to partition the observations 

(L) into several subsets (G) [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] 

[195] [196]. The most notable approaches are a mean square error (MSE) clustering and a 

model-based approach. The MSE clustering typically is performed by the well-known k-

means clustering. In general, k-means clustering problem is NP-hard [185], so a number 

of heuristic algorithms are generally used [191] [193] [194].  

A model-based approach to deal with the clustering problem consists of certain models, 

e.g., a Gaussian or a Poisson model for clusters and attempting to optimize the fit 

between the data and the model. The most widely used clustering method of this kind is a 

Gaussian mixture model (GMM) [188] [189] [190]. In GMM, the joint probability 

density that consists of the mixture of Gaussians φ(z; my, ∑y), where y=1...G, should be 

solved [187] [188]. Assume a training set of independent and identically distributed 

points sampled from the mixture, and our task is to estimate the parameters, i.e., prior 

probability (αy), mean (my) and covariance (∑y) of the clustering components (G) that 

maximize the log-likelihood function δ(⋅) based on EM algorithm [188] [190]. Given an 

initial estimation (α0, m0, ∑0), EM algorithm calculates the posterior probability p(y|zj) in 

E-step. Based on the estimated result we can calculate the prior probability (αy), mean 
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(my) and covariance (∑y) for the next iteration, respectively, in the following M-step 

[206] [207] [208]. 

The log-likelihood for the incomplete datasets in the EM algorithm can never be 

decreased (see Chapter 1.6 in [209]), because the EM algorithm iterates the computations 

E-step and M-step until the convergence to a local maximum of the likelihood function. 

That means that the consecutive log-likelihood functions monotonically increase and 

could be very similar but not identical. We define the discrepancy of consecutive values 

as the difference (Δ). Now, we can define the difference (Δ) as follows: 

)1,(),()( −Θ−Θ≅Δ GGG δδ .        (20)  

Once we estimate the parameter Θ ≡ {αy, my, ∑y}G
y=1 we can find the optimal cluster 

number (G*) with the conventional Brute-force search algorithm by introducing Δ(G) 

that is a log-likelihood function after parameter learning with the following equation: G* 

= argmingΔ(G). In practice, we can set a threshold (Δth) that is almost closed to zero to save 

the redundant iteration step. We can start with G = 2 for a first candidate solution for cluster 

number selection, estimate the set of finite mixture model parameter Θ* ≡ {α*
y, m*

y, ∑*
y}G

y=1 

using EM algorithms based on the sample data, and calculate Δ(G). After checking whether a 

candidate G is an appropriate cluster number for L, we can use the cluster number G as an 

appropriate cluster number as shown in Fig. 19.  

The search algorithm based on the log-likelihood function in Fig. 19 can only work in the 

static data model, but cannot guarantee to work in the time sequential data because of the 

lack of adaptive parameter for the time sequential data. Thus, it has the following two 

limitations: 1) it can only work within limitation of the initial dataset, and 2) it cannot 

guarantee the global optimal based on the time sequential data because of the lack of 
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adaptive parameter for the time sequential data. To overcome such static grouping 

limitations, we introduce distributed grouping using the multi-channel (MC) selection for 

the time sequence data of distributed body sensors in the next Chapter. 

 

Input : # sensor (L) 
set G  first(L); // first(L) : generate a first candidate solution for cluster number selection 
Temp = Infinity; 
while ( G ≠ L)  // L : # sensors 
{  
 estimate Θ*; // Θ* : the set of finite mixture model parameter 
 CV = Δ(G); // Δ(⋅) : discrepancy of consecutive log-likelihood functions 
 if  valid(L, G)  // check whether candidate G is an appropriate cluster number for L 
  then break   
 else 
  if Temp > CV  
   then Temp = CV; Ot = G; 
 G  G + 1  // update the next candidate G for L 
} 
Output : cluster number (Ot) 

Figure 19. Brute-force search algorithm to select the group number. 
This figure shows the Brute-force search algorithm to select the group number (G) based on the log-
likelihood function. 
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3.3 PROPOSED GROUPING CRITERIA WITH DISTIBUTED SENSORS 

The distributed measurements can provide more reliable estimation of target tracking. 

The motivation of this Chapter is to prepare interactive relationships with distributed 

sensory data for clustering, i.e., how to collaborate with distributed measurements to 

achieve better performances compared to the single measurement. In Chapter 3.3.1, we 

will show how to initialize the hyper-parameter presenting a hypothetical prior 

probability for background knowledge, and can select the collaborative cluster number 

using EM iteration. In Chapter 3.3.2, we will calculate switching probability representing 

the conditional transition probability from channel a to channel b within a cluster number. 

 

3.3.1 COLLABORATIVE GROUPING WITH DISTRIBUTED BODY SENSORS 

The cluster number selection using GMM works well in the distributed means model as 

well as in the static data model. But it only works within limitation of the initial dataset. 

The tracking estimate system with distributed body sensors has time sequential data. That 

means the measured information from each sensor can be changed depending on the 

applications from time to time. To make the collaborative grouping system, we introduce 

some background knowledge that can be presented as a hypothetical prior probability 

(βy) that we call hyper-parameter [199] [200]. Suppose that αy(k) is an initial prior 

probability at time k. The initial hyper-parameter βy can be found as follows: 

)(lim)0( kyky αβ
∞→

=          (21) 

In practice, we can get the hyper-parameter (βy) using sample training data instead of the 

infinite training data with respect to time. After calculating the hyper-parameter with 

sample training data using (21), the hyper-parameter (βy) should be adaptive with respect 
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to time k. Please note that the hyper-parameter can be selected based on the global 

information of sample data. This parameter is selected for corresponding to the steady 

state. It can be accomplished using the switching probability that will be explained in 

detail in Chapter 3.4.3. The adaptive hyper-parameter can be increased or decreased 

based on the current switching probability comparing to the previous switching 

probability, and can be calculated as follows: 

,)1()( y
yy kk μββ Δ+−=         (22) 

where Δμy is the difference between the current switching probability and the previous 

one. Δμy can be calculated using a switching probability at time k, i.e., μy(k) indicating 

the switching weight of group y. We will describe how to select the difference (Δμy) in 

detail in Chapter 3.4.4. After calculating the adaptive hyper-parameter, the adaptive 

(ADT) posterior probability pADT(y|zj) is calculated at time k in E-step as follows: 
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Using the modified one, we can proceed to the M-step at time k as follows: 
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We can estimate the tth iteration result of the adaptive posterior probability pADT(y|zj) at 

time k from (23). Based on the modified result we can calculate the prior probability (αy), 

the mean (my), and the covariance (∑y) in the (t+1)th iteration for the collaborative 
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grouping for time sequential data, respectively, using (24). A local maximum at time k 

can be selected by iterating the above two steps. We can select the collaborative cluster 

number (G*ADT) by introducing ΔADT(G) that is a log-likelihood function after parameter 

learning with the following equations: 

)1,(),()(
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−Θ−Θ=Δ
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δδ
       (25) 

where δADT is a log-likelihood function with the adaptive posterior probability. Note that 

Eq. (20) is extended into Eq. (25) with the hyper-parameter (βy). Comparing with the 

previous algorithm, the collaborative grouping with time sequential data can select local 

maxima at time k by iterating two steps: E-step and M-step. We can select the global 

optimal from a series of local maxima of time k, as shown in Fig. 20. 

 

set βy;   // hyper-parameter 
set μy;   // switching probability 
calculate βy(k)  // adaptive hyper-parameter 
while ( G ≠ L)) 
{  
 E-Step  : calculate pADT(y|zj); 
 M-Step : calculate αy, my, and ∑y; 
 calculate ΔADT(G); 
 temp = ΔADT(G); 
 if  ( minDelta ≥ temp) 
  minDelta = temp; 
} 

Figure 20. Collaborative group number selection with the adaptive hyper-parameter 

3.3.2 ESTIMATED PARAMETERS USED FOR INTERACTING MULTIPLE MODEL ESTIMATOR 
(IMME) 

Collaborative grouping with time sequence data can select local maxima at time k using 

the difference (Δ) of the consecutive log-likelihood functions. We can set the difference 
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(Δ) of the consecutive log-likelihood functions as Δ(G*, k) with respect to time k. To 

reduce the notation complexity, Δ(k) is simply used for Δ(G*, k). Now we can use this 

Δ(k) for IMME to estimate the multi-channel estimates and covariance. As mentioned, 

the log-likelihood function in each EM step cannot decrease [209]. That means we can 

minimize the difference (Δ(k)) of the consecutive log-likelihood functions with respect to 

time k because Δ(k) converges to zero over a period of time. Therefore, we can find out 

the following relationship: Δ(k−1) ≥ Δ(k). In the standard IMME, it is assumed that the 

mixing probability density is a normal distribution all the time. Now we derive the 

switching probability (μab) for the estimated parameter from mixing probability (μij). 

Since it is hard to get μab(k-1) directly, we used a tractable estimation μab(k-1)+Δ(k-1), as 

follows: 

)1()1()1( −Δ+−=− kkk ijab μμ ,         (26) 

where μij is the mixing probability that represents the conditional transition probability 

from state i to state j, and μab is the switching probability that represents the conditional 

transition probability from channel a to channel b. Note that we define mixing probability 

(μij) as switching probability (μab). That means our assumption is still valid in the 

switching probability, i.e., switching probability density follows a normal distribution 

(see appendix). The equality of Eq. (26) is true because the value of Δ(k-1) can be zero as 

k goes to the infinity. We can use the right side of Eq. (26) to dynamically select the 

switching probability (μab) with Δ(k). Eq. (26) above provides us with a method to design 

the filter for distributed sensors at the second stage, because the switching probability can 
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be adjusted more dynamically based on Δ(k) in the second stage filter. We will explain 

how to estimate the MC estimates and covariance using (26) in the next Chapter. 
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3.4 SENSORS MULTI-CHANNEL (MC) IMME: PROPOSED SYSTEM DESIGN 

The proposed method with collaborative grouping for distributed sensory data can 

achieve the efficient target estimation by using geometric relationships of target 

information emerging from distributed measurements. Fig. 21 shows a general block 

diagram to represent the relationship between the proposed method (MC-IMME) and 

IMME. 

 
Figure 21. General block diagram for the proposed MC-IMME. 
 
 
In MC-IMME, grouping data can be used for target-tracking estimation with IMME. 

Geometric information of distributed measurements is used for the switching probability 

update in the target estimation. Even though the proposed method needs the initialization 

process that is the same as in the IMME prediction, the interactive relationship with 

distributed sensors can compensate for the prediction estimate error. For the interactive 

tracking estimate, the proposed system design herein can be extended from Fig. 18 to Fig. 

22. 
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Figure 22. System design for distributed body sensors has two stages.  
At the first stage, all the distributed sensors are partitioned into the groups that have a tracking relationship 
with each other. At the second stage, the interactive tracking estimate is performed for distributed groups. 
 
 

3.4.1 MC MIXED INITIAL CONDITION AND THE ASSOCIATED COVARIANCE 

Starting with an initial y
ax (k–1) for each channel a in a group y, new filter state is 

computed to estimate the mixed initial condition and Kalman filter covariance matrices 

(27) according to the relationships 
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where y
abμ  is a switching probability presenting the relationship between channel a and 

channel b within the same group y. As shown in Fig. 22, we have added the blue line 

indicating how the difference (Δ(k)) in Stage 1 would be used for Stage 2. We denote r as the 

channel number of the group and DPab
y(k-1) as an increment to the covariance matrix to 

account for the difference in the state estimates from channels a and b, expressed by [ y
ax (k–1) 

– y
bx (k–1|)]⋅[ y

ax (k–1) – y
bx (k–1)]T. 

Note that the initial states of IMME are extended into Eq. (27) incorporating with the 

switching probability and Δ(k–1). We have adopted the results of Chapter 3.3 on 
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grouping criteria Δ(k) of Eq. (26). The difference (Δ(k)) can be minimized with respect to 

time k, so we can adjust to estimate the filter state from a coarse probability to a dense 

probability. 

 

3.4.2 MC LIKELIHOOD UPDATE 

The above estimates and covariance are used as input to the filter matched to Ma
y(k), 

which uses za
y(k) to yield y

ax̂ (k) and y
aP (k). The likelihood functions corresponding to each 

channel are computed using the mixed initial condition and the associated covariance 

matrix (27) as follows: Λa
y(k)=p[z(k)| Ma

y(k), y
ax 0ˆ (k−1), y

aP 0 (k−1)], where y is a group 

number and r(y) is the number of sensors for each group y. To reduce the notation 

complexity, r is simply used for r(y). 

 

3.4.3 SWITCHING PROBABILITY UPDATE 

Given the likelihood function (Λa
y(k)) corresponding to each channel, the switching 

probability update is done as follows: 
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where Λy is the likelihood function for a group y, cy is the summarized normalization 

constant, r is the channel number of a group y, and G is the number of group. Eq. (28) 

above provides the probability matrices used for combination of MC-conditioned 

estimates and covariance in the next step. It can also show us how to use these parameter 

results for collaborative grouping criteria with multiple sensors. 
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3.4.4 FEEDBACK FROM SWITCHING PROBABILITY UPDATE TO STAGE 1 FOR GROUPING 
CRITERIA WITH DISTRIBUTED SENSORS 

For the collaborative grouping, we introduced the adaptive hyper-parameter (βy(k)) in 

Chapter 3.3.1. The adaptive hyper-parameter βy(k) can be dynamically increased or 

decreased depending on the weight of the channel. The weight of channel can be 

represented as the switching probability. That means we can use the switching probability 

(μy(k)) as a reference to adjust the adaptive hyper-parameter as follows: 

.
)1()()1()(
)1()()1()(
)1()()1()(

−<−<
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       (29) 

If there is no change of the switching probability, βy(k) is the same as βy(k–1). If the 

current switching probability is greater than the previous one, βy(k) could be increased; 

otherwise, βy(k) could be decreased as shown in (29). Therefore, we can calculate the 

difference (Δμy) between the current switching probability and the previous one as 

follows: 

)1()( −−=Δ kk yyy μμμ          (30) 

That means the adaptive hyper-parameter βy(k) can be increased or decreased based on 

the current switching probability compared to the previous one. In Fig. 22, we have 

added the red line indicating how the difference of the switching probability in Stage 2 

would be used for Stage 1. 

 

3.4.5 COMBINATION OF MC CONDITIONED ESTIMATES AND COVARIANCE 

Combination of the MC conditioned estimates and covariance is done according to the 

mixture equations 
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where y
abμ  is a switching probability presenting the relationship between channel a and 

channel b within the same group y, and DPb
y(k) as an increment to the covariance matrix 

to account for the difference between the intermediate state and the state estimates from 

model b, expressed by [ y
bx (k) – y

bx̂ (k)]⋅[ y
bx (k) – ( y

bx̂ (k)]T.  

Note that the combination of the model-conditioned estimates and covariance matrices in 

Fig. 18 is extended into Eq. (31) incorporating with the switching probability and Δ(k). 

As can be seen in Chapter 3.4.1, we also have adopted the results of Chapter 3.3 on 

grouping criteria Δ(k) of Eq. (26). In Fig. 22, the entire flow chart illustrates the idea of 

MC-IMME proposed in this study. We have added the blue line indicating how the 

difference (Δ(k)) in Stage 1 would be used for the IMME outcomes of Stage 2, 

corresponding to (31). This combination is only for output purposes. 

 

3.4.6 COMPUTATIONAL TIME 

We have evaluated how much additional computational time is required when we 

implement the proposed method by comparing it to KF and the IMME method in Table 5. 

  
Table 5. Comparison of the Computational Complexity (KF vs IMME vs MC-IMME) 

Methods KF IMME MC-IMME 
Complexity O(L×k×N 3) O(L×k×T(N) O(L×k×T(N)

 

The computational complexity of KF for the upper bound is orders of growth N3, where N 

represents the states estimated using the KF derived by Karlsson et al. [202]. The 
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computational complexity can be increased as a linear function of the sensor number (L) 

and time k. Accordingly, the asymptotic upper bound of KF is orders of growth L×k×N3. 

IMME extends the complexity by defining T(N) as the asymptotic upper bound of 

recursive computation based on the states estimated using IMME. In the IMME the 

computational complexity is increased as a linear function of the independent sensor 

number (L). In addition, IMME needs recursive computation based on time k. Therefore, 

the asymptotic upper bound for the worst-case running time of IMME is orders of growth 

L×k×T(N) [210]. 

Let us define T(L) as a upper bound of iteration execution time for k-means clustering 

based on L points. Har-Peled et al. showed that the k-means heuristic needs orders of 

growth L iterations for L points in the worst case [193]. In addition, the adaptive grouping 

method needs to calculate the difference (ΔADT(G)) of the consecutive log-likelihood 

functions based on time sequential data (k) for the appropriate group number selection. 

Therefore, the upper bound for the worst-case running time of the adaptive grouping 

method is orders of growth L×k×T(L). 

MC-IMME uses the same recursive computation as IMME with respect to the estimated 

states. That means the running time of stage 2 is the same as simple IMME. MC-IMME 

also needs additional computation for the first stage to make grouping. Suppose that 

asymptotic upper bound of recursive computation (T(N)) is equal to a upper bound of 

iteration execution time for k-means clustering (T(L)). Then, the asymptotic upper bound 

for the computational complexity of Multiple-channel is orders of growth L×k×T(N), 

because both stage 1 and stage 2 have the same orders of growth L×k [52]. Please note 
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that IMME and MC-IMME have the identical computational complexity since distributed 

sensory systems both have the same channel number L, and the same data length k. 
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3.5 EXPERIMENTAL RESULTS 

The motivation of this Chapter is to validate the proposed MC-IMME with 

comprehensive experimental results. In Chapter 3.5.1, we will describe the target motions 

for the experimental tests (chest, head, and upper body). For each target motion, the 

optimal cluster number based on the proposed grouping method is selected in Chapter 

3.5.2, and this selection number is further investigated in comparison to grouping number 

methods using other clustering techniques in Chapter 3.5.3. The prediction accuracy of 

the proposed MC-IMME is evaluated with the normalized root mean squared error 

(NRMSE) and the prediction overshoots, in Chapters 3.5.4 and 3.5.5, respectively. We 

also show CPU time used for the computational time in Chapter 3.5.6. 

 

3.5.1 MOTION DATA 

We have used three kinds of motion data, i.e., chest motion, head motion, and upper body 

motion. Motion data was collected using a Polhemus Liberty AC magnetic tracker in Fig. 

23, operating at 240Hz for approximately 20 seconds (4,800 sample dataset) [213]. Eight 

sensors were attached on the target motion surface with the magnetic source rigidly 

mounted approximately 25.4 cm from the sensors.  
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Figure 23. Polhemus Liberty AC magnetic tracker. 

 

Each motion data was randomly selected based on the motion speed for Monte Carlo 

analysis with three sets of motion data—the first datasets for slow motion, the second 

datasets for moderate, and the rest for the violent motion. For the target estimation, the 

experimental tests have been conducted based on repeated random sampling to compute 

their results for Monte Carlo analysis. Each of the datasets was taken with great care to 

limit target movement to the type based on Table 6. 

Table 6. Characteristics of the Motion Data 
Motion Data Motion Type Speed (cm/sec) Recording Time (sec) 

Chest_1 Slow motion 0.64 − 0.87 20.72 

Chest_2 Moderate motion 6.7-0 − 7.91 20.40 

Chest_3 Violent motion 24.84 − 32.63 22.18 

Head_1 Slow motion 0.63 − 1.08 20.36 

Head_2 Moderate motion 6.62 − 8.37 20.40 

Head_3 Violent motion 16.07 − 67.70 21.43 

Upper Body_1 Slow motion 0.68 − 1.48 20.83 

Upper Body_2 Moderate motion 3.64 − 28.08 20.64 

Upper Body_3 Violent motion 38.48 − 118.18 21.03 

 

Long Range Source 

Sources 

Body Sensors 

System Electronics Units 
with 8 and 16 sensor 
channels 
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3.5.2 COLLABORATIVE GROUPING INITIALIZATION 

Before the efficient target tracking, the proposed collaborative method needs to make the 

grouping for distributed sensory data. The objective of this Chapter is to find out the 

optimal group number with an adaptive hyper-parameter. First, we need to find out the 

initial hyper-parameter (βy) in Subchapter 1) and then calculate the group number (G) 

based on the adaptive (ADT) posterior probability pADT(y | zj). Subchapter 2) and 3) 

compared the difference (Δ) of the consecutive log-likelihood functions between non-

collaborative grouping method described in Chapter 3.2.2 and collaborative grouping 

method described in Chapter 3.3.1. 

1) Calculation of Hyper-parameter (βy) 

The objective of this Chapter is to calculate the initial hyper-parameter (βy) with potential 

group numbers. To find out the hyper-parameter, we iterate expectation and 

maximization steps with sample training data (approximately 2,400 sample dataset) for 

each motion. We increased the group number (G) of EM process from two to seven to 

show all the potential hyper-parameters. Please note that we have eight sensory channels, 

so that we can show all available group numbers in Fig. 24. 
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Figure 24. Hyper-parameter values based on the target motion data and group number. 

 

Fig. 24 shows the hyper-parameters (βy, where y is a group number) described in Eq. (21), 

based on the target motion data and group number (G). Given in Fig. 24, we can notice 

that the higher the group number, the bigger the iteration number; and the more even the 

group distribution probabilities of a sample training data, the smaller the iteration number. 
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2) Calculation of the difference (Δ) of the consecutive log-likelihood with non-

collaborative grouping 

The objective of this Chapter is to find an optimal cluster number (G*) with the 

consecutive log-likelihood functions (20) based on EM process. Fig. 25 below shows the 

difference (Δ(G)) of the consecutive log-likelihood functions, described in Eq. (20). For 

example, when G=2, we calculate all the log-likelihood functions of EM operations, and 

then select the minimum as a representing value in Fig. 25. We iterate the same 

procedure with different group number (G =2,..., 7) in the three kinds of the motion data. 

We expect to find out, as described in Chapter 3.2.2, the minimum of Δ(G). 
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Figure 25. The difference (Δ(G)) with non-collaborative grouping. 

 

Given the results in Fig. 25, we may select the group number G* for the three datasets: 2, 

4, or 6 for Chest; 2 or 3 for Head; and 2, 4, 5, or 6 for Upper Body. As the group numbers 

are increased, the differences start to become drastically greater.  

However, we cannot identify the least minimum number; for example, it is hard to choose 

among 2, 4, 5, or 6 for Upper Body. Therefore, in the next experiment, we will 

recalculate the difference (ΔADT(G)) of the consecutive log-likelihood with collaborative 

grouping. 
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3) Calculation of the difference (Δ) of the consecutive log-likelihood with 

collaborative grouping 

The objective of this Chapter is to find an optimal cluster number (G*) using log-

likelihood function with the adaptive posterior probability (25). Based on the initial 

hyper-parameter (βy) (21), we can calculate the adaptive (ADT) posterior probability 

pADT(y | zj) and iterate E-step (23) and M-step (24) with a specific group number (G).   

Now we can show the difference (ΔADT(G)) of the consecutive log-likelihood functions, 

described in Eq. (25) of Chapter III.A, with the adaptive posterior probability in the three 

kinds of the motion data. We applied Eq. (25) for the minimum value of ΔADT(G). We 

iterate the same procedure with a different group number (G =2,..., 7), as shown in Fig. 

26. 
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Figure 26. The difference (ΔADT(G)) with collaborative grouping 
(a) whole range, (b) extended range. 
 

In Fig. 26 we can select the group number G* for the three datasets: 3 for Chest; 3 for 

Head; and 4 for Upper Body. Compared to Fig. 25 and Fig. 26, it is clear that the 

collaborative grouping provides more distinct difference ΔADT(G) of grouping numbers; 

for example, while Fig. 25 had the candidates of the group numbers 2, 4, 5, or 6 for 
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Upper Body, Fig. 26 now identifies the minimum number 4 for Upper Body by 

introducing the adaptive posterior probability. 

4) Sensor Placement Results of Collaborative Grouping 

In the previous Chapter, we have performed the collaborative grouping given the sample 

training data. The goal of the first stage is to partition all the measurements into the 

grouping for a tracking relationship. 

Now we can show the sensor placement results of each motion based on the given data in 

Fig. 27. In this figure, we denote symbols (+) as the sensor placement for each motion, 

the ellipse as each group, and the number of ellipse in a figure as the group number. As 

can be seen in the following figure, the group numbers for each motion data are the same 

as 3 for Chest, 3 for Head, and 4 for Upper Body. 
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Figure 27. Sensory Position and Grouping of Motion Data. 
(a) Chest, (b) Head, and (c) Upper body 
 

3.5.3 COMPARISON OF GROUPING METHODS WITH OTHER TECHNIQUES 

To find out the best grouping numbers, we have evaluated several clustering algorithms: 

k-means [191], spectral clustering [195] [196], nonparametric Bayesian inference [214], 

and EM algorithm [189]. To determine the quality of group number hypothesis, we 

would like to show established metrics, i.e., Akaike’s Information Criterion (AIC) that 

provides a measure of model quality by simulating a statistical model for model selection 
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[215]. For this selection, we assume that the model errors are normally and independently 

distributed and that the variance of the model errors is unknown but equal for them all. 

 Let n be the number of training observations. The formula AIC can be expressed as a 

simple function of the residual sum of squares (RSS), i.e., AIC = 2k + n[ln(RSS/n)], 

where k and RSS are the number of parameters in the statistical model and the residual 

sum of squares (∑ =

n

i i1
2ε , εi : estimated residuals for a candidate model), respectively (see 

Chapter 2.2 in [215]). Given any estimated models, the model with the minimum value of 

AIC is the one to be preferred. 

Table 7. Comparison of grouping number methods with AIC values 
  k-means Spectral clustering Nonparametric Bayesian EM algorithm 

G=2 7444 7411 7346 7404 

G=3 7393 6328 6942 7379 

G=4 7608 6356 7523 7603 

G=5 7824 6977 7383 7550 

G=6 7674 7365 7662 7680 

Chest 

G=7 7761 7177 7514 7497 

G=2 6272 6272 6284 6256 

G=3 6222 6314 5847 6220 

G=4 6783 6509 6500 6770 

G=5 6677 6455 6337 6305 

G=6 6427 6512 6325 6529 

Head 

G=7 6711 6471 6402 6530 

G=2 10874 10885 10760 10827 

G=3 11043 10967 10645 10780 

G=4 10809 10874 10617 10448 

G=5 10962 10928 10757 10928 

G=6 10941 10987 10938 10987 

Upper 
Body 

G=7 11127 10901 10876 10861 

 

We set the number of training observations to n = 1000 for all the datasets. Table 7 shows 

the comparison of grouping number methods with AIC values. We can notice that all of the 
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methods except the spectral clustering method have selected the identical grouping numbers: 

G=3 for Chest datasets, G=3 for Head datasets, and G=4 for Upper Body. Please note that all 

the grouping number methods have the minimum AIC values for Chest (G=3) and Upper 

Body (G=4) datasets. In Head datasets, there exists inconsistency among the methods. That 

means head motion can be classified into different groups in the given datasets. For our 

tracking estimation, we use grouping number G=3 for Head datasets because of the minimum 

AIC value in the given results. 

  

3.5.4 MULTI-CHANNEL (MC) IMME 

Based on the group number (G*) chosen in the experiment Chapter 3.5.2 of the first stage, 

we can perform the target estimation using Multi-channel (MC) IMME of the second 

stage with respect to each group. 

1) Position Estimation 
 
We compare the performance of motion tracking estimation among KF, IMME, and MC-

IMME. Fig. 28 shows that MC-IMME can estimate the target motion more accurately 

than other tracking methods, KF and IMME at the initial stage. 
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Figure 28. Comparison of motion tracking estimation for Head_1 dataset. 
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Figure 29. Comparison of accumulated position error of each channel for Head_1. 

 

In addition, we compare the accumulated position errors for each channel across the 

entire measurement period among KF, IMME, and MC-IMME. Fig. 29 shows that the 

accumulated position errors of KF and IMME are greater that those of MC-IMME for 

Head_1 dataset for each sensor channel. We can notice that MC-IMME outperforms 

IMME by 38.33% in the benign Head motion. 
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Figure 30. Overall performance of accumulated error among the datasets 
 
Fig. 30 shows the overall performance of accumulated error among the datasets listed in 

Table 6. As shown in Fig. 30, MC-IMME can show 68.84% of the average improvement 



 

 75

with comparison to KF. In addition, the proposed method outperforms IMME around by 

25.38~27.66% in the benign motion, 38.33~39.14% in the moderate motion, and 42.94~ 

48.75% in the aggressive motion. Please note that the proposed method can achieve 

48.75% improvement over IMME in Upper_Body_3 dataset. 

2) Prediction Time Horizon 
 
For the prediction accuracy, we changed the prediction time horizon. Here, prediction 

time horizon is the term to represent the time interval window to predict the future 

sensory signal. We would like to compare the error performance among the various 

prediction time horizons between IMME and MC-IMME in Fig. 31. For the comparison, 

we used a normalization that is the normalized root mean squared error (NRMSE) 

between the predicted and actual signal over all the samples in the test datasets, as 

follows: ∑∑ −−=
i zii ii mzzzNRMSE 22 )()ˆ( . 

where zi is the ith measurement, iẑ  is the estimation of the ith measurement, and mz is the 

mean of all the measurements. This metric is dimensionless and allows us to compare 

prediction accuracy for different signals of widely varying amplitude. 



 

 76

100 200 300 400
0

0.2

0.4

Prediction Time Horizon(ms)

N
R

M
S

E
 v

al
ue Chest 1

100 200 300 400

0.2

0.4

0.6

0.8

Prediction Time Horizon(ms)

N
R

M
S

E
 v

al
ue Chest 2

100 200 300 400
0.3

0.4

0.5

0.6

Prediction Time Horizon(ms)

N
R

M
S

E
 v

al
ue Chest 3

 

 

Kalman Filter IMME MC-IMME

100 200 300 400
0

0.2

0.4

Prediction Time Horizon(ms)

N
R

M
S

E
 v

al
ue Head 1

100 200 300 400

0.2

0.4

0.6

0.8

Prediction Time Horizon(ms)

N
R

M
S

E
 v

al
ue Head 2

100 200 300 400
0.5

0.6

0.7

0.8

Prediction Time Horizon(ms)

N
R

M
S

E
 v

al
ue Head 3

100 200 300 400
0

0.1

0.2

Prediction Time Horizon(ms)

N
R

M
S

E
 v

al
ue Upper Body 1

100 200 300 400

0.2

0.4

0.6

Prediction Time Horizon(ms)

N
R

M
S

E
 v

al
ue Upper Body 2

100 200 300 400
0.8

1

1.2

Prediction Time Horizon(ms)

N
R

M
S

E
 v

al
ue Upper Body 3

 
Figure 31. Error performance among prediction time horizon. 

In Fig. 31, the error performance of Chest_1 dataset in the proposed MC-IMME was 

improved by 61.62% for KF and 36.02% for IMME of the average prediction time 

horizon. We can notice that the proposed method outperforms KF and IMME in the other 

Chest motion datasets as well, even though the average improvements were less than 7% 

with comparison to IMME. The average improvements were 42.77% for KF and 16.35% 

for IMME. 

In the Head_1 dataset, the error performance was significantly improved by 80.24% for 

KF and 73.40% for IMME of the average prediction time horizon. Notice that the 

improvement of error performance for the proposed method maintained around 65% 

across the prediction time horizons. In the other Head motion datasets, the proposed 

method can improve other methods, even though the average improvements were less 

than 5% in comparison to IMME. The average improvements were 47.71% for KF and 

27.92% for IMME.  

In the Upper_Body_1 dataset, the proposed method was improved by 68.79% for KF and 

52.52% for IMME of the average prediction time horizon. We can notice that the 
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improvement of MC-IMME maintained around 40% across the prediction time horizons. 

We can also notice that the proposed method outperforms KF for 44.10% and IMME for 

20.91% of the average prediction time horizon over all the datasets, even though the 

average improvements were less than 6.3% for Upper_Body_2 and 3.91 for 

Upper_Body_3 in comparison to IMME. 

3) Velocity estimation 
 
Fig. 32 shows the average velocity of group number 1 for Head_1 dataset. The velocity 

estimations of MC-IMME align more closely to the measurements, than KF and IMME 

values. The overall improvements for the group number 1 of Head_1 dataset are 50.76% 

for KF and 49.40% for IMME. 
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Figure 32. Comparison of average velocity estimation of group number 1 for Head_1. 
 
 

4) Effect of the feedback/forward method 
 
We would like to show the advantage of the proposed feedback/forward method by 

comparing the performance of velocity estimation of MC-IMME with no 

feedback/forward vs. feedback/forward. We have evaluated the tracking performance of 

the average velocity for the Chest_3 dataset in Fig. 33. We have observed in Fig. 33 that 
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the feedback/forward method slightly increases the performance of pure MC-IMME in 

14%. 
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Figure 33. Comparison of the velocity estimations with no feedback/forward vs. feedback/forward. 
 

 
Table 8. Comparison of Overall Velocity error averaged among 8 channels 
Datasets No feedback/forward (cm/sec) Feedback/forward (cm/sec) 

Chest_1 0.415 0.292 

Chest_2 0.335 0.211 

Chest_3 0.605 0.514 

Head_1 1.527 1.168 

Head_2 1.386 1.014 

Head_3 1.517 1.201 

Upper Body_1 2.012 1.550 

Upper Body_2 3.162 2.572 

Upper Body_3 3.999 3.404 

 

We show all nine datasets to compare the overall performance of velocity error averaged 

among eight channels between no feedback/forward vs. feedback/forward. Table 8 shows 

the overall performance of velocity error among the datasets listed in Table 6. Given in 

Table 8, feedback/forward method outperforms no feedback/forward method around 

15~37% for Chest dataset, 20~26% for Head dataset, and 14~22% for Upper Body 

dataset. 
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3.5.5 PREDICTION OVERSHOOT 

We define overshoot for cases in which the predicted output exceeds a certain marginal 

value with confidence levels corresponding to the tolerances [184]. The initialization 

process is an essential step of Kalman filter-based target tracking. Unfortunately, this 

process produces an unexpected prediction estimate error. To compensate for the 

prediction estimate error, we used a marginal value to generate a 95% prediction interval 

for the measurement prediction, so that we can define the upper bound and the lower 

bound by adding the marginal value to the measurement and subtracting the marginal 

value from the measurement, respectively [184]. 
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Figure 34. Prediction overshoot comparison between IMME and MC-IMME. 
The prediction overshoot error can be improved with MC-IMME. 
 
 
Fig. 34 shows the prediction overshoot comparison between IMME and MC-IMME. We 

can notice that the prediction overshoot error with distributed sensory data was improved 

in the average of 10.84% with slow motion, 12.43% with moderate motion, and 34.66% 

with violent motion. Moreover, the total error of MC-IMME was decreased by 23.63% in 

comparison with that of IMME. 
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Table 9. Prediction Overshoot Comparison listed in Table 6 

Datasets 
Average number of overshoot dataset  

(IMME/MC-IMME) (Unit: overshoot dataset #) 
Improvement (%) 

Chest_1 15.00/13.37 10.83 
Chest_2 15.25/13.12 13.93 
Chest_3 26.00/12.75 50.96 
Head_1 15.00/13.75 8.33 
Head_2 14.75/13.62 7.62 
Head_3 62.12/42.50 31.58 

Upper Body_1 15.00/13.37 13.37 
Upper Body_2 27.75/23.37 15.76 
Upper Body_3 99.62/78.25 21.45 

 

Table 9 shows the comparison of overshoot dataset sample numbers between IMME and 

MC-IMME, where the second column represents the average number of overshoot 

dataset samples listed in Table 6. The overall improvement in the benign motion is 

around 10%, whereas the overall improvement in the aggressive motion is over 20%. 

That means distributed sensory data can reduce the prediction estimate error at the 

beginning of target tracking. We may expect this prediction accuracy to decrease for 

different datasets (e.g., including head and chest motions) due to the lack of interactive 

relationships. For our experimental tests, however, we have focused on the human body 

motion including head and chest. That means our experimental results can be generalized 

to the upper body. 

 

3.5.6 COMPUTATIONAL TIME 

Regarding CPU experimental time, we have evaluated the overall performance of average 

CPU time used for the datasets listed in Table 6. We have collected the motion data using 

a Polhemus Liberty AC magnetic tracker with eight sensors, and then conducted the 

experimental test for the computational complexity with offline. We have implemented 
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the proposed method with Matlab language using a PC of Pentium core 2.4 GHz with 

RAM 3.25 GB.  

Table 10. CPU Time Used among the Datasets 
Datasets KF IMME MC-IMME 

Chest 0.244 0.957 0.802 
Head 0.246 0.966 0.804 

Upper Body 0.249 0.974 0.829 
(Unit: ms/sample numbers) 

In Table 10, we evaluated the individual dataset to compare KF and IMME with MC-

IMME. Table 10 shows the overall performance of CPU time used among the datasets. 

Here, we used the period of the first 20 seconds for all nine datasets to calculate CPU 

time used for KF, IMME, and MC-IMME. For the comparison of the different target-

tracking methods, we evaluated the computational time calculating target-tracking 

estimate filters. That means we only counted the calculation time for KF and IMME 

operations with all the methods. Note that MC-IMME can improve approximately 16% 

of the average computational time with comparison to IMME, even though it requires 

more than twice the computational time of KF, as shown in Table 10. An interesting 

result is that the proposed method can improve the computational time over IMME. We 

think that the actual difference for CPU time used in Table 10 mainly comes from the 

simultaneous calculation of distributed sensory data in MC-IMME. In IMME, it needs to 

calculate target-tracking estimation individually, whereas MC-IMME can evaluate a 

couple sets of target estimation simultaneously. 
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3.6 SUMMARY 

In this Chapter we have presented a new MC-IMME and grouping criteria with 

distributed sensors placement. Our new method has two main contributions to improve 

the traditional IMME-based target tracking. The first contribution is to comprehensively 

organize the distributed channel sensory process by providing a collaborative grouping 

number with the given datasets to achieve the efficient target estimation. The second 

contribution is to add feedback/forward modules to import the results from the first 

multiple channels grouping for interactive tracking estimation to employ a tracking 

relationship with each other.  

The experiment results validated that we can identify a proper group number with the 

collaborative grouping method using hyper-parameter and the collaborative grouping 

method can outperform the conventional target-tracking methods, e.g., KF and IMME, by 

comparing the prediction overshoot and the performance of tracking errors with respect 

to the accumulated position error. We have also evaluated that MC-IMME with 

feedback/forward method can increase the performance of pure MC-IMME throughout 

the experiment results. The prediction overshoot error at the beginning of target tracking 

can be improved in the average of 19.31% with employing a tracking relationship in this 

specific datasets. For the generalized extent of motion tracking, more complicated 

motions and different sensory positions are required. This will be our future works. 
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CHAPTER 4 RESPIRATORY MOTION ESTIMATION WITH HYBRID IMPLEMENTATION 

The extended Kalman filter (EKF) can be used for the purpose of training nonlinear 

neural networks to perform desired input-output mappings. To improve the 

computational requirements of the EKF, Puskorius et al. proposed the decoupled 

extended Kalman filter (DEKF) as a practical remedy for the proper management of 

computational resources.  This approach, however, sacrifices computational accuracy of 

estimates because it ignores the interactions between the estimates of mutually exclusive 

weights.  To overcome such a limitation, therefore, we proposed hybrid implementation 

based on EKF (HEKF) for respiratory motion estimate, which uses the channel number 

for the mutually exclusive groups and the coupling technique to compensate the 

computational accuracy.  Moreover, the authors restricted to a DEKF algorithm for which 

the weights connecting inputs to a node are grouped together.  If there are multiple input 

training sequences with respect to time stamp, the complexity can increase by the power 

of input channel number.  To improve the computational complexity, we split the 

complicated neural network into a couple of the simple neural networks to adjust separate 

input channels.  The experiment results validated that the prediction overshoot of the 

proposed HEKF was improved by 62.95% in the average prediction overshoot values.  

The proposed HEKF showed the better performance by 52.40% improvement in the 

average of the prediction time horizon.  We have evaluated that a proposed HEKF can 

outperform DEKF by comparing the prediction overshoot values, the performance of 

tracking estimation value and the normalized root mean squared error (NRMSE). 
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4.1 INTRODUCTION 

The problem of predicting the moving objects with a given reference trajectory is a 

common estimate problem [216] [217] [218] [219] [220].  Kalman filters can be widely 

used in many industrial electronics for the state estimation and prediction [221] [222] 

[223] [224] [225] [226] [227] [228] [229].  Due to increasingly complex dynamical 

systems, a variety of methodologies has been proposed based on the Kalman filter and its 

hybrid approach [145] [229] [230] [231] [232] [233].  The recurrent neural network 

(RNN) can also be one of the estimation methods for the predictive control in many 

application systems [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] 

[245] [246].  Here, RNN is a class of neural network where connections between units 

exhibit dynamic temporal behavior with their synaptic weights.  Owing to this dynamic 

behavior, RNN can implement dynamical nonlinear multivariable discrete-time systems 

of arbitrary complexity [247] [248] [249] [250]. 

A target-tracking estimation can be one of the applications for RNN because of its 

adaptive learning, an ability to learn how to do tasks based on the data given for training 

or initial experience [234] [235] [239] [240]. For example, RNN can be used for the 

respiratory motion prediction for real-time motion adaptation in the medical application 

[36] [37] [40] [47] [46] [87].  Because of the self-organized characteristic of neural 

networks, it can have a built-in capability to adapt their synaptic weights to change based 

on the given samples in the specific circumstance; thus, it can provide the better 

performance in comparison to the conventional methods of the respiratory motion 

prediction [4] [251] [252] [253] [254].  Intrinsically, training algorithm for RNN became 
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an issue to improve the performance of dynamical systems with respect to the specific 

environment [255]. 

There are several algorithms available for training the weights of recurrent networks based 

on streams of input-output data.  Basically, the most widely used are the back-

propagation-through-time (BPTT) algorithm [256] [257] [258] and the real-time recurrent 

learning (RTRL) algorithm [258] [259] [260] [261], which are both based on 

computation of the gradient of an output error measure with respect to network weights.  

However, the calculation of dynamic derivatives of a recurrent network’s outputs with 

respect to its weights by RTRL is computationally expensive, since these derivatives 

cannot be computed by the same back-propagation mechanism that was employed in the 

training of multilayer perceptron (MLP) networks [146]. 

As an alternative or improvement of the gradient descent-based methodology, several 

authors have noted that the extended Kalman filter (EKF) can also be used for the 

purpose of training networks to perform desired input-output mappings [145] [230] [231] 

232] [233].  Note that the predictor-corrector property is an intrinsic property of the 

Kalman filter, its variants, and extensions.  Thus, whereas in traditional applications of 

the Kalman filter for sequential state estimation, the roles of predictor and corrector are 

embodied in the Kalman filter itself; in supervised-training applications these two roles 

are split between the RNN and the EKF.  Here, the RRN in which the input training 

samples are applied to the recurrent multilayer perceptron (RMLP) as the excitation, 

performs the role of the predictor, and the EKF, in which the training samples of desired 

response are applied to the EKF as the observable to provide the supervision, performs 

the role of the corrector [146]. 
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With comparison to the gradient descent algorithms, EKF-based algorithms for recurrent 

networks do not require batch processing, making them more suitable for on-line use.  To 

improve the computational requirements of the EKF, Puskorius et al. proposed decoupled 

extended Kalman filter (DEKF) as a practical remedy for the proper management of 

computational resources [145].  The author in [145] restricted to a DEKF algorithm for 

which the weights connecting inputs to a node are grouped together.  This approach, 

however, sacrifices computational complexity and estimation accuracy since DEKF 

defines a node as the mutually exclusive weight group.  If there are multiple input 

training sequences with respect to time stamp, the complexity can increase by the power 

of input channel number.  To overcome these limitations, we do not adopt the mutually 

exclusive weight groups.  Instead, we adopt the channel number for the mutually 

exclusive groups to propose the coupling technique to compensate the computational 

accuracy using multiple sensory channel inputs.  We call this new proposed method 

Hybrid motion estimation based on EKF (HEKF). 

The contribution of this study is twofold: First, we propose a new approach to split the 

whole RMLP with the complicated neuron number into a couple of RMLPs with the 

simple neuron number to adjust separate input channels.  Second, we present a new 

method for the respiratory motion estimation using EKF which adapts the coupling 

technique using multiple channel inputs for the mutually exclusive groups to compensate 

the computational accuracy, instead of mutually exclusive weight groups. 

This Chapter is organized as follows.  In Chapter 4.2, the theoretical background for the 

proposed algorithm is briefly discussed.  In Chapter 4.3, the proposed hybrid 

implementation based on EKF for RNN with multiple sensory channel inputs are 
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presented in detail.  Chapter 4.4 presents and discusses experimental results of proposed 

filter design method— efficient estimation of the measurements, optimized group number 

for RMLP, prediction overshoot analysis, prediction time horizon, and computational 

complexity of HEKF and DEKF.  A summary of the performance of the proposed 

method is presented in Chapter 4.5. 
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4.2 RELATED WORK 

4.2.1 RECURRENT NEURAL NETWORK (RNN) 

A Recurrent Neural Network (RNN) is a class of neural network where connections 

between units form a directed cycle.  This creates an internal state of the network which 

allows it to exhibit dynamic temporal behavior.  A network with a rich representation of 

past outputs is a fully connected recurrent neural network, known as the Williams-Zipser 

network, as shown in Fig. 35 [255].  This network consists of three layers: the input layer, 

the processing layer and the output layer.  For each neuron i (i = 1, 2,…, N), the elements 

uj of the input vector (j = 1, 2,…, M + N + 1) to a neuron u are as follows: 

)]1(),...,1(,1),(),...,1([)( 1 −−−−= kykyMkxkxku N
T
j ,     (32) 

where M is the number of external inputs, N is the number of feedback connections, (⋅)T 

denotes the vector transpose operation, and the (M + N + 1) × 1 dimensional vector u 

comprises both the external and feedback inputs to a neuron, as well as the unity valued 

constant bias input.  Eq. (32) is weighted, and then summed to produce an internal 

activation function of a neuron v as follows: 
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llii kukwkv ,        (33)  

where w are weights.  Finally Eq. (33) is fed through a nonlinear activation function Φ, to 

form the output of the ith neuron yi.  Here, the function Φ is a monotonically increasing 

sigmoid function with slope β, as for instance the logistic function, 

ve
v β−+

=Φ
1

1)( .          (34) 
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At the time instant k, for the ith neuron, its weights form a (M + N + 1) × 1 dimensional 

weight vector wi
T(k) = [wi,1(k),…, wi, M+N+1 (k)].  One additional element of the weight 

vector w is the bias input weight.  After feeding (33) into (34) using the function Φ, the 

output of the ith neuron yi can be formed as follows: 

Nikvky ii ,...,2,1)),(()( =Φ= .       (35) 
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Figure 35. A fully connected recurrent neural network with external inputs. 
 
 
In a recurrent neural network architecture, the feedback brings the delayed outputs from 

hidden and output neurons back into the network input vector u(k), as shown in Fig. 35. 

Due to the recursive function at each time instant, the network is presented with the raw, 

possibly noisy, external input data x(k), x(k-1),…, x(k-M) from Fig. 35 and Eq. (32), and 

filtered data y1(k-1),…, yN(k-1) from the network output.  Intuitively, this filtered input 

history helps to improve the processing performance of recurrent neural networks, as 
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compared with feedforward networks.  Therefore, a recurrent neural network should be 

able to process signals corrupted by additive noise even in the case when the noise 

distribution is varying over time. 

 

4.2.2 EXTENDED KALMAN FILTER FOR RECURRENT NEURAL NETWORKS 

As mentioned in the previous Chapter, the learning algorithm based on gradient descent, 

exemplified by the real-time recurrent learning algorithm, is typically slow due to 

reliance on instantaneous estimates of gradients [145].  We can overcome this serious 

limitation by using the supervised training of a recurrent network which recursively 

utilizes information contained in the training data in a manner going back to the first 

iteration of the learning process.  That is based on Kalman filter theory [146]. 

Consider a recurrent network built around a static multilayer perceptron with s weights 

and p output nodes.  Let the vectors w(k), v(k) and u(k) denote the weights of the entire 

network, the recurrent activities inside the network and the input signal applied to the 

network at time k, respectively.  With adaptive filtering in mind, the system state model 

and measurement model equations for the network may be modeled as follows: 

)()()1( kqkwkw +=+ ,         (36) 

)())(),(),(()( krkukvkwbkd += ,       (37) 

where q(k) and r(k) are the process and measurement noise with the property of a 

multivariate zero-mean white noise with covariance matrix, Q and R, respectively.  d(k) is 

the observable and b(⋅,⋅,⋅) is measurement function that accounts for the overall 

nonlinearity of the multilayer perceptron from the input to the output layer. 

For us to be able to apply the EKF algorithms as the facilitator of the supervised-learning 

task, we have to linearize the measurement equation (37) by retaining first-order terms in 
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the Taylor-series expansion of the nonlinear part of the equation.  With b(w(k),v(k),u(k)) 

as the only source of nonlinearity, we may approximate Eq. (37) as follows: 

)()()()( krkwkBkd += ,        (38) 

where B(k) is the p×s measurement matrix of the linearized model.  The linearization 

consists of the partial derivatives of the p outputs of the whole network with respect to 

the s weights of the model as shown 
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The partial derivatives in Eq. (39) are evaluated at w(k)= ŵ(k|k−1), where ŵ(k|k−1) is the 

prediction of the weight vector w(k) computed by extended Kalman filter at time k, given 

the observed data up to time k−1.   

For the purpose of our present discussion, the relevant equations in the EKF algorithm 

are the innovations process and the weight update equations as follows: 

))(),(),1|(ˆ)(()()( kukvkkwkbkdk −−=α ,      (40) 

)()()1|(ˆ)|1(ˆ kkGkkwkkw α+−=+ ,       (41) 

where α(k) is p×1 matrix denoting the innovations defined as the difference between the 

desired response d(k) for the linearized system and its estimation, ŵ(k|k−1) is s×1 vector 

denoting the estimate of the weight vector w(k) at time k given the observed data up to 

time k−1, ŵ(k|k) (= ŵ(k+1|k)) is the filtered updated estimate of w(k) on receipt of the 

observable d(k).  G(k) is s×p matrix denoting the Kalman gain that is an integral part of 

the EKF algorithm. 
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Let Γ(k), P(k|k-1) and P(k|k) be defined as p×p matrix denoting the global conversion 

factor for the entire network, s×s prediction-error covariance matrix and s×s filtering-

error covariance matrix, respectively.  In light of these new notations, we can write the 

EKF algorithms as follows: 

[ ] 1)()()1|()()( −
+−=Γ kRkBkkPkBk T ,       (42) 

)()()1|()( kkBkkPkG T Γ−= ,        (43) 

)1|()()()1|()|( −−−= kkPkBkGkkPkkP ,      (44) 

)()|()|1( kQkkPkkP +=+ ,        (45) 
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Figure 36. Closed-loop feedback system embodying the RMLP and the EKF 
 

As can be seen in Fig. 36, with the weight vector set at its old predicted value ŵ(k|k−1), the 

RMLP computes the actual output vector y(k) in response to the input vector u(k).  After 

updating the old estimate of the weight vector by operating on the current desired response 

d(k), the filtered estimate of the weight vector ŵ(k|k) is computed in accordance with Eq. 
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(41). Note that in EKF-RNN of Fig. 36, the recurrent neural network performs the role of 

the predictor and the extended Kalman filter performs the role of the corrector. 
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4.3 MULTI-CHANNEL COUPLED EKF-RNN 

4.3.1 DECOUPLED EXTENDED KALMAN FILTER (DEKF) 

The computational requirement of the EKF is dominated by the need to store and update 

the filtering-error covariance matrix P(k|k) at time-step k.  For a recurrent neural network 

containing p output nodes and s weights, the computational complexity of the EKF is 

O(ps2) and its storage requirement is O(s2).  For large s, these requirements may be 

highly demanding.  In such situations, we need to look for a practical remedy for the 

proper management of computational resources, i.e. Decoupled Extended Kalman Filter 

(DEKF) [145] [146]. 

The basic idea behind the DEKF is to ignore the interactions between the estimates of 

certain weights in the recurrent neural network.  If the weights in the network are 

decoupled in such a way that we can create mutually exclusive weight groups, then the 

covariance matrix P(k|k) is structured into a block-diagonal form as shown in the bottom 

left of Fig. 37. 

Let g denote the designated number of mutually exclusive disjoint weight groups.  Also, 

for i = 1, 2,…, g, let ŵi(k|k), Pi(k|k) and Gi(k) be defined as filtered weight vector, subset 

of the filtering-error covariance matrix and Kalman gain matrix for the group i, 

respectively.  The concatenation of the filtered weight vectors ŵi(k|k) forms the overall 

filtered weight vector ŵ(k|k).  In light of these new notations, we can now rewrite the 

DEKF algorithm for the i-th weight group as follows: 

))(),(),1|(ˆ)(()()( kukvkkwkbkdk iiiiii −−=α ,      (46) 
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)())()(1|()( kkBkkPkG T
iii Γ−= ,       (48) 

)()()1|(ˆ)|1(ˆ kkGkkwkkw iiii α+−=+ ,       (49) 

)()|()|1( kQkkPkkP iii +=+ ,       (50) 

)1|()()()1|()|( −−−= kkPkBkGkkPkkP iiiii ,      (51) 

where, αi(k), Γ(k), and Pi(k+1|k) denote the difference between the desired response di(k) 

for the linearized system and its estimation for the i-th weight group, the global 

conversion factor for the entire network, and the prediction-error covariance matrix, 

respectively. 
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Figure 37. Decoupled Extended Kalman Filter (DEKF) for RNN. 
Each group is corresponding to mutually exclusive weight group.  The concatenation of the filtered weight 
vector ŵi(k|k) forms the overall filtered weight vector ŵ(k|k). 
 
DEKF can reduce the computational complexity and its storage requirement of the EKF, 

but [145] restricts to a DEKF algorithm for which the weights are grouped by node.  That 

sacrifices the computational accuracy because of omitting the interactions between the 

estimates of certain weights. 
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Figure 38. Prediction overshoots with DEKF. 
 
 
To verify the prediction accuracy, we used a certain marginal value that can be explained 

in detail in Chapter 4.3.4.  Fig. 38 shows the estimation of the respiratory motion with 

DEKF.  As you can see in Fig. 38, we can notice that the percentage of prediction 

overshoot based on the marginal value is over 35%.  That means we need a new approach 

to compensate the prediction accuracy with multiple input sequences.  Therefore, we will 

show a hybrid motion estimation based on EKF (HEKF) in the next Chapter, which uses 

the channel number for the mutually exclusive groups and the coupling technique to 

compensate the computational accuracy. 

 

4.3.2 HYBRID ESTIMATION BASED ON EKF FOR NEURAL NETWORK (HEKF) 

We have extended the DEKF into hybrid motion estimation based on EKF (HEKF).  The 

author in [145] restricted to a DEKF algorithm for which the weights connecting inputs to 

a node are grouped together.  If there are multiple input sequences with respect to time k, 

the complexity can increase by the power of the input number. To overcome 



 

 97

computational complexity and estimation accuracy, we propose the coupling technique to 

compensate the computational accuracy using multiple sensory channel inputs.  We refer 

to this newly proposed method as hybrid motion estimation based on EKF (HEKF). 

There are two significant innovations for the proposed HEKF.  The first innovation is to 

comprehensively organize the multiple channel sensory process by adapting the coupling 

technique.  The second innovation is the multiple RMLPs with the simple neuron number 

for separate input channels.  We first introduce the coupling matrix in Eq. (52), and then 

show the separate EKF process for each RMLP in Eq. (53) – (58). 

Let c denote the designated channel number for the mutually exclusive groups.  Here, 

each group is corresponding to an individual channel that is composed of position vector 

sequence with respect to time k.  Also, for i = 1, 2,…, c, let ŵi
CP(k|k) be defined as filtered 

weight vector, Pi
CP(k|k) and Gi

CP(k) are subsets of the filtering-error covariance matrix 

and Kalman gain matrix for the channel i coupled with other channels, respectively. 

Let ΓCP(k), Pi
CP(k|k-1) be defined as p×p matrix denoting the global conversion factor for 

the coupled entire network, s×s prediction-error covariance matrix for the coupled EKF, 

respectively.  Here, we also need to define the degree of coupling, μij representing the 

degree to which component (i) depend on one another (j).  Coupling matrix Π is p×p 

matrix containing all components of coupling degree.  We can represent coupling matrix 

(Π) and coupling degree (μij) as follows: 
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The closer to one the coupling degree is, the more tightly the channel i and j are coupled, 

i.e. tight coupling.  If the coupling degree is close to zero, we can expect loose coupling.  

If μij is corresponding to zero, there is no coupling with one another.  For i = 1, 2,…, c, 

let define ŵi
CP(k|k) as filtered weight vector, Pi

CP(k|k) and Gi
CP(k) are subset of the 

filtering-error covariance matrix and Kalman gain matrix for the channel number i, 

respectively.  In light of these new notations, we can write the hybrid motion estimation 

based on EKF (HEKF) as follows: 

][)()(
1

∑
=

×−=
p

j
jiji

CP
i ykdk μα ,        (53) 
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1 1
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where αi
CP(k), ΓCP(k) and Pi

CP(k+1|k) denote the difference between the desired response 

di(k) for the linearized system and coupled estimations for the channel number i, the 

global conversion factor for the entire-coupled network, and the prediction-error 

covariance matrix for the coupled, respectively.  In the case of HEKF, we have c identical 

networks for c input channels.  Each input sequence is inserted into individual neural 

network process for each channel prediction, as shown in Fig. 39. 
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Figure 39. Hybrid motion estimation based on EKF (HEKF) for RNN.   
Each group is corresponding to an individual channel that is composed of (x, y, z) position sequence with 
respect to the time step k. 
 
 

4.3.3 OPTIMIZED GROUP NUMBER FOR RECURRENT MULTILAYER PERCEPTRON (RMLP) 

In DEKF algorithm the weights connecting inputs to a node are grouped together, 

whereas each group in HEKF algorithm corresponds to the individual channel that is 

composed of position vector sequence with respect to time k.  In order to analyze the 

group number, we can incorporate Fisher Linear Discriminant on the discriminant 

analysis, which employs the within-class scatter value (SW) and the between-class scatter 

value (SB) in the given samples [206].  

We have a set of n D-dimensional samples, which correspond to the filtering-error 

covariance matrices (Pi & Pi
CP) defined in Eq. (51) and (58) for each group i.  Let mi 

denote the D-dimensional sample mean for group i, and then define mi as follows: 
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where ni is the component number of group i. To obtain the optimization objective 

function, we define the scatter values Si and SW by 
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where g is the number of group in the given samples. We define the between-class scatter 

value SB as follows: 
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jiB mmS

1 1
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(i ≠ j),        (62) 

where g is the number of group in the given samples and mi is not identical to mj. In terms 

of SB and SW, the objective function J(⋅), called  discriminant criterion, can be written by 

B

W

g S
S

gJ minarg)( = .         (63) 

This criterion introduced expects that within-class scatter value should be minimized and 

the between-class scatter value should be maximized in the given number.  Under the 

minimizing Eq. (63), we can get the optimized number of group (g) for RMLP by 

choosing the smallest J(⋅) with optimized group number (g).  This value can be used to 

test the optimized number of RMLP between HEKF and DEKF.  We can evaluate 

whether HEKF or DEKF could be more discriminated by comparing the objective 

function values J(⋅) as the discriminant degree at the selected (g). 
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4.3.4 PREDICTION OVERSHOOT ANALYSIS 

Here, we evaluate the performance of overshoot for the prediction values.  We define 

overshoot for cases in which the predicted output exceeds a certain marginal value with 

confidence levels corresponding to the tolerances. We would like to derive such marginal 

value based on the estimate process of the uncertainty point estimators or predictors [184] 

[262] [263] [264] [265] [266] [267]. 

We noted in Eq. (35) in the previous Chapter that generally a neural network model can 

be represented as a nonlinear regressive function as follows: 

nixky iii ,...,2,1,),()( =+Φ= εθ ,       (64) 

where xi (with dimension M×1) is input vector, and θ (with dimension s×1) is a set of 

neural network true weights. It is assumed that εi are independent and identically-

distributed with a normal distribution N(0, σ2). Let define θ̂  as the least square estimation 

of θ.  In a small neighborhood θ the linear Taylor series expansion for the model (64) can 

be shown as follows [267]: 

nixky T
ii ,...,2,1),ˆ(),()(ˆ 0 =−Φ+Φ= θθθ ,      (65) 

where 
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To construct marginal values for nonlinear regressive models in neural networks, the 

standard asymptotic theory should be applied. For the linear model in (65), an 

approximate marginal value (γ ) with 100(1−α) confidence can be obtained [263] [267]: 

∑
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where t1−α/2,n is the 1−α/2 quantile of a t−distribution function with n degrees of freedom, 

σ̂  is the standard deviation estimator, and Fi is the Jacobian matrix of neural network 

outputs with respect to weights, respectively. σ̂  and Fi are calculated as follows: 

( )∑
=
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n

i
ii xy

n 1

2
)ˆ,(1ˆ θσ ,        (68) 
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In the experimental Chapter 4.4.5, we use this marginal value to judge whether the 

predicted outcomes exceed or not, and how many overshoots occur. 

 

4.3.5 COMPARISONS ON COMPUTATIONAL COMPLEXITY AND STORAGE REQUIREMENT 

The computational requirements of the DEKF are dominated by the need to store and 

update the filtering-error covariance matrix P(k|k) at each time step n.  For a recurrent 

neural network containing p output nodes and s weights, the computational complexity of 

the DEKF assumes the following orders: 

Computational complexity: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ∑

=

g

i
ispspO

1

22 ,      (70) 

Storage requirement: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑
=

g

i
isO

1

2 ,       (71) 

where si is the size of the state in group i, s is the total state size, and p is the number of 

output nodes [231]. 

The computational requirements of the HEKF are also determined by the need to store 

and update the filtering-error covariance matrix PCP at each time step n.  In the HEKF, it 

needs to calculate the coupling matrix that contains all components of coupling degree as 



 

 103

well.  That means we need additional p2 computation at each time step n.  Therefore, the 

computational complexity of the HEKF assumes the following orders: 

Computational complexity: ⎟
⎠

⎞
⎜
⎝

⎛
++ ∑

=

c

i
ispspO

1

22 )1( ,     (72) 

Storage requirement: ⎟
⎠

⎞
⎜
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⎛
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c

i
ispO

1

22 ,       (73) 

where si is the size of the state in channel i.  

Note that HEKF algorithm needs additional computation to calculate the coupling matrix, 

whereas the total computational complexity depends on the channel number c.  The total 

computational complexity of the DEKF algorithm can be determined by the group 

number g.  Here, we need to consider the group number and the channel number.  If the 

group number is greater than the channel number (g > c) and the output node number is 

smaller than the size of the state in group i, (p < si), the HEKF algorithm can improve 

computational complexity with comparison to the DEKF algorithm. Note that this 

complexity analysis does not include the computational requirements for the matrix of 

dynamic derivatives. 

When we compare HEKF and DEKF, the computational complexity of DEKF is 

recalculated as multiple channel numbers.  When we use multiple channel numbers, the 

computational complexity of the DEKF assumes the following orders: 

Computational complexity: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ∑
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1

2 ,       (75) 

where c is the channel number. The computational complexities of the DEKF shown in 

Eq. (74) and (75) are larger than HEKF shown in Eq. (72) and (73). 
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When we implement the proposed HEKF method by comparing it to the DEKF method, it 

is required to evaluate how much additional computational time. For the comparison on 

computational complexity, we have evaluated the performance of average CPU time in 

Experimental Chapter F.  Here, we used three RMLPs for each channel in HEKF, whereas 

we used one RMLP in DEKF. 
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4.4 EXPERIMENTAL RESULTS 

4.4.1 MOTION DATA CAPTURED 

We used three channel sets of patient breathing data to evaluate the filter performance.  

Each set of data consisted of chest displacements recorded continuously in three 

dimensions at a sampling frequency of 26Hz.  The recordings lasted anywhere from 5 

minutes to 1.5 hours of the average time at the Georgetown University Cyberknife 

treatment facility.  These records were arbitrarily selected to represent a wide variety of 

breathing patterns, including highly unstable and irregular examples.  Each patient’s 

breathing record was used to independently train and test the predictive accuracy of the 

filter. 

 

4.4.2 OPTIMIZED GROUP NUMBER FOR RMLP 

1) Optimized Group Number 
 
With the respect to the selected group number (g) to implement the RMLP, we used a 

multilayer perceptron with two hidden layers, where the first hidden layer is recurrent and 

the second one is not.  We increased the number of hidden units for the first and the 

second hidden layer according to the group number to calculate the objective function 

value for comparing two different methods.  In order to analyze the group number for 

RMLP, we incorporated objective function (63) in Chapter 4.3.3. 

As shown in Fig. 40, HEKF is optimized when the group number is 2, whereas DEKF is 

optimized when the group number is 6.  Therefore, we choose the neuron number 2 for 

HEKF and 6 for DEKF. 
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Figure 40. Comparison of objective function values between HEKF and DEKF.   
With this figure, we can expect to choose the selected neuron number for HEKF or DEKF to be more 
optimized.  Also, the discriminant criterion itself tests whether HEKF or DEKF is less enormous. 
 

2) Discriminant Criterion to compare HEKF and DEKF 
 
Using Fisher Linear Discriminant on the discriminant analysis in Chapter 4.3.3, we can 

expect that HEKF or DEKF could be more optimized by comparison with the objective 

function values J(⋅).  Fig. 40 shows the objective function values J(⋅) defined in Eq. (63).  

HEKF has fewer values themselves than DEKF has, thus HEKF has more discriminated 

or further discriminant degree with comparison to DEKF across any group numbers 

selected, which means HEKF has less error than DEKF. 

 

4.4.3 PREDICTION OVERSHOOT ANALYSIS 

To evaluate the performance of overshoot for the prediction values, we derived the 

marginal value (γ ) using Eq. (67) in Chapter 4.3.4.  In this Chapter, we would like to use 

this marginal value to judge whether the predicted outcomes exceed or not, and how 

many overshoots occur.  With the marginal value (γ ), we can define the upper bound and 
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the lower bound by adding the marginal value to the measurement value and subtracting 

the marginal value from the measurement value, respectively. 
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Figure 41. Comparison of prediction overshoot between HEKF and DEKF.   
With this figure, we can notice that most of the estimation values of HEKF align between the upper bound 
and the lower bound, whereas the values of DEKF do not.  After the transient state, we can evaluate that the 
average percentage of prediction overshoot for HEKF is 3.72%, whereas the average percentage of 
prediction overshoot for DEKF is 18.61%, thus  HEKF has less prediction overshoot value than DEKF has. 
 
 
Fig. 41 shows the comparison of prediction overshoots between HEKF and DEKF.  As 

can be seen in Fig. 41, most of the estimation values of HEKF align between the upper 

bound and the lower bound.  After the transient state, we can notice that the average 

percentage of prediction overshoot for HEKF is 3.72%, whereas the average percentage 

of prediction overshoot for DEKF is 18.61%.  As can be seen in Table 11, most of the 

prediction overshoot of HEKF are within 5% except the datasets DB00, DB02, and DB03.  

We have also noticed that DEKF is slightly better than HEKF in the case of datasets 

DB13 and DB14, which include some discontinuities as well as the system noise because 

of the irregular patient breathing and the system latency during the breathing record [40]. 

We think these lacks of continuity could decrease the Kalman filter gain during the target 

prediction. In spite of these defect, however, the proposed HEKF can improve the 

average prediction overshoot by 62.95% with comparison to DEKF. 
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Table 11. Prediction Overshoot Analysis (HEKF versus DEKF) 

Datasets 
# Total 
frames 

HEKF (#Overshoot Frame 
/ #Total Frame: %) 

DEKF (#Overshoot Frame  
/ #Total Frame: %) 

Improvement
 (%) 

DB00 79078 17.09 31.10 45.06 
DB01 145336 3.23 7.72 58.13 
DB02 140704 8.65 39.03 77.84 
DB03 175896 5.24 6.35 17.52 
DB04 93653 4.44 27.78 84.03 
DB05 100739 4.14 26.55 84.41 
DB06 159855 1.66 32.51 94.89 
DB07 110417 0.12 41.50 99.70 
DB08 225785 1.49 32.67 95.44 
DB09 144149 0.27 0.40 31.75 
DB10 185697 4.29 15.31 71.98 
DB11 108327 0.95 12.01 92.11 
DB12 129503 0.03 2.16 98.46 
DB13 146145 0.53 0.51 -4.15 
DB14 134683 3.59 3.49 -2.94 

 
 

4.4.4 COMPARISON ON ESTIMATION PERFORMANCE 

We evaluate the target estimation by comparing the proposed HEKF described in Chapter 

4.3.2, with the alternative DEKF described in Chapter 4.3.1. 

1) Tracking Position Estimation 

Fig. 42 shows the average target position estimation of the 3D Euclidian distance between 

the predicted value and the measurement values with respect to the data time index given 

by the original Cyberknife dataset.  The unit of vertical axis in Fig. 42 and Fig. 43 is 

dimensionless for the amplitude, i.e. the target estimation corresponds to the 3D position 

has the range of [−1, +1], corresponding to the real measurement dataset range 

[−1.4735×103, −1.5130×103].  As you can see, the position estimation values of HEKF 

align closer to the measurement values than DEKF values. 
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Figure 42. Target estimation between HEKF and DEKF.   
This figure shows that the position estimation values of HEKF align closer to the measurement values than 
DEKF values. 
 
 

2) Position Error Value 

We would like to compare the performance of tracking errors with respect to the data 

time index across the entire measurement period between HEKF and DEKF.  The error 

value in Fig. 43 was calculated by the subtraction of the 3D Euclidian distance between 

the predicted values and the measurement values in the data time index.  

Fig. 43 shows that the error value of HEKF is smaller than that of DEKF across the data 

time index 25200 ~ 25350 sec.  At the beginning of tracking estimation, we notice that 

both approaches have several overshoot across the data time because of the unstable 

initialization of the original dataset.  After the steady state, the error value of HEKF 

aligns more close to zero point. Two significant position errors are shown in DEKF, 

whereas the position error is negligible in HEKF. 
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Figure 43. Comparison of position error between HEKF and DEKF.  
This figure shows two significant position errors in DEKF, whereas the position error is negligible in 
HEKF. 
 

4.4.5 ERROR PERFORMANCE OVER PREDICTION TIME HORIZON 

Prediction Time Horizon is the term to represent the time interval window to predict the 

future sensory signal.  We would like to compare the error performance among the 

various prediction time horizon between HEKF and DEKF in Table 12.  For the 

comparison, we used a normalization that is the normalized root mean squared error 

(NRMSE) between the predicted and actual signal over all the samples in the test dataset, 

as follows [36]: 

∑∑ −−=
i

yi
i

ii myyyNRMSE 22 )()ˆ( ,       (76) 

where yi is the ith measurement, ŷi is the estimation of the ith measurement, and my is the 

mean of all the measurements. This metric is dimensionless and allows us to compare 

prediction accuracy for different signals of widely varying amplitude. 

As can be seen in Table 12, the error performance in the proposed HEKF has improved 

for all the datasets by 26.65% in the average of the prediction time horizon for 38.46ms.  

The prediction interval time has increased and the calculated NRMSE has increased.  
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Notice that the 7 datasets are shown in the bold fond since the improvement of error 

performance for the proposed method maintained over 25 %, with 50% across the 

prediction time horizons in datasets DB01, DB03, DB07, and DB12.  Compared to the 

patient of the Cyberknife dataset in the latest research [254], the proposed HEKF showed 

the better NRMSE performance across all variable prediction interval times; for example 

at the prediction time horizon of 500 ms, a 422% NRMSE improvement. 

Table 12. Error Performance among Prediction Time Horizon (HEKF versus DEKF) 

Prediction Time Horizon 
 

38.46ms 115.38 ms 192.3 ms 269.23 ms 346.15 ms 423.07 ms 500 ms 

DB00 0.0666/0.0706 0.0714/0.0768 0.0740/0.0782 0.0752/0.0847 0.0790/0.0875 0.0812/0.0850 0.0848/0.0890

DB01 0.0326/0.0739 0.0365/0.0771 0.0420/0.0876 0.0463/0.1015 0.0466/0.1085 0.0504/0.1087 0.0820/0.1134

DB02 0.0961/0.1347 0.1128/0.1395 0.1306/0.1419 0.1331/0.1450 0.1333/0.1540 0.1349/0.1637 0.1458/0.1821

DB03 0.0535/0.0896 0.0545/0.0917 0.0560/0.1122 0.0576/0.1260 0.0593/0.1342 0.0616/0.1348 0.0796/0.1519

DB04 0.0440/0.0661 0.0503/0.0674 0.0589/0.0719 0.0613/0.0724 0.0638/0.0775 0.0668/0.0991 0.0672/0.1138

DB05 0.0468/0.0789 0.0546/0.0830 0.0563/0.0863 0.0574/0.0907 0.0583/0.0947 0.0675/0.0966 0.0696/0.0987

DB06 0.0265/0.0304 0.0279/0.0338 0.0304/0.0338 0.0340/0.0366 0.0361/0.0382 0.0388/0.0399 0.0409/0.0449

DB07 0.0311/0.0864 0.0423/0.0941 0.0442/0.0957 0.0501/0.0959 0.0555/0.0993 0.0608/0.1333 0.0755/0.1444

DB08 0.0555/0.0606 0.0590/0.0636 0.0621/0.0691 0.0737/0.0783 0.0763/0.0792 0.0816/0.0880 0.0866/0.0921

DB09 0.1018/0.1123 0.1104/0.1305 0.1460/0.1712 0.1825/0.2283 0.1875/0.2928 0.1886/0.3428 0.1926/0.3556

DB10 0.1010/0.1064 0.1078/0.1146 0.1133/0.1238 0.1251/0.1344 0.1342/0.1474 0.1495/0.1638 0.1786/0.1906

DB11 0.0731/0.0987 0.1106/0.1237 0.1209/0.1293 0.1358/0.1377 0.1574/0.1586 0.1588/0.1638 0.1770/0.1797

DB12 0.0424/0.0916 0.0459/0.0958 0.0470/0.0977 0.0474/0.0998 0.0504/0.1021 0.0505/0.1034 0.0630/0.1045

DB13 0.0651/0.0788 0.0668/0.0811 0.0678/0.0815 0.0687/0.0839 0.0691/0.0908 0.0710/0.0948 0.0732/0.1036

DB14 0.0440/0.0455 0.0456/0.0509 0.0482/0.0511 0.0490/0.0519 0.0505/0.0520 0.0515/0.0538 0.0541/0.0575
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4.4.6 COMPARISONS ON COMPUTATIONAL COMPLEXITY 

We would like to evaluate how much additional computational time is required when we 

implement the proposed HEKF method by comparing to DEKF method.  For HEKF, we 

used three RMLPs for each channel, whereas we used one RMLP for DEKF, where the 

neuron number for the first and the second hidden layer is 2 for HEKF and 6 for DEKF, 

respectively.  Regarding CPU experimental time, we have evaluated the overall 

performance of average CPU time, using a PC of Pentium core 2.4 GHz with RAM 3.25 

GB. 

Table 13. CPU Time Used in the Target Estimation 
CPU Time used  (Millisecond / #Total Frame) 

Datasets 
Recording time 

(minutes) HEKF DEKF 

DB00 50.80 9.4306 7.1737 
DB01 93.36 9.7759 7.2836 
DB02 90.39 10.8872 7.1532 
DB03 113.00 10.8578 6.9824 
DB04 60.16 10.0511 7.1556 
DB05 64.85 10.3541 7.3941 
DB06 102.83 10.5332 7.1505 
DB07 70.93 9.4372 6.7484 
DB08 145.21 11.2489 7.1755 
DB09 92.67 10.3379 7.0038 
DB10 119.55 11.3506 7.2783 
DB11 69.72 9.5831 7.0640 
DB12 85.34 9.6143 6.8265 
DB13 93.88 11.2510 7.4613 
DB14 86.52 9.5256 7.5890 

 

Table 13 shows the performance of CPU time used.  As you can see in Table 13, HEKF 

method needs more time comparing to DEKF.  We think that the actual difference for 

CPU time used in Table 13 mainly comes from the calculation of the coupling matrix and 

the separate neural network for channel number.  Although 30.07% more time is required 
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to implement the proposed HEKF, it is a modest tradeoff to consider the better 

performance than better computational time under the condition that PC speed is 

improving these days. 
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4.5 SUMMARY 

In this Chapter we have presented respiratory motion estimation with hybrid 

implementation of EKF, called HEKF.  Our new method has two main contributions to 

improve the traditional EKF-based recurrent neural network target tracking.  The first 

contribution is to present a new approach to split the whole RMLP with the complicated 

neuron number into a couple of RMLPs with the simple neuron number to adjust separate 

input channels.  The second contribution is to comprehensively organize the multiple 

channel sensory process by adapting the coupling technique using multiple channel 

inputs for the mutually exclusive groups to compensate the computational accuracy. 

The experiment results validated that the prediction overshoot of the proposed HEKF was 

improved for 13 datasets among 15 datasets by 62.95%.  The proposed HEKF showed the 

better performance by 52.40% NRMSE improvement in the average of the prediction 

time horizon.  We have evaluated that a proposed HEKF can outperform DEKF by 

comparing the performance of tracking estimation value, NRMSE and prediction 

overshoot analysis.  Moreover, HEKF has more discriminated degree with comparison to 

DEKF across any group numbers selected, which means HEKF has less error than DEKF.  

Even though the provided method needed more computational time comparing to the 

previous method, the experiment results showed that it improved NRMSE around 

24.72% across the overall prediction time horizon. 
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CHAPTER 5 CUSTOMIZED PREDICTION OF RESPIRATORY MOTION 

Accurate prediction of the respiratory motion would be beneficial to the treatment of 

thoracic and abdominal tumors. However, a wide variety of breathing patterns can make 

it difficult to predict the breathing motion with explicit models. We proposed a 

respiratory motion predictor, i.e., customized prediction with multiple patient interactions 

using neural network (CNN). For the preprocedure of prediction for individual patient, 

we construct the clustering based on breathing patterns of multiple patients using the 

feature selection metrics that are composed of a variety of breathing features. In the 

intraprocedure, the proposed CNN used neural networks (NN) for a part of the prediction 

and the extended Kalman filter (EKF) for a part of the correction. The prediction 

accuracy of the proposed method was investigated with a variety of prediction time 

horizons using normalized root mean squared error (NRMSE) values in comparison with 

the alternate recurrent neural network (RNN). We have also evaluated the prediction 

accuracy using the marginal value that can be used as the reference value to judge how 

many signals lie outside the confidence level. The experimental results showed that the 

proposed CNN can outperform RNN with respect to the prediction accuracy with an 

improvement of 50 %. 
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5.1 INTRODUCTION 

Current developments in radiotherapy systems open a new era for treatment with accurate 

dosimetry of thoracic and abdominal tumors [1] [23] [24]. Effective radiation treatment 

requires motion compensation for uncertainty and irregularity originating from 

systematic or random physiological phenomena [19] [269]. Respiratory motion severely 

affects precise radiation dose delivery because thoracic and abdominal tumors may 

change locations by as much as three centimeters during radiation treatment [2]. In 

patients with a wide range of respiratory motion, radiation treatment can be delivered by 

dynamic gating, where radiation is activated only when the respiratory motion is within a 

predefined amplitude or phase level [2] [25]. 

In addition to the respiratory motion, system latency attributable to hardware limitations 

and software processing time may affect the accurate radiation delivery for tumor 

tracking techniques [1] [26] [27]. If the acquisition of tumor position and the 

repositioning of the radiation beam are not well synchronized, a large volume of healthy 

tissue may be irradiated unnecessarily and tumor may be underdosed [20] [21]. Due to 

the latency, for real-time tumor tracking, the tumor position should be predicted in 

advance, so that the radiation beams can be adjusted accordingly to the predicted target 

position during treatment [1] [9]. Therefore, we propose a prediction method for 

respiratory motion to compensate for uncertainty in respiratory patterns with the 

correlation of patients breathing datasets. 

A number of prediction methods for respiratory motion have been investigated based on 

surrogate markers and tomographic images [2] [4] [5] [6] [9] [11] [13] [14] [15] [16] [17] 

[28] [48] [96] [254] [270]. The previous methods can be further categorized into two 
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approaches: 1) those that are “model-based,” which use a specific biomechanical or 

mathematical model for respiratory motion functions or models  [4] [5] [17] [48] [96]; 

and 2) those that are “model-free” heuristic learning algorithms that are trained based on 

the observed respiratory patterns [14] [36] [254]. Generally, model-based methods 

include linear approaches and Kalman filter variables that are widely used for the 

fundamental prediction of respiratory motion among a variety of investigated methods [4] 

[5] [96].  

A potential drawback of model-based approaches is their inability to learn highly 

irregular breathing patterns from training samples [36]. For accurate prediction of 

respiratory motion, the breathing pattern information should apply the respiratory motion 

prediction to improve prediction accuracy [34]. Based on previous studies, the model-free 

heuristic learning algorithm can be a key approach for prediction; but, it needs a 

correction method to compensate for irregular breathing signals that characterized a 

variety of breathing patterns. Accordingly, we have pursued the use of heuristic 

algorithms to develop system adaptive loops that have the most general approach, i.e., 

neural networks (NN). 

The contribution of this study is to adopt a clustering method for multiple patients to get 

more practical breathing pattern information and to find an accurate prediction process 

for an individual class. For the clustering based on breathing patterns, we present the 

feature selection metrics. With each feature metric, we can define a variety of feature 

combinations and select an optimal feature combination, i.e., dominant feature selection 

(Î), and then we can select the appropriate class number (ĉ) for the analysis of breathing 

patterns of multiple patients. Finally, we can predict the respiratory motion based on 
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multiple patient interactions, i.e., class-based respiratory motion prediction using 

interactive degree and neuron number selection of RNN. 

 



 

 119

5.2 PREDICTION PROCESS FOR EACH PATIENT 

For the respiratory motion prediction, we propose to use a supervised-training feedback 

system as shown in Fig. 44. The computational complexity of the EKF depends on the 

requirement capacity to store and update the filtering-error covariance matrix. If an RNN 

has p output nodes and s weights, the asymptotic growth rate for the computational 

complexity and storage requirement of the network would be proportional to output 

nodes (p) and weights to the second power (s2). Here, output nodes and weights 

correspond to the patient number for predicting the respiratory motion and the state 

number for the prediction process. For large weights s, we may need highly demanding 

computational resources for these requirements to predict respiratory motions. We may 

partially release such requirements by using the Decoupled Extended Kalman filter 

(DEKF) as a practical remedy to overcome computational limitations with the 

computational complexity of an order of p×(s/p)2 [145] [146]. 

 

 

Figure 44. Multiple marker interactions for the individual patient.  
The respiratory motion prediction for each patient is composed of the prediction process and the correction 
process. The prediction process is comprehensively organized with the multiple markers by adapting the 
coupling Matrix. 
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The key idea of the DEKF is to use interactive state estimates of certain weight groups 

based on the neural node in such a way that the prediction process operates so-called 

mutually exclusive weight groups in the recurrent network [145]. That leads to the 

impairing of the computational accuracy of predicting respiratory motions based on the 

recurrent network because it ignores interactions of excluded weight states. Therefore, we 

propose a prediction process for each patient based on RNN using a coupling matrix, in 

which we adapt the coupling technique to comprehensively organize state estimates of 

multiple markers for predicting respiratory motions. That approach creates multiple 

recurrent multilayer perceptron (RMLP) as a part of predictive excitation for separate 

input markers in Fig. 44.  

In Fig. 44 we denote the marker number (i) as the designated marker number for the 

mutually exclusive groups, where an individual RMLP corresponds to each marker that 

consists of breathing motion vectors (three-dimensional coordinates) with time sequence 

k. After finishing the first step of the prediction process for each marker, we define the 

innovation process αi
CP(k) (53) and the filtered weight vector ŵi

CP(k) (55), as shown at 

the EKF block for each marker in Fig. 44.  

For the interactive process of multiple markers, we use the coupling degree μij 

representing the degree to which component (i) depend on one another (j), as shown at 

the coupling matrix block in Fig. 44. The coupling degree μij and the coupling matrix Π 

with p×p matrix including all components of coupling degree can be defined using Eq. 

(52). We may expect combined relationships between marker i and j if the coupling 

degree μij is close to one, i.e., tight coupling, whereas we may expect released 

relationships if the coupling degree is far from one, i.e., loose coupling. With these 
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coupling effects in mind, the prediction system for multiple patients should organize the 

whole respiratory motion datasets into some specific breathing motions that associate 

together in a group based on the respiratory patterns. For such associate processes of the 

multiple patient interactions, we would like to analyze respiratory patterns and extract 

usable prediction parameters which are repeatedly utilized in the training data of a group 

in a manner going back to the learning process of the respiratory prediction. 

 



 

 122

5.3 PROPOSED FILTER DESIGN FOR MULTIPLE PATIENTS 

This Chapter explains the detailed modeling prediction process based on the breathing 

patterns of multiple patients. The procedure for the interactive prediction consists of the 

preprocedure (interactive process for multiple patients) and the intraprocedure (prediction 

and correction process). We show the interactive process for multiple patients in Fig. 45. 

 
Figure 45. Interactive process for multiple patients. 
Here, a multiple markers input in Fig 45 corresponds to three markers in Fig. 44. The preprocedure 
(interactive process for multiple patients) can provide the clustering of breathing pattern based on multiple 
patients and the prediction parameters for each class. 
 
 
In the preprocedure we would like to get the clustering of respiratory motion based on the 

breathing patterns of the multiple patients. After the clustering, each class can have the 

prediction parameters (neuron number for prediction and coupling parameters) for each 

class. The intraprocedure corresponds to the prediction process for each patient in Fig. 44. 

With the prediction parameters of the preprocedure, the intraprocedure can operate to 

predict the respiratory motion of each patient. Chapters 5.3.1 and 5.3.2 explain the 

clustering method for the group, based on breathing patterns and how to find an optimal 

neuron number of the prediction process for each class, respectively. 
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5.3.1 GROUPING BREATHING PATTERN FOR PREDICTION PROCESS 

Fig. 45 illustrates the interactive process, involved in forming a clustering based on the 

breathing patterns of multiple patients. For the first step of CNN, we need to classify the 

breathing patterns of multiple patients. To extract the breathing patterns, we show feature 

selection metrics in Table 14. Murthy et al showed that the breathing stability can be 

quantified by autocorrelation coefficient and delay time [254]. Respiratory motion signal 

may be represented by sinusoidal curve [37] so that each breathing pattern can have 

variable measurements of breathing signal amplitude including acceleration, velocity, and 

standard deviation [148].  The typical vector-oriented feature extraction, exemplified by 

principal component analysis (PCA) and multiple linear regressions (MLR), has been 

widely used [271] [272].  Table 14 shows the feature selection metrics for the clustering 

of breathing patterns. Breathing frequency also showed diversity in individuals [269]. We 

create Table 14 based on previous existences of breathing features, so that the table can 

be variable. We randomly selected 7800 sampling frames (five minutes) for the feature 

extraction with three marker breathing datasets of each patient. 

 
Table 14. Feature selection metrics with description 

Index (x, y, z) Name Description 
1 AMV Autocorrelation  MAX value 
2 ADT Autocorrelation  delay time 
3 ACC Acceleration  variance value 
4 VEL Velocity variance value 
5 BRF Breathing Frequency 
6 FTP Max Power of Fourier transform 
7 PCA Principal Component Analysis Coefficient  
8 MLR Multiple Linear Regression Coefficient 
9 STD Standard deviation of time series data 

10 MLE Maximum Likelihood Estimates 
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We pick up feature extraction criteria that are currently available for the breathing 

patterns in the previous works [37] [148] [254] [271] [272]. The feature extraction 

criteria listed in Table 14 may be duplicated, but we introduce the following discriminant 

criteria to find out the most reliable feature set, e.g. dominant feature vector I=(Ix, Iy, Iz), 

as three coordinate combinations selected from 10 feature metrics, where Ix, Iy and Iz 

correspond to each of the 10 feature metric values indexed in Table 14, so that we can 

have 10C3 (=120) feature combination vectors. The feature metrics for the appropriate 

clustering of breathing patterns have yet to be determined. The objective of this Chapter 

is to select the effective feature combination metric (Î) from the candidate feature 

combination vector (I). For the selection of the estimated feature metrics, we use the 

objective function based on clustered degree using within-class scatter (SW) and between-

class scatter (SB) [206]. Here, the SW is proportional to the number of class (c) and the 

covariance matrix of feature samples based on each class. Accordingly, the SW can be 

expressed as SW = c×Σc
i=1(Si), where c is the number of class and Si is the covariance 

matrix based on feature combination vectors in the ith class. The SB is proportional to the 

covariance matrix of the mean (mi) for the feature combination vector and can be 

expressed as SB = Σc
i=1(ni×(mi−m)2), where ni is the sample number of the feature 

combination vector in the ith class. mi and m are means of the total feature combination 

vector and the feature combination vector in the ith class, respectively. 

Finally, the objective function J based on the SW and the SB to select the optimal feature 

combination vector can be written as J(I, ĉ) = argmin(SW/SB), where I is the candidate 

feature combination vector for breathing patterns clustering based on the given feature 

selection metrics, and ĉ is the estimated class number to get the minimum value of the 
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objective function. To select the optimal combination experimentally, we calculate the 

objective function (J(⋅)) with fixing the candidate feature combination vector (I) and 

increasing the class number c (in our simulation from 2 to 7) in the following equation: 

∑
=

==
7

2

),()(),(minargˆ
cI

cIJIHIHI .       (77) 

With the above equation, we can select the estimated feature combination vector (Î) from 

the candidate feature combination vector (I) with the minimum value of Eq. (77). In the 

experimental Chapter 5.4.2, we will show how to select the estimated feature 

combination vector (Î) with our simulation results, followed by the estimated number of 

classes as c. 

5.3.2 NEURON NUMBER SELECTION 

After grouping based on the breathing patterns, we find the optimal neuron number for 

each group using the Fisher Linear Discriminant [206]. We can design the RMLP with 

multiple hidden layers based on the specific application. In addition, we need to find an 

optimal hidden neuron number to design for multiple layers so that we can make the 

proper RMLP design to minimize the calculation cost and to maximize the prediction 

accuracy.  The objective of this Chapter is to select the proper neuron number for hidden 

layers from a set of n D-dimensional samples identical to the filtering-error covariance 

matrices for each group. After calculating the D-dimensional sample means for each 

group, we can obtain the optimization objective function J(g) based on the Fisher Linear 

Discriminant as J(g)=argmin(SW/SB), where g is the number of groups in the given 

samples.  
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The criterion based on J(g) reminds us that  the filtering-error covariance matrices within 

each group should be minimized and the filtering-error covariance matrices between 

groups should be maximized in the given number [206]. With the objective function J(g) 

in mind, we can find the optimized number of group (g) for the respiratory prediction in 

the recurrent network in a manner selecting the smallest J(⋅) as the optimized group 

number (g). We may decide that the proposed prediction method could be more 

discriminated by comparing the objective function values J(⋅) as the discriminant degree 

at the selected (g) [7]. This value can be incorporated to train recurrent networks and 

predict respiratory motions of multiple patients for the proposed prediction process. 
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5.4 EXPERIMENTAL RESULTS 

5.4.1 BREATHING MOTION DATA 

For the prediction of respiratory motion, we used patient breathing datasets recorded at 

the Georgetown University CyberKnife treatment facility. Each breathing recording has 

three marker breathing datasets, with a 26Hz sampling frequency, where each maker has 

three-coordinates. That means potential inputs are as follows: (x1, y1, z1), (x2, y2, z2), and 

(x3, y3, z3). The output is the position of breathing motion corresponding to 3-coordinates. 

The total 130 patients breathing recordings are randomly selected so that breathing 

datasets can be mixed up with highly unstable and irregular breathing motions. 

 

Table 15. The characteristics of the breathing datasets 
Total Patients Average Records Minimum Records Maximum Records 

130 66 minutes 25 minutes 2.2 hours 

 

Table 15 shows the characteristics of the breathing datasets. The breathing recording 

times average 66 minutes in duration, where the minimum and the maximum recording 

times are 25 minutes and 2.2 hours, respectively. Each patient’s recording was used to 

train and predict respiratory motion. We used 5 minute sampling data for the feature 

extraction.  

5.4.2 FEATURE SELECTION METRICS 

We can derive 120 (=10C3) feature combination vectors, i.e., choose three out of the 10 

features defined in Table 14, so that we can span three axis vectors corresponding to the 

features chosen (shown in the next Chapter). As shown in the following figure, using 
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results of the minimum value of H(I), we can select the combination number (105, 106, 

107, 108, 109, 110, 117, 118, 119, 120) corresponding to the estimated feature 

combination vectors (Î), i.e., the feature combinations with Breath Frequency (BRF), 

Principal Component Coefficient (PCA), Maximum Likelihood Estimates (MLE), 

Multiple Linear Regression Coefficient (MLR), and Standard Deviation (STD). This 

result also confirms that the three chosen axes can provide the distinct discriminate 

feature distribution. 
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Figure 46. Dominant feature selection with Feature Combination Vector. 
(a) whole range and (b) extended range. We can define 120 feature combination vectors (I) with 10 feature 
selection metrics as shown in Table 14 and select the dominant feature combination vectors (Î) with the 
minimum value of H(I), i.e. the feature combinations with Breath Frequency (BRF), Principal Component 
Coefficient (PCA), Maximum Likelihood Estimates (MLE), Multiple Linear Regression Coefficient (MLR) 
and Standard Deviation (STD). 
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Now, we would like to choose the class number (c) with the minimum value of the 

objective function (J(c)). The figure shows the clustering of the estimated feature 

combination vector (Î) with respect to the class number (c=2,…, 7). We calculate the 

objective function value (J(c)) with a different class number. The class number (c=5) is 

chosen to minimize the criterion J with the corresponding class. 
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Figure 47. Clustering of 130 patients datasets with the dominant class number. 
After calculating the objective function value (J(c)) with different class number, we can select the dominant 
class number with the minimum value of J(c). Therefore, with the dominant class number (c=5), we can 
make the clustering of 130 patients datasets in Fig. 47. Here, each class (i.e. 1, 2, 3, 4, and 5) has different 
number of patients (i.e. 40, 27, 13, 29, and 21, respectively). 
 
 
With increasing the cluster number (c), the estimated class number (ĉ) is selected to get 

the minimum of the objective function value (J(c)). We can notice that the objective 

function has the minimum when c = 5, as the estimated class number (ĉ) to 5. Now, we 

can make the clustering with the estimated class number (ĉ = 5). Accordingly, for the 

clustering with 130 patient datasets, we have made a clustering with the feature 

combination vector (BRF, PCA, and MLE) and the estimated class number (ĉ = 5). That 

means 130 patient datasets are placed into five classes as shown in Fig. 47. For the 
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prediction process, each class has prediction parameters, i.e., the optimal neuron number 

for RMLP based on Fisher Linear Discriminant (explained in Chapter 5.3.2) and coupling 

parameters Eq. (52) that can be experimentally derived for each class. 

 

5.4.3 COMPARISON ON ESTIMATION PERFORMANCE 

We have evaluated the estimation of the respiratory motion by comparing the proposed 

method CNN with the alternative recurrent neural network (RNN). For the RMLP 

implementation of the proposed CNN, we used a multilayer perceptron with two hidden 

layers, where the first hidden layer is recurrent and the second one is not. Each hidden 

layer has two hidden neurons that were chosen based on the Fisher Linear Discriminant 

(in Chapter 4.3.3). For the alternate RNN analyzed in this study, we used two hidden 

layers with nine input neurons and one output neuron, where each input neuron is 

corresponding to one coordinate of three-dimensional position. For the network training 

on both methods, we used 3000 sampling frames with 26 Hz. 
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Figure 48. Comparison on estimation performance of DB89 with 192 ms latency. 
(a) CNN estimation performance, and (b) RNN estimation performance. We can notice that the target 
estimation values of the proposed CNN align closer to the measurement values than those of RNN. Here, 
the standard deviation values of CNN and RNN are 0.010 and 0.021, respectively in this specific data with 
the 200-second recordings. 
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Fig. 48 shows the estimation performance of the respiratory motion, i.e., CNN and RNN, 

including the measurement and error values. The unit of vertical axis in Fig. 48 is 

normalized for the amplitude of the sensor position corresponding to the real measurement 

dataset range [−1.7021×103, −1.6891×103], i.e. the maximum value as 1 and the minimum 

value as −1. As can be seen in Fig. 48(a), the proposed method CNN aligns closer to the 

measurement values than the other values in Fig. 48(b). The standard deviation values of 

CNN and RNN for these specific data with the 200-second recordings are 0.010 and 

0.021, respectively. That means CNN reduces the prediction error by as much as two 

times compared to RNN. 

 

5.4.4 PREDICTION ACCURACY WITH TIME HORIZONTAL WINDOW 

Prediction Time Horizon represents the time interval window to predict the future 

sensory signal. For comparison with RNN, we compare the error performance with 

respect to a variety of prediction time horizons using the normalized root mean squared 

error, Eq. (76) in Chapter 4.4.5.     
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Figure 49. Error Performance with different Prediction Time Horizons (CNN vs RNN).   
Here, the average NRMSEs for CNN and RNN are 0.16 and 0.33, respectively. 
Fig. 49 shows the NRMSE values of all the classes with respect to middle (192ms), and 

large (500ms) time prediction. The red symbols for RNN have more errors than the blue 

symbols for the proposed CNN over all the classes. The NRMSE for CNN was improved 

in all of the patients except two in class 1 (patient numbers 8 and 86) and three in class 2 

(patient numbers 22, 38 and 51). We also show the average error performance for each 

class in Table 16. In the short time prediction (38ms), all the classes have improved more 

than 30%. The 50% improvement was achieved in classes 3, 4, and 5 of the large time 

prediction (500ms). As shown in prediction error of Table 16, the proposed CNN works 

for any five classes, thus there are no particular differences of error among the five 

classes because the criterion of feature selections in CNN is designed to minimize the 

error. 

Table 16. Average Error Performance among a variety of Prediction Time (CNN vs RNN) 
 Prediction Time Horizon (CNN/RNN) 
 38.46ms 115.38 ms 192.3 ms 269.23 ms 346.15 ms 423.07 ms 500 ms 

Class 1 0.088/0.262 0.104/0.299 0.121/0.344 0.137/0.388 0.157/0.455 0.179/0.551 0.222/0.766 
Class 2 0.089/0.260 0.109/0.349 0.130/0.430 0.150/0.510 0.171/0.588 0.198/0.708 0.237/0.991 
Class 3 0.144/0.491 0.160/0.541 0.177/0.617 0.192/0.675 0.214/0.738 0.255/0.863 0.314/1.012 
Class 4 0.125/0.354 0.139/0.387 0.156/0.472 0.173/0.524 0.191/0.610 0.220/0.701 0.274/0.847 
Class 5 0.098/0.294 0.110/0.440 0.125/0.495 0.145/0.558 0.175/0.625 0.208/0.708 0.260/0.815 
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(Unit: NRMSE) 

 
To compare the experimental results with other peer studies, we used experimental 

results of i) optimized adaptive neural network prediction (O-ANN) [254] that is 

individually optimized to each patient, ii) adaptive linear prediction (ALP) as a 

benchmark method, and iii) kernel density estimation-based prediction (KDE) [5] that is 

a statistical method to estimate the joint probability distribution of the covariate and 

response variable using kernel density approximation. The NRMSE using i) O-ANN was 

applied to the patient breathing data of the CyberKnife treatment facility at Georgetown 

University, and ii) ALP and iii) KDE were applied to patient data acquired with real-time 

position management, called the RPM system by Varian Medical, Palo Alto, CA.  The 

error performance for these studies can be improved from the standard RNN; the 

proposed CNN 47.21% (the best improvement), O-ANN 25.27%, ALP 23.79% and KDE 

33.83%, respectively. 

 

5.4.5 PREDICTION OVERSHOOT ANALYSIS 

We would like to evaluate the prediction accuracy with evaluation criteria using the 

marginal value (γ) (67) in Chapter 4.3.4. We add and subtract the marginal value from the 

measurement values, so that we can get the upper and lower bounds for each patient; for 

example, Patient DB35 and DB88 shown in Fig. 50. 
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Figure 50. Prediction Overshoot Comparison 
(a) Patient DB35 of Class 1 (time index: 2.906×104 ~ 2.909×104), and Patient DB88 of Class 5 (time index: 
3.37×104 ~ 3.373×104) with the sampling rate of 5 Hz. The RNN presents more prediction overshoots in 
comparison to CNN. The proposed CNN has no prediction overshoot, whereas the overshoot percentage of 
RNN is more than 50 % in the regular breathing pattern (a). In the irregular breathing pattern (b), the 
overshoot percentages of CNN and RNN are 23 % and 46 %, respectively, in this particular time index. 
 
 
Fig. 50 shows the prediction overshoots of regular motion (DB35 in Class 1) and 

irregular motion (DB88 in Class 5). In the regular breathing patterns of Fig. 50(a), the 

proposed CNN has no prediction overshoot, whereas the overshoot percentage of RNN is 

more than 40 %. In the irregular breathing pattern of Fig. 50(b), the figure shows that 

most estimation values of the proposed CNN are within the upper and lower bounds, 

whereas some estimation values of RNN lie outside the confidence level. The time index 

duration out of the overshoot marginal value (γ) for this particular patient is 23.22 % 

using CNN and 46.45 % using RNN, respectively. 
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Figure 51. Prediction overshoot comparison over all the patients with 192ms latency. 
The prediction overshoots with CNN were improved in the most of the patients except five patients in the 
class 1 (patient numbers 8, 10, 12, 47 and 86), and three patients in the class 2 (patient numbers 20, 22 and 
38). 
 
 
For the prediction overshoot comparison of all 130 patients, we calculated the number of 

the total frame and overshoot frames for each patient and show the prediction overshoot 

frames for the proposed CNN and the alternate RNN with respect to all the classes in Fig. 

51. Fig. 51 shows that most of the prediction overshoot numbers for CNN are much 

smaller than those for RNN over all the patients, even though there are some exceptions, 

i.e. five patients in the class 1 (patient numbers 8, 10, 12, 47 and 86), and three patients in 

the class 2 (patient numbers 20, 22 and 38). For five classes among the 130 patients, we 

calculate the averaged overshoot frames over the total frame with respect to the 

prediction time horizon as shown in Table 17. As shown in prediction overshoot of Table 

17, the proposed CNN does not directly address the criterion of overshoot regarding the 

class selection among multiple patients; therefore the larger size of patients may have 

relatively large overshoot for in the particular class. 
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Table 17. Averaged Prediction Overshoot (CNN vs RNN) 

 Prediction Overshoot Percentage (CNN/RNN) 
 38.46ms 115.38 ms 192.3 ms 269.23 ms 346.15 ms 423.07 ms 500 ms 

Class 1 12.20/34.99 13.98/45.33 15.90/43.75 16.74/42.11 19.88/36.60 13.77/31.81 19.91/41.62 
Class 2 10.86/35.32 15.39/36.63 14.61/41.59 17.92/37.65 14.61/29.96 21.88/35.62 17.06/37.31 
Class 3 5.20/28.54 4.16/34.15 4.93/35.17 5.20/40.13 10.36/30.37 15.13/32.26 15.14/38.16 
Class 4 3.35/38.04 4.11/37.54 4.90/40.76 9.03/40.97 9.56/39.96 11.19/39.21 15.53/37.86 
Class 5 6.71/34.45 7.24/34.10 6.72/32.31 7.24/35.41 7.28/35.22 10.34/31.93 10.69/36.93 

(Unit: # Overshoot frame/ # Total frame: %) 
 
 

The averaged overshoot frames of RNN are more than 35% overall the classes, whereas 

the averaged overshoot frames of the proposed CNN are within 13% in the short time 

prediction. Note that averaged overshoot frames are less than 7% in the short and middle 

time prediction of classes 3, 4 and 5. Based on Table 17, the proposed CNN shows more 

reliable prediction in comparison with the alternate RNN over all the patients. 

 

5.4.6 COMPARISONS ON COMPUTATIONAL COMPLEXITY 

In this Chapter, we would like to evaluate the computational complexity of the proposed 

method. For the comparisons of the computational complexity, we calculate the CPU 

time used for prediction process over all the total frames. 

 

Table 18. Comparisons on Computational Complexity 
Methods C-NN  R-NN 

CPU Time used (Unit: Millisecond/#Total frame) 15.11 14.80 

 
 
Table 18 shows the average CPU time used for computational complexity over all the 

patients. The proposed method needs more computational time for the prediction process 

because it is working with three independent RMLPs for each marker, whereas RNN 
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operates with single target datasets. Moreover, the proposed CNN has a coupling matrix 

to organize three independent processes for each marker. Even though the proposed CNN 

required more computational time, the prediction accuracy should compensate for the 

computational complexity. With enough computer power these days, the computer time 

will probably be reduced to RNN levels within two years. We set the prediction time 

horizon in this study from 38.46ms to 500ms so that any motion can happen within 15ms 

on average for the improved prediction. 
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5.5 SUMMARY 

In this Chapter, we proposed a respiratory motion prediction for multiple patient 

interactions using EKF for RNN. When the breathing patterns for the multiple patients 

are available, all the patients can be classified into several classes based on breathing 

features. After this clustering, appropriate parameter selections with respect to each 

class—e.g., optimal neuron number for the prediction process of the neural network 

and/or interactive (coupling) degree for the multiple breathing information and so forth—

can improve the prediction accuracy in comparison to the previous prediction method, 

because the multiple respiratory information does not have identical relationships, but 

relationships that closely resemble one another. That means that when the system for 

respiratory prediction considers the breathing patterns of multiple patients, it can yield a 

more accurate prediction performance than when it does not.  

For the evaluation criteria of prediction, we showed NRMSE (which is a normalized error 

value between the predicted and actual signal over all the samples), and prediction 

overshoot as the reference value to judge how many signals lie outside the confidence 

level. Our experimental results reveal that the proposed CNN needs more computational 

time to process due to the abundant breathing information and the additional signal 

processing and correction process for each RMLP. The proposed CNN, however, can 

improve NRMSE values by 50% in contrast to the RNN. Moreover, the proposed CNN 

decreases the number of average prediction overshoot values by 8.37%, whereas the 

RNN generates prediction overshoot values in more than 40% over all the patients. 
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CHAPTER 6 IRREGULAR BREATHING CLASSIFICATION FROM MULTIPLE PATIENT 

DATASETS 

Complicated breathing behaviors including uncertain and irregular patterns can affect the 

accuracy of predicting respiratory motion for precise radiation dose delivery [44] [36] 

[13] [43] [35] [37]. So far investigations on irregular breathing patterns have been limited 

to respiratory monitoring of only extreme inspiration and expiration [148]. Using 

breathing traces acquired on a Cyberknife treatment facility, we retrospectively 

categorized breathing data into several classes based on the extracted feature metrics 

derived from breathing data of multiple patients. The novelty of this study is that the 

classifier using neural networks can provide clinical merit for the statistically quantitative 

modeling of irregular breathing motion based on a regular ratio representing how many 

regular/irregular patterns exist within an observation period. We propose a new approach 

to detect irregular breathing patterns using neural networks, where the reconstruction 

error can be used to build the distribution model for each breathing class. The sensitivity, 

specificity and receiver operating characteristic (ROC) curve of the proposed irregular 

breathing pattern detector was analyzed. The experimental results of 448 patients’ 

breathing patterns validated the proposed irregular breathing classifier. 
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6.1 INTRODUCTION 

Rapid developments in image-guided radiation therapy offer the potential of precise 

radiation dose delivery to most patients with early or advanced lung tumors [1] [13] [36] 

[43] [44] [273]. While early stage lung tumors are treated with stereotactic methods, 

locally advanced lung tumors are treated with highly conformal radiotherapy, such as 

intensity modulated radiotherapy (IMRT) [273]. Both techniques are usually planned 

based on four-dimensional computed tomography [1]. Thus, the prediction of individual 

breathing cycle irregularities is likely to become very demanding since tight safety 

margins will be used. Safety margins are defined based on the initial planning scan that 

also analyzes the average extent of breathing motion, but not the individual breathing 

cycle. In the presence of larger respiratory excursions, treatment can be triggered by 

respiration motion in such a way that radiation beams are only on when respiration is 

within predefined amplitude or phase [2].  Since margins are smaller with more 

conformal therapies, breathing irregularities might become more important unless there is 

a system in place that can stop the beam in the presence of breathing irregularities. Real-

time tumor-tracking, where the prediction of irregularities really becomes relevant [35], 

has yet to be clinically established. 

The motivation and purpose of respiratory motion classification for irregular breathing 

patterns are that the irregular respiratory motion can impact the dose calculation for 

patient treatments [3] [149]. A highly irregularly breathing patient may be expected to 

have a much bigger internal target volume (ITV) than a regular breathing patient, where 

ITV contains the macroscopic cancer and an internal margin to take into account the 

variations due to organ motions [149]. Thus, the detection of irregular breathing motion 
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before and during the external beam radiotherapy is desired for optimizing the safety 

margin [3]. Only a few clinical studies, however, have shown a deteriorated outcome 

with increased irregularity of breathing patterns [1] [3] [35], probably due to the lack of 

technical development in this topic. Other reasons confounding the clinical effect of 

irregular motion such as variations in target volumes or positioning uncertainties also 

influence the classification outcomes [3] [35] [149] [269].  The newly proposed statistical 

classification may provide clinically significant contributions to optimize the safety 

margin during external beam radiotherapy based on the breathing regularity classification 

for the individual patient. An expected usage of the irregularity detection is to adapt the 

margin value, i.e., the patients classified with regular breathing patterns would be treated 

with tight margins to minimize the target volume.  For patients classified with irregular 

breathing patterns safety margins may need to be adjusted based on the irregularity to 

cope with baseline shifts or highly fluctuating amplitudes that are not covered by 

standard safety margins [3] [149].  

There exists a wide range of diverse respiration patterns in human subjects [3] [149] 

[269] [275] [276] [277] [278]. However, the decision boundary to distinguish the 

irregular patterns from diverse respirations is not clear yet [148] [269]. For example, 

some studies defined only two (characteristic and uncharacteristic [3]) or three (small, 

middle, and large [149]) types of irregular breathing motions based on the breathing 

amplitude to access the target dosimetry [3] [149]. In this study, respiratory patterns can 

be classified as normal or abnormal patterns based on a regular ratio (γ) representing how 

many regular/irregular patterns exist within an observation period [148].  The key point 

of the classification as normal or abnormal breathing patterns is how to extract the 
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dominant feature from the original breathing datasets [271] [272] [279] [280] [286] [287] 

[289]. For example, Lu et al. calculated a moving average curve using a fast Fourier 

transform to detect respiration amplitudes [148]. Some studies showed that the flow 

volume curve with neural networks can be used for the classification of normal and 

abnormal respiratory patterns [276] [277]. However, spirometry data are not commonly 

used for abnormal breathing detection during image-guided radiation therapy [276]. 

To detect irregular breathing, we present a method that retrospectively classifies 

breathing patterns using multiple patients-breathing data originating from a Cyberknife 

treatment facility [281]. The multiple patients-breathing data contain various breathing 

patterns. For the analysis of breathing patterns, we extracted breathing features, e.g. 

vector-oriented feature [271] [272], amplitude of breathing cycle [37] [148] and breathing 

frequency [269], etc., from the original dataset, and then classified the whole breathing 

data into classes based on the extracted breathing features. To detect irregular breathing, 

we introduce the reconstruction error using neural networks as the adaptive training value 

for anomaly patterns in a class. 

The contribution of this study is threefold: First, we propose a new approach to detect 

abnormal breathing patterns with multiple patients-breathing data that better reflect tumor 

motion in a way needed for radiotherapy than the spirometry. Second, the proposed new 

method achieves the best irregular classification performance by adopting Expectation- 

Maximization (EM) based on the Gaussian Mixture model with the usable feature 

combination from the given feature extraction metrics. Third, we can provide clinical 

merits with prediction for irregular breathing patterns, such as to validate classification 

accuracy between regular and irregular breathing patterns from ROC curve analysis, and 
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to extract a reliable measurement for the degree of irregularity. This study is organized as 

follows. In Chapter 6.2, the theoretical background for the irregular breathing detection is 

discussed briefly. In Chapter 6.3, the proposed irregular breathing detection algorithm is 

described in detail with the feature extraction method. The evaluation criteria of irregular 

classifier and the experimental results are presented in Chapter 6.4 and 6.5. A summary 

of the performance of the proposed method and conclusion are presented in Chapter 6.6. 
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6.2 RELATED WORK 

Modeling and prediction of respiratory motion are of great interest in a variety of 

applications of medicine [7] [15] [17] [100] [274]. Variations of respiratory motions can 

be represented with statistical means of the motion [17] which can be modeled with finite 

mixture models for modeling complex probability distribution functions [190]. This study 

uses expectation-maximization (EM) algorithm for learning the parameters of the mixture 

model [188] [290]. In addition, neural networks are widely used for breathing prediction 

and for classifying various applications because of the dynamic temporal behavior with 

their synaptic weights [35] [36] [282] [283] [288]. Therefore, we use neural networks to 

detect irregular breathing patterns from feature vectors in given samples. 

 

6.2.1 EXPECTATION-MAXIMIZATION (EM) BASED ON GAUSSIAN MIXTURE MODEL 

A Gaussian mixture model is a model-based approach that deals with clustering problems 

in attempting to optimize the fit between the data and the model. The joint probability 

density of the Gaussian mixture model can be the weighted sum of m > 1 components 

φ(x| μm, Σm). Here φ is a general multivariate Gaussian density function, expressed as 

follows [188]: 
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where x is the d-dimensional data vector, and μm and Σm are the mean vector and the 

covariance matrix of the mth component, respectively. A variety of approaches to the 

problem of mixture decomposition has been proposed, many of which focus on 

maximum likelihood methods such as an EM algorithm [290]. 



 

 145

An EM algorithm is a method for finding maximum likelihood estimates of parameters in 

a statistical model. EM alternates between an expectation step, which computes the 

expectation of the log-likelihood using the current variable estimate, and a maximization 

step, which computes parameters maximizing the expected log-likelihood collected from 

E-step. These estimated parameters are used to select the distribution of variable in the 

next E-step [190]. 

 

6.2.2 NEURAL NETWORK (NN) 

A neural network is a mathematical model or computational model that is inspired by the 

functional aspects of biological neural networks [146]. A simple NN consists of an input 

layer, a hidden layer, and an output layer, interconnected by modifiable weights, 

represented by links between layers. Our interest is to extend the use of such networks to 

pattern recognition, where network input vector (xi) denotes elements of extracted 

breathing features from the breathing dataset and intermediate results generated by 

network outputs will be used for classification with discriminant criteria based on 

clustered degree. Each input vector xi is given to neurons of the input layer, and the 

output of each input element makes equal to the corresponding element of the vector. The 

weighted sum of its inputs is computed by each hidden neuron j to produce its net 

activation (simply denoted as netj).  Each hidden neuron j gives a nonlinear function 

output of its net activation Φ(⋅), i.e., Φ(netj) = Φ(ΣN
i=1 xiwji+wj0) in Eq. (79). The process 

of output neuron (k) is the same as the hidden neuron. Each output neuron k calculates the 

weighted sum of its net activation based on hidden neuron outputs Φ(netj) as follows 

[206]: 
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where N and H denote neuron numbers of the input layer and hidden layer. The subscript 

i, j and k indicate elements of the input, hidden and output layers, respectively. Here, the 

subscript 0 represents the bias weight with the unit input vector (x0=1). We denote the 

weight vectors wji as the input-to-hidden layer weights at the hidden neuron j and wkj as 

the hidden-to-output layer weights at the output neuron k. Each output neuron k calculates 

the nonlinear function output of its net activation Φ(netk) to give a unit for the pattern 

recognition. 
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6.3 PROPOSED ALGORITHMS ON IRREGULAR BREATHING CLASSIFIER 

As shown in Fig. 52, we first extract the breathing feature vector from the given patient 

datasets in Chapter 6.3.1. The extracted feature vector can be classified with the 

respiratory pattern based on EM in Chapter 6.3.2. Here, we assume that each class 

describes a regular pattern. In Chapter 6.3.3, we will calculate a reconstruction error for 

each class using neural network. Finally, in Chapter 6.3.4, we show how to detect the 

irregular breathing pattern based on the reconstruction error. 
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Figure 52. Irregular Breathing Pattern Detection with the proposed algorithm. 

6.3.1 FEATURE EXTRACTION FROM BREATHING ANALYSIS 

Feature extraction is a preprocessing step for classification by extracting the most 

relevant data information from the raw data [271]. In this study, we extract the breathing 

feature from patient breathing datasets for the classification of breathing patterns. The 

typical vector-oriented feature extraction including principal component analysis (PCA) 

and multiple linear regressions (MLR) have been widely used [271] [272]. Murphy et al. 

showed that autocorrelation coefficient and delay time can represent breathing signal 
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features [35]. Each breathing signal may be sinusoidal variables [37] so that each 

breathing pattern can have quantitative diversity of acceleration, velocity, and standard 

deviation based on breathing signal amplitudes [148]. Breathing frequency also 

represents breathing features [269]. 

Table 19. Feature Extraction metrics including the formula and notation 
Name Formula 
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Table 19 shows the feature extraction metrics for the breathing pattern classification. We 

create Table 19 based on previous entities for breathing features, so that the table can be 

variable. The feature extraction metrics can be derived from multiple patient datasets 

with the corresponding formula. To establish feature metrics for breathing pattern 

classification, we define the candidate feature combination vector ( x ) from the 

combination of feature extraction metrics in Table 19. We defined 10 feature extraction 

metrics in Table 19. The objective of this Chapter is to find out the estimated feature 

metrics ( x̂ ) from the candidate feature combination vector ( x ) using discriminant 

criterion based on clustered degree. We can define the candidate feature combination 

vector as x =(x1,..., xz), where variable z is the element number of feature combination 
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vector, and each element corresponds to each of the feature extraction metrics depicted in 

Table 19. For example, the feature combination vector may be defined as x =(x1, x2, x3) if 

the feature combination vector has feature extraction of BRF, PCA, and MLR. The total 

number (Λ) of feature combination vector using feature extraction metrics can be 

expressed as follows: 
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=Λ
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2
),10(

z
zC ,         (80) 

where, the combination function C(10, z) is the number of ways of choosing z objects 

from ten feature metrics. For the intermediate step, we may select which features to use 

for breathing pattern classification with the feature combination vectors, i.e., the 

estimated feature metrics ( x̂ ). For the efficient and accurate classification of breathing 

patterns, selection of relevant features is important [289]. In this study, the discriminant 

criterion based on clustered degree can be used to select the estimated feature metrics, i.e., 

objective function J(⋅) using within-class scatter (SW) and between-class scatter (SB) [206] 

[284]. Here we define the SW as follows: 
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where z is the element number of a feature combination vector in SW, G is the total 

number of class in the given datasets and ni is the data number of the feature combination 

vector in the i-th class. We define the SB as follows: 
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where n is the total data number of the feature combination vector. The objective function 

J to select the optimal feature combination vector can be written as follows: 
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where x̂  can be the estimated feature vector for the rest of the modules for breathing 

patterns classification. 

 

6.3.2 CLUSTERING OF RESPIRATORY PATTERNS BASED ON EM 

After extracting the estimated feature vector ( x̂ ) for the breathing feature, we can model 

the joint probability density that consists of the mixture of Gaussians φ( x̂ |μm, Σm) for the 

breathing feature as follows [188] [190]: 
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where x̂  is the d-dimensional feature vector, αm is the prior probability, μm is the mean 

vector, Σm is the covariance matrix of the mth component data, and the parameter 

Θ≡{αm,μm, Σm}M
m=1 is a set of finite mixture model parameter vectors. For the solution of 

the joint distribution p( x̂ , Θ), we assume that the training feature vector sets x̂ k are 

independent and identically distributed, and our purpose of this Chapter is to estimate the 

parameters {αm, μm, Σm}of the M components that maximize the log-likelihood function 

as follows [188] [290]: 
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where M and K are the total cluster number and the total number of patient datasets, 

respectively. Given an initial estimation {α0, μ0, Σ0}, E-step in the EM algorithm 

calculates the posterior probability p(m| x̂ k) as follows: 
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and then M-step is as follows: 
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With Eq. (86) in the E-step, we can estimate the tth posterior probability p(m| x̂ k). Based 

on this estimate result the prior probability (αm), the mean (μm) and the covariance (Σm) in 

the (t+1)th iteration can be calculated using Eq. (87) in the M-step. Based on clustering of 

respiratory patterns, we can make a class for each breathing feature with the 

corresponding feature vector ( x̂
m) of class m. With the classified feature combination 

vector ( x̂
m), we can get the reconstruction error for the preliminary step to detect the 

irregular breathing pattern. 

 

6.3.3 RECONSTRUCTION ERROR FOR EACH CLUSTER USING NN 

Using the classification based on EM, we can get M class of respiratory patterns, as 

shown in Fig. 52. With the classified feature vectors ( x̂
m), we can reconstruct the 

corresponding feature vectors (om) with the neural networks in Fig. 53 and get the 

following output value, 
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where Φ is the nonlinear activation function, and N and H denote the total neuron number 

of input and hidden layers, respectively. The neural weights (w) are determined by 

training samples of multiple patient datasets for each class M. Then, the neural networks 

calculate the reconstruction error (δm) for each feature vector x̂ i using a multilayer 

perceptron for each class in Fig. 53, as follows [282]: 
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where i is the number of patient datasets in a class m, and f is the number of features. 

After calculating the reconstruction error (δm) for each feature vector in Fig. 53, δm can be 

used to detect the irregular breathing pattern in the next Chapter. 
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Figure 53. Reconstruction Error to detect the irregular pattern using NN. 
 
 

6.3.4 DETECTION OF IRREGULARITY BASED ON RECONSTRUCTION ERROR 

For the irregular breathing detection, we introduce the reconstruction error (δm), which 

can be used as the adaptive training value for anomaly pattern in a class m. With the 
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reconstruction error (δm), we can construct the distribution model for each cluster m. That 

means the patient data with small reconstruction error can have a much higher probability 

of becoming regular than the patient data with many reconstruction errors in our 

approach. For class m, the probability (βm), class means (νm) and covariance Σm can be 

determined as follows: 
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where I(m| x̂ i)=1 if x̂ i is classified into class m; otherwise I(m| x̂ i)=0, Mm is the mean value 

of the classified feature vectors ( x̂
m) in class m, and K is the total number of the patient 

datasets. To decide the reference value to detect the irregular breathing pattern, we 

combine the class means (91) and the covariance (92) with the probability (90) for each 

class as follows: 
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With Eq. (93), we can make the threshold value (ξm) to detect the irregular breathing 

pattern in Eq. (94), as follows: 

m

m
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where Lm is the total number of breathing data in class m. For each patient i in class m, we 

define Pm as a subset of the patient whose score (δm
i) is within the threshold value (ξm) in 
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class m and 1−Pm as a subset of the patient whose score (δm
i) is greater than the threshold 

value (ξm) in class m, as shown in Fig. 54. 

 

Figure 54. Detection of regular/irregular patterns using the threshold value (ξm) 
 
 
The digit “1” represents the entire patient set for class m in Fig. 54. With Fig. 54 we can 

detect the irregular breathing patterns in the given class m with the threshold value (ξm). 

Accordingly, all the samples within the threshold value highlighted with yellow in Fig. 

54 can be the regular respiratory patterns, whereas the other samples highlighted with 

gray in Fig. 54 can become the irregular respiratory patterns. 

Fig. 54 shows that the threshold value (ξm) depicted by dotted lines can divide the regular 

respiratory patterns (Pm) from the irregular respiratory patterns (1−Pm) for each class m. 

As shown in the upper left corner in Fig. 54, we can summarize the process of the 

regular/irregular breathing detection, and denote the regular respiratory patterns 

highlighted with yellow as ∪M
m=1(Pm)=P1∪⋅⋅⋅∪Pm∪⋅⋅⋅∪PM and the irregular respiratory 
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patterns highlighted with gray as ∩M
m=1(1−Pm)= (1−P1)∩⋅⋅⋅∩(1−Pm)∩⋅⋅⋅∩(1−PM). We 

will use these notations for the predicted regular/irregular patterns in the following 

Chapter. 
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6.4 EVALUATION CRITERIA FOR IRREGULAR BREATHING CLASSIFIER 

6.4.1 SENSITIVITY AND SPECIFICITY 

We apply standard sensitivity and specificity criteria as statistical measures of the 

performance of a binary classification test for irregularity detection. The classifier result 

may be positive, indicating an irregular breathing pattern as the presence of an anomaly. 

On the other hand, the classifier result may be negative, indicating a regular breathing 

pattern as the absence of the anomaly. Sensitivity is defined as the probability that the 

classifier result indicates a respiratory pattern has the anomaly when in fact they do have 

the anomaly. Specificity is defined as the probability that the classifier result indicates a 

respiratory pattern does not have the anomaly when in fact they are anomaly-free, as 

follows [285]: 

True Positives (TP) Sensitivity = True Positives (TP) + False Negatives (FN) 
  

True Negatives (TN) Specificity = True Negatives (TN) + False Positives (FP) 
  

For the sensitivity and specificity, we can use Fig. 54 as the hypothesized class, i.e., the 

predicted regular or irregular pattern, as follows: 
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The proposed classifier described in Chapter 6.3 should have high sensitivity and high 

specificity. Meanwhile, the given patient data show that the breathing data can be mixed 

up with the regular and irregular breathing patterns in Fig. 55. During the period of 

observation (T), we notice some irregular breathing pattern. Let us define BCi as the 
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breathing cycle range for the patient i as shown in Table 19 and ψi as the number of 

irregular breathing pattern region between a maximum (peak) and a minimum (valley). 
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Figure 55. True positive range (RTP) vs. True negative range (RTN).  
This figure shows how to decide RTP or RTN of patient i (DB17). In this example, the breathing cycle (BCi), 
the period of observation (Ti), and the sum of ψi (Σjψij) are given by the numbers of 4.69, 250.92, and 26, 
respectively. Accordingly, we can calculate the ratio (γi) of the true negative range (Ri

TN) to the period of 
observation (Ti), i.e.. 0.75. That means 75% of the breathing patterns during the observation period show 
regular breathing patterns in the given sample. 
 

For the patient i, we define the true positive/negative ranges (Ri
TP/Ri

TN) and the regular 

ratio (γi) as follows: 
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where the ratio (γi) is variable from 0 to 1. For the semi-supervised learning of the TP and 

TN in the given patient datasets, we used the ratio (γi) of the true negative range (Ri
TN) to 

the period of observation (Ti) in Eq. (96). Let us denote Ψth as the regular threshold to 

decide whether the patient dataset is regular or not. For patient i, we would like to decide 

TP or TN based on values with the ratio (γi) and the regular threshold (Ψth), i.e., if the 

ratio (γi) of patient i is greater than the regular threshold (Ψth), the patient is true negative, 

otherwise (γi≤Ψth) true positive. We should notice also that the regular threshold can be 
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variable from 0 to 1. Accordingly, we will show the performance of sensitivity and 

specificity with respect to the variable regular threshold in Chapter 6.5.5. 

6.4.2 RECEIVER OPERATING CHARACTERISTICS (ROC) 

An ROC curve is used to evaluate irregular breathing pattern with true positive rate vs. 

regular breathing pattern with false positive rate. For the concrete analysis of the given 

breathing datasets, we would like to show a ROC curve with respect to different regular 

thresholds. In addition, we will change the discrimination threshold by the period of 

observation (Ti) to validate the performance of the proposed binary classifier system.  

To predict the irregular breathing patterns from the patient datasets, we may evaluate the 

classification performance by showing the following two ROC analysis: 

 As the first ROC, we may increase the threshold value ξm defined in (94) in Chapter 

6.3.4, from 0.1 to 0.99. By changing the observation period Ti of 900, 300, and 100 

seconds, the system may include the irregular breathing patterns extracted under the 

different parameters of ξm. Specifically, depending on the observation period Ti, we 

would like to adjust the threshold value ξm for the ROC evaluation of the proposed 

classifier. 

As the second ROC, we may increase the regular threshold (Ψth) so that the patient 

datasets with the ratio (γi) of patient i may be changed from true negative to true positive. 

For the analysis based on the regular threshold, we extract the ratio (γi) of patient i by 

changing the observation period Ti of 900, 300, and 100 seconds. The regular threshold 

Ψth can be variable from 0.1 to 0.99, especially by changing the regular threshold Ψth of 
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0.80, 0.85, and 0.90, defined in Chapter 6.4.1. Depending on the regular threshold (Ψth), 

ROC is analyzed for the performance of the proposed classifier. 
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6.5 EXPERIMENTAL RESULTS 

6.5.1 BREATHING MOTION DATA 

Three channel breathing datasets with a sampling frequency of 26 Hz are used to evaluate 

the performance of the proposed irregular breathing classifier. Here each channel makes a 

record continuously in three dimensions for 448 patient datasets. The breathing recording 

time for each patient is distributed from 18 minutes to 2.7 hours, with 80 minutes as the 

average time at the Georgetown University Cyberknife treatment facility. In Fig. 56 we 

restricted the breathing recording times to discrete values with the unit of five minutes. 

That means 18 minutes recording time is quantized to 20 minutes for a variable quantity. 

Fig. 56 shows the frequency distribution of breathing recording time.  
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Figure 56. Frequency distribution of recording times for the breathing datasets.  
The breathing recordings lasted anywhere from 18 minutes (min) to 166 minutes (max), with 80 minutes as 
the average time. 
 
 
The minimum and the maximum recording times are 18 and 166 minutes in Fig. 56.  To 

extract the feature extraction metrics in Table 19, therefore, we randomly selected 18 

minute samples from the whole recording time for each breathing dataset because the 

minimum breathing recording time is 18 minutes.  That means we use 28,080 samples to 

get the feature extraction metrics for each breathing dataset. Meanwhile, every dataset for 
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each patient is analyzed to predict the irregular breathing patterns. That means we inspect 

all the datasets to detect the irregular pattern (ψi) within the entire recording time. The 

detected irregular patterns can be used to calculate the true positive/negative ranges 

(Ri
TP/Ri

TN) and the ratio (γi) for the patients. 

 

6.5.2 SELECTION OF THE ESTIMATED FEATURE METRICS ( x̂ ) 

The objective of this Chapter is to find out the estimated feature metrics ( x̂ ) from the 

candidate feature combination vector ( x ) using discriminant criteria based on clustered 

degree. Fig. 57(a) shows all the results of the objective function (J) with respect to the 

feature metrics number. That means each column in Fig. 57 represents the number of 

feature extraction metrics in Table 19. For example, let us define the number of feature 

extraction metrics as three (z=3). Here, the feature combination vector can be x =(BRF, 

PCA, STD) with three out of 10 feature metrics, having the number of feature 

combination vector (C(10, 3)=120). The red spot shows the objective function J(⋅) for 

each feature combination vector ( x ), whereas the black and the blue spots represent the 

averaged objective function and the standard deviation of the objective function with 

respect to the feature metrics number. In Fig. 57(b) we notice that two feature 

combination vector can have a minimal feature combination vector. Even though z=9 has 

the minimum standard deviation in Fig. 57(a), a minimum objective function (J) of z=9 is 

much bigger than those in z=3, 4, 5 and 6 shown in Fig 57(b). The interesting result is 

that the combinations of BRF, PCA, MLR, and STD have minimum objective functions 

in z=3 and 4. Therefore, we would like to use these four feature extraction metrics, i.e., 
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BRF, PCA, MLR, and STD as the estimated feature vector ( x̂ ) for the rest of modules 

for breathing patterns classification. 
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Figure 57. Objective functions for selection of feature metrics. 
This figure shows objective functions with respect to the feature metrics number to select the estimated 
feature metrics ( x̂ ); (a) the whole range, and (b) extended range. 
 
 

6.5.3 CLUSTERING OF RESPIRATORY PATTERNS BASED ON EM 

In this Chapter, the breathing patterns will be arranged into groups with the estimated 

feature vector ( x̂ ) for the analysis of breathing patterns. For the quantitative analysis of 

the cluster models we used two criteria for model selection, i.e., Akaike information 

criterion (AIC) and Bayesian information criterion (BIC), among a class of parametric 

models with different cluster numbers [215]. Both criteria measure the relative goodness 

of fit of a statistical model. In general, the AIC and BIC are defined as follows: 
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Figure 58. Quantitative model analysis for the selection of cluster number.  
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where n is the number of patient datasets, k is the number of parameters to be estimated, 

and L is the maximized log-likelihood function for the estimated model that can be 

derived from Eq. (85). 

In Fig. 58, we can notice that both criteria have selected the identical clustering number; 

M=5. Therefore, we can arrange the whole pattern datasets into five different clusters of 

breathing patterns based on the simulation results. 

 

6.5.4 BREATHING PATTERN ANALYSIS TO DETECT IRREGULAR PATTERN 

We have shown that breathing patterns are a mixture of regular and irregular patterns for 

a patient in Fig. 55. Before predicting irregular breathing, we analyze the breathing 

pattern to extract the ratio (γi) with the true positive and true negative ranges for each 

patient. For the breathing cycle (BCi) we search the breathing curves to detect the local 

maxima and minima. After detecting the first extrema, we set up the searching range for 

the next extrema as 3~3.5 seconds [269]. Accordingly, we can detect the next extrema 

within half a breathing cycle because one breathing cycle is around 4 seconds [148]. The 
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BCi is the mean value of the consecutive maxima or minima. Fig. 59 shows the frequency 

distribution of BCi for the breathing datasets. The breathing cycles are distributed with a 

minimum of 2.9 seconds/cycle and a maximum of 5.94 seconds/cycle. The average 

breathing cycle of the breathing datasets is 3.91 seconds/cycle. 

There are yet no gold standard ways of labeling regular or irregular breathing signals. Lu 

et al. showed, in a clinical way, that moving average value can be used to detect irregular 

patterns, where inspiration or expiration was considered as irregular if its amplitude was 

smaller than 20% of the average amplitude [148].  In this study, for the evaluation of the 

proposed classifier of abnormality, we define all the breathing patterns that are smaller 

than half the size of the average breathing amplitude as irregular patterns, shown with 

dotted lines in Fig. 55. 
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Figure 59. Frequency distribution of breathing cycle (BCi) for the breathing datasets.  
The breathing cycles are variable from 2.9 seconds/cycle to 5.94 seconds/cycle, with 3.91 seconds/cycle as 
the average time. 
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Figure 60. Frequency distribution of the number of irregular patterns (Σjψij). 
The numbers of irregular patterns of each breathing dataset are distributed from 0 to 3737 with 188 as the 
average number. 
 
 
Fig. 60 shows the frequency distribution of the number of irregular patterns. The numbers 

of irregular patterns are distributed with a minimum number of 0 and a maximum number 

of 3737 of irregular patterns. The average number of irregular patterns for the breathing 

datasets is 188. Accordingly, we can calculate the true positive/negative ranges 

(Ri
TP/Ri

TN) and the ratio (γi) for the patients after summarizing all the irregular patterns. 

 Fig. 61 shows the frequency distribution of the ratio (γi). Here γi is the ratio of the true 

negative range (Ri
TN) to the period of observation (Ti), thus it is dimensionless. The ratio 

(γi) for each breathing dataset is distributed from 0.02 to 1 with 0.92 as the average ratio 

value. In Fig. 61 we can see that the frequency number of the regular breathing patterns is 

much higher than that of the irregular breathing patterns in the given datasets. But we can 

also see that it is not a simple binary classification to decide which breathing patterns are 

regular or irregular because the frequency distribution of the ratio is analog. We define 

the vague breathing patterns with the ratio 0.8~0.87 as the gray-level breathing pattern. 
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We have shown the regular/irregular gray-level breathing patterns among the entire 

dataset in the following figures. 
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Figure 61. Frequency distribution of ratio (γi). 
Here γi is the ratio of the true negative range (Ri

TN) to the period of observation (Ti), thus it is dimensionless. 
The ratio (γi) for each breathing dataset is distributed from 0.02 to 1 with 0.92 as the average ratio value. 
 
 
Fig. 62 shows regular breathing patterns in the given datasets. There exist several 

irregular points depicted with green spots. But most of breathing cycles have the regular 

patterns of breathing curve. Note that the regular breathing patterns have a higher ratio 

(γi) in comparison to the irregular breathing patterns. 
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Figure 62. Representing regular breathing patterns. 
(a) patient number 1 with the ratio γ1=0.98; and (b) patient number 177 with the ratio γ177=0.98. 
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Figure 63. Representing gray-level breathing patterns. 
(a) patient number 162 with the ratio γ162=0.87; and (b) patient number 413 with the ratio γ413=0.84. 
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Figure 64. Representing irregular breathing patterns. 
(a) patient number 125 with the ratio γ125=0.63; and (b) patient number 317 with the ratio γ317=0.51. 
 
Fig. 63 shows gray-level breathing patterns in the given datasets. Even though the gray-

level breathing patterns show some consecutive irregular points, the overall breathing 

patterns are almost identical as shown in Fig. 63. Fig. 64 shows irregular breathing 

patterns in the given datasets. Note that the breathing pattern in Fig. 64(b) with a very 

low ratio (γ317=0.51) is void of regular patterns and that there exists a mass of irregular 

breathing points in Fig. 64. 
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6.5.5 CLASSIFIER PERFORMANCE 

We evaluate the classification performance whether the breathing patterns are irregular or 

regular to extract the true positive/negative ranges and the ratio as shown in Fig. 65. To 

decide the regular/irregular breathing pattern of the patient datasets, we have varied 

observation periods (Ti) for feature extraction with 900, 300, and 100 seconds.  
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Figure 65. ROC graph of irregular detection with different observation period. 
 
 
Fig. 65 shows ROC graphs to evaluate how different observation periods affect the 

classification performance. Here, we fixed the regular threshold Ψth of 0.92 that is the mean 

value of the ratio (γi), shown in Fig. 61. In Fig. 65 we can see that the proposed classifier 

shows a better performance with a long observation period (Ti). That means the classifier 

can be improved by extending the observation period for feature extraction.  
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(c)  
Figure 66. ROC graph of irregular detection with different regular thresholds and observation period 
(a) observation period Ti = 100 seconds, (b) observation period Ti = 300 seconds, and (c) observation period 
Ti = 900 seconds. 
 
 
Fig. 66 shows ROC graphs of irregular detection with different regular thresholds Ψth of 

0.8, 0.85, and 0.9. In this figure, the ratio (γi) of patients i are extracted with observation 

periods Ti of 100, 300, and 900 seconds. 

The smaller the regular threshold Ψth, the better the classifier performance. Here, we 

notice that the true positive rate (TPR) for the proposed classifier is 97.83% when the 

False Positive Rate (FPR) is 50% in Fig. 66(c).  

Based on the result of ROC graph in Fig. 66 (c), we notice that the breathing cycles of 

any given patient with a length of at least 900 seconds can be classified reliably enough 
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to adjust the safety margin prior to therapy in the proposed classification. For the overall 

analysis of the curve, we have shown the area under the ROC curve (AUC) in Fig. 67. 

The AUC value can be increased by lowering the regular threshold Ψth. The maximum 

AUCs for observation period Ti of 100, 300, and 900 seconds are 0.77, 0.92, and 0.93, 

respectively.  Based on Fig. 67, Fig. 66 (a)-(c) picked 0.8, 0.85, and 0.9 for Ψth.   
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Figure 67. Area under the ROC curve. 
The maximum AUCs for the observation period Ti of 100, 300, and 900 seconds are 0.77, 0.92, and 0.93, 
respectively. 
 
 
Some studies investigated the classification of regular/irregular breathing patterns for the 

detection of lung diseases with spirometry [275] [276] [277] [278]. The irregular 

breathing patterns can also impact on the dosimetric treatment for lung tumors in 

stereotactic body radiotherapy [3] [43] [149]. However, there are few studies with the 

results on the classification of breathing irregularity in this area. The following table 

shows the classification performance of irregular breathing detection using a variety of 

respiratory measurement datasets. 
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Table 20. Classifier Studies of Irregular Breathing Detection  

Studies Performance Measurement 
Datasets Methods 

Regular/Irregular classification [276] TPR: 92.6% Spirometry data of 250 ANN-based 

Regular/Irregular classification [277] TPR: 97.5% Spirometry data of 205 ANN-based 

Regular/Irregular classification [278] TP/(TP+FP): 98% 
74 sleep disordered 

breathing data 
ANN-based 

Proposed classification TPR: 97.8% Breathing motion data 
 of 448 EM/ANN-based 

TPR: True Positive Rate, ANN: Artificial Neural Network 

Table 20 shows the classification performances of the irregular detection. We notice that 

irregular breathing patterns can be detected with the performance of 97.5% TPR using the 

spirometry data and the ANN-based method [277]. Irregular breathing detection with 

sleep disordered breathing data [278] shows a better performance of 98% TP/(TP+FP). 

However, sleep-disorder data can not take the place of the breathing motion for lung 

cancer treatment [278]. Our proposed classification shows results of the classifier 

performance of 97.83% TPR with 448 samples breathing motion data. That means the 

proposed classifier can achieve acceptable results comparable to the classifier studies 

using the spirometry data. 
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6.6 SUMMARY 

In this Chapter we have presented an irregular breathing classifier that is based on the 

regular ratio (γ) detected in multiple patients-datasets. Our new method has two main 

contributions to classify irregular breathing patterns. The first contribution is to propose a 

new approach to detect abnormal breathing patterns with multiple patients’ breathing data 

that better reflect tumor motion in a way needed for radiotherapy than the spirometry. 

The second contribution is that the proposed new method achieves the best irregular 

classification performance by adopting EM based on the Gaussian Mixture model with 

the usable feature combination from the given feature extraction metrics. 

The recorded breathing motions of 448 patients include regular and irregular patterns in 

our testbed. With the proposed method, the breathing patterns can be divided into 

regular/irregular breathing patterns based on the regular ratio (γ) of the true negative 

range to the period of observation. The experimental results validated that our proposed 

irregular breathing classifier can successfully detect irregular breathing patterns based on 

the ratio, and that the breathing cycles of any given patient with a minimum length of 900 

seconds can be classified reliably enough to adjust the safety margin prior to therapy in 

the proposed classification. 
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CHAPTER 7 CONCLUSIONS AND CONTRIBUTIONS 

7.1 CONCLUSIONS 

The following conclusions can be made from the results obtained from Chapter 4: 

7.1.1 HYBRID IMPLEMENTATION OF EXTENDED KALMAN FILTER 

o RNN executes in the supervised-training part of the prediction, whereas EKF 

executes in the part of the correction with predicted or filtered estimation. 

o The coupling technique using multiple sensory channel inputs can be used to 

compensate the computational accuracy. 

o Fisher linear discriminant on the discriminant analysis can decide the optimized 

neuron number for RMLP in the given samples. 

o The average percentage of prediction overshoot for HEKF is 3.72%, whereas the 

average percentage of prediction overshoot for DEKF is 18.61%.  

o The proposed HEKF showed the better NRMSE performance across all variable 

prediction interval times. 

o HEKF method needs more time comparing to DEKF because of the calculation of 

the coupling matrix and the separate neural network for channel number. 

 

The following conclusions can be made from the results obtained from Chapter 5: 

7.1.2 CUSTOMIZED PREDICTION OF RESPIRATORY MOTION WITH CLUSTERING 

o For the preprocedure of prediction for individual patient, we construct the 

clustering (five classes) based on breathing patterns of multiple patients using the 

feature selection metrics that are composed of a variety of breathing features. 
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o The proposed CNN can outperform RNN with respect to the prediction accuracy 

with an improvement of 50%. 

o CNN works for any of the five classes; thus, there are no particular differences of 

error among the five classes because the criterion of feature sections in CNN is 

designed to minimize the error. 

o CNN does not directly address the criterion of overshoot regarding the class 

selection among multiple patients; therefore, the larger size of patients may have 

relatively large overshoot in the particular class. 

 

The following conclusions can be made from the results obtained from Chapter 6: 

7.1.3 IRREGULAR BREATHING CLASSIFICATION FROM MULTIPLE PATIENT DATASETS 

o Irregular breathing patterns can be detected using neural networks, where the 

reconstruction error can be used to build the distribution model for each breathing 

class. 

o The classifier using neural networks can provide clinical merit for the statistically 

quantitative modeling of irregular breathing motion based on a regular ratio 

representing how many regular/irregular patterns exist within an observation 

period. 

o The breathing data can be categorized into several classes based on the extracted 

feature metrics derived from the breathing data of multiple patients. 

o The breathing cycles are distributed with a minimum of 2.9 seconds/cycle, a 

maximum of 5.94 seconds/cycle, and the average breathing cycle of 3.91 

seconds/cycle. 
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o The breathing pattern for each patient can be classified into regular/irregular 

breathing using the regular ratio, even though the breathing data are mixed up 

with the regular and irregular breathing patterns in the given samples.  

o The true positive rate (TPR) for the proposed classifier is 97.83% when the False 

Positive Rate (FPR) is 50%. 

o The breathing cycles of any given patient with a length of at least 900 seconds can 

be classified reliably enough to adjust the safety margin prior to therapy in the 

proposed classification. 
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7.2 CONTRIBUTIONS 

This study has three main contributions on the prediction of respiratory motion in 

radiation therapy.  

The first contribution of this study is to present a new approach to split the whole RMLP 

with the complicated neuron number into a couple of RMLPs with the simple neuron 

number to adjust separate input channels. It also comprehensively organizes the multiple 

channel sensory process by adapting the coupling technique using multiple channel 

inputs for the mutually exclusive groups to compensate the computational accuracy. 

The second contribution is to adopt a clustering method for multiple patients to get more 

practical breathing pattern information and to find an accurate prediction process for an 

individual class. With the clustering based on breathing patterns, we can get appropriate 

parameter selections with respect to each class—e.g., optimal neuron number for the 

prediction process of the neural network and/or interactive (coupling) degree for the 

multiple breathing information. It can yield a more accurate prediction performance than 

when the clustering in not based on breathing patterns. 

The third contribution is to propose a new approach to detect abnormal breathing patterns 

with multiple patient-breathing data. We retrospectively categorized breathing data into 

several classes based on the extracted feature metrics derived from breathing data of 

multiple patients. The newly proposed statistical classification may provide clinically 

significant contributions to optimize the safety margin during external beam radiotherapy 

based on the breathing regularity classification for the individual patient. 

The prediction of respiratory motion traces has become an important research area due to 

the compensation for uncertainty and irregularity originating from technical limitations or 
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physiological phenomena. So far, investigations on the prediction of respiratory motion 

have been limited to estimates of respiratory motion, probably due to immature 

development of medical systems. This leads to further investigations for adequate and 

sophisticated radiotherapy technology. Radiation therapy is one of the most advanced 

treatment techniques for macroscopic cancers. For the accurate and precise delivery of 

radiation therapy, the prediction of respiratory motion is important. Collaborative 

research activities with various disciplines including biomedical, engineering, and 

medical physics are required. 
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APPENDIX A 

A.1 ACRONYMS DEFINITIONS 

ANFIS Adaptive neuro-fuzzy interference system 

IMM Interacting multiple model 

CT Computed tomography 

EBRT External beam radiotherapy 

CAT Computed axial tomography 

CBCT Cone Beam CT 

MRI Magnetic Resonance Imaging 

MLC Multileaf collimator 

DMLC Dynamic MLC 

RTRT Real-time tumor-tracking 

RPM Real-time Position Management 

IMRT Intensity-modulated radiotherapy 

RMSE Root mean squared error 

MSE Mean square error 

KF Kalman filter 

CV Constant velocity 

CA Constant acceleration 

EKF Extended Kalman filter 

SHL Signal history length 

FSM Finite state model 

EOE End-to-exhale 

IN Inhale 

EX exhale 

ARMA Autoregressive moving average 

SVM Support vector machines 

HMM Hidden Markov model 

ANN Artificial neural network 

NN Neural network 

LMS Least mean squares 

RLS Recursive least squares 

HEKF Hybrid Extended Kalman filter 

MC-IMME Multi-channel interacting multiple model estimator 
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IMME Interacting multiple model estimator 

GMM Gaussian mixture model 

EM Expectation-maximization 

MM Multiple model 

AMM Autonomous multiple models 

CMM Cooperating multiple models 

VSMM Variable structure multi-models 

HEKF Hybrid implementation based on EKF 

NRMSE Normalized root mean squared error 

RNN Recurrent neural network  

BPTT Back-propagation-through-time 

RTRL Real-time recurrent learning 

MLP Multilayer perceptron 

RMLP Recurrent multilayer perceptron 

CNN Customized prediction with multiple patient interaction using NN 

AMV Autocorrelation  MAX value 

ADT Autocorrelation  delay time 

ACC Acceleration  variance value 

VEL Velocity variance value 

BRF Breathing Frequency 

FTP Max Power of Fourier transform 

PCA Principal Component Analysis Coefficient  

MLR Multiple Linear Regression Coefficient 

STD Standard deviation of time series data 

MLE Maximum Likelihood Estimates 

KDE Kernel Density Estimation 

O-ANN Optimized Adaptive Neural Network 

ALP Adaptive Linear Prediction 

ROC Receiver operating characteristics 

AUC Area under the ROC curve 

AIC Akaike information criterion 

BIC Bayesian information criterion 

ITV Internal target volume 

3D-CRT Three-dimensional conformal radiotherapy 

ECG Electrocardiogram 
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TPR True positive rate 

TP True positive 

FPR False positive rate  

FP False positive 

TN True negative 

FN False negative 
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A.2 SYMBOL DEFINITIONS 

x(k) n-dimensional state vector (data vector) 

z(k) Measurement vector 

u(k) n-dimensional known vector 

v(k) Process noise with the property of the zero-mean white Gaussian noise with covariance Q(k) 

w(k) Measurement noise with the property of the zero-mean white Gaussian noise with covariance 
R(k) 

Q(k) Covariance value of process noise v(k) 

R(k) Covariance value of measurement noise w(k) 

F(k) State transition model matrix which is applied to the previous state x(k−1) 

G(k) Control-input model matrix which is applied to the control vector u(k) 

H(k) Observation model matrix which maps the true state space into the observed space 

x̂ (k) Predicted state vector 

t(k) Recording time at time k 

P(k) State prediction covariance vector 

W(k) Filter gain value 

S(k) Measurement prediction covariance value 

μ Weighting coefficients. 

FCV System matrix for CV filter  

ΓCV Process noise gain matrix for CV filter  

FCA System matrix for CA filter 

ΓCA Process noise gain matrix for CA filter 

μij Mixing probability given that the target is in state j that the transition occurred from state i 

x̂ 0j Mixed initial condition matrix  

P0j Mixed initial Kalman filter covariance matrix 

Λr Likelihood function corresponding to filter r 

μj Mode probability update value for filter r, ( j = 1,…, r) 

x̂ (k|k) Combination of the model-conditioned estimate 

P(k|k) Combination of the model-conditioned estimates and covariance 

L Observations or measurement number that is corresponding to the number of sensor 

G Group number to partition L measurements into G sets 

αy Prior probability value for the group y (y ∈ G) 

my Mean value of group y to be the centroid of the observations in the cluster  (y ∈ G) 

∑y Covariance value of group y that describes the configurations of clusters (y ∈ G) 

φ(⋅) General multivariate Gaussian density function 
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Θ Set of finite mixture model parameter vectors i.e. Θ ≡ {αy, my, ∑y}G
y=1 

p(z; Θ) Joint probability density that consists of the mixture of Gaussians 

p(y|zj) Posterior probability value of group y with zj 

δ(G) Log-likelihood function with G components  

Δ(G) Difference of the consecutive log-likelihood functions 

βy 
Hyper-parameter that presents some background knowledge as a hypothetical prior 
probability 

βy(k) Adaptive hyper-parameter 

Δμ 
y Difference between the current channel selection probability and the previous one in the 

group y 

δADT Log-likelihood function with the adaptive posterior probability 

μab 
Channel selection probability that represents the conditional transition probability from 
channel a to channel b. 

T(k) Asymptotic Lower Bound of recursive computation based on time k 

T(L) Lower bound of iteration execution time for k-means clustering based on L points 

u Input vector with external and feedback inputs 

w Weights 

v Internal activation function of a neuron  

Φ Nonlinear activation function  

yi Output of the ith neuron  

x(k) External input of a system model at time k 

y(k) Output of a system model at time k 

(⋅)T Vector transpose operator 

w(k) Weight vector of the entire network at time k 

D(k) Desired (teaching) signal at time k 

s Number of weights in the entire network  

p Number of output nodes 

v(k) Recurrent activities inside the network at time k 

u(k) Input signal applied to the network at time k 

Q(k) Process noise with the property of a multivariate zero-mean white noise 

r(k) Measurement noise with the property of a multivariate zero-mean white noise 

b(⋅,⋅,⋅) Measurement function that accounts for the overall nonlinearity of the multilayer perceptron 
from the input to the output layer. 

B(k) p×s measurement matrix of the linearized model 

α(k) p×1 matrix denoting the difference between the desired response d(k) and its estimation 

ŵ(k|k−1) s×1 vector denoting the estimate of the weight vector w(k) at time k given the observed data 
up to time k−1. 
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ŵ(k|k)  (=ŵ(k+1|k)) Filtered updated estimate of w(k) on receipt of the observable d(k) 

G(k) s×p matrix denoting the Kalman gain that is an integral part of the EKF algorithm 

Γ(k) p×p matrix denoting the global conversion factor for the entire network 

P(k|k-1) s×s prediction-error covariance matrix 

P(k|k) s×s filtering-error covariance matrix 

G Designated number of mutually exclusive disjoint weight groups 

ŵi(k|k) Filtered weight vector for the group i, where i = 1, 2,…, g. 

Pi(k|k) Subset of the filtering-error covariance matrix for the group i, where i = 1, 2,…, g. 

Gi(k) Kalman gain matrix for the group i, where i = 1, 2,…, g. 

c Designated number of mutually exclusive channel  

ŵi
CP(k|k) Filtered weight vector 

Gi
CP(k) Kalman gain matrix for the channel i 

Pi
CP(k|k-1) Prediction-error covariance matrix for the channel i 

Pi
CP(k|k) Filtering-error covariance matrix for the channel i 

ΓCP(k) global conversion factor for the coupled entire network 

di(k) Desired response for the linearized system 

μij Coupling degree to which component (i) depend on one another (j) 

Π Coupling matrix 

αi
CP(k) Difference between di(k) and coupled estimations for the channel number i 

Π(k)   adaptive coupling matrix 

H(k) Error-gain matrix 

Δ(k) Difference of the consecutive global error gain values 

mi d-dimensional sample mean for group i 

ni Component number of group i 

SW within-class scatter value in the given samples 

SB between-class scatter value in the given samples 

J(⋅) Objective function to get the optimized group number (g). 

θ Set of neural network true weights and biases 

θ̂  Least square estimation of θ 

γ Marginal value to judge prediction overshoot 

σ̂  Standard deviation estimator 

I Candidate feature combination vector 

Î Estimated feature combination vector 

c Class number 

ĉ Estimated class number to get the minimum of the objective function value (J(c)). 
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μm Mean vector of the mth component 

Σm Covariance matrix of the mth component 

N Neuron number of the input layer 

H Neuron number of the hidden layer 

x  Feature combination vector 

x̂  Estimated feature metrics 

Λ Total number of feature combination vector 

z Element number of feature extraction metrics 

C(10, z) Combination function for the number of selecting z objects from ten feature metrics 

G Total number of class in the given datasets 

p(x, Θ) Joint probability density with Θ≡{αm,μm, Σm}M
m=1 

αm Prior probability 

M Number of finite mixture model (Cluster number) 

K Number of patient datasets 

L(⋅) Objective function to maximize the log-likelihood function 

êm Classified feature vectors of class m 

om Reconstructed feature vectors with NN 

δm Reconstruction error 

βm Probability of class m  

νm Means of class m 

Σm Covariance of class m 

Mm Mean value of the classified feature vectors ( x̂ m) in class m 

I(m| x̂ i) 
Generalized function depending on x̂ i, where I(m| x̂ i)=1 if x̂ i is classified into class m; 
otherwise I(m| x̂ i)=0 

ν  Averaged class mean with the probability for each class 

Σ  Averaged covariance with the probability for each class 

ξm Threshold value to detect the irregular breathing pattern 

Lm Total number of breathing data in class m 

Pm Subset of the patient whose score is within ξm in class m 

Ti Observation period of the patient i 

BCi Breathing cycle range of the patient i  

ψi Number of irregular breathing pattern region of the patient i 

Ri
TP True positive range within the observation period (Ti) 

Ri
TN True negative range within the observation period (Ti) 

γi Ratio of the Ri
TN to the Ti  for the patient i (0≤γi≤1) 

Ψth Regular threshold to decide whether patient i is regular or not 
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APPENDIX B 

This source codes are implemented in the platform of MATLAB 7.10.0(R2010a).  

The estimation source codes for respiratory motion are as follows: 

B.1 Neural Network 
B.2 Adaptive Neural Network 
B.3 Kalman Filter 
B.4 Decoupled Extended Kalman Filter 

 

The classification source codes for respiratory motions are as follows: 

B.5 Feature Extraction 
B.6 Reconstruction Error 
B.7 Irregular Detection 
B.8 Detection of True Positive and True Negative 

 

B.1 MATLAB CODES FOR NEURAL NETWORK 

% This is an example of nonlinear autoregressive network with exogenous 
% inputs (NARX). 
% In this exampel we will use a series-parallel architecture instead of 
% feeding back the estimated output. 
% This has two advantages. 
% First - the input to the feedforward network is more accurate 
% Second - the resulting network has a purely feedforward architecture 
% magdata - compose of u and y. Each has 1*4001 double data set. 
% This file load Cyberknife Data to implement Neural Network. 
clear; 
fid = fopen('Markers_DB10_Clear.mes');  % Load input data 
if fid == -1 
    disp('File open not successful'); 
else 
    Cyberknife_Data = textscan(fid,'%f %f %f %f %f %f %f %f %f %f'); 
    len = length(Cyberknife_Data{1}); 
end 
closeresult = fclose(fid); 
if closeresult == 0 
    disp('File close successful'); 
else 
    disp('File close not successful'); 
end 
  
for i = 1:len    % Store input data in the array 
    Time_Stamp(i) = Cyberknife_Data{1}(i);    
    x_1(i) = Cyberknife_Data{2}(i);    y_1(i) = Cyberknife_Data{3}(i); 
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    z_1(i) = Cyberknife_Data{4}(i);    p_1(i) = -sqrt(x_1(i)^2 + 
y_1(i)^2 + z_1(i)^2); 
    x_2(i) = Cyberknife_Data{5}(i);    y_2(i) = Cyberknife_Data{6}(i); 
    z_2(i) = Cyberknife_Data{7}(i);    p_2(i) = -sqrt(x_2(i)^2 + 
y_2(i)^2 + z_2(i)^2); 
    x_3(i) = Cyberknife_Data{8}(i);    y_3(i) = Cyberknife_Data{9}(i); 
    z_3(i) = Cyberknife_Data{10}(i);   p_3(i) = -sqrt(x_3(i)^2 + 
y_3(i)^2 + z_3(i)^2); 
end 
  
u = x_1; y = p_1;       % x_1 : Input values, p_1 : target values 
% load magdata 
[u,us] = mapminmax(u); 
[y,ys] = mapminmax(y); 
y = con2seq(y); u = con2seq(u); 
p = [u(3:end);y(3:end)]; t = y(3:end); 
  
% Create the series-parallel NARX network using the function newnarxsp.  
% Use 10 neurons in the hidden layer and use trainbr for the training 
function. 
d1 = [1:2]; 
d2 = [1:2]; 
narx_net = newnarxsp({[-1 1], [-1 1]},d1,d2,[10 
1],{'logsig','purelin'}); 
% logsig : Log-Sigmoid Transfer Function 
narx_net.trainFcn = 'trainbr'; 
narx_net.trainParam.show = 10; 
narx_net.trainparam.epochs = 600; 
  
% Now ready to train the network 
for k=1:2, 
    Pi{1,k}=u{k}; 
end 
for k=1:2, 
    Pi{2,k}=y{k}; 
end 
narx_net = train(narx_net,p,t,Pi); 
  
% simulates the network and plots the resulting errors 
yp = sim(narx_net,p,Pi); 
e = cell2mat(yp) - cell2mat(t); 
plot(e); 
figure; 
  
% There is a toolbox function (sp2narx) for converting NARX networks 
from 
% the series-parallel configuration to the parallel configuration 
narx_net2 = sp2narx(narx_net); 
y1 = y(3:end); u1 = u(3:end); 
p1 = u1(3:end); t1 = y1(3:end); 
for k=1:2, 
    Ai1{1,k}=zeros(10,1); 
    Ai1{2,k}=y1{k}; 
end 
for k=1:2, 
    Pi1{1,k} = u1{k}; 
end 
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yp1 = sim(narx_net2,p1,Pi1,Ai1); 
yp1_1 = cell2mat(yp1); t1_1 = cell2mat(t1);  
plot(Time_Stamp(5:end),yp1_1,'b', Time_Stamp(5:end),t1_1,'r') 
legend('Neural Network Estimation','Measurement');  
xlabel('Data Time Index (ms)'); 
ylabel('Normalized Position Values'); 
figure; 
%----------------------------< Error Value >--------------------------% 
e_2 = yp1_1 - t1_1; 
plot(e_2) 
title('Error Value'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%-------------------------------< END >-------------------------------% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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B.2 MATLAB CODES FOR ADAPTIVE NEURAL NETWORK 

% This code shows respiratory prediction method with  
% Adaptive Neural Network 
clear; close all; 
fid = fopen('Markers_DB10_Clear.mes'); % Load input data 
if fid == -1 
    disp('File open not successful'); 
else 
    Cyberknife_Data = textscan(fid,'%f %f %f %f %f %f %f %f %f %f'); 
    len = length(Cyberknife_Data{1}); 
end 
closeresult = fclose(fid); 
if closeresult == 0 
    disp('File close successful'); 
else 
    disp('File close not successful'); 
end 
for i = 1:len    % Store input data in the array 
    Time_Stamp(i) = Cyberknife_Data{1}(i);    
    x_1(i) = Cyberknife_Data{2}(i);     y_1(i) = Cyberknife_Data{3}(i); 
    z_1(i) = Cyberknife_Data{4}(i);     p_1(i) = -sqrt(x_1(i)^2 + 
y_1(i)^2 + z_1(i)^2); 
    x_2(i) = Cyberknife_Data{5}(i);     y_2(i) = Cyberknife_Data{6}(i); 
    z_2(i) = Cyberknife_Data{7}(i);     p_2(i) = -sqrt(x_2(i)^2 + 
y_2(i)^2 + z_2(i)^2); 
    x_3(i) = Cyberknife_Data{8}(i);     y_3(i) = Cyberknife_Data{9}(i); 
    z_3(i) = Cyberknife_Data{10}(i);    p_3(i) = -sqrt(x_3(i)^2 + 
y_3(i)^2 + z_3(i)^2); 
    p_0(i) = (p_1(i)+p_2(i)+p_3(i))/3; 
end 
I_data_ANN(:,1) = p_1; T_data_ANN(:,1) = p_0; % Read data array 
[I_data_ANN,PS] = mapminmax(I_data_ANN(:,:)'); % Normalized the inputs 
[T_data_ANN,PS2] = mapminmax(T_data_ANN(:,1)'); % Normalized the target 
net_ANN = newlin([-1,1],1);   % generate neural network 
net_ANN.inputWeights{1,1}.delays = [0 1 2];% initialize network delays 
net_ANN.IW{1,1} = [7 8 9]; % initialize network weight 
net_ANN.b{1} = [0];  % initialize network bias 
pi ={1 2};          % the initial values of the outputs of the delays 
I_data_ANN=num2cell(I_data_ANN); %  
T_data_ANN=num2cell(T_data_ANN); 
[a,pf] = sim(net_ANN,I_data_ANN,pi); % simulate network with input 
net_ANN.adaptParam.passes = 2; 
t = cputime;   % Training the network 
[net_ANN,y,E pf,af] = adapt(net_ANN,I_data_ANN,T_data_ANN,pi); 
e = cputime - t; 
fprintf('CPU time used (ANN): %f\n', e); 
y=cell2mat(y); 
T_data_ANN=cell2mat(T_data_ANN); 
%---------------------------< Normalized RMSE >-----------------------% 
ANN_nRMSE=sqrt(sum((y-T_data_ANN).^2)/sum((T_data_ANN-
mean(T_data_ANN)).^2)); 
fprintf('Normalized RMSE(38ms) for ANN is %f\n', ANN_nRMSE); 
%---------------------------------------------------------------------% 
plot(Time_Stamp(:),y(:),'b',Time_Stamp(:),T_data_ANN(:),'r'); 
%-------------------------------< END >-------------------------------% 
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B.3 MATLAB CODES FOR KALMAN FILTER 

% This code shows prediction algorithm with Kalman Filter 
  
close all; 
%clear all; 
clc; 
  
dt=1/15; 
  
measnoise = 10; % position measurement noise 
accelnoise = .2; % acceleration noise 
  
a = [1 dt; 0 1]; % transition matrix 
b = [dt^2/2; dt]; % input matrix 
c = [1 0]; % measurement matrix 
x = [0; 0]; % initial state vector 
  
xhat = x; % initial state estimate 
Sz = measnoise^2; % measurement error covariance 
Sw = accelnoise^2  * [dt^4/4 dt^3/2; dt^3/2 dt^2]; % process noise cov 
P = Sw; % initial estimation covariance 
  
temp = xlsread('..\excel\motionMed.xls', 'A1:C400'); % Load input 
t=cputime; 
p=length(temp); 
xls_row=1; 
duration=dt*(p-1); %see .xls file then use one/two less than total no 
of row. 
  
% Initialize arrays for later plotting. 
pos = zeros(1, p); % true position array 
poshat = zeros(1, p); % estimated position array 
posmeas = zeros(1, p); % measured position array 
vel = zeros(1, p); % true velocity array 
velhat = zeros(1, p); % estimated velocity array 
times = zeros(1,p); %initialize time variable 
image_width = 640; 
f_eqi = 5*58; 
  
for i=1:p 
        tic; 
  
     
    if i < 3 
        u=0; 
    else 
        v1=(temp(i-1,1)- temp(i-2,1))/dt ;%here we are using last 2 
position for calculating instataneous accleration 
        v2=(temp(i,1)- temp(i-1,1))/dt; 
        u=(v2-v1)/dt; 
    end 
  
    % Simulate the linear system. 
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    ProcessNoise = accelnoise * [(dt^2/2)*randn; dt*randn]; 
    x = a * x + b * u + ProcessNoise; 
    % Simulate the noisy measurement 
    MeasNoise = measnoise * randn; 
    y = c * x + MeasNoise; 
    % Extrapolate the most recent state estimate to the present time. 
    xhat = a * xhat + b * u; 
    % Form the Innovation vector. 
    Inn = y - c * xhat; 
    % Compute the covariance of the Innovation. 
    s = c * P * c' + Sz; 
    % Form the Kalman Gain matrix. 
    K = a * P * c' * inv(s); 
    % Update the state estimate. 
    xhat = xhat + K * Inn; 
    % Compute the covariance of the estimation error. 
  
    P = a * P * a' - a * P * c' * inv(s) * c * P * a' + Sw; 
    pos(i) = x(1); 
    posmeas(i) = y; 
    poshat(i) = xhat(1); 
    vel(i) = x(2); 
    velhat(i) = xhat(2); 
times(i) = toc; 
  
end 
  
CPUTime=cputime-t; 
disp('CPU time used: '); disp(CPUTime); 
  
k=1:p; 
k2=1:p-1; 
actual = temp(1:p, xls_row)'; 
  
KF_angleError = actual - poshat; 
%calculate mean error 
meanError = mean(KF_angleError); 
disp('Average/Mean Error: '); disp(meanError); 
  
%calculate SD error 
sdError = sum((KF_angleError-meanError).^2)/p; 
disp('Standard Deviation of Error: '); disp(sdError); 
  
%mean time 
disp('Average/Mean Time: '); disp(mean(times)); 
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B.4 MATLAB CODES FOR DECOUPLED EXTENDED KALMAN FILTER 

% This code shows respiratory prediction method with Decoupled EKF 
% DEKF use 3 RMLPs for the prediction part. 
clear; clc; close all; 
NUM_EH = 3;  NUM_SS = 50; % number of Epoch and group  
Training = 1000; % length of sequence for training 
net = rmlp(9,6,6,1); % Generate network 
A_Neuron = net.AllNum; % to get the parameters from rmlp 
IN = net.InNum; OUT = net.OutNum; H_1 = net.H1Num;  H_2 = net.H2Num; 
WNum = net.WNum;   GpNum = A_Neuron; 
len_subset = IN + OUT; % length of subset 
W_All = [net.W.val]; % get Weight value 
W_Gp = [net.W.dest]; % get All Weight value 
for i = (1:GpNum), 
W(i).val = W_All(min(find(W_Gp == i)):max(find(W_Gp == i))); 
W(i).length = length(find(W_Gp == i)); 
end; 
num_eh = NUM_EH; % number of Epoch 
num_subset = NUM_SS;  % number of group 
len_seq = Training; 
R = annealing(100,5,num_eh); % initialize R value 
Q = annealing(1E-2,1E-6,num_eh); % initialize Q value 
learning_rate = annealing(1,1E-5,num_eh); % learning_rate 
n = 1; m = 1; 
timeflag = cputime; % Timer 
start_point = ceil((len_seq-num_subset-len_subset+2)*rand(1,num_eh)); 
%------------------< End of training initialization >-----------------% 
%------------< Import input data: input and target values >-----------% 
load_CyberknifeData_TEST;  % Load input data 
I_data(:,1) = x_1;  I_data(:,2) = y_1;  I_data(:,3) = z_1; 
I_data(:,4) = x_2;  I_data(:,5) = y_2;  I_data(:,6) = z_2; 
I_data(:,7) = x_3;  I_data(:,8) = y_3;  I_data(:,9) = z_3; 
T_data(:,1) = p_0; 
[I_data,PS] = mapminmax(I_data(:,:)'); % Normalized the input value 
[T_data,PS2] = mapminmax(T_data(:,1)'); % Normalized the target value 
I_data = I_data';   T_data = T_data';       
[inpSize, inpNum] = size(I_data');[tarSize, tarNum] = size(T_data'); 
t = cputime; 
%------------< Main loop - Decoupled Extended Kalman Filter >---------% 
for k = (1:num_eh),      
X1_0 = zeros(1,H_1);        
for i = (1:GpNum),     % GpNum : A_Neuron = net.AllNum  
K(i).val = 0.01^(-1)*eye(W(i).length);  
end; 
W0 = zeros(H_1,H_1+IN); 
%------------------------< Initialization >---------------------------% 
[X1_1 X2 out(1)] = rmlp_run(net,I_data(1,:),X1_0); % first running 
[X1_2 X2 out(2)] = rmlp_run(net,I_data(2,:),X1_1); % second running 
for j = (3:inpNum), 
temp1 = 0; % temporary 
AA = []; % temporary variable 
W1 = []; % input --> first layer 
W2 = []; % first --> second layer 
W3 = []; % second --> output layer 
for i = (1:H_1), 
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W1 = [W1; W(i).val]; 
end; 
for i = (H_1+1:H_1+H_2), 
W2 = [W2; W(i).val]; % Weight matrix : first --> second layer 
end; 
for i = (H_1+H_2+1:A_Neuron), % Weight matrix :second --> output layer 
W3 = [W3; W(i).val]; 
end; 
[X1_3 X2 out(j)] = rmlp_run(net,I_data(j,:),X1_2); % Network running 
for i = (H_1+H_2+1 : A_Neuron), 
C(i).val = X2; 
end; 
D1 = (W3*diag(d_hyperb(W2*X1_3')))'*X1_3; % Network weight update 
for i = (H_1+1 : H_1+H_2), 
C(i).val = D1(i-H_1,:); 
end; 
D2 = (W3*diag(d_hyperb(W2*X1_3'))*...  % Network weight update 
W2*diag(d_hyperb(W1*[X1_2 I_data(j,:)]')))'*... 
[X1_2 I_data(j,:)]; 
D2 = D2 + (W3*diag(d_hyperb(W2*X1_3')) * ... 
W2*diag(d_hyperb(W1*[X1_2 I_data(j,:)]'))* ... 
W1(:,1:H_1)*diag(d_hyperb(W0*... 
[X1_1 I_data(j-1,:)]')))'*[X1_1 I_data(j-1,:)]; 
for i = (1 : H_1), 
C(i).val = D2(i,:); 
end; 
%----------< Decoupled Extended Kalman Filter >---------% 
alpha = T_data(j) - out(j); % Innovation process 
for m = (1:GpNum), 
temp1 = C(m).val*K(m).val*C(m).val' + temp1; 
end; 
Gamma = inv(temp1+R(1));        
for i = (1:GpNum), % number of Group 
G(i).val = K(i).val*C(i).val'*Gamma; 
  
if abs(alpha) > 5E-2, 
W(i).val = W(i).val + learning_rate(1)*(G(i).val*alpha)'; 
end; 
K(i).val = K(i).val - G(i).val*C(i).val*K(i).val + Q(1); 
end; 
%-------------< Update the RMLP net Weight >------------------% 
for i = (1:GpNum), 
AA = [AA, W(i).val]; 
end; 
for i = (1:WNum), 
net.W(i).val = AA(i); % update Weight of RMLP 
end; 
%---------------------< End of RMLP net Weight >------------------% 
X1_1 = X1_2;    % states replacement 
X1_2 = X1_3; 
W0 = W1;        % First layer Weight replacement 
end; 
end; 
%-----------------------------< End of DEKF >-----------------------% 
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B.5 MATLAB CODES FOR FEATURE EXTRACTION 

% This code extracts feature from breathing datasets. 
% The extracted feature metrics composed of 10 components as follow: 
% 1: Autocorrelation MAX 
% 2: Autocorrelation Delay time 
% 3: Acceleration variance value 
% 4: velocity variance value 
% 5: Breath Frequency 
% 6: Max Power of Fourier transform 
% 7: Priciple Component Analysis 
% 8: Multiple Linear Regression 
% 9: Standard deviation 
% 10: Maximum Likelihood Estimates 
% Autocorrelation MAX and Delay time 
input_data = (data_1(:,4)+data_2(:,4)+data_3(:,4))/3; 
figure; 
subplot(3,1,1); 
plot(Time_Stamp(:),input_data(:)); 
xlabel('Time index (sec)'); 
ylabel('Amplitude'); 
subplot(3,1,2); 
MAXLAG = 50000; 
[Rxx,Lag]=xcorr(input_data,input_data,MAXLAG); 
for i=1:MAXLAG 
    if Rxx(i)==0 && Rxx(i+1)>0 
        Min_lag = i+1; 
    end 
end 
Decay_Time = (MAXLAG - Min_lag); 
plot(Rxx); 
xlabel('Lags'); 
ylabel('Autocorrelation Function'); 
%fprintf('Autocorrelation MAX value =    %f\n',max(Rxx)); 
%fprintf('Autocorrelation delay time=    %f\n',max(Decay_Time)); 
%% Acceleration and velocity variance value 
Acceleration = zeros(len,1); 
Velocity = zeros(len,1); 
for j=2:len 
    Acceleration(j) = (input_data(j) - input_data(j-1))/(Time_Stamp(j)-
Time_Stamp(j-1))^2; 
    Velocity(j) = (input_data(j) - input_data(j-1))/(Time_Stamp(j)-
Time_Stamp(j-1)); 
end 
%fprintf('Acceleration variance value =  %f\n',var(Acceleration)); 
%fprintf('Velocity variance value =      %f\n',var(Velocity)); 
%% Breath Frequency 
Time_Fs = zeros(len,1); 
Index_Fs = 0; 
for j=2:len-1 
    if Acceleration(j) < 0 && Acceleration(j+1) > 0 
         Time_Fs(j)= Time_Stamp(j);  % Time stamp 
         Index_Fs = Index_Fs + 1;  % Time stamp index 
    end 
end 
Time_For_Frequency = zeros(Index_Fs,1); 
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k=0; 
for j=1:len 
    if Time_Fs(j) ~= 0 
        k = k+1; 
        Time_For_Frequency(k)= Time_Fs(j); 
    end 
end 
Freq = zeros(Index_Fs-1,1); 
for j=1:Index_Fs-1 
    Freq(j)=1/(Time_For_Frequency(j+1)-Time_For_Frequency(j)); 
end 
%fprintf('Breath Frequency =            %f\n',mean(Freq)); 
%% Max Power of Fourier transform 
% Reference: http://www.mathworks.com/help/techdoc/math/brentm1-1.html 
fs = 26; 
m = length(input_data);     % Window length 
n = pow2(nextpow2(m));  % Transform length 
Result_DFT = fft(input_data,n);  % DFT     y --> Result_DFT 
f = (0:n-1)*(fs/n);     % Frequency range 
power = Result_DFT.*conj(Result_DFT)/n;   % Power of the DFT 
Result_DFT_1 = fftshift(Result_DFT);        % Rearrange y values 
f0 = (-n/2:n/2-1)*(fs/n);                  % 0-centered frequency range 
power0 = Result_DFT_1.*conj(Result_DFT_1)/n;% 0-centered power 
subplot(3,1,3) 
plot(f0,power0); 
xlabel('Frequency (Hz)'); 
ylabel('Power'); 
title('{\bf 0-Centered Periodogram}'); 
%fprintf('Max Power of Fourier Tranaform=    %f\n',max(power0)); 
%% Principal Component Coefficients 
p_Total = [data_1(:,4) data_2(:,4) data_3(:,4)]; 
Coeff = princomp(p_Total); 
%fprintf('PCA Coefficient =          %f\n',... 
%    sqrt(Coeff(1,1)^2+Coeff(2,2)^2+Coeff(3,3))); 
%% Multiple Linear Regression Coefficient 
Total_Data = [data_1(:,1:3) data_2(:,1:3) data_3(:,1:3)]; 
Reg = regress(input_data,Total_Data); 
%fprintf('Multiple Linear Regression =       %f\n',sum(Reg)); 
%% Standard deviation of time series data 
%fprintf('Standard deviation of data =       %f\n',std(input_data)); 
%% Maximum Likelihood Estimates 
%PN = mapminmax(input_data); 
[phat,pci]=mle(input_data,'distribution','normal','alpha',.05); 
%fprintf('Maximum Likelihood Estimates =     %f\n\n',phat(1,1)); 
%% Summary 
BFM(INDEX,1) = max(Rxx); %AMV 
BFM(INDEX,2) = max(Decay_Time);%ADT 
BFM(INDEX,3) = var(Acceleration);%ACC 
BFM(INDEX,4) = var(Velocity);%VEL 
BFM(INDEX,5) = mean(Freq);%BRF 
BFM(INDEX,6) = max(power0);%FTP 
BFM(INDEX,7) = sqrt(Coeff(1,1)^2+Coeff(2,2)^2+Coeff(3,3));%PCA 
BFM(INDEX,8) = sum(Reg);%MLR 
BFM(INDEX,9) = std(input_data);%STD 
BFM(INDEX,10) = phat(1,1);%MLE 
INDEX = INDEX+1; 
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B.6 MATLAB CODES FOR RECONSTRUCTION ERROR 

% This code produce Reconstruction Error for irregular detection 
% The reconstruction error can be used to decide whether the  
% breathing pattern is regular or irregular in the next step. 
% Before executing the file, need cluster index (c) derived from 
% 'Clustering basedonEM' file. 
% Global CN (Cluster Number) can be decided 'Clustering basedonEM' file. 
global M;           % The element number of cluster [c1,c2,...] 
global CN;          % Cluster Number 
%% Set up inputs for the neural network and get Delta value from Neural 
networks 
n=zeros(CN,1);d=zeros(CN,1); 
for i=1:CN 
    [INPUT]=ReadClusterIndexbased(i,M(i)); 
    switch i 
        case 1  % The number of feature extraction metrics: 1 
            INPUT_1=INPUT; 
            [n(i),d(i)]=size(INPUT_1); 
            Delta_1=NeuralNetworkReconstruct(INPUT_1,M(i)); 
        case 2  % The number of feature extraction metrics: 2 
            INPUT_2=INPUT; 
            [n(i),d(i)]=size(INPUT_2); 
            Delta_2=NeuralNetworkReconstruct(INPUT_2,M(i)); 
        case 3  % The number of feature extraction metrics: 3 
            INPUT_3=INPUT; 
            [n(i),d(i)]=size(INPUT_3); 
            Delta_3=NeuralNetworkReconstruct(INPUT_3,M(i)); 
        case 4  % The number of feature extraction metrics: 4 
            INPUT_4=INPUT; 
            [n(i),d(i)]=size(INPUT_4); 
            Delta_4=NeuralNetworkReconstruct(INPUT_4,M(i)); 
        case 5  % The number of feature extraction metrics: 5 
            INPUT_5=INPUT; 
            [n(i),d(i)]=size(INPUT_5); 
            Delta_5=NeuralNetworkReconstruct(INPUT_5,M(i)); 
        case 6  % The number of feature extraction metrics: 6 
            INPUT_6=INPUT; 
            [n(i),d(i)]=size(INPUT_6); 
            Delta_6=NeuralNetworkReconstruct(INPUT_6,M(i)); 
        case 7  % The number of feature extraction metrics: 7 
            INPUT_7=INPUT; 
            [n(i),d(i)]=size(INPUT_7); 
            Delta_7=NeuralNetworkReconstruct(INPUT_7,M(i)); 
        case 8  % The number of feature extraction metrics: 8 
            INPUT_8=INPUT; 
            [n(i),d(i)]=size(INPUT_8); 
            Delta_8=NeuralNetworkReconstruct(INPUT_8,M(i)); 
        case 9  % The number of feature extraction metrics: 9 
            INPUT_9=INPUT; 
            [n(i),d(i)]=size(INPUT_9); 
            Delta_9=NeuralNetworkReconstruct(INPUT_9,M(i)); 
    end 
end 
%% Neural Network 
Beta = n./sum(n);       % Probability 
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Vmean=zeros(CN,1);         % Mean 
var_1=zeros(c1,1);var_2=zeros(c2,1); 
var_3=zeros(c3,1);var_4=zeros(c4,1);var_5=zeros(c5,1); 
Covar_m=zeros(CN,1);      % Covariance 
for i=1:CN 
    switch i 
        case 1 % The number of class : 1 
            Vmean(i)=sum(Delta_1)/(Beta(i)*sum(n)); 
            Temp=mean(INPUT_1); 
            for j=1:c1 
                var_1(j,1)=(INPUT_1(j,:)-Temp)*(INPUT_1(j,:)-Temp)'; 
            end 
            Covar_m(i)=sum(var_1)/(Beta(i)*sum(n));         
        case 2 % The number of class : 2 
            Vmean(i)=sum(Delta_2)/(Beta(i)*sum(n)); 
            Temp=mean(INPUT_2); 
            for j=1:c2 
                var_2(j,1)=(INPUT_2(j,:)-Temp)*(INPUT_2(j,:)-Temp)'; 
            end 
            Covar_m(i)=sum(var_2)/(Beta(i)*sum(n)); 
        case 3 % The number of class : 3 
            Vmean(i)=sum(Delta_3)/(Beta(i)*sum(n)); 
            Temp=mean(INPUT_3); 
            for j=1:c3 
                var_3(j,1)=(INPUT_3(j,:)-Temp)*(INPUT_3(j,:)-Temp)'; 
            end 
            Covar_m(i)=sum(var_3)/(Beta(i)*sum(n)); 
        case 4 % The number of class : 4 
            Vmean(i)=sum(Delta_4)/(Beta(i)*sum(n)); 
            Temp=mean(INPUT_4); 
            for j=1:c4 
                var_4(j,1)=(INPUT_4(j,:)-Temp)*(INPUT_4(j,:)-Temp)'; 
            end 
            Covar_m(i)=sum(var_4)/(Beta(i)*sum(n)); 
        case 5 % The number of class : 5 
            Vmean(i)=sum(Delta_5)/(Beta(i)*sum(n)); 
            Temp=mean(INPUT_5); 
            for j=1:c5 
                var_5(j,1)=(INPUT_5(j,:)-Temp)*(INPUT_5(j,:)-Temp)'; 
            end 
            Covar_m(i)=sum(var_5)/(Beta(i)*sum(n)); 
    end 
end 
Bar_Mean=sum(Beta.*Vmean)/CN; 
Bar_Covar=sum(Beta.*Covar_m)/CN; 
Zeta=zeros(CN,1); 
for i=1:CN 
    Zeta(i)=(1-1/18)*(Covar_m(i)-Bar_Mean)*sqrt(Bar_Covar)/n(i);  
    % 7800 = 26 Hz * 5 mimute * 60 seconds 
end 
% Class 1 
REGB_1=zeros(n(1),1); 
for i=1:n(1) 
    if Delta_1(i,1)<=Zeta(1)        % Regular = 2 
        REGB_1(i,1)=2; 
    elseif Delta_1(i,1)>Zeta(1)     % Irregular = 1 
        REGB_1(i,1)=1; 
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    end 
end 
RESULT_1=[Delta_1 REGB_1]; 
% Class 2 
REGB_2=zeros(n(2),1); 
for i=1:n(2) 
    if Delta_2(i,1)<=Zeta(2)        % Regular = 2 
        REGB_2(i,1)=2; 
    elseif Delta_2(i,1)>Zeta(2)     % Irregular = 1 
        REGB_2(i,1)=1; 
    end 
end 
RESULT_2=[Delta_2 REGB_2]; 
% Class 3 
REGB_3=zeros(n(3),1); 
for i=1:n(3) 
    if Delta_3(i,1)<=Zeta(3)        % Regular = 2 
        REGB_3(i,1)=2; 
    elseif Delta_3(i,1)>Zeta(3)     % Irregular = 1 
        REGB_3(i,1)=1; 
    end 
end 
RESULT_3=[Delta_3 REGB_3]; 
% Class 4 
REGB_4=zeros(n(4),1); 
for i=1:n(4) 
    if Delta_4(i,1)<=Zeta(4)        % Regular = 2 
        REGB_4(i,1)=2; 
    elseif Delta_4(i,1)>Zeta(4)     % Irregular = 1 
        REGB_4(i,1)=1; 
    end 
end 
RESULT_4=[Delta_4 REGB_4]; 
% Class 5 
REGB_5=zeros(n(5),1); 
for i=1:n(5) 
    if Delta_5(i,1)<=Zeta(5)        % Regular = 2 
        REGB_5(i,1)=2; 
    elseif Delta_5(i,1)>Zeta(5)     % Irregular = 1 
        REGB_5(i,1)=1; 
    end 
end 
RESULT_5=[Delta_5 REGB_5]; 
RESULT=zeros(MAX,1); 
c1_index=0;c2_index=0;c3_index=0;c4_index=0;c5_index=0; 
for i=1:MAX 
    switch C(i) 
        case 1 
            c1_index=c1_index+1; 
            RESULT(i,1)=REGB_1(c1_index); 
        case 2  
            c2_index=c2_index+1; 
            RESULT(i,1)=REGB_2(c2_index); 
        case 3 
            c3_index=c3_index+1; 
            RESULT(i,1)=REGB_3(c3_index); 
        case 4 
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            c4_index=c4_index+1; 
            RESULT(i,1)=REGB_4(c4_index); 
        case 5 
            c5_index=c5_index+1; 
            RESULT(i,1)=REGB_5(c5_index); 
             
    end 
end 
RESULT_C=[C RESULT];        % First Column : Cluter number 
                            % Second Column : Regular = 2, Irregular = 
1 
%% Save RESULT_C as External file 'Classifier_Results' 
fid = fopen('Classifier_Results.mes','w'); 
[i,j]=size(RESULT_C); 
for i=1:i 
    fprintf(fid,'%d    %d\n', RESULT_C(i,1),RESULT_C(i,2));  
end 
fclose(fid); 
fprintf('End of File (Classifier_Results.mes) generation~! ^^\n'); 
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B.7 MATLAB CODES FOR IRREGULAR DETECTION 

% This function calculate true positive range, true negatiave range, 
% and regular ration with breathing datasets. 
 
% BC: Breathing Cycle 
% Psi: regular threshold to decide whether the patterns is regular  
% or irregular 
% Range_TP: True positive range within observation period 
% Rnage_TN: True negetaive range within observation period 
% Ratio: regular ratio Range_TP over observation period 
 
function [BC Psi Range_TP Range_TN Ratio]= 
IrregularDetection(data_1,data_2,data_3,Time_Stamp,len) 
%% Combine three channel signals into one input data 
input_data = (data_1(:,4)+data_2(:,4)+data_3(:,4))/3; 
%% Breathing Frequency 
Min_Index=1; 
MAXMIN=[zeros(len,2) NaN(len,1)];        % First Column:MAXMIN, Second 
Column:Amplitude 
Range = 3.5*26;  % Range(s*Hz) : searching range to detect max and min 
while Min_Index~=len 
    if Min_Index>len-Range  % Exit the loop if the remain is short 
        break; 
    end 
    MAX=max(input_data(Min_Index:Min_Index+Range)); 
    for j=Min_Index:Min_Index+Range 
        if MAX==max(input_data(j)) 
            MAXMIN(j,1)=2;  % Assign MAX = 2 
            MAXMIN(j,2)=MAX;% Assing amplitude 
            MAXMIN(j,3)=MAX; 
            Max_Index=j; 
        end 
    end 
    if Max_Index>len-Range  % Exit the loop if the remain is short 
        break; 
    end 
    MIN=min(input_data(Max_Index:Max_Index+Range)); 
    for j=Max_Index:Max_Index+Range 
        if MIN==min(input_data(j)) 
            MAXMIN(j,1)=1;  % Assign MIN = 1 
            MAXMIN(j,2)=MIN;% Assign amplitude 
            MAXMIN(j,3)=MIN; 
            Min_Index=j; 
        end 
    end 
end 
%% Count the number of MAX and MIN 
numMIN=0;numMAX=0; 
Time_Fs = zeros(len,1); 
for i=1:len 
    if MAXMIN(i,1)==1 
        numMIN = numMIN + 1; 
        Time_Fs(i)= Time_Stamp(i); 
    end 
    if MAXMIN(i,1)==2 
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        numMAX = numMAX + 1; 
    end 
end 
%% Assign the position value to MAX and MIN (Get Psi(Irregular) number)  
ExtrPos=zeros(numMIN+numMAX,6); % ExtrPos = [time, position,|MAX-MIN|] 
k=0; 
for i=1:len 
    if MAXMIN(i,1) ~= 0 
        k=k+1; 
        ExtrPos(k,1)=Time_Stamp(i,1);   % Time 
        ExtrPos(k,2)=MAXMIN(i,1);       % MAX or MIN 
        ExtrPos(k,3)=MAXMIN(i,2);       % Position 
    end  
end 
for i=1:numMIN+numMAX-1 
    ExtrPos(i,4)=ExtrPos(i+1,3)-ExtrPos(i,3); 
    ExtrPos(i,5)=sqrt((ExtrPos(i,4))^2); 
end 
DIthreld=0.5*mean(ExtrPos(:,5)); 
for i=1:numMIN+numMAX-1 
    if ExtrPos(i,5)<=DIthreld 
        ExtrPos(i,6)=1; 
    end 
end 
Psi=sum(ExtrPos(:,6)); 
%% Detect Breathing Cycle (BC) 
Time_For_Frequency = zeros(numMIN,1); 
k=0; 
for j=1:len 
    if Time_Fs(j) ~= 0 
        k = k+1; 
        Time_For_Frequency(k)= Time_Fs(j); 
    end 
end 
BreathCycle = zeros(numMIN-1,1); 
for j=1:numMIN-1 
    BreathCycle(j)=Time_For_Frequency(j+1)-Time_For_Frequency(j); 
end 
BC=mean(BreathCycle); 
fprintf('Breathing Cycle(mean) =   %f\n',BC); 
%% True Positives Range & True Negatives Range for a patient 
Range_TP=mean(BreathCycle)*Psi/2; 
Range_TN=(Time_Stamp(len)-Time_Stamp(1))-Range_TP; 
fprintf('The Range of True Positive (Irregul) = %f\n',Range_TP); 
fprintf('The Range of True Negative (Regular) = %f\n',Range_TN); 
Ratio=Range_TN/(Range_TN+Range_TP); 
if (Range_TN/(Range_TN+Range_TP))>=0.75 
    fprintf('The Patient is Regular:Regular Percent = %.2f\n',... 
        100*Range_TN/(Range_TN+Range_TP)); 
end 
if (Range_TN/(Range_TN+Range_TP))<=0.5 
    fprintf('The Patient is Irregular:Regular Percent = %.2f\n',... 
        100*Range_TN/(Range_TN+Range_TP)); 
end 
if 0.5<(Range_TN/(Range_TN+Range_TP)) && 
(Range_TN/(Range_TN+Range_TP))<0.75 
    fprintf('The Patient is NaN case:Regular Percent = %.2f\n',... 
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        100*Range_TN/(Range_TN+Range_TP)); 
end 
%% Define the irregular Point Variable 
Irr_Line=NaN(len,1); 
temp=zeros(numMIN+numMAX,2);    % temp = [ time position ] 
for i=1:numMIN+numMAX 
    if ExtrPos(i,6)==1 
        temp(i,1)=ExtrPos(i,1); % time 
        temp(i,2)=ExtrPos(i,3); % position 
    end             
end 
for i=1:numMIN+numMAX 
    for j=1:len 
        if temp(i,1)==Time_Stamp(j,1) 
            Irr_Line(j,1)=temp(i,2); 
        end 
    end 
end 
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B.8 MATLAB CODES FOR DETECTION OF TRUE POSITIVE AND TRUE NEGATIVE  

% This code detects ture positive and ture negative  
% within observation periods. This code can be used as a golden  
% standard in our approach for the classification.  
 
clear; 
clc 
initpath; 
% Patient DB17_2 for the figure 'True Positive vs. True Negative' 
%% Read the external file 
TOT_READ_DB94_1; % Patient i = 317 
  
%% Combine three channel signal into one input data 
input_data = (data_1(:,4)+data_2(:,4)+data_3(:,4))/3; 
%% Breathing Frequency 
Min_Index=1; 
MAXMIN=[zeros(len,2) NaN(len,1)];        % First Column:MAXMIN, Second 
Column:Amplitude 
%Range = 3.5*26;  % Range(s*Hz) : searching range to detect max and min 
Range = 3*26; 
%Range = 4*26; 
while Min_Index~=len 
    if Min_Index>len-Range  % Exit the loop if the remain is short 
        break; 
    end 
    MAX=max(input_data(Min_Index:Min_Index+Range)); 
    for j=Min_Index:Min_Index+Range 
        if MAX==max(input_data(j)) 
            MAXMIN(j,1)=2;  % Assign MAX = 2 
            MAXMIN(j,2)=MAX;% Assing amplitude 
            MAXMIN(j,3)=MAX; 
            Max_Index=j; 
        end 
    end 
    if Max_Index>len-Range  % Exit the loop if the remain is short 
        break; 
    end 
    MIN=min(input_data(Max_Index:Max_Index+Range)); 
    for j=Max_Index:Max_Index+Range 
        if MIN==min(input_data(j)) 
            MAXMIN(j,1)=1;  % Assign MIN = 1 
            MAXMIN(j,2)=MIN;% Assign amplitude 
            MAXMIN(j,3)=MIN; 
            Min_Index=j; 
        end 
    end 
end 
%% Count the number of MAX and MIN 
numMIN=0;numMAX=0; 
Time_Fs = zeros(len,1); 
for i=1:len 
    if MAXMIN(i,1)==1 
        numMIN = numMIN + 1; 
        Time_Fs(i)= Time_Stamp(i); 
    end 
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    if MAXMIN(i,1)==2 
        numMAX = numMAX + 1; 
    end 
end 
%% Assign the position value to MAX and MIN (Get Psi(Irregular) number)  
ExtrPos=zeros(numMIN+numMAX,6); % ExtrPos = [time, position,|MAX-MIN|] 
k=0; 
for i=1:len 
    if MAXMIN(i,1) ~= 0 
        k=k+1; 
        ExtrPos(k,1)=Time_Stamp(i,1);   % Time 
        ExtrPos(k,2)=MAXMIN(i,1);       % MAX or MIN 
        ExtrPos(k,3)=MAXMIN(i,2);       % Position 
    end  
end 
for i=1:numMIN+numMAX-1 
    ExtrPos(i,4)=ExtrPos(i+1,3)-ExtrPos(i,3); 
    ExtrPos(i,5)=sqrt((ExtrPos(i,4))^2); 
end 
DIthreld=0.5*mean(ExtrPos(:,5)); 
for i=1:numMIN+numMAX-1 
    if ExtrPos(i,5)<=DIthreld 
        ExtrPos(i,6)=1; 
    end 
end 
Psi=sum(ExtrPos(:,6)); 
%% Detect Breathing Cycle (BC) 
Time_For_Frequency = zeros(numMIN,1); 
k=0; 
for j=1:len 
    if Time_Fs(j) ~= 0 
        k = k+1; 
        Time_For_Frequency(k)= Time_Fs(j); 
    end 
end 
BreathCycle = zeros(numMIN-1,1); 
for j=1:numMIN-1 
    BreathCycle(j)=Time_For_Frequency(j+1)-Time_For_Frequency(j); 
end 
fprintf('Breathing Cycle(mean) =   %f\n',mean(BreathCycle)); 
fprintf('Total number of Psi = %d\n',Psi); 
%% True Positives Range & True Negatives Range for a patient 
Range_TP=mean(BreathCycle)*Psi/2; 
Range_TN=(Time_Stamp(len)-Time_Stamp(1))-Range_TP; 
fprintf('The Range of True Positive (Irregul) = %.2f\n',Range_TP); 
fprintf('The Range of True Negative (Regular) = %.2f\n',Range_TN); 
fprintf('Ratio = %.2f\n',Range_TN/(Range_TP+Range_TN)) 
if (Range_TN/(Range_TN+Range_TP))>=0.75 
    fprintf('The Patient is Regular:Regular Percent = %.2f\n',... 
        100*Range_TN/(Range_TN+Range_TP)); 
end 
if (Range_TN/(Range_TN+Range_TP))<=0.5 
    fprintf('The Patient is Irregular:Regular Percent = %.2f\n',... 
        100*Range_TN/(Range_TN+Range_TP)); 
end 
if 0.5<(Range_TN/(Range_TN+Range_TP)) && 
(Range_TN/(Range_TN+Range_TP))<0.75 
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    fprintf('The Patient is NaN case:Regular Percent = %.2f\n',... 
        100*Range_TN/(Range_TN+Range_TP)); 
end 
%% Define the irregular Point Variable 
Irr_Line=NaN(len,1); 
temp=zeros(numMIN+numMAX,2);    % temp = [ time position ] 
for i=1:numMIN+numMAX 
    if ExtrPos(i,6)==1 
        temp(i,1)=ExtrPos(i,1); % time 
        temp(i,2)=ExtrPos(i,3); % position 
    end             
end 
for i=1:numMIN+numMAX 
    for j=1:len 
        if temp(i,1)==Time_Stamp(j,1) 
            Irr_Line(j,1)=temp(i,2); 
        end 
    end 
end 
%% Draw the figures  
figure; 
plot(Time_Stamp(:),input_data(:),'b',Time_Stamp(:),MAXMIN(:,3),'rd',... 
    Time_Stamp(:),Irr_Line(:),'go'); 
xlabel('Data Time Index(Second)','FontSize',18,'FontName','Arial'); 
ylabel('Breathing Position(cm)','FontSize',18,'FontName','Arial'); 
legend('Breathing curve','Extrema','Irregular point'); 
%%  
fprintf('%.2f   ',mean(BreathCycle)); % Breathing Cycle(mean) 
fprintf('%d     ',Psi); % Total number of Psi 
fprintf('%.2f   ',Range_TP); % Range of True Positive (Irregul) 
fprintf('%.2f   ',Range_TN); % Range of True Negative (Regular) 
fprintf('%.2f\n',Range_TN/(Range_TP+Range_TN)) % Ratio 
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B.9 MATLAB CODES FOR ROC CURVES  

% This code generate ROC curves with different threshold Psi_th=0.8,  
% 0.85, and 0.9 
 
%clear; 
%clc; 
%close all; 
%% Load 5m TP TN  
Load_15m_TPTN_ALL;         
%% Load Range TPTN 
Load_Range_TPTN_ALL;    % Get all the range of regular and irregular 
for all the patient. 
  
%% Threshold 
Threshold = (0.01:0.01:1.0); 
  
Threshold=Threshold'; 
[n,d]=size(Threshold); 
%% 
Psi = 0.92;      % Psi 0.8, 0.85, 0.9, 0.92(mean)  
  
TP_FP_Rate_92_15m = zeros(n,2); % generate TP and FP with 15 minute 
for i=1:n 
    Threshold_th = Threshold(i,1); 
    [TP_FP_Rate_92_15m(i,1) 
TP_FP_Rate_92_15m(i,2)]=TPFPRate_5m(Threshold_th,TPTN_15m,Psi,Range_TPT
N); 
end 
%% Draw figure 
figure; 
plot(TP_FP_Rate_92_15m(:,2),TP_FP_Rate_92_15m(:,1),'b:'); 
xlabel('FP Rate','FontSize',18,'FontName','Arial'); 
ylabel('TP Rate','FontSize',18,'FontName','Arial'); 
axis([0, 1, 0, 1]); 
%% 
Psi = 0.9;      % Psi 0.8, 0.85, 0.9, 0.92  
  
TP_FP_Rate_90 = zeros(n,2); 
for i=1:n 
    Threshold_th = Threshold(i,1); 
    [TP_FP_Rate_90(i,1) 
TP_FP_Rate_90(i,2)]=TPFPRate_5m(Threshold_th,TPTN_15m,Psi,Range_TPTN); 
end 
%% Draw figure 
figure; 
plot(TP_FP_Rate_90(:,2),TP_FP_Rate_90(:,1),'b:'); 
xlabel('FP Rate','FontSize',18,'FontName','Arial'); 
ylabel('TP Rate','FontSize',18,'FontName','Arial'); 
axis([0, 1, 0, 1]); 
%% 
Psi = 0.85;      % Psi 0.8, 0.85, 0.9, 0.92  
  
TP_FP_Rate_85 = zeros(n,2); 
for i=1:n 
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    Threshold_th = Threshold(i,1); 
    [TP_FP_Rate_85(i,1) 
TP_FP_Rate_85(i,2)]=TPFPRate_5m(Threshold_th,TPTN_15m,Psi,Range_TPTN); 
end 
%% Draw figure 
figure; 
plot(TP_FP_Rate_85(:,2),TP_FP_Rate_85(:,1),'b:'); 
xlabel('FP Rate','FontSize',18,'FontName','Arial'); 
ylabel('TP Rate','FontSize',18,'FontName','Arial'); 
axis([0, 1, 0, 1]); 
%% 
Psi = 0.8;      % Psi 0.8, 0.85, 0.9, 0.92  
  
TP_FP_Rate_80 = zeros(n,2); 
for i=1:n 
    Threshold_th = Threshold(i,1); 
    [TP_FP_Rate_80(i,1) 
TP_FP_Rate_80(i,2)]=TPFPRate_5m(Threshold_th,TPTN_15m,Psi,Range_TPTN); 
end 
%% Draw figure 
figure; 
plot(TP_FP_Rate_80(:,2),TP_FP_Rate_80(:,1),'b:'); 
xlabel('FP Rate','FontSize',18,'FontName','Arial'); 
ylabel('TP Rate','FontSize',18,'FontName','Arial'); 
axis([0, 1, 0, 1]); 
%% 
Psi = 0.758;      % Psi 0.8, 0.85, 0.9, 0.92  
  
TP_FP_Rate_75 = zeros(n,2); 
for i=1:n 
    Threshold_th = Threshold(i,1); 
    [TP_FP_Rate_75(i,1) 
TP_FP_Rate_75(i,2)]=TPFPRate_5m(Threshold_th,TPTN_15m,Psi,Range_TPTN); 
end 
%% Draw figure 
figure; 
plot(TP_FP_Rate_75(:,2),TP_FP_Rate_75(:,1),'b:'); 
xlabel('FP Rate','FontSize',18,'FontName','Arial'); 
ylabel('TP Rate','FontSize',18,'FontName','Arial'); 
axis([0, 1, 0, 1]); 
%% Total Draw figure 
figure 
plot(TP_FP_Rate_80(:,2),TP_FP_Rate_80(:,1),'r',... 
     TP_FP_Rate_85(:,2),TP_FP_Rate_85(:,1),'b-.',... 
     TP_FP_Rate_90(:,2),TP_FP_Rate_90(:,1),'k:'); 
     %TP_FP_Rate_75(:,2),TP_FP_Rate_75(:,1),'g'); 
xlabel('FP Rate','FontSize',18,'FontName','Arial'); 
ylabel('TP Rate','FontSize',18,'FontName','Arial'); 
axis([0, 1, 0, 1]); 
legend('\Psi_t_h = 0.8','\Psi_t_h = 0.85','\Psi_t_h = 0.9'); 
%% Calculate Area Under Curve (AUC) 
AUC_75 = 0; 
for i=2:n 
    AUC_75 = AUC_75 + TP_FP_Rate_75(i,1)*((TP_FP_Rate_75(i,2))-
(TP_FP_Rate_75(i-1,2))); 
end 
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fprintf('AUC of TP_FP_Rate_75 = %f\n',AUC_75); 
%------- 
AUC_80 = 0; 
for i=2:n 
    AUC_80 = AUC_80 + TP_FP_Rate_80(i,1)*((TP_FP_Rate_80(i,2))-
(TP_FP_Rate_80(i-1,2))); 
end 
fprintf('AUC of TP_FP_Rate_80 = %f\n',AUC_80); 
%------- 
AUC_85 = 0; 
for i=2:n 
    AUC_85 = AUC_85 + TP_FP_Rate_85(i,1)*((TP_FP_Rate_85(i,2))-
(TP_FP_Rate_85(i-1,2))); 
end 
fprintf('AUC of TP_FP_Rate_85 = %f\n',AUC_85); 
%------- 
AUC_90 = 0; 
for i=2:n 
    AUC_90 = AUC_90 + TP_FP_Rate_90(i,1)*((TP_FP_Rate_90(i,2))-
(TP_FP_Rate_90(i-1,2))); 
end 
fprintf('AUC of TP_FP_Rate_90 = %f\n',AUC_90); 
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