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MINIMIZING L1 LOSS APPLIED TO COLLABORATIVE FILTERING 
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University of Pittsburgh, 2011 

 

In this age of information overload and plethora of choices, people increasingly rely on 

automatic recommender systems to tell them what suits their needs. A very effective approach 

for creating recommender systems is collaborative filtering, which is the task of predicting the 

preference/rating that a user would assign to an item based on preference data of that user and 

preference data of other users. One way to conduct collaborative filtering is through 

dimensionality reduction. The underlying concept of the approach lies in the belief that there are 

only a few features (reduced dimensions) that influence the user‟s choice. In this paper we use 

low rank matrix factorization for dimensionality reduction. Singular Value Decomposition 

(SVD), which is minimizing the L2 norm is the most popular technique to perform matrix 

factorization. However, in most recommendation system data sets, often the users only rate a 

small amount of items, which creates missing data. As a result SVD fails. In recent years L1 

norm has gained much importance and popularity because it is robust to outliers and missing 

data. In this thesis we use alternate convex optimization to perform L1 norm minimization to 

solve the matrix factorization problem and apply it to collaborative filtering. We also review 

some of the major challenges that collaborative filtering faces today and some of the other 

techniques used. Additionally, this thesis discusses the importance and future of collaborative 

filtering in medical applications that concerns the database of patient history 

(prescriptions/symptoms) and how it can be used as a predictive task for the future of the patient.  
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1.0  INTRODUCTION  

Information overload has become an increasingly concerning problem. Navigating through the 

enormous database of online shopping catalogues, movie choices, books, articles etc. is 

becoming laborious and convoluted. Intelligent search engines like Google and Bing have 

somewhat alleviated the issue by introducing customized searches. However, people are 

increasingly relying on automated recommender systems to tell them what to buy or what they 

need. This asks for accurate and reliable automated recommender systems that can deal with an 

enormous database. A very popular way to implement such a recommender system is by using 

collaborative filtering. The task of collaborative filtering is the task of predicting the preference a 

user assigns to items based on preference data of that user and preference data of other users.  

 In Chapter 2 of this thesis we first go through the formulation of collaborative filtering. 

We then review some of the main algorithms used to perform collaborative filtering including 

memory-based algorithms, model-based algorithms and hybrid algorithms. Of these methods, the 

model-based matrix factorization is of particular interest to us as we will be using to for our 

algorithm. In addition we review and discuss some of the main challenges faced by the 

collaborative filtering. The biggest problem faces is the sparse nature of the data. Our algorithm 

is designed to handle the sparsity of this data well. Some other challenges include synonymy, 

scalability, shilling attacks etc.  

 In Chapter 3 we study the details of matrix factorizations and finding the low rank 

approximation of different measures of discrepancies. The concept of maximum likelihood 

estimation is discussed with a Gaussian distribution (L2) noise model and a Laplacian 
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distribution (L1) noise model. The resulting loss functions and optimization problems are 

discussed. Finally, the recent popularity of L1 norm minimization because of its robustness to 

missing data and outliers is discussed along with its applications. 

 In Chapter 4 we explain the alternate convex optimization using the L1 loss function 

algorithm from [1]. We also explain the use of Principal Components Analysis as a tool for 

reducing dimensions and coming up with a rank. We explain the methods used to deal with 

missing data. The experimental protocols and error metrics used are also explained. Finally the 

results are presented and explained. 

 In chapter 5 we introduce the importance of collaborative filtering and automated 

recommender systems in the medical field. Enormous healthcare costs, difficulty in keeping 

track of patients with chronic disease are only some of the factors that concern the healthcare 

community today. The current healthcare system is very reactive in that it is employed after the 

patient shows symptoms and gets the disease. We discuss ways in which the healthcare system 

can end up being more proactive in that it will recognize the onset of disease and risk based on 

historical patient data. We review some of the automated recommendation work for the medical 

field that exists in literature today. Since I work in a medical device company, we also discuss 

some of the future work that can be done in respiratory medical devices. There is large therapy 

data available in these devices from patients, which we want to be able to use to predict 

prescription pressure for future patients. 
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2.0  COLLABORATIVE FILTERING  

The task of collaborative filtering is the task of predicting the preference a user assigns to items 

based on preference data of that user and preference data of other users. Collaborative filtering is 

most often used for recommending systems for books, movies, webpages, articles etc. In the 

following sections we will go through the formulation and explain the different methods used 

and the challenges faced in the field. 

2.1 FORMULATION 

There are a large number of information filtering problems associated with collaborative filtering 

research. It is important to have a proper formulation of these problems that are structures well. 

Marlin [2] explained the formulation and we will review that below. This is what we will use in 

out thesis work. 

Three independent characteristics are important for the space formulation, the type of preference 

indicators used, the inclusion of additional features and the treatment of preference dynamics. A 

different choice for each of these characteristics will yield a different kind of formulation. 

The primary kinds of preference indicators used for collaborative filtering are numerical 

ratings triplets, numerical rating vectors, co-occurrence pairs, and count vectors. A rating triplet 

is of form (u, i, r) where u is a user index, i is an item index, and r is a rating value. It means that 
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user u gave the item i a rating of r, where the value of r can be be ordinal or continuous. A 

numerical rating vector is of the form    (  
      

 ), where   
  is the rating assigned by user u 

to item i and it can be ordinal or continuous.  Co-occurrence pairs have the form (u, i) where u is 

a user index and i is an item index. This is slightly different than the others. This implies that the 

user viewed, accessed or purchased item i. It could also mean that user u likes item i. A count 

vector can be used to see how many times user u has viewed the particular item.  

Another important difference between preference vectors is whether they are explicitly 

provided with by the user or whether they were implicitly acquired while the user browsed and 

clicked on internet sites that interested them. A good comparison between explicit ratings and 

implicit rating are shown in Claypool [8]. A user needs to provide some added effort to provide 

an explicit rating whereas an implicit rating is collected. Claypool says the benefit of explicit 

ratings should outweigh the effort users put in to rate. This thesis uses MovelLens data provided 

by GroupLens which consists of explicit ratings. 

As will be mentioned later in this chapter, there is something called content based and 

hybrid collaborative filtering which allows the use of additional features to perform the 

prediction task. In a non-content based pure approach, users are described by their preferences 

for items and items are described by user‟s preferences for them. This pure approach is what is 

used in this thesis. However, it is important to describe the other methods used. The additional 

features when used include demographical information about users, such as age, gender, 

occupation etc. Similarly for items there can be additional information such as artist and genre 

for music, genre, director and actors for music. The hybrid approach is good for two well know 

problems in the field of collaborative filtering, known as the cold start problem and the new user 
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problem. These will be explained in more detail in the following section. Pure formulations are 

simpler and more popularly used. 

Another interesting angle to collaborative filtering is the sequence at which the 

preference indicators are collected. In most cases, preference indicators are viewed as static set 

of values. However when the datasets are collected over long period of times, the user 

preferences becomes highly dynamic and older preferences indicators can become irrelevant and 

inaccurate. This can end up causing inaccurate predictions as well. When implicit preference 

users are used, this is a serious problem because users cannot update their preference indicators. 

The pros to design algorithms to deal with dynamic preferences are that the predictions will 

adapt over time. However, they also make the models very complex. Sequential formulations are 

more complicated to design compared to the non-sequential formulations. A maximum entropy 

method was proposed in [9] for sequential formulations. They introduce a method based on 

mixtures of first order Markov chains for learning dynamic user profiles.  

 In this thesis the, collaborative filtering formulation is pure, non-sequential and only 

rating based. No additional features are included. Users and items are only described by 

preference indicators. This approach is attractive because it has been subject to a lot of research 

previously. 

The primary task of collaborative filtering is recommendation. If you are given the rating 

vector ru of m users and the rating vector of a particular active user x, rx, then the task would be 

to recommend a set of items for active user x. The task of recommendation is basically the same 

as the task of prediction because recommendations are produced from a set of predictions. 

As a result, if there is a method for predicting ratings for items that have not been rated, a 

recommendation method can be built by first computing the predictions for the active user‟s 
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unrated items, then sorting them and recommending the top items. The research for 

recommendation methods are thus geared towards creating accurate rating prediction methods.  

 

2.2 METHODS 

The approaches to perform collaborative filtering can be divided into three sections – memory 

based techniques, model based techniques and hybrid techniques. These methods are 

comprehensively described in [4]. In the following sections we will provide a concise review of 

these methods and mention some of the work available in literature for each of the methods.  

 

2.2.1 Memory-based  

 

Memory based CF algorithms use the full or a subset of the database of users and items to make 

the prediction. It is assumed that each user is part of a group of people with similar interests. The 

key is to identify these similar users or neighbors of the active user and then based on those 

similar users make a prediction of new items for the active user. The memory based algorithm 

thus implements the neighborhood-based algorithm, which calculates the similarity or weight 

between two users or items. This represents distance, correlation or weight. Then the algorithm 

produces a prediction for the active user by taking the weighted average of all ratings of the user 

or item or item on a certain item or user. Or it can also use a simple weighted average. To 
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generate the top-N recommendation, the k most similar users or items need to be found after 

computing the similarities. Then the similar users and items need to be aggregated to get the top-

N most frequent items as the recommendation. 

The similarity computation step between users and items is very important for memory 

based CF algorithms. For a user-based CF algorithm, the similarity between two users who have 

rated the same items is calculated. Similarly for an item-based CF algorithm, the similarity 

computation between two items is to first work on the users who have rated both of these items 

and then to apply a similarity computation between the two co-rated items if the users [10]. 

There are many multiple ways to compute these similarity measures. In a correlation based 

similarity, the Pearson correlation is used, which measures how much two variables linearly 

relate to each other [11]. Another way to compute similarity is using the vector cosine-based 

similarity. In this case, two items or users can be treated as a vector of ratings. 

The prediction and recommendation step is the most important step of the collaborative 

filtering algorithm. A subset of the nearest neighbors of the active user is chosen based on the 

similarity with him/her. A weighted aggregate of the ratings is then used to make predictions for 

the active user. 

The next step is the top-N recommendation step. This technique studies the user-item 

matrix to find relations between different users or items and use them to make the 

recommendations. 
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2.2.2 Model-based  

Model-based CF algorithms use machine learning and data mining concepts that allows the 

system to learn and identify complicated patterns based on training data. They can then use test 

data and real world data to make smart predictions for the CF tasks based on the learned models. 

If the ratings are categorical, classification algorithms are used and if the ratings are numerical 

then regression models and SVD methods are used. In this this thesis model based a model based 

regression algorithm is used for numerical ratings. Some machine learning concepts used for 

model based CF algorithms are Bayesian models, clustering models and dependency networks. 

These have been studied to point out the limitations of memory-based algorithms [3, 12]. We 

will describe a few of these models briefly. 

Usually a Bayesian CF algorithm uses a naïve Bayes approach to make predictions. A 

simple overview of the algorithm is as follows. If the features are independent given the class, 

then the probability of a particular class given all the features can be computed. The predicted 

class is the class with the highest probability [13].  

Another type of machine learning algorithm is clustering which we will glimpse at. A 

cluster is a collection of objects that are similar to each other when they are in the same cluster 

and different from objects in other clusters. Minkowski distance and Pearson correlation are 

some metrics that are used for measuring similarity. Furthermore, clustering methods can be 

classified into three groups, density based methods, partitioning methods and hierarchical 

methods. Clustering is usually an intermediate step and the resulting clusters are used for further 

analysis. There are different ways to use clustering algorithms to make predictions. One such 

technique used in [14], first partitions the data into clusters and the use memory-based CF 

algorithm to make predictions with each cluster. 
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Of importance and interest to us is the regression based CF algorithms. In a memory 

based algorithm, two rating vectors may be distant in terms of Euclidian distance but may have 

good similarity using vector cosine or Pearson correlation measures. This is where model-based 

regression algorithms can perform better than memory based algorithms. Regression based 

methods are also good at making prediction for numerical ratings which are common in real like 

recommender systems.  

The regression model is what we use in this thesis. This will be explained in detail in the 

following chapter. Here we will take a brief glance at the existing algorithms. The basic 

regression model is        , where Y is the measurement matrix containing rows of users 

and columns of items.     is the factorized matrix that needs to be approximated and   is the 

noise associated with real world measurements. Usually Y is a very sparse matrix which makes 

SVD a poor method to use. Canny [15] proposed a sparse factor analysis. Here the missing 

elements if the matrix is replaced with the average value of the non-missing elements. Then 

Canny uses the regression model as initialization of Expectation Maximization. Another 

regression approach proposed in [16] searches for similarities between items, creates a collection 

of simple linear models and combines them to rate predictions for an active user. The parameters 

of the linear regression function were estimated using ordinary least squares. In another approach 

proposed in [17], slope one algorithms were used to make CF predictions. 

2.2.3 Hybrid 

Collaborative filtering combines with other recommendation systems like content-based 

or demographic-based systems to make predictions or recommendations are known as hybrid 

collaborative filtering. Content-based recommender systems have been mentioned in the 
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previous chapter. They contain information in addition to preference indicators. They include 

information about users and items to be rated.  

2.3 CHALLENGES FACED 

There are various challenges that are faced during a collaborative filtering task. Online shopping 

and searching companies need to provide recommendations accurately and efficiently to be able 

to thrive in this competitive market. The companies that address these challenges the best end up 

satisfying their customer needs the most. Some of the most important problems in this field are 

explained in [4]. We will review these challenges in the following sections. 

The most important problem is sparseness of the data. Usually users end up rating 

products or movies they like very much or moderately like. Sometimes they don‟t take the effort 

to rate a movie they did not like. In other cases, most users have not seen all the movies or have 

not used all the products. This creates a very sparse user-item matrix where most of the items 

have not been rated and is thus a very sparse matrix. The sparsity of the matrix creates problems 

for the CF task. One of the most important one is called the cold start problem or the new 

user/item problem [5]. This problem occurs when a new user or item is entered in the system and 

not enough information is available to find similar ones. Unless the user rates at least one movie 

it is difficult to recommend something for the user based only on his ratings. Similarly, it is 

difficult to rate items that no user has rated. Some methods to tackle this problem are explained 

in [6]. In content based CF algorithms, where external data other than just ratings are used to 

make predictions, are better at dealing with the cold start new item new user problem. 
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The very large data sets also create computational costs that are too high. One of the 

challenges is to be able to scale down the matrix. When there are millions of customers and 

millions of users, then depending on the algorithm the computational cost become O(n), which is 

too large. The computational resources required for such an algorithm is impractical.  

The data sparsity problem can be reduced by getting rid of items that have been not been rated or 

have been sparsely rated. Dimensionality reduction methods like Singular Value Decomposition 

(SVD) are used to remove users and items with low significance. Principle Components Analysis 

(PCA) is also used has also been used [7] to reduce dimensions. The problem with this method is 

that the information that is disregarded might have been useful and thus can make the 

recommendation sub-par. Techniques like SVD can also handle scalability problems well but 

they have costly factorization steps. A method described in [18] uses existing users to compute 

the SVD. For a new set of ratings added, it then uses a folding in projection technique [19] to 

create the new system without recomputing using SVD, making it very scalable. Other model-

based CF algorithms like clustering, make recommendations for users from smaller and highly 

similar clusters. This way they avoid using the whole database and makes the algorithm more 

scalable. However, there is often a tradeoff between prediction accuracy and scalability. 

Another problem faced by the collaborative filtering community is synonymy. This 

occurs when similar or same items have different names and entries. A lot of the 

recommendation systems are unable to recognize the similarity between the items. An example 

of synonymy would be „adventure film‟ and „adventure movie‟.  In such a situation, memory-

based CF systems would not be able identify a match between them to compute the similarity. 

These drawbacks can degrade the performance of a CF system. SVD and Latent Semantic 

Indexing techniques can deal with the synonymy problem fairly well [20]. 
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 Shilling attacks is known as the problem where users rate their own products positively 

multiple times and rate their competitor products negatively. It is desirable for the collaborative 

filtering community to take precautions to this problem.  

Another problem faced is known as the gray sheep and black sheep. Gray sheep is 

referred to as the problem when certain users don‟t agree or disagree constantly with a certain 

group or people. This means that they cannot really benefit from collaborative filtering. Black 

sheep are those users who have very distinctive taste and recommending for this group of people 

is rather difficult. A hybrid content-based approach was suggested in [21]  
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3.0  MATRIX FACTORIZATION 

As mentioned in the previous chapter, the model-based regression algorithm is used in this 

thesis. Most of the successful realizations of latent factor models are based on matrix 

factorization. Recently, they have become popular because they offer good scalability and 

predictive accuracy. They also offer room for modeling real world situations. Recommender 

systems often have many different types of input data. In this thesis the input data are movie 

ratings that are explicit. In the following sections we focus on factorizations where the matrix is 

represented as a product of two simpler matrices. This low norm concept is described below. 

3.1 LOW NORM 

Suppose there is a dataset that is organized as an observed matrix,        , then a product of 

two matrices U and V where        and        can approximate the observed matrix. If 

we consider the rows of Y as data vectors Yi, then this data vector can be approximated by a 

linear combination UiV
T
 of the rows of V

T
. The rows of V

T 
can be seen as factors and the entries 

of U as coefficients of the linear combinations. The way the approximation is done is by 

minimizing some measure of discrepancy between the observed matrix Y and model UV
T
. A 

detailed study and explanation of low norm matrix factorization is found in [31]. 
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3.1.1 Dimensionality Reduction 

As mentioned in chapter 2, a popular way to conduct collaborative filtering is through 

dimensionality reduction, which also takes care of the scalability challenge. In the case of movie 

ratings, the underlying concept of the approach lies in the belief that there are only a few features 

(e.g. clarity, comedic influence, actors etc.) that influence the user‟s choice. Each movie has 

certain amounts of these features dominant in them. For movie ratings, the observed matrix will 

be        where m is the number of users and n is the number of movies. Since a lot of users 

do not rate all the movies, this creates a very sparse matrix. The goal is to fit the target matrix Y 

with a rank k matrix       where        and        . The rank k are the features that 

need to be learned. To illustrate this, let‟s consider trying to rate MOVIE-1 for USER-1. Let‟s 

say there are k=4 features – technological wizardry, comedic element, background score and 

thriller element.  USER-1‟s preference for these features combined with the influence of these 

features on the MOVIE-1 will determine the rating.  

 

 

Features(k) 
Tech 

wizardry 

Comedic 

element 

Background 

score 

Thriller 

element 

× 

Features(k) 
MOVIE 

1 

= 

PREDICTED 

RATING 

USER 1 u11 u12 u13 u14 
Tech 

wizardry 
v’11 

y11 

 

Comedic 

element 
v’21 

Background 

score 
v’31 

Thriller 

element 
v’41 

 

                                

 

                                                                                          (1) 
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The equation above shows that the rating     is a linear combination of U and V’. The 

underlying assumption that allows us to do this is that the prediction tasks – columns of Y are 

related. The same features are used to predict all of them, although in different ways. Each row 

of U thus becomes a feature vector and each row of V is the linear predictor.  

3.2 MAXIMUM LIKELIHOOD ESTIMATION 

To find the discrepancy between the observed matrix Y and model UV
T
, one can model the error 

between them as noise. Minimizing this noise is how you would approximate the matrix. 

Depending on what data distribution this noise is coming from, the results can be very different. 

What distribution we choose to have the noise from is critical to this thesis. Here we use the 

concept of maximum likelihood estimation (MLE). Maximum likelihood estimation is the 

method of estimating the parameters of a statistical model. We can show that maximizing the 

likelihood is equivalent to minimizing a cost function. The format of the cost function is 

determined by the distribution of the noise in the data. 

If the observed datum in the real world is an m dimensional column vector yi, then it is 

always accompanied with an additional value of noise. If there are n such observed datum, then 

                                                                                                   (2) 

where    is the unobservable unknown true value and    is the additive noise that is to be 

minimized.     lies in a k dimensional linear subspace such that 

                                                                                                                              (3) 

vi is the projection of yi on the subspace defined by the columns of U. 
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With the assumption that the measurements are independent and identically distributed, the log 

likelihood of the measurement is 

                             (   )      (        |       )  ∑    (  |  )
 
               (4) 

The value of    that maximizes the likelihood of the measurement  (   ) is what is desired. 

subject to the condition that these    s reside in a low dimensional subspace defined by U. We 

will minimize the error between the observed data and the predicted,         , data using the 

above. Below are two detailed derivations and explanations of two different noise models. 

3.2.1 Gaussian Noise Model 

The derivation of the Least squares (L2 norm) minimization from theNormal error noise model is 

shown below 

                           ∏  (  |    )
 
            (5) 

        ∑    (  |    )
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       ∑(     

  ) 
 

   

 

                                                              ∑ (     
  )  

          (6) 

 (    ) (    )  Closed form solution 

 

Performing least squares linear regression makes us make certain unrealistic assumptions about 

the error vectors. In particular, cases where the error distribution is heavier tailed than the 

Normal distribution, which means it has more probability in the tails than the Normal, the L2 

norm loss is very sensitive to outliers and does not perform well. This requires a more robust 

regression method. When the noise is large, or when there is a large existence of outliers, least 

squares weights each observation equally in getting parameter estimates. Robust methods are 

able to weight the observations unequally, thereby giving lower weights to outliers. That is, the 

observations that produce large residuals are down weighted. A robust method is to use the 

Laplacian distribution instead of the Gaussian distribution for error measurements. We will 

discuss this in the following section. The L2 norm also has a closed form solution and is able to 

find a global minimum. 
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3.2.2 Laplacian Noise Model 

                                 

Figure 1. The Laplace distribution 

 

The Laplacian distribution is shown in Figure 1. The Gaussian model achieves the least square 

error and the Laplace model tried to achieve the least absolute value error. It is obvious that the 

effect of outliers in the estimation of the Gaussian model where the error is squared is much 

larger than the Laplace method, where the error is not squared. For an outlier with a large 

deviation, the Laplace model explains it away by accommodating a large error. This is easier 

with the Laplace model as the Laplace distribution has a heavier tail than the Gaussian 

distribution. Consequently, the Laplace model is more robust by de-emphasizing the impact of 

data with large deviation. The derivation of the L1 minimization from the Laplace error noise 

model is shown below. 

 

 

                                                                    ∏  (  |    )
 
            (7) 
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In summary, the maximum likelihood (ML) solution to the matrix factorization (subspace 

computation) depends on the noise distribution assumed. When the noise follows independent 

and identical Gaussian distribution, the ML solution is obtained by minimizing a L2 norm cost 

function. When the noise follows independent and identical Laplacian distribution, the ML 

solution is achieved by minimizing a L1 norm cost function. The case of L1 norm can deal with 

outliers. 
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3.3 LINEAR PROGRAMMING 

A linear program (LP) is an optimization problem, which has a linear objective functions along 

with constraints that consist of linear equalities and inequalities.  

        
   

                                                    (   )                            (9) 

This is a solvable linear program. In this thesis we use the L1 Magic package [30] in our 

algorithm to solve it. 

 

 

3.4 L1 APPLICATIONS 

L1 norm has gained importance and popularity in the last decade. Scientists have found 

important and practical use for them. Real world data is almost always corrupted with outliers, 

noise and missing data. A robust method to approximate this data had become necessary. Many 

papers have been published recently that use the L1 norm for interesting applications.  

One such application is image retrieval. Extraction of discriminative features and a 

feasible similarity metric for recovering images that are similar in content with the search image 

are important steps in the image retrieval system. This paper proposes a sparsity promoting 

technique using L1 norm minimization that finds the sparsest solution of an under-determined 

system of linear equations. They use the L1 norm as a similarity metric. Their results show that 

the L1 minimization provide promising alternatives to existing techniques. 
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In another application, the L1 norm penalty function was used to compute epicardial 

potentials from multi-electrode body surface ECG measurements. Previously the Tikhonov 

regularization was used, which employed the L2 norm penalty functions or their derivatives. 

However, the L2 caused a considerable smoothing of the solution. Using the L1 norm produced 

better results and even detected two distinct areas of early activation that indicated the presence 

of two left-sided pathways which were not distinguished by L2 regularization. 

Other applications include face recognition, sparse signal recovery etc.  
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4.0  ALGORITHM 

The algorithm suggested by Qifa Ke and Takeo Kanade [1] introduces and implements a 

scheme that alternately optimizes a cost function using L1 norm minimization. Ke and Kanade 

[1] apply this alternative optimization to structure from motion, which deals with a sparse matrix 

that contains outliers and missing data and achieves good results.  In this thesis we have applied 

their suggested algorithm with slight modifications to collaborative filtering. Our data set is also 

a large sparse matrix with many missing data. 

We want to factorize a sparse matrix Y into its subspaces U and V via robust efficient L1 

minimization. The cost function is shown below. 

                                                     ‖     ‖                        (10) 

where       ,        and       .  

The matrices U and V will be learned by the algorithm. Since U and V are both unknown, 

the problem as stated now is non-convex. However, if one of the unknowns U or V was known, 

then the cost function w.r.t to the other unknown becomes a convex function. The global 

minimum of this cost function can be obtained. The cost function can thus be minimized by 

alternatively minimizing over U and V.  
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4.1 ALTERNATE CONVEX OPTIMIZATION 

 

The alternate optimization problem can be shown as 

                                            ( )          ‖   
(   )  ‖

 
               (11) 

                                            ( )          ‖ 
   (   )  ‖

 
             (12) 

where t is the iteration number. The two equations above can be formulated into a convex linear 

program.  

                                    ‖   (   )  ‖
 
 ∑ ‖    

(   )  ‖ 
 
          (13) 

                                                           ‖    
(   ) ‖

 
             (14) 

where  (   ) is the subspace matrix from the previous iteration,    jth column of matrix Y,    is 

the jth column of matrix   . 

This problem then becomes the linear programming problem described in section 4.  

                                  ‖    (   )  ‖
 
 ∑ ‖    

(   )  ‖ 
 
          (15) 

                                                            ‖    
(   ) ‖

 
            (16) 

where  (   ) is the subspace matrix from the previous iteration,    ith row of matrix Y,    is the 

ith row of matrix U. For the experiment we use the L1 Magic optimization package [30] was 

used for the minimization. 
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4.2 PCA TO FIND CORRECT LOW RANK 

Principal component analysis (PCA) is a powerful, quantitative tool derived from linear algebra 

that is used to reduce a complex set of data to a lower dimension. It works under the notion that 

there is some redundancy of variables in the set of data. Redundancy here means that the 

variables are correlated to each other, possibly because they are representing the same construct. 

This redundancy makes it possible to reduce the observed variables into smaller number of 

principal components that will account for most of the variance in the observed variables. 

Intuitively speaking, PCA's role can be thought of as revealing a simplified internal structure of a 

complicated set of data which best explains the variance in the data. The method involves an 

eigenvalue decomposition of the covariance matrix of the high dimensional or multivariate data 

set, which has been mean centered for each variable. This basically means a covariance matrix is 

created from the set of data from which the eigenvectors are found. These eigenvectors with their 

corresponding eigenvalues help to form the principal component of the data set. The principal 

component can be defined as a linear combination of optimally-weighted observed variables. 

The number of components extracted is equal to the number of observed variables being 

analyzed. 

However, in most analyses, only the first few components account for significant 

amounts of variance, so only these first few components are retained. The elimination of the 

other components result in the reduction in dimension of the data set that usually has minimal 

error when compared to the original set of data. Hence a low dimensional data set can be 

obtained for analysis using PCA, without significant loss of information. This is the method we 

use to find out what rank to choose for the matrix factors U and V. 
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4.3 INITIALIZATION 

 

The algorithm requires U to be initialized. Ke and Kanade [1] found out that a random 

initialization was just as good as filling the missing data with column mean and performing SVD 

on it to find U. The algorithm was not sensitive to the initialization. 

4.4 MISSING DATA 

4.4.1 Method 1 

The matrix we are concerned with is sparse and has a lot of missing data. Ke and Kanade [1] 

proposed a simple way to handle the missing data. The constraint for each missing datum when 

solving the equations in the section above is dropped. The missing data can be recovered once 

subspaces are computed.  

                                             ∑ ∑ |      
   |

 
   

 
                (17) 

Dropping such an item in convex programming is equivalent to dropping a constraint in equation 

in the linear program mentioned in section 4. This is different from other traditional methods 

where the missing data is explicitly discovered. This method however does create some problems 

since our data set is very sparse with entire columns of Y with missing data. These columns 

correspond to movies that no user rated. For these particular columns, all the constraints are 

removed. Each user was required to rate at least 20 movies so the rows of Y will always at least 

that many non-missing values.  
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4.4.2 Method 2 

In addition to the above, we also used another method to deal with the missing data and 

compared results. Instead of dropping the constraint, we filled in the missing data in the columns 

with their corresponding column mean.  

 For both methods, the movie items that have been rated less than the rank chosen for that 

algorithm will be removed from the dataset. It does not make sense otherwise. 

4.5 CONVERGENCE 

 

 The algorithm decreases the cost function at each alternating minimization step. This cost 

function is an absolute value and is lower bounded,  (   )    so it will converge. The 

algorithm converges when the difference between adjacent iterations is small enough. If  (   ) 

is the angle between two vectors a and b then the algorithm converges when  

                                                    (  
    

   )                  (18) 

ui is the ith column of U or V and α is a small positive number. α was set to 4 degrees for the 

collaborative filtering experiment. 
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4.6 ALGORITHM SUMMARY 

Below is the summary of the algorithm 

 

Initialize U randomly 

For t=1 till convergence 

If method 1 

Remove missing data  

Else if method 2 

Fill missing data with column mean 

 Perform alternate convex minimization 

 ( )          ‖   
(   )  ‖

 
 

 ( )          ‖ 
   (   )  ‖

 
 

                    (  
    

   )    
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4.7 EXPERIMENTATION 

In this section we provide details of the data set used. We also explain the experimental protocols 

and error metrics in evaluating the performance of the algorithm. 

4.7.1 Data Set 

It is very important for empirical research on rating prediction algorithms to have the availability 

of large data sets. For this thesis the MovieLens (ML) data set was used. The data in MovieLens 

was collected through the on-going MovieLens project, and is distributed by GroupLens 

Research at the University of Minnesota. The data consists of 6040 users, 3952 movies, and 

1000209 ratings collected from users who joined the MovieLens recommendation service in 

2000. Ratings are on a scale from 1 to 5 and the base data set is 95:8% sparse. The Y matrix 

mentioned in section 5.1.1 will contain all these ratings. There will be 6040 rows representing 

the users and 3952 columns representing movies. 

 



 29 

 

Figure 2. Data distribution of the MovieLens ratings 

.  

 

4.7.2 Weak generalization 

One of the first prediction experiments was performed by Breese, Heckerman, and Kadie [3]. 

The experimental protocol they used has been popularly followed in literature. This is the same 

protocol we will use. This section will provide a brief overview of the one of the protocols. The 

ratings in the experiment will be split into an observed set, and a held out set. The observed set is 

used for training the algorithm and the held out set is for testing the performance of the method. 

For a validation set, the training set can further be split. We will not be using a validation set for 

our experiment. This method is called weak generalization because it can only predict ratings for 

items of the same users who have been used in the training set.  In the end, this just becomes a 

matrix completion problem and can be implemented by directly using the algorithm in 5.1.1. 
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4.7.3 Strong generalization 

Another type of generalization that is more useful is called strong generalization. This 

generalization is used to predict ratings for novel users. The set of users is first divided into two 

sets consisting of training users and test users. The learning part of the algorithm is performed 

with all the available ratings from the training users. A validation set can be created from the 

training set but we will not use it in our experiment. To test this method, the ratings of each user 

are split into an observed set, which the algorithm can access, and a held out set which the 

algorithm will predict.  

 For the alternate minimization algorithm, the training set of users is first used for 

learning. This means   and    will be learned from the training set. For the testing set,   will be 

randomly initialized again as mention in section 5.1.1 but learned    will be used from the 

training. The algorithm will optimize   over a fixed    till the difference between adjacent 

iterations of columns of   is less than a small number as shown in section 5.1.3. 

As mentioned above, in both weak and strong generalizations each user‟s ratings are 

partitioned in a set of observed items and a set of held out items. There are several ways to do 

this. We used the all-but-1 method in our algorithm were all of the user‟s ratings are observed 

except for one which we will test. For the experiments we will use 5000 users for weak 

generalization and 1040 for strong generalization. 

4.7.4 Error metrics 

The error measures we use are those that are described in Marlin [2].  It is the mean absolute 

error. The equation is shown below. 
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∑ |                     |
 
              (19) 

Where M is the number of users,           is the actual rating and             is the predicted 

rating. Marlin [2] uses a normalization value of  [   ].  

                                                                               
   

 [   ]
            (20) 

where E[MAE] is the expected value of the MAE assuming uniformly distributed observed and 

predicted rating values. An NMAE error of less than one means a method is doing better than 

randomly predicting ratings, while an NMAE value of greater than one means the method is 

performing worse than random. Marlin‟s value of E[MAE]=1.6 is what we used for our 

experiment.  

4.7.5 Example Problem 

Here we will show an example problem. The following is an 8×6 matrix rank 2 matrix from from 

[1]  The highlighted data points are the ones that will be omitted to emulate missing data: 

Y 

    9.4700     -7.3000     -2.4300      8.1300      7.8700      7.5600 

    8.4200     -0.1300     -2.0300      6.9900      5.8300      1.5000 

  -12.4900    -5.7100      2.8800    -10.1500    -7.5500      2.6200 

    1.0300     -4.5600     -0.3400      1.0200      1.5500      3.9200 

    1.6900    11.2600      -0.1700     0.9900     -0.9000     -8.9700 

    3.8300      9.4800      -0.7200     2.8300      0.8900     -7.1600 

    1.8400      5.8300      -0.3200    1.3100       0.1900     -4.4800 

    8.0800      8.9700      -1.7500    6.3700       3.9100     -6.0300 
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Ymissing shows the same matrix as Y except the highlighted points have been replaced with zeros 

indicating missing values. 

Ymissing 

    9.4700     -7.3000              0      8.1300      7.8700      7.5600 

            0     -0.1300     -2.0300              0      5.8300      1.5000 

  -12.4900    -5.7100      2.8800              0    -7.5500      2.6200 

    1.0300              0              0      1.0200              0              0 

    1.6900    11.2600      -0.1700     0.9900     -0.9000     -8.9700 

    3.8300      9.4800      -0.7200     2.8300      0.8900              0 

    1.8400              0               0    1.3100       0.1900     -4.4800 

    8.0800      8.9700      -1.7500    6.3700               0     -6.0300 

Ymissing_weak_generalization_set is a 6×6 matrix randomly selected subset from Ymissing to 

generate a weak generalization matrix. This will be used as training data and the missing values 

are used as test data. 

 

Ymissing_weak_generalization_set 

    9.4700     -7.3000              0      8.1300      7.8700      7.5600 

  -12.4900    -5.7100      2.8800              0    -7.5500      2.6200 

    1.0300              0              0      1.0200              0              0 

    1.6900    11.2600      -0.1700     0.9900     -0.9000     -8.9700 

    1.8400              0               0    1.3100       0.1900     -4.4800 

    8.0800      8.9700      -1.7500    6.3700               0     -6.0300 
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The remainder 2×6 matrix taken from Ymissing was chosen as the 

Ymissing_strong_generalization_set. As explained before this is only used as test data. 

 

Ymissing_strong_generalization_set 

            0     -0.1300     -2.0300              0      5.8300      1.5000 

    3.8300      9.4800      -0.7200     2.8300      0.8900              0 

 

 

The following two matrices were generated from the algorithm. The missing data was taken care 

of by removing them (Method 1). If we compare the matrices below to Y, then we can see that 

the predicted values are very close to the original values. 

Y weak_generalization_result 

    9.4784     -7.2999     -2.4310      8.1299      7.8698      7.5621 

  -12.4898    -5.7097      2.8797    -10.1473    -7.5513      2.6233 

    1.0300     -4.4941     -0.3423      1.0200      1.5358      3.8608 

    1.6947     11.2601     -0.1694      0.9900     -0.9036     -8.9665 

    1.8390      5.8260     -0.3188      1.3101      0.1950     -4.4801 

    8.0800      8.9700     -1.7516      6.3698      3.9148     -6.0300 

 

Y strong_generalization_result 

    8.4311     -0.1294     -2.0280      6.9968      5.8300      1.5005 

    3.8301      9.4800     -0.7199      2.8266      0.8943     -7.1516 
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4.8 RESULTS AND DISCUSSION 

 

 

Figure 3. Variance of data explained by the Principal Components 

The top figure shows all the principal components. The bottom figure is zoomed in to the first 30 principal 

components. 
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Principal Components Analysis was performed on the measurement matrix. The top portion of 

Figure 3 shows the shows all of the principal components and how much of the data is explained 

by each of them. It is clear that only the first 15-20 principal components explain the variance of 

the data best. This means that there are about 15-20 features that are common to all the users and 

movies. This result prompted me to choose a rank of 10, 12, 15 and 20 for matrices U and V 

while performing the experiment. 

 

Table 1. Weak NMAE and Strong NMAE results for the algorithm where missing data was removed. 

Rank 10 12 15 20 

Weak 

NMAE 
0.5314 0.5617 0.6513 0.9647 

Strong 

NMAE 
0.4952 0.5695 0.6006 0.7336 

  

Table 2. Weak NMAE and Strong NMAE results for the algorithm where missing data was replaced with the 

column mean 

RANK 10 12 15 20 

Weak 

NMAE 
0.4887 0.4931 0.4825 0.4958 

Strong 

NMAE 
0.4827 0.5057 0.4834 0.5022 

 

Table 1 and 2 show the results, weak NMAE and strong NMAE, from the collaborative filtering 

algorithms. The ranks of the matrices chosen were chosen based on the results from PCA.  
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Figure 4. A plot showing Weak NMAE vs Rank. 

 

Figure 5. A plot showing Strong NMAE vs Rank. 

For both figures, the red dots are results from the algorithm where the missing data was removed. The blue 

dots are from the algorithm where the missing data was replaced with the column mean. 
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Figure 4 shows the weak NMAE from both the algorithms, one where the missing data was 

removed, and the other where the missing data was filled with the column mean. The results are 

very interesting. It shows that the second method performed much better than the first one. As 

the rank was increased from 10 to 20, the results for the first algorithm deteriorated. We think 

this happened because removing the missing data reduced the information used to predict the 

ratings, thus generating inaccurate predictions. In addition, as the rank was increased the number 

of variables to be learned increased as well, which caused even more inaccuracy and increased 

the error. We think this method was more successful in Ke and Kanade [1] because the data set 

they used was not as sparse as ours, rather it had more outliers. On the other hand, the second 

method that we tried showed consistently low error even as the rank increased, which confirmed 

the lowest rank tested by PCA was sufficient. The results from the second method are 

comparable to the results out in literature [32, 33], which verifies this is a successful method to 

perform collaborative filtering. Figure 5 shows the strong NMAE for both algorithms and the 

results are similar to the weak NMAE.  

 Our algorithm addressed the challenges mentioned in Chapter 2. The sparseness of the 

dataset was tackled using two method described above. The matrix factorization and 

dimensionality reduction helped make the problem more scalable and addressed the synonymy 

challenge. We expect synonyms to fall in the same lower dimension. In addition, gray 

sheep/black sheep can be considered outliers and the L1 noise model made the problem robust to 

outliers.  
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5.0  IMORTANCE OF COLLABORATIVE FILTERING IN THE HEALTHCARE 

INDUSTRY  

 

The one area of science than the human race‟s well –being relies most heavily on is healthcare. 

Every human is prone to get diseases, either hereditary or otherwise. They are also subject to the 

natural aging process which comes with numerous physical ailments and disabilities.  

As an employee of a global healthcare company myself, I was motivated to work on a thesis 

topic that could be practically applied to the healthcare industry. The huge costs of healthcare, 

difficulty in keeping track of patients with chronic disease are only some of the factors that 

concern the healthcare community today. This kind of crisis has led to the need of preventive 

care, which entails recognizing disease risk and taking early action to prevent them. However, to 

manually take on such a task is highly impractical in terms of both cost efficiency and time 

efficiency, which is why the aim should be to automate such a system with a reliable 

recommendation algorithm.  

 

The healthcare in the US is currently a recurring topic amongst policy makers. This is 

because these costs are only expected to rise in the future. The system is overburdened with the 

health concerns of both the aging generation and the younger generation. A study shows that 

since 1992, the average age of patients visiting hospitals increased to 45 years, and the visit rate 
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for persons 45 years of age and over increased by 17% from 407.3 to 478.2 visits per 100 

persons [22]. The healthcare industry thus needs to focus its shift from reactive treatment to 

proactive treatment. 

It is very challenging for a single healthcare professional to fully understand the complex 

issues surrounding the different disease generating factors and entire medical history of a patient.  

In a current traditional medical environment, physicians use a physical examination, aided with 

family background to assess the situation of the patient. To further assist the investigation they 

order laboratory tests and depend on their results. This method is very focused on a limited 

number of diseases and is dependent on the physicians experience and competence. 

As a result, the current medical care jumps in when the symptoms of the disease emerges, 

making is reactive. What we want is a proactive system where the treatment would eliminate the 

disease as the earliest signs. The genome revolution has brought about important progress in 

preventive healthcare. The current technologies have provided a comprehensive list of disease-

gene associations giving us thorough information on the possibility of developing special 

diseases [23]. The goal of this kind of research is that once all the disease related mutations are 

catalogued, we will be able to predict each individual‟s predisposition to future diseases. 

However, these genome based innovations are still limited [24]. This leads to opening alternative 

ways to pursue preventive healthcare practices.  

Computer-aided medical prediction systems have been the interest of related research 

recently. One such popular system is the Apache III [25], a scoring system that predicts inpatient 

mortality. Apache uses a combination of acute physiological measurements, age, and chronic 

health status to make these predictions. There are also a number of systems developed for 
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predicting risk of individual diseases, such as specific heart conditions [26], hepatitis [27], 

Alzheimer's disease [28], etc.  

One paper [29] proposes CARE, a Collaborative Assessment and Recommendation 

Engine, which relies only on a patient's medical history using ICD- 9-CM ICD-9-CM 

(International Classification of Diseases, 9th revision, Clinical Modification) codes in order to 

predict diseases risks in the future. This is a more general predictive system and does not focus 

on specific diseases like the above. CARE uses collaborative filtering to predict each patient's 

greatest disease risks based on their own medical history and that of similar patients. The also 

propose an Iterative version, ICARE, which incorporates ensemble concepts for improved 

performance. These systems require no specialized information and provide predictions for 

medical conditions of all kinds in a single run.  

I currently work in a medical device company that specializes in Continuous Positive 

Airway Pressure (CPAP) devices, which is a device that produces a mode of respiratory 

ventilation and is primarily used to treat patients with sleep apnea. Sleep apnea is a sleep 

disorder that is characterized by unnatural pauses in breathing or occurrences of low breathing 

during sleep. A pause in breathing which can last from a few seconds to a minute is called an 

apnea. An abnormally low breathing is called a hypopnea. Such breathing pauses can causes 

disruption in sleep. Cases have been reported where patients with obstructive sleep apnea have 

fallen asleep during driving that can cause fatal crashes. Positive pressure through the airway 

path can prevent these breathing pauses to take place and provide a patient with an uninterrupted 

night of sleep. Usually the patients using the devices that are specific to treating sleep apnea do 

not need to be hospitalized. 
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Different variants of more sophisticated PAP devices are used in more serious patients 

that are hospitalized and critically ill with respiratory failure. Occasionally neuromuscular 

diseases are also treated using a variety of CPAP devices. In a hospital, the PAP ventilation is 

most commonly used for congestive heart failure and acute exacerbation of obstructive airway 

disease. As one can imagine there is a huge amount of device therapy data that can be collected 

from both hospitalized and non-hospitalized data. Device therapy data consists of Currently there 

is a serious lack of retrospective analysis of the device therapy data that could provide valuable 

information for future CPAP and respiratory devices.  

I am currently involved in a data mining project that could benefit tremendously from the 

concepts of collaborative filtering. The existence of so many devices in such disparate locations 

and conditions create a very diverse and large dataset. In addition, there are many factors that 

cause the patient condition to worsen or get better. The idea of the project is to collect historical 

therapy data from patients using PAP devices and use that data to first of all find the most 

important and relevant factors that influence their condition. Eventually we would want to be 

able to take these factors and perform some kind of collaborative prediction to be able to predict 

prescriptions for future patients and better characterize patient needs. This can prove to be very 

effective and reduce physician time and involved which also reduces cost. It can also help the 

engineers get better insight of how the devices are behaving to try and improve the algorithms. 
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