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x Framework on the potential for farmer-led irrigation was developed and implemented 

x Water availability and other biophysical indicators only partially predict potential  

x Market accessibility and water infrastructure were found key predictors  

x 179,584 ± 49,853 hectares are potentially suitable for small-scale irrigation in Ghana’s Upper East 

Region 
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ABSTRACT 1 

Small-scale irrigation has gained momentum in recent years as one of the development priorities in 2 

Sub-Saharan Africa. However, farmer-led irrigation is often informal with little support from extension 3 

services and a paucity of data on land suitability for irrigation. To map the spatial explicit suitability for 4 

dry season small-scale irrigation, we developed a method using an ensemble of boosted regression 5 

trees, random forest, and maximum entropy machine learning models for the Upper East Region of 6 

Ghana. Both biophysical predictors including surface and groundwater availability, climate, topography 7 

and soil properties, and socio-economic predictors which represent demography and infrastructure 8 

development such as accessibility to cities and proximity to roads were considered. We assessed that 9 

179,584 ± 49,853 ha is suitable for dry-season small-scale irrigation development when only biophysical 10 

variables are considered, and 158,470 ± 27,222 ha when socio-economic variables are included 11 

alongside the biophysical predictors, representing 77-89% of the current rainfed-croplands. Travel time 12 

to cities, accessibility to small reservoirs, exchangeable sodium percentage, surface runoff that can be 13 

potentially stored in reservoirs, population density, proximity to roads, and elevation percentile were the 14 

top predictors of small-scale irrigation suitability. These results suggested that the availability of water 15 

alone is not a sufficient indicator for area suitability for small-scale irrigation. This calls for strategic road 16 

infrastructure development and an improvement in the support to farmers for market accessibility. The 17 

suitability for small-scale irrigation should be put in the local context of market availability, demographic 18 

indicators, and infrastructure development.  19 

KEYWORDS 20 

Food security, small-scale farmers, farmer led-irrigation, semi-arid region, land suitability, ecological 21 

niche modelling 22 

1 INTRODUCTION 23 

Agriculture represents a key economic sector in Sub-Saharan Africa (SSA), with smallholders playing 24 

an important role in national and regional food security (see Lowder et al., 2016 for a comprehensive 25 

discussion on farmland size and smallholders). In Ghana, for example, small-scale farms – with average 26 

farm sizes between  0.5 and 2 hectares – produce 95% of the country’s food crops (Mendes et al., 27 

2014). While the exact definition of small-scale irrigation is disputed in the literature (Turner, 1994), it is 28 

considered in this paper as irrigation where individual farmers or small groups of farmers have more 29 
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control over the source of water they use for irrigation and the type of technology they use for small-30 

scale, market-oriented agriculture. In this context, other terminologies for small-scale irrigation are 31 

distributed irrigation, small private irrigation, smallholder irrigation, or farmer-led irrigation (Xie et al., 32 

2021). As opposed to large-scale irrigation, small-scale irrigation requires lower investment costs, is 33 

easier to operate and maintain, requires very little in terms of enterprise and management capability, 34 

and has a potentially less negative environmental impact (Tafesse, 2003). Small-scale irrigation is also 35 

considered a key tool to transform agriculture and food systems in SSA (Ringler et al., 2020). 36 

Intensification and expansion of irrigation offer a pathway for improving agricultural productivity, helping 37 

to address challenges of rural poverty (Burney et al., 2013;  de Bont et al., 2019), food insecurity and 38 

malnutrition (Balana et al., 2020), and poor health outcomes (Domènech, 2015) across SSA. Irrigation 39 

is a key pathway for smallholder farmers to build resilience towards climate change (Alemayehu & 40 

Bewket, 2017). In addition, the adoption of small-scale irrigation is also being driven by growing demand 41 

for food, including vegetables and fruits, as a consequence of increases in income and changing diets 42 

of the growing middle-income consumers in urban areas in SSA (Balana et al., 2020).  43 

While irrigation expansion is considered as a tool for poverty alleviation and key policy priority for donors 44 

and governments in SSA, only 4 to 6% of agricultural land in SSA is equipped with irrigation 45 

infrastructure, compared to 37% in Asia (Wiggins & Lankford, 2019; Burney et al., 2013). However, 46 

there are considerable renewable freshwater resources available in the region, although there is an 47 

uneven distribution of these resources in SSA. For example, West Africa has an estimated total 48 

renewable water resource of 1,315x109 m3/year (the majority of these resources are located in countries 49 

such as Nigeria, Liberia, Guinea, Sierra Leone, and Mali), of which only 2% is withdrawn for human 50 

purposes (Namara and Sally, 2014). Having acknowledged this, the potential for future expansion and 51 

intensification of irrigation in SSA appears high, especially in areas where the resources are available 52 

(Wiggins & Lankford, 2019). Thus, small-scale irrigation is recognized as a mechanism for increasing 53 

productivity and income in the rural areas of developing countries. However, this potential is often not 54 

realized, as many publicly funded systems are underperforming, run-down, and in serious need of 55 

maintenance and refurbishment (Namara and Sally, 2014). Many irrigation schemes' performance has 56 

been sub-optimal with generally disappointing returns to investments, particularly in the case of large 57 

public irrigation schemes (Namara and Sally, 2014). While there were limited donors investment in 58 

irrigation infrastructure in SSA during the 1980s and 1990s, a revitalization and increased interest was 59 
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shown towards the mid-2000s (Wiggins & Lankford, 2019) as governments and donors seek to improve 60 

food security, enhance resilience against climatic shocks (Misra, 2014) and decouple agriculture from 61 

rainfall variability (Cooper & Coe, 2011). In June of 2002, the Comprehensive Africa Agriculture 62 

Development Programme (CAADP) of the New Partnership for Africa’s Development (NEPAD) was 63 

endorsed by the African Ministers assembled at the FAO Regional Conference for Africa. The NEPAD 64 

and Food and Agriculture Organisation (FAO) of the United Nations initiated the CAADP, in which 65 

African countries pledge 10% of their national budget towards agriculture to spark an annual agricultural 66 

growth rate of 6% (NEPAD, 2003). The CAADP provides a framework for restoring agricultural growth, 67 

rural development, and food security in the African region. It has four key focus areas, so-called Pillars, 68 

for agricultural improvement and investment. Pillar 1 deals with land and water management, aiming at 69 

extending the area under sustainable land management and reliable water control systems (NEPAD, 70 

2003). Building on CAADP goals and countries’ commitments and as a response to declining levels of 71 

investment in agricultural water, the AfDB, FAO, IFAD, IWMI, and the World Bank came together in 72 

2007 and jointly prepared a collaborative agricultural water strategy known as “Investment in agricultural 73 

water for poverty reduction and economic growth in sub-Saharan Africa” (FAO, 2008). In March 2008, 74 

during the first Africa Water Week, the African Minister’s Council on Water (AMCOW) called on NEPAD 75 

to inaugurate a new partnership – Agricultural Water for Africa (AgWA) – that would re-engage African 76 

countries, donors, as well as regional and international organizations in the development of water 77 

resources for food production, economic growth and poverty reduction (FAO, 2008). AgWa’s major 78 

roles are advocacy; highlighting messages such as water for food, water for wealth, and water for life, 79 

and mobilizing resources (Namara and Sally, 2014). It also shares knowledge to improve the availability 80 

of information and knowledge at regional and national levels among agricultural water management 81 

professionals among others (Namara and Sally, 2014). 82 

Small-scale irrigation development is back into the development agenda for SSA. Due to past and 83 

current underperformance of large-scale irrigation projects, informal farmer-led irrigation is considered 84 

a sustainable pathway for irrigation expansion in SSA (Higginbottom et al., 2021). Research has shown 85 

that the economic return of profitable small-scale irrigation expansion is more than twice the return of 86 

large-scale, dam-based centralized schemes while at the same time, the suitability for small-scale 87 

irrigation is five times higher than large-scale irrigation in SSA (You et al., 2011). Small-scale irrigation 88 

is managed by individual farmers, households, or small groups of farmers that self-supply irrigation from 89 



4 
 

different sources using a variety of technologies to produce high-value crops such as vegetables 90 

alongside traditional staple crops such as rice and maize. Indeed, small-scale, farmer-led irrigation 91 

development is strongly determined by “market” but not all dynamics are related to the most commons 92 

high-value crops also termed as horticulture crops. In the remote areas with difficult access, it might be 93 

highly profitable to produce staple food to sell locally during the hungry gap period (or just to avoid 94 

having to buy staple food whose value may triple at this time). This kind of niche market (a local variation 95 

of price due to (in)accessibility) might not be well captured by national statistics and can face significant 96 

annual variation (as it is related to rainy season production). In other word, there are also food security 97 

mechanisms involved. At last, what will matter will be both the access to market demand but also the 98 

offer which depends on the existence of a non-rainfed cropping system that may impact local production 99 

(e.g., flood recession cropping systems). Much of the growth in smallholder irrigation is informal and 100 

not constructed or operated through the intervention of a government or donor agency (Drechsel et al., 101 

2006). As such, these farmer-led irrigation systems are often poorly represented in official government 102 

statistics on the irrigated agricultural area as well as policies that target an increase in agricultural 103 

production and irrigation development. The lack of data on where irrigation suitability currently exists 104 

and related data on trends, opportunities, and constraints in informal irrigations is a major limitation for 105 

donors' and policymakers' interventions (Namara et al., 2011). As such, mapping the suitability for 106 

farmer-led irrigation is important to help identify the right mix of interventions for the planning of future 107 

irrigation development initiatives (Namara et al., 2010). 108 

Many recent studies have sought to map the suitability for smallholder irrigation development in SSA. 109 

For example, You et al., (2011) combined biophysical and socio-economic assessment to estimate the 110 

suitability for irrigation while Xie et al., (2014) developed a framework for estimating the suitability for 111 

small-scale irrigation for the whole of SSA. These studies used a combination of environmental 112 

suitability and rural demographic analysis, hydrologic and crop simulation, crop prices, and cost-benefit 113 

analysis to account for the suitability. A similar method was applied to estimate the suitability for the 114 

expansion of small-scale irrigation in Nigeria (Xie et al., 2017). Schmitter et al., (2018) developed a 115 

framework for mapping the geo-spatial suitability of solar-based PV pumping for irrigation by combining 116 

solar radiation and availability of water resources and linkage to markets using weighted overlay multi-117 

criteria evaluation in Ethiopia. Gumma et al., (2011) used fuzzy methods and irrigation statistics to map 118 

Ghana’s irrigated areas while a GIS Multi-Criteria Evaluation (MCE) was used to evaluate the suitability 119 
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of land for surface and shallow groundwater irrigation in Ghana (Worqlul et al., 2019). The majority of 120 

these methods are based primarily on multicriteria evaluations, which identify suitable areas for 121 

irrigation expansion based on expert opinion about the biophysical and socio-economic suitability of 122 

different areas for irrigation development. Since the development of the framework for land evaluation 123 

(land suitability/land capability) by the FAO in 1976, many methods have since been used to assess 124 

agricultural land suitability including land suitability for irrigation. One of these methods is called expert 125 

knowledge or judgment. In this context, an experienced rice farmer for example can be considered an 126 

expert. In land suitability assessment/modelling, many factors are used, generally refers to multi-criteria 127 

evaluation (MCE). While the choice of factors/predictors in the MCE by experts are mostly accurate on 128 

a field scale, the same cannot be said for landscape-scale where complexities, interactions among 129 

factors are often overlooked by expert judgment. This often introduces bias on which factors should be 130 

prioritized in the decision process, especially when large numbers of predictors are considered (Akpoti 131 

et al., 2019) and where complex systems such as the heterogenous landscape of small-scale cropland 132 

are modeled. However, in the recent improvement in computation and algorithms including machine 133 

learning methods, these complexities and variations are taken into account, providing added value in 134 

the analysis1. To better understand the suitability for small-scale irrigation, we propose a methodology 135 

that combines advanced statistics through machine learning and spatial modelling.  The approach was 136 

developed to accurately map the suitability for small-scale irrigation by setting models that yield complex 137 

response surfaces/predictions (Zurell et al., 2020) based on a large enough sample size of cropland for 138 

calibration. The approach also produces statistically ranked predictors based on survey data and their 139 

level of influence in the system. Besides, the approach produces response shapes that summarise the 140 

relationship between estimated suitable small-scale cropland and the biophysical and socio-economic 141 

environments which are then subjected to plausibility checks against available knowledge (Zurell et al., 142 

2020) on cropland suitability for small-scale irrigation. Our approach, which is based on ecological niche 143 

modelling (Elith & Leathwick, 2009; Phillips et al, 2008), has been used to model agricultural land 144 

suitability (Akpoti et al., 2020; Akpoti et al., 2021; Heumann et al., 2011). Ecological niche modelling 145 

                                                           
1 Although complexities and interactions among predictors are taken into account by the machine 
learning models, feedback loops which are characteristics of complex systems such small-scale 
irrigations systems are not clearly represented. This is because the machine learning models as 
adopted in this paper are not set up to interactively and dynamically take into account farmers 
behavioural change (due to endogenous and or exogenous factors) towards small-scale irrigations 
systems.  
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also referred to as correlative approach,  associates the current and known geographical occurrences 146 

of species with environmental geographical data to generate a suitability gradient that is projected in 147 

geographical space (Peterson, 2006). Thus, the method links spatial predictors to estimate agricultural 148 

landscape suitability using known crops/croplands' geographical locations (Akpoti et al., 2021).  149 

Irrigated area statistic data is not readily available in Ghana. There is an estimated 33,800 ha of irrigated 150 

land against 6.9 million hectares of cultivable land in Ghana (Namara et al., 2011), with irrigated 151 

agriculture representing less than 0.5% of the total cultivable area. Gumma et al., (2011) reported an 152 

irrigated area derived from remote sensing data of 32,421 ha with a conclusion that the estimated area 153 

was 20–57% higher than irrigated areas reported by Ghana’s Irrigation Development Authority (GIDA). 154 

Also, of the gross estimated 1.9 million ha potentially irrigable area in the country based on FAO 155 

AQUASTAT, less than 2% has been developed (Mendes et al., 2014). Recent research by Worqlul et 156 

al., (2019) reported that approximately 9% of the area of Ghana was suitable for surface irrigation. 157 

About 186,000 ha is irrigated with water lifting technology (Namara et al., 2013) of an estimated 1 million 158 

ha of suitable land for small-scale irrigation (Xie et al., 2014). In this paper, we develop a spatial 159 

modelling framework for mapping the suitability for informal irrigation development to support goals of 160 

sustainable and efficient expansion of smallholder irrigation in SSA as a tool for poverty alleviation and 161 

economic development (Burney et al., 2013). We apply the framework to a case study in the semi-arid 162 

Upper East Region of northern Ghana, where water insecurity is a key driver of low agricultural 163 

productivity and food insecurity (Al-hassan, 2015; Dittoh et al., 2013). One of Ghana’s irrigation policy 164 

directions is to enhance irrigated agriculture productivity with recognition of small-scale irrigation as one 165 

of the principal categories of irrigation in the country (Ghana Irrigation Development Authority, 2011). 166 

This policy also recognizes the lack of data on the overall extent of informal irrigation, which limits the 167 

support to small-scale farmers by the extension services. For successful programs and interventions, 168 

quantified data is key for making informed decisions about where to target investments to support the 169 

expansion and intensification of irrigation. This study was designed to identify some of the key factors 170 

driving the suitability of land for irrigation and their interactions at the landscape level as opposed to a 171 

single farm or field-scale intervention. Therefore, our analysis addresses a critical data gap to inform 172 

policy in the region around the location of existing irrigated agriculture and feasible areas for future 173 

development, drawing on an extensive set of geo-located ground truth data collected through surveys 174 

in 2020 in the region. The scope of our study is limited to small-scale, farmer-led dry season irrigation 175 
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as opposed to rainy season irrigation. In contrast to supplementary rainy season irrigation which is 176 

mostly used to grow staple crops, dry season irrigation is mainly applied to cash crops in a profit oriented 177 

agriculture in limited rainfall environments where production would otherwise not be feasible (Xie et al., 178 

2021). Dry season irrigation access is a precondition for cultivation in many semi-arid and arid regions 179 

such as West Africa, and has been shown to result in significant improvements in farmer incomes and 180 

food security – hence identifying potential areas for dry season irrigation expansion is a key need for 181 

policy alongside efforts to increase use of irrigation as a supplemental buffer during the rainy season. 182 

The remainder of the paper is structured as follows: First, we assessed the predictors that define land 183 

suitability for farmer-led small-scale irrigation. These parameters are related to climatic variables, 184 

agricultural water productivity and soil water content, soil chemical properties, soil physical properties, 185 

vegetation cover, and socio-economic variables. Secondly, we assessed the partial response surface 186 

of the predictors to the suitability level for small-scale irrigation; then we tested a series of model 187 

specifications for predicting small-scale, farmer-led irrigation suitability. Finally, we developed an 188 

ensemble of spatial probabilistic and binary predictions of suitability for small-scale irrigation. The 189 

results from this study are to support data-driven solutions for the realization of the promise of small-190 

scale irrigation, especially in semi-arid regions. 191 

2 METHODS AND MATERIALS 192 

2.1 Study area 193 

The study was conducted in the Upper East Region of Ghana located in the northeast of Ghana in West 194 

Africa between longitudes 0° and 1° 60'W and latitudes 10° 33'N and 11° 17' (Figure 1) with a 195 

geographic area of 8,842 km2. The region is in the Sudan Savannah zone with annual rainfall between 196 

645 mm and 1250 mm. The region has a unimodal rainfall pattern, with a summer (May to September) 197 

monsoon rainy season followed by a long dry season between October and April, and experiences 198 

frequent droughts (Dietz et al., 2004). The soil in the region has low fertility, low content of organic 199 

matter, and mostly coarse-textured, with high susceptibility to soil erosion due to shallow surface soil 200 

profiles (Amegashie et al., 2012). 201 

The majority of the population in the area is rural, with agricultural production as the major source of 202 

livelihood. Crops such as millet, sorghum, groundnut are grown in the rainy season, while leafy 203 

vegetables, okra, onions, peppers, and tomatoes are prioritized in the dry season where irrigation is 204 
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available (See Figure 1). Irrigation systems and water sources in the region are heterogenous, including 205 

shallow groundwater pumping, small surface water reservoirs, and larger government-managed 206 

irrigation dams (Annor et al., 2009). The latter comprises two major irrigation schemes: the 850 ha Vea 207 

scheme near Bolgatanga and the 2,490 ha Tono scheme near Navrongo. Note that there is little 208 

cropping in the dry season in areas without irrigation due to low rainfall and high crop water 209 

requirements during this period of the year in the Upper East Region.  210 

2.2 Methodology 211 

In the following sections 2.2.1 and 2.2.2, we described the plot level data and candidate predictors while 212 

in section 2.2.3, we presented an overview of the small-scale irrigation suitability mapping. We 213 

discussed the methodology for the machine learning models’ parameterizations for small-scale 214 

irrigation mapping, as well as the statistical evaluations of the predictions under section 2.2.4. We 215 

reported the methodology used to compare our predictions with existing land use data and the model 216 

restriction approach in sections 2.2.4 and 2.2.5 respectively. 217 

2.2.1 Survey protocol of small-scale, informal irrigation plots 218 

To train predictive machine learning models of suitable areas for small-scale informal irrigation mapping, 219 

baseline data on existing informal irrigated areas in the study region were required.  As part of the 220 

FutureDAMS (Design and Assessment of water-energy-food-environment Mega-Systems), the 221 

International Water Management Institute (IWMI) and the University of Manchester (UoM) organized a 222 

survey between May and July 2020 to collect data on informal irrigation activities to serve as data inputs 223 

for the development of decision support system that could foster improvement in informal irrigation 224 

activities. The survey was carried by enumerators drawn from the various districts and with adequate 225 

knowledge of the agricultural and socio-demographic context of the communities. The data on small-226 

scale irrigation were collected through interviews and GPS tracking of irrigation plots. The World Bank’s 227 

Survey Solution software was used to design the questionnaires, and the survey was implemented 228 

using GSM-enabled mobile tablets. The data was collected through surveys of approximately 1,200 229 

households in the 15 districts across the Upper East Region. For each household, information was 230 

collected on whether the farmer cultivated the land during the prior (2019-2020) dry season (a total of 231 

707 out of 1,200 surveyed households reported cultivation). For each of these 707 farmers, information 232 

was collected on the location of their main agricultural plot, the position of this plot in the landscape 233 
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(uplands, inland valleys, fringes, floodplains), physical properties of the soil (clay, sand, etc.), source of 234 

water for irrigation (groundwater, small reservoirs, rivers), irrigation equipment, water lifting methods, 235 

crop types cultivated, seasonal irrigation practices, irrigation constraints, and available investment 236 

opportunities. For each of the 707 plots, the boundary of the plot was recorded using a GPS device 237 

based on which plot centroids were computed (see Figure 1).  238 

The categories of plot owners were either the household heads or the spouses, children, grandchild, 239 

parents’ in-law, sons/daughters’ in-law, or another relative of the household head. In terms of positions 240 

within the topography, the surveyed plots were distributed among fringes (5%), inland valleys (16%), 241 

lowlands/floodplains (30%), and uplands (49%), and within the sand, clay, and silt soil textures. Sources 242 

for irrigation were groundwater (60%), reservoirs (21%), and rivers/streams (19%). Irrigation equipment 243 

in the various farms was bucket/watering can, diversion/gate, electric pump, hand pump, 244 

petrol/kerosene/diesel pump, solar-powered pump, plastic/lay flat pipe/water hose pipe, canal/ditch, 245 

drip, furrows, sprinkler/rain hose. In terms of investments in irrigation, most farmers invest in irrigation 246 

infrastructure for their usage (93% of the surveyed plots). Others participate in a collaborative 247 

investment in irrigation infrastructure for joint usage (4.8%) whiles the remaining 2.2% benefited from a 248 

project investment in irrigation development (but not from the government). 249 

Spatial location data collection often results in spatial clustering with a bias toward easily accessible 250 

locations such as roads and towns (Reddy & Dávalos, 2003). These biases enhance location spatial 251 

auto-correlation (Jane Elith & Leathwick, 2009) which can result in model overfitting to the predictors 252 

(Phillips et al., 2009). To reduce sampling bias and increase independence among field observations 253 

in the geographic and environmental spaces due to clustering points (Boria et al., 2014), we applied 254 

spatial filtering of 2 km between irrigated plots, which randomly sampled the irrigated plots to be retained 255 

for the modelling. We used the SDMtoolbox for the spatial filtering process (Brown et al., 2017), resulting 256 

in a final record of records of 426 irrigated plots. 257 

2.2.2 Predictors selection 258 

To evaluate potential drivers of the location of small-scale irrigation development, we reviewed previous 259 

literature (You et al., 2011; Xie et al., 2017; Nakawuka et al., 2018; Schmitter et al., 2018; de Bont et 260 

al., 2019) to define 30 candidate predictors (see Table 1 and Figure 2 for the list of predictors). These 261 

predictors were categorized under socio-economic variables, water availability, climate and energy, 262 
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topographical indicators, soil physical and chemical properties. Spatial auto-correlation among 263 

predictors was previously shown as a major source of uncertainties in spatial predictions of species 264 

distribution (Braunisch et al., 2013). Pearson correlation was therefore used to access the collinearity 265 

between any two pairs predictors. The correlation coefficients were analyzed using the ‘corrplot’ 266 

package in the R programming language (Wei et al., 2017) (see Figure 3). We used a threshold of |r| < 267 

0.75 to exclude one of the paired spatially dependent predictors. To decide on which of the spatially 268 

dependent predictors to drop, the simulation was run to evaluate the relative influence of these 269 

predictors alternatively. Eventually, the predictor with the highest influence was retained for the 270 

subsequent modelling. Additionally, we used a stepwise elimination of the least contributing predictors. 271 

We did this by ranking the predictors' importance produced by the modelling algorithms and eliminate 272 

the lowest-ranked predictors one at a time. We rerun models several times until no important drop in 273 

the model’s accuracies such as the area under the curves (AU ≥ 0.8) and percentage correctly classified 274 

(PCC ≥ 75%) were observed. Eventually, a total of 23 predictors were maintained in the final modelling 275 

(see Table 1). 276 

2.2.2.1 Water availability predictors 277 

Geographic distribution of irrigation is often linked to physical access to enough water, whether surface 278 

or groundwater (Wiggins & Lankford, 2019). The sources of water for irrigation in the study area are 279 

primarily dams and small reservoirs, groundwater, rivers, and streams (see Figure S1, Supplementary 280 

material). In the semi-arid regions at the margins of the Sahel, large numbers of small reservoirs capture 281 

surface runoff during the rainy season, storing water for use during the dry season. For the local 282 

population, small reservoirs are important water sources that help them cope with droughts (Annor et 283 

al., 2009). In this study, Euclidean Distance to small reservoirs was computed as a proxy for 284 

accessibility to reservoirs based on 384 small reservoirs'2 geolocation data. The reservoir data was 285 

developed by the International Water Management Institute (IWMI) which used a binary Random Forest 286 

classification on Sentinel-2 images for the dry season (Ghansah & Zwart, 2020). 287 

The ability of small and large reservoirs to effectively support small-scale irrigation is dependent on 288 

these storage systems being able to capture sufficient surface runoff availability after accounting for 289 

                                                           
2 Small reservoirs are water storage facilities of hectares of water coverage and with generally shallow 
depth. In the case of the Upper East region, the surface areas of the reservoirs data used in this study 
varied between 0.09 and 37 ha. 
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losses of rainfall to evapotranspiration and groundwater recharge (Xie et al., 2014). This water storage 290 

is likely to occur during the rainy season, 3 to 4 months before the dry season irrigation takes place. 291 

The amount of runoff and its spatial and temporal variation is influenced by climate, vegetation, soil, 292 

and topology (You et al., 2011). To estimate the potential surface runoff availability that can be captured, 293 

we used the Soil and Water Assessment Tool (SWAT). The hydrological cycle simulated by the SWAT 294 

model is based on Equation (1) (Neitsch et al., 2011) 295 

푆푊 = 푆푊 + 𝑅 − 𝑄 − 𝐸 − 푊 − 𝑄                                                  (1) 296 

where 푆푊  is the final soil water content (mm), 푆푊  is the initial soil water content on a day i (mm), t is 297 

the time (days), 𝑅  is the amount of precipitation on a day i (mm), 𝑄  is the amount of surface runoff 298 

on a day i (mm), 𝐸  is the amount of evapotranspiration on a day i (mm), 푊  is the amount of water 299 

entering the vadose zone from the soil profile on a day i (mm), and 𝑄  is the amount of return flow on 300 

a day i (mm). We used the Soil Conservation Service (SCS) curve number method in SWAT to estimate 301 

the surface runoff volume. We used manual calibration to adjust for the surface runoff. We considered 302 

daily climate data on rainfall, minimum, and maximum temperature, wind speed, solar radiation from 303 

1979-2014 of the Climate Forecast System Reanalysis (CFSR) global weather data for SWAT 304 

(https://globalweather.tamu.edu/, Fuka et al., 2014). We used land-use data from the European Space 305 

Agency (ESA) (http://2016africalandcover20m.esrin.esa.int/) and FAO digital soil map of the world 306 

(Nachtergaele et al., 2010) to set up the SWAT model. We considered a cumulative 5-years average 307 

surface runoff for July, August, September, and October. 308 

Groundwater availability was represented in this study by two indicators: depth to groundwater table 309 

and aquifer productivity. The cost of extraction depends mainly on the depth of the water table (Amjath-310 

Babu et al., 2016), while groundwater yield is a major determinant of suitability for groundwater-based 311 

irrigation (Foster et al., 2015). Geospatial estimates of depth to groundwater were obtained for the 312 

Upper East region from Fan et al., (2013). The aquifer productivity was computed using an inverse 313 

distance weighted (IDW) interpolation technique of the Geostatistical Analyst tool in ArcGIS on 2081 314 

borehole yield data points extracted from the Ghana national borehole database.  315 

Finally, in addition to previously mentioned predictors, we also considered one further hydrologic 316 

determinant of irrigation suitability – proximity to river networks. Proximity to rivers is another important 317 

https://globalweather.tamu.edu/
http://2016africalandcover20m.esrin.esa.int/
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predictor for irrigable land assessment from direct river abstractions (Assefa et al., 2018), and was 318 

computed using the Euclidean Distance tool in ArcGIS based on derived stream network data. The 319 

stream network data includes small streams, perennial and ephemeral river derived using the Digital 320 

Elevation Model (DEM) data. DEM data was obtained from Shuttle Radar Topography Mission (SRTM) 321 

30m product (https://earthexplorer.usgs.gov/).  322 

2.2.2.2 Climate and energy predictors 323 

The amount of precipitation during the rainy season will influence surface runoff to be stored for dry 324 

season irrigation. We considered the precipitation of the wettest quarter, a quarterly index that 325 

approximates total precipitation that prevails during the wettest quarter from the WorldClim Version 2 326 

database (Fick & Hijmans, 2017). Solar radiation is also important for both the solar water pumping and 327 

the water balance in the study area. We obtained solar radiation data from the WorldClim Version 2 328 

database. WorldClim data is an average over the period 1970-2000. See Table 1 for the units and 329 

spatial resolution of climate and energy predictors. 330 

2.2.2.3 Topographical predictors 331 

The survey of the small-scale irrigation plots showed that the edges of the valleys or fringes, inland 332 

valleys, lowlands/flood plains, and uplands are the ecologies exploited in the Upper East Region (see 333 

Figure S3 in the supplementary material). To discriminate between these positions in the landscape 334 

and accurately represent them in the predictors, two morphometric indices that combine different 335 

derivatives of DEM were computed, namely the elevation percentile and the topographic wetness index 336 

(TWI). DEM was resampled from 30m to 60m and 90m resolution to capture the various sizes of inland 337 

valleys in the landscape. The three DEMs -30m, 60m, and 90m were then further smoothed using the 338 

raster.gaussian.smooth function of the Spatial Analysis and Modelling Utilities (spatialEco) package in 339 

R (Evans et al., 2020).  340 

The elevation percentile was measured by a ranking of elevation concerning a circular surrounding area 341 

(Gallant & Dowling, 2003). Thus, the elevation percentile is robust in defining the local topography in 342 

the defined surrounding radius. The elevation percentile was computed based on a size 11 x 11 filter 343 

kernel in the x and y directions using the function wbt_elev_percentile of the whitebox package in R 344 

(Lindsay, 2016). The elevation percentile was computed for the 3 DEM sizes. The percentile products 345 

https://earthexplorer.usgs.gov/


13 
 

were further normalized using the fuzzy small membership function in ArcGIS. The elevation percentiles 346 

were finally combined using the fuzzy sum membership function.  347 

The topographic wetness index is one of the key determinants of soil moisture spatial variability based 348 

on the assumption that in sloped terrain, topography controls the movement of water (Schmidt & 349 

Persson, 2003). We used the DEMs 30, 60, and 90m from which we derived the TWI. The TWI of each 350 

pixel in the study area is a function of the upslope area (A) per unit contour length and the local slope 351 

(tanB) as:  352 

푇푊𝐼 = ln
( )

                                                                                                                                                                    (2) 353 

TWI products were computed using the function wbt_wetness_index of the whitebox package in R. The 354 

TWI were further normalized using fuzzy linear membership function in ArcGIS, then combined using 355 

fuzzy sum. Also, the slope was considered as irrigation is more likely to occur in an area with a gentle 356 

slope as it affects land preparation and irrigation efficiency (Xie et al., 2014).  357 

2.2.2.4 Soil physical properties  358 

Three soil physical properties obtained from Hengl et al., (2017) were used in the modelling, namely 359 

bulk density, available soil water capacity, and coarse fragment. Bulk density is related to the physical 360 

and chemical properties of the soil and it plays an important role in soil water retention (Al-shammary 361 

et al., 2018). Also, irrigation treatment has been linked to available soil water capacity (Panda et al., 362 

2004) while Coarse fragment affects soil workability and crop growth (Obour et al., 2017). See Table 1 363 

for the units and spatial resolution of the soil physical properties predictors. 364 

2.2.2.5 Soil chemical properties 365 

We considered cation exchange capacity, electrical conductivity, base saturation percentage, 366 

exchangeable sodium percentage, organic carbon, total nitrogen and phosphorus, soil pH, and 367 

exchangeable potassium as the chemical properties in the models. Cation exchange capacity 368 

influences the soil's capacity to hold onto essential nutrients (Juhos et al., 2019). Electrical conductivity 369 

is a measure of soil salinity and is one of the soil properties that influences crop productivity (Corwin & 370 

Lesch, 2003). The availability of soil nutrients increases with base saturation percentage (Havlin, 2005) 371 

while an excess of exchangeable sodium percentage harms the physical and nutritional properties of 372 

the soil, with the consequent reduction in crop growth (Yadav et al., 1988). The primary nutrients for 373 
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crops in the models are represented by total nitrogen, exchangeable potassium, and total phosphorus 374 

which have an impact on crop productivity (Dadhich et al., 2017). Also, organic carbon maintains soil 375 

structure and forms the basis for the successful use of mineral fertilizers while soil pH is an important 376 

factor in soil productivity.  377 

2.2.2.6 Socio-economic predictors 378 

Proximity to paved roads is a proxy for accessibility to markets and agricultural inputs (Schmitter et al., 379 

2018). This variable was computed using the Euclidean Distance tool in ArcGIS based on 380 

OpenStreetMap data. Also, the travel time required to access nearby populated areas indicates access 381 

to markets because the adoption of irrigation relies on market access for agricultural inputs and other 382 

equipment (Xie et al., 2014). The travel time data obtained from the accessibility database (Weiss et 383 

al., 2018). Accessibility is the travel time required to reach the nearest urban center via surface 384 

transport. Urban centers are defined as a contiguous area with 1,500 or more inhabitants per square 385 

kilometer or a majority of built-up land cover coincident with a population center of at least 50,000 386 

inhabitants (Weiss et al., 2018). The data was developed with gridded surfaces that quantify the 387 

geographical positions and salient attributes of roads, railways, rivers, water bodies, land cover types, 388 

topographical conditions (slope angle and elevation), and national borders and were combined to create 389 

a global ‘friction surface’, effectively enumerating the generalized rates at which humans can move 390 

through each pixel of the world’s surface (Weiss et al., 2018). The adoption of small-scale irrigation is 391 

influenced by the high population density for agricultural inputs and the market for selling agricultural 392 

products (Worqlul et al., 2017). We also considered the Gridded Population of the World (GPW), v4 393 

data (CIESIN, 2016). Proximity to town is also a proxy for market accessibility (Schmitter et al., 2018) 394 

and was computed using the Euclidean Distance tool in ArcGIS based on town location data. 395 

2.2.3 Overview of the small-scale irrigation suitability mapping 396 

We applied the Ecological Niche Models (ENMs) approach on cultivated crop/croplands to estimate the 397 

suitability for farmer-led irrigation. This approach was previously used to assess irrigated rice expansion 398 

in Burkina Faso (Akpoti et al, 2021). ENMs, also known as species distribution models (SDMs), are 399 

correlative models that link suitable areas of a species by inferring environmental conditions among 400 

predictors and predicting suitability over the study area (Hochman et al., 2013; Peterson, 2006). In this 401 

study, we implemented three machine learning algorithms —Boosted Regression Trees (BRT), 402 
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Maximum Entropy (MaxEnt), and Random Forest (RF) to estimate the suitability for small-scale, 403 

informal irrigation. These algorithms were previously shown to accurately model both cropland extent 404 

and suitability (Akpoti et al., 2020; Müller et al., 2013; Singh et al., 2017). Informal farmer-led irrigation 405 

is considered a distributed irrigation system, meaning that access to water, distribution, and use occurs 406 

or near the same location (Burney et al., 2013). Therefore, the suitability of small-scale irrigation can 407 

be estimated at the plot level (Xie et al., 2021) and infer the suitability for on a spatial scale to other 408 

non-sampled areas. The application of the ENMs, which are trained on the biophysical and socio-409 

economic characteristics of plots at the micro-level is therefore appropriate.  410 

We considered two cases in the simulation of the suitability for small-scale irrigation. In the first case, 411 

hereafter referred to as case 1, only biophysical predictors of irrigation suitability were included. 412 

Biophysical predictors included the availability of water for irrigation, the optimal land scale conditions, 413 

the climatic conditions, soil physical and chemical properties (see Table 1 for more metadata on the 414 

predictors and Section 2.2.2 for predictors description). In the second case (case 2), we estimate the 415 

suitability for small-scale irrigation by considering additional socio-economic predictors alongside 416 

biophysical variables included in case 1. Variables included as proxies of socio-economic conditions 417 

that may influence suitability for irrigation development were population density, travel time to major 418 

cities, and accessibility to paved roads. Considering both biophysical and socio-economic determinants 419 

of irrigation is important as previous studies have shown that these variables are key determinates of 420 

agricultural development in SSA (Ghana Irrigation Development Authority, 2011; Kong et al., 2016; 421 

Rebelo et al., 2010), and thus should be considered when trying to identify suitability scope for targeted 422 

interventions to expand and intensify irrigation access for smallholders. 423 

The modelling procedure draws on the earlier work by Akpoti et al., (2020, 2021) and is implemented 424 

in Software for Assisted Habitat Modelling (SAHM) (Morisette et al., 2013). The overall modelling 425 

framework is organized into five main steps (See Figure 4). Step 1 consisted of input data preparation. 426 

The input data included candidate predictors, field observation data of small-scale farmer-led irrigation 427 

plots for the various dry season crop species, and reference layer data. Step 2 consisted of data pre-428 

processing within and outside the SAHM workflow. The pre-processing consisted of a random sampling 429 

of the field observation data with a minimum distance of 2km (spatial filtering) to avoid the model’s 430 

overfitting to predictors data (See Section 2.2.1) and the projection, aggregation using mean method—431 

, resampling — using the nearest neighbor method, and clipping to match the 30 m by 30 m grid cells 432 
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of the template layer. Step 3) consisted of preliminary model analysis and decision. To discriminate 433 

between suitable and unsuitable areas for irrigation relative to the environmental and socio-economic 434 

predictors, the second level of information is required by the machine learning models. This information 435 

is obtained from a sample of points from the study region, also called background or pseudo-absence 436 

data. A total of 12,000 background samples was randomly generated using the Kernel density estimate 437 

method (Duong, 2015) and the module for merge dataset was used to extract the values of each 438 

predictor layer to the point locations included in the field data. The models were calibrated using 70% 439 

of the data called training data and validated using the remaining 30% of the data called testing data. 440 

Multi-collinearity is a redundancy assessment between predictors to access variables with similar 441 

distributions that might result in a biased or overfitted models due to lack of linear independence among 442 

the predictors. Multicollinearity makes it challenging to determine the effect of the individual predictors 443 

on the target variable and to identify the variables that should be included in the final model (Ohana-444 

Levi et al., 2019; Sahour et al., 2020). The predictors' multicollinearity was assessed based on the cut-445 

off threshold of 0.75. Step 4) consisted of correlative models (BRT, MaxEnt, RF) parametrizations, and 446 

step 5 focused on the output routines for models results post-processing and evaluation when final 447 

results are satisfactory (the “Yes” arrow). Otherwise, models’ adjustments are made under the “No” 448 

arrows.  449 

2.2.4 Models’ parameterizations for small-scale irrigation mapping 450 

Machine learning algorithms including Boosted regression trees (BRT), Random Forest (RF), Maximum 451 

Entropy (MAXENT) algorithms were used for mapping the suitability for small scale, informal irrigation. 452 

The specifications for each model are described below. 453 

2.2.4.1 Boosted regression trees prediction 454 

BRT algorithm, also known as stochastic gradient boosting (Elith et al., 2006) or boosted additive trees 455 

(Araújo & New, 2007) is a combination of decision trees and boosting. BRT uses decision trees to link 456 

predictors to the response by recursive binary splits using a logit link function while improving the 457 

prediction by iteratively taking into account the weak learners (Elith et al., 2008). The model 458 

implementation was based on 1,000 trees such that the model accounted for interactions and nonlinear 459 

relations among predictors (Morisette et al., 2013). We considered the 10-folds internal cross-validation 460 

technique for model simplification— model pruning. We used a bag fraction of 0.7 to control the 461 
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proportion of the data that is used to fit the model at each step. A weak learning rate of 0.005 was used 462 

to control the amount each tree contributes to the model to avoid model overfitting (Elith et al. 2008) 463 

with a tree complexity of 3. Similar parameter specifications were previously used by Müller et al., (2013) 464 

in a determinant of cropland modelling. 465 

2.2.4.2 Maximum entropy prediction 466 

MaxEnt is a general-purpose machine learning method for prediction from incomplete information or 467 

presence-only data by finding the probability distribution of maximum entropy using the jackknife 468 

maximum likelihood estimator (Phillips et al., 2006). The model sets a constraint using the density 469 

estimation approach, such that the expected value of each predictor closely matches its empirical 470 

average. The default setting of the MaxEnt model tends to perform well due to the testing of the model 471 

on a large dataset (Elith & Graham, 2009). We considered the default settings in the exception of the 472 

background sample which was set to 12,000 and the maximum iteration which was set to 10,000. The 473 

feature selection and regularization are in relation with the observed data (Phillips et al., 2006), which 474 

in our case were 443 small-scale irrigation locations. Previous studies on irrigated and rainfed rice 475 

suitability estimation have used similar parameter setting for the MaxEnt model (Akpoti et al., 2020; 476 

Akpoti et al., 2021). 477 

2.2.4.3 Random forest prediction 478 

RF is an ensemble of decision trees algorithm where each tree is grown with a randomized subset of 479 

predictors (Breiman, 2011). The model, as implemented in the SAHM package is based on the R 480 

package  ‘randomForest’ (Breiman et al., 2011). The training parameters specified in the modelling are 481 

the number of trees to grow in the forest which was set to 1000, the number of randomly selected 482 

predictor variables at each node was set to 7, and the minimal number of observations at the terminal 483 

nodes of the trees was put at 5.  484 

2.2.4.4 Ensemble modelling 485 

Multi-models’ applications in spatial prediction differ in their modelling performance and predictions, and 486 

some consensus methods are needed to produce the central tendency and reduce the uncertainty of 487 

predictions (Crimmins et al., 2013). We combined the three algorithms in an ensemble using a simple 488 

average as previously recommended by Marmion et al., (2009)  based on the conditions that testing 489 
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Area Under the Curve (AUC) of each model is at least 0.8. We also considered a consensus approach 490 

to defining the number of algorithms that classified any given pixel as suitable. 491 

2.2.4.5 Thresholds definition 492 

The prediction of the 3 machine learning models produced a continuous probability map of suitability 493 

for small-scale irrigation with pixel values ranging from 0 to 1. Thresholds are needed for models’ 494 

probability surfaces transformation into binary outputs and for evaluation metrics estimation. To convert 495 

these raster continuous surfaces into binary (suitable, unsuitable), we selected a threshold based on 496 

sensitivity equals specificity, i.e. equal chances of true positive and true negative rates. Sensitivity is 497 

the probability of actual small-scale irrigation areas predicted while specificity is the probability of actual 498 

background points predicted. This approach is considered as objective and preferred measure of 499 

discrimination power compared to many other methods (Jiménez-Valverde, 2014) because it gives an 500 

equal chance of error in classifying suitable and unsuitable areas. 501 

2.2.4.6 Evaluation of model performance  502 

For the evaluation of the model’s performances, we considered four metrics including threshold-503 

independent, graphical assessment methods such as Area Under the Curve (AUC) of the Receiver 504 

Operating Characteristics (ROC) and threshold-dependent dependent metrics such as sensitivity, 505 

specificity, Percent Correctly Classified (PCC), and True Skill Statistics (PCC). The mathematical 506 

description of these metrics can be seen in Tharwat, (2020); and is widely used for spatial modelling 507 

evaluation (Jarnevich et al., 2017; Akpoti et al., 2020). According to Peterson et al., (2011), AUC values 508 

less than 0.5 shows that models perform worse than random; AUC values of 0.5 are models that are 509 

not better than random; 0.5–0.7 is an indication of models’ poor performance; 0.7–0.9 as 510 

reasonable/moderate performance; and greater than 0.9 as high performance.  511 

2.2.5 Comparison between predictions and existing land use land cover data 512 

We validated the predictions of the current analysis by comparing the spatial distribution of the suitability 513 

for small-scale irrigation with two recent land cover products, namely the 20m CCI Land Cover product 514 

of 2016 (http://2016africalandcover20m.esrin.esa.int/) and the 100m WaPOR land cover data 515 

(https://wapor.apps.fao.org/catalog/WAPOR_2/2/L2_LCC_A) of 2019. We created a mask of the 516 

suitability estimate with the land cover products and reported the land area percentage of each land 517 

type.   518 

http://2016africalandcover20m.esrin.esa.int/
https://wapor.apps.fao.org/catalog/WAPOR_2/2/L2_LCC_A
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2.2.6 Model restriction 519 

We excluded forest reserves and protected areas from the analysis obtained from the World Database 520 

on Protected Areas (WDPA) (https://www.protectedplanet.net/country/GH). Other constraints such as 521 

settlements obtained from the Global Human Settlement Layer (GHSL) (Florczyk et al., 2019), tree 522 

cover areas, and open water bodies were also excluded with the data derived from ESA CCI Land 523 

Cover - Sentinel-2A for Africa (http://2016africalandcover20m.esrin.esa.int/).  524 

3 RESULTS 525 

3.1 Model performance measures 526 

The evaluation of the models’ performances in the prediction of areas suitable for small-scale irrigation 527 

varies from moderate to high performance (see Table 1 for summary statistics). When trained on 70% 528 

of the irrigation data and background samples, the threshold independent metric AUC varies from 0.88 529 

to 0.95 with the highest score shown by BRT, followed by MaxEnt and RF. The threshold-dependent 530 

metrics such as models’ accuracies (PPC) vary from 79% to 88% following the same models’ 531 

performance arrangement as in the case of AUC. The discrimination between suitable and unsuitable 532 

areas for small-scale irrigation was performed based on the equal probability (Sensitivity = Specificity), 533 

with values varying from 0.81 to 0.88. The test evaluation of the models based on 30% of the data follow 534 

the same trend as in the case of training with slightly lower values; except in the case of RF where 535 

testing AUC is marginally higher than the training. For training and testing, the True Skill Statistics (TSS) 536 

values vary from 0.58 to 0.62. Although only minor differences are shown across the models, overall, 537 

BRT has the highest values in the evaluation metrics, followed by RF and MaxEnt. 538 

3.2 Suitability distribution of small-scale irrigation 539 

3.2.1 Case 1: Suitability distribution using biophysical predictors only 540 

The binary (suitable vs unsuitable) surfaces for the suitability of small-scale irrigation as estimated by 541 

the three algorithms are shown in Figure 5a-c, where biophysical predictors only are considered in the 542 

modelling. All the models show similar prediction patterns across the study area, with the overall 543 

suitability (Figure 5d) depicts three main clusters that match the binary predictions as reported in Figure 544 

A1 in Appendix 1. The BRT, MaxEnt, and RF suitable area predictions are obtained for corresponding 545 

thresholds of 0.63, 0.29, and 0.52 on training data, respectively, where thresholds are obtained based 546 

on the equal probability of sensitivity and specificity. The first cluster of suitable areas extends from 547 

https://www.protectedplanet.net/country/GH
http://2016africalandcover20m.esrin.esa.int/
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longitude 1°12'W to the western part of the study area. This cluster mainly corresponds to leafy 548 

vegetables, pepper, okra, and tomato crops in small-scale irrigation areas (see Figure 1). The second 549 

cluster extends from longitude 1°12'W to 0.5°W with pepper as the dominant irrigated crop followed by 550 

tomatoes, onions, and leafy vegetables. The third cluster extends from longitude 0.5°W eastward with 551 

onions as the dominant irrigated crop followed by pepper and okra. In the case where only biophysical 552 

predictors were considered to model suitability, the RF model shows the highest predicted area of 553 

227,805 ha, followed by MaxEnt with an estimated area of 182,701 ha and BRT with a predicted area 554 

of 128,245 ha. The predictions of RF, MaxEnt, and BRT represent 26%, 21%, and 15% of the total area 555 

of the Upper East Region respectively. 556 

3.2.2 Case 2: Suitability distribution using biophysical and socio-economic predictors 557 

Similar patterns are shown in the spatial predictions when socio-economic predictors are included in 558 

the predictions. However, in this case, suitability for farmer-led irrigation is more pronounced to areas 559 

with easy access to roads, shorter travel time to cities, and higher population density areas (see Figure 560 

6 and Figure A2, Appendix 1). Similarly, the RF model shows the highest predicted area (194,231 ha), 561 

followed by MaxEnt (152,934 ha) and BRT (128245 ha); representing 22%, 17%, and 15% of the study 562 

area respectively. The socio-economic factors constrain irrigation expansion suitability of 4% (RF), 4% 563 

(MAXENT), and 0% (BRT) compared to case 1 of biophysical predictors only. All three algorithms 564 

captured 50-52% of the estimated suitable area while any two models captured 22-23% of the suitable 565 

area. The remaining 26-27% is predicted by any one model of the three algorithms (see Figure 6d for 566 

the consensus mapping). These results suggest that the application of a multi-model approach provides 567 

higher confidence in the estimation of the suitable areas for farmer-led, small-scale irrigation. 568 

3.3 Predictors importance  569 

3.3.1 Case 1: Predictors importance under biophysical suitability modelling 570 

When considering only biophysical predictors (case 1), accessibility to small reservoirs (D_RESRV) 571 

with a relative influence of 26% and exchangeable sodium percentage (ESP) with a relative influence 572 

of 20% are the top predictors of irrigation suitability for all three algorithms (See Figure 7). D_RESRV 573 

shows a decreasing exponential response curve to suitability (Figure 8), showing that a shorter distance 574 

to the reservoirs is a key indicator for small-scale irrigation expansion. This is consistent with the 575 

importance of surface water availability for dry season irrigation in semi-arid regions. ESP unexpectedly 576 
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shows an increasing response curve with suitability. This may be explained by the low fertility and sodic 577 

soil in the region.  578 

Aside from these two main predictors, the 3 algorithms diverged in terms of the ranking of other 579 

predictors. Overall, soil organic carbon content (ORC) — 6%, available soil water capacity (WWP) 580 

— 6%, bulk density (BLD) —5%, elevation percentile (ELVPERC) — 5%, base saturation percentage 581 

(BSP) — 4%, proximity to stream/rivers (D_RIVERS) — 4%, Surface runoff (SURQ) — 3%, 582 

exchangeable potassium (EXKX) — 3%, soil texture fraction (SAND) — 3% along with the two main 583 

predictors (D_RESRV and ESP) are the top 10 predictors (Figure 7d). ORC response curve increases 584 

with suitability up to 5 g/kg then decreases afterward. ORC is also a measure of soil nutrients for crops 585 

and water availability in the soil. WWP response curve decreases with suitability, which may be 586 

explained by the low soil moisture content of the semi-arid regions. ELEVPERC, which is the measure 587 

of the lowness of pixels relative to the surrounding upland, shows an increased, almost linear 588 

relationship with suitability. This suggests that small-scale irrigation tends to be located in the valley 589 

bottoms, lowlands, fringes where water availability and soil humidity are high compared to smaller 590 

irrigation suitability in the drier upland. This response is confirmed by the trend in the topographic 591 

wetness index (TWI), a proxy for soil moisture, and a compound index, although not part of the top 10 592 

predictors, which has relative importance in the ranking. Surface runoff (SURQ), dynamically computed 593 

as the cumulative sum of the 4 months (July to October), is the fourth most important predictor. SURQ, 594 

which values range from 64 mm (which is mostly related to October as the onset of the dry season in 595 

the region) to 252 mm, is a proxy for water availability which can be captured in small reservoirs for dry 596 

season irrigation. The response curve of SURQ shows a complex relationship with suitability with 597 

maximum suitability at 100 mm, and a sharp decrease to 125 mm followed by a constant shape.  598 

All models seldom included groundwater productivity (YGW), depth to groundwater table (WTD), slope, 599 

and pH as important variables (Figure 7d). However, the analysis of partial response curves is more 600 

revealing (see Figure 8). The response curve of the YGW shows a trend of increasing suitability with 601 

higher levels of aquifer productivity, which supports the general acceptance that high yield is important 602 

for groundwater-based irrigation although with relatively low groundwater potential across the region 603 

compared to surface water irrigation capacity. On the other hand, irrigation suitability shows a 604 

decreasing trend with increasing WTD, which is also consistent with the notion that deeper groundwater 605 

tables will be less accessible for small-scale irrigation that mostly depends on manual or low-powered 606 
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lift technologies. EXKX, which is one of the indicators of soil fertility, response curve increases with 607 

suitability, while gentle slopes (less than 10%) represent the optimal terrain for small-scale irrigation. 608 

On the other hand, pH reveals a more complex response with a decreasing response curve of suitability 609 

between 5.5-6.0 and an increasing trend from pH of 6.0. 610 

3.3.2 Case 2: Predictors importance under biophysical and socio-economic suitability 611 

modelling 612 

When considering both biophysical and socio-predictors of irrigation suitability, the variable importance 613 

as ranked by the three algorithms shows some discrepancies in the position of the predictors, except 614 

for the accessibility (ACCESS) variable – measured as travel time to cities – that is consistently the 615 

most important predictor of irrigation suitability with a relative influence of 21% (Figure 7d). This shows 616 

the importance of shorter travel time for access to cities and urban centers in the suitability for small-617 

scale, farmer-led irrigation. This is supported by the partial response curve of exponential decrease with 618 

suitability. The partial response of D_ROADs shows an exponential decrease with suitability. Road 619 

accessibility is a key factor for agricultural development for market access and input. As such 620 

D_ROADS is a key variable for farmer-led irrigation. The major crops irrigated in the dry season in the 621 

region are leafy vegetables, onions, pepper, okra, and tomatoes, which are mainly destined for urban 622 

centers and road access is a key determinant for the distribution of the harvested crops. Population 623 

density shows two main distributions: a decrease in suitability for small-scale irrigation between 50 to 624 

250 persons/km2 to a sharp increase in suitability for irrigation from 250 people/km2. The jackknife test 625 

of AUC in the MaxEnt model confirms the importance of these variables with AUCs greater than 0.65 626 

when individual predictors are considered. The same test shows that when these predictors are omitted, 627 

the drop in the overall AUC seems to be relatively high (Figure A3, Appendix 1), especially for POP_D 628 

and D_ROADS. Comparatively to case 1, Accessibility to the reservoirs (D_RESER)—10%, 629 

Exchangeable sodium percentage (ESP)—9%, Surface runoff (SURQ) —8%, distance to roads 630 

(D_ROADS) —6% elevation percentile (ELVEPRC) — 6% remain top predictors, showing the 631 

consistency in the model predictions. 632 

3.4 Comparison between predictions and existing land use land cover data 633 

We compared the estimated suitability for small-scale irrigation expansions with two recent land cover 634 

products: The 20 m resolution CCI land cover product of 2016 and the FAO Water Productivity Open-635 
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access portal (WaPOR) land use data (Figure 10 and Figure 11). Results show that the suitability areas 636 

suitable for small-scale irrigation correspond to shrubland, grassland, cropland, regularly flooded areas, 637 

and spare vegetation areas for the CCI land cover product. For the WaPOR land cover data, the 638 

suitability for small-scale irrigation corresponds to shrubland, grassland, rainfed cropland, irrigated 639 

cropland, and sparse vegetation areas. In both cases, the suitability is largely under rainfed cropland, 640 

corresponding to 77-86% and 82-89% for CCI land cover and WaPOR land use data respectively 641 

followed by shrubland (9-16%) and grassland (0.6-6.3%).  Other land cover types such as regularly 642 

flooded areas and spare vegetation areas represent between less than 0.1% and 0.5%. The irrigated 643 

cropland in the WaPOR land cover product represents 0.1 % (194.2 ha) which are largely captured by 644 

the two major irrigation schemes in the study area, Vea and Tono. 645 

4 DISCUSSION 646 

4.1 Comparison of the predictions with existing irrigation suitability data  647 

The current study estimated the suitability for small-scale irrigation in the Upper East at 179,584 ± 648 

49,8533 ha when biophysical variables only are considered in the modelling and 158,470 ± 27,222 ha 649 

when socio-economic variables are included along with the biophysical predictors. A previous study in 650 

the Upper East Region on irrigation potential based on four watersheds drained by the White Volta, Red 651 

Volta, Sissili, and Kulpawn rivers and information on gross irrigation water requirements (of onions, 652 

peppers, and tomatoes), area of soil suitable for irrigation and available water resources reported a 653 

value of 23,450 ha (Akomeah et al., 2009). The difference between our predictions and the 654 

aforementioned estimates is likely to result mainly in the study area and methodology used. We used 655 

machine learning to infer suitable conditions for small-scale irrigation of the entire Upper East Region 656 

based on a comprehensive survey of 707 irrigation plots while the former used limiting factors analysis 657 

on soil variables of only four catchments. In general, 86-89% of the suitability for farmer-led irrigation 658 

corresponds to the current rainfed-cropland of existing land cover data. 659 

                                                           
3 These figures represent the ensemble (average) of the predicted areas from the 3 algorithms (BRT, 

RF, MaxEnt) and the standard deviation. 



24 
 

4.2 Drivers/predictors of small-scale irrigation suitability 660 

Our findings show that the suitability for small-scale irrigation expansion in the study was strongly 661 

influenced by the accessibility or travel time to cities, indicative of the degree of connectivity between 662 

rural farming areas and surrounding urban markets and centers (Weiss et al., 2018). This finding is 663 

consistent with previous research elsewhere in West Africa that showed travel time to be an important 664 

factor influencing the expansion of rice cultivation in West Africa (Akpoti et al., 2020). In the context of 665 

the dry season irrigated agriculture in the Upper East Region of Ghana, where leafy vegetables, 666 

peppers, onions, and tomatoes are the main crops grown, timely transportation of the agricultural 667 

products to market is essential to ensure that these products are kept in good condition. In line with this 668 

assumption, accessibility to roads and population density were also among the top predictors of 669 

irrigation suitability further reinforcing the important role of market access for informal farmer-led 670 

irrigation developments. The importance of market access has also be recognized in other areas of 671 

SSA (Dorosh et al., 2012). In Mozambique, for example, the availability of market and population density 672 

for sufficient labor availability were among the major determinants of farmer-led irrigation expansion 673 

(Beekman et al., 2014). Similarly, it was shown that reforms in Mali concerning urbanization and better 674 

road access from the irrigated area to the market have created new incentives to irrigate (Wiggins & 675 

Lankford, 2019). This suggests that enhanced support for strategic road infrastructure development and 676 

improvements in market accessibility may be key for realizing irrigation suitability in the Upper East 677 

Region of Ghana, a result that is also likely to be broadly transferable to other parts of SSA.  678 

Beyond the apparent role of these factors, the causal relationships among these factors are complex. 679 

For example, there is more competition over plots located close to a city or in a highly densified area, 680 

meaning they have a higher chance to be in the hand of better-off farmers, who have a better capacity 681 

to invest in irrigation and production costs. Thus, the links between “close to a city” and “irrigation” can 682 

be related to market proximity or to a higher ability to financially take charge of irrigation. An irrigation 683 

system is a complex social-ecological system where demographic variability influences the area of 684 

irrigation systems which may reduce or expand depending on the change in population and water 685 

availability (Puy et al., 2017). It is shown that the complex paths leading to the expansion of irrigated 686 

areas can be linked to a power function of population size (Puy, 2018). There is evidence of a positive 687 

relationship between population density and measures of land intensification (Muyanga & Jayne, 2014). 688 

In this study, the partial response of population with suitability for small-scale irrigation showed a 689 
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complex pattern with lower population density and a positive linear trend for above 250 persons/km2. 690 

However, the link between changes in population size and irrigated areas does not necessarily reflect 691 

a simple cause-effect relationship but a more nuanced process in which both variables influence each 692 

other through different feedback loops (Puy et al., 2017), reflecting underlying endogeneity (Muyanga 693 

& Jayne, 2014). This has implications for achieving a more sustainable balance between human and 694 

environmental welfare (Puy, 2018), especially considering that the population is expected to increase 695 

along with water usage for irrigation in SSA. Also, areas with lower population density are likely to be 696 

an area with limited economic potential/economic attractivity. It is therefore not surprising that such 697 

areas are characterized by fewer farmers with the financial capacity to irrigate than in other areas. 698 

Besides, it has been shown that households in areas with low potential and/or declining land access 699 

may choose to migrate to areas which they perceive to be of relatively higher potential and/or better 700 

land access (Muyanga & Jayne, 2014). 701 

Many other constraints to the uptake of small-scale irrigation exits and have been discussed in the 702 

literature (Bjornlund et al., 2017; Lefore et al., 2019; Glitse et al., 2018) including but not limited to 703 

access to credit and finance for motorized pumps, access to appropriate technologies, gender among 704 

others. Land tenure and culture may also play a role in small-scale irrigation expansion (Xie et al., 705 

2014). For most of these factors, the data is simply lacking or difficult to spatialize.  706 

Alongside market access, accessibility to water for irrigation was one of the other key determinants of 707 

the suitability for small-scale irrigation expansion. Access to the surface water reservoirs, in particular, 708 

was overall the second most important predictor of irrigation suitability in the Upper East Region of 709 

Ghana, while the potential surface runoff that can be captured in a reservoir and other surface water 710 

storage for further use in the dry season was also among the top predictors for explaining irrigated area 711 

suitability. These results are consistent with the importance of small reservoirs as a buffer against 712 

variable rainfall conditions and limited surface runoff in semi-arid regions such as northern Ghana, with 713 

reservoirs providing a critical storage buffer to support dry-season irrigated crop production (Annor et 714 

al., 2009; Ghansah et al., 2018; Liebe et al., 2005). For example, dams and small reservoirs represented 715 

21% of the water sources used for irrigation in the survey data considered in the modelling (see Figure 716 

S1, supplementary material 1 for water sources for irrigation in the study area). Our results could 717 

support the Government of Ghana's ‘’one village one dam’’ program and Ghana’s irrigation policy to 718 

prioritize areas that need additional dams and reservoirs for small-scale irrigation development.  719 
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Many small-scale irrigation plots in the Upper East Region of Ghana are irrigated through treadle and 720 

motorized pumps, river diversion, and watering cans pumping technologies (Tafesse, 2003). Although 721 

19% of the irrigated plots considered in the modelling used rivers and streams as water sources for 722 

irrigation, accessibility to rivers only showed relative importance. Nevertheless, proximity to rivers and 723 

streams represents an important indicator for small-scale irrigation as shown by the partial response 724 

curve of accessibility to rivers and suitability level. Similarly, the areas modeled as suitable for small-725 

scale irrigation in the present study largely coincided with groundwater potential zones classified as 726 

‘good’ in terms of groundwater potential by Gumma & Pavelic, (2013). Groundwater represented 60% 727 

of the water source for irrigation in the study area. Groundwater yield and distance to the water table, 728 

which represented groundwater potential, showed an increasing and decreasing trend with suitability 729 

respectively but showed relatively low importance in the ranking of the main predictors. These results 730 

suggest that the availability of water alone is not a sufficient indicator for the expansion and/or adoption 731 

of small-scale irrigation. The potential for development should be put in the local context of market 732 

availability, demographic indicators, and infrastructure development.  733 

Soil quality also plays an important role in cropland development, and therefore the suitability of land 734 

for irrigation. The exchangeable sodium percentage was the third overall most important predictor but 735 

showed an increasing trend with suitability, while in practice, ESP > 15 % is considered as problematic 736 

soil. This may be explained by poor soil fertility and the high sodicity of the study area. Soil fertility 737 

analysis of irrigation schemes in the study area showed a relatively high level of salinity and sodicity 738 

(Adongo et al., 2015). In general, low soil fertility is a major constraint for smallholder farmers in northern 739 

Ghana (Becx et al., 2012) with soil erosion as a major factor affecting soil fertility in the region 740 

(Amegashie et al., 2012). Besides, topography plays an important role in irrigation especially for water 741 

availability and transport. The positions of irrigated plots in this study were fringes (5%), inland valleys 742 

(16%), lowlands/floodplains (30%), and uplands (49%). The discrimination between these landscapes 743 

was represented by the elevation percentile; which showed an increasing trend with suitability and one 744 

of the top predictors. This showed that lowlands, which generally have relatively higher soil fertility and 745 

higher soil moisture compared to the surrounding upland may be more favourable for irrigation. This 746 

was supported by the trapezoidal partial response shape of topographic wetness index (although this 747 

variable was not a top predictor). 748 
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4.3 Uncertainties in the data used and limitations  749 

The mapping of the suitability for small-scale irrigation mapping as presented in this research followed 750 

a rigorous modelling framework that has been previously been applied successfully for analyzing 751 

irrigated areas elsewhere in West Africa (Akpoti et al., 2021). Nevertheless, some limitations exist in 752 

our analysis and underlying data that warrant further discussion. The practice of small-scale, informal 753 

irrigation occurs in small cropland areas which are sometimes less than 2 ha. These croplands are in 754 

heterogeneous landscapes with varying properties. Even within the same irrigated plots, soil physio-755 

chemical properties, water, and landscape features may vary. These variations are not always captured 756 

in the predictors' data used for the estimation of the suitability for small-scale irrigation, in which spatial 757 

resolutions varied from 30 m to 1 km. Although the simulations of the suitability for expansion of small-758 

scale irrigation were computed at a pixel size of 30 m by 30 m, the aggregation and resampling of the 759 

predictor’s layers to this finer grain size did not necessarily improve the predictor's quality. For example, 760 

a small-scale irrigation plot located in an inland valley bottom where the groundwater table is high may 761 

have different water requirement compared to a plot located at the upland in the land scale (Rodenburg 762 

et al., 2014; Abe et al., 2010; Schmitter et al., 2015). However, using a water table depth predictor of 1 763 

km by 1 km spatial resolution may show the same pixel value for the two irrigated plots in the example 764 

cited above, representing a limitation in the models’ predictions. Although the majority of the farmers 765 

used bucket/watering can in distributed irrigation settings, indicators that account for the energy costs 766 

involved in the different types of water resources transportations are not well captured. For example, in 767 

a non-flat area, farmers will develop irrigation preferably downstream of the dam/small reservoirs rather 768 

while upstream locations will be associated with higher energy costs and thus less favorable. Other 769 

limitations related to soil properties layers in Africa Soil Information Service (AfSIS) 250 m database 770 

were also reported by Hengl et al., (2015). Although the initial survey of farmer-led irrigation plots data 771 

showed some level of bias to roads and high population density areas, we applied spatial filtering to 772 

reduce sampling bias (Boria et al., 2014). This did not, however, exclude completely the bias to roads.  773 

5 CONCLUSIONS AND OUTLOOK FOR FUTURE RESEARCH 774 

We applied an ensemble of three machine learning algorithms to map the suitability for dry season 775 

small-scale irrigation in a semi-arid Upper East Region of Ghana. The results showed suitability of 776 

179,584 ± 49,853 when biophysical variables only are considered in the modelling and 158,470 ± 777 

27,222 ha when socio-economic variables are included along with the biophysical predictors, 778 
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representing 77.3-88.8% of the current rainfed-cropland. The results suggested that the availability of 779 

water alone is not a sufficient indicator for the expansion and/or adoption of small-scale irrigation. 780 

Rather, the potential for development should be put in the local context of market availability, 781 

demographic indicators, and infrastructure development. It is important to note that causal relationships 782 

between the predictors and irrigated areas are complex with different feedback loops. This is because 783 

irrigation systems are complex social-ecological systems where many variabilities (e.g., demography) 784 

have an impact on the area of irrigation systems. In all, the approach developed in this research can be 785 

deployed in other countries in Africa to support food security interventions. All models’ predictive 786 

performances were better than random, both at the training and validation stage, providing an indication 787 

of the models’ generalizability or transferability to new regions.  788 

Based on the water lifting technologies and water sources reported, there is a possibility to extend this 789 

work on cost-benefit analysis, thus providing an avenue for the private-public partnership for business 790 

development. Also, future research should consider a one-class classification problem approach to 791 

identify actual irrigation areas by using crops calendars, frequency of irrigation reported by the farmers, 792 

and spectral indices of remote sensing data based on the current small-scale irrigation survey data. 793 

The mapping procedure could help develop an operational irrigation monitoring tool based on remotely 794 

sensed temporal and spectral indices only. The maps are useful for identifying areas that are suitable 795 

areas for irrigation. Suitability does not however necessarily translate into high productivity or income 796 

gains. Areas may be suitable for irrigation development based on biophysical and socio-economic 797 

conditions, but additional supports may be required to help farmers to use irrigation productively and to 798 

intensify water use on existing irrigated land. Sustainable intensification is a key challenge alongside 799 

expanding irrigated areas. 800 
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Figure A1. Continuous prediction maps with biophysical predictors only. 808 

Figure A2. Continuous prediction maps with biophysical and socio-economic predictors. 809 

Figure A3. Jackknife test of AUC for small-scale irrigation.  810 
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 1190 



Table 1. List of potential predictors. Some predictors were dropped from the final modelling due to their 

high correlation with other predictors (total nitrogen and clay) or least contribution in the variable importance 

such as solar radiation, precipitation of the wettest quarter, silt content, and total nitrogen. Distance to cities 

predictor was dropped due to biased it induced in the predictions. 

No Name Definition Resolution Unit Included in the 
final modelling 
(Yes/No) 

Socio-economic predictors 
1 D_ROADS Proximity to main roads a 30m m Yes 
2 D_TOWN Proximity to towns a 30m m No 
3 ACCESS Travel time to major cities b 1km min Yes 
4 POP Population density c 1km persons.km-

2 
Yes 

Water availability 
5 WTD Depth to water table d 1km m Yes 
6 YGW Aquifer productivity e 30m l.s-1 Yes 
7 D_RIVERS Proximity to stream/rivers a 30m m Yes 
8 SURQ Cumulative 5-years average 

surface runoff for the months of 
July, August, September and 
October f 

30m mm Yes 

9 D_RESER Proximity to small reservoirs a 30m km Yes 
Climate and energy 
10 BIO16 Precipitation of the wettest 

quarter g 
1km mm No 

11 SRD Solar radiation g 1km kJ.m-2.day-1 No 
(a) Topography  
12 SLOPE Slope h 30m % Yes 
13 ELVPERC Elevation percentile i 30 % Yes 
14 TWI Topographic wetness index i 30m Index Yes 
15 FLACC Flow accumulation   No 
Soil physical properties 
16 BLD Bulk density j 250m kg.dm-3 Yes 
17 WWP Available soil water capacity j 250m % Yes 
18 CRFVOL Coarse fragments volumetric 

fraction j 
250m % Yes 

19 CLAY Soil texture fraction clay j 250m % No 
20 SILT Soil texture fraction silt j 250m % No 
21 SAND Soil texture fraction sand j 250m % Yes 
Soil Chemical properties 
22 CEC Cation exchange capacity j 250m cmol.kg-1 Yes 
23 ECN Electrical conductivity j 250m dS.m -1 Yes 
24 BSP Base saturation percentage k 250m % Yes 
25 ESP Exchangeable sodium 

percentage k 
250m % Yes 

26 EXKX Exchangeable K j 250m cmol.kg-1 Yes 
27 TPHOS Total phosphorus j 250m mg.kg-1 Yes 
28 NTO Total nitrogen j 250m g.kg-1 No 
29 ORC Soil organic carbon content j 250m g.kg-1 Yes 
30 PH Soil pH in water j 250m g.kg-1 Yes 
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Data source: a Computed using Euclidean Distance tool in ArcGIS based on OpenStreetMap data; b Weiss 

et al., 2018; c CIESIN, 2016; d Fan et al., 2013; e Computed using an inverse distance weighted (IDW) on 

borehole data on yield; f Modelled using Soil and Water Assessment Tool (SWAT); g Obtained from the 

WorldClim data based (Fick & Hijmans, 2017); h Computed using SLOPE tool in ArcGIS based on ArcGIS; 

i Computed in R using the whitebox package; j Hengl et al., 2017; k Computed using raster calculator in 

ArcGIS. 

Table 2. Evaluation of the models. 

Evaluation metrics BRT  MaxEnt  RF 

Train Test  Train Test  Train Test 

Area Under the Curve (AUC) 0.95 0.90  0.93 0.88  0.88 0.89 

Percentage Correctly Classified (PCC) 87.7     80.5  84.6 79.4  80.6 80.4 

Sensitivity 0.88 0.81  0.84 0.78  0.81 0.80 

Specificity 0.88 0.81  0.85 0.79  0.81 0.80 

True Skill Statistics (TSS) 0.76 0.62  0.69 0.58  0.61 0.60 

 

 



 

Figure 1. Study area map showing the spatial distributions of crops such as leafy vegetables, okra, onions, 

peppers, tomatoes among others under informal and farmer-led dry season irrigation in the Upper East 

Region of Ghana. The data was collected during a plot-level survey, implemented by the International Water 

Management Institutes (IWMI) and the University of Manchester between May and July 2020. Information 

in the data collected include geographic coordinates of the plots, nearest community, plot size, physical 

characteristic of the landscape, irrigation facilities, plot usage, crop calendars, seasonal irrigation practices, 

irrigation constraints, and available investment opportunities. 

Figure Click here to access/download;Figure;List of figures.docx

https://www.editorialmanager.com/stoten/download.aspx?id=4845209&guid=cbb57a4b-8a2c-46ac-b6b3-dbdc7d17bf00&scheme=1
https://www.editorialmanager.com/stoten/download.aspx?id=4845209&guid=cbb57a4b-8a2c-46ac-b6b3-dbdc7d17bf00&scheme=1


 

Figure 2. List of selected predictors. ACCESS—accessibility or travel time to cities, D_ROADS—distance 

to roads, POP_D—population density, D_TOWNS—proximity to towns, WTD—depth to water table, 

YGW—aquifer productivity, D_RIVERS—proximity to stream/rivers, D_RESRV—proximity to small 

reservoirs, SURQ—surface runoff, BIO16—precipitation of the wettest quarter, SRQ—solar radiation, 

SLOPE—slope, ELVPERC—elevation percentile, TWI— topographic wetness index, BLD—bulk density, 

CRFVOL—coarse fragments volumetric fraction, WWP—available soil water capacity, CLAY—soil texture 

fraction clay, BSP—base saturation percentage, CEC—cation exchange capacity, ESP—exchangeable 



sodium percentage, EXKX—exchangeable potassium, TPHOS—total phosphorus, NTO—total nitrogen, 

PH—soil pH in water. 

 

Figure 3. Pearson correlation coefficient among predictors.  



 

Figure 4. Modelling framework used for mapping the potential for informal small-scale irrigation. 



 

Figure 5. Binary suitability predictions using biophysical predictors only. The ensemble count shows the 

number of models agreeing on a location as suitable. 

Figure 6. Binary suitability predictions using both biophysical and socio-economic predictors. The 

ensemble count shows the number of models agreeing on a location as suitable. 



 

Figure 7. Predictors importance in the computation of the potential for small-scale irrigation with the 

biophysical predictors only. WTD—depth to water table, YGW—aquifer productivity, D_RIVERS—proximity 

to stream/rivers, D_RESRV—proximity to small reservoirs, SURQ—surface runoff, SLOPE—slope, 

ELVPERC—elevation percentile, TWI—topographical wetness index, BLD—bulk density, CRFVOL—

coarse fragments volumetric fraction, WWP—available soil water capacity, SAND—soil texture fraction 



sand, BSP—base saturation percentage, CEC—cation exchange capacity, ESP—exchangeable sodium 

percentage, EXKX—exchangeable potassium, TPHOS—total phosphorus, NTO—total nitrogen, PH—soil 

pH in water. 

 



Figure 8. Response curves. D_ROADS—distance to roads, POP_D—population density, D_TOWNS—

proximity to towns, WTD—depth to water table, YGW—aquifer productivity, D_RIVERS—proximity to 

stream/rivers, D_RESRV—proximity to small reservoirs, SURQ—surface runoff, SLOPE—slope, 

ELVPERC—elevation percentile, TWI—topographic wetness index, BLD—bulk density, CRFVOL—coarse 

fragments volumetric fraction, WWP—available soil water capacity, SAND—soil texture fraction sand, 

BSP—base saturation percentage, CEC—cation exchange capacity, ESP—exchangeable sodium 

percentage, EXKX—exchangeable potassium, TPHOS—total phosphorus, NTO—total nitrogen, PH—soil 

pH in water. 



 

Figure 9. Predictors importance. ACCESS—accessibility or travel time to cities, D_ROADS—distance to 

roads, POP—population density, D_TOWNS—proximity to towns, WTD—depth to water table, YGW—

aquifer productivity, D_RIVERS—proximity to stream/rivers, D_RESRV—proximity to small reservoirs, 

SURQ—surface runoff, SLOPE—slope, ELVPERC—elevation percentile, TWI—topographic wetness 

index, BLD—bulk density, CRFVOL—coarse fragments volumetric fraction, WWP—available soil water 



capacity, SAND—soil texture fraction sand, BSP—base saturation percentage, CEC—cation exchange 

capacity, ESP—exchangeable sodium percentage, EXKX—exchangeable potassium, TPHOS—total 

phosphorus, NTO—total nitrogen, PH—soil pH in water. 

 

Figure 10. Comparison between the predicted potential for small-scale irrigation and existing land use land 

cover products when only biophysical predictors are considered in the modelling. CCI LAND COVER-S2 

2016 is the land cover from CCI Land Cover (LC) team (http://2016africalandcover20m.esrin.esa.int/) and 

WaPOR LULC 2019 corresponds to WaPOR land cover data 

(https://wapor.apps.fao.org/catalog/WAPOR_2/2/L2_LCC_A).  The numbers 1-5 represents the land cover 

http://2016africalandcover20m.esrin.esa.int/
https://wapor.apps.fao.org/catalog/WAPOR_2/2/L2_LCC_A


 

Figure 11. Comparison between the predicted potential for small-scale irrigation and existing land use land 

cover products when both biophysical and socio-economic predictors are considered in the modelling.  

 

Figure A1. Continuous prediction maps with biophysical predictors only. 



 

Figure A2. Continuous prediction maps with biophysical and socio-economic predictors. 



 

Figure A3. Jackknife test of AUC for small-scale irrigation. predictors importance for individual variable 

(blue bars), without variable (light blue bars) and all environmental variables (red bar) for MaxEnt model. 

D_ROADS—distance to roads, POP—population density, D_TOWNS—proximity to towns, WTD—depth to 

water table, YGW—aquifer productivity, D_RIVERS—proximity to stream/rivers, D_RESRV—proximity to 

small reservoirs, SURQ—surface runoff, SLOPE—slope, ELVPERC—elevation percentile, TWI—

topographical wetness index, BLD—bulk density, CRFVOL—coarse fragments volumetric fraction, WWP—

available soil water capacity, SAND—soil texture fraction sand, BSP—base saturation percentage, CEC—

cation exchange capacity, ESP—exchangeable sodium percentage, EXKX—exchangeable potassium, 

TPHOS—total phosphorus, NTO—total nitrogen, PH—soil pH in water. 
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