359 research outputs found

    High-speed equalization and transmission in electrical interconnections

    Get PDF
    The relentless growth of data traffic and increasing digital signal processing capabilities of integrated circuits (IC) are demanding ever faster chip-to-chip / chip-to-module serial electrical interconnects. As data rates increase, the signal quality after transmission over printed circuit board (PCB) interconnections is severely impaired. Frequency-dependent loss and crosstalk noise lead to a reduced eye opening, a reduced signal-to-noise ratio and an increased inter-symbol interference (ISI). This, in turn, requires the use of improved signal processing or PCB materials, in order to overcome the bandwidth (BW) limitations and to improve signal integrity. By applying an optimal combination of equalizer and receiver electronics together with BW-efficient modulation schemes, the transmission rate over serial electrical interconnections can be pushed further. At the start of this research, most industrial backplane connectors, meeting the IEEE and OIF specifications such as manufactured by e.g. FCI or TE connectivity, had operational capabilities of up to 25 Gb/s. This research was mainly performed under the IWT ShortTrack project. The goal of this research was to increase the transmission speed over electrical backplanes up to 100 Gb/s per channel for next-generation telecom systems and data centers. This requirement greatly surpassed the state-ofthe-art reported in previous publications, considering e.g. 25 Gb/s duobinary and 42.8 Gb/s PAM-4 transmission over a low-loss Megtron 6 electrical backplane using off-line processing. The successful implementation of the integrated transmitter (TX) and receiver (RX) (1) , clearly shows the feasibility of single lane interconnections beyond 80 Gb/s and opens the potential of realizing industrial 100 Gb/s links using a recent IC technology process. Besides the advancement of the state-of-the-art in the field of high-speed transceivers and backplane transmission systems, which led to several academic publications, the output of this work also attracts a lot of attention from the industry, showing the potential to commercialize the developed chipset and technologies used in this research for various applications: not only in high-speed electrical transmission links, but also in high-speed opto-electronic communications such as access, active optical cables and optical backplanes. In this dissertation, the background of this research, an overview of this work and the thesis organization are illustrated in Chapter 1. In Chapter 2, a system level analysis is presented, showing that the channel losses are limiting the transmission speed over backplanes. In order to enhance the serial data rate over backplanes and to eliminate the signal degradation, several technologies are discussed, such as signal equalization and modulation techniques. First, a prototype backplane channel, from project partner FCI, implemented with improved backplane connectors is characterized. Second, an integrated transversal filter as a feed-forward equalizer (FFE) is selected to perform the signal equalization, based on a comprehensive consideration of the backplane channel performance, equalization capabilities, implementation complexity and overall power consumption. NRZ, duobinary and PAM-4 are the three most common modulation schemes for ultra-high speed electrical backplane communication. After a system-level simulation and comparison, the duobinary format is selected due to its high BW efficiency and reasonable circuit complexity. Last, different IC technology processes are compared and the ST microelectronics BiCMOS9MW process (featuring a fT value of over 200 GHz) is selected, based on a trade-off between speed and chip cost. Meanwhile it also has a benefit for providing an integrated microstrip model, which is utilized for the delay elements of the FFE. Chapter 3 illustrates the chip design of the high-speed backplane TX, consisting of a multiplexer (MUX) and a 5-tap FFE. The 4:1 MUX combines four lower rate streams into a high-speed differential NRZ signal up to 100 Gb/s as the FFE input. The 5-tap FFE is implemented with a novel topology for improved testability, such that the FFE performance can be individually characterized, in both frequency- and time-domain, which also helps to perform the coefficient optimization of the FFE. Different configurations for the gain cell in the FFE are compared. The gilbert configuration shows most advantages, in both a good high-frequency performance and an easy way to implement positive / negative amplification. The total chip, including the MUX and the FFE, consumes 750mW from a 2.5V supply and occupies an area of 4.4mm × 1.4 mm. In Chapter 4, the TX chip is demonstrated up to 84 Gb/s. First, the FFE performance is characterized in the frequency domain, showing that the FFE is able to work up to 84 Gb/s using duobinary formats. Second, the combination of the MUX and the FFE is tested. The equalized TX outputs are captured after different channels, for both NRZ and duobinary signaling at speeds from 64 Gb/s to 84 Gb/s. Then, by applying the duobinary RX 2, a serial electrical transmission link is demonstrated across a pair of 10 cm coax cables and across a 5 cm FX-2 differential stripline. The 5-tap FFE compensates a total loss between the TX and the RX chips of about 13.5 dB at the Nyquist frequency, while the RX receives the equalized signal and decodes the duobinary signal to 4 quarter rate NRZ streams. This shows a chip-to-chip data link with a bit error rate (BER) lower than 10−11. Last, the electrical data transmission between the TX and the RX over two commercial backplanes is demonstrated. An error-free, serial duobinary transmission across a commercial Megtron 6, 11.5 inch backplane is demonstrated at 48 Gb/s, which indicates that duobinary outperforms NRZ for attaining higher speed or longer reach backplane applications. Later on, using an ExaMAX¼ backplane demonstrator, duobinary transmission performance is verified and the maximum allowed channel loss at 40 Gb/s transmission is explored. The eye diagram and BER measurements over a backplane channel up to 26.25 inch are performed. The results show that at 40 Gb/s, a total channel loss up to 37 dB at the Nyquist frequency allows for error-free duobinary transmission, while a total channel loss of 42 dB was overcome with a BER below 10−8. An overview of the conclusions is summarized in Chapter 5, along with some suggestions for further research in this field. (1) The duobinary receiver was developed by my colleague Timothy De Keulenaer, as described in his PhD dissertation. (2) Described in the PhD dissertation of Timothy De Keulenaer

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Design-for-delay-testability techniques for high-speed digital circuits

    Get PDF
    The importance of delay faults is enhanced by the ever increasing clock rates and decreasing geometry sizes of nowadays' circuits. This thesis focuses on the development of Design-for-Delay-Testability (DfDT) techniques for high-speed circuits and embedded cores. The rising costs of IC testing and in particular the costs of Automatic Test Equipment are major concerns for the semiconductor industry. To reverse the trend of rising testing costs, DfDT is\ud getting more and more important

    High level behavioural modelling of boundary scan architecture.

    Get PDF
    This project involves the development of a software tool which enables the integration of the IEEE 1149.1/JTAG Boundary Scan Test Architecture automatically into an ASIC (Application Specific Integrated Circuit) design. The tool requires the original design (the ASIC) to be described in VHDL-IEEE 1076 Hardware Description Language. The tool consists of the two major elements: i) A parsing and insertion algorithm developed and implemented in 'C'; ii) A high level model of the Boundary Scan Test Architecture implemented in 'VHDL'. The parsing and insertion algorithm is developed to deal with identifying the design Input/Output (I/O) terminals, their types and the order they appear in the ASIC design. It then attaches suitable Boundary Scan Cells to each I/O, except power and ground and inserts the high level models of the full Boundary Scan Architecture into the ASIC without altering the design core structure

    Identifying worst case test vectors for FPGA exposed to total ionization dose using design for testability techniques

    Get PDF
    Electronic devices often operate in harsh environments which contain a variation of radiation sources. Radiation may cause different kinds of damage to proper operation of the devices. Their sources can be found in terrestrial environments, or in extra-terrestrial environments like in space, or in man-made radiation sources like nuclear reactors, biomedical devices and high energy particles physics experiments equipment. Depending on the operation environment of the device, the radiation resultant effect manifests in several forms like total ionizing dose effect (TID), or single event effects (SEEs) such as single event upset (SEU), single event gate rupture (SEGR), and single event latch up (SEL). TID effect causes an increase in the delay and the leakage current of CMOS circuits which may damage the proper operation of the integrated circuit. To ensure proper operation of these devices under radiation, thorough testing must be made especially in critical applications like space and military applications. Although the standard which describes the procedure for testing electronic devices under radiation emphasizes the use of worst case test vectors (WCTVs), they are never used in radiation testing due to the difficulty of generating these vectors for circuits under test. For decades, design for testability (DFT) has been the best choice for test engineers to test digital circuits in industry. It has become a very mature technology that can be relied on. DFT is usually used with automatic test patterns generation (ATPG) software to generate test vectors to test application specific integrated circuits (ASICs), especially with sequential circuits, against faults like stuck at faults and path delay faults. Surprisingly, however, radiation testing has not yet made use of this reliable technology. In this thesis, a novel methodology is proposed to extend the usage of DFT to generate WCTVs for delay failure in Flash based field programmable gate arrays (FPGAs) exposed to total ionizing dose (TID). The methodology is validated using MicroSemi ProASIC3 FPGA and cobalt 60 facility

    Implementation of residue code as a design for testability strategy using GENESIL Silicon Compiler

    Get PDF
    This thesis describes the need for including design for testability in a VLSI chip design and provides information on implementing a DFT strategy using the GENESIL Silicon compiler. Two structured techniques of design for testability, Scan Design and Built-in Self Test, are discussed. Also, the methodology used to implement the residue code with GENESIL for testing the multiply-add module of a second-order Infinite Impulse Response notch filter is presented. The cost, in terms of increased hardware and decreased performance, associated with implementing the residue code is examined by comparing modulo-3 and modulo-15 checking algorithms.http://archive.org/details/implementationof1094527620Lieutenant, United States NavyApproved for public release; distribution is unlimited

    High-level synthesis of VLSI circuits

    Get PDF

    Digital Serializer Design for a SerDes Chip in 130nm CMOS Technology

    Get PDF
    The development of this project is derived from the effort of previous generations from the System on Chip Design Specialty Program at ITESO, who have pioneered the creation of a serializer-deserializer device for high-speed communications in CMOS technology, aiming towards a small and efficient device. The design flow and enhancements implemented within the digital serializer module of the SerDes system, consists of an 8b10b encoder followed by a parallel to serial converter that together reaches a maximum frequency of 239 MHz in a typical cmrf8sf (130 nm) technology manufacturing process, implemented with Cadence tools. The rtl and testbench were taken from the work of Efrain Arrambide, adding a register to store the current disparity value, and thus, enhance the code by adding primitive blocks to improve the behavior of the serializer module and the validation process, generating a summary for every run. The system on chip flow is followed by choosing the variables that best fit the design and a layout with no design violations is generated during the physical synthesis. The individual module layouts were completed successfully in terms of behavior and violations, while the integration of the mixed signal device showed errors that were not resolved in time for manufacturing.El desarrollo de este proyecto parte del trabajo realizado por las generaciones anteriores de la especialidad de diseño de circuitos integrados del ITESO, quienes fueron pioneros en la creación de un dispositivo para comunicaciones de alta velocidad en tecnología CMOS, con el objetivo de obtener un producto final pequeño y eficiente. El flujo de diseño y mejoras implementadas al módulo serializador digital del sistema SerDes, el cual consiste en un codificador 8b10b seguido de un convertidor de datos de paralelo a serial, alcanza una frecuencia måxima de 239 MHz al ser fabricado y operado en condiciones típicas con la tecnología cmrf8sf (130 nm), ademås de ser implementado con las herramientas proveídas por Cadence. El código de descripción de hardware y banco de pruebas fueron tomados originalmente de los entregados por Efrain Arrambide, a lo que se le agregó un registro para almacenar el valor de la disparidad del dato enviado, así como la adición de bloques båsicos para mejorar el comportamiento y se simplificó el código Verilog. El proceso de validación fue mejorado de tal manera que se prueban bloques por separado y cada iteración genera un registro de transacciones y un resumen al final con los resultados de manera automåtica para cada iteración. El flujo del diseño de sistemas en chip fue seguido por completo, eligiendo las variables que mejor se adaptan a la respuesta y especificaciones del sistema, así como buscar que genere ninguna violación en el diseño físico. Los distintos bloques del sistema serializador-deserializador fueron diseñados y verificados con éxito, sin embargo, la integración del sistema de señal mixta no fue completada debido a errores que no se lograron resolver a tiempo para cumplir con la fecha de fabricación.ITESO, A. C.Consejo Nacional de Ciencia y Tecnologí

    The impact of design techniques in the reduction of power consumption of SoCs Multimedia

    Get PDF
    Orientador: Guido Costa Souza de AraĂșjoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: A indĂșstria de semicondutores sempre enfrentou fortes demandas em resolver problema de dissipação de calor e reduzir o consumo de energia em dispositivos. Esta tendĂȘncia tem sido intensificada nos Ășltimos anos com o movimento de sustentabilidade ambiental. A concepção correta de um sistema eletrĂŽnico de baixo consumo de energia Ă© um problema de vĂĄrios nĂ­veis de complexidade e exige estratĂ©gias sistemĂĄticas na sua construção. Fora disso, a adoção de qualquer tĂ©cnica de redução de energia sempre estĂĄ vinculada com objetivos especiais e provoca alguns impactos no projeto. Apesar dos projetistas conheçam bem os impactos de forma qualitativa, as detalhes quantitativas ainda sĂŁo incĂłgnitas ou apenas mantidas dentro do 'know-how' das empresas. Neste trabalho, de acordo com resultados experimentais baseado num plataforma de SoC1 industrial, tentamos quantificar os impactos derivados do uso de tĂ©cnicas de redução de consumo de energia. Nos concentramos em relacionar o fator de redução de energia de cada tĂ©cnica aos impactos em termo de ĂĄrea, desempenho, esforço de implementação e verificação. Na ausĂȘncia desse tipo de dados, que relacionam o esforço de engenharia com as metas de consumo de energia, incertezas e atrasos serĂŁo frequentes no cronograma de projeto. Esperamos que este tipo de orientaçÔes possam ajudar/guiar os arquitetos de projeto em selecionar as tĂ©cnicas adequadas para reduzir o consumo de energia dentro do alcance de orçamento e cronograma de projetoAbstract: The semiconductor industry has always faced strong demands to solve the problem of heat dissipation and reduce the power consumption in electronic devices. This trend has been increased in recent years with the action of environmental sustainability. The correct conception of an electronic system for low power consumption is an issue with multiple levels of complexities and requires systematic approaches in its construction. However, the adoption of any technique for reducing the power consumption is always linked with some specific goals and causes some impacts on the project. Although the designers know well that these impacts can affect the design in a quality aspect, the quantitative details are still unkown or just be kept inside the company's know-how. In this work, according to the experimental results based on an industrial SoC2 platform, we try to quantify the impacts of the use of low power techniques. We will relate the power reduction factor of each technique to the impact in terms of area, performance, implementation and verification effort. In the absence of such data, which relates the engineering effort to the goals of power consumption, uncertainties and delays are frequent. We hope that such guidelines can help/guide the project architects in selecting the appropriate techniques to reduce the power consumption within the limit of budget and project scheduleMestradoCiĂȘncia da ComputaçãoMestre em CiĂȘncia da Computaçã

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation
    • 

    corecore