
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1990-12

Implementation of residue code as a design for

testability strategy using GENESIL Silicon Compiler

Lawson, John Ernest

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/27620

AD-A246 425

NAVAL POSTGRADUATE SCHOOL
Monterey, California

IN 1U' o A'i-n), D TIC

THESIS

IMPLEMENTATION OF RESIDUE CODE AS A DESIGN
FOR TESTABKTY STRATEGY USING GENESIL

SILICON COMPILER

by

John Ernest Lawson

December, 1990

Thesis Advisor: Chyan Yang
Co-Advisor: Herschel H. Loomis, Jr.

Approved for public release; distribution is unlimited.

92-04942

92 2 25 180 111111|#11|

UNCLASSI FIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMBNO. 0704-O01

la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

Naval PostgraddateSchoolj EC Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification) IMPLEMENTATION OF RESIDUE CODE AS A DESIGN FOR
TESTABILITY STRATEGY USING GENESIL SILICON COMPILER

12. PERSONAL AUTHOR(S)

LAWSON,-'John E.
13. YP O RPOT13b. TIME COVERED T114. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT

Master 's Thesis.~ FOMT 1990 December illl
16. SUPPLEMENTARY NOTATION The views expressedcJin this thesis are those of the
author and do not reflect the official policy or position of the Depart-
ment of Defense or the US Government.
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP design for testability; scan design; built-in
self-test; residue code; notch filter; silicon
co 1compiler

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
his thesis describes the need for including design for testability in a
LSI chip design and provides information on implementing a DFT strategy
Ising the GENESIL Silicon compiler. Two structured techniques of design
for testability, Scan Design and Built-in Self Test, are discussed. Also,
the methodology used to implement the residue code with GENESIL for testing
he:Imultiply-add module of a secoDd-order Infinite Impulse Response notch

filter is presented. The cost, in terms of increased hardware and de-
creased performahoe-- associated with implementing the residue code is
examined by comparing modulo-3 and modulo-15 checking algorithms.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
MIUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
YANG, Chyan 408-646-2266 1

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603 UNCLASSIFIED
i

SECURITY CLASSIFICATION OF THIS PAGE

DD Form 1473, JUN 86 (Reverse) SECURITY CLASSIFICATION OF THIS PAGE

Approved for public release; distribution is unlimited.

IMPLEMENTATION OF RESIDUE CODE AS A DESIGN

FOR TESTABILITY STRATEGY USING GENESIL

SILICON COMPILER

by Accession For _

NTIS GRA&I
John Ernest Lawson DTIC TAB 5

Lieutenant, United States Navy Una.rounced
Justi. ficatio

B.S., University of Mississippi, 1983
By

Submitted in partial fulfillment Distributiton/
Availabilit7 Codes

of the requirements for the degree of
Avail and/or

D i s t Special
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL -o
December 1990

Author:
John Ernest Lawson

Approved by:

C an Yang, The is s

Herschel H. Loomis, Jr., o-Advisor
Vv

Michael A. Morgan, Chairman

Department of Electrical and Computer Engineering

ii

ABSTRACT

This thesis describes the need for including design for

testability in a VLSI chip design and provides information on

implementing a DFT strategy using the GENESIL Silicon

Compiler. Two structured techniques of design for

testability, Scan Design and Built-in Self Test, are

discussed. Also, the methodology used to implement the

residue code with GENESIL for testing the multiply-add module

of a second-order Infinite Impulse Response notch filter is

presented. The cost, in terms of increased hardware and

decreased performance, associated with implementing the

residue code is examined by comparing modulo-3 and modulo-15

checking algorithms.

iii

TABLE OF CONTENTS

I • INTRODUCTION 1

A. BACKGROUND 1

B. GENESIL SILICON COMPILER 16

C. THESIS OVERVIEW 17

II. DESIGN FOR TESTABILITY METHODS 19

A. BACKGROUND 19
B. SCAN DESIGN 24

C. BUILT-IN SELF TEST DESIGN 34

III. IMPLEMENTATION OF A DESIGN FOR TESTABILITY

STRATEGY * 48

A. FUNCTIONAL DESCRIPTION 48

1. Coefficient Block . . o . o 52

2. Ones' Complement to Signed Magnitude Block . 53

3. Multiplier Block 54

4. Signed Magnitude to Ones' Complement Block . 54

5. Adder Block 54

6. Overflow Block 56

B. IMPLEMENTING RESIDUE CODE INTO THE MULTIPLY-ADD

MODULE FOR 56

iv

C. MODULO-3 LOW-COST RESIDUE CODE IMPLEMENTATION 59

1. Residue-generatora Block 59

2. Residue generatorx Block 59

3. Mod_3_multiplier Block 63

4. Residuegeneratory Block 64

5. Mod 3 adder Block 64

6. Residue generator z Block 64

7. Comparator Block 68

D. MODULO-15 LOW-COST RESIDUE CODE IMPLEMENTATION 70

1. Residue generatora Block 70

2. Residue generatorx Block 70

3. Mod_15_multiplier Block 74

4. Residuegeneratory Block 76

5. Mod_15_adder Block 77

6. Residuegenerator_z Block 79

7. Comparator Block 8 0

E. SIMULATION 81

IV CONCLUSIONS 99

A. SUMMARY . .*. o 99

B. RECOMMENDATIONS o 100

LIST OFREFERENCES 101

INITIAL DISTRIBUTION LIST. 103

v

1. INTRODUCTION

A. BACKGROUND

Barry Johnson [Ref. l:p. 7] defines a test as a means by

which the existence and quality of certain attributes of an

electronic system can be determined. For instance, if a

computer is advertised to execute one million instructions per

second, you would want to design a test to verify that the

computer performs at that particular rate. Furthermore,

testability is the ability to test for specific attributes

within an electronic system [Ref. l:p. 8].

Electronic systems, such as digital computers, have become

so common and useful in modern society that they are

indispensable. Their rapid advances have been made possible

by the dramatic progress toward Very Large Scale Integration

(VLSI) in the semiconductor circuit technologies achieved in

recent years. The continually growing significance and

complexity of today's electronic systems demands that special

features be incorporated into the system to support testing in

a simple and straightforward manner. Design for testability

(DFT) is the process by which such features are included.

Integration means realization and packaging of multiple

circuits in a single "smallest unit of fabrication" which, in

semiconductor technologies, is called a chip [Ref. 2:p. 6].

:1

The importance of circuit integration lies in its inherent

capabilities for reducing the cost of the electronic circuits'

fabrication as well as improving their performance and

reliability. It reduces costs by packaging more circuits in

each unit of fabrication and allowing much of the production

processes to be automated; it improves the circuits'

performance by decreasing their dimensions and the signal

propagation delays, thus, increasing their operational speeds;

it improves their reliability by using fewer solder joints and

shortening interconnections [Ref. 2:p. 7].

Advances in circuit integration have been impressive and

are expected to continue at an accelerated pace. However, as

VLSI circuit densities increase, it is generally recognized

that the problems in testing become correspondingly complex

and difficult in at least two ways. First, circuits to be

tested have become so complicated that they can no longer be

handled by one person. This has lead to difficulties in the

planning and design for testing. The use of computer-aided

design (CAD) tools is one way to overcome these problems.

Second, VLSI circuits have become so fast, compact and

inaccessible that conventional methods of testing are no

longer adequate. To cope with these difficulties, more and

better use of computers to help manage complex tasks has led

to the use of automatic test equipment (ATE) [Ref. 2:p. 41].

Future advances in VLSI circuit technologies will further

advance integration and speeds. Thus, circuit testing will

2

become more complex, difficult and costly, both in test

execution and in test equipment - unless something is done to

reverse this trend. In fact, there are cases in which

integrated circuits and systems were designed and built but

were not fabricated as products because they turned out to be

too costly or even "impossible" to test [Ref. 2:p. 14].

It should now be clear that although the per-chip

fabrication and assembly costs have decreased with ever

improving technology, the per-chip testing costs have

increased as a percentage of the total chip cost, and this

escalation in testing costs and testing difficulties can

seriously slow or stop the on going development for larger and

more complicated electronic systems [Ref. 2:p. 15].

Therefore, the need for ccnsidering design for testability

techniques during chip design can largely be predicted on one

factor: cost [Ref. 3:p. 100]. The inclusion of testability

design from the beginning of a project can make testing more

economical and effective.

Prior to circuit integration, there was no requirement in

the design of electronic circuits and systems for testability.

Circuits and systems were built using large-sized discrete

components (vacuum tubes, resistors, capacitors, transistors,

etc.) mounted on cards or boards with most node points

accessible to direct probing for testing. The behavior of

these circuits could be determined by monitoring the voltages

at the various node points, and these circuits were considered

3

testable. However, smaller and faster elect-onic circuits

were developed, and packaging densities were continually

increased until circuit components became too crowded to be

conveniently accessible by probing. In order to sustain

accessibility, "test points" were eventually added - at the

expense of either spacing out the components or providing

extra peripheral area contacts [Ref. 2:p. 39].

Following circuit integration, the dimensions of circuit

components were drastically reduced further. As a result,

most VLSI circuit components have lost their individual

accessibility. It is basically the increasing inaccessibility

of VLSI circuits (single circuits as well as groups of

circuits) that is producing difficulties in testing. One

reason for the increased inaccessibility is that as the number

of circuits on a VLSI chip grows they require more

input/output (I/O) pins for normal system operation, but due

to requirements for making reliable solder joints, the

miniaturization of the I/O pads on the chip has not kept pace

with the growing number of transistors within the chip.

Therefore, the relative number of I/O pins available for

direct probing or testing has decreased. Also, it becomes

increasingly difficult to feed stimulus and response signals

at high speeds through continually decreasing dimensions of

solder pads, connectors, fixtures and probes without some

noise and signal distortion that might affect the reliability

of a test. Thus, it can be seen that it is not feasible to

4

provide indefinitely more I/O connections without degrading

their quality for signal communications [Ref. 2:p. 59].

As systems grew and became more complicated, they had to

be subdivided into parts that were built and tested

separately. Following individual testing, the parts were

assembled into a system and then tested as a whole for correct

functioning. This method is basically the "conventional" way

of testing (Ref. 2:p. 38]. Conventional test methods of VLSI

circuits are faced with ever increasing and insurmountable

difficulties due to technological barriers. Attempts to match

the ongoing advances in circuit integration with further

mechanical miniaturization are destined to be dead-end: each

incremental step in the dimensional reduction can be

accomplished only against escalated technological difficulties

and at disproportionately increased costs. Conventional

testing relies primarily on adding improved mechanical means

and not on incorporation and use of additional circuits in the

object to be tested for the purpose of facilitating its

testing. However, design for testability is an integral

part of the circuit and system design, and can be considered

to be electronic in nature vice mechanical (Ref. 2:p. 48].

Common characteristics of conventional test methods are:

1. Conventional methods cannot test in-system because when

a part is in the system its inputs and outputs are

connected to some other parts. The part must be tested

5

in isolation which means its connections will need to be

severed either by using electronic switching or by

physically detaching the part from the system. Since

conventional methods do not rely on the incorporation and

use of the additional circuits required for electronic

switching, they are unable to test parts in-system.

2. Conventional methods rely on test equipment to generate

test patterns for the system-part being tested outside of

system and to capture its output response. Thus,

conventional test methods rely on Direct Signal Feeding

which is the feeding of signals directly through the test-

interface during testing.

3. Conventional methods require timing controls that are

generated and driven by test equipment that is external

to and not considered part of the system. This reliance

on the use of tester-driven timing is because the part to

be tested does not usually have all the needed timing

controls when it is outside of and separated from the

system.

Some of the consequences of conventional testing are that

system-parts tested outside-of-system often introduce

unavoidable uncertainties because it is virtually impossible

to reproduce exactly the systems-operation environment in a

test-fixture setup. In practice, faults which are detected in

a system often cannot be reproduced any more in the

6

disassembled parts. With system-parts designed for in-system

testability, testing will, therefore, be more efficient and

cost effective, and the insufficiency of testing system-parts

outside of and separate from the system can be eliminated.

Design for testability is one possible approach to

overcome the technological barriers of conventional testing

and increase individual circuit component accessibility. The

goal of DFT is to find ways to make all parts including the

assembled system easier, more efficient and less costly to

test in-system despite increasing inaccessibility of circuits

and a shortage of I/O pins for test purposes. Thus, DFT must

achieve some "sufficient" degree of testability by using only

a "small" number of extra I/O pins for test purposes, and it

must achieve this result at the cost of only a "small" amount

of hardware overhead and performance penalty [Ref. 2:p. 83].

Design for testability requires the incorporaticn of

additional circuits through careful design in order to provide

controllability and observability of the system.

Controllability refers to the degree to which a node internal

to a circuit can be set to a given logic level [Ref. 4:p. 97].

On the other hand, observability can be defined as the ability

to observe the logic level of a given internal node at the

output of the design [Ref. 4:p. 97]. One of the chief aims of

design for testability is to find new ways to control and

observe a large number of nodes within the system to determine

with a high degree of confidence if the system is "fault free."

7

If a circuit demonstrates failure which causes deviations

from the specified performance behavior it is said to contain

faults [Ref. 5:p. 1]. The two major categories of faults are

physical circuit defect faults and design faults. Physical

failures are a result of manufacturing defects or wear-out in

the field. Some examples of manufacturing defects include

faulty transistors, open contacts, electrical shorts between

circuit parts and broken lines [Ref. 5:p. 1]. Major

contributors to these physical defects are lithographic errors

during the manufacture of VLSI circuits such as alignment

failures and mask errors [Ref. 6:p. 693]. Improper handling

of delicate electronic circuits can lead to input gate

breakdown due to static electricity, and the intrusion of

moisture during the packaging of integrated circuits can lead

to failure. Wear-out or long term failures are caused by

aluminum metal corrosion or high current densities in thin

wires that can result in metal migration [Ref. 6:p. 695].

Design faults are caused by improper VLSI circuit connections

due to either design mistakes or implementation mistakes.

Fault models are used to describe the effect of a physical

failure on the performance of the system and can include

modeling faults down to the individual transistor circuit

level, but usually fault models only consider faults down to

the logic circuit level (also called gate level by some). The

reason why a logic circuit level fault model is most often

used is that this model can represent faults for many

8

different technologies. An example of a logic circuit level

model that is technology dependent is the logical stuck-fault

model [Ref. l:p. 32].

The logical stuck-fault model is often referred to as the

stuck-at-O (s-a-0), stuck-at-1 (s-a-i) fault model or simply

the stuck-fault model, and it is a representation that assumes

all faults will appear as lines in the logic diagram being

physically stuck at a logic 1 or logic 0 value [Ref. l:p. 42].

Three basic assumptions of the stuck-fault model are:

1. a fault results in a model responding as if one of its

inputs or outputs is physically stuck at logic 1 or 0

2. the circuits basic functionality is not altered by the

fault

3. the fault is permanent

The logic module can either be a single gate or a collection

of gates that implements some logic function [Ref. l:p. 32].

The CMOS inverter of Figure 1.1 shows how a stuck-fault

can occur. If the input line is shorted to ground (logic 0)

at point A then the gate output will be stuck-at-1 (s-a-i),

regardless of what the inverter input is. If the line is

broken at point B then the gate will produce the expected

output of logic 1 when a logic 0 is input and the p-channel

transistor turns on. However, if the input is a logic 1 the

p-channel transistor will turn off, but the n-channel

9

transistor will never turn on because the line is broken. As

a result, the output will remain at a logic 1 for a period of

time dependent on leakage currents. If a high speed stream of

data consisting of both logic l's and O's is being input to a

device which includes the inverter, the output may appear as

a permanent s-a-1 fault [Ref. 7:p. 7].

The AND gate of Figure 1.2 is used to show how to test for

stuck-faults. For example, if this AND gate has a stuck-at-0

fault on input line A, the gate will always produce a logic 0

at the output. The applied input, however, is free to assume

any value. Input pairs of (0,0), (0,1) or (1,0) on lines A,

B will all produce correct outputs on line F. However, when

input (1,1) is used the output should be logic 1 but will

instead be logic 0 due to the s-a-0 fault on input line A.

VDD

output
input

Figure 1.1 CMOS Inverter stuck-fault model [Ref. 7]

10

The input pattern (1,1) is, therefore, a test of s-a-0 fault.

Most applications of the stuck-fault model limit the number of

faults that can occur at any one time. It is typically

assumed that a circuit will never have more than one stuck-

fault. The single fault assumption is commonly used to

simplify the process of analyzing a circuit or generating test

patterns. In a logic gate that contains n lines, a

possibility of at most 2n unique, single, stuck faults can

occur because each line can exhibit a s-a-0 or s-a-i fault

[Ref. 1:p. 33].

The design of test vector inputs capable of detecting

these 2n stuck-faults is one of the problems in testing. The

AND gate of Figure 1.3 illustrates that certain input patterns

can determine the presence of more than one stuck-fault. For

example, an input pattern of (1, 1, 0, 1) that produces an

Physically connected to
logic 1 or logic0

A
B - F

Figure 1.2 AND gate stuck-fault testing [Ref. 1)

11

A
BEB AND E
C
D

Input Faults Pattern to Detect Fault
ABCD

A S-A-0 I 1 1 1
A S-A-I 0l11
B S-A-O 1 1 11
B S-A-I 1 O1
C S-A-O 1 1 1
C S-A-i I I01
D S-A-O 1111
D S-A-I 1110

Output Faults Pattern to Detect Fault
________ ABCD

E S-A-0 1 1 1 1
E S-A-I any input combination

that contains one or
more 0 inputs

Patterns Needed to
Completely Test Gate

ABCD
1111
0111

S10111101
1110

Figure 1.3 Stuck-fault vectors for fault detection [Ref. 8]

12

output of logic 1 means that either input C is s-a-i or output

E is s-a-1 [Ref. 8:p. 7, 8]. Furthermore, Figure 1.3 shows

that only five test vectors are needed to completely test the

functionality of the gate.

One method often used to quantify the effectiveness of a

fault model is a coverage parameter. If the actual physical

fault is accurately represented by the chosen fault model then

a fault model is said to cover a fault. Ideally, a fault

model should cover 100 percent of all physical faults, but

this is seldom the case.

The classic example of a stuck-fault model that does not

cover a very specific and practical physical fault is the CMOS

NOR gate [Ref. 9] shown in Figure 1.4. The circuit is a

combination of two p-channel transistors in series with two

parallel n-channel transistors. A path for current flow is

set-up from either VDD or VSS to the circuit output based on

the input values, A and B. If both A and B are at logic 0,

both p-channel transistors are conducting while both n-channel

transistors are off. The output is forced to a logic 1 by the

path established between VDD and the output. Similarly, if

either or both inputs are logic 1, the corresponding p-channel

transistors are turned off while one or both n-channel

transistors are conducting. Thus, a path from the output to

VSS is set up, forcing the output to a logic 0 [Ref. l:p. 33].

The NOR circuit can easily assume many faults that behave

as stuck-faults [Ref. l:p. 33]. One possible example is when

13

the drain and source of one of the n-channel transistors

become shorted together, causing the device to always output

a logic 0. As a result, the fault can be modeled as the

output s-a-0. Another example is if input line A becomes

shorted to VDD the output of the circuit will always be a

logic 0, behaving as if input line A is s-a-l.

A F
B

VW

A .-

pchannel Devices

-0 F

n-channel Devices

Figure 1.4 Logic diagram and transistor implementation
of CMOS NOR gate [Ref. 9]

14

Several faults, however, do not adhere to the stuck-fault

model. One example of such a fault is the stuok-open fault

[Ref. l:p. 34]. Consider the NOR gate in Figure 1.5. If a

break in a line occurs and the input pattern AB = 10 is

presented to the circuit, there is no path from either VDD or

VSS to the circuit output because neither the series p-channel

transistors nor the parallel n-channel transistors is

conducting. Consequently, the circuit is floating due to load

capacitances, and the output retains its previous value.

V00

p-channel Devices

B 0-

Break
in O
Line

n-channel Devices

Figure 1.5 Stuck-open fault [Ref. 1]

15

Because the circuit retains the memory of its previous state,

it is no longer a combinational circuit. Instead, the circuit

is sequential which violates the second assumption of the

stuck-fault model discussed on page nine. As a result, the

stuck-open fault cannot be adequately modeled by the stuck-

fault model.

There have been attempts to develop new and better fault

models to overcome the limitations of the stuck-fault model.

For example, logic circuit models of various gates, such as

the NOR gate, are described by R.L. Wadsack in 1978 [Ref. 9]

to allow the effect of the stuck-open fault to be simulated.

However, the complexity of the circuit is substantially

increased because for each gate, an additional D-type flip

flop and four gates must be added to allow the effects of

stuck-open faults to be adequately modeled [Ref. l:p. 34].

B. GENESIL SILICON COMPILER

The continually growing significance and complexity of

VLSI circuits has made it necessary to develop automated

design systems to maximize the benefits of this new

technology. Design automation provides faster and more

efficient methods to design and test integrated circuits. One

such state-of-the-art system is the GENESIL Silicon Compiler.

GENESIL is a top-down, hierarchical chip-design method

based on silicon compilation, and it is one of the newest

Application Specific Integrated Circuit (ASIC) design methods.

16

Other ASIC design methodologies include full-custom design,

gate-array design and standard cell design methods [Ref. 10:p.

38]. For full-custom VLSI design, the circuit designer must

have a thorough knowledge of silicon semiconductor technology.

However, gate-array design, standard cell design and silicon

compilation make VLSI design achievable to systems designers

who lack IC designer expertise.

GENESIL is a menu driven interactive layout editing system

that concentrates on high-level systems design. There are

hundreds of complex functional parts available in its library

of cells, such as random access memory (RAM), read only memory

(RON), programmable logic arrays (PIA), arithmetic logic units

(ALU), multipliers, basic logic gates and data-path blocks to

manipulate parallel data. The designer selects the desired

cells and connects them together with the netlist of routing

commands.

GENESIL also provides the user with a design verification

package which allows the designer to functionally verify the

chip design through timing analysis, power requirement

analysis and automatic test generation. Hence, the designer

is able to quickly and efficiently perform successive design

iterations to explore architectural alternatives.

C. TESIS OVERVIEW

The main goal of this thesis is to describe the need for

design for testability in a VLSI chip and to provide

17

information on implementing a DFT strategy to test the

multiply-add module of a notch filter using the GENESIL

Silicon Compiler. The use of arithmetic codes, specifically

a residue code, to check arithmetic operations is the primary

concept to be investigated. Chapter II will describe two

structured techniques of design for testability: Scan Design

methods and Built-in Self Test approaches, including

arithmetic codes. Chapter III will describe the basic design

of a notch filter and will include a complete functional

description of the multiply-add module. This chapter will

also describe the methodology used to implement residue code

with the GENESIL Silicon Compiler for testing the multiply-add

nodule. Chapter IV will present a summary of the work

completed and the conclusions drawn from this research.

18

II. DESIGN FOR TESTABILITY METHODS

A. BACKGROUND

The testing of sequential devices is quite important due

to the frequency of their occurrence in practical designs. In

fact, very few complex designs can be achieved using only

combinational logic; hence, it is crucial that test techniques

for sequential circuits be available.

The basic structure of a sequential circuit is presented

in Figure 2.1 for review. This circuit includes both

combinational logic and memory elements (usually flip flops).

The circuit has sets of n primary inputs (X,, ... , Xd), m

primary outputs (Z,, ... , Z,) and k excitation variables (Y1,

*** ' Y) As can be seen in Figure 2.1, the primary outputs

are a function of either the primary inputs or the state

variables, or both. The circuit is called a Moore sequential

machine if the primary outputs depend only on the state

variables [Ref. l:p. 521]. However, the circuit is called a

Mealy sequential machine if the primary outputs depend on both

the state variables and the primary inputs [Ref. l:p. 523].

The next state of the memory elements are specified by the

excitation variables which are functions of the primary inputs

and the present state variables. Finally, the memory elements

use a common clock signal.

19

Sequential circuits require verification that the circuit

provides the correct primary outputs for a given set of

primary inputs, and the circuit also requires verification

that the correct state transition occurs. For this reason,

Sequential circuits are extremely difficult to test.

Primary , Z Primary
Inputs _ _ __Outputs

x. 0, Combinational Z. ZO
Logic

State
Variables

A Y1 Excitation
Variables

Y,Memory

Elements

T
Clock

Figure 2.1 Basic structure of a sequential circuit [Ref. 1]

20

As k (excitation variables) and n (primary inputs) become

large, the testing of sequential machines becomes

prohibitively complex because the primary outputs and the

state transitions for all possible primary inputs and all

possible initial states must be verified to completely test a

sequential machine [Ref. l:p. 523]. In fact, it is impossible

from a practical standpoint to completely, functionally test

today's sequential devices unless some constraints are placed

on their design. Constraints on the design of digital

circuits are one form of design for testability [Ref. 3]. The

objective of DFT is to create a design that is easy and

economical to test.

DFT techniques can be divided into ad hoc methods and

structured approaches [Ref. 1:p. 523]. The ad hoc techniques

include heuristic methods such as circuit partitioning and

adding extra test points. In the circuit partitioning method,

the circuit is separated in several small, independently

tested modules. The idea behind this approach is that testing

several small circuits is much easier than testing one large,

complicated circuit. Test points are used to improve the

testability of a circuit by allowing an external test device

to have easy access to internal nodes of the circuit for

control and observation. Ad hoc approaches can be adeauate

for a specific design, but they are generally not applicable

to all designs. Furthermore, there is very little

standardization when using ad hoc methods.

21

Structured DFT techniques, on the other hand, involve a

set of general design rules by which a design is implemented.

The same set of design rules are typically required for all

designs. Thus, structured design for testability improves the

ability to test sequential machines, and it standardizes

designs [Ref. l:p. 523].

Most structured DFT techniques convert sequential machines

into combinational circuits for testing by providing a means

of breaking the feedback loop in the sequential machine. This

allows the state of the machine to be controlled and observed

for easy verification of correct operation. Figure 2.2 shows

this concept of controlling the state variables of the circuit

and observing the excitation variables. The test process is

then simplified to one of testing the combinational logic

which has inputs consisting of the state variables and the

primary inputs and which has outputs consisting of the

excitation variables and the primary outputs. Hence, all

inputs to the combinational logic become completely

controllable and all outputs become completely observable with

the feedback loop broken and the state variables accessible

[Ref. l:p. 524].

In this chapter, two structured design for testability

techniques will be examined: scan path and built-in self test.

These two techniques can be used separately, or both can be

included in a single VLSI design, and these techniques are

implemented on GENESIL by using a Testability Latch Block.

22

* 0
* 0

Xn - Combinational Yk z .,
p Logic

Y,

y A Yo Test Input o-Test
Output.-

Memory

Elements

t Test Input Test
Output

Figure 2.2 Structured DFT concept of converting a sequential
machine into a combinational circuit [Ref. 1]

23

For parallel datapath designs, three configurations of the

Testability Latch Block are available in GENESIL:

1. The basic configuration which uses a single shift

register to serially enter or retrieve data.

2. The generator configuration which has the attributes

of the basic configuration as well as including

circuitry for pseudorandom test sequence generation.

3. The signature configuration which has the attributes

of the generator configuration plus signature analysis

logic circuitry.

The first configuration is used to implement the scan design

techniques while the latter two configurations implement the

built-in self test techniques through use of linear feedback

shift registers [Ref. 11:p. 24-2].

B. SCAN DESIGN

The object of design for testability is to find ways to

make controllability and observability of the object under

test easier, more efficient and less costly. Scan design is

the approach used in methods such as Scan Path, Scan Set and

Level Sensitive Scan Design (LSSD), and it requires the use of

specially designed, clocked flip flops that can be placed in

either the operate or test mode [Ref. l:p. 524). These flip

24

flops are able to accept test vectors that control the present

state of the circuit, and they are able to clock (or scan) out

the current excitation variables of the circuit. By

interconnecting all the flip flops into a single shift

register, scanning techniques can clock an appropriate test

vector into this shift register, perform a normal operation

(usually one clock cycle) and shift out the resulting

excitation variables of the circuit [Ref. l:p. 525].

A generalized block diagram of a system using a scanning

method of design for testability is shown in Figure 2.3. The

individual flip flops of the shift register operate

independently and perform normal system functions during

normal operation, but each flip flop can be loaded with a

specific value by shifting in a serial data stream through tke

scan-in line during the test process [Ref. l:p. 525].

After the flip flops are loaded for a test process, the

combinational circuit can perform a normal operation. The

(single cycle) primary outputs can then be observed in a

normal fashion, and the excitation variables can be observed

by loading their values into the shift register and shifting

out the result via the scan-out line [Ref. l:p. 525].

Scan design enhances the controllability problem through

its ability to shift in data to internal nodes and, scan

design enhances the observability problem through its ability

to access test results via the scan-out line. Furthermore,

this accessibility to internal nodes of the circuit is gained

25

X0 0 Combinational 0Z

TTest/Normal
Testl~orYa

((S

SScan
Inn

262

using a minimal number of peripheral pins for testing because

only the serial input of the first shift register and the

serial output of the last register are required for vector

manipulation.

Scan Path is a method of design for testability developed

by Nippon Electric Co., Ltd. [Ref. 12]. This approach

partitions the design of a large circuit into subsystems of

Scan Path registers connected together. Each subsystem can be

uniquely enabled for test purposes, thereby, allowing portions

of a system to be independently tested to a higher degree and

in an easier manner than the design as a whole. Figure 2.4

shows how a generalized circuit might be partitioned by scan

path into individually testable subsystems [Ref. 13:p. 374).

Internal flip flops in the data path are replaced with

master-slave configured D-type flip flops that can be chained

together to make the needed shift registers [Ref. l:p. 529].

The design uses a single clock signal that controls two

latches. The clock signal for the first latch goes through an

inverter to become the clock signal for the second latch. A

disadvantage to this approach is that race conditions could

occur if the input to the D-type flip flop changes at

approximately the same time that the clock changes or if the

output of the second latch feeds back through combinational

logic to become the input to the first latch (Ref. 3:p. 1053.

However, the problems mentioned above can be avoided by

adhering to appropriate design rules.

27

C-OD C/3

tLL

WLL

0 a<.

z <

0~0

CO)t

-4,-uL CL-

ini
0i

W m

"--- qa " .

Wi
tLI

x- --
a.-,

Ca.

Piguro 2.4 General circuit partitioned by scan path [Ref. 13]

28

Level Sensitive Scan Design (LSSD) is a technique

developed by IBM to overcome potential race problems. The

term level sensitive means that the steady-state response to

an allowable input change is independent of delays within the

circuit and the order which signals change within the circuit.

The term scan design implies that the technique uses the

scanning approach [Ref. l:p. 525].

LSSD adheres to the same basic idea as Scan Path for

moving test vectors into and out of the circuit, but the

structure of the flip flops used to construct the shift

register is fundamentally different. The master-slave D-type

flip flop shown in Figure 2.5 is the key element used in the

LSSD methodology. The flip flop is a master-slave D-type flip

flop which uses two non-overlapping clocks and is provided

with an extra input stage, allowing the input to the master

flip flop to come from either the normal line or test line.

The test input stage of the flip flop is disabled during

normal operation and the circuit performs as a normal master-

slave D-type flip flop. The normal input stage can be

disabled during testing to allow the flip flop to be loaded

with the test input [Ref. l:p. 525].

The LSSD technique overcomes the potential race problem

present in the Scan Path technique by using separate, non-

overlapping clocks for the master and slave flip flops to

provide the level-sensitive operation [Ref. 3:p. 105]. A

third clock input is provided for the scan operation which is

29

0 +L2

A 0
B60

Figure 2.5 LSSD master-slave D-type flip flop [Ref. 1)

30

also accomplished using non-overlapping, two-phase clocking

[Ref. 1:p. 526]. The flip flops are chained together

throughout the system by connecting the outputs of the slave

portion of the flip flop to the scan input of the master

section of the next flip flop to provide the scan feature

shown in Figure 2.6. During normal operation, clocks C and B

of Figure 2.5 are used in the master (L) and slave (L2),

respectively. Whereas, during the testing or scan operation,

clocks A and B are used. The test input is line I.

Scan Set is a technique similar to Scan Path and LSSD

developed by Sperry-Univac to enhance the testability of a

design [Ref. 14]. However, the shift register in Scan Set is

not located in the data path. Instead, the shift register in

Scan Set is an additional component that is completely

independent of the normal system flip flops [Ref. l:p. 532].

As shown in Figure 2.7, the shift register in Scan Set can

be used to sample the values of various points within the

circuit and control the values of certain lines. A test

vector can be clocked into the shift register via the scan-in

line and then applied to the circuits' logic, and values of

the circuits' response on certain lines can be sampled by the

shift register and clocked out on tkse scan-out line. The flip

flops used to provide the normal system operation must be

multiplexed with the test inputs provided by the shift

register (Ref. l:p. 533].

31

Scan In 0- 1Chip Borders

Li

322

There are two advantages to the Scan Set method. First,

a designer can determine exactly which of the sequential

circuit latches he desires to have the ability to set if he

does not desire the ability to set all latch points. Second,

points within the circuit can be observed during normal

operation because the scan shift register is not an integral

part of the system [Ref. 3:p. 106].

Sequential-
x, [Network =Z

Primary 10 A rimr
Inputs X. Combinational ____Z_. Outputs

_ Logic

Memory
A Elements I 1.
Y, ; r

Connected to selected points

San-n ---- --------]ego@

2.1 2-12-1

FlpFlpFlip
FlpFlpFlop I

Scan-Out
ShiftI
Register L

Test
cIock

Figure 2.7 Scan Set logic [Ref. 1)

33

C. BUILT-IN SELF TEST DESIGN

The second structured design for testabilit technique to

be examined is built-in self test or built-in test. External

test techniques, such as scan design, require that the circuit

under test be removed from its operational environment and

tested by external equipment. With ever increasing circuit

densities due to VLSI, the number of test patterns required

for exercising a circuit under test is becoming too large to

be efficiently handled by external test equipment. Also, the

time required to generate and apply the test patterns is

growing too large [Ref. 15:p. 21].

Built-in self test (BIT) techniques attempt to overcome

the problems of external testing by incorporating some or all

of the tester functions into the design of the device such

that testing can be accomplished without external test

equipment. The scan-in-and-out of data for each single-cycle

test can be avoided by using internal pattern generation

(source) and response compaction (sink). BIT techniques

typically use a pseudorandom-pattern generator to generate

test vector patterns and a pattern compactor to compact

response patterns. The pseudorandom-pattern generator and the

pattern compactor are both located within the circuit to be

tested, or in close proximity to it, and they permit built-in

test techniques to achieve in-system at-speed testability

[Ref. 2:p. 170].

34

The Linear Feedback Shift Register (LFSR) is the most

common device used for generating pseudorandom test patterns

for BIT techniques. The test patterns are called "pseudo"-

random because they are generated in a predetermined

sequential order, depending on initialization values and

actual implementation of the LFSR [Ref. 2:p. 172].

Figure 2.8 shows the basic structure of a linear feedback

shift register implemented by GENESIL. It consists of an n-

stage (n-bit-position) shift register where outputs of the

last and some intermediate stages are fed back through XOR

gates to the first stage. The R input is the multiplexer

control line, and it determines whether data is shifted into

the least significant bit (bit 0 stage) from the serial input

line (TIN) or from the XOR feedback path. The linear feedback

shift register is initialized by serially loading the desired

value into each stage, or bit position. After the

initialization is completed, the multiplexer control line is

selected so that data is shifted into the least significant

bit from the XOR feedback path only. As a result, the LFSR

stages assume different contents with each shift-cycle,

starting with the initial content, and will generate a

pseudorandom sequence of cyclic periodicity [Ref. 2:p. 560].

This sequence can then be used as internally generated test

patterns for a circuit under test.

The values of a,, such as a" + azn-1 + ... + a0 , in the

LFSR polynomial determine how the 2-input-XOR gates are

35

TOUT

Stage n-l i tn
(MSB)

K it 2 XOR

TIN

Figure 2.8 Basic structure of LFSR [Ref. 7)

36

incorporated in the feedback paths, and these values are fixed

for a particular implementation. This polynomial also

determines the cyclic periodicity or length of the

pseudorandom test sequence. A polynomial of degree n with a

minimum number of non-zero coefficients is an "irreducible,

primitive" polynomial and represents the most economical

realization for an n-stage LFSR because a minimum number of 2-

input-XOR gates is incorporated in the feedback paths (Ref.

2:p. 174]. Furthermore, "irreducible, primitive" polynomials

can be used for designing "maximum-length" sequence

generators. As a general rule, the maximum-length sequence

generator for a n-stage LFSR can generate [2"n - 1] unique n-

bit-long test patterns [Ref. 2:p. 175].

The execution of a long sequence of tests in rapid

succession is made possible by compressing the test response

patterns; otherwise, a large storage capacity would be

required for collecting the successive test results [Ref. 2:p.

177]. The compressing, or encoding, of a large amount of

digital information into a fixed small signature that

characterizes the response of the circuit under test is the

basic concept of signature analysis [Ref. l:p. 517].

The LFSR can be the encoding circuit used for collecting

and compressing test response patterns in the signature

analysis approach, and for that reason the LFSR is called a

signature register. As shown in Figure 2.9, the signature

register is implemented by inserting an XOR gate in the

37

TOUT

Stage n- I bit n-I
(MSB)

btI

I I I I I
(SB) bit 0 XOR

I Incoming

R ,[M X [O ' D a t a B i t

bitl X OR

TIN

Figure 2.9 Signature register [Ref. 8]

38

feedback path prior to the input to the first stage to allow

modulo-2 addition of the incoming data stream and the

feedback path from the other XOR gates [Ref. 2:p. 564]. The

content of the signature register is usually called the

residue or the syndrome, and it is determined by the content

of the register prior to the occurrence of a clock pulse and

the value of the serial data input line. Therefore, the final

content, or syndrome, of the signature register is determined

by the input bit pattern. The resulting syndrome is the

signature used in signature analysis [Ref. l:p 519]. If a

fault occurs, the output bit sequence will change, resulting

in a different signature in the signature register.

In signature analysis, signature registers are placed at

specific points within the circuit under test such as shown in

Figure 2.10. A given input test sequence is then applied to

record the signature of the circuit under test. These

signatures are compared to known good signatures of a fault-

free circuit. If the signatures of the good circuit disagree

with those of the circuit under test, the circuit under test

is considered faulty [Ref. l:p. 518].

Arithmetic codes are fault detection techniques that can

be used to provide concurrent, built-in test. An arithmetic

code is a redundant representation of numbers, and certain

errors in arithmetic operations can be detected using these

numbers [Ref. 16:p. 65]. To accomplish this fault detection,

the data is encoded before the arithmetic operations are

39

performed, and the code words resulting from the arithmetic

-perations are checked for validity [Ref l:p. 112). If the

code words are not valid, an error condition exists.

Signature Signatures o the
Encoding circuit under test
Circuit are compared to

those of a good
X, - Logic circuit.

Module

J(2 2

X2 1Logic Signature
Module Encoding

14 Circuit

X3 Logic
Module

X4 3

Module -

x5 Logic
Module

xf 3

Pigure 2.10 Placement of signature registers [Ref. 1]

40

An arithmetic code is preserved during the arithmetic

operation [Ref. 17]. Given two numbers b and c and an

arithmetic operation *, then A is an arithmetic code with

respect to the operation * if A(b * c) = A(b) * A(c), where

A(b) and A(c) are arithmetic code words for the numbers b and

c, respectively [Ref. l:p. 112]. In other words, an

arithmetic operation performed on two arithmetic code words

will produce the arithmetic code word of the arithmetic

operation.

Arithmetic codes provide at-speed testing for detection of

transient and permanent faults concurrent with system

operation [Ref. 18:p. 325]. However, the economic feasibility

of an arithmetic code is determined by the cost and

effectiveness of the arithmetic operations provided and the

speed requirement. Examples of arithmetic codes are AN codes,

residue codes, inverse residue codes and the residue number

system. Residue codes will be discussed in further detail

because this code was the approach chosen for this thesis to

incorporate a design for testability strategy into the

multiply-add module of a notch filter.

A residue code is a separable arithmetic code. In a

separable code, the check bits are separated from the number

(operand). The code word is usually generated by appending

the residue of a number to that number. For example, a code

word can be represented as D/R, where D is the data and R is

the residue of that data [Ref. l:p. 115).

41

The residue of a number is the remainder produced when

that number is divided by an integer called the check base, or

the modulus. For example, if the original number is 10 and

the modulus is 3, the quotient will be 3 and the residue will

be 1. This example is often written as:

10 = 1 modulo (3)

This is stated as ten is congruent to one modulo three. The

number of extra bits that are appended to a data word to

represent a separable residue code word depends on the

modulus, but the residue will never be larger than the modulus

[Ref. 1:p. 116]. Table 2.1 shows the residue code produced

when 4-bit information words are encoded using a modulus of 3.

Residue codes are very useful for checking arithmetic

operations because the residues can be handled separately from

the data. Figure 2.11 shows how a separable residue code can

be implemented to provide error detection for an adder. D,

and D2 are two data words added to form a sum word s. r, and

r2 are the residues of D, and D2, respectively, and these

residues are added using a modulo-m adder. Modulus m is also

used to encode D, and D2. If there are no errors, the modulo-m

addition of r, and r2 yields r. which should equal rc, the

residue of the sum s. However, if r differs from r© an error

has occurred [Ref. l:p. 117].

42

Table 2.1 Residue code words for 4-bit data words
using a modulus of three [Ref. 1]

Information Residue Code word

0000 0 0000 oo
0001 1 0001 01
0010 2 0010 10
0011 0 0011 00
0100 1 0100 01
0101 2 0101 10
0110 0 0110 00
0111 1 0111 O1
1000 2 1000 10
1001 0 1001 00
1010 1 1010 01
1011 2 1011 10
1100 0 1100 00
1101 1 1101 01
1110 2 1110 10
1111 0 1111 00

43

D, D2 rlr2

Modulo-m
Adder Adder

Residue
Generator

Compare

S E r r

Figure 2.11 Error detection using residue code [Ref. 1]

44

As defined by Avizienis [Ref. 17], low-cost residue codes

have a modulus of m - 2b - 1, where b is some integer greater

than or equal to 2 and is called the group length of the code.

The number of extra bits appended to a data word to represent

a code word in a low-cost residue code is equal to b. A low-

cost residue code makes the encoding process easy because the

division required to find the residue is recast as an addition

process due to the congruence

Kr = K modulo (r - 1)

Where r = 2 b, since r = 1 modulo (r - 1). Accordingly, the

residue for a kb-bit data word can be obtained by adding the

kb-bit groups with an addition algorithm which "casts out 2b -

l's" [Ref. 18:p. 335]. For example, the data bits that are

to be encoded in Figure 2.12 are divided into groups

containing b bits, and then the groups are successively added

in a modulo-(2b - 1) fashion to form the residue [Ref. l:p.

118]. Figure 2.13 shows how the residue for an eight-bit data

word can be generated using three, 2-bit, modulo-3 adders.

45

Information to be Encoded = (10100111)
Modulus = 3

b=2

10100111 (16710)

I
10 10 01 11

Modulo-3 Addition Modulo-3 Addition

01 01

Modulo-3 Addition

10 (Residue = 2)

Figure 2.22 Low-cost residue code calculation [Ref. 1)

46

d7 -d6 d5 d4 d.,d3 i d

Modulo-3 Modulo-3
Adder Adder

Adder

Residue

Figure 2.13 Residue generation for an 8 bit word [Ref. 1]

47

II. IMPLEENTATION OF K DESIGN FOR TESTAILITY STRATEGY

A. FUNCTIONAL DESCRIPTION

The VLSI chip chosen for implementation of a design for

testability strategy was the multiply-add module of a notch

filter designed by LCDR Chih-fu Kung, Taiwan Navy, at the

Naval Postgraduate School in Monterey, California [Ref. 19].

Figure 3.1 shows a basic second-order Infinite Impulse

Response (IIR) notch filter, and from this block diagram it

can be seen that the multiply-add module is the fundamental

building block for the notch filter.

A basic multiply-add module is shown in Figure 3.2. The

multiplier is represented by a triangle while the adder is

represented by a circle. The multiply-add module multiplies

a fixed-input (x[t]) by a constant(a) and adds the result to

another input stream (y[t]), thus producing the output stream

(z(t]). This operation can be represented as s(t] = a * X[t]

+ y[t].

There are four number systems that can be used to represent

negative numbers: signed magnitude, ones' complement, two's

complement and excess 20 - 1 [Ref. 19:p. 13]. The ones'

complement number system is used for this thesis.

A ones' complement, multiply-add module consists of six

blocks: coefficient block, ones' complement to signed

48

magnitude block, multiplier, signed magnitude to ones'

complement block, adder and overflow block. Figure 3.3 is a

block diagram of these sections.

X(n)

a, at a,

Define Symbols

= Unit Delay

= Pipeline Multiplier

--- Pipeline Add Unit

x(n) - Input

y(n) , Output

Figure 3.1 Second-order IIR notch filter [Ref. 19]

49

n

X.3 comp.-+S
Serial input

for a

y~tn

XSt -- x's CO2

~t) =~. 1 0 +z Kaz2 .

igre3. Baicmutipy-ddmodl Rf 9

M5

ii 121i i:*

.XOR

C
o u t (1 2 1 b (I : 0 0 U

x(121 ultI e11:0 us

ms..sum ms..carries OOut 0_od

I I
m[251 , mot2[.uot23:121

Bufder

Adder 012:9

Figure 3.3 ones' complement multiply-add module

51

I. Coefficient Block

The constant coefficient (a) is serially loaded to

reduce the I/O pin requirement. This block is designed as a

serial-in/parallel-out register which requires only two pins

for loading one coefficient: one pin for information and one

pin for control. Figure 3.4 shows the diagram of a four-bit

serial-in/parallel-out register for a coefficient block. For

the notch filter design, a 13-bit constant coefficient (a) is

used, and this constant could be either positive or negative.

The fixed-point signed magnitude format of the constant is

represented as a =a a0 al a2 ... a11 , where a. is the sign bit.

Clock :

Data Input D, Qi D2 Q2 D3 Q3 D4 Q4CP, CP CP CP

Q2 3 Q4

Figure 3.4 Four-bit serial-in/parallel-out register [Ref. 19]

52

2. Ones' Complement to Signed Magnitude Block

The sign bit is positioned as the leftmost bit.

Positive numbers are represented the same for ones' complement

and signed magnitude; however, for negative numbers in ones'

complement the sign is one and the remaining bits are the

complement of the magnitude. As a result, the conversion from

ones' complement to signed magnitude is simple: do nothing for

positive numbers and take the bit-by-bit complement for

negative numbers [Ref. 19:p. 14]. By checking the sign bit

and selectively complementing the magnitude through XOR gates,

the conversion from ones' complement to signed magnitude can

easily be achieved because a two-input XOR gate has no effect

when one of its inputs is zero (a positive number) but acts as

an inverter when one of its inputs is one (a negative number).

This conversion process is illustrated in Figure 3.5.

sign bit x D [2

x[s O

X 0 R X O R -- - - - - - - X 0 R

xout[O] xout[1 xout[121

Figure 3.5 Ones' complement to signed magnitude [Ref. 193

53

3. Multiplier Block

The multiplier block found in the GENESIL library is

an array of half and full adders that provides a parallel

multiplier for use in unsigned integer multiplication [Ref.

20]. External circuitry is required for signed multiplication

operations. The least significant bits are produced directly

from the array of half and full adders, but an external adder

is required to complete the partial product addition of the

most significant bits. The multiplier and multiplicand widths

can vary form 4 to 32 bits, but the multiplier width cannot be

greater than the multiplicand width.

4. Signed Magnitude to Ones' Complement Block

The design of this block is very similar to the design

of the ones' complement to signed magnitude block. No

conversion is required for positive numbers, and the inverse

of the magnitude value is used for negative numbers.

5. Adder Block

A full adder from the GENESIL library [Ref. 21] was

used for this block. The width of this full adder block can

be varied from 1 to 16 bits, so it was necessary to use two

blocks configured in a ripple-carry fashion due to the length

of the output from the multiplier block. The adder has two

data input buses and a carry input line which are added

together to produce the data output bus and a carry output

line. Figure 3.6 shows the logic design of the adder block.

54

w Lw~

-- -0

7ZC C

Figue 3.6 Lgic design of adder block

55

4 4

6. Overflow Block

The overflow block is designed to detect the presence

of an overflow condition for each module on the notch filter

chip. Overflow can occur only when both numbers are positive

or both numbers are negative. Therefore, overflow can occur

only if the sign of the resultant differs from that of the

original numbers (Ref. 19:p. 17].

B. IMPLEMENTING RESIDUE CODE INTO THE MULTIPLY-ADD MODULE FOR

TESTABILITY

To incorporate design for testability into the multiply-

add module of the notch filter, the residue code was chosen

because the module performs arithmetic operations. Thus,

implementation of residue code to ensure correctness of these

arithmetic operations is quite straightforward. The use of a

residue code introduces a checking step in the arithmetic

operation. The validity of every operand and every result in

an operation must be checked. This checking step, therefore,

results in a cost which is expressed by an increase in

hardware and decrease in speed. To examine the cost of

implementing the checking algorithm, a modulo-3 and a modulo-

15 low-cost residue code is used for comparison.

As stated earlier, the multiply-add module multiplies a

fixed-input (z[t]) by a constant coefficient (a) and adds the

result to another input stream (y[t]), thus producing the

output stream (z[t]). This can be represented as [t] = a *

56

x(t] + y[t]. To check this operation with a residue code, it

is necessary to multiply the residue of a by the residue of z

using a modulo-1 multiplier and then add the resulting residue

to the residue of y using a modulo-m adder. Using a

comparator, this residue can then be compared to the residue

of Z. If both residues are the same, the output of the

comparator (error) is a logical 0 and no errors have occurred.

Modulo-3 and modulo-15 adders and multipliers were used

for this thesis. These adders and multipliers were

implemented with the GENESIL Silicon Compiler by using the

Programmable Logic Array (PLA) Block. Table 3.1 lists the

parameters and options available for the PLA. The Optimizer

parameter provides a choice between no optimization of the

logic equation or optimization with UC Berkeley Espresso.

PLAs are implemented as a two-level sum-of-products

expression. As shown in Figure 3.7, the output signals can be

expressed as the sum (OR) of several intermediate signals,

each of which can be expressed as the product (AND) of several

input signals [Ref. 20:p. 6-1]. The specification of the PLA

equations is done in a PLA ancillary file with PLAEQ, a PLA

programming language with six equation formats: Logic Equation

Format, IF Format, Truth Table Format, Switch Actions, Minterm

Actions and Finite State Machines. The Truth Table Format is

used to specify the modulo-3 and modulo-15 adders and

multipliers for this thesis.

57

T~able 3.1. PLA Parameters and Options [Ref. 20]

PARAMETERS OPTIONS
Inputs 1 -256
Minterms 1 -512

Outputs 1 -256

Timing Full-Propagate, Input-Latch,
Output-Latch, Half-Cycle,
Haif-Precharged, Full-Precharged

Floorplan ROM, Decoder
Optimize Logic Yes, No

II
LUj

AND OR

[LATCH LATCHI

IN4 OUT
LUJ LU)
U) (f)

< <

Figure 3.7 GENESIL view of PLA Block [Ref. 20]

C. MODULO-3 LOW-COST RESIDUE CODE IXPLEMENTATION

A block diagram of the modulo-3 low-cost residue code used

to verify the ones' complement multiply-add module is shown in

Figure 3.8. The checking algorithm consists of seven blocks:

residuegenerator-a block, residue generatorx block,

mod_3_multiplier block, residue generatory block, mod_3_adder

block, residue_generatorz block and comparator block.

1. Residue_generator-a Block

The residue of the constant coefficient (a) is

generated from its 12 magnitude bits (a[ll]...a[0]) by using

a modulo-3 low-cost residue code. Remember, low-cost residue

codes make encoding easy because division is recast as

addition and these codes have a modulus of m = 2b - 1, where

b = 2 for mod-3. As shown in Figure 3.9, the 12 data bits to

be encoded are divided into six groups of two bits. These six

groups are then successively added using five, mod-3 adders to

form the residue (ra-l, ra_0). This block has a maximum

output delay of 24.6 ns and an area of 860.86 sq mils.

2. Residue_generator_z Block

The design of this block is very similar to that of

the residuegeneratora block. As shown in Figure 3.10, the

12 magnitude bits (x[ll]...x[O]) are divided into six groups

of two bits and then successively added using five, mod-3

adders to form the residue (rx l, rx_0). This block has a

maximum output delay of 24.6 ns and an area of 860.86 sq mils.

59

z

-- i "
fo

To

Figure 3.8 Modulo-3 residue code implementation

60

al] 08) 7~ o[41 a[31 a10

mod-3 mod-3 mod-3

odder odder odder

r.........

Figure 3.9 Mod-3 residue generation of a

61

x 81 xf8 4x 13] xI

mod-3 mod-3 mod-3

odder de de

Ix.. rx-O

Figure 3.10 Mod-3 residue generation of x~t)

62

3. Mod_3_Multiplier Block

The residue of a * x is generated using the

mod_3_multiplier block. The residue of a (ra-l, raO0) and the

residue of z (rxl, rxO0) are multiplied in a mod-3 fashion to

produce the residue of a * x (rs_1_mul, rs_0_mul). This block

has a maximum output delay of 5.8 ns and an area of 60.37 sq

mils. Figure 3.11 shows a diagram of a mod-3 multiplier and

its truth table.

rxlz rx 0 ral ra0 rs i mul rs 0 mul

0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 1 0 0
1 1 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 0 0

rx-l rxO ro-l ro-lO

mod-3
mul tipl ier

rs_1_mul rs-0-.mul

Figure 3.11 Mod-3 residue generation of a * x

63

4. Residue_generator_y Block

The design of this block is very similar to the design

of the residue_generatora block, but the number of bits used

is different. The integer product of a * x produces 26 bits,

one sign bit and 25 magnitude bits. So, the input stream

(y(t]) must be padded out to 26 bits for addition to the

product of a * x. As shown in Figure 3.12, the 26 bits

(y[25]...y[0]) are divided into 13 groups of two bits. These

26 bits are then successively added using 12, mod-3 adders to

form the residue (ryl, ryO). This block has a maximum

output delay of 33.6 ns and an area of 4416.00 sq mils.

5. XOe 3_adder Block

The residue of a * x + y is generated using the

mod_3_adder block. The residue of a * x (rs_1_mul, rs_0_mul)

and the residue of y (ry l, ryO) are added in a mod-3 fashion

to produce the residue of a * x + y (rs_l, rsO0). This block

has a maximum output delay of 8.5 ns and an area of 81.83 sq

mils. Figure 3.13 shows a diagram of a mod-3 adder and its

truth table.

6. Residue_generator.z Block

This block is similar to the resgeny block. As

shown in Figure 3.14, the 26 bits (z[25]...z[0]) are divided

into 13 groups of two bits and successively added using 12,

mod-3 adders to form the residue (rc_1, rcO0). The maximum

output delay is 33.6 ns and the area is 4416.00 sq mils.

64

Figue3.1 Mod-3 reidegeeatono yt

65d

ra I mul re o mul 171 ryO resl rsO
- ------- - -----------

0 0 0 0 0 0
o 0 0 1 0 1
o 0 1 0 1 0
o 0 1 1 0 0
o 1 0 0 0 1
o 1 0 1 1 0
o 0 0 0

1 1 0 1
10 0 0 1 0
10 0 1 0 0

1 0 1 0 0 1
10 1 1 1 0

1.1 0 0 0 0
1 1 0 1 0 1

111 0 1 0
1 1 1 1 0

rs-l-mul rs_0_mul ry -l ryO

mod-3
adder

rs-i rs_0

Figure 3.13 Hod-3 residue generation of a * x + y

66

1[25I if241 1[231..J (0 z I f 1) .. I(~I I 1St 1(11 1 ... 1($) 2171 ... if41 113] 6t 1

usd3 .d-J .d-J.od-3aod-Jmdd-

::dero d. adderd. ddode

rc-I fc-8

Figure 3.14 Mod-3 residue generation of z[t]

67

7. Comparator Block

The comparator block is used to compare the residue of

a * x + y (rs_1, rs_0) to the residue of z (rcd1, rcO) for

detecting errors. The block uses two XOR gates to compare the

residues. For example, XOR_1 has inputs of rs_1 and rc_1 and

as long as these inputs have the same logic level, the output

of XOR_1 will be logic zero. An OR gate is then used to check

the outputs of XOR_1 and XOR_0. If both of these outputs are

logic zero, then the output of the OR gate (error) will be

logic zero, indicating no errors. However, if any XOR gate

has two different input values, that XOR gate will produce a

logic one output, causing the OR gate to correspondingly

produce a logic one output on the error line. This logic one

output from the comparator indicates there is an error, but it

does not indicate whether the error occurred in the arithmetic

operation or in the checking step. This block has a maximum

output delay of 2.5 ns and and area of 11.87 sq mils. Figure

3.15 shows the comparator block.

68

r c l r s l rc _ r s _

IL

x

erro r

error

Figure 3.15 Mod-3 comparator block

69

D. XODULO-15 LOW-COST RESIDUE CODE IMPLEMENTATION

A block diagram of the modulo-15 low-cost residue code

used to verify the ones' complement multiply-add module is

shown in Figure 3.16. The design of the checking algorithm is

very similar to that used in mod-3 and consists of seven

blocks: residue_gen-a, resgen-x, mod_15_mult, residuegeny,

mod-15_adder, residuegen-z and comparator block.

1. Residue_generator_a Block

The residue of the constant coefficient (a) is

generated from its 12 magnitude bits (a[11]...a[O]) by using

a modulo-15 low-cost residue code. The low-cost residue code

has a modulus of m = 2b - 1, where b = 4 for mod-15. As shown

in Figure 3.17, the 12 daLa bits to be encoded are divided

into three groups of four bits and successively added using

two, mod-15 adders to form the residue (ra_3, ra_2, ra_1,

ra_0). This block has a maximum output delay of 60.5 ns and

an area of 1666.56 sq mils.

2. Residuegeneratorz Block

The design of this block is similar to that of the

residue generatora block. As shown in Figure 3.18, the 12

magnitude bits (x[11].. .x[O]) are divided into three groups of

four bits and successively added using two, mod-15 adders to

form the residue (rx_3, rx_2, rx_l, rx_0). This block has a

maximum output delay of 60.5 ns and an area of 1666.56 sq

mils.

70

z

ao

Figure 3.16 Modulo-15 residue code implementation

71

o[[1 [81 o(7 .. c[4] ...

72

rx-.3 rx...2 rx..1 rx-S

Figure 3.18 Mod-15 residue generation of X[t]

73

3. Mod_15_multiplier Block

The residue of a * x is generated using the

mod_15_multiplier block. The residue of a (ra_3, ra_2, ral,

raO) and the residue of x (rx_3, rx_2, rxl, rx_0) are

multiplied in modulo-15 fashion to produce the residue of a*x

(ax_3, ax_2, axil, ax_0). The maximum output delay is 34.1 ns

and the area is 674.30 sq mils. Figure 3.19 and Table 3.2

show a diagram of a mod-15 multiplier and its truth table.

rx_,3 rx_2 rx -I r x_ I r o 3 r o_2 ra_ ! ra -S

mod-15
mul tipl ier

I I I I
ax_3 ax.2 ax_.1 aX.

Figure 3.19 Mod-15 residue generation of a * x

74

Table 3.2 Truth table for mod-15 multiplier

rz-3 z-_2 z-1 -o ra3ra2 a rao az3 ax_2 a axO
0- -00--- - ---
0 0 0 0 0 0 0 0' 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
o o 0 0 0 0 1 0! 0 0 0 0

0 0 0 0 1 1 1 0' 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0

o 0 o 1 0 0 0 0' 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1
o 0 0 1 0 0 1 0! 0 0 1 0

0 0 0 1 1 1 1 0' 1 1 1 0
0 0 0 1 1 1 1 1! 0 0 0 0

0 0 1 0 0 0 0 0' 0 0 0 0
0 0 1 0 0 0 0 11 0 0 1 0
0 0 1 0 0 0 1 0 I 0 1 0 0

0 0 1 0 1 1 1 0' 1 1 0 1
0 0 1 0 1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0' 0 0 0 0
1 1 1 0 0 0 0 1 1 1 1 0
1 1 1 0 0 0 1 0 1 1 0 1

1 1 1 0 1 1 1 0' 0 0 0 1

1 1 1 0 1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0: 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0

75

4. Residue_generator_y Block

The design of this block is similar to the design of

the mod-3 resgeny block, but the input stream (y[t]) must be

padded out to 28 bits to accommodate the use of mod-15 adders.

As shown in Figure 3.20, the 28 bits (y[27]...y[0]) are

divided into seven groups of four bits. These 28 bits are

then successively added using six, mod-15 adders to form the

residue (ry_3, ry_2, ry-l, ry_0). The maximum output delay is

90.5 ns and the area is 4962.72 sq mils.

y[27l .. VL41 y21 .,y261 ... yl 15] ,l 151 ... y121 ... y|O 187 1l .1 Ij Y 1 Y I

adder adder odder

adder o dder

ty-3 ry_2 fry-I ry-I

Figure 3.20 Mod-15 residue generation of y[t]

76

5. Rod_15_adder Block

The residue of a * x + y is generated using the

mod_15_adder block. As shown in Figure 3.21, the residue of

a * x (ax_3, ax_2, ax_1, ax_0) and the residue of y (ry_3,

ry_2, ry l, ryo) are added in mod-15 fashion to produce the

residue of a * x + y (rs_3, rs_2, rs-l, rs_0). The maximum

output delay of this block is 30.5 ns and the silicon area is

714.02 sq mils. Figure 3.21 and Table 3.3 show a diagram of

a mod-15 adder and its truth table.

ox_3 ox_2 ox1l .1x_ ry_3 ry_2 ry-I ryO

mod- 15
adder

r s_3 r.s_2 r s_1 r s-_0

Figure 3.21 Mod-15 residue generation of a * x + y

77

Table 3.3 Truth table for mod-15 adder

ax 3 az 2 axl1 azO ry_3 r 2 ry_l ryO ru_3 rs 2 rsl rsO

0 0 0 0 0 0 0 0' 0 0 0 0
o o 0 0 0 0 0 1 [0 0 0 1
o o 0 0 0 0 1 0! 0 0 1 0

0 0 0 0 1 1 1 0 ' 1 1 1 0
0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 0' 0 0 0 1
0 0 0 1 0 0 0 1' 0 0 1 0
0 0 0 1 0 0 1 0! 0 0 11

0 0 0 1 1 1 1 0' 0 0 0 0
0 0 0 1 1 1 1 1! 0 0 0 1

0 0 1 0 0 0 0 0' 0 0 1 0
0 0 1 0 0 0 0 1 0 0 1 1
0 0 1 0 0 0 1 o0 0 0 0 00 * 1 0 6 0 0 06

0 0 1 0 1 1 1 0 ' 0 0 0 1
0 0 1 0 1 1 1 1 0 0 1 0

1 1 1 0 0 0 0 0' 1 1 1 0
1 1 1 0 0 0 0 1' 0 0 0 0
1 1 1 0 0 0 1 0 0 0 0 1

1 1 1 0 1 1 1 0' 1 1 0 1
1 1 1 0 1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0' 0 0 0 0
1 1 1 1 0 0 0 1 0 0 0 1
1 1 1 1 0 0 1 0! 0 0 0 01 * 0 0 0 1

1 1 1 1 1 1 1 0' 1 1 1 0
1 1 1 1 1 1 1 1 0 0 0 0

78

6. Residue_generator_3 Block

The design of this block is similar to the design of

the residuegenerator yblock. The 28 bits (z[27] .. .z[0]) are

divided into seven groups of four bits. These 28 bits are

then successively added using six, mod-15 adders to form the

residue (rc3, rc2, rcd1 , rc0). This block has a maximum

output delay of 90.5 ns and an area of 4962.72 sq mils.

Figure 3.22 shows the residue generation of z(t].

el 2241 z1231 ... l2l| .. 6. 1'I 151 if j 11 ... zIS 171 ... Z141 . 11 1

mod-15 mod-15 n'od-15
odder odder odder

Figure 3.2mo-5rsdegnrton ofz1 t

odder adder

r¢_3 rc_2 rcl ec-0

Figure 3.22 Mod-I5 residue generation of z~t]

79

7. Comparator Block

The comparator block is used to compare the residue of

a * x + y (rs_3, rs 2, rs_l, rs_0) to the residue of z (rc_3,

rc_2, rcd 1 , rcO0) for errors. As shown in Figure 3.23, this

block uses four XOR gates to compare the residues and one,

four input OR gate to check the output of the XOR gates

(cmp_3, cmp_2, cmp l, cmp_0). If there are no errors, the

output of the OR gate (error) will be a logic zero. This

block has a maximum output delay of 2.7 ns and an area of

22.35 sq mils.

rc_-3 rs_3 rc._2 rs_2 rc_ rs-1 rc_ rs_0

I m tor l
r 0 cr G L 90 I t 0 ' 0 0

erro r

Figure 3.23 Mod-15 comparator block

so

E. SINULATION

GENESIL'S ability to perform simulation provides a process

by which outputs can be checked against a sequence of inputs

to verify that the design is logically correct. The design

can by simulated in a manual interactive mode or in an

automatic control mode. The manual mode requires that the

user specify each input by binding the input pins to a logic

zero or logic one, manually advance the clocking signals and

then verify each output individually.

The manual mode was used to test and simulate the designs

for this thesis. Various combinations of binary integers were

placed on the input signal buses, the system clock cycled and

the test results were observed on the output signal buses.

Figures 3.25 through 3.28 and Figures 3.29 through 3.32 show

a sample of simulation tests run for mod-3 and mod-15

implementations, respectively. As shown in Figure 3.33, a

stuck-at-zero fault was induced at Bit 0 in the one to sm

block to demonstrate the ability of the checking algorithm to

detect and error. Figures 3.34 through 3.37 and Figures 3.38

through 3.41 show a sample of simulation tests run for the

detected s-a-0 fault using the mod-3 and mod-15

implementations, respectively.

81

MULTIPLESIGS
x[12:0]
OblllO0llllOO0l
a[12:0]
ObOOllOOOOO0l0l
y[25:0]
ObIllllllllllllllO0lOOO0l01O
BACK
CYCLE
1
pi
) is of type module with 28 ports

) port 1 I TRUE to NC -H
) port 3 I FALSE to NC -L
) port 5 I a[12:0] to NC*13 - LLHHLLLLLLHLH
) port 7 CI phase b to NC - 0
) port 9 CI phase a to NC - 1
) port 11 0 z[25:0] to NC*26 - 1111.1011011001010111000100
) portl13O0rsO0 to NC -0
) port 15 I y[25:0] to NC*26 - HHHHHHHHHHHHHHHLLHLLLLHLHL
) port 17 I x[12:0] to NC*13 - HHHLLHHHHLLLH
) port 19 0 overflow to NC - i
) port 21l0rcl1 to NC -0
) port 23O0rsl1 to NC -0
) port 25O0error to NC-O0
) port 27O0rco0 to NC-O0

Figure 3.25 Simulation results of multiply-add module(mod-3)

82

BIND
MULTIPLESIGS
x[12:0]
OblO10011110110
a[12:O]
ObOO11011100101

y[25:0]
ObllO11001111010101110001010
BACK
CYCLE
1
pi
) is of type module with 28 ports
) port 1 I TRUE to NC - H
) port 3 I FALSE to NC - L
) port 5 I a[12:0] to NC*13 - LLHHLHHHLLHLH
) port 7 CI phase-b to NC - 0
) port 9 CI phase a to NC - 1
) port 11 0 z[25:0] (to NC*26 - 11000110111001011001111101
) port 13 Ors 0 to NC - 0
) port 15 I y[2 5 :0] to NC*26 - HHLHHLLHHHHLHLHLHHHLLLHLHL
) port 17 I x[12:0] to NC*13 - HLHLLHHHHLHHL
) port 19 0 overflow to NC - i
) port 21 O rc-l to NC - 1
) port 23 Ors1 to NC - 1
) port 25 O error to NC 0
) port 27 O rc0 to NC 0

Figure 3.26 Simulation results of multiply-add module(mod-3)

83

MULTIPLESIGS
x[12:0]
OblO0illOO0llll
a[12:0]
ObllO0lllO0il1l
y[25:0]
ObllllliilllO0l0llO0lilO0l0l
BACK
CYCLE
1
pi
) is of type module with 28 ports

)port 1 I TRUE to NC -H
) port 3 1 FALSE to NC -L
) port 5 I a[12:0] to NC*13 - HHLLHHHIJLHHLH
) port 7CI phase -b to NC-O0
) port 9CIlphase a to NC-i1
) port 11 0 z[25:6] to NC*26 - 000100110000111010110001l0
) portl13O0rsO- to NC-O0
) port 15 I y[25:0] Ito NC*26 - HHHHHHHHHHLLHLHHLLHHHLLHLH
) port 17 I x[12:0] to NC*13 - HLLHHHLLHHHH
) port 19 0 overflow to NC -i
) port 21l0rcl to' NC-i1
) port 23O0rsl1 to NC-i1
) port 25O0error to NC-0
) port 27O0rcO0 to NC-O0
BACK
EXITSIM
CONFIRM
SELECTOBJECT
UP
DOWN.

Figure 3.27 Simulation results of multiply-add module(mod-3)

84

MULTIPLESIGS
x[12:01
OblOl0lll0lll0l

a [12: 0]
ObOll0lO010l0ll
y[25:0]
Ob1lllllllllO0ll00llOOO0ll0l
BACK
CYCLE
1
p1
) is of type module with 28 ports

) port 1 I TRUE to NC -H
) port 3 I FALSE to NC -L
) port 5 I a[12:0] to NC*13 - LHHLHLLHLHLHH
) port 7CIlphase-b to NC-O0
) port 9CI phase a to NC- I
) port 11 0 z[25:OJ] to NC*26 - 11011110011100010101010111
) port130rsO to NC -0 1
) port 15 I y[2 5:0] to NC*26 - HHHffHHHHHHLLHHLLHHLLLLHHLH
) port 17 I x[12:0] to NC*13 - HLHLHHHLHHHLH
) port 19 0 overflow to NC - i
) port 21l0rcl- to NCO
) port 23O0rsl- to NC- 0
) port 25 0error to NC- 0
) port 27O0rcO0 to NCO

Figure 3.28 Simulation results of multiply-add iuodule(mod-3)

85

x [12: 0]
OblIlO0l 1110001
a[12:0]
0b0011000000101
y[27:0]
ObilllllllillllllllO0lOOO0l0l
BACK
CYCLE
1
pi

) is of type module with 36 ports
) port 1 1 TRUE to NC H
) port 3 I FALSE to NC -L
) port 5 1 a[12:0] to NC*13 - LLHHLLHH
) port 7CI phase -b to NC -0
) port 9CIlphase a to NC-i1
) port 11 0 z[27:6] to NC*28 - 111111101101100l11111000100
) port 13 I y[27:0] to NC*28 - HHHHHHHHHHHHHHHHH~I- ILLLLHLHLIM
) port 15 1 x[12:0] to NC*13 - HHHLLHHHHTLLLH
) port 17 0 overflow to NC - i
) portl19O0rcl1 to NC- 0
) port 21l0rc-2 to NC-i1
) port 23O0rc-3 to NC- I
) port 25O0rc-0 to NC- 0
) port 27O0rsO0 to NC- 0
) port 29O0rslI to NC -0
) port 31l0rs-2 to NC-i1
) port 33 0rs-3 to NC-i1
) port 35 0error to NC -0

Figure 3.29 Simulation results of multiply-add module (mod-15)

86

MULTIPLESIGS
x[12:0]
OblOlO0llll0llO
a[12:0]
ObOOll0lllO0l0l
y[27:0]
Obilll0llO0llll0l0l0lllOO0l0l
BACK
CYCLE
1
p1
) is of type module with 36 ports

) port 1 I TRUE to NC -H
) port 3 I FALSE to NC -L
) port 5 I a[12:0] to NC*13 - LLHHLHHHLLHLH
) port 7CIlphase-b to NC-O0
) port 9 CI phase -a to NC - 1
) port 11 0 z[27:6] to NC*28 -1110001l110010110011110
) port 13 I y[27:0] to NC*28 -HHHHLHHLTJHHHHLHLHLHHIILLLHLHL
) port 15 I x[12:0] to NC*13 -HLHLLHHHHLHHL
) port 17 0 overflow to NC - i
) port190rcl to NC-i 1
) port 21l0rc-2 to NC-O0
) port 23O0rc-3 to NC-O0
) port 25O0rcO0 to NC-O0
) port 27O0rsO0 to NC-O0
) port 29 0rsl1 to NC-i1
) port 31l0rs-2 to NC-O0
) port 33 0rs-3 to NC-O0
) port 35O0error to NC-O0

Figure 3.30 Simulation results of multiply-add module (mod-15)

87

BIND
MULTIPLESIGS
x[12:0]
OblOO1110001111
a[12:0]
0bl100111001101
y[2 7 :0]
Obllllllllllll0010110011100101
BACK
CYCLE
1
pi
) is of type module with 36 ports
) port 1 I TRUE to NC - H
) port 3 I FALSE to NC L
) port 5 I a[12:0] to NC*13 - HHLLHHHLLHHLH
) port 7 CI phase-b to NC - 0
) port 9 CI phase a to NC - 1
) port 11 0 z[27:0] to NC*28 - 0000010011000011101011000110
) port 13 I y[27:0] to NC*28 - HHHHHHHHHHHHLLHLHHLLHHHLLHLH
) port 15 I x[12:0] to NC*13 - HLLHIHLLLHHHH
) port 17 0 overflow to NC - i
) port 19 O rc1 'to NC - 1
) port 21 O rc 2 to NC - 0
) port 23 O rc_3 to NC - 0
) port 25 0 rc 0 to NC- 0
) port 27 O rs-0 to NC - 0
) port 29 0 rs-i to NC - I
) port 31 Ors 2 to NC - 0
) port 33 0 rs_3 to NC- 0
) port 35 O error to NC - 0
BACK
EXITSIM
CONFIRM
EXITGENESIL
CONFIRM

Figure 3.31 Simulation results of multiply-add module(mod-15)

88

BIND
MULTIPLE_SIGS
x[12:0]
Obl010111011101
a[12:0]
ObO110100101011
y[27:0]
ObllllllllllllOO11001100001101
BACK
CYCLE
1
pi
) is of type module with 36 ports
) port 1 I TRUE to NC- H
) port 3 I FALSE to NC- L
) port 5 I a[12:0] to NC*13 = LHHLHLLHLHLHH
) port 7 CI phase b to NC - 0
) port 9 CI phase a to NC - 1
) port 11 0 z[27:0] to NC*28 - iii011110011100010101010111
) port 13 I y[27:0] to NC*28 - HHHHHHHHHHHHLLHHLLHHLLLLHHLH
) port 15 I x[12:0]f to NC*13 - HLHLHHHLHHHLH
) port 17 0 overflow to NC - i
) port 19 0 rc_1 to NC - 0
) port 21 0 rc-2 to NC - 0
) port 23 0 rc3 to NC - 0
) port 25 0 rc_0 to NC - 0
) port 27 O rs_0 to NC - 0
) port 29 0 rs-l to NC - 0
) port 31 0 rs_2 to NC - 0
) port 33 0 rs_3 to NC - 0
) port 35 0 error to NC - 0

Figure 3.32 Simulation results of multiply-add moduler(mod-15)

89

- 0

QC- -

rigure 3.33 Residue code implementation with x(0] s-a-O fault

90

MULTIPLESIGS
x[12:0]
OblllO0llllOO0l
a [12:O0]
ObOO1lOOOOO0l0l
y[25:0]
OblllllllllllllllC01OOO0101O
BACK
CYCLE
1
pi

is of type module with 28 ports
) portI ITRUE to NC-H
) port 3I1FALSE to NC L
) port 5 1 a[12:0J to NC*13 - LLHHLLLLLLHLH
) port 7 CI phase b to NC -0
) port 9CIlphasea to NC-i1
) port 11 0 z[25:6] to NC*26 - 11LP~O11O1lOOO11111O11111.
) portl13O0rs-0 to NC -0
) port 15 1 y[25:0] to NC*26 - HHHHHHHHHHHHHHHHLLLL
) port 17 I x[12:0] to NC*13 - HHHLLHHHHLLLH
) port 19 0 overflow to NC - i
) port 21l0rclI to NCO
) port 23 0rs-l to NC -0
) port 25 0 error to NC - 1
) port 27O0rc-0 to NC-i1

Figuare 3.34 s-a-0 fault simulation (mod-3)

91

BIND
MULTIPLESIGS
x[12:0]
Obl010011110110
a[12:0]
ObOO11011100101
y[25:0]
Obli011001111010101110001010
BACK
CYCLE
1
pi
) is of type module with 28 ports
) port 1 I TRUE to NC - H
) port 3 I FALSE to NC - L
) port 5 I a[12:0] to NC*13 - LLHHLHHHLLHLH
) port 7 CI phase-b to NC - 0

) port 9 CI phasea to NC 1
) port 11 0 z[25:0) to NC*26 - 11000110111001011001111101
) port 13 O rs_0 to NC - 0
) port 15 I y[25:0] to NC*26 - HHLHHLLHHHHLHLHLHHHLLLHLHL
) port 17 I x[12:0] to NC*13 - HLHLLHHHHLHHL
) port 19 0 overflow to NC - i
) port 21 0 rc-l to NC - 1
) port 23 O rsl to NC - I
) port 25 O error to NC - 0
) port 27 O rc_0 to NC - 0

Vigazo 3,35 s-a-0 fault simulation (mod-3)

92

BIND
MULTIPLESIGS
x[12:0]
OblOO1110001111
a[12:0]
ObllOO111001101
y[25:0]
Obllllllllll0010110011100101
BACK
CYCLE
1
pi

is of type module with 28 ports
) port 1 I TRUE to NC- H
) port 3 I FALSE to NC- L
) port 5 I a[12:0] to NC*13 - HHLLHHHLLHHLH
) port 7 CI phase b to NC - 0
) port 9 CI phaseIa to NC - 1
) port 11 0 z[25:0] to NC*26 - 00010011010100000011111000
) port 13 O rs0 to NC - 0
) port 15 I y[2 5 :0] to NC*26 - HHHHHHHHHHLLHLHHLLHHHLLHLH
) port 17 I x[12:0] to NC*13 - HLLHHHLLLHHHH
) port 19 0 overflow to NC - i
) port 21 0 rc_1 to NC - 0
)port 23 0 rs l to NCc-1
)port 25 0 error to NC-i
) port 27 0 rc_0 to NC - 1

Figure 3.36 s-a-0 fault simulation (mod-3)

93

BIND
MULTIPLESIGS
x[12:0]
0b1010111011101
a[12:0]
ObO110100101011
y[25:0]
0b11111111110011001100001101
BACK
CYCLE
1
pi
) is of type module with 28 ports
) port 1 I TRUE to NC - H
) port 3 I FALSE to NC- L
) port 5 1 a[12:0] to NC*13 - LHHLHLLHLHLHH
) port 7 CI phase b to NC - 0
) port 9 CI phase a to NC - 1
) port 11 0 z[25:0] to NC*26 - 11011110011011100000101100

) port 13 O rs0 toi NC - 0
) port 15 I y[25:0] to NC*26 - HHHHHHHHHHLLHHLLHHLLLLHHLH
) port 17 I x[12:0] to NC*13 - HLHLHHHLHHHLH
) port 19 0 overflow to NC - i
) port 21 O rc-l to NC - 0
) port 23 0 rs_1 to NC - 0
) port 25 0 error to NC - I
) port 27 0 rc0 to NC- 1
BACK
EXIT SIM
CONFIRM
EXITGENESIL

Figure 3.37 s-a-0 fault simulation (mod-3)

94

BIND
MULTIPLESIGS
x[12:0]
ObIllO0llllOO0l
a[12:0]
ObOOllOOOOO0l0l
y[27:0]
OblllllllllllllllllOO1OOO0l0lO
BACK

CYCLE
1
pi
) is of type module with 36 ports

) port 1 1 TRUE to NC -H

) port 3 I FALSE to NC -L

) port 5 1 a[12:0] to NC*13 - LLHHLLLLLLHLH
) port 7CIlphase-b to NC-O0
) port 9 CI phase-a to NC - 1
) port 11 0 z[27:0] to NC*28 -l111111101101100011111011111
) port 13 1 y[27:0] to NC*28 - HHHHHHHHHHHHHHHHHLLHLLLLHLHL
) port 15 1 x[12:0] to NC*13 -HHHLLHHHHLLLH
) port 17 0 overflow to NC - i
) portl19 0rc-l to NC-O0
) port 21 0 rc_2 to NC - 0
) port 23O0rc-3 to NC-O0
)port 25 0 rc_0 to NC - 1
) port 27 0rsO0 to NC -0
) port 29 0rsl1 to NC- 0
) port 31l0rs-2 to NC-i1
) port 33 0rs-3 to NC-i1
) port 35 0error to NC-i1

Figure 3.38 s-a-O fault simulation (mod-15)

95

BIND
MULTIPLESIGS
x[12:0]
Obl0lO0llll0llO
a[12:0]
ObOO1l0lllO0l0l
y[27:0]
Ob1111O110011111O111000l0lO
BACK
CYCLE
1
pi
) is of type module with 36 ports
)port 1 1 TRUE to NC -H

) port 3 I FALSE to NC -L
) port 5 1 a[12:0] to NC*13 - LLHHLHHHLLHLM
) port 7CIlphase-b to NC-O0
) port 9CIlphase a to NC-i1
) port 11 0 z[27:0] to NC*28 - 111100011011100101100lllll0l
)port 13 I y[27:0] to NC*28 - HHHHLHHLLHHHHLHLHLHHHLLLHLHL
) port 15 1 x[12:0] to NC*13 - HLHLLHHHHLHHL
) port 17 0 overflow to NC - i
) port190rc-l to NC- I
) port 21i0rc2 to NC-O0
) port 23O0rc-3 to NC-O0
) port 25 0rcO to NC-O0
) port 27O0rsO0 to NC-O0
) port 29O0rsl1 to NC-i1
) port 31l0rs2 to NCO
) port 33O0rs-3 to NC-O0
) port 35o0error to NC-O0

Figure 3.39 s-a-O fault simulation (mod-15)

96

BIND
MULTIPLESIGS
x[12:0]

OblOO1110001111
a[12:0]
ObllOO111001101
y[27:0]
Obllllllllllll00101100111o010
BACK
CYCLE
1
pi
) is of type module with 36 ports
) port 1 I TRUE to NC - H
) port 3 I FALSE to NC - L
) port 5 I a[12:0] to NC*13 - HHLLHHHLLHHLH
) port 7 CI phase-b to NC - 0
) port 9 CI phase a to NC - 1
) port 11 0 z[27:0] to NC*28 - 0000010011000100000011111000
) port 13 I y[2 7 :0] to NC*28 - HHHHHHHHHHHHLLHLHHLLHHHLLHLH
) port 15 I x[12:0] to NC*13 - HLLHHHLLLHHHH
) port 17 0 overflow to NC - i
) port 19 0 rc_1 to NC - 0
) port 21 O rc_2 to NC- 1
) port 23 Orc 3 to NC- 1
) port 25 0 rc_0 to NC- 1
) port 27 O rs_0 to NC- 0
) port 29 Ors1 to NC- 1
) port 31 0 rs_2 to NC- 0
) port 33 O rs_3 to NC- 0
) port 35 O error to NC - I

Figure 3.40 s-a-0 fault simulation (mod-15)

97

BIND
MULTIPLESIGS
x[12:0]
OblIl 0111011101
a[12:0]
ObOll1lO0lO 10 11
y(27:0]
0b1111111111110011001100001101
BACK
CYCLE
1
pi
) A.s of type module with 36 ports

) port 1 I TRUE to NC -H
) port 3 I FALSE to NC -L
) port 5 1 a[12:0] to NC*13 - LHHLLH H
) port 7CIlphase b to NC -0
) port 9CIlphase-a to NC-i1
) port 11 0 z[27:5] to NC*28 - 1111011110011011100000101100
) port 13 I y[27:0] to NC*28 - !IHHHHHHHHHHHLLHHLLHHLLLLHHLH
) port 15 I x[12:0] to NC*13 - HLHLHHHLHHHLH
) port 17 0 overflow to NC - i
) portl19 0rc-l to NC -0
) port 21l0rc-2 to NC-i1
) port 23O0rc 3 to NC-O0
) port 15O0rC0 to NC -0
) port 27O0rso0 to NC -0
) port 29O0rsl1 to NC -0

) port 31 0 rs_2 to NC - 0
) port 33 0rs-3 to NC -0
) port 35O0error to NC-i
BACK
EXITSIM
CONFIRM
EXITGENESIL
CONFIRM

liqjure 3.41 s-a-O fault simulation (mod-15)

98

IV CONCLUSIONS

A. SUMMARY

The main goal of this thesis is to describe the need for

including design for testability in a VLSI chip design and to

provide information on implementing a DFT strategy using the

GENESIL Silicon Compiler. Specifically, this thesis describes

the implementation of residue code as a checking algorithm for

testing the multiply-add module of a notch filter.

The material in Chapter I provides background information

on testability issues, fault models and the Genesil Silicon

Compiler. Chapter II discusses design for testability, in

general, and describes two structured techniques: Scan Design

methods and Built-in Self Test approaches, including residue

code. Chapter III describes the basic design of a second-

order Infinite Impulse Response notch filter and includes a

complete functional description of the multiply-add module.

This chapter also describes the methodology used to implement

residue code with the GENESIL Silicon Compiler for testing the

multiply-add module.

The results of this thesis indicate that, in fact, a

residue code can successfully be implemented as a design for

testability strategy using GENESIL to test the multiply-add

module of a notch filter. However, there is a cost in terms

99

of increased hardware and decreased performance that

accompanies the checking algorithm. The modulo-3

implementation has a maximum output delay of 122.4 ns and a

silicon area of 92,376.90 sq mils which represents an increase

in area of 81,067.34 sq mils and a decrease in performance of

59.9 ns. The modulo-15 implementation has a maximum output

delay of 182.4 ns and a silicon area of 112,786.52
sq mils

which represents an increase in area of 101,476.96 sq mils and

a decrease in performance of 119.9 ns. The modulo-15

implementation is more costly due to the increased complexity

of the Programmable Logic Array Blocks used for the residue

generation.

B. RECOMMENDATIONS

The following are recommendations for further study:

1. Implement a residue code that provides single-error-

correcting capability.

2. Implement an inverse residue code which is a variant

of the residue code specifically designed for fault-

detection of repeated-use faults. Repeated use faults

are particularly difficult to detect because latter

effects of the fault can cancel the previous effects,

rendering the fault undetectable.

3. Implement a multiresidue code for multiple error

detection and correction.

100

LIST OF REFERENCES

1. Johnson, Barry W., Design and Analysis of Fault-Tolerant
Digital Systems, Addison-Wesley Publishing Company, 1989.

2. Tsui, Frank F., LSI/VLSI Testability Design, McGraw-Hill
Book Company, 1987.

3. Williams, Thomas W. and Parker, Kenneth P., "Design for
testability-a survey," Proc. IEEE, vol. 71, pp. 98-112
January 1983.

4. Stressing, John, "Fault simulation and test generation -
an overview," ComDuter-Aided Engineering Journal, vol. 6,
no. 3, pp. 92-98, June 1989.

5. Williams, Jacob A., "Fault modeling in VLSI," VLSI
Testing, T. W. Williams ed., pp. 1-27, Elsevier Science
Publishers B. V., 1986.

6. Mangir, Tulin Erdim, "Sources of failures and yield
improvement for VLSI and restructable interconnects for
RVLSI and WSI: Part I - Sources of failures and yield
improvements for VLSI," Proc. IEEE, Vol. 72, pp. 690-
708, June 1984.

7. Davidson, John Carl, "Implementation of a design for
testability strategy using Genesil Silicon Compiler,"
Master's Thesis, Naval Postgraduate School, Monterey,
California, 1989.

8. Pooler, Brian L., "A methodology for producing and
testing a Genesil Silicon Compiler designed VLSI chip
which incorporates design for testability," Master's
Thesis, Naval Postgraduate School, Monterey, California,
1990.

9. Wadsak, R. L., "Fault modeling and logic simulation of
CMOS and MOS integrated circuits," Bell Systems Technical
J, vol. 57, no. 5, pp. 1449-1475, May-June 1978.

10. Payne, D., "Silicon compilation in ASIC," Defense
C_ mting, vol. 1, no. 6, pp. 38-40, November-December
1988.

101

11. Genesil System. Vclume II. Parallel Data Module, Silicon

Compiler Systems Corporation, San Jose, California,
September 1988.

12. Funatsu, S., Wakatsuki, N., and Arima, T., "Test

generation systems in Japan," ProceedinQs of the 12th

Desian Automation Conference, pp. 114-122, June 1975.

13. Johannsen, D. and Sabo, D., "Genesil Silicon Compilation

and design for testability," 3rd International IEEE VLSI

Multilevel Interconnection Conference, pp. 372-380, 1986.

14. Stewart, o. H., "Future testing of large LSI circuit
cards," Diaest of Pa~ers of the 1977 Semiconductor Test

Sy=zsiui , pp. 6-17, October 1977.

15. McCluskey, E. J., "Built-in self-test techniques," IEEE
Design and Test, April 1985.

16. Rao, T. R. N., Error Codina for Arithmetic Processors,
Academic Press, Inc., 1974.

17. Avizienis, A., "Arithmetic error codes: Cost and
effectiveness studies for application in digital system
design," IEEE Transactions on Computers, vol. C-20, no.
11, pp. 1322-1331, November 1971.

18. Yeh, Raymond, T., Applied Comutation Theory: Analysis.
Desian. Modeling, Prentice-Hall, Inc., 1976.

19. Kung, Chih-fu, "A pipelined implementation of notch

filters using Genesil Silicon Compiler," Master's Thesis,

Naval Postgraduate School, Monterey, California, 1990.

20. Genesil System. Volume I. Blocks, Silicon Compiler Systems
Corporation, San Jose, California, September 1988.

21. Genesil System. Volume III. Parallel Data Module, Silicon
Compiler Systems Corporation, San Jose, California,
September 1988.

102

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-6145

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

4. Prof. Herschel H. Loomis Jr., Code EC/Lm 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

5. Prof. Chyan Yang, Code EC/Ya 3
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

6. Commander, Naval Research Laboratory 1
ATTN: Lt. Brian Kosinski, Code 9110-52
4555 Overlook Ave., S.W.
Washington, DC 20375

7.- Commander, Naval Research Laboratory 1
ATTN: LCDR D. Barnes, Code 9120
4555 Overlook Ave., S.W.
Washington, DC 20375

8. Commander, Naval Research Laboratory 1
ATTN: Dr. A. Ross, Code 9110-52
4555 Overlook Ave., S.W.
Washington, DC 20375

9. Commander, Operational Test and Evaluation Force 1
ATTN: LT John E. Lawson, Code 721 -

Norfolk, Virginia 23511-5225

103

10. Comander, Naval Research Laboratory
kTTN: LT Kirkc Harness, Code 9120
4555 Overlook Ave., S.W.
Washington, DC 20375

104

