
High-Level Synthesis of VLSI Circuits

Ping F. YEUNG

Doctor of Philosophy

University of Edinburgh

August 1992

(Graduation Date August 1992)

Acknowledgements

First to my supervisor, Dr. David Rees, for his support and advice which made

this work possible.

To Dr. Beth Benmainane, my industrial supervisor, for her patient and careful

review of this work.

To Dr. Alex Deas for arranging financial support from the United Kingdom Atomic

Energy Authority.

To the Silicon Architecture Research Initiative led by Prof. Peter Denyer for pro-

viding me with the initial inspiration.

To our dedicated computing officers whose hard work provides excellent facilities

and keeps the system running smoothly.

Finally, the most important, to my family who bring happiness and comfort during

this hard wcrking period.

Declaration

I declare that this dissertation was composed by myself and that all the work it

describes within is entirely my own except where indicated.

UNIVERSITY OF EDINBURGH

ABSTRACT OF THESIS
(Regulation 3.5.10)

Name of Candidate: Ping Fai YEUNG

Address:

Degree: 	Doctor of Philosophy

Title of Thesis: 	High-Level Synthesis of VLSI Circuits

No. of words in the main text of Thesis: 	75000

Following the widespread acceptance and application of logic synthesis, we are

on the way to establishing synthesis metholdologies which can handle higher lev-

els of abstraction. High-level synthesis is the focal point. It should be able to

take a behavioural description of the design, a set of constraints and goals, then

construct a structural implementation that performs the circuit function while

satisfying the constraints.

In order to ensure a smooth transformation and mapping of high-level descrip-

tion onto hardware, a new strategy for high-level synthesis. flexibility damping. is

introduced. It allows a large design space to be explored progressively and system-

atically. It facilitates the propagation of constraints and helps the introduction

of user-specified information. To carry out the strategy, two algorithms, resource

restricted scheduling and integrated concurrent mapping are developed. Resource

restricted scheduling handles complex comi rol structures and schedules operation

across basic blocks in order to utilise all the available resources. After the schedul-

ing has established the flexibility of the abstract elements. concurrent mapping is

performed to bind operations, storage, and communications onio functional units,

register files and buses concurrently. By considering all the resources at the same

time, this mapping process ensures an overall minimum cost of implementation.

PGS/ABST/88

Contents

1 A New Era 6

1.1 Introduction 6

1.2 Top-Down Design Paradigm6

1.2.1 	Levels 8

1.2.2 	Domains 9

1.3 Design 	Phases 11

1.3.1 	Architectural Design 11

1.3.2 	Structural Design12

1.3.3 	Logic Design 13

1.3.4 	Layout Design 14

1.4 Design Synthesis 15

1.4.1 	Structural Approach 16

1.4.2 	Functional Approach16

1.5 High-Level Synthesis 17

1.6 Summary 19

2 	Current State of Art 22

2.1 The Design Automation Assistant (DAA) 22

2.2 The System Architect's Workbench (SAW) 25

2.3 The Advanced Design AutoMation (ADAM)28

2.4 CATHEDRAL-TI 31

2.5 The Yorktown Silicon Compiler System (YSC) 34

2.6 A Study of Scheduling Algorithms 36

2.6.1 	User-defined approach 36

2.6.2 	Transformational approaches 36

1

2.6.3 	Constructive/ Iterative approaches37

2.6.4 Summary41

2.7 	Critical Summary42

3 	A Strategy for High-Level Synthesis 44
3.1 Introduction 44

3.2 The Tasks in High-Level Synthesis 47

3.3 Related Work Overview 48

3.4 Progressive Flexibility Damping53

3.5 Integrated Concurrent Mapping57

3.5.1 	High-Level Transformation 59

3.5.2 	Coarse Scheduling and Allocation60

3.5.3 	Fine Scheduling and Binding 61

4 	Compiling 62
4.1 Software Compiler vs Silicon Compiler 63

4.1.1 	Compilation Target 63

4.1.2 	Parallelism 63

4.1.3 	Common subexpressions 64

4.1.4 	Procedures 65

4.1.5 	Arrays and Memory Addressing67

4.2 Parsing 67

4.3 Variable Renaming 69
4.3.1 	Iteration statement71

4.3.2 	Conditional statement 71

4.3.3 	Procedure call 72

4.3.4 	Array References 73
4.4 Expression Regrouping74

4.4.1 	Minimum Execution Time Tree Generation 74

4.5 Expression Flattening 76

5 Design Representation 	 78

	

5.1 	Control-Data Flow Graph79

	

5.2 	Precedent and Successive Sets83

5.3 Simplification86

	

5.4 	Temporary Variables87

5.5 Local-Data Transformation90

5.5.1 	Global-Data Transformation 	93
5.6 Delay Representation of Functional Unit96

	

5.7 	State Overhead97

6 	Resources Restricted Scheduling 99
6.1 Introduction 99

6.2 Previous Work 100

6.3 Resource Restricted Scheduling 100
6.4 The Resource Vector 103

6.5 The Condition Vector 104

6.5.1 	Branch-Based Condition Vector105

6.5.2 	Propagated Condition Vector 107

6.6 Resource Condition Matrix 108

6.7 List 	Scheduling 109

6.8 Priority Functions 110

6.8.1 	Depth Function111

6.8.2 	Path Delay Function 113

6.8.3 	Resource Priority Function 113

6.9 Cycle Condition/ Resource Vector115

6.10 Execution Condition/ Resource 115
6.11 Scheduling 116
6.12 An Example118

6.13 Results 124

6.14 Observations 126

6.14.1 	Common Sub-Expression Elimination 126
6.15 Potential 128

6.15.1 	Dynamic Loop Unrolling128

6.16 Conclusion 129

7 Integrated Concurrent Mapping 	 130

	

7.1 	Introduction130

	

7.2 	Target Architectures: Related Research130

3

7.3 Adjustable Target Architecture 132

7.4 Storage and Communication Schemes 134

7.5 	Architectural Constraints 137

7.6 	The Lower Bounds 138

7.6.1 	Effect on communications 139

7.6.2 	Effect on Storage 140

7.7 Operations, Storage, and Communications 141

7.8 	Concurrent Scheduling 144

7.8.1 	Distribution Graph 145

7.8.2 Flexibility Damping and Shock Wave 148

7.8.3 	Anchoring 151

7.9 	Results 	152
7.9.1 	Differential Equation Example 152

7.9.2 	5th-Order Elliptic Filter 156

7.9.3 	Fast Discrete Cosine Transform 160

7.10 Conclusion 	 161

8 Conclusion 	 162
8.1 Continuous Development of HLS 163

8.2 	Synthesis Input Language 164

8.3 Synthesis Intermediate Format 165

8.4 Integration with Low-Level Synthesis 167

8.5 	System Level Synthesis 168

8.5.1 	SpecSyn: System Level Synthesis 168

8.5.2 MICON: System for Computer Design 168

8.5.3 USC: Unified System Construction 169

8.6 	Graphical User Interface 170

8.6.1 	Design Entry 	170

8.6.2 	Design Correlation 170

8.7 Conclusion 172

9 Appendix: Input Descriptions 	 173
9.1 Differential Equation Example . 	 173

9.2 An Example from [PARK86]
	

174

4

9.3 	Fifth-Order Elliptic Filter175

9.4 MC6502 Groupi Instruction176

9.5 Fast Discrete Cosine Transform177

10 Bibliography 	 179

5

Chapter 1

A New Era

1.1 Introduction

Increasing circuit complexity and time-to-market pressures are gradually forcing

designers to take on a whole new approach to projects. Attention has moved

towards top-down design methodology at the behavioural level. Instead of con-

centrating on the structure of a circuit, more effort is made to ensure the correct

behaviour of the system as a whole. It is estimated that by 1994, one fifth of the

design cycle will be devoted to architectural and behavioural level for 90% of all

designs implemented. In the coming decade, the focus of Electronic Design Au-

tomation (EDA) will shift from the chip design level to system level. This up-shift

of the design hierarchy is made possible by the growing acceptance of Hardware

Description Languages (HDLs) and the rapid development of the state-of-art de-

sign synthesis tools.

1.2 Top-Down Design Paradigm

In a bottom-up approach. the designer is more concerned with how the circuit is

to be constructed and is involved at the structural level throughout the design.

For this approach, verification at the structural level is required to determine the

correctness of a design. This means a complete gate-level modelling of the design.

In addition, as the focus is on the implementation instead of the behavioural as-

pects of the design, the complexity increases and manipulation becomes extremely

CHAPTER 1. A NEW ERA

difficult. As a result, costly errors are often left undetected until it is too late.

I Specification I

Architectural fr,
Design 	I

Behavioral 	 Behavioral L.L..J Behavioral
Domain 	 Design 	Iii I Simulation

Synthesis

Structural 	Schematic 	Structural L 	Structural Domain 	Capture 	Design Ii Simulation

Placement ri"i Routing

Physical
Domain

Physical

Figure 1.1: Top-Down Design, A New Era

The development of HDLs has smoothed the way to top-down design methodology,

and enables designers to describe their system at an abstract, behavioural level

rather than dealing with a detailed gate-level description. The aim of top-down

design is to carry a design from specification through behaviour to a structural

level, which can then be optimized for gates and finally physically realized, fig-

ure 1.1. Corresponding to figure 1.2, top-down design means to proceed from

the upper left-hand to the lower right-hand corner. Domains distinguish between

the different descriptions of a digital system, while levels define the hierarchical

refinement of it. The result of this two dimensional plane is the hierarchically

structured design space [z 1MM 86].

7

CHAPTER 1. A NEW ERA

Level Behavioural Domain Structural Domain Physical Domain

System Performance CPUs, memories, Physical partition of
Specification controllers, buses, etc chips, modules, cards,

boards, subsystems.
Algorithm Procedural behaviour, Data structures, Physical connectivity

manipulation of data procedural partitions, of partitions and
structures. and hardware modules. clusters

Register Concurrent operations, Functional units: Macro cells,
Transfer register transfers, ALUs, muxs, registers; floorplanuing.

state sequencing. and control units.
Logic Boolean equations, gates, flip-flop, and Cells, module plans.

finite state machines. latches.
Circuit Equations, Transistors, capacitors, Geometrical layout

transfer functions, resistors.
and timing.

Figure 1.2: Levels and domains of design representation in an HDL

1.2.1 Levels

The levels of representation:

. The System Level

This is the specification which includes the behaviour and the performance

requirements of the design. These requirements define the range of design

flexibility and are usually described in abstract statements. They include

cost, clock frequency, power dissipation, and production volume (affected

by the market size), sometimes they also include die size (controlled by

package size), implementation style, process technology, market (industrial,

military). etc.

The Algorithm L

This seeks to relateAset of system inputs to the desired outputs. Specification

at this level usually makes use of hardware description languages, many of

which are well developed and standardized. The behavioural specification

should be purely functional. There should be no implication of structural

information within the behavioural domain, but in fact, structural bias is

present in many popular design languages.

The Register Transfer Level

This deals with large blocks, such as memories, logic blocks, arithmetic logic

1.1

CHAPTER 1. A NEW ERA

units, together with the interconnections between them. At this level, vari-

ous aspects of parallelism are explored. Area-time trade-offs are investigated

to tailor the implementation towards the design specification.

The Logic Level

Blocks made up of the architectural units are constructed. Their function-

alities are specified in the finest detail with boolean logic. There are many

representations of these boolean functions; truth tables, logic equations, gate

netlist after mapping, etc.

. The Circuit Level

It is at this level within the overall hierarchy where the implementation is

bound to the target technology. Choices of underlying technology like CMOS

or ECL, circuit style, static or dynamic, clock methodologies, and the device

parameters are all important.

1.2.2 Domains

. The Behavioural Domain

This concerns the purely functional aspects of the design. Attention is con-

centrated on the behaviour of the design instead of on how it is to be imple-

mented. The description at each level relates the behaviour of the outputs

to the inputs. Besides the functionality of the design, there is also a set of

performance specifications such as cost, area and timing which have to be

satisfied.

The Structural Domain

This includes schematics, netlists where the primitives are modules and nets.

The functional representation is realized by hardware components. As shown

in figure 1.2, each level has its own basic elements; from CPUs, memories in

the system level to transistors, resistors in the circuit level.

The Physical Domain

In this domain, the design is to be realized in silicon. It relates closely to

the target technology. The main concern in this domain is with the layout

geometries; structure-to-geometry mapping of the hardware structures onto

CHAPTER 1. A NEW ERA

silicon. The process of transforming a design from the structural domain

to the final layout will involve partitioning, floorplanning, cell placement,

topology layout, and routing.

Figure 1.3 illustrates the generally accepted hierarchical levels, the abstraction

they represent, and the supporting Computer Aided Design (CAD) tools they

require.

Hierarchy Level 	Abstraction Supporting Tools
Algorithm 	space-time behaviour flowcharts, diagrams,

as instruction, timing high-level languages
and pin assignment
specifications

Architecture 	global organization of HDLs, floorplanning,
functional entities block diagrams,

areas and clock cycles
estimator

Register transfer binding of data flow synthesis, simulation,
to functional modules, verification, and
microinstructions test analysis programs;

programs for evaluating
resources utilizations

Functional modules primitive operations libraries,
and control methods module generators,

schematic entry,
test generation programs

Logic Boolean function of schematic entry,
gate circuits simulation, and

verification programs,
synthesis programs,
PLA tools

Circuit electrical properties RC extraction programs,
of transistor circuits timing verification.

electrical analysis
programs

Layout geometric constraints Layout editor/ compactor.,
netlist extractor, DRC,
floorplanning,
placement and routing

Figure 1.3: Hierarchy Levels, Abstractions, and Supporting CAE Tools [LEUN88].

10

CHAPTER 1. A NEW ERA

1.3 Design Phases

For the top-down methodology, the design process can be divided into several

design phases, figure 1.4. Namely:

Architectural (System Level) Design,

Structural (RTL) Design,

Logic Design, and

Layout Design.

With the top-down design approach, the design process starts at the highest level

of system definition, and the specifications are prescribed according to the user's

needs in terms of functional and performance requirements.

Level Behavioral Domain Structural DomainT Physical Domain

System
Architectural

Design 	
thesis Syn I 	 I Algorithm

Structural 	I
Design 	I

RTL

Logic

Logic I
Design I

Verification
Layout Design

Circuit

Figure 1.4: The Design Phases in Top-down Design Methodology

1.3.1 Architectural Design

This phase is the most creative and has the greatest impact on the design. Design

freedom is restricted only by the behaviour and the performance specifications

of the design. The design is a typical planning process. Important parameters

such as chip area, execution speed, and production cost can only be estimated.

Accurate information will not be available until the design has reached the final

stage. Therefore, techniques such as modelling, partitioning or simulation which

11

CHAPTER 1. A NEW ERA

can help to estimate these parameters, are particularly important.

Ideally, at the behavioural level design should be conducted on the basis that the

functional and timing behaviour are the most important. We should not worry

too much about the constraints imposed by the structural and physical domains.

The realization of this paradigm is for designers to:

- create a behavioural model from the specifications representing the sys-

tem architecture in terms of logical components and relationships. This

behavioural model solidifies the specification of the design and helps to iron

out functionality problems.

- evaluate the design to ensure that it conforms to the functional and perfor-

mance specifications.

1.3.2 Structural Design

After the specification of the design is determined, we can move to the structural

design phase. It is an iterative decomposition process which resolves the design

gradually to a finer model of behaviour and functionality. During the process,

physical models are selected or synthesized to implement the logical components.

Since design automation tools for this phase are still in the development stage,

schematic capture is the most commonly used CAD tool for the job. Although

inefficient in some cases, the designer has full control of tie design implemention.

As opposed to architectural design, structural design involves assigning struc-

tural models to each logical primitive to build up the schematic of the design.

As a result, lower level implementation details like the availability of functional

units or the performance of the models needs to be considered. After the structural

netlist has been laid down, simulation and performance analysis can he performed,

e.g. figure 1.5. For simulation, a mixed-level approach is often employed. This

is because the representation of the design is not homogeneous. Very often, de-

scriptions at different levels are involved; some implemented modules are in the

structural level while others are in the behavioural level. It is clear that there is

no straightforward top-down process. After modules are implemented, they are

analyzed and the performance information is fed back to the design process. This

12

CHAPTER 1. A NEW ERA

_
$$II

$

I

begin

count = 0;
for (i = 0; i < 7; ± = 	+ 1)

if (in[i] == 0)
count = count + 1;

zeros = count;

end

Figure 1.5: Mix-Level Design Simulation

facilitates the continuous transitions of design levels and domains. These transi-

tions provide important information which aid decision making, iterate to correct

design mistakes, and tailor the design to the aimed specifications.

1.3.3 Logic Design

Logic design involves transforming the structure modules into gate level imple-

mentation. The rapid development of logic synthesis tools has proved to be very

helpful at this phase. Logic synthesis is the process of translating a design from a

representation, such as FSM representations, boolean equations, and truth tables

into an optimal gate-level implementation. The advantages include:

- The ability to synthesize logic so that the speed and area constraints are

met.

- The ability to optimize logic for a chosen technology; helping to keep the

design independent of technology until the final stage.

13

CHAPTER 1. A NEW ERA

- Using a set of constraints, the synthesis process can be directed towards a

desired solution.

- Fully automatic and with the speed advantage, it allows a large design space

to be examined before the best suited solution is chosen.

In the past, the technology mapping process usually took up a lot of time and

effort. In addition to the different selection of gates available in different libraries,

the area, timing and power characteristics of each gate varies with the fabrication

technology. Determining gates which best meet the timing constraints while not

being expensive in terms of area is a very complex task. Logic synthesis overcomes

this problem with its speed advantage and its optimization tactics. Through

the technology mapping step, all the modules in the library will be taken into

consideration and their potential explored. Then, results for different technologies

can be compared, trade-offs among cost and performance can be made and the

most cost-effective design can be selected for the application.

1.3.4 Layout Design

This is a process of laying out the structural gate netlist of the design on silicon.

The basic aim is to optimize the design for area, speed and power consumption at

the physical level. After years of research, it is a well developed area. A lot of CAD

tools are available to aid the design process. Some of them such as module gen-

erators, layout synthesis tools can generate silicon layout directly from structural

descriptions. Automatic or interactive floorplanning followed by routing can then

be carried out to complete the design. Although most of the layout design steps

are mechanised, because accurate performance information can only be obtained

after a complete layout, iterations are unavoidable. It is this problem which fuels

the recent development of timing driven placement and routing tools. After the

design has been implemented on silicon, circuit extraction is performed to look

into the physical parameters of the final implementation. Back annotation and

simulation are performed and the result is compared with the behavioural simu-

lation to confirm the correctness of the design.

As already mentioned, the design process is a mixture of both top-down and

bottom-up approaches with probably a lot of local iterations. The top-down

14

CHAPTER 1. A NEW ERA

methodology will mainly dominate the behavioural and structural domains. That

is at the early stage of the design process before an implementation technology is

selected. However, once an implementation technology is fixed, a large number of

physical constraints will be generated. The design process will now be an upward

propagation of design constraints. Special efforts will be required to optimize the

design towards the implementation technology and thereby create the most cost

effective design.

Top-down design methodology has several major benefits. Since the design is at

the architectural/behavioural level, it is technology independent. Implementation

technology can be deferred until the final stage of the design process. The design

can be retargeted to a different technology to meet a particular market window or

market changes, With this migration path, users can upgrade their design from a

low volume programmable implementation to a semi-custom gate array technology

or vice versa. Top-down design, especially when combined with mixed-level sim-

ulation, allows the entire system to be simulated at any level of the design cycle.

This ensures the design implementation matches the specifications. Verification

can also be done in parallel with the design enabling problems to be discovered

before they are locked into silicon.

1.4 Design Synthesis

Between the gap of functional specification and the implementation, there is design

synthesis. Generally, the term synthesis implies some intelligent computer-aided

design tools which are capable of producing gate-level or mask-level

implementation of the VLSI circuits from some input description language. De-

sign synthesis is cost efficient and gives a quicker turn-round time [MCFA90]. Its

benefits can be summarized as:

Since manual design effort accounts for much of the cost of the chip,

automating some parts of the design process can lower the cost and shorten

the design cycle.

As most of the synthesis methods are based on correct-construction, there

will be fewer errors and the debugging time can be reduced significantly.

15

.CHAPTER 1. A NEW ERA

A good synthesis system can usually produce different designs to meet dif-

ferent trade-offs between cost, speed, power etc.

An automated system can self-document the design process and keep track

of the design decisions and compromises.

At present, there are two approaches to design synthesis.

1.4.1 Structural Approach

For the structural synthesis approach, the input description must specify the struc-

ture, the subcircuits and the interconnections of the design. It is not the responsi-

bility of the synthesizer to investigate alternative structures which have the same

functionality. High-level trade-off decisions are controlled directly by the user.

Implementations are generated in the most straight-forward manner. Since design

trade-offs by the tool are minimized, different strategies and results can be tried

out easily.

1.4.2 Functional Approach

For the functional synthesis approach, the input description usually contains no

predictable structural semantics. The important difference between the functional

and structural approaches lies in the area of resource allocation. This is a process

of assigning structural components to implement the design. In the structural

approach, resource allocation is performed explicitly by the designer, while in the

functional approach. decisions are made by the tool after experimenting with var-

ious alternatives. This advantage allows the designer to concentrate on the func-

tionality of the design instead of worrying about the implementation of it. The

synthesizer shifts a large portion of the work from the designer to the tool and

hence increases the productivity of the designer. However, because of the diversity

of the possible trade-offs, it is difficult to automate the trade-off selection process.

Some guidance on the desired trade-offs must be specified by the designer. Ideally,

the synthesizer would be able to identify the critical area of the design; iterate

automatically and keep on improving until the supplied performance criteria are

met or no more improvement is possible.

CHAPTER 1. A NEW ERA

Nevertheless, this design synthesis approach has shortened the loop of design iter-

ation dramatically. With accurate performance information, suitable alternatives

can be experienced before proceeding to lower stages.

1.5 High-Level Synthesis

The goal of high-level synthesis is to construct a circuit from a high-level descrip-

tion. With increasing popularity, logic or gate-level synthesis tools are construct-

ing and optimizing designs from boolean equations, truth tables or netlists. They

will be providing the essential bases for high-level synthesis. High-level synthesis,

on the other hand, is the main arm which will lead towards system level design

automation. Inside this environment, implementations will be generated automat-

ically from the algorithmic level of the behaviour domain. The entry is an abstract

functional description of the design. The synthesis task is to take the behavioural

description, a set of constraints and goals, then construct a structural implemen-

tation that performs the function while satisfying the constraints. The output of

high-level synthesis will be at the structural level referring to the components and

interconnections that make up the design.

To summarize, the input to the system consists of three parts:

The interface of the system with the external environment.

The input-output (functional) behaviour exhibited by the design.

The constraints and the desired performance or trade-offs involving

cost and time. e.g. area, delays etc.

The synthesis process can be represented using Gajski's Y-Chart, Figure 1.6. Ba-

sically, it is a process of translating a high-level description in the Behavioural

Domain to the Structural Domain. Then, through logic synthesis, placement and

routing, it reaches the Physical Domain. For most high level synthesis tools, it

goes from the algorithmic and register transfer representation to the structural

representation which consists of hardware modules, ALTJs, multiplexors, registers,

etc. Then, structural synthesizers or silicon compilers can be used to generate the

mask-level layout.

17

TER 1. A NEW ERA

Behaviour

Descript

Re

ctural

es

Figure 1.6: Gajski's Y-Chart representation of the synthesis process.

The major tasks in high level synthesis include:

Compilation.

The functional description is parsed and compiled into a graph-based repre-

sentation. For most systems, the internal representation contains both the

control and data flow information implied by the specification.

High-level transformations.

These include compiler-like optimizations such as dead code elimination,

constant propagation, common subexpression elimination, procedure un-

folding, loop unfolding and more importantly, hardware oriented transfor-

mations. They simplify the representation of the design and facilitate its

implementation in hardware.

114

.CHAPTER, 1. A NEW ERA

3. Data Path Synthesis.

The goal is to transform the data path design of the system into its corre-

sponding structural level. Trade-off decisions between the cost of implemen-

tation and the speed of the path have to be made. Due to the complexity of

this process, it is usually partitioned into the following steps:

Operation scheduling. The data flow graph is partitioned into spe-

cific control steps. The aim is to minimize the execution time or the

number of control steps needed to implement the design. Very often,

there are limitations on the hardware resources.

Hardware allocation. The aim is to minimize the amount of hard-

ware resources required to implement the design. It consists of allo-

cating functional units to execute the operations, storage elements to

store the values, and the communication paths to make up the inter-

connections.

Module binding. This decides how each component of the data path

is to be implemented. It includes taking components from a hardware

library or synthesizing special customized hardware by logic synthesis.

4. Control Synthesis.

The control hardware is to handle state transitions, control signal generation

and interpretation. It can be implemented using a hardwired structure, a

single PLA, multiple PLAs, counter-based PLAs, microprogram controller,

or even a mixture of all. Which style should be used depends solely on the

problem, and a careless selection may result in a. very inefficient layout area.

Finally, structural level tools like logic synthesizers and layout generators will be

used to complete the design.

1.6 Summary

In this chapter, we have introduced the top-down design paradigm, the design

space and the design process for general IC design. The design space is character-

ized by the five different levels and the behavioural, structural, physical domains,

19

CHAPTER 1. A NEW ERA

as shown in figure 1.2. They show the transition of a design from functional spec-

ification to the final geometrical layout. To drive the design transformation, there

is the design process. A clear step-by-step walk-through of the design process is

difficult. However, as shown in figure 1.4, it can be divided roughly into several

phases.

To transform a design from behaviour domain to physical domain, the most impor-

tant concept is design synthesis. It facilitates the top-down design process. With

high-level synthesis, design can be entered at an abstract level. The tools will be

able to perform design trade-offs to satisfy the design constraints. Designers no

longer need to worry about the implementation details of a design.

High-level synthesis is the focus of this thesis. After introducing some research

systems in Chapter 2, we will detail our synthesis strategy. The high-level synthe-

sis strategy is elaborated module by module. The organization of the chapters is

as follows:

- In Chapter 2, a group of high-level synthesis systems are presented. The

special features of each system are highlighted. The chapter concludes with

an investigation of the scheduling algorithms currently used for some high-

level synthesis systems.

- In Chapter 3, the weakness and limitations associated with the previous

systems are discussed. A new synthesis strategy, Flexibility Damping, is

presented.

- In Chapter 4, software compilers and silicon compilers are compared. Then

compilation is discussed. The two techniques, variable renaming and expres-

sion regrouping used in the front-end are discussed in detail.

- In Chapter 5, the design representation of our synthesis system is elabo-

rated. Using that internal representation, local and global transformations

are presented.

- In Chapter 6, the first scheduling algorithm in the flexibility damping strat-

egy is presented. Using a sophisticated representation, Resource Restricted

Scheduling can handle designs with complex control structures.

20

CHAPTER 1. A NEW ERA

- In Chapter 7, the second and more global scheduling algorithm in the flexibil-

ity damping strategy is presented. Concurrent Scheduling supports various

different architectures. As its name implies, it performs scheduling on oper-

ations, storage and communications at the same time. Resource allocation

and binding are also considered during the course of scheduling.

- In Chapter 8, elements which are important in the integration of a high-

level synthesis system are discussed, and the conclusions of the thesis are

presented.

21

Chapter 2

Current State of Art

In this chapter, we summarize the current state of development of high-level syn-

thesis by looking at some of the interesting design systems. They are:

 The Design Automation Assistant Carnegie-Mellon University

 The System Architect's Workbench Carnegie-Mellon University

 The Advanced Design AutoMation University of Southern California

 CATHEDRAL-Il ESPRIT projects 97 and 1058

 The Yorktown Silicon Compiler IBM, Yorktown Heights

Although all of these are high-level synthesis systems, each one has been designed

with different objectives in mind. These differences can be identified by:

- the application area, and
- target architecture, which leads to
- the techniques used to explore the design space, and
- the integration of scheduling and allocation

For the wide range of scheduling and allocation algorithms, there is a detailed

analysis at the end of the chapter.

2.1 The Design Automation Assistant (DAA)

The Design Automation Assistant (DAA) was developed at Carnegie-Mellon Uni-

versity [KowA85]. The work could be dated back to the late seventies when the

input description, Instruction Set Processor Specification (ISPS), was developed.

The aim of the system is to help designers to develop the algorithmic description

22

CHAPTER 2. CURRENT STATE OF ART

of the system and interactively add the details required to produce a finished de-

sign. The approach is aimed at aiding the designer by producing data paths and

ISPS Description

I 	ISPS Compiler 	I

Graphics 	I 	(Value Trace

I Design Style Selector I

Data & Memory
Allocator

Functional Module
Data Base

Logic Synthesis &
Module Selection

I 	Control Allocator I

Physical Module
Module Binder 	 Data Base

Layout Synthesis

Figure 2.1: The Design Automation Assistant.

control sequences that implement the algorithmic system description within the

supplied constraints.

The input to the system includes the ISPS [BARB81] specification of the hard-

ware to be designed, the user's optimization criteria, and a library describing the

components available to the design system. First the description is converted into

the important internal representation, a directed acyclic graph called the value

trace (VT) on which various processes can be performed, figure 2.1. They include

graphical display of the representation, analysis, transformation tc improve the

design, partition of the design, control step allocation, data-path allocation, etc.

DAA uses a two-pass expert system for data path synthesis. The first pass parti-

tions the design such that data and functions which can efficiently share the same

hardware would be within the same partition and the interconnections between the

23

CHAPTER 2. CURRENT STATE OF ART

partitions are minimized. Then it assigns components to each element in the data

flow graph. The second pass attempts to find a minimum cost implementation of

the design by merging components to form the actual structural implementation.

During these two passes, design decisions are made in a top-down manner through

a set of rules in the knowledge-based expert systems (KBESs). The KBESs are

built up by gathering rules from basic "book knowledge" about synthesis of ar-

chitectures, interviews with expert designers, improvements and corrections after

close examination of many examples. DAA is implemented as a production system

via the OPS5 KBES writing system. The system formulates problems by using

three major components:

The working memory, which consists of a collection of elements describing

the current situation.

The rule memory consists of a collection of rules and conditional statements,

that operate on elements stored in the working memory. These rules en-

able DAA to synthesize an acceptable design by determining, at each step,

whether a certain design extension is within constraints.

The rule interpreter which matches the working memory elements against

the rule memory, to decide what rules apply in a given situation. The process

is repeated until no more rules apply or it is stopped explicitly by a rule.

During the development. DAA has been used to design an IBM System/370, in 47

hours of CPU time on a VAX 11/780 with 6 Mb. of memory. If the backtracking

algorithms used in DAA are improved, the CPU time can be dramatically cut

down to 4 hours. A comment from the original IBM design team manager shows

that the DAA design has exhibited the quality of one of IBM's better designers.

The differences between the DAA and the IBM designs are summarized in fig-

ure 2.2.

Like many other design systems, DAA is designed to synthesize a microproces-

sor style architecture with buses. The most distinctive feature of it is the use of

an expert system. Therefore, as with human design, the system will continue to

grow as more rules are coded. When System/370 was synthesized, DAA used more

24

CHAPTER 2. CURRENT STATE OF ART

than 8500 rules. Since the rules encapsulate the knowledge of expert designers,

the system exhibited the behaviours and concerns of human design. Because of

this concern, floorplanning considerations are embedded in the rules.

D370 	 u370
Design 	 paper design 	 working chip

Objectives

ALUs

High performance,
technology sensitive
independent of power
and I/O pins

32-bit, 64-bit, and 68-
bit; Binary numbers;
hardware for virtual
memory, floating point,
and multiply

Strict observance of
technology criteria such
as number of wired cir-
cuits, power, and I/O pins.

8-bit and 24-bit;
Binary and packed-
decimal numbers; microcode
for virtual memory and
multiply

Buses 8-bit, 24-bit and 64-
bit; bidirectional
out, and bidirectional

Three 8-bit, a 16-bit,
two 24-bit; fan-in, fan-

Memories
	

12-byte buffer; single
	

8-byte buffer; single
ported
	

ported

Registers 	 Discrete
	

Memory array
Data from [KowA85]

Figure 2.2: Differences between the DAA 370(D370) and the IBM Sys-
tem/370(070).

An encouraging aspect is that connectivity and testability are used to trade-off

decisions very early in the design process. However, for some systematic optimiza-

tions, the performance is not as good as algorithmic approaches.

2.2 The System Architect's Workbench (SAW)

The System Architect's Workbench (SAW) [THOM 90] was also developed at Carnegie

Mellon University. Like DAA, the system to be implemented is described in the

25

CHAPTER 2. CURRENT STATE OF ART

ISPS Behavioral
Description Transformations

Interface - ---i.j 	CSTEP 	I 	I 	APARTY
Constraints 	I I Control Step Scheduling j 	Architectural

Partitioning

EMUCS
Data_Path_Synthesis

Bsser I Register Transfer

Bus Chooser __.,4 Components &
Control Step Schedule

SUGAR Scheduling
$ & Data Path Synthesis

SEESAW

Graphical
CORAL k 	Display

Linker I

Figure 2.3: The System Architect's Workbench (SAW)

ISPS language which is compiled into the value trace (VT). Two synthesis method-

ologies can then be applied:

1. the target architecture specific approach, SUGAR

which performs scheduling and data-path synthesis, is shown in the lower

portion of figure 2.3. SUGAR is tuned specifically to design microprocessor

style architectures and the knowledge involved is integrated into the pro-

gram. This knowledge includes information about trade-offs and the specific

techniques frequently found in commercial microprocessors. For instance, it

recognizes subsystems such as the instruction decode unit, condition code

logic, branch logic and has knowledge about bus structures commonly used

in custom-designed microprocessors. It performs the control schedule based

on the data path resources needed, instead of assigning the control steps

before data path allocation.

The synthesis process is divided into several phases. These are:

- behaviour transformation to remove description inefficiencies,

26

CHAPTER 2. CURRENT STATE OF ART

- control restructuring to allow fast decoding of instructions,

- compiler type flow analysis,

- bus structure selection,

- symbolic register allocation,

- micro-machine code selection,

- assigning control steps to register transfers,

- design improvement by cost/speed tradeoff, and

- replacing symbolic registers by physical registers.

2. the general data-path approach

which consists of behaviourial transformations, CSTEP - control step schedul-

ing, APARTY - architectural partitioning, EMUCS - data-path synthesis

and Busser - bus chooser. This approach is tunable on a per-design basis.

A table-driven or knowledge database approach is used where the values in

the tables or database, along with the information derived from analysis of

previous designs, are used to guide the decision making process. As a re-

sult, it is possible for it to synthesize different design styles. As shown in

figure 2.3, the implementation flow consists of:

behavioural and structural transformations on the VT,

CSTEP to assign operators in the VT to control steps using maximum

and minimum timing constraints.

EMUCS to complete the register-transfer level design,

Busser to choose the busses to interconnect the data path elements,

In addition, APARTY is there to provide top-down partitioning information

to each of the subtasks. This approach has been used to design interface

hardware, small microprocessors and real-time controller hardware.

The CORAL linker maintains the correlations between the initial ISPS descrip-

tion, the VT and the synthesized design, providing a correlated basis for user

interrogation, verification, and other applications. The SEESAW graphical dis-

play is used to present the various representations to the user and to highlight the

relationships between them.

27

CHAPTER 2. CURRENT STATE OF ART

Being specially tailored to deal with processor style design, SUGAR can recognise

most processor constructs, like instruction decoding logic, or branch logic. But

it is the knowledge about bus structure in processors that gives it the greatest

advantage. Both the target specific and the general approach have been used to

(a)

EABH

ACH

PcH

AUH

TMPH

AUL

x,Y,s,
TEMPL ()

ALU
>

A, TMP

DO

DI

EDB 	.. 11111111

(b)

Figure 2.4: Synthesis Result: a. General Approach, b. Specific Approach.

synthesize the M6502 processor. Figure 2.4 demonstrates the differences clearly.

And because of this specialisation, SUGAR can produce the design within 2 hours

CPU time on a DEC VAXstation II while the general approach takes significantly

longer. Compared with DAA, this algorithmic approach proceduces a more opti-

mal solution.

2.3 The Advanced Design AutoMation (ADAM)

This is currently under development in University of Southern California [GRAN 85].

ADAM accepts a behavioural description of a digital processor and generates a

register-transfer level design. It consists of two major subsystems:

CHAPTER 2. CURRENT STATE OF ART

Module Set Data Flow Graph gnlibra'DataFlowGraphDesgnCo:raini

I 	SLIMOS 	I
Module Selection 	 Lower-bound Ar-ea-Delay 	 Lower-bound Area-Delay

Tradeoff Curve for Tradeoff Curve for
Pipelined Designs Pipelined Designs

Sehwa 	 MAHA
Pipelined scheduling & 	Non-pipelined scheduling

Module allocation 	I 	I 	& module allocation

MABAL
Module, register &

mux binding

RTL Datapaths

Register and Multiplexer Area Predictor

PLEST PASTA
Wiring Area Predictor 	 PLA Control Area Predictor

Area-Delay

Figure 2.5: The Advanced Design AutoMation (ADAM)

I. the synthesis tools which construct the RTL designs, and

2. the prediction tools which guide the designer in exploring the design space

for a good design.

Three inputs are required by the system: a data flow graph representing the

behavioural specification, a design library, and a set of design constraints. If an

area constraint is given, then the performance is maximized within the area limits.

On the other hand, if a performance constraint is given, the area is minimized.

Synthesis Programs

The left hand side of figure 2.5 shows the high level synthesis programs in the

ADAM system. Starting from the data flow graph, SLIMOS is used to select

the suitable module styles from the library to implement the operations. After

that, either MAHA or Sehwa can be called to partition the data flow graph into

time steps. MAHA is a non-pipelined scheduling program. It generates schedules

with varying quantities of modules and delays, maximizes speed according to area

constraints, minimizes area according to time constraint, or provides a set of

feasible solutions. Sehwa performs functional pipelining scheduling. It also has the

capability to consider conditional branches and resynchronization due to resource

29

CHAPTER 2. CURRENT STATE OF ART

conflicts and data dependencies. After the data flow graph has been scheduled, the

MABEL program is used to perform functional unit allocation, register allocation,

operation/value binding and interconnection allocation. MABEL accepts partial

designs, allows intervention and performs module binding with the objective of

minimizing the total cost.

Prediction Tools

Starting with a data flow graph and a chosen set of modules, the prediction

tools can be used to generate area-delay trade-off curves. They can compute

the lower-bound clock cycle and the number of resources for both non-pipelined

and pipelined designs. For more accurate estimation, the register and multiplexor

predictor, the wiring area predictor, PLEST, and the PLA control area predictor,

PASTA, can be invoked to add more information to the lower-bound of the trade-

off curve. The area of register and multiplexors are estimated using the input

specification, the number of resources and the number of time steps. For wiring

area estimation, standard cell placement is assumed. PASTA uses the number of

time steps, information about loops and conditions, design style, and the number

of registers and multiplexors to predict the area of the controller.

The design data-structure of ADAM is divided into four subspaces:

the data flow behavioural subspace,

the structural subspace,

the physical subspace and

the timing and control subspace.

It provides a framework which can integrate a number of heuristic, algorithmic

and mathematical techniques for synthesis. A design planner[KNAP86] is also

available to aid the designer in interactively selecting synthesis and analysis tasks,

in determining which design technique to use and in setting up and monitoring

design constraints. Physical information on components is included as this can

aid selecting the correct component at the structural level.

Although most synthesis systems have estimation tools, they are usually embedded

inside the algorithms. ADAM is the first system which removes this barrier. With

30

CHAPTER 2. CURRENT STATE OF ART

these prediction tools, it provides a powerful interactive synthesis environment.

The benefits include the ability to reduce the design search space significantly, the

ability to locate the most promising design space, and performance estimations on

partial designs. On the other hand, in order to provide a more complete system,

prediction tools for memory and routabilty are also needed.

2.4 CATHEDRAL-II

SILAGE

Allocation
EXU, memory, bus

_______________ Data Path Compiler

Assignment

	

Pagmas 	 allocation

Untimed RT code

Evaluation

a 	

I Microcode optimisation
I 	Hierarchical Scheduler

EXU assignment
Loop folding

Area Time? — ra Time schedule

Register 	
Microcode LJiLJThcT

	

Datapath, 	 Controller
RAM synthesis 	 Synthesis

Figure 2.6: The CATHEDRAL-IT System.

This is a synthesis system specially for multiprocessor digital signal processing

systems [DEMA88]. The work is the part of ESPRIT projects 97 and 1058 which

involve IMEC, Philips, Siemens, Bell Telephone Manufacturing Company, Silvar-

Lisco and Ruhr University of Bochum. The compiler is designed to tie strongly

to the target application of a subset of digital signal processing(I)SP) algorithms

31

CHAPTER 2. CURRENT STATE OF ART

which is highly complex, block-oriented and in the audio- to near video-frequency

range. The nature of the algorithms could be architecturally realized by a set of

concurrent dedicated bit-parallel processors on a single chip.

The design methodology is called "meet-in-the-middle design strategy". The ap-

proach is highlighted by the following:

The strict separation between system and silicon design levels. The interface

is located at the system functional level where the silicon primitives, modules,

are data operators, data storage, controllers and I/O units.

The silicon modules are highly reusable and technology adaptable. Although

they are reusable, they are much more complex than usual standard cells.

Special expertise and powerful design environments are needed to realise

them.

They believe that an efficient translation to hardware can only be done if it takes

into account the properties of the target architecture and that a strong interaction

with the designer must be possible. Therefore, the input to CATHEDRAL-IT has

two separate parts:

. First, the applicative language, SILAGE, is used to describe the behaviour

of a signal processing algorithm. The language is designed specially for

describing complex DSP algorithms. The main idea is to capture the signal

flow graph of the algorithm which is impossible for conventional structurat

languages like Pascal.

The second part is compiler directives called pragmas. This allows designer

to make abstract decisions at a very high level b: giving structural hints to

the compiler.

The SILAGE description goes through a preprocessor. Besides performing similar

tasks common to a software compiler, it also inputs a set of user-defined allocation

and assignment pragmas. Then it comes to the task of generating the data path

and the controller for the processors.

1. Data path synthesis: the synthesizer, JACK-THE-MAPPER, translates be-

havioural primitives into architectural primitives. This includes assigning

32

CHAPTER 2. CURRENT STATE OF ART

primitive SILAGE operations to execution units, defining the bus structure

and assigning the variables to register files and memories. In order to be

flexible and expandable, it was implemented as a rule-based system. The

result is a data path structure and a register-transfer (RT) description of the

algorithm.

Scheduling/ Assignment: the graph-based scheduling tool, ATOMICS, is

used to schedule the RT operations to achieve minimum number of cy-

cles. ATOMICS is able to handle repetitive programs and input/output

constraints.

Register binding/bus merging: After the RT operations are bound to cycles,

the dimension of register files and the number of buses can be minimized by

life-time analysis and merging.

Communication hardware synthesis: to synthesize the interprocessor com-

munication hardware and the central controller by determining the commu-

nication protocol, the dimension of the buffer arrays and the timing of the

control signals.

After the structure and timing is defined, the Module Generator Environment can

be activated to create the final layout of the design.

As distinct from the others, CATHEDRAL-IT is designed solely for synthesizing

DSP applications. It uses an applicative input description and has a well-defined

target architecture. It is designed to implement a multiprocessor system with

regular interconnect and synchronous data-passing protocol. Instead of mapping

operations onto a large variety of functional units, the target library is relatively

small. It has less than ten different execution units (EXUs) but each of them

is specially designed and hence very efficient and compact. Providing relatively

little choice of functional units, hardware allocation and binding are done before

scheduling and cannot be automatically changed afterwards. In addition, instead

of using hardwired control logic, two-level microcode is adopted. To increase the

architecture freedom, CATHEDRAL-2nd was developed. It supports more flexibil-

ity in the composition of EXUs. Basic functional building blocks can be combined

into different EXU types to meet the application specific requirements. This has

33

CHAPTER 2. CURRENT STATE OF ART

A complete 801 microprocessor with a streamlined architecture and a 4-stage

pipeline has been synthesized in less than 4 hours on an IBM 3090. The perfor-

mance is the same as a hand design but with 26% more transistors.

2.6 A Study of Scheduling Algorithms

From the systems discussed above, scheduling which assigns computations to con-

trol steps is a very influential step in high-level synthesis. As it is also the major

topic of this thesis, we are going to have an in-depth study of various scheduling

algorithms. In order to help understanding the differences between them, we have

categorized them according to the approaches taken:

User-defined approach

Transformational approaches which include heuristic transforma-

tion, state splitting, simulated annealing and self-organising.

Constructive/ Iterative approaches which include as-soon-as-possible,

as-late-as-possible, list and force-directed scheduling.

2.6.1 User-defined approach

The simplest technique is to let the user do the scheduling. This is used in the

early Silc system. However, the combinational explosion reduces the usefulness of

this technique.

2.6.2 Transformational approaches

A transformational type of algorithm begins with a default schedule usually either

maximally serial or maximally parallel, and applies transformations to obtain other

schedules. Transformational algorithms differ in how they choose what transfor-

mations to apply.

Heuristic Transformation

One approach to scheduling by transformation is to use heuristics to guide the

process. Transformations are chosen that promise to move the design closer to

36

CHAPTER 2. CURRENT STATE OF ART

the given constraints or to optimize the objective. This approach is used in

YSC [BRAY86] and the CAMAD [PENG86] design system.

State Splitting

The Yorktown Silicon Compiler (YSC) [BRAY86] does allocation and scheduling

together. It begins with each operation being done on a separate functional unit

and all operations being done in the same control step. Additional control steps

are added for loop boundaries, and as required to avoid conflicts over register and

memory usage. If there is too much hardware or there are too many operations

chained together in the same control step, more control steps are added and the

datapath structure is again optimized. This is repeated until the hardware and

time constraints are met.

Simulated annealing

In [DEVA89], a hill climbing mechanism is incorporated using an algorithm based

on simulated annealing. A complex cost function is used and the problem is

modelled as a placement problem, an area where simulated annealing has been

very successful. It combines scheduling and allocation, with the cost function

being a linear combination of estimated area and schedule time length.

Self organising

The methodology is presented in [HEMA90]. It is inherently parallel in nature,

has a hill climbing mechanism and has a built in cost weighting mechanism which

allows it to do trade-offs in function unit, register and interconnect requirements

based on the hardware cost. It treats the schedule space as a continuous space and

all operations influence assignment of an operation to a position in the schedule

space. It also evaluates several solutions many of them worse than the previous

before settling for a near minimal solution.

2.6.3 Constructive/ Iterative approaches

This approach builds up a schedule by adding operations one at a time until all

the operations have been scheduled. They differ in how the next operation to be

37

CHAPTER 2. CURRENT STATE OF ART

scheduled is chosen and how they determine where to schedule each operation.

As-soon-as-possible (ASAP)

The simplest automatic technique is known as As Soon As Possible (ASAP)

scheduling. It assumes that the number of functional units has already been spec-

ified. This approach was used in CATREE, the Facet-Emerald [TsEN86] systems

in the early Design Automation Assistant and also in other systems.

ASAP with restrictions

If the amount of hardware is restricted, the operations are conditionally post-

poned when there is a resource conflict. This approach was used in the MI-

MOLA [MARw86], and the Flamel [TR1c87] systems. MIMOLA starts from gen-

erating a maximum parallel schedule (ASAP) by analyzing the data dependency

among the operations. The model global module allocation problem is modelled

as an integer programming problem. The system is capable of handling complex

multi-function modules and the clock time is determined by the maximum prop-

agation delay path.

The major limitation of these systems is their inability to explore the design

space. The only way a new design can be generated is by modifying the input

program or the schedule. Further, it is often the case that more critical opera-

tions are blocked by less critical ones, resulting in longer than necessary schedules.

In CADDY [CAM P89A], the datapath is built first, assuming maximal parallelism.

This is then optimised. locally and globally, guided by both area constraints and

timing. The operations are then scheduled, subject to the constraints imposed by

the datapath.

As-late-as-possible (ALAP)

An ALAP scheduling algorithm has been reported in [JAIN91]. To perform schedul-

ing, it takes a data-flow graph, a clock cycle and a set of resources as inputs. The

heuristic is based on a combination of ASAP scheduling and list scheduling. The

CHAPTER 2. CURRENT STATE OF ART

algorithm uses the ASAP and ALAP scheduling value of an operation to determine

the priority of it.

List scheduling

In list scheduling, the operations that are ready to be scheduled into the current

control step are sorted according to a priority function. Then each operation on

the list is placed if it is within the resource constraints, otherwise it is deferred into

the next step. When no more operations can be scheduled, the algorithm moves

to the next step. Again, available operations are found, sorted and the process is

repeated. The priority function varies across the systems using this technique.

Path length to block end, BUD [M0FA86]

Path length to nearest constraints, urgency, Elf [GIR085]

Mobility, Slicer [PANG87B]

On the other hand, functional unit allocation can be done first, followed by schedul-

ing. In the BUD system, operations are first partitioned into clusters, using a

metric that takes into account potential functional unit sharing, interconnect, and

parallelism.

For stepwise refinement, the approach is to iterate the whole process, first choosing

a resource limit, then scheduling, then changing the limit based on the results of

the scheduling, rescheduling and so on until a satisfactory design has been found.

This is done under user control in the MIMOLA system and under the guidance

of an expert system in Chippe [BREw87].

Critical path first, freedom/ mobility

In this type of scheduling, the range of possible control step assignments for each

operation is calculated. The operations on the critical path are scheduled first.

Then, at each step, the unscheduled operation with the least freedom is consid-

ered. Therefore, operations that are more critical are taken care of first, before

they are blocked.

39

CHAPTER 2. CURRENT STATE OF ART

MAHA [PARK86] accepts a data-flow graph and a module set. It schedules oper-

ations, allocates and binds resources simultaneously by first considering the op-

erations in the critical path and then other operations. The system allocates

operations to functional units as it schedules, adding functional units only when

it cannot share existing ones. By taking into account the area of each functional

unit, it minimizes the total functional area of a design.

Force directed scheduling

Force directed scheduling used in the HAL [PAuL87] system has received a lot

of attention. It tries to overcome the problem of locally minimum solutions by

taking into account more global effects of assigning an operation to a control step.

It performs scheduling within a time-constraint so as to balance the number of

functional units required in each control step. As a result, it minimizes the number

of operators.

Force-directed scheduling (FDS) takes in a data-flow graph, module delays, a

clock cycle and performance constraints. It tries to minimize the number of re-

sources of each type subject to the performance constraints. Before performing

scheduling, "force" values are calculated for all operations at all feasible control

steps. At each iteration, an operation is assigned to a control step which causes

the least increase in overall concurrency of operation, storage and interconnect

requirement, weighted in proportion to their hardware cost. A force-directed list

scheduling (FDLS) [PAuL89] is also proposed. It employs "force" values to de-

termine the priority of the operations. The aim is to maximize the performace

while keeping the resources under constraint.

HAL first generates an initial schedule, then it selects, using an expert system, a

set of multi-function ALUs, and finally produces the refined schedule. However,

once an operation has been assigned to a control step, its assignment is not recon-

sidered, there is no hill climbing mechanism.

The global analysis approach of FDS was extended in [cLou90] to combine schedul-

ing, allocation, and mapping of operations in a single algorithm, called SAM. It

40

CHAPTER 2. CURRENT STATE OF ART

is able to schedule the operations in the data flow graph to control steps, allocate

the necessary hardware, and map the operations onto specific functional instances.

During each cycle, all scheduling, allocation, and mapping options are considered.

Then a single operation is selected to be scheduled and mapped, and hardware is

allocated if needed. The approach is achieved by adding extra terms into the force

equation to take care of the compatibility of operations to individual instances.

When calculating the forces, all possible mappings of operations to instances are

considered.

2.6.4 Summary
According to [McFA90], scheduling algorithms can be distinguished in two dimen-
sions:

Algorithms Independent Interdependent Combined
Scheduling and scheduling datapath stepwise simultane-
Allocation first first refinement ously

Transformational:
Heuristic transformation CAMAD
State Splitting YsC
Simulated annealing [DEvA89]
Self-organising [HEMA90]

Iterative/ Constructive:
As-soon-as-possible Facet CMUDA
ASAP with restrictions MIMOLA

Flamel
CADDY

As-late-as-possible [JAIN91]
List scheduling BUD DAA

urgency Elf
mobility/freedom Slicer Chippe

Critical path first. MAHA
Force direct scheduling FDSFDLS HAL SAM

the type of scheduling algorithm used, and

the interaction between scheduling and operator and/or datapath allocation.

41

CHAPTER 2. CURRENT STATE OF ART

2.7 Critical Summary

It should be emphasized that high-level synthesis is not a streamlined process. No

matter how good the estimation tools are, the final performance of the implemen-

tation is difficult to predict. However, in most of these systems, design trade-offs

are made early in the design process, where only incomplete information is avail-

able to support the decisions. As a result, the success of the design relies heavily

on the prediction ability of the system and the allocation process which determines

the hardware requirement of the design.

To ease this problem, some of the systems impose restricted design models or

a restricted application area. They enforce a simple target architecture and hence

this simplifies the algorithms and allows a clear strategy for meeting the design

goals. For example, YSC is tied closely to logic synthesis, DAA is tuned towards

microprocessor designs, and Cathedral-IT is specialized for DSP applications.

Although some of the systems described take into account constraints like cost

and speed, they are usually calculated by summing the module area of the func-

tional units and their delay in the critical path. It is true that for most of them,

the approach is to minimise the number or the area of functional units. HAL tries

to minimse the count of each functional type while MAHA tries to minimze the to-

tal functional area. However, the area and delay overheads resulting from routing,

steering logic, memory, etc are neglected. The study in [i<ucu90] has emphasized

that if the area of the functional unit modules are comparable with area of steering

logic modules, the capability to trade between multiplexors and tristate drivers

and between the interconnection and functional units will be important. Although

seldom will it be true for arithmetic operations, this means that efficient designs

may not always have optimal functional unit allocation. In addition, except DAA

which has rules to consider floorplanning, early consideration of this is absent from

most of the others. However, floorplanning is one of the most important criteria

for judging the quality of a design. With the feedback from the physical subspace,

future developments of ADAM will include this ability.

42

CHAPTER 2. CURRENT STATE OF ART

From another aspect, most of the systems mentioned use global registers to store

the intermediate values. Though this is necessary most of the time and results

in better utilization of registers, it can easily cause transmission congestion. To

perform an operation on a functional unit, transfers of input values from global

registers to the unit before the operation starts, and a transfer afterwards will

be required. Local storage in the functional units could be a better alternative

in some cases. CATHEDRAL-11 explores this alternative with input register files

designed in the library modules. However, it fails to consider the trade-off between

global and local register storage.

43

Chapter 3

A Strategy for High-Level Synthesis

3.1 Introduction

High-level synthesis (HLS) is a process taking an input specification of a system, a

set of constraints and goals, then finding a structure that implements the behaviour

while satisfying the goals and constraints [MCFA90] . The input is at the algo-

rithm level while the output will be at the structural level, usually called register-

transfer level (RTL). The high-level synthesis process maps the control/data-flow

graph which represents the behaviour to the schedule and structural graph which

denotes the hardware [cAMP89C]. This implies the mapping of operational com-

putations, intermediate data values, input/output parameters, description control

constructs etc. onto hardware functional units, registers, memory units, buses,

steering logic, sequential control units, etc. This can be signified as a "mapping"

process from algorithm description to register transfer architecture. During the

process, constructs in hardware description are attached to abstract hardwares

which, in turn, are assigned to hardware structures, figure 3.1.

At the same time, high-level synthesis is a very creative process. Although in some

cases, a fully automatic process may be able to deliver an optimal result, there are

enough reasons to expect a compromised process. A designer's expert knowledge

of the design is too valuable to be ignored. An approach in which the designer

can influence and control the process is very beneficial. However, for many sys-

tems, if the designer wants to control the outcome of the synthesis process, he is

44

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

forced to make absolute decisions on the structural implementation of the design.

This has a potentially negative effect because at the high-level, there is little in-

formation on the performance trade-offs to support these decisions. In addition,

they will heavily bias the system to support the constraints introduced. Inferior

implementations may result. A fine-tunable decision making process is necessary

to support interactive design influence without introducing negative impacts on

the design space.

High-level synthesis has been described as a fast but impractical approach for

top-down design [cARL91]. Also, there is always a stage in the synthesis process

where the available information is no longer sufficient to make sound decisions.

To counter this shortfall, the more lower level information is considered, the more

realistic will be the result. Recent research has shown interest in an approach with

scheduling and floorplanning [wENG91].

The problem is the explosion of lower level information which does not have imme-

diate significance. We do not want to be overwhelmed and its presence also makes

the synthesis problem more complex. But more fundamental is that low-level in-

formation cannot be derived before the high-level structures are determined. A

framework to coordinate the generation and influx of information is necessary. It

should enable low-level details to be derived a step ahead of the synthesis process.

They can then be annotated back into the framework to assist the decision making

process.

Another difficulty lies in the fact that a particular design at the algorithm level

can correspond to a large number of potential implementations at the lower lev-

els. As a design proceeds to descend the hierarchy of design representation, from

abstract to structural levels, the space of design alternatives grows. These are the

design alternatives which high-level synthesis has to explore in order to find one

or a number of satisfactory solutions. Hence, it is useful to recognize the align-

ments between different design representation levels so that abstract objects can

be projected consistently from the algorithm level to the register transfer level.

The alignments are recognized as in figure 3.1. Through allocation and binding,

45

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

Algorithm Level Register Transfer Level
Design Space Mapping Design Space

Operation Commapping putations ypes
 Functional

: (
Data Values 	

-}-{-ø'.-Elements

Memory

-)-+-Modules

::) ::8

high-level synthesis has to find an instance in the resource-time design space to

implement the high level construct at the register-transfer level. This mapping

process can roughly, though not exclusively, be classified into three sub-processes:

Operation subspace mapping,

Storage subspace mapping and

Communication subspace mapping.

In doing so, we place equal importance on the mapping of storage elements and

communications as on operation mapping. The three subspaces in the algorithm

level can naturally be aligned to the ones in the register transfer level.

computations '= 	functional modules
data values memories, registers

dependencies buses, steering logic

This correspondence allows hardware alternatives to be explored efficiently. Basi-

cally, the aim of the mapping process is to choose an available module in the pool

of resources and an execution time space on the time axis for the implementation

of each software construct so that an optimal design can be produced, figure 3.2.

The problem which hinders this objective is the inter-relationship between these

three subspace mapping processes.

46

Functional
Unit Types

Memory
Elements

Computations

Data Values

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

ri Level
Space 	Mapping

Register Transfer Level
Design Space

77
- Functional

Modules

Memories,

Registers/'nstance
Connection Buses, Mux.s

Elements 	 Drivers

Figure 3.2: The Problem of High-Level Synthesis.

In order to understand these inter-relationship, we need to understand the major

tasks and as also their interdependence in high-level synthesis. In the next section,

we look at the tasks in high-level synthesis.

3.2 The Tasks in High-Level Synthesis

High-level synthesis consists of a number of major tasks, namely high-level trans-

formations, allocation, scheduling and binding. Each has different significance in

each mapping process.

1. High-level transformations - These include compiler-like optimizations such

as dead code elimination, constant propagation, common subexpression elim-

ination, procedure substitution, loop unfolding and other hardware oriented

transformations.

47

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

Allocation - The aim is to minimize the amount of hardware resources

needed. It consists of allocating functional unit types to execute the op-

erations, or memory elements to store the values, or connection elements

needed to make up the connections.

Scheduling - In this task, computational operations, storage elements and

communications are assigned to control steps. The aim is to minimize the

execution time or the number of control steps needed to implement the

algorithmic description. Very often, there are limitations on the hardware

resources.

Binding - This decides how each allocated element is to be implemented.

Within the three mapping processes, there are binding operations to hard-

ware modules, memory elements to register files, and instantiation of buses,

multiplexors and drivers for interconnections. It also includes selection

of components from hardware libraries, generating or synthesizing custom

hardware.

Due to the interdependent nature of these tasks, it is not necessary that they are

executed in any particular order. Actually, in some high-level synthesis systems,

this is an iterative process guided by either the human designer or an expert

system, while in some others, these tasks are interleaved. We will discuss this in

depth in later sections. However, the aims remain the same

to explore the design space,

to find a satisfactory instance to realize the abstract construct, and

to optimize the overall design.

An instance is a point in the RTL design space which has well defined time and

resource parameters.

3.3 Related Work Overview

Traditionally, mapping of operations, storage elements and communications are

performed independently. In Facet [TsEN86], FDS [PAuL89], and some others,

allocation, scheduling and binding of operations are performed first, followed by

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

KesourceAllocation 	ALAF' 	 Binding 	
LOmmufllcaUOn

Constraints 	 Scheduling Scheduling 	 Mapping

Operation to Funational Unit Mapping

Figure 3.3: Step-by-step Approach.

storage and communication mapping. Figure 3.3 depicts such a step-by-step ap-

proach. As shown, each task is executed independently. Each one of them is

designed to explore a dedicated portion of the design space. After each execution,

based on the results obtained, decisions are made to cut down that portion of the

design space. In figure 3.3, allocation explores the area space and by assigning

functional unit types to operations, it reduces the resultant choice of modules.

ASAP and ALAP scheduling define the mobility of the operations. Then, balance

scheduling is used to explore the mobility of the operations in order to balance the

distribution of the operations. It minimizes the number of functional units with

respect to cycle constraints. The outcome is that each operation is assigned to a

time period (a cycle or a conservative number of cycles). Although this step-by-

step approach is very efficient in cutting down the design space, it has significant

drawbacks. The strong interdependence and interactions between the three tasks,

allocation, scheduling and binding are ignored. Sub-optimal results are obtained

in each step and poor exploration of the design space results.

Because of this disadvantage, algorithms like [DEvA89] and SAM [cLou90] perform

49

	

kesource 	ALA? 	Uornomea scneuuling, Allocation aria tilnaing Communication

	

Constraints 	Scheduling 	 Mapping

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

Operation to Funational Unit Mapping

Figure 3.4: Combining scheduling, allocation, and binding.

operations to functional unit mapping in one algorithm, as depicted in figure 3.4.

They are designed to schedule operations to control steps, allocate the necessary

resources, and bind the operations onto the functional units, figure 3.5. During

each cycle, all scheduling, allocation, and mapping options are considered. Then,

an operation is selected to be scheduled and mapped, and hardware is allocated

if needed. Although, this approach is efficient for operation mapping, it takes rel-

atively little consideration of the resultant storage and interconnection efficiency.

In SAM, storage mapping is ignored. Communication mapping is considered only

through connection compatibility between operations and instances. As depicted

in figure 3.4, after operation mapping, there is little flexibility left for storage and

communication optimizations. As a result, an optimal operation mapping may

require an unacceptable storage and interconnection overhead to be realized.

An alternative method[BALA89] uses an iterative synthesis approach where oper-

ation, storage and communication mapping are carried out sequentially in a loop.

ASAP, ALAP and double headed scheduling are used. Higher priority is given to

the operations closer to the critical path. The criterion is to minimize the cost of

50

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

SAM

Storage Operation Communication

Allocation Allocation Allocation

Scheduling Scheduling Scheduling

Binding Binding Binding

simultaneous
scheduling

Figure 3.5: Operation, Storage and Communication Mapping.

interconnection. Although it is able to perform the mapping processes iteratively,

it still suffers from the drawback we have mentioned before i.e. having sub-optimal

results in each step. The iterative process only minimizes the impact of it. Fi-

nally, in recent research, [GEB091] uses simultaneous scheduling to perform all

three processes together, figure 3.5. However, it is restricted to DSP style designs

with relatively simple functional unit types.

For most of the above approaches, the goal of a task is to explore the design

space; then, based on the information obtained, decisions are made. Once the

corresponding decisions have been made, the explored design space is cancelled

without considering the oncoming tasks. The main problem is that the correct-

ness/efficiency of those decisions will not be known until the synthesis process is

approaching the final implementation. Hence, the hidden deficiency: if the deci-

sion is found to be unsatisfactory, there will be no easy way out. These decisions

not only have to be satisfactory by themselves but they must integrate well with

each other. Although cutting down the design space is neces:ary, the decision

which on which it is based is not always sound.

Referring back to the step-by-step approach, the restriction of the design space

by ASAP and ALAP scheduling is necessary because scheduling to the prohibited

cycles will violate the control or the data dependence. However, it is only sound if

the fastest resource type allocation is assumed. Otherwise, it causes overkill and

no matter how efficient the following tasks are, the access to some of the potential

51

CHAPTER. 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

design space is prohibited.

Ideally, we would like to perform the mapping of operations, storage and com-

munications concurrently, as shown in figure 3.5. This formulates a truly global

optimization process. However, it would be impossible to cope with the explosion

of design space. Some researchers have suggested:

partial interactive; leaving the responsibility to the designer,

re-running with different performance criteria to affect the decisions,

backtracking to points where a poor decision was made,

ripping up part of the structure to redesign it [KNAP88],

using expert systems to help the decision making process [KowA85],

abstracting and propagating the physical constraints upward to

higher abstract level[PANG87A].

Method 1 may be necessary sometimes. For instance, if the target architecture

is not fixed at all, it is easier to let the designer specify it than try to find an

optimal architecture. Method 2 is a trial-and-error approach which is definitely

not a direct way to tackle the problem. Even provided with the understanding of

the algorithm, a large number of runs are still needed. Method 3 is promising, but

only if you know where a mistake was made. It will require intermediate storage

of all the intermediate steps. However, this back-tracking feature is very useful in

a semi-interactive system. Method 4 is one of the methods which has proven to

be very helpful. By synthesis from partial structure described in [KNAP88], it is

possible to repair the design after changes have been made. But again. YOU need

to know where changes should be made and how to start. Method 5 has been

implemented in [KowA85] though a very defined target architecture is needed

for it to work efficiently. Method 6 aims to derive high-level constraints from

the physical constraints, they are then propagated up the synthesis process to

more abstract levels. Thus with these high-level constraints, it enables potential

violations to be detected as early as possible.

Summarizing, the problems which we are facing are:

1. The occurrence of overkill. Overkill which happeis in early tasks will seri-

ously handicap the efficiency of the later ones.

52

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

The scale of the problem. Although we would like to consider as much

information and perform as many tasks concurrently as possible, it is quite

impossible to explore the whole design space at one time. Added to that,

the design space is multi-dimensional and discontinuous. An approach which

consists of a number of sub-tasks is still essential to explore the design space

systematically.

User interference. The user should be allowed to interact with the synthesis

process. There should be a way to capture his/her degree of confidence and

thereby allow slight interference to absolute control.

3.4 Progressive Flexibility Damping

With these concerns in mind, we have developed the approach of progressive flex-

ibility damping for high-level synthesis. It allows a large design space to be ex-

plored; operation, storage and communication to be synthesized concurrently with

even different styles of target architecture. It provides a foundation to support

and control the derivation and the influx of low level information. Floorplanning

annotations or multiplexor input optimization can be considered progressively in

conjunction with high-level constraints. Flexibility damping also allows users to

make decisions for controlling the synthesis process with respect to his/her degree

of confidence.

Flexibility is the freedom of a not-yet-bound algorithmic level element in the design

space. In other word.3 that is the number of instances available to realize it.

Flexibility (element) = {instance}

instance = resource(sch)

An instance is a well defined continuous number of cycles, sch, associated with a
resource. As an example, in figure 3.6a,

Flex ibility(oper) = Flexibilitypu(oper) x Flexibiliycs (oper)

= 	{Adderl(2, 2), ALU1(4, 4), ALU2(3, 3).......}

Flex ibilityFu (oper) = { Adder l, Adder2 , ALU1, ALU2}

Flexibilitycs(oper) = {(2, 2), (3, 3), (4,4), (5,5))

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

Choice of Module 	 Choice of Module

bbS

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle
.0
0 Cycle

Cycle

09 Cancelled Space

a. 	 b.

Figure 3.6: Design Space for an Operation, say add(+).

For Element = { OPER, RMEM, LINK } and Resource = { FU, RF, BUS,... },
With operation (oper) to functional unit (fu), storage (rmem) to register file (rf)

and interconnection(link) to buses (bus), we have

instanceope,. = fu(sch) E { Flex ibilitycs (oper) x Flex ibilityFu (oper)}

instancerme,y, = rf(sch) E { Flex ibilit Ycs (rmem) x FlexibilityRF (rmem) }

instancelSflk = bus(sch) e 'Flexibilitycs (link) x FlexibilityBuS (link)}

The curves in figure 3.3 and 3.4 represent the availability of instances, hence the

flexibility of a construct along the flexibility damping process. In this discontinu-

ous design space, the mobility of an operation does not have much meaning. This

is because during the damping process, the freedom is not continuous any more.

On the other hand, damping is the process of constraining the flexibility. It is a

gradual process of removing design variations which have proved to be inferior.

The philosophy of progressive flexibility damping is to avoid making unnecessary

decisions early in the synthesis process. This is to prevent any earlier tasks from

commitments which may later prove to be inefficient.

Conceptually, flexibility damping shares some similarities with delayed binding

[RAJA85], but it has also significant differences. The damping process removes in-

ferior implementation segments which are detected unambiguously to violate some

54

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

constraints. However, delayed binding defers making decisions until more infor-

mation is available. As an example in figure 3.6, instead of trying to find the best

instance among the 16 choices available, the damping process gradually cancels

those which are proven to be unacceptable. In this example, possible reasons may

include: mapping to cycle 4 is removed to yield a more balanced schedule; "ALU2"

which has delay of two cycles is too slow; "ALU1" which is pipelined cannot be

scheduled to the last cycle; "Adder2" has already been committed in cycle 2, etc.

As a result, it yields figure 3.6b. It should be noticed that the mobility of the

operation is no longer continuous.

With this structure in place for every abstract element, the designer can interfere

with the synthesis process by physically removing instances from the feasible de-

sign space. If he has absolute confidence in the decision, all but the target of the

available instances can be removed.

It is usually necessary to allocate functional unit types to operations before schedul-

ing. This is to provide the necessary delay information on which the scheduling

task works. As a result, tremendous pressure is placed on the allocation task

to ensure that an optimal set of functional units is chosen. Flexibility damping

does not need to know the exact delay of the operations. As demonstrated in

figure 3.6. several allocation can be considered at the same time. This avoids the

critical decision-making step at the very beginning of the synthesis process, and

allows it to be performed in the course of the damping process. The process of

doing allocation and scheduling concurrently has been demonstrated in various

systems [HEMA90J [cLou90] [GEB091J.

To enable an efficient iterative cut down of design space, we must establish con-

straints at higher levels. However, instead of allowing violations to be detected

as soon as possible, they are used to limit the number of decisions needing to be

made. Each task or process just makes enough decisions to bring the design within

the constraints. As a result, it avoids over-ambition and overkill. More flexibility

is left for the later processes. The benefit of doing so can be highlighted in the

following example.

55

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

Type A Type B
	

Type A Type B
	

Type A Type B

.'

Op2)

U storage of value 	 transfer of value

Figure 3.7: One Beneficial Outcome of Flexibility Damping

Traditionally, operation mapping is performed before storage and communication

mappings. The reason may be obvious: information for storage and communica-

tion mapping is not available until operation mapping is done. Now, let us consider

the situation in figure 3.7a. There are two different operations, 0pi is Type A

and Op2 is Type B. Operation 0p2 can be scheduled either to the first or the

second cycles. Since the two operations are of different type, balance scheduling

will not have much influence on the outcome. Thus, 0p2 may be scheduled to the

first cycle for various other minor reasons. Only when it comes to the communi-

cation mapping phase will it be recognised as an inferior design, figure 3.7b, with

6 buses(4 input and 2 output). It may need to be re-designed. On the other hand,

if the scheduling decision is not made, then during the communication mapping

process, we have a choice of moving Op2 to the second cycle. Figure 3.7c, shows

the outcome. Although addition of pre-input storage is required, the number of

buses is reduced by half to 3 buses. This is because the buses can be re-used in

the second cycle. To yield this result and achieve benefit like this, extra workload

coupled with a smart process is essential.

In addition, during the damping process, the user can interfere with the deci-

sions of the system without causing too much disturbance. Operations which

56

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

are associated with high mobility can be re-assigned to more economic functional

units. Due to the nature of the damping process, only the flexibility of the affected

operation needs to be updated. A re-run of the scheduling process on the whole

graph can be avoided.

3.5 Integrated Concurrent Mapping

Control/Data 	High-Level 	Floorplanning 	RTL
Dependence 	Constraints 	Annotation 	Structure

Time &
Resource

Operation, Storage and Interconnection Mapping Constraints

Figure 3.8: Integrated Progressive Flexibility Damping.

Figure 3.8 depicts an ideal flexibility damping process. The design space is cut

down smoothly and gradually by waves of procedural design space exploration.

The aim of each design exploration is to bring the design within the high-level

constraint on each level. It is true that no matter how considerate some deci-

sion functions are, there are cases where they are inefficient. The solution is to

have constant injection of information to fine tune the accuracy of these decision

functions.

1. After the input behavior description has been translated into CDFG, various

transformations are performed. At that level, the control/data dependencies

are the main concern. The flexibility of each element covers the whole design

space.

57

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

Initially, simple ASAP and ALAP schedulings can be used to define the

cycle flexibility, mobility, of the operations. Their types define the module

flexibility of resource allocations. Then time constraints, in terms of num-

ber of cycles, and area constraints, in terms of number of resource units,

can be brought into effect. They are used by resource allocation with re-

source restricted scheduling. However, instead of selecting the best set of

resources, they are used to remove unsuitable resources. Since different

resource types will have different execution times, different mobility pat-

terns(as in figure 3.6b), will develop for the flexible design space of an oper-

ation.

The style of the target architecture is not specified before the synthesis

process but is injected as high-level constraints during the damping process.

Therefore, various styles can be evaluated before committing to the final

architectural style.

Floorplans derived from the resource constraints can be annotated to bias

the resource binding.

As a whole, the damping process uses a divide-and-conquer approach to handle

the complexity of the problem. It allows constraints and optimization concerns to

be graded into different levels and to be considered progressi\eiy.

In our case, figure 3.9. we have divided the process into several phases. Precautions

are taken to make sure that over-ambition or overkill is avoided. Starting from the

initial performance and resource constraint, the phases of the flexibility damping

process can be divided into:

High-Level Transformation (HLT),

Coarse Scheduling and Allocation (GSA),

Fine Scheduling and Binding (FSB),

Fine-gain RTL Optimization.

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

3.5.1 High-Level Transformation

High-level transformation (HLT) isAto modify the control/data flow of the graph

so that it can be efficiently implemented in hardware. Common language com-

piler transformations like constant folding, common subexpression and dead-code

elimination, variable renaming etc. can be used to remove redundancy from the

description. Hardware oriented optimizations like replacing multiplications with

shifts etc. can improve the efficiency of the design.

Designer tr0,/Data 	 Floorpianning 	RTL

Time & 	Transformations Schedule Iteration Balance Scheduling Optimization
Resource

Constraints 	HLT 	 CSA 	 FSB

Operation. Storage and Communication Mapping

Figure 3.9: Integrated Progressive Flexibility Damping.

Optimizations which simplify the control/data flow graph or tree height reduction

such as transformations which re-arrange the graph, will have direct impact on

the scheduling process [JAIN89]. They either reduce the amount of computation

or increase the amount of parallelism available for scheduling. Control-oriented

transformations can improve resource sharing by mutually exclusive conditions

and also can explore the advantage of speculative execution. Generally speaking,

59

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

a balanced tree-like graph will require large amounts of resources to realise its full

potential, while a serial-like one requires less resources but will have longer delays.

In Chapter 4, we look at two compiler optimization techniques

Variable Renaming, and

Minimum Execution Time Tree Generation

In Chapter 5, the Control-Data Flow Graph (CDFG) is introducted. This is

followed by graph transformations, in the order of transformation aggressiveness:

Simplification,

Local-Data Transformation, and

Global-Data Transformation

3.5.2 Coarse Scheduling and Allocation

Coarse scheduling and allocation (CSA) is the coarse design phase where various

design styles and strategies are evaluated quickly. The main process is dominated

by the allocation-scheduling loop. Various types of functional units from a chosen

library are assigned to the operations. Critical parts of the design can be iden-

tified and an application specific functional unit can be constructed. The expert

knowledge of the designer will be put to good use here. CSA performs:

functional unit type allocation,

resource restricted ASAP and ALAP scheduling,

The main objective is to define the design space for the later phases of the damping

process. From the timing constraints, possible choices of modules are established.

Scheduling is performed with the delay information from the fastest type of func-

tional unit. The fastest ones are chosen in order to maximize the mobility of

the operations. If mobility and choice of modules allow, fast functional units can

be replaced with more economic ones later in the damping process. As a result,

operations of the same type may end up being implemented by different types of

functional units depending on their position in the flow graph.

CHAPTER 3. A STRATEGY FOR HIGH-LEVEL SYNTHESIS

In Chapter 6, we will detail the resource restricted scheduling and other method-

ologies used in CSA.

3.5.3 Fine Scheduling and Binding

Based on the design space established by CSA, Fine Scheduling and Binding (FSB)

makes full use of the timing allowance to minimize the cost of the design. FSB

schedules and binds

operations to functional modules

storage elements to global registers or local buffers

communications to buses

To facilitate the process, Distribution Graph (DG)s of operations, storage and

communication are built. The damping process is applied to them simultane-

ously. This ensures that equal attention is placed on them. Their distributions

are balanced accordingly to minimize the total cost of the design.

At the same time, architectural constraints derived from background memory

management, functional module configurations, input/output buffers, floorplan-

fling annotations, etc. are introduced to target the design. Various storage and

communication schemes are also explored to minimize the cost of global intercon-

nections.

In chapter 7, we will discuss the construction of the distribution graphs, the damp-

ing policy, the architectural constraints and how they are used in FSB.

61

Chapter 4

Compiling

Generally speaking, a compiler takes a source program as input; in the case of

programming language compilers, they produce a sequence of machine instruc-

tions for the target machine; for silicon compilers however, they produce a netlist

describing the hardware architecture and the micro-sequences which execute on

it. The term "Silicon Compiler" has broad meanings but here we use it to refer to

any high-level synthesis system which is capable of generating a hardware netlist

from a programming-language-like description.

Extensive research has been done on the compilation process [AH086]. The pro-

cess is so complex that it is usually partitioned into a series of subprocesses called

phases:

Lexical Analysis and Parsing
Control and Data Flow Analysis
Optimization

Resource Allocation
Code Generation

Many of these techniques commonly used in software compilers will find immediate

application in silicon compilers. For example, the lexical analysis and parsing

phase are moreorless identical. Also included are many optimization techniques

such as:

- constant folding,

- common sub-expression elimination,
- dead-code removal,

62

CHAPTER 4. COMPILING

- copy propagation,

- strength reduction,
- loop-invariant motion, etc

However, it is important to understand the differences between software and silicon

compilation. In the following sections, we will consider these differences in detail.

4.1 Software Compiler vs Silicon Compiler

4.1.1 Compilation Target

For software compilers, the target machine which will execute the program is well

defined. No matter whether it is a general purpose computer or a Very Large

Instruction Word (VLIW) machine, different compilers are made available for dif-

ferent machines. The common goal of this compiler is to translate the high-level

program description into machine instructions so that the program can be exe-

cuted efficiently on the machine for which the compiler is designed.

However, for a silicon compiler, the input description says nothing about the

piece of silicon or the chip on which the description is to be executed. The job of

the compiler is to construct the hardware structure as well as the micro-sequences

together to realize the description. The hardware structure usually consists of one

or more data-path units. and the micro-sequences are usually implemented by a

control unit. Since the design solution space is very large, the acceptance of the

solution is usually governed by some pre-defined constraints like speed and area.

It is extremely unlikely that the first pass will meet these constraints. A number

of design iterations are needed.

4.1.2 Parallelism

Since the target architecture is flexible, in contrast to software compilers, silicon

compilers must explore the fine-grain parallelism embedded in the description. If

the design goal can be met with any sequential hardware, there would be little

point in pursuing a custom design. An off-the-shelf microprocessor would be good

enough. This low-level parallelism of the application specific design can usually

CHAPTER 4. COMPILING

deliver a performance comparable to any super-computer at a much lower cost

and size. Therefore, optimization techniques, such as

loop quantization, loop unrolling, loop partitioning

loop interchanging, loop jamming, and loop splitting

available in parallel software compilers can easily find their way into the front-end

of most silicon compilers. The flexibility offered by customised hardware enables

most of these algorithms to be implemented with high efficiency. The main reason

is that the computational overhead introduced by most of these optimisation al-

gorithms can now be taken up easily by simple hardware elements introduced by

the silicon compiler. For instance, consider the following loop unrolling example.

Listing 4.1 	for i := x to y do
A[i] := expr(i);

end;

for i 	x to y step 3 do
A[i] := expr(i);
if (i > y) then exit;
A[i+1] := expr(i+1);
if (i+1 > y) then exit;
A[i+2] := expr(i+2);

end;

The loop is unrolled three times. The test-exit operations may be an expensive

overhead in usual sequential platforms; but in silicon they can be implemented

by comparison element(s) working in parallel with the array operation. However,

before putting in extra hardware, the compiler must make sure that the increase

in speed justifies the expansion in area.

4.1.3 Common subexpressions

Generally, common subexpressions can be handled in two ways. Compute the

result every time whenever and wherever it is needed or do the computation once

and store the result for future usage. Software compilers will favour the second

choice. This is because most computation results are stored in memory/cache and

access to memory/cache for operands before execution is a common activity in

most sequential machines. A similar arrangement in silicon implementation will

mean that the result stored has to be distributed to wherever it is used. Besides

the memory which is required to store the value, the transfer will imply significant

steering logic overhead. This may turn out to be more expensive than re-doing the

64

CHAPTER 4. COMPILING

computation on the spot. This is particularly true when the operation requires

simple hardware only. Therefore, trade-offs need to be made.

4.1.4 Procedures

In both cases, the desire for procedures is to create a hierarchy of abstractions so

that both design and compilation processes can be more manageable. For software,

the cost of having procedures is paid at run-time. That is the stack operations and

context switching which involves saving and restoring registers before and after

procedure calls. However, in a silicon compiler, there are three kinds of procedure

definition. Each has different implications.

The first kind are procedures which define library functional units or chips

whose implementation is not available to the user. This is similar to the

information hiding mechanism provided by external modules in most soft-

ware environments. Only details about how calls can be set up, the interface

and the performance are provided. As usual, it can be shared if the opera-

tions are mutually exclusive but unlike its software counterpart, the number

of units can be increased to improve the performance of the design. As a

library unit, it can be designed separately as a unique unit on silicon.

Listing 4.2 	component decoder_74xxx(bl, b2 : in bit,
dl, d2, d3, d4 : out bit)

For instance, listing 4.2, is clearly addressing an external component which

can be used as a functional unit in the description.

For the second kind, the procedure call represents a software partition of the

description. This kind of partition shares the same characteristics with its

software counterpart and carries no hardware sense. The usual method is to

unfold the procedure call. However, if the procedure is used frequently, it

could be implemented independently and treated as a functional unit.

Listing 4.3 	procedure mean.nfiour(dl, d2, d3, d4: in float;
mean: out float)

begin
mean := (dl + d2 + d3 + d4) / 4;

end;

65

CHAPTER 4. COMPILING

For instance, listing 4.3, is a purely software procedure used mainly to im-

prove the modularity of the description. It can either be constructed as a

functional unit or can be unfolded to merge with other computations.

3. The third kind are real hardware partitions defined by the user. Very often,

the procedure is made up of smaller hardware components. If it is separated

from the rest of the design and constructed individually, it will behave just

like the first kind of procedure definition - a component part. On the other

hand, since the structure is not hidden, the composite hardware units can be

made visible and shared by other procedures. This resource sharing feature

has similar advantages as in-line expansion of procedure calls.

Listing 4.4 	procedure control_unit(reset : in bit;
fl, f2 : in bit;
ci, c2 : out bit;
di, d2 out bit);

var stage integer;
begin

while (reset) do stage := 0; end;
while (true) do

case stage, fl, f2 of
1, 0, i : ci := i; c2 := 0; di
2,i3 O: ci :=X;c2 := 0; di

0, X: ci := X;c2 := X;di
i, X: ci 	i; c2 := i; di

end;
end;

end;

i; d2:= 0; stage := 2;

	

0; d2:= i; stage 	3;

	

:= 0; d2:= 1; stage 	4;
:= i; d2:= 0; stage :=

For instance, listing 4.4, is a hardware partition which reflects the architec-

tural structure of the hardware. Since it is describing a piece of independent

hardware, it is unwise to unfold it into the main process.

We have to understand that silicon compilers do not have the intelligence to dis-

tinguish between these three different kinds of procedure definitions. The pro-

grammer has to indicate them explicitly to the compiler. To do so, identifiers,

such as component, block, procedure etc, available in most hardware description

languages, can be used.

CHAPTER 4. COMPILING

4.1.5 Arrays and Memory Addressing

Traditional computing machines have a main memory block in which all data and

instructions are stored. To perform an operation, they read data from the mem-

ory, do some calculations and write the result back into the memory. Hence, the

reading and writing operations, the memory bandwidth of the machine, play a

significant role in the total performance.

In addition, in software, there are different kinds of addressing mode to meet

the need of the programming languages. The target architecture of a silicon com-

piler does not share the same characteristics. Since the number of variables and

the computational sequence are known, better arrangement of memory can be

made to avoid memory bottlenecks. Variables which are frequently referenced can

be stored in registers, individual arrays may have their own register files and vari-

ables which are not used at the same time can be arranged into a single register

file. For example, for the following expression.

ti = 2 * A[i];

The variable ti will be in a register, the constant 2, will be in ROM and the array

element A[i], will be in memory. Moreover, if a register file is assigned to array A,

an address calculation like:

A[i] = MEM[addr(A) + i - 1]

will no longer be needed. Nearly all the memory access will be direct addressing.

There will not be any memory bottleneck, the memory bandwidth is tailor-made

to meet the computational intensity.

4.2 Parsing

In our system, the input description (INDP) is scanned and parsed in a recursive

descent fashion. The compiler translates the source text of the input into an

intermediate format (INFT). This intermediate form records the tree structure of

the description. Each statement comprises four major fields:

- TYPE indicates the type of the statement,

- INPUT is the set of input variables,

67

CHAPTER 4. COMPILING

- OUTPUT is the set of output variables,

- BODY is the syntax tree.

The TYPE is one of the following: {Assignment, Procedure Call, if, case, while,

for}. The statements are created during the initial parsing phase and are threaded

to represent the ordering of the statements as they are encountered in the sequen-

tial scan of the INDP.

The calculation of the input and the output set of a statement is by dataflow

analysis. For example listing 4.5:

z := 0; Listing 4.5 	BZ:
while (x > 0) loop

z := 1 + h + x * z;
x := x - 1;

end loop;

The input and output set of BZ is

IN(BZ) = {0, 1, x, h}

OUT(BZ) = {x, z}.

For the different kinds of statements, the INPUT and OUTPUT sets are as follows:

Si: x := expression;

IN(S) = {a in expression referenced on the R.H.S. of the statement}

OUT(S) = {x defined on the L.H.S.; usually only one}

if C then B end if;

IN(S) = IN(C) U IN(B) U OUT(B)

OUT(S) = OUT(B)

if C1 then B1 elseif C2 then B2 else B end if;

IN(S) = U IN(C1) U 1 IN(B) Uvi 	- flOUT(B)

OUT(S) = 	OUT(B)

case E1 is when E2 	B1 when others 	B end case;

IN(S) = U IN (E) U 1 IN(B) Uvi 	- flOUT(B)

OUT(S) = UVj

CHAPTER 4. COMPILING

while C loop B end loop;

IN(S) = IN(C) U IN(B)

OUT(S) = OUT(B)

for i := E1 to E2 loop B end loop;

IN(S) =iU{XIXEE1 }U{XIXEE2}UIN(B)

OUT(S) = OUT(B)

For a conditional statement, which does not cover all the possible branches, special

attention is needed. For a loop statement, the intersection of the input and the

output set will give the inductive variables. Note that for the last entity, the

inductive variable i is not included in the output set of the for loop. For IN(BZ)

and OUT(BZ), these are constructed by the collection of simple and complex

statements inside the body(BZ) of the entity. Let the statements that are in a

block(BZ) be S1, 52 S. IN(BZ) and OUT(BZ) can be defined as:

IN(BZ) = U 1 (IN(S) - Uvi =1 OUT(S))

OUT(BZ) = U 1 OUT(S).

However, as IN(BZ) and OUT(BZ) are usually computed recursively, we can

simplify the above equations into:

IN(BZ) = U OUT(P)
OUT(BZ) = GEN(S) U (IN(S) - KILL(S))

GEN(S) = {x I x defined in S}
KILL(S) = {a I a killed in S}

P = predecessor of B

4.3 Variable Renaming

Before doing any variable renaming, we must understand the kinds of data depen-

dency which can be present. In total, there are three kinds of dependency:

1. Input dependency

The result of one operation is an operand of a later operation.

x := a + b;

y := x + 1;

CHAPTER 4. COMPILING

Output dependency

Two operations write to the same variable, memory location or member of

an array.

m:=a+b;
m:=2;

Anti-dependency

One operation uses a value which will be overwritten by a later operation.

k := x + 1;
x := y + z;

Potential parallelism in a code segment will usually be improved if renaming is

used to eliminate multiple definitions of a variable. For instance, consider the

following lines of code:

Listing 4.6 	si: x := a * b;
y := x * c;
x:=c+d;
k:=x+1;

If x in the statement s3 is renamed to be another distinct temporary variable

say t, then the output dependency, between si and s3, and the anti-dependency,

between s2 and s3, on x can be removed. The assignment to t, s3a in listing 4.7,

can now be moved forward to execute concurrently with s 1. Semantic correctness

must be maintained by replacing the renamed variable, i.e. by renaming x in s4

to t.

Listing 4.7 	si: x :=a * b; s3a: t := c + d;
s2: 	y := x * c; 	s4a: k := t + 1;

This technique is widely used in vector compilers to eliminate spurious dependen-

cies and thus increase the potential for parallelism exploitation. Basically, we will

rename the variables when they are assigned. So for the above listing 4.6, the

result will be:

Listing 4.8 	si: xl : a * b;
s2: 	yl := xl * C;

s3a: x2 := c + d;
s4a: ki := x2 + 1;

Although renaming is useful to highlight and extract the exact data dependency,

precautions must be taken when mixing it with control statements. We will look

at this in the following sub-sections.

70

CHAPTER 4. COMPILING

4.3.1 Iteration statement

Compilers rename multiple definitions of a variable within iterations to maximize

the potential parallelism. If these variables are used in later iterations, the vari-

ables will be re-assigned at the end of the loop to get ready for the next iteration.

For example, consider the following input description:

Listing 4.9 	while (x > 0) loop
Y := y + x;
Z := z * x;
x := x - 1;

end loop;

In order to maintain the value of x, the decrement of x cannot be performed until

the computation for y and z have been completed. Renaming will re-arrange it as

in listing 4.10

Listing 4.10 	loop(x > 0)
yl := y + x; 	zi := z * x; 	xl := x - 1;
y:=yl; 	z:=zl; 	x:=xl;

end loop;

where all the computations can be done concurrently. However, as the variables

(x, y, z) need to be used in the next iteration, they will be re-assigned the new

value at the end of the loop. Here, variables xl, yl, zi are temporary variables

while variables x, y, z are value containers.

4.3.2 Condiional statement

Firstly, let us understand what the problem is. For instance.

Listing 4.11
	

if (a = y) then
a := a + 1;

end if;
x := a+ y;

Listing 4.12
	

if (a = y) then
al := a + 1;

end if:
x := a(al) + y;

71

CHAPTER 4. COMPILING

It is clear that if renaming is performed without considering the conditional state-

ment, there will be confusion when the renamed variable is used after the con-

ditional statement, listing 4.12. In this example, the value of the last statement

cannot be determined because it does not know which value of a to refer to.

The main objective of renaming conditional statements is to equalize all the output

variables in different branches; so that variables used later can refer to a unique

name. This situation can roughly be divided into four categories

- Unbalanced conditional statement; if statement without the else body

- Unbalanced re-assignment in the branches

- Different variables in different branches

- Temporary variables which die within the branch

For example, consider the following example,

Listing 4.13 	if (r = s) then if (r = s) then
t:=s+r; tl:=s+r;
a:=t+s; al:=tl+s;
a:=a+r; a2:=al+r;
b:=t+r; 	-# bl:=tl+r;

else else
a:=r+1; a2:=r+1;

bi 	b;
end if: end if;
c:=a+b cl:=a2+bl;

variable t is a temporary variable which dies within one of the branches. Therefore,

it does not need to be made visible outside the conditional statement. In the then

body the variable a is assigned twice, but only once in the opposite branch. So,

instead of renaming the variable a. in the else body by al, it is renamed to the

most up-to-date name a2 to achieve a unique output. The dummy assignment, bi

:= b, is also introduced to balance the assignments in the branches. Finally, the

conditional statement will have a unique set of output variables.

4.3.3 Procedure call

To support modularity, procedure calls are an essential feature. A procedure takes

arguments and produces outputs. Hence, renaming has to be performed on the

72

CHAPTER 4. COMPILING

arguments as well. As there are three kinds of parameter, renaming can be divided

into three categories.

Input only parameters

Just like the variables on the R.H.S. of a statement, they will be updated to

reflect the data dependency.

Output only parameters

Since the output variables have been given a definition, they will be renamed

to reflect this. Although the output variable may be assigned a number of

times in a procedure, this does not matter as long as we know that it has

been altered. Suppose we have a procedure definition:

procedure cal(a:in integer; b:in integer; c:out integer)

renaming the following piece of code will mean renaming z as if it was as-

signed.

Listing 4.14 	x := p + q; 	xl := p + q;
cal(x, y, z); 	-f 	cal(xl, y, zi);
c:=z+1; 	c1:=zl+1;

Input and Output parameters

This is complicated by the fact that the value of the input variable is changed.

This situation is similar to self-assignment, for example:

x:=x+k; - xl:=x+k;

Simple renaming does not work because it will fail to represent either the

input dependency or the output dependency. Hence, we introduce a new

identifier to exhibit the change in value. For instance, a call to the following

self-increment procedure will be renamed as:

procedure increment(x : inout integer)

	

increment(a); -f 	increment(a \ al);

4.3.4 Array References

Array references are quite difficult to handle. The main reason is that two suc-

cessive array references may or may not aim at the same element of an array. If

the array is indexed by variables, it is quite impossible to find out the data de-

pendency at compile time. For the case of a simple variable, renaming a to al will

73

CHAPTER 4. COMPILING

mean two different variables. If the same is applied to arrays, it will mean a copy

of all the elements in the old array except the one which has been newly updated.

Therefore, in order to simplify matters, we choose NOT to rename any array.

4.4 Expression Regrouping

The main goal is to recognize parallel processable tasks in arithmetic or logic ex-

pressions and to regroup them for minimum execution time. For example, consider

the following statement:

X :=A+ B + C +D +

An optimal compiler will usually re-arrange it to minimize the number of levels.

The additions in the above example will be regrouped as

X := ((A + B) + ((C + D) + E)));

so that adjacent additions can be evaluated in parallel. The benefit is that the

delay is decreased from 4 to 3 adder-delays with 2 adders.

4.4.1 Minimum Execution Time Tree Generation

More generalj1 if the statement consists of different kinds of operations associated

with different delays, then the difference in delays should be taken into account.

Thus, it becomes important to minimize the total execution time instead of the

number of levels.

Consider Figure 4.1, the tree (b), with a maximum level of 4 yields a faster execu-

tion time than the tree (a) with 3 levels. This is achieved by arranging expensive

operations, such as multiplication, to execute concurrently with several less ex-

pensive operations. The resulting delay is calculated by accumulating all the

delays on the path of calculation. The algoritIm for expression regrouping can be

summarized as follows:

74

ABC

. `~C+

DE F E 	 C D

Delay(+) = 4: I

X

CHAPTER 4. COMPILING

a. Level: 3
	

b. Level: 4
Execution time: 6
	

Execution time: 5

X=A+B+C*D+E+F

Figure 4.1: Expression level vs Execution time

Step 1: assign weight to memory references like a[i];
assign weight to inputs(input delay);
and get the weight of defined operands.

Step 2: Sort the operands in increasing order of weight.

Step 3: Combine the first two least weighted operands and
calculate the new weight for the expression using the following:
Weight of new expression = MAX(wl, w2) + weight (operation)
wi = weight of the first expression.
w2 = weight of the second expression.

Step 4: Remove the first two operands and
put the expressions back with increasing order of weight.

Step 5: If more than one expression left, go back to Step 3.
Otherwise finished with the balanced expression on top.

Figure 4.2 demonstrates the algorithm. It is not essential to know the exact

delay of the functional units in order to achieve an accurate minimum execution

time tree. However, a rough ratio of the execution time among the operations is

sufficient. It does not make much difference whether the delay ratio of an addition

to a multiplication is (1: 2) or (7 : 16).

75

CHAPTER 4. COMPILING

x :=a+ b *c + d - e + in

Weight of Expression : Expression

0 : 	a
0:d
o : 	-e
2 : 	in
4 : 	(b 	*c)

0 : 	-e
1 : 	(a+d)
2 : 	in
4 : 	(b *c)

2 : 	in
2 : 	((a+d)-e)
4 : 	(b 	*c)

3 : 	(in + ((a + d) - e))
4 : 	(b 	*c)

= 	 5 : 	((in + ((a + d) - e)) + (b * c))

x<5>:= ((in + ((a + d) - e)) + (b * c))
the delay time of reading input is 2 unit

assuming: the delay time of * is 4 units
the delay time of + is 1 unit

Figure 4.2: A run of expression regrouping

4.5 Expression Flattening

Complex expressions are very often used when writing programs or descriptions.

The job of expression flattening is to transform a long expression into the following

simplified forms:

<operand> <operator> <operand>
<operator><operand>
<operand>

Temporary variables are introduced to hold the intermediate values. This is done

after the expression is regrouped and these simplified expressions are called iso-

topic expressions. The decomposition will proceed by ascending the tree with

the smallest sub-tree being flattened first. For instance, the previous balanced

expression will be flattened as:

76

CHAPTER 4. COMPILING

Listing 4.15 	x:= ((in + ((a + d) - e)) + (b * c))

ti := a + d
t2 := b * c
Q := ti - e
t4 := t2 + in
t5 : t4 + t2

Besides flattening the R.H.S. of a statement, for an array operation, the indexing

expression will be flattened as well. Array referencing will be transformed into a

much simpler from:

Array Read : <variable>: = array[< variable>];

Array Write : array[<variable>] := <variable>;

For instance,

Listing 4.16 	a[a[x]+y+1] := y + 4

ti :=
t2 := y + 1;
Q := ti + t2;
t4 := y + 4;
a[t3] := t4;

For array elements involved in procedure calls, a combination of renaming and

flattening will be used:

Listing 4.17 	increment(a[x]);

ti :=
increment(tl \ t2);
a[x] := t2;

77

Chapter 5

Design Representation

After parsing and high-level transformations, the input description is compiled

into the internal representation, the Control-Data Flow Graph(CDFG). We

assume that variable renaming and other essential transformations have been car-

ried out. Variables are assigned only once or assigned under mutually exclusive

conditions. These are well defined single assignments. For data dependence, out-

put and anti-dependence have been eliminated so we only need to consider input

dependence. This will be referred to simply as data dependence. In this chap'er,

we will discuss the CDFG on which various transformations will be carried out.

In the following sections, we shall unfold this internal representation bit-by-bit

A small example, soil oi , will be used throughout this chapter to illustrate the

internal representation. The description is shown in figure 5.1 with its flowchart
representation.

Before we go on to the internal representation, there are some definitions we

would like to clarify.

Basic Block - is analogous to its definition in software compilation. In

figure 5.1, { 1 2 3 41 forms a basic block and { 5 6 7 }, { 8 9), { 10 111,
etc are other blocks.

Control Block - this is formed by a control statement. Statement 7 and

the statements inside it, { 8 9 10 11 }, form a control block.

in

CHAPTER 5. DESIGN REPRESENTATION

1 X:= Xi;
2 y:Yi;
3 a:=y>0;
4 case ais

when '1 =>
5 p:=y+x;
6 b:=x>y;
7 case bis

when "1" =>
8 m:=y+p;
9 n:=x/2;

when "0" =>
10 m:=x+p;
11 n:=y*2;

end case;
when "0" =>

12 m:=x+y;
13 n:=0;

end case;
14 z:=m+n;
15 Zout:=z;

Figure 5.1: Description and the Simple FlowChart Representation of soil 097

Control Level - this is the depth of nesting of the control block within

which a statement lies. All nodes { 8 9 10 11 } have a control level of 2.

5.1 Control-Data Flow Graph

The Control-Data Flow Graph (CDFG) represents the control guards and the

operations performed on data flowing from the inputs to the outputs. Operations

and control constructs from the compiled description are represented as nodes.

The edges describe the dependencies between them. The control-data flow graph,

is defined as:

Definition 5.1 CDFG is a directed flow graph ((NoDE), (EDGE)); where

(NODE) is a set of nodes

= { (N:fork) U (N:loop) U (N:exit) U (N:call) U (N:stat) },
where(N:fork) : set of branch nodes;

(N:loop).: set of loop boundary nodes;
(N:exit) : set of loop exit nodes;
(N:call) : set of procedure call nodes;

79

CHAPTER 5. DESIGN REPRESENTATION

(N:stat) : set of operation nodes

(EDGE) is a set of edges

= { (E:data) U (E:ctrl) U (E:back) U (E:time) },
where (E:data) : set of data flow edges;

(E:ctrl) 	: set of control flow edges;
(E:back) : set of feedback data flow edge of loops;

(E:time) : set of timing constraints defined by user

The (N:fork) set represents the if-then or case-when statements in the input de-

scription. The (N:loop) set represents the loop statements, like loop, while and for

loops. Since exit statements are usually associated with a condition, it is necessary

to separate the (N:exit) nodes from (N:loop) and treat them as a distinct set of

nodes. The (N:call) nodes represent calls to internal or external subroutines. The

(N:stat) nodes represent various operations.

Definition 5.2 Nodes E (N:fork) U (N:loop) U (N:exit) are called control nodes;

while nodes E (N:call) U (N:stat) are called operation nodes; with

de (N:ctrl) =f { (N:fork) U (N:loop) U (N:exit) }, and

(N:oper)
def { (

N:call) U (N:stat) }

Definition 5.3 (N:stat) is defined as the union:

{ (N:arith) U (N:logic) U (N:trans) U (N:port) U (N:array) }

where (N:arith) : set of nodes performing arithmetic operation;
(N :logic) 	: set of nodes performing logic operation;
(N:trans): set of nodes performing simple assignment;
(N:port) 	: set of nodes performing input/output operation;

(N:array): set of nodes performing array read/write operation

Arithmetic and logic operations, such as

p:=y+x; n:=a and b; etc

are the most common nodes and always dominate the graph. Their operations

require allocation of functional units. Thus, their quantity will reflect the com-

plexity of the problem. (N:trans) is a set of simple direct assignments, like

n:=O; p:=x; etc.

CHAPTER 5. DESIGN REPRESENTATION

Generally, they do not consume any functional units. However, depending on the

result of the scheduling, they can be local signals or intermediate values. In the

latter case, they will require storage and transmission and hence they occupy re-

sources like registers and buses. (N:port) nodes represent the abstract interface

with the outside environment. They can have no solid meaning, or like other

operations, they can be associated with resources. In that case, input/output

ports will be needed but the requirement can be controlled and minimized. Some

applications may involve a lot of array operations which will unavoidably require

a lot of storage access. An unconstrained implementation could result in very

inefficient memory structures. Hence, array read/write operations are introduced

and by associating them with their hardware counterparts, the access pattern can

be restricted. This also allows memory management to be performed before any

scheduling. The internal representation of .solloi is shown in figure 5.2.

Data Dependence

Control Dependence

Figure 5.2: The Internal Representation of .sofIor

81

CHAPTER 5. DESIGN REPRESENTATION

(N: ctrl) : 	{ 47 }
J(N:fork) : 	{47}
(N:oper) : 	{1235689101112131415}
D(N:stat) : 	{1235689101112131415}

D(N:arith) : 	{3568910111214}
D (N: trans) : 	{ 13 }
D (N:port) : 	{ 1 2 15 }

The edges in the CDFG are used to guarantee a correct execution sequence of

the operations.

Definition 5.4 An edge is a vector, (bnode -* enode), where bnode E (NODE) is

the beginning node and enode E (NODE) is the end(target) node.

The definitions of various edges described in definition 5.1 are:

assuming edge A { begin(edge) E Begin-Set A target(edge) E Target-Set }

edge set edge 	begin(edge) 	target(edge)

(E:data) 	Data-edge 	: 	Var_Def 	VarUse

(E:ctrl) Ctrl_edge 	: 	(N: ctrl) 	(NODE)

(E: back) 	Back-edge 	: 	Indv..Def 	Indv_Use

(E: time) 	Time-edge 	: 	Time-Beg 	Time-End

where 	Var_Def - 	{ n E (N:oper) 	where the value is defined }
Var_Use - 	{ n c (NODE) 	where the value is used }

Indv_Def - 	{ n E (N:oper) 	assignment within loop }
Indv_Use - 	{ n E (NODE) 	usage within loop }

Time-Beg - 	{ n E (NODE) 	time constraint begin node }
Time-End - 	{ n E (NODE) 	time constraint end node }

An example of the edges is shown in figure 5.3. Notice that back-edge which

denotes the data dependence of an inductive variable points in the opposite di-

rection to the program flow, (node6 -f node3) in the figure. At the same time,

ctrl_edges which denote the control dependence emerge from the control node,

node2, only. Consider again the example in figure 5.2 which has control and data

edges only. The numerous data-edges reflect the fact that the variables { x, y }

are used widely in the description. Ctrl_edges which emerge from node4 go to

{ nodes node6 node7 node12 node13 } and those from node7 go to { node8 node9

82

CHAPTER 5. DESIGN REPRESENTATION

1 	a=O;
2 loop
3 	c:=n>b;
4 	exit when (c);
5 	a:=a+b;
6 	n:=n-1;

end loop;
7 	A:=a;

. 	Back Edge

Data Edge

- - - - 	Ctrl Edge

Figure 5.3: An Example of the Edges.

node10 node11 } respectively. For node14, since its input variables are { in, n }, it

naturally depends on { nodes node9 node10 node11 node12 node-13 } where { in, n }

are defined. Before we go on to the dependent sets, it is clear that besides the

data-edges, the execution order is determined by the ctrl_edges as well.

5.2 Precedent and Successive Sets

To establish the data dependencies, we will require the following definitions asso-

ciated with the control-data flow graph.

Definition 5.5 The precedent set of a node, node, is defined as:

PreN(node) 	{ node node E (NODE) A (node - node) } c (NODE)

PreE(node) ef
{ edge edge E (EDGE) A target(edge) = node j } g (EDGE)

Definition 5.6 The successive set of a node, node, is defined as:
clef 	 -

SucN(node) = { node node E (NODE) A (node 	node) } C (NODE)

SucE(node) I { edge edge E (EDGE) A begin(edge) = node } 	(EDGE)

It is easy to see that

edge E (E:ctrl) V edge E SucE(node), if node E (N:ctrl).

This is because edges going out of a control node can only be control edges.

Similarly, edges going out of an operation node can only be data edges.

CHAPTER 5. DESIGN REPRESENTATION

edge E (E:data) V edge E Sucs(node1), if node E (N:oper).

However, edges going into control or operation nodes are a collection of control and

data edges. Data edge(s) are essential for a control node because to evaluate the

conditional expression, data value(s) are needed. Following on from definition 5.5

and 5.6, we have the following definitions:

Definition 5.7 The data precedent set of a node, node

Data_P reN(node
de

)
f
 (N:oper) fl PreN(node1)

Data_PreE(node)
def

 (E:data) fl PreE(node)

Definition 5.8 The ctrl precedent set of a node, node

CtrlJreN(node)
def

 (N:ctrl) fl PreN(node)

CtrlPreE(node)
dcf

 (E:ctrl) fl PreE(node)

Definition 5.9 The data successive set of a node, node

Data_SucN(node) tef (N:oper) fl SucN(node)

Data_SucE(node)
def

 (E:data) fl SucE(node)

where

Data.SucN(node) = SucN(node) and

Data_S ucE(node) = SucE(node) if node E (N:oper).

DataSucN(node) = 0 A
Data_SucE(node) = 0 if node E (N:ctrl).

Definition 5.10 The ctrl successive set of a node, node

CtrLSucN(node) I (N:ctrl) fl SucN(node)

CtrlSucE(node) I (E:ctrl) fl SucE(node)

where

CtrL.SucN(node) = SucN(riode) and

Ctrl_SucE(node) = SucE(node) if node E (N:ctrl).

CtrL.SucN(node) = 0 A
Ctrl_SucE(node1) = 0 if node E (N:oper).

Using definitions 5.1 to 5.3 and 5.7 to 5.10, we can establish a collection of at-

tributes for each node.

CHAPTER 5. DESIGN REPRESENTATION

Definition 5.11 Each node E (NODE) has the following fields:

Identity : 	node identifier e { 1 . . 	(NODE) 11

Type : 	type E { fork I loop I exit 	call I stat }

if E (N:stat) then type e { arith I logic I trans I port I array }

Operation : 	for node E (N:stat), the operation which it performs

Block : 	Basic block identifier

Control : 	CtrlYreN(node), CtrlYreE(node)

Pre-Set : 	Data_PreN(node), Data_PreE(node)

Suc_Set : 	CtrLSucN(node), CtrLSucE(node) or

Data_SucN (node), Data_SucE(node)

For instance, the attributes of node6 and node8 in figure 5.2 are

1. Identity : 	7 1. Identity : 	8
2. Type : 	fork Type : 	stat:arith

 Operation : 	(nil) 3. Operation : 	+
4. Block : 	2 4. Block : 	3
5. Control : 	{ 4 } 5. Control : 	{ 7 }
6. Pre-Set : 	{ 6 } 6. Pre-Set : 	{ 2 51
7. Suc_Set : 	{ 8 9 10 11 } 7. Suc_Set : 	{ 14 }

Since nodes within the same basic block will have the same Block identifier, and

nodes within the same control block will have the same Control set, they can

be used to check the relation between two nodes. Finally, there are dependence

relationships with nodes.

Definition 5.12 Node s is said to be data dependent on noded ,

(Node data
Noded), if

a path from noded to nodej .s.t. V edge e path, edge E (E:data).

Definition 5.13 Node j is said to be control dependent on node,

(Node '-- Node s), if

nodes E Ctrl_SucN(node) .s.t. 3 a path from node, to node,.

For example, node10 is data dependent on { node1 node2 node5 } and control

dependent on { node4 node7 }. At the same time, node15 is data dependent on all

the nodes except { node3 node6 node4 node7 } and control dependent on { node4

node7 }.

1 X:= Xi;
2 y:=Yi;
3 a:=y>0;
4 case ais

when '1' =>
5 p:=y+x;
6 b:=x>y;
7 case bis

when "1" =>
8 m:=y+p;
9 n:=x/2;

when "0" =>
10 m:=x+p;
11 n:=y*2;

end case;
when "0" =>

12 m:=x+y;
13 n:=0;

end case;
14 z:=m+n;
15 Zout:=z;

/

CHAPTER 5. DESIGN REPRESENTATION

The original CDFG consists of data dependencies and control dependencies. By

manipulating these dependencies, various interesting transformations can be de-

rived.

5.3 Simplification

Simplification preserves the control block structure of the original description. The

aim is to simplify the dependencies of the nodes. The simplified graph is referred

to as the Program Flow Graph(PFG). PFGis a simple representation of the

Figure 5.4: The Original Description and the Simplified CDFG, PFG.

description. It shows the most basic execution sequence. Operations are bound

by the control nodes which can be referenced back to the control structures of the

original description. However, local parallelism governed by data dependencies

within basic blocks is represented explicitly. The PFGof sollo?7 is shown in fig-

ure 5.4. On comparison with the original description, the graph clearly reflects the

structure of the description, the nested condition branches with node4 on top of
node7. In addition, node4 and node7 will shield the operations inside their control

CHAPTER. 5. DESIGN REPRESENTATION

block from receiving any data. Every control body has only one entrance which

will only be activated when all the data required by the operations inside it are

valid.

For instance, in figure 5.4, the operations of { nodes, node9, node10 node11 }

are bound by the control node node7 which in turn is governed by the input data

dependence of the basic blocks. On the other hand, parallelism within the basic

block, like { node8, node9 } and some others are shown clearly.

When scheduling is applied on this graph, the schedule sequence will be more-

or-less the same as the PFC. The nested control structure will be kept, and

hence will be evaluated sequentially; from upper level, node4, to lower level, node7 .

To transform the CDFG into PFG, the following sequence

Apply(1) V node E (NODE),
data

V n E { n (n - node) }

if 3 (nc - n) s.t. nc E (N:ctrl)

then generate(node -+ nc).

Apply(2) V (node, - node&) E (EDGE),

if 3 path from nodea to nodeb with length(path) > 1

then eliminate (path).

can be applied recursively until the graph reaches its simplest form. Apply(1) is

to direct the datafiow to the single control entry, so that the datafiow is guarded;

for example adding edges to node4 , ({node, node2 1 	node,) and edges to node7

({node5 node6} 	node7). Apply(2) is o eliminate any redundant edges, espe-

cially those data edges from node1, (node1 	{node 5 node-6 node9 node10 node12})

and those from node-2., (node2 - {node5 node-6 node11 node12 }).

5.4 Temporary Variables

The aim of transformation is to extract as much fine-gain parallelism within the

graph as possible. Therefore, it is important to identify the areas with potential

CHAPTER 5. DESIGN REPRESENTATION

parallelism. Then transformations can be applied to extract them. To identify

the potential areas, we need to look at the properties exhibited by temporary

variables.

Definition 5.14 Temporary variable (tv) is a variable which is defined and

used (born and dead) within a basic block. Temporary variable assignment is a

node, node, e (N:oper) which assigns a value to a temporary variable, tv, such

that Define(tv) = { node }.

Since a temporary variable is defined and used within a basic block, all the nodes

in Define(v) and Use(tv) are inside the same basic block.

Block(node) = Block(node) V node E Use(tv).

Based on this definition, node6 , in figure 5.2, is a temporary variable assignment

because

Use(b) = { node7 }, Block(node7) = Block(node6)

Transformation 5.15 Code motion with sequential statements.

For an acyclic, loop-free (without back-edge) sub-graph, temporary variable as-

signment can be performed out of sequence, provided that the data dependencies

are satisfied and the inputs for the operation are available.

For instance, assume listing 5.16a is a basic block.

Listing 5.16 	si: a_i 	x + a: s3: t_i := x + y;
 b_i:=y+b; si: a_i:=x+a;
 t_i:=x±y: s2: b_i:=y+b:
 sum := a1 + b_i; s4: sum := a_i ± bi:

s5: reg := t_1 + sum; s5: reg := t_1 + sum;

(a) (b)

and { a_i b_i t_1 } are temporary variables, the temporary variable assignments,

{ si s2 s3 }, can be executed in any order. Actually, provided the input depen-

dencies are maintained, the execution order of the statements inside a basic block

can be re-arranged to take advantage of the available resources. In the above

description, { si s2 s3 } could be executed in parallel if 3 adders were available,

or combinations such as { si s2 }, { s3 s4 }, etc could be used with less resources.

CHAPTER 5. DESIGN REPRESENTATION

This potential is captured explicitly in the original CDFG and also in the simpli-

fied PFG.

Transformation 5.17 Code motion with condition statement.

For an acyclic sub-graph, control dependence on temporary variable assignment

can be ignored. This is because the effect of the assignment will only affect the

temporary variable. Wherever it is defined, it will only be used inside its original

basic block. However, when a temporary variable assignment is moved out of

its original basic block, it is no longer a temporary variable assignment and the

assigned variable is no longer a temporary variable.

For example, trnp in figure 5.5a is a temporary variable. When the assignment

is moved out of the control block, as in (b), its execution is no longer guarded

by the condition node and the data dependence of it will cross the control block

boundary.

X

case

tmp/

then 	 else
th else

if (ci) then
tmp := x + y;
reg := Imp + 1;

else
a.

tmp := x + y;
if(cl) then

reg := tmp + 1;
else.....

Figure 5.5: Code notion with Temporary Variable Assignment.

RON

CHAPTER 5. DESIGN REPRESENTATION

5.5 Local-Data Transformation

Instead of waiting until all the data required by the control block is valid, the

conditional expression can be evaluated whenever the values it requires are ready.

Then, branching can be performed. The execution of the operations inside the

control block can wait until their inputs are available.

Transformation 5.18 Parallel branching: nested condition statements

Nested condition statements can be merged into one if data dependence is pre-

served. In this case, the condition expressions can be evaluated and branched

together. In particular when a pipelined control unit is used, the branch over-

head is significant. Parallel branching can improve the performance. Consider the

following,

Listing 5.19 	if (Comd1) then
Block0 ;
if (Cond2)

then Block1 ;
else Block2 ;

end if;
else Block3 ;
end if;

(a)

case (Condi // Cond2)
when "11" 	Block0; Block 1 ;
when "10" => Block0; Block 2 ;
when "0X" Block3 ;
end case;

(b)

If the condition expression Cond2 does not depend on any value defined in Block0 ,

then it can be evaluated in parallel with the first condition expression Cond1.

Sometimes it may not need to be evaluated at all. Adjustment of the test con-

dition can be made to compensate for this effect. The "don't care" condition

present in the above example can easily be accomplished during the synthesis of

the controller.

Transformation 5.20 Parallel branching: disjoint condition statements

Disjoint conditional statements can similarly be grouped into one unit. In this

case, if the latter condition expression, Cond2 in listing 5.21a, does not depend

on the values defined in the control block of the first one, Cond1, they can be

evaluated in parallel. However, this time we need to consider all the possible

paths through the two condition statements. Listing 5.21 demonstrates this case,

MN

CHAPTER 5. DESIGN REPRESENTATION

here the basic blocks originally inside the control blocks are combined into the

different branches.

Listing 5.21 	if (Corid1)
then Block0 ;
else Block1 ;

end if;
if (Cond2)

then Block2 ;
else Block3 ;

end if;

(a)

case (Condj // Cond2)
when "11" = Block0; Block2 ;
when "10" 	Block0; Block3 ;
when "01" z' Block1; Block2 ;
when "00" = Block1; Block3 ;
end case;

(b)

Although this appears very complicated when performed on the description, ap-

plied on the CDFG , it is much simpler. Figures 5.6 and 5.7 depict the two

transformations. For figure 5.6, we assume that there are data dependencies be-

tween Block0 and Block1, Block2. Transformation 5.18, parallel branching with

nested condition statements, propagates the control edge, (Cond1 - Cond2), from

Cond1 to the descendants of Cond2 ,

Apply(1) eliminate (Cond1 - Cond2),

Apply(2) V node E CtrL.SucN(Cond2), generate (Cond1 -* node).

F igure 5.6: Parallel Branching with Nested Condition Statements.

Note that although the two conditions are evaluated in parallel, B lock0 is still

bound by Cond1 only and not by Cond2. For transformation 5.20, parallel branch-

ing with disjoint condition statements, we again assume that there are data depen-

 I

91

	

/1 	 Il

	

I 	 II
F

F 	 I
F 	 I 	 I

CHAPTER 5. DESIGN REPRESENTATION

Figure 5.7: Parallel Branching with Disjointed Condition Statements.

dencies between the operations in the control blocks of the two disjointed condition

statements. Since Cond2 does not depend on the operations in Block0 and Block1 ,

it can be evaluated as soon as possible and in parallel with Cond1. No extra edge

is required as depicted in figure 5.7. The data dependence ensures that Block0

or Block1 will be executed first, the results from which will be passed either to

Block or Block3.

From the definition of a temporary variable, 5.14, we can identify that b as assigned

by node6 in the example .sollorj is a temporary variable. By applying transforma-

tion 5.17, code motion with condition statement, and transformation 5.18, parallel

branching with nested condition we get the graph in figure 5.8.

In summary the transformation scheme is:

• 	Apply(1) identify all the temporary variable assignment, node.

• Apply(2) check for transformation 5.17: code motion with condition statement
V node E CtrLPreN(node t)

eliminate (node - node).

Apply(3) check for parallel branching transformation 5.18 and 5.20
V node, G (N:fork) U (N:exit)

if 3 n E Ctrl_SucN(node) .s.t. n E (N:fork) U (i":exit)
then eliminate (nodes - n)

V n e CtrLSucN(n) generate (nodes -p n).

CHAPTER 5. DESIGN REPRESENTATION

1 X:= Xi;
2 y:=Yi;
3 a:=y>0;
6 b:=x>y;
4,7 case (a II b) is

when "11" =>
5 p:=y+x;
8 m:=y+p;
9 n:=x/2;

when "10 =>
5 p:=y+x;

10 m:=x+p;
11 n:=y*2;

when 'OX' =>
12 m:=x+y;
13

end case;
14 z:=m+n;
15 Zout:=z;

Figure 5.8: Local-Data transformation and the Resultant Description.

These can be applied recursively until no further transformation can be placed.

5.5.1 Global-Data Transformation

This method is the most radical. It tries to extract all the parallelism in the

description. First, the following transformation 5.22 is applied to all operation

statements.

Transformation 5.22 Statement splitting

The aim is to separate the computation part and the assignment part of the

operation by introducing temporary variables.

Listing 5.23 	4. 	x := a ± b; 	 4a. 	t := a + b;
4b. 	x:=t;

(a) 	 (b)

When this transformation is applied repeatedly, a lot of temporary variables will

be generated. For the example solo? , figure 5.9 is generated by the application

of statement splitting. Subsequently, code motion is also applied to move all the

93

1 	x:=Xi;
2 	y:=yi;
3 	a:=y>0;
4 	case ais

when "1"
5a itl:=y+x;
5b p:=itl;
6 b:=x>y;
7 case bis

when "1'
8a it2:=y+p;
8b m:=it2;
9a it3:=x/2;
9b n:=it3;

when "0" =>
lOa it4:=x+p;
lOb m:=it4;
ha it5 :=y*2;
lib n:=it5;

end case;
when '0" =>

12a it6:=x+y;
12b m := it6;
13 n:=0;

end case;
14 z:=m+n;
15 Zout:=z;

CHAPTER 5. DESIGN REPRESENTATION

Figure 5.9: Operation Decomposition.

computation parts out of the control blocks.

Transformation 5.24 Global speculative evaluation

For a control block to which transformation statement splitting, 5.22, and parallel

branching, 5.18 5.20, are applied, the block can be de-structured and divided into

two sections:

computation section: the operation parts of the transformed statements.

assignment section: the assignments parts guarded by the conditional ex-

pressions.

As shown in figure 5.10 the computation section, from statement 1 to 12a, con-

sists only of computation statements. After statement 4,7, there are the selective

assignments where temporary variables transfer their values to the corresponding

variables when the right conditions are met.

It is important to notice that computations are performed without regard to the

outcome of the condition expressions. By storing the results in temporary van-

94

CHAPTER 5. DESIGN REPRESENTATION

1 x:=xi;
2 y:=yi;

(.3) 11' 	I 	\
3 a:=y>O;
5a itl:=y+x;
5b p:=itl;

5a 6 b:=x>y;
8a it2:=y+p;

parallel 5b - - 	- 	- 9a it3 :=x/2;
execution _

- ha
lOa it4 := x + p;

2 1 	8a 	0 	6 	9a
its :=y*2;

12a it6 := x + y; - - - - - 4,7 case (a / I b) is
when '11' =>

-%

8b m:=it2;
parallel 	/ ' ' : 9b n:=it3;
csignment/_ _, 	% - ' when "10" => (lOb m := it4;

i3 2 	11 	8b 	0 	9b lib n:=it5; - when "OX' => - - -
12b m:=it6;
13

1 A end case;
14 z:=m+n;
15 Zout:=z;

Figure 5.10: Global-Data Transformation and the Resultant Description.

ables, the guarding conditions can be ignored. Then, later, when the conditions

are valid, they are returned to their original variables. In this way, the compu-

tation section will contain a high degree of parallelism. As in figure 5.10, { 12a

ha 8a iDa 6 9a }, these can all be executed in parallel. It is probably more than

sufficient to keep all the resources busy. By using parallel branching, the selected

assignment will only involve very short delays and can handle a large number of

parallel assignments, { 13 12b llb 8b lOb 9b }.

It is very good to obtain all these potential parallel-executable computations.

However, it seems that we have reached a stage where we have more parallelism

than the hardware can digest. The advantage offered by mutually exclusive con-

ditions, such as resource sharing, are also sacificed. As a result, the global-data

transformation will require more resources than should be needed and thus cause a

waste of resources. On the other hand, if we retreat back to the conventional style

in section 5.3, we will lose the flexibility offered by high level synthesis. The key

issue is the condition expressions in the condition statements. A method is needed

to represent the guarding conditions so that it is possible to release parallelism

95

CHAPTER 5. DESIGN REPRESENTATION

when there is abundant resources, and to support resources sharing when there is

not enough.

5.6 Delay Representation of Functional Unit

In order to handle the delay of different types of functional unit efficiently, we

need a method to describe their operational properties. Functional units can

be combinational or sequential; ranging from as simple as a NAND gate to as

complex as a processing array. The method must be able to handle the wide

variety of functional unit easily.

Definition 5.25 The method we used is operation triplet. Operation triplet is a

union of three timing related properties:

{ delay : latency : cycle-time }

delay - The time between the input initiation and the
availability of the result.

latency - The minimum number of cycles that must beelapse
before a new input can be initiated again.

cycle-time - The minimum clock period required for correct operation
of the functional unit.

Combination circuits will have the delay enti: only, the latency and the cycle-

time will be ignored. On the other hand, for sequential elements, all three are

needed.

Definition 5.26 The delay entity is described as delay-cycle-delay. Delay-

cycle-delay is a summary of three variables describing the delay position of the

functional unit related to the cycle boundary, figure 5.11.

([x]+{y}c+ [z])

x -- leading-time, the delay at the input before the first latch(ns).
y 	-- the number of internal stages(cycle).
z -- trailing-time, the delay at the output after the last latch(n.$)

For example, if a functional unit has combinational logic in front of its input

latches and after its output ones, then, x will be the delay of the input logic, y

will be the delay in terms of cycles and z will be the delay of the output logic.

CHAPTER 5. DESIGN REPRESENTATION

(::---ICL~
Latch
CL

Latch
CL

Latch

c CL

i-~

[xJ+[y]c+[z]

Figure 5.11: The "delay-cycle-delay" notation of a Functional Unit.

Also, the setup and hold time of a register can be represented as (5 + Oc + 5),

where y is assigned zero. It means that the delay is crossing a cycle boundary. A

similar notation can also be used for the delay of a finite state machine controller.

Other examples: the operation triplet of a pipeline functional unit with 5 cycles

delay and 2 cycle latency will be:

{ (10 + 5c + 20) : 2cycles : 30ns }
while a simple adder will be:

{ (40+Oc+0): -: —}.

5.7 State Overhead

To avoid delay fault the length of a cycle must be long enough to accomplish

all the transfers, logic and data operations between adjacent storage elements. A

cycle can consist of:

Regr -* Bus - Mux - ALU - Bus -p Mux -i Regr;

The input transfers from registers(Regr) through buses(Bus) and multiplexors (Mux)

to the functional unit(ALU); the output transfers from the functional unit through

buses and multiplexors back to the registers. For an operation executed in a cycle,

as in figure 5.12a, we have:

Definition 5.27 State setup time - time from clock edge to the start of the

operation. This accounts for the functional unit input multiplexor delay, and the

control signal generation delay.

WN

CHAPTER 5. DESIGN REPRESENTATION

71 	
lilt 1111111fillitillill 	I'll'

State setup time

One 	OP 	Operation state

I 	
State hold time
I'll'

a. 	 163

Figure 5.12: State Setup and Hold Time.

Definition 5.28 State hold time - time from the end of the operation to the

next clock edge. It consists of the register input multiplexor delay, and the control

state transition delay.

Since resource constraints are given, it is possible to estimate the upper bound

delay of the multiplexor tree required for each kind of resource. When operations

are scheduled with the schemes of multi-cycling and chaining, state setup and hold

times are affected according to the boundary conditions. For operations which are

scheduled in multi-cycle, such as ON in figure 5.12b, the state hold time will

apply to the cycle where the execution ends. In the case of operation chaining,

such as { OP1 0P2 } in figure 5.12b, the state hold time of the first operation

and the state setup time of the following one will be adjusted to account for the

transmission and multiplexor delay only.

Chapter 6

Resources Restricted Scheduling

6.1 Introduction

As fabrication technology has continued to grow, we now have the capability to

put more functional units on a single chip. In order to maximize the efficiency of a

design, resources must be utilized as fully as possible. In the context of high-level

synthesis, in order to fit a design within an allowable silicon area, a significant de-

gree of resource re-usage is required. Within the search for an optimal area-time

trade-off, area must be used as efficiently as possible. These challenges call for a

scheduling methodology which is intelligent enough to extract the greatest timing

advantage out of the available resources.

In this chapter, we describe a scheduling methodology for high-level synthesis of

designs with a significant amount of control structures. The objective is to utilize

all the available resources while scheduling with respect to resource restriction.

To do so, a vector/matrix structure at each node is built. It provides a global

view of resource usage. It supports the migration of operations across basic blocks

to wherever idle resources are available. With it, we formulate a list scheduling

algorithm in which the dispatching priority changes dynamically with respect to

resource availability.

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

6.2 Previous Work

Older scheduling algorithms which allocate operations into clock cycles were often

applied only to one basic block of the behavioural description at a time. The

extraction of potential parallelism from the description as a whole was thereby

restricted. The fine-grain parallelism obtained was often not sufficient to keep all

the functional units busy. An alternative approach has been adopted in MAHA

[PARK 86] in which the conditional branching structures are translated into fork-

join pairs. The graph is then scheduled as a whole. Unfortunately, MAHA appears

not to be able to take advantage of mutually exclusive conditions for resource shar-

ing. Force Directed Scheduling [PAuL87] is able to explore this potential. However,

in both cases, when an operation is placed inside a fork-join pair, the scheduler is

not allowed to move it even though there are abundant resources elsewhere.

The percolation scheduling algorithm described in [P0TA90] performs parallelisa-

tion across basic block boundaries. Starting with an optimal schedule, semantics-

preserving transformations are applied repeatedly to convert the program flow

graph into a more parallel one. The name 'percolation scheduling' reflects the

style of the transformation to move data-independent operations upwards across

basic block boundaries towards the top of the program graph. This technique is

closely related to our work. However, it does not take into account the effect of

resource restrictions.

6.3 Resource Restricted Scheduling

To overcome these problems, we have developed the Resource Restricted Schedul-

ing, R2 Sch scheme. Given the input description and the resource constraints, the

operations are scheduled into a minimum number of control steps. Fine-grain par-

allelism is extracted as much from the description as possible. This is achieved

by means of aggressive migration of operations across basic block boundaries. At

present, R2Sch can handle:

- Resource constraints, including restriction on abstract buses and memory

I/O,

100

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

- Scheduling with respect to resource constraints,

- Scheduling with multicyding and chaining,

- Optimisation beyond the limit of basic blocks,

- Functional units with different delays and stages of pipelining,

- Resource sharing with mutually exclusive conditions,

- State overhead (control and steering logic delay),

- Different controller styles,

- Simple timing constraints.

The main criteria of the scheduling algorithm are:

Operations should not be restricted by basic block structures or fork-join

pairs. They should be allowed to migrate anywhere within the schedule

space

Specification of resource restriction should be allowed for fast area-time

trade-off investigation and can be specified either by human designer or

by expert system.

The first critique is to ensure that there is enough flexibility associated with each

operation so that shortcomings introduced by control boundaries can be overcome.

However, when an operation migrates outside a fork-join pair, the condition un-

der which it executes will be changed. Operations originally present in different

branches will no longer be mutually exclusive. The scheduler must be able to take

care of the condition changes when an operation is scheduled outside its original

fork-join pair.

For the second critique, we believe that resource restriction is a more direct and

economic scheduling control attribute than the delay constraint mentioned in some

literature. It is at a higher level than layout area or power consumption, and hence

easier to understand and manipulate. For instance, if the resource unrestricted

scheduling achieves the maximum parallelism with 3 multipliers and 10 cycles de-

lay, then by restricting the number of multipliers to 2, a new delay value can be

obtained immediately. However, for a delay constraint approach, it is difficult to

estimate the cycle difference in order to save a multiplier.

101

1 X:= Xi;
2 y:=Yi;
3 a:=y>0;
4 case ais

when "1" =>
5 p:=y+x;
6 b:=x>y;
7 case bis

when "1" =>
8 m:=y+p;
9 n:=x/2;

when "0" =>
10 m:=x+p;
11 n:=y*2;

end case:
when "0' =>

12 m:=x+y;
13 n:=0;

end case;
14 z:=m+n;
15 Zout:=z;

I

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

In order to allow operations to migrate freely within the schedule space, we have

developed condition vectors and resource vectors. They represent the con-

ditions and the resources situation of each operation. By manipulating them,

we can formulate a global priority function which compares favourably with the

list scheduling algorithm. In the following sections, we reveal the algorithm step-

by-step. Experimental results, observations and discussion of the method are

presented at the end.

The example, sofloij , in figure 6.1 will be used to explain the various concepts.

Figure 6.1 depicts its Program Flow Graph (PFG) in which local parallelisation

is extracted in each basic block. The internal representation of sollol7 takes the

form of a Control-Data Flow Graph (CDFG) shown in figure 6.2. It represents

the detailed control and data dependencies of each node.

Figure 6.1: The Program Flow Graph of .soHo77

102

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

Data Dependence

Control Dependence

Figure 6.2: The Control, Data Flow Graph of solloi

6.4 The Resource Vector

When several kinds of resource are used to implement the behaviour, it is necessary

to keep track of the usage of each type of resource. To do so, we introduce the

Resource Vector(RV) each element of which represents one kind of functional

unit.

RV(FU1, FU2, . . . FU,, iobus, iomem)

	

FU, 	functional units which are needed to implement the design
joints - abstract input-output buses

	

iomern 	abstract input-output memory ports

For instance, if adder/subtractor and multiply/divide units are required for imple-

mentation of the design, then an RV such as: 	RV ([+,-], [* ,/], iobus, iomem)

can be formulated. Each node in the program flow graph will be assigned an

RV representing the quantities of each resource that node requires. For the ex-

ample soHoi , in figure 6.3, assuming that adder/subtractor unit (ASU)s are

allocated for (+, >)s, multiply/divide unit (MDU)s are allocated for (* , /)s, and

concern is on functional units and I/O buses only, we have the RV:

103

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

RV([+, >]' [* , /] iobus), or

RV (ASU, MDU, iobus)

	

in 	in

	

(0,0,1),-... 	 (0,0, 1)

4 case (0, 0,0)
(1,0,3)

13 (0,0,1) 	13 0 12 + 5

+ 	

(1,0,3)

12 (1,0,3)

7 case (0,0,0)

* (8)+ (io)+ (9)!

(iI (0,1,2)

14 +(1,0,3) 	 (1,0,3)

RV ([+,>], [*, /,iobus 	 10 (1,0,3)

(0,1,2)

out

Figure 6.3: Resource Vectors of soHor

The RV s of all the nodes in soil or are depicted in figure 6.3. As the requirement

for resources changes, some of the entities are changed dynamically during the

scheduling process.

6.5 The Condition Vector

The conditional branching of an acyclic program segment is considered as a tree,

Condition-branch Tree (CT). Condition branches are the descendants created by

the conditional statements. The choice of branch is governed by the evaluated

result of the conditional expression. Each conditional statement can have two or

more branches:

if-then-else - two branches

case-when - two or more than two branches

104

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

if ci then bil
if c2 then b21

else b22
else b12

(a)

if ci then bil
if c2 then b21

else b22
if c3 then b3i

else b32
else b12

(b)

M.

Figure 6.4: Nested and Disjointed Condition Statements

Nested conditional statements, as in figure 6.4a, will generate a descending diver-

sified tree, while disjointed conditional statements, as in figure 6.4b will create a

horizontally diversified tree. A leaf in the CT is a basic block. These branches

represent the conditions under which operations will be executed. A Condition

Vector (CV) is an array of bits, each of which represents the conditions under

which an operation should execute. This is a very useful tool for detecting mutu-

ally exclusive operations.

6.5.1 Branch-Based Condition Vector

The condition vector contains a single entry for each branch in the CT and the

value of this vector at each branch reflects the position of the branch in the CT.

Within the vector there is a sub-vector for each conditional statement. In fig-

ure 6.5, the conditional statement with condition c1 has a sub-vector con -",sting of

the first two entries. Branches reached by following the first branch will have the

first entry 1 and the second 0. Unrelated sub-vectors are left blank.

The complete condition vector is a concatenation of the sub-vectors from all the

conditional statements:

.sbv(CS1) © sbv(CS2) © sbv(CS3).......sbv(CS) 1.

For instance, in figure 6.5, (Statb22) has CV [10 01 --]. This means that it is

105

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

if ci then
[01----] <Stat bli>

if c2 then
[1010--] <Stat b21>

else
[1001--] <Stat b22>

end if
if c3 then

[10--1] <Stat b3i>
else

[10--01] <Stat b32>
end if

else
[01----] <Stat b12>

end if

19

CV [bib b12 b2i b22 b31 b321

Figure 6.5: The Branch-Based Condition Vector

reachable from { bil b22 }, unreachable from { b12 b21 } and unrelated to { b31

b32 }.

This branch-based Ms different in concept from a path-based CV. A path-

based CV would represent the path in which the node belongs while branch-based

CV records the conditions under which the node is executed. A branch-based

CV is better in handling conditional structures. Irrespective of whether they are

nested or disjoint, the number of entries will only increase linearly with the number

of branches. In the following sections, all CV are referred to as branch-based

CV only. There are two essential operations with condition vectors:

exclusive detection and vector merging.

Exclusivity Detection

For exclusivity detection, two statements are mutually exclusive if they belong

to different branches of a fork. This fact is reflected in the CV s. Two vectors

are mutually exclusive if they have entries that are different within their common

sub-vector i.e. their common ancestry. Referring to figure 6.5, (Stat&21) with CV

10 10] and (Statb12) with CV{ 01 -- 	are mutually exclusive. The same

also applies to {(Statb2l) [10 10 - -], (Statb22) [1001 --]} but not, for instance,

to {(Statb2l) [10 10 --], (Statb30 [10 -- 10]}.

106

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

Vector Merging

During scheduling, when two vectors are detected to be mutually exclusive, they

can share the same resource and have their vectors merged. To merge two CV s,

the common exclusive sub-vectors are OR-ed, and the remaining sub-vectors copied

over. The operation is both commutative and associative. Consider (Statb2l),

(Statb22) and (Statb12).
(Statb2l)+ ((Stat b22) + (Stat b12)) = [1010]+ ([1001] + [01])

= [1010.]+{1101]
= [1111]

((Stat b22) + (Statb2l)) + (Stat b12) = ([10 01 --] + [10 10]) + [01 	_]
= 10 11

= 11 11

6.5.2 Propagated Condition Vector

In order to formulate a global scheduling algorithm, there is a need to extend

the branch-based CVto reflect the global data dependencies across basic blocks,

i.e. the conditions under which data is defined and used. We call the extended

condition vector the propagated condition vector (PCV). In this case, the CV of

each data define/use node is propagated forward and backward through the control

and data dependence arcs. The propagated condition vectors are then bit-wise

OR-ed with the original CV to form the PCV.

Listing 6.1 	1 	[-] 	110 1 b 	x + y;
2 	[] 	[11] case cis

when "1"
3 	[10] 	[10] p:=x+b;

when "0"
4 	[01] 	[01] p:=y+y;

end if;
CV 	PCV

Consider the code segment in listing 6.1, the PCVof node1 is able to show that

the definition of variable b is used only in node3 but not any other branch. This

property can help to enhance mutually exclusive resource sharing. Figure 6.6

depicts the PCV of .soHoi after the propagation. The PCV of node1 shows that

its definition of x is used in all branches while the PCV of node5 indicates that its

definition of p is not used in the second branch (the second entry of its PCV).

107

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

1111 	1111

>

case 1111 1011 	

1011
@ 01W

case 1011 01 	 '7

* (x)+ (io)+ (9)!

1111 1001 1010 1001 1010

A
1111

out

Figure 6.6: Propagated Condition Vectors(PCV) of SOH 077

6.6 Resource Condition Matrix

The propagated condition vector(PCV) and the resource vector(RV) provide a

powerful way to look at the utilisation of resources. By crossing the two vectors,

we get a 2-dimensional profile, Resource Condition Matrix (RCM). This matrix

associates the PCVof a node with every resource in its RV. It shows the usage

of each resource under every condition. Using these matrices, extensive global

resource sharing can be carried out. For instance, with the PCV and RU for

soil . the 2-dimensional RCM view of it is constructed in figure 6.7.

RCM 1011 RCM 0000 RCM 0100 RCM 0100

	

node5 0000 	a. 1111 	b. 0000 	C. 1111

	

3033 	0000 	0300 	0300

The RCM :-,f node5 shows that branch2 is uninhabited and no multiplier is required

at all(empty second row). Therefore, the execution of node5 can overlap with any

node which requires a multiplier, an ALU in branch2 or buses in branch2 , i.e. like

(RCM a), (RCM b) or (RCM c).

UE

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

0000 0000
0000 0000 in 1111 ' 	1111

1111 2 1
0000

1011 2222 3 >
0000
3033 case

©00
00_ 1011

01 3033 \ 01 7 ca

PCV

JoL.

+5 60000

se 11011

03_ 111011
RV ol 0000

11* 	X+ 	10+9/ 313033

1111

0000 14 +
3333

0000
0000

RV 	1111 out

[tran*s:P]r CV [case(4), case(7)]

0000 1010 1001 0000
1001 0000 0000 1010
2002 3030 3003 2020

Figure 6.7: Resource Condition Mat rix(RCM) of soHo.

6.7 List Scheduling

The scheduling algorithm, R2 Sch , can be divided into two phases.

The first phase scans the flow graph to gather information. Various static

parameters like depths, path delays, CV s, PCV s and RCM s of the priority

function are computed.

In the second phase, a list of candidates ready for scheduling is established.

The most urgent one is chosen according to the priority functions (to be de-

scribed in the next section). After a node is assigned, the candidate list and

the resources-used vector will be updated. During the process, operations

subject to data dependence constraints can migrate to wherever resources

are available.

109

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

6.8 Priority Functions

Three functions are used for determining the priority for scheduling.

Resource Priority Function

Path Delay Function

Depth Function

The resource priority functions of the scheduling candidates are considered first.

If they are equal, then the path delay functions are applied. The depth functions

will only be used when both the above functions turn out to be insufficient.

ace. resources: 4
acc. delay: 	4 	+

acc
acc : 	

a. 	 b
resource constraints

1 adder 	higher priority

2 adder 	 higher priority

Figure 6.8: Effect of different priority functions.

Why is a composition of priority functions needed? In figure 6.8 for instance, the

current node has two different paths, { a b } to the output. If only the path delay

or depth function is considered, path b will have a higher priority. However, it

will only be true if there are enough resources to realize path(a) in less than four

levels. In particular, if only one adder is available, the above priority is clearly

defective. A consideration of the accumulated resources against the resource con-

straints together with the accumulated delay can reflect a better priority for the

whole situation.

110

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

The user-defined execution probability of the condition branches will also be con-

sidered when there are several computations competing for limited resources. The

formulation of the priority function can be summarised in figure 6.9. The axes rep-

resent the conditions, the resources, and the nodes. The resource-condition plane

Resource

Resource Condition Vector (RCM)
Resource Vector (RV)

Single Node

	

Accumulated RV 	I 	Accumulated RCM

Condition Vector (CV)
Condition

Accumulate Pth Delay

	

NodJ/" 	V
Accumu 	

/Accumulate information

lat CV
along node path

Figure 6.9: The Formulation of the Priority Functions.

represents the information associated with each node. Sliding the plane along the

node axis, we descend the graph and accumulate information on each node. These

accumulated vectors indicate the magnitude of the dependent sub-graph of each

node.

6.8.1 Depth Function

The simplest of the functions, which is widely used in microcode scheduling ap-

plications. The priority is defined as the distance(node levels) away from the

output. This function does not take into account the delay of each operation. No

matter how complex they are, they are always assumed to take one unit of time.

Therefore, it is only used when the other two priority functions are proven to be

insufficient. The depth value of each node in soHoi is shown in figure 6.10.

111

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

in 	 in

(6)

(6)

0 	

case(5)

12+ 5

+

6 > (4)

(2) 	(4)

(11)* (8)+ (10)+ (9) /

15

(0)

out

Figure 6.10: Depth Function of soil oii

in
(220.120.220.220) 2

(220.120.220.220)

(180.40.180.180)

13 (40.40.40.40) 	

0 r+ ~ + 12 (40.80.40.40)

in
(180.80.180.180)

case (180.80.180.180)

::~) >

(180.40.180.180)

case (140.40.140.140)

r(40.

40.40.40)

I

11 (140.40.40140)

(80.40.80.40)

10 (80.40.40.80)

9 (140.40.140.40)

out

Figure 6.11: Path Delay Function of soilo?7

112

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

6.8.2 Path Delay Function

This is used as priority function in Sehwa[PARK86] for pipeline scheduling. The

path delay of a node, nodek is defined as the longest path delay from the current

node to the output. It does not however consider the effect of conditional branches.

It is therefore multiplied by the condition vector to take into account the delay of

different branches. It is defined as

Path-Delay(node) = >1n; € P(n) Delay(n1) * CV (ni)

where Delay(n) - the operation delay of n
P(n) - the longest delay path form (ni) to output

If we assume that the delay of the ALTJ is 40ns and the delay of the multiplier is

100n.s, then using the CVof soflol7 in figure 6.6, we have the view in figure 6.11.

The path delay of node8 is [80,40,80,40], i.e. the sum of node14:[40,40,40,40

and nodes:[40,0,40,0]. This priority function does provide a more realistic view

when different types of execution units are used for different operations. It shows

how urgent each node is with respect to the timing constraints and also provides

information on the delay of each branch.

6.8.3 Resource Priority Function

In order to understand the resource priority function, we need to define the accu-

mulated resource condition matrix (ARCM) first. The ARCMof a node is the

accumulation of its own RCM and the RCM s from all the nodes in its descen-

dant sub-graph. This sub-graph contains the node, which form the paths from

the current node to the output.

ARCM (nodek) = El i E SG(node,) RCM (ni)

where SG(rlodek) 	the sub-graph of (nodek)

The ARCM s of soflori is shown in figure 6.12. The ARCM provides a view of the

foreseeable resource requirement at each node with reference to the requirements

on different kinds of functional unit and conditions. By projecting the ARCM onto

the resource-node plane, figure 6.9, the accumulated resource vector (ARV) is

formed. For instance, the ARV of node4 is [4,1,15].

113

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

in

5355 	2
1011

3133 hahh 	3 >
1011
c4cc

(j)
1111
0000
4544

1211
() 0000

744

13 0 	12

+5+

4

5355 	4244
1011 	1011

in ibii 	g9gg

4244
1011

case f 8 f f

3133 :~D 1011
c4cc

case 2122
1011

10 +9 	I

9499

14) + 	1111 2121 2112 1111
T 	1001 0000 0000 1010

6446 7474 7447 6464
15

out

key: a-10 b-li c-12 d-13 e-14 f-15 g-16 h-17 i-18

Figure 6.12: The Accumulated Resource Condition Matrix of .5011077

ARV shows the resource usage in the sub-graph of the current node. When under

a resource constraint, it is the very information needed to determine the priority

of a node.

Available Vector = Constraint Vector - Used Vector(cycle)
Differential Vector = ARV(nodek) - Available Vector

The constraint vector is the initial resource constraint input into the scheduling

algorithm. The used vector(cycle) represents the amount of resource used so

far in the current scheduling cycle, cycles. The difference, the available vector,

gives the amount of resource still available in the current cycle. The differential

vector, represents the resource shortage situation with respect to each type of

functional unit. This difference from the differential vector can be weighted with

the resource costs to determine the priority of a node.

The resource priority function gives a global view of the graph, the distribution

of different kinds of operations and hence the requirement on different kinds of

1111
0000
444

0000
0000
1111

114

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

functional units.

6.9 	Cycle Condition/ Resource Vector

Since not all conditions in the conditional statements can be evaluated at the very

beginning, to record the evaluated conditions during the scheduling process, for

each cycle in the schedule space, there is a Cycle Condition Vector (cycle-CV).

When the select(case) operation of a conditional statement, CS, is assigned to a

cycle, the conditions for its branches will be valid. Assuming the current schedule

cycle is Sc, this is recorded by

V cycle-C V with c> sc + delay (controller),

record (CV(CS), cycle-CV)

Analogous to cycle-CV, there is also cycle resource vector (cycle-RV). The cycle-

RV8 is to record the resources committed so far in the current schedule cycle, Sc.

It is used in formulating the resource priority function with

Used(sc) = cycle-RV3 .

As cycle-RVs will be updated continuously as scheduling proceeds, the resource

priority function will also be updated and hence, be able to reflect the priority

dynamically.

6.10 Execution Condition/ Resource

During the scheduling process, operations subjected to data dependence con-

straints can migrate to wherever resources are available. After a node ready to

be scheduled is put into the candidate list, the order of migration is determined

by the priority function. When an operation migrates outside its basic block, the

control condition will no longer be the same. This leads to changes in the condi-

tions under which it executes and thereby its resources sharing opportunity. In

order to keep track of these changes, the execution condition vector (ECV)

and the execution resource vector (ERV) are introduced.

While PCV assumes that all the conditions are available before any execution,

ECV represents the actual conditions under which a node is executed. ECVis

115

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

derived from the PCV of the operation and the cycle-CV of the current schedule

cycle, .sc.

ECV (node1) = PCV (node1) masked-by cyc1e-CV3

[10____]= {1O__O1]masked_by[1111__]

Due to resource sharing in mutually exclusive conditions, the resource requirement

of a node in the current schedule cycle may be less than what it requires in a stand-

alone situation. Thus, the ERV reflects the actual resource requirement by taking

away resources in the RV which could be shared exclusively with the nodes already

assigned in the cycle.

6.11 Scheduling

The second phase of R2 Sch is to perform the scheduling. Nodes are scheduled

according to their data flow dependence. For the nodes in node-list,, ready to be

scheduled in cycle, sc,

V n E node-list,

compute.ECV(n, cycle-CV8)

compute...ERV(n, ECV)

if no_resource(ERV,,, Constraints, cycle-RV) then

defer(n)

else compute-priority(n)

norle = get -priority -node (node _list 8)

if operation(node) then

settle(riode), add(ERVnode , cycle-RV8)

distribute (data_flow_succ(node))

else if fork-(node) then

record_cycle_CV(CV(node))

The ECV and ERV of each node are computed first. The ERV is then compared

against the constraints, Constraints and the committed resources are recorded in
cycle-RT/. If not enough resources are available, the node will be deferred to later

cycles. Otherwise, the priority is computed using the static information from the

116

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

resource priority and the path delay functions. A node with a null ERV implies

perfect conditional resource sharing and will be given a very high priority. The

highest priority node is selected and scheduled. For multi-cycling, the node will be

settled into several consecutive cycles. In the case of operation chaining, distribute

adds the data dependent successors of node to the node-lists of the current cycle.

Otherwise, they are added to some later cycles.

Listing 6.2
RV PCV
[1] [10] 1. b:=x+y
[0] [11] 2. case
[1] [10] 3. <1>=p:=x+b
[1] [01] 4. <O>p:=y+y

Listing 6.3
RV, ERV, PCV, ECV 	 RV,ERV,PCV,ECV

[1][1][10][] 1.b:=x+y
2. case c 	 <1> 	 <0>

[1][1][10][1O] 	3.p:=x+b 	[1][0][01][01] 4.p:=y+y

For the description in listing 6.2, under a normal scheduling situation, the condi-

tional expression, c in node2 will not be evaluated before node1 . Therefore, the

condition needed to determine the branching will not be valid until the cycle after

node2 is scheduled.

Cycle-C 	= cycle-C

cycie-CTV 3 = [11].

As a result. even though the PCV of node1 is [10]. its ECV will be empty. [-

The ECV s of nod.3 and node4 are equal to their PCV' s. And assuming that

node3 is scheduled before node4 , since the operation in node4 can share the same

resource as node3. the ERVof node4 is [0]. This null ERV will give node4 a

very high priority to be scheduled together with node3 . On the other hand, if the

conditional expression is evaluated at the very beginning, listing 6.4,

Listing 6.4
RV, ERV, PCV, ECV 	 RV, ERV, PCV, ECV

2. case c 	 <1> 	 <0>
[1][1][10][10] 	1.b:x+y [1][0][01][01] 4.p:=y+y
[1][1][10][10] 3.p:=x+b

117

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

all the conditions will be available afterwards with cycle-CVs equal to [11]. This

mutually exclusive condition can be used for resource sharing. In this case, they

are the additions of node1 with ECV [10] and node4 with ECV [01]. The result

is reflected in their ERV s.

As already mentioned, by introducing temporary variables, statements can be de-

composed into computation and assignment parts. With speculative execution, the

computation parts can be migrated freely outside their basic block with changes

in their ECV s. In listing 6.4, node3 and node4 can be split into computation and

assignment parts, { 3a, 3b }, { 4a, 4b }. If two adders are available, statements

3a and 4a can migrate across node2 and yield listing 6.5.

Listing 6.5
RV, ERV, PCV, ECV 	 RV, ERV, PCV, ECV

[1][1][10][] 1.b:=x+y
{1][1][10][] 3a.s:=x+b [i][1]{01][] 4a.t:=y+y

2. case c 	 <1> 	 <0>
[0][0][10][10] 3b. p:=s 	[0][0][01][01] 4b. p:=t

This should only be carried out if data dependencies are preserved and abundant

resources are available. By using this speculative scheduling technique, the com-

putation can be speeded up globally. Significant improvement in resource utility

can be achieved and conditional operations within the basic block could be re-

duced and balanced.

As ECV s and ERV s are updated as operations are moved across the basic block

boundaries. they record the execution condition and the resources requirement

respectively. With them, the condition and the resource requirement of an opera-

tion can be represented dynamically. Scheduling of operations thus becomes more

flexible and the use of migration allows operations to be distributed more evenly.

6.12 An Example

To illustrate the benefit of code migration, we compare R2 Sch with a conventional

scheduling style i.e. where the mobility of an operation is confined to its basic

118

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

block. Consider the example named Gcej in listing 6.6. It consists of two disjoint

conditional statements.

Listing 6.6

a 	A; b : = B; d : = D; p : = P; q :

if (p > q) then C : p + q;
else c : p * q;

end if;
case c is
when 1 => y 	: ((a + b) * (c + d));
when 2 => y 	: ((a * + (c * d));
when 3 => y ((a + * (b +
when 4 => y 	: ((a * c) + (b *
end case;
Y 	:= y;

The compiled code is shown in listing 6.7. The statements have been broken down

into computation parts and assignment parts. The first vector is the CV and the

second one is the propagated condition vector, PCV.

Definition 6.7

1. [------] E__11111 [------] [------] a 	: pgt A;
2. [------3 L....iiii] [------3 [------3 b pgt B;
3. [------3 1__11113 [------1 [------I d 	: pgt D;
4. [------3 [111111] E------] i: J p pgt F;
S. [------3 [111111] [------J [------] q 	: pgt Q;
6. [......] [111111] E------ fgl p gt q;
7. [------] [111111] £------J £------Ifork(±gl)
8. Eio....J [101111] £i0 ---- £------I iti : = p + q;
9. [i0 ----] [101111] [10 ---- [10 ---- c iti;

10. [0i ---- J [011111] £O1 ----] £------] it2 p * q;
11. [0i.......] [011111] [01 ----] [01 ----] c 	:= it2;
12. £------1 [111111] [1i____] [ii] fork(c)
13. [_.1000] L_10001 L..10001 £------] it3 : 	a + b;
14. C__bOO] [111000] [111000] Ell it4 c + d;
is. [__1000] [1110003 [111000] Eli ---- 3 its it3 * it4;
16. C__bOO] [111000] [__OiooI [1110003 y its;
17. [__0100] [__0100] [__01003 £------3 it6 : 	a * b;
18. [__0100] [1101003 [110100] [11____] it7 c * d;
19. [__0100] [110100] [110100] [110100] it8 it6 + it7;

119

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

[_.oioo] [110100] [110100] [iioiooJ
[__ooio] [110010] [110010] [ii____]

[__Oolo] [__0010] [__Oolo] [-------J
[__oOlo] [110010] [110010] [11____]

[__0010] [110010] [110010] [110010]

[__0001] [110001] [110001] [11____]

[__0001] [__0001] [__0001] [-------]

L_00011 [110001] [110001] [110001]

[_._0001] [110001] [110001] [110001]

£------] [111111] £111111] £111111]

CV PCV C-ECV G-ECV

Y 	its;

it9 : a + C;

itlO : b + d;

itil : it9 * itlO;

Y := itli;
it12 : a * C;

it13 	b * d;

it14 : itl2 + itl3;

y 	itl4;

Y : 	ppt y;

Each line corresponds to a node(operation) in the description's PFG and CDFG.

The PFG of Gcej is shown in figure 6.13. The horizontal axis corresponds to the

nodes in the decomposed description while the vertical axis represents the levels.

The flow of execution is from top-left to bottom-right. The branch structures and

the potential parallelism within basic blocks are shown clearly in the PFG. The

CDFCof Gce3 is in figure 6.14. The computation nodes are allowed to migrate

freely outside their basic blocks to their as-soon-as-possible(ASAP) positions. As

a result, the graph gives a brief outlook on the potential global parallelism. Points

to note with this graph:

{ node-8 , node10 , node13, node17 , node22 , node26 } which are the computation

nodes, are all outside their basic blocks.

{ node9, node11 } which are assignment nodes, are guarded by the fork node,

node7 . The same also applies to { node16, node20, node 241 node28 } which

are guarded by node12.

Compared with the PFG which has 10 levels, the CDFG has 8 levels only.

Resource un-restricted scheduling of both styles is performed. The actual sched-

ules are in figure 6.15 and 6.16; where we assume the delay of an adder is,

{ (40 + 0c + 0): - : - } sightly less than one cycle and the delay of a multiplier is

{ (50 + Oc + 50) : - : - } a bit less than two cycles. There is delay associated

with the controller as well, { (5 + lc+ 5): 1 cycle : 30ns } with one cycle latency.

This signifies that branching occurs one cycle after the branch condition is valid.

From these figures, the effect of computational migration, state overheads and

stack times can be observed very clearly.

120

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

1 * 3 4 5 6 7 5 9 Ii II 12 53 14 15 16 57 ii 19 *6 21 22 23 *4 21 26 27 *6 *9

L*V*

Levi

Levi

Levi

Live

Love

Levi

Levi

Levi

Lava

Node(29)

Figure 6.13: The Program Flow Graph of Gce3

1 2 3 4 5 5 7 5 9 It It 12 18 14 15 Ii 17 Ii 19 25 21 22 23 24 25 25 27 59 21

Level I

Level 2

Level 8

Level 4

Level 5

LiVi1 S

Level 7

Level S

WRIER I " ~MmMq 4 =qM it-,

Figure 6.14: The Control-Data Flow Graph of Gce3

121

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

1 2 2 4 S 6 7 2 9 1* 21 12 12 14 12 16 17 16 19 2* 21 22 22 24 22 26 27 28 19

Figure 6.15: Schedule Graph Generated with Conventional Scheduling Style.

The C-ECVs in listing 6.7 are the execution condition vectors, ECVs, of the

conventional scheduling style. They are more or less the same as the original

CV s. At the beginning of the schedule, since no condition is available, the C-

ECV s are empty. And as all the nodes are staying within their basic blocks, no

change in C-ECV s is needed. The G-ECV s in the last column are the ECV s for

R2 Sch Compared with C-ECV s, many of the entries in G-ECV s are empty.

This reflects the fact that due to unrestricted resources, a considerable number of

computation nodes migrate outside their basic blocks. The result is 10 cycles for

the conventional style and 7 cycles for R2Sch Since resources are not restricted

and operations are allowed to move outside their basic blocks, R2 Sch requires sig-

nificantly more resources.

The conventional approach requires less resources because, as all operations are

confined within their conditional branches, resource sharing by mutually exclusive

conditions can be utilized. Starting from the resource requirement of the maximum

122

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

1 2 3 4 8 8 7 9 9 II 11 12 13 14 18 18 17 19 19 28 21 22 28 24 28 29 87 29 29
cycle I

Cycle I

CC1e 2

cycle 3 grniirni.pjunnpin

1 2 3 4 8 6 7 9 9 II 11 12 18 14 18 18 17 1* 19 2* 21 22 28 84 28 26 27 2* 29

Figure 6.16: Schedule Graph Generated with R2Sch

Scheduling Input Result
I

Style Constraints I Delay(cycles) [Resource Req'irement

(none) 10 2 Add, 2 Mul, 1 CMP
Conventional 1 Add 11 1 Add, 2 Mul, 1 CMP

1 Mul 12 2 Add, 1 Mul, 1 CMP
1 Add, 1 Mul 12 1 Add, 1 Miii, 1 CMP

R2 Sch
(none)
3 Miii

7
8

3 Add, 4 Mul, I CMP
3 Add, 3 Mul, 	CMP

2 Add, 3 Mul 8 2 Add, 3 Mul, I CMP
2 Add, 2 Mul 9 2 Add, 2 Mul, 	CMP
1 Add, 2 Mul 9 1 Add, 2 Mul, 1 CMP
2 Add, 1 Miii 11 2 Add, 1 Mul, 1 CMP
1 Add, 1 Mul 11 1 Add, 1 Mul, 1 CMP

Table 6.1: Scheduling with Various Resource Restrictions.

123

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

parallel shedule, the number of resources are gradually restricted. The results are

summarized in table 6.1. For various resource restrictions, the global scheduling,

R2Sch , still out-performs the conventional one. The performance advantage of

R2Sch is mainly due to the concurrent evaluation of condition expressions and

operations.

6.13 Results

To study the efficiency of the algorithm, several widely used examples have been

tested.They include an example from [PARK86], the heavily used fifth-order digital

elliptic filter, and part of the MC6502 description. The descriptions used are all

listed in the appendix.

a. The Example from [PARK86]

Delay(cycles)
Resource Requirement Forward 	backward 	Minimum

2 Add, lSub 4 4 4
lAdd,lSub 5 5 5

Table 6.2: Scheduling Result of the Example from [PARK86].

The example consists of 16 addition or subtraction operations and 20 edges. It

is chosen first because it contains a substantial number of nested and disjoint

condition branches. This helps to establish the effectiveness of R2Sch in sharing

resources under mutually exclusive conditions. The scheduling results are in ta-

ble 6.2. As in other published schemes. the cycle length is assumed to be long

enough to accommodate two operations. R2Sch is able to achieve the fastest

schedule of 4 cycles with { 2 Add, 1 Sub } which is known to be the optimum

resource-delay combination i.e. the resources cannot be reduced further without

an increase in number of cycles, and vice versa. Because of the small number of

resources end cycles involved, it is not surprising that the cycle delay obtained

from conventional scheduling and R2Sch are the same.

124

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

b. Fifth-Order Elliptic Filter

Resource Requirement
Delay(cycles)

Forward 	Backward 	Minimum 	I 	FDS 	FDLS 	PBS
3 Add, 3 Mult 17 18 17 17 17 17
3 Add, 2 Mult 18 18 18 18 - 18
2 Add, 2 Mult 19 18 18 19 18 18
2 Add, 1 Mult 21 22 21 21 21 21
1 Add, 1 Mult 28 29 28 - - -
3 Add, 2 Pipe 17 18 17 17 17 17
3 Add, 1 Pipe 18 19 18 18 18 18
2 Add, 1 Pipe 19 19 19 19 19 19
1 Add, 1 Pipe 28 28 28 - - -

Table 6.3: Scheduling Result of the Fifth-Order Elliptic Filter.

This example is taken from the 1988 High-Level Synthesis Workshop Benchmarks.

The filter has 43 operations and 60 edges. 8 of the operations are multiplications

and the rest are additions. Scheduling with various resource restrictions was per-

formed. The results are summarized in table 6.3. The results of Force Directed

Scheduling(FD 5) [PAU L87], Force Directed List Scheduling(FDLS) [PAU L89] and

Percolation Based Scheduling(PBS) [P0TA90] are summarized for comparison. As

in other papers, the functional unit types used are adders with 1 cycle delay,

and multipliers with 2 cycles delay. Each schedule takes less than 1 second to

compute on a SparcStation 1. For the schedule with 17 cycles, the original de-

sign from [KuNG85] requires 4 adders and 4 multipliers. R2Sch also achieves the

schedule with 18 cycles using 2 multipliers and 2 adders. This schedule is not

obtained by many other algorithms, including force-directed scheduling, but the

later force-directed list scheduling [PAuL89] which takes better consideration of

resource restrictions amends the situation.

The second part of the result makes use of a two stage pipelined multiplier. Since

data can be input every cycle, better results are obtained. As a whole, R2Sch is

able to equal the best results published hitherto. These are believed to be the best

possible results for this heavily studied example. Although R2Sch performs very

well on this example, it is not a good yardstick. The description is a straight line

segment of code consisting solely of arithmetic computations with no conditional

statements. Nevertheless, it confirms that the underlying algorithm of R2Sch is

sound enough for basic block scheduling.

125

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

c. MC6502 Group 1

Conventional
Resource Requirement Delay(cycles)

2ALU
1ALU

11
12

R2 Sch
Resource Requirement Delay(cycles)

2ALU
1ALU

9
10

Table 6.4: Scheduling Result of MC6502 Group 1

From the original ISPS description, we have synthesized the group 1 instructions.

group 1 instruction decode
group 1 address generation, and
group 1 instruction execution.

Most subroutines in the group are expanded. The preserved ones are read, write,

addr, setnz. adjust. They were treated as implemented functional units and han-

dled as external procedure calls. During scheduling, it was assumed that the delay

information of these procedures was known. The final input description consists

of two parts:

address generation and instruction execution

in two select statements. Each of these consists of 8 branches. As a microprocessor

design, it is reasonable to assume that all operations are performed on ALUs. Both

conventional style and R2Sch scheduling were carried out. Although, a large num-

ber of operations are involved, due to the mutually exclusive conditions, very few

functional units are needed. From the results presented in table 6.4, R2Sch has

out-performed the conventional style by 16% to 18%. After studying the schedule

graph, it is clear that the performance gain comes from the migration of compu-

tations . This example also demonstrated the benefit of using branch-based CV s

instead of path-based ones which would have generated 64 paths.

6.14 Observations

6.14.1 Common Sub-Expression Elimination

Common subexpression elimination is one of the most widely used techniques in

software compilers. It has a net gain in reducing the amount of computations. Its

role is vital when there is only one execution unit. However, specially when there

126

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

A B C D

a. 	 b.
X=A+B+C
Y=A+B+C+D

Figure 6.17: Different Degree of Common Sub-Expression Elimination.

are enough or redundant execution units, this technique should not be applied

directly. Consider the description in figure 6.17. A typical language compiler will

jump to the conclusion that it should be grouped as (a). However, when two exe-

cution units are available, one of them will remain idle. A partial sub-expression

elimination arrangement like (b) will be able to utilize both execution units and

achieve more speed advantage. A word of caution, the sequence in figure 6.17a can

be easily justified if the idle execution unit can be utilized to speed up execution

in other paths.

The above observation has been applied to the fifth-order elliptic filter example.

Two and three level flattening and regrouping are tried. The results are summa-

rized in table 6.5. In the column labeled "original" are the minimum schedule

results from table 6.3. Examining the results, they show that when there are

extra resources (> 2 adders), it is possible to have a speed-up of one cycle. When

only minimum resources are available, 1 adder and 1 multipler, there is no speed

up in the case of 2 level regrouping. In the case of 3 level regrouping, a negative

effect is apparent due to the extra computations introduced by the flattening and

regrouping process. 	
a

The observation above shows that in high-level synthesis, besides the interdepen-

dence between scheduling and allocation, their interdependence with high-level

127

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

Resource Requirement
Delay(cycles)

Original 	a. 2-Level 	b. 3-Level

3 Add, 3 Mult 17 16 16
2 Add, 2 Mult 18 17 17
2 Add, 1 Mult 21 20 20
1 Add, 1 Mult 28 28 29
3 Add, 2 Pipe 17 16 16
3 Add, 1 Pipe 18 17 17
2 Add, 1 Pipe 19 18 18
1 Add, 1 Pipe 1 	28 28 1 	29

-Jevel r iattemng aim J1.egroupmg
3-level Flattening and Regrouping

Table 6.5: Different Degrees of Common Sub-Expression Elmination.

transformations should not be underestimated. To tackle this problem, it seems

there is a need for a dynamic, resource constraint oriented expression decomposi-

tion and regrouping technique.

6.15 Potential

6.15.1 Dynamic Loop Unrolling

Consider the following loop in listing 6.8, since it is dynamic, full-unroll is im-

possible. The loop boundary also imposes a constraint as the inductive variables

cannot be moved outside the loop.

Listing 6.8 	while (n > b) loop
a := a + b + n;
n := n - 1;

end loop

(a)

while (n > b) loop
a := a + b + n;
n := n - 1;

if (n > b) then
a := a + b ± n;
n := II - 1;

end if;
if (n > b) then

a := a + b + n
n := II - 1;

end if;
end loop;

(b)

Assuming all operations are performed on ALUs, a schedule of 3 cycles will need

2 ALUs. The first cycle is to evaluate the conditional expression, followed by

128

CHAPTER 6. RESOURCES RESTRICTED SCHEDULING

computations. The result is a very poor schedule with one of the ALU under

utilised. To improve the situation, the loop can be partially unrolled by inserting

"if-then" statements to do the intermediate condition check. Listing 6.8b shows

one which has been unrolled three times. Then, by variable renaming and ag-

gressive scheduling, R2Sch can put the partially unrolled loop into 6 cycles with

the same resources. There is a speed up of one-third. Usually, in the presence

of loops, pipelining can also be applied to improve resource utilization. However,

in this case, pipelining can only save one cycle for every two consecutive stages.

This means that for an execution sequence like (b), 7 cycles will be required in a

pipeline. Moreover, the condition check will also increase the difficulties encoun-

tered by pipelining.

6.16 Conclusion

In this chapter, we have presented a new priority function and scheduling method-

ology to handle dynamic code motion with respect to resource constraints. From

the investigations conducted, it is observed that when operations are allowed to mi-

grate to wherever resources are available, better scheduling results can be achieved.

Also, from the observations, it is clear that when more than minimum absolute re-

sources are available, high-level transformations will become interdependent with

scheduling and allocation. This situation adds further complexities to the problem

of high-level synthesis.

R2Sch is nevertheless still far from meeting the ideals of high-level synthesis. The

main reason is that it considers scheduling as an individual task, while tasks

in high-level synthesis are highly interdependent. However, because of its good

performance, it is being used for front-end coarse scheduling and back-end cycle

length tuning and verification. At the front-end, it helps to evaluate the effect of

allocation with different combinations of functional units. The flexible allocations

and the scheduling results are passed onto the next stage where cycle and module

binding are performed. At the back-end, it takes a finished design and refines the

cycle length with detail control and interconnection delays.

129

Chapter 7

Integrated Concurrent Mapping

7.1 Introduction

As described in [Kucu90], the cost of interconnection could have a first-order effect

on the area cost of the implememtation. Therefore, it is extremely risky if it is

not considered seriously in the early phases of the design process. The problem

is that optimal scheduling may require a very expensive interconnection scheme

to realize. Recent research shows that more attention is now being paid to the

cost of interconnection [cLou90] [PAPA90] [HuAN90]. However, for some of the

approaches, the cost of interconnection, instead of being considered directly, is

estimated using cost functions. These cost functions are usually concerned with

the interface compatibility among operations and functional units only.

7.2 Target Architectures: Related Research

For high-level synthesis, most of the target architectures reported in the literature

can be classified into two types:

. Un-constrained Architecture,

Constrained Architecture.

In the school of general synthesis approach, systems such as Facet [TsEN86],

HAL [PAuL89] or Chippe [BREw90], have their target architectures composed of

unconstrained and distributed data paths. Separated functional units and mem-

130

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

ones are connected in a random fashion. The interconnection scheme can be one

of the following:

point-to-point connection with multiplexors,

point-to-point connection with buses, or

a mix of the two.

a.

b.

Figure 7.1: Un- constrained (a) and Constrained(b) Architecture.

In this approach, multiplexors are used heavily between elements. For instance,

the connectivity binding algorithm, Splicer [PANG88], embedded in Chippe uses

two level multiplexing to improve interconnection and the number of multiplexor

inputs. As minimization of the interconnection is taken as a post-scheduling task,

they assume no constraints on the availability of interconnections. If buses are

used, they are usually derived from the original point-to-point connection struc-

tures. Heuristic algorithms are applied to group the random interconnections into

buses. Since interconnection is not getting enough attention at the beginnning,

unavoidably the complexity of it explodes at a later stage of the synthesis process.

131

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

At that stage, it is already too late and improvement is not at all simple. Conse-

quently, the resultant architecture involves large numbers of interconnections and

buses. This is very difficult to lay out and forms a two dimensional topology with

relatively low density.

For the school of specific synthesis approach such as Sugar [TH0M88], SPAID [HAR088]

and Cathedral-TI [DEMA90], there is an early commitment of the architecture to

a multi-bus style. The resultant architecture is usually a constrained processor

style. This avoids the problems caused by random interconnections. Since the

knowledge of the final architecture is embedded in the algorithm, a draft floor-

plan can be constructed. The resultant layout is relatively compact, buses can be

identified easily. It forms a one-dimensional topology.

Cathedral-TI restricts the number of target functional units to some well-defined

structures. Recently, to increase the architectural freedom, Cathedral-2rd was de-

veloped to support more flexibility in the composition of execution units [LAN N90].

Basic functional building blocks are combined to form different execution units to

meet the application specific requirements.

For memory management, in Cathedral-TI, a register file is placed on every input

of a functional unit. In SPAID [HAR089], a register file is associated with each

bus. Comparing these two schemes, Cathedral-IT has the potential of, using more

registers because identical data which are assigned to different functional unit

inputs could not be merged. they reside in different register files. Therefore, in

SAGE [GRAN90], each memory requirement of an operation is given a private

memory element. After all the memory requirements have been attended to, they

are grouped into memory blocks with respect to the type of functional unit from

which they are generated.

7.3 Adjustable Target Architecture

To benefit from concurrent scheduling, an openly adjustable architecture is neces-

sary and should cover both the constrained and unconstrained architecture men-

132

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

execution Unit 	 functional unit

Figure 7.2: Openly Adjustable Target Architecture.

tioned before. The architecture we targeted is similar to other data path oriented

structures. It is made up of execution units and global register files connected

together by buses. Each execution unit consists of a functional unit and local

input/output register files. Local feedback is possible. The size of the register files

are not pre-determined. They are allocated and minimized during the scheduling

process. Compared with the architecture in Cathedral-IT, besides input register

files, we have also output and global register files. These register files help to

avoid the duplication of data and provide more flexibility for both storage and

communication. We will demostrate that this architecture can reduce the amount

of communication and hence the cost of interconnections.

op1

Op2) (op3

a. 	 b. 	 C.

U storage of data 	 transfer of data 	 JL. bus broadcast of data

Figure 7.3: Different Storage of Data Value.

133

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

Consider the data flow graph schedule in figure 7.3, the data value across the cycle

boundary, from opl to op2 and op3, needs to be stored.

figure 7.3a: If the value is assigned to a global register file (GRF), three data

transfers with two buses will be required; one for the output transfer of opl

and the other for the input transfers of op2 and op3.

figure 7.3b: If an output register file (ORE) is used, the output value of opl can

be stored locally and broadcast in the next cycle with only one bus.

figure 7.3c: If only input register files (IRE) are allowed, the output value of

opl has to be broadcast to the input register files of both op2 and op3. This

results in a duplication of data.

As a whole, output register files help to defer the data transfers to less crowded

control steps, while input register files allow data to be received well before it is

needed.

7.4 Storage and Communication Schemes

By inter-mixing local register files with global ones, the communication scheme

can be summarized as in figure 7.4. There are 8 different possibilities.

Scheme (a : -) 	direct connection.
Scheme (b : 	9) 	with input register files only, as in figure 7.3c,
Scheme (c : 9 -) 	with output register files only, as in figure 7.3b,
Scheme (d 9 - 9) 	with both input and output register files,
Scheme (e 	-p 9 -) with global register files only, as in figure 7.3a,
Scheme (f: 9 - 9 -) with global and output register files,
Scheme (g : 1-0 - 9) with global and input register files,
Scheme (h : 9 - 9 - 9) with global and both input and output register files,

Scheme (a : I -) happens only when operations are scheduled to be chained.

The output from one operation is transferred directly to the input of the other

without going through any storage. Since the two operations are linked back-to-

front, the output of the first one must be kept stable long enough for the next

one to finish. Usually, this only happens to fast operations scheduled with a long

134

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

Operation

1]

Communication

Storage

a 	b. 	C. 	d. 	e. 	f. 	g. 	h.

No. Symbol
No. of

Transfers
output
buffer

global
registers

input
buffer

C.

 ---H 2 - -

 ---H 2 V V -

 ---- 2 -

 D -----+ 2

Figure 7.4: Storage and Communication Schemes.

cycle length. Scheme (b : I -~) is similar to the target architecture used by

Cathedral-IT. Register files are stalled at the inputs of the functional units. It

has been demonstrated that when the output value of an operation is required by

several others, duplication of data is unavoidable. This is necessary as a compro-

mise for reducing data communications. Scheme (e : -i El -p) with global

register files only, is the unconstrained architecture used commonly by today's

high-level synthesis systems. Since there is no local storage, every operation has

to draw its input values from the global register files and has to write the result

back immediately afterwards. As communications have to be accomplished imme-

diately before and after the operations, the schedule of the operations will more

or less define the communication pattern along the time axis. Therefore, when

this scheme is used, it is important to consider the communication pattern during

135

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

the scheduling process. For a functional unit which has an output register, it will

belong to Scheme (f 0 - 0 -) . With local feedback, the single output

register is usually used as an accumulator. For some applications, this will sig-

nificantly reduce the amount of global bus traffic. In addition, for testability, the

output register of all the functional units can be linked together to form a scan

path/chain. The functionality of each functional unit can then be tested easily.

Scheme (h : 9 - El -) 9) is the most powerful. With the support of both global

and input/output register files, bus transfers can be scheduled anywhere in the

time frame bound by the define and use operations.

Scheme (b), (c) and (d) which consist of only one transfer are the more efficient

ones. Global register files are not involved. Input and output register files are

utilized to cover the full life time of the intermediate values. For scheme (e), (f),

(g) and (h), because of the limited number or even non-existence of local register

files, global ones have to be introduced. Unavoidably, they lead to an increase of

data transfer.

Part Scheme FNo. of Transfers I No. of Register Cycles

p1. b 1 5

p2. c 2 3

p3. d 1 4

p4. d 2 4

p5. c,d 1 3

Figure 7.5: The Usage of Input and Output Register Files.

136

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

To demonstrate how input and output register files are used, let us look at a typical

case depicted in figure 7.5. There are two data transfers to two operations, Op2

and Op3, scheduled in two different cycles. In the table, the cost of communication

is assessed by the number of transfers and the cost of storage is assessed by the

number of register cycles, i.e. the number of cycles that an intermediate value

needs to be stored. P1 and p2 show the storage and communication schedule with

only input and output register files respectively. P3 and p4 are two intermediate

schedules of Scheme (d : 9 - 1) . As demonstrated in the cost table, they are

not optimal. P5 which is a mix of both Scheme (c 9 - I) and Scheme (d

9 -) 9) shows the optimal solution. In p5, the output register file from Opl

is used to store the value for the two later operations. Output transfers to both

Op2 and Op3 occur in one bus broadcast. However, the value is only consumed

immediately by 0p3. The value for Op2 is stored in its input buffer. This buffer

ensures that there is no duplication of data and an optimal number of buses is

used. It is important to stress that p5 is only a local optimal solution. When

there is a graph of operations, a global consideration is essential to determine an

optimal schedule for storage and communication.

7.5 Architectural Constraints

xwaddr
xse1 x_raddr

z_en

RFx

F.U.

RFyR 	L—j.RFz

y_sel 	raddr 	fi sel 	z_raddr
y_waddr 	- 	z_waddr

Figure 7.6: The Architecture of an Execution Unit.

The user can influence the target architecture through the input of architectural

constraints. These constraints cover both the constrained and the unconstrained

137

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

architectures. Using these constraints, the designer can tailor the design to a large

variety of architectures. Different from the performance constraints such as delay

and area, these are classified as high-level constraints. These high-level constraints

enable inferior or unsuitable designs to be filtered out as soon as possible. The

architectural constraints can include restrictions on

the number of each type of functional unit.

the number of registers in the input and output register files.

the number of global register files and the number of registers in them..

If the number of registers at the input and the output register files are set to zero

and the size of global register files are restricted to one, then the target architec-

ture is exactly the unconstrained style. In summary:

Nre9(IRF) = 0 ORFs and GRFs only SAGE style

I\Treg(ORF) = 0 IRFs and GRFs only Cathedral style

N,.eg (ORF) = Nrep(IRF) = 0 GRFs only execution unit = functional unit

Nreg(ORF) = Nreg(IRF) = 0 & Nreg (GRF) = 1 unconstrained architecture

7.6 The Lower Bounds

In the previous section, we have shown that input and output register files can help

to reduce the interconnection and storage overhead. In this section, we are trying

to establish a lower bound requirement for them. To allow this to be expressed

more clearly, the following notation will be adopted.

Object 	Whole Set Sub Set Element

Control Steps CS Csi cs

Functional Units FU Fu j fu

Operations OP opi op

Variables V V v

Registers R R,

Register Files RF Rfi rf

Transfers TF Tf tf

Buses BS Bsi b.s

The assumptions we make are:

138

CHAPTER. 7. INTEGRATED CONCURRENT MAPPING

Every operation has two inputs and one output only.

All data transfers are performed by buses.

Data must be stored across cycle boundaries.

Bus transfer cannot occur across cycle boundaries.

Input data is stable for one cycle only.

Multiplexors can be introduced wherever they are needed.

7.6.1 Effect on communications

For each target architecture where only global, output and input register files are

allowed respectively, we try to find the minimum requirement on the number of

buses.

Architecture with global register files, GRFs , only

For a target architecture which uses global register files only, Scheme (e

-) 9 -p) , every operation will require three transfers. That is two input

transfers and one output transfer between the execution unit and the global

register files. Assuming that all the operations can be distributed evenly

along the control steps, CS, the average number of operations per cycle is

[1
J\TAIJ E (QP/CS) = I

Iv(oP)

N(CS)

and hence the lower bound requirement on buses will be

AMIN(BSGRF) = 3 NAVE(OP/CS) 	 (7.1)

We cannot assume that the data transfers are distributed evenly. This would

be wrong because data has to be provided and stored immediately before

and after the operations.

Architecture with output register files, ORFs , only

When output register files are used, Scheme (c : 9 -) , data generated

by operations can be stored locally until they are needed figure 7.5(p2).

Since data transfer occurs only at the inputs, there will be two transfers per

operation. Again, assuming that all the operations are distributed evenly

along the control steps, CS, the lower bound requirement on buses will be

NMIN(BSORF) = 2 * NAVE(OP/CS) 	 (7.2)

139

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

3. Architecture with input register files, IRFs , only

When input register files are used, Scheme (b 	- 	, data transfer will

occur immediately after the result is generated. If the result is needed by

more than one operation, a bus broadcast will occur, figure 7.5(pl). As

there is only one transfer per operation, by the same argument as before,

the minimum requirement on buses will be

NMIN(BSIRF) = NAVE(OP/CS) 	 (7.3)

7.6.2 Effect on Storage

For a given operation schedule, no matter which storage and communication

scheme is used, the minimum number of cycles where intermediate values need

to be stored is fixed. This is because the lifetimes of the intermediate values are

governed by the define-use relationships of the operations. The register cycle of

an intermediate value, v, is defined as

r'c(v) = MAX(cycle_u.se(v)) - cycle.def(v)

and the total minimum number of register cycles, RCmn(V), is

	

RC(V) = 	rc(v) 	 (7.4)
vEV

Since output register files, ORFs act like global register files, GRFs , which store

data until they are needed, the number of register cycles is

	

RCQRF(V) = RCGRF (V) = RC(V) 	 (7.5)

For input register files, IRFs , storage is at the usage end. The register cycle of

an intermediate value, v, is defined as

TCIRF(V) = 	cs - cycle_def(v)
c8Ecycle_ttse(v)

This is because when v is used by several operations, its value will be stored in

several IRFs . This data duplication causes the total number of register cycles,

RCIRF(V)

	

RCIRF(V) = 	rcIRF(v) 	 (7.6)
vEV

140

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

to be greater than RC(V) under most circumstances. However, if all the interme-

diate values are used only once, i.e. N(cycle_use(v)) = 1, then they will all be the

same.

RCIRF(V) = RC0RF(V) = RCGRF (V) = RCmin(V)

On the other hand, when register files with only one read port are used, the

minimum number of register files required will be

NMIN(RFGRF) = 2* NAVE(OP/CS)

NMIN(RFORF) = 2 * NAVE(OP/CS) 	 (7.7)

j'MIN('FIRF) = 2* NAVE(OP/CS)

They are all the same. This is because they are equal to the average data request

in one control step. Notice that there is contradiction in the cases of architecture

containing ORFs only. Since the minimum number of functional units for a design

is A5PE(OP/CS), the minimum number of ORFs will be equal to the minimum

number of functional units. That is NAVE(OP/CS) not 2 * NAVE(OP/CS) as

formulated above. This implies that some ORFs will need more than one read

port unless more than one ORFs per functional unit are used.

7.7 Operations, Storage, and Communications

In order to concurrently map operations, storage and communications, a powerful

representation of the design is essential. Traditionally, a directed graph similar to a

control/data flow graph is used. It shows only the control/data dependency of the

operations and carries little association with the storage and communication. In

order to enable storage and communications to be considered early in the synthesis

process, a direct representation of them is necessary. Figure 7.7 depicts the inter-

relations between operations, storage and communications. An operation will

involve elements from all three domains. Any constraint or process applied in one

domain will affect the other two directly. It is this interrelation which draws us

to introduce the scheduling and binding unit (SBU). It is a triplet, { oper rmem

link }, containing information for operation, storage and communication. The

SBU appears as an elementary subgraph of a node. It is in tree form with only

one level. Figure 7.8 shows an SBU with three data flow arcs.

The data structure of the SBU can be summarized as:

141

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

Domain

0
Communication Z<--X C) Mapping 	+

Domain

Figure 7.7: The Inter-relation of Operation, Storage and Communication Domain.

4\ , o oi 0

oper 	rmem 	link
SBU 	Operations 	Storage 	Communications

Figure 7.8: The Schedule and Binding Unit (SBU) and its elements.

142

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

Control : prec set of control/data dependency arcs
succ set of control/data dependency arcs

Operation : oper
initiate data generation operation
asap (cs, cs) : (basap, easap)
alap (cs, cs) : (balap,ealap)
target { SBU } : set of data reception operation
flex { instance } : flexibility, set of instances
unit instance : allocation information

Storage : rrnern
brmerrz cs : output from operation
srmem cs : output from functional unit
grmen cs : output from global register file
ermen Cs : end of data life
flex { instance } : flexibility, set of instances
unit instance : allocation information

Communication: link
blink port : functional unit output port
elink { port } : set of target input ports
flex { instance } : flexibility, set of instances
unit instance : allocation information

Control prec and succ are sets of control and data dependency arcs which are

pointing to the precedent and the successive SBUs. Operation (oper : initiate)

is like the root of the SBU and is a major structure by itself. It contains all the

necessary characteristics of an operation. (Oper : target) is the set of operations

which are data dependent on (oper : initiate). For rmem, there are four control

step variables representing the storage and communications scheme described in

figure 7.4. When in use

brmern to srmem defines the register cycles of the output register file.

srrrzem to grrrzem defines the register cycles of the global register file.

grmerri to errnern defines the maximum register cycles of the input register

files.

In cases where only global, output and input register files are used, we have the

following properties:

global register files only
	

brmern = srmern < grrnern = errnem

output register files only
	

brmern < srrnem = grmem = errnem

input register files only
	

brmern = srrnern = grmern < errnem

143

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

(Link : blink) is the output port of the execution units. If an output register file

exists, it will be the output terminal of the register file. Hence, the control step

of (link : blink) will always be equal to (rmem : .srmem). (Link : elink) is a set

of input ports of the operations in (opecr' : target). The number of control steps

from (rmern : grmem) to the control step of individual (link : elink) elements

will define the register cycles of the input register files.

7.8 Concurrent Scheduling

Cycle 0

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle S

ASAP Scheduling 	 AL4P Scheduling

Figure 7.9: ASAP and ALAP Scheduling.

Concurrent scheduling assigns control steps to data operations, assigns control

step to data transfers and arranges storage for data values. D3 Sch . With the rich

storage and communication schemes detailed before, data transfer from one exe-

cution unit to another is very flexible. Added to that there are also three choices

of storage: GRFs , ORFs and IRFs . The goal of concurrent scheduling, D3Sch

is to minimize the density of operation, storage, and communication along the

time axis and thereby :educe the overall cost of the design. Unlike most other

systems whose aim in scheduling is to minimize the number of functional units,

D3Sch can be driven to minimize the number of transfers, the amount of storage

144

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

or the total cost of resource with respect to individual constraints.

D3Sch builds a distribution graph (DG)s of operations, storage and communica-

tions, then it tries to balance the distribution of them concurrently. In the next

few sections, we will explain how this is performed.

7.8.1 Distribution Graph

In figure 7.9, SBUa and SBUb have the relation:

SBUb E (Control : .succ(opera))
SBUa E (Control : prec(oper5))

After ASAP and ALAP scheduling, for SBUa , we have

asap(opera) = (basap(oper), easap(oper))
alap(opera) = (balap(oper), ealap(opera))

easap(opera) = ba.sap(opera) + delay(opera) - 1
ealap(opera) = balap(opera) + delay(opera) - 1

and

mobility(opera) = balap(opera) - basap(opera) + 1

With this information, we can define the possible beginning and terminating con-

trol steps for the elements in SBUa .

• 	for operations, oper

C.sbea (opera) = ba.sap(opera) ... balap(opera)
Csend (opera) = easap(opera) ... ealap(oper)

for storage, rrnen

Csbeg (rmerna) = easap(oper) + 1 ... ealap(oper) + 1

Csend (rmel72a) = basap(oper) ... balap(oper)

for communication, link

CSbeg (lflka) = easap(opera) ... ealap(opera)
Csend (linka) = basap(operb) ... balap(oper)

145

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

For operations, the DGs can be computed by accumulating the distribution prob-

ability along the range defined by CSb,-, and CSd.

V CSb E Cs&eg (opera) A V cse E Csend(opera)
V cs E { cs&... cs } 	 (7.8)

1
DensityFJcs) <+ mobility(oper)

The DCs of storage and communications can be computed by three nested loops.

The outer one goes through the possible beginning control steps and the inner one

the possible terminating control steps. The innermost loop is just to accumulate

probability into the density of the control steps within the range.

For storage

V CSb e CSbeg (rmema)
V CS, E C.Scnd(rmema)

VcsE {CSb ... CS, }

(7.9)

DensityRmem(cs j) <+
mobility(opera) rnobility(oper)

For communications

V cs& E CSbeg(lflka)
V cs E CSend(lflka)

VcsE {csb... CS, } ___ 	
1

DensityLk (cs) <+ 	
1

mobility (opera) mobility (opera) (cs -

(7.10)

For instance, the probability distribution of figure 7.9 can be computed as in fig-

ure 7.10. For operations, figures 7.10a and 7.10b, these are derived as the reciprical

of the possible number of schedules, mobLity. For storage, rmem, the schedules

of the two operations need to be considered together. With two schedules from

Opera and three schedules from Operb, there are in total six possible combinations

of data-life. For all of them, the storage requirement is summarized in figure 7.10d

The distribution graph for storage will be the probability sum of the requirements

in each cycle. For communications, link, as storage, all possible schedules of the

two operations are considered, assuming that with input and output register files,

Scheme (b :) , Scheme (c : 0-) I) and Scheme (d : D-)) , only

one data transfer is needed. The transfer can take place at any of the control

146

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

steps between the two operations. For the six possible schedules, the probability

distribution of link is in figure 7.10€

CS Fu,,
0 1 1
1 11 2
2 1 1
3
4
a
a. /2 /2 /2

CS Fub
0
1
2
3 1 1
4 1 1

5 /3 H/3b. /3/3

-CS FUab
0 1/2 3
1 1/2 1/2 6
2 1/2 3
3 1/3 2
4 1/3 2

--

C. /6

CS Rmems
0
1
2 111 3
3 1111116
4 11 114
5 1 13
d. /6 /6 /6 /6 /6 /6 1 /6

CS Links
0
1 1/3 1/4 1/5 47
2 1/3 1/4 1/5 1/2 1/3 1/4 112
3 1/3 1/4 1/5 1/2 1/3 1/4 112
4 1/4 1/5 1/3 1/4 62

27
. /6 /6 /6 	1 /6 /6 /6 /360

FU(a) 	FU(b) 	FU(a,b) 	Rmem 	 Link

Figure 7.10: Probability Distribution of the Schedule.

Now we have a set of DGs for functional units, a DG for storage and one for

communications. Distribution graphs provide vital information about the current

state of a design. The mean of a distribution graph gives the theoretic minimum

requirements of the resources. The control step with maximum density gives

the minimum requirement of that particular type of resource. If some resources

are restricted, a vertical line can be drawn on the distribution graph to indicate

the threshold value. Control steps where their density overshoots the threshold

147

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

are prime candidates for minimization. Priorities with respect to the cost of each

resource can also be derived. Otherwise, a simple method is to locate the maximum

density control step and re-schedule the elements. The variance of the distribution

graph can then be improved to minimize the resource requirement. To try out the

effect of assigning different kinds of resources, various distribution graphs can be

built to study the possible density distribution. The effectiveness of this has been

demonstrated in [PAPA90]. In that paper, distribution graphs corresponding to

different allocations are kept so that scheduling and allocation can be performed

together. In addition, in [PAuL87], it has been shown that by overlapping the two

distribution graphs with displacement equal to the target pipeline latency, the

distribution graph can be optimized for a pipeline design.

7.8.2 Flexibility Damping and Shock Wave

To balance all the distribution graphs at the same time, we use the strategy of

flexibility damping introduced in Chapter 3.4.

= DG of resource, rs
inst. instance : a time range, sc/i, of resource rs
the control step with maximum density
density(cs) = MAX (dens ity(cs)) A cs E DG,,

Inst(cs) = the instance list of a control step
{ rs(sch) : cs E sch }

D Lma,.. = damping list : Inst(csmax)

= the instance with minimum probability
prob(inst,) = MIN(prob(in.st)) A iflst E DLma

= the element with ZflStmin in its flexibility list
irtstmjn G Flexibility(elemmjn)

DG,.,
rs(sch)

CS?'nax

damping (flStm j fl, elemmin, DG,,)

rsm j7 (schmj7,) =

V CS E 5Chmj , 	remove TI5tm j fl E Irist(cs)
remove instm jn E Flexibiiity(elemmjn)

update prob(inst)s e Flexibility(elemmin)

update prob(cs)s E DG,,

To balance all the distribution graphs at the same time, the DC of a high den-

sity resource, DG,,, is chosen. The control step, CSma ., with the highest density

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

is identified. The list of instances which are entitled to be scheduled in CSma ,

damping list or DLmax , is examined. The instance, flSt min, with the least prob-

ability is selected from DLmax . This is because it is least likely to be assigned

to the control step, CSmax . This also ensures the least turbulence. The instance,

inst, is discarded from the DL,,,, and the flexibility list, Flexibility(elemmn),

of its corresponding element, eleMmin. This process has direct impact on the DC

It will reduce the highest density by the amount defined by prob(iristmj). At

the same time, it also disturbs the probability distribution of the instances. The

probability of each of the remaining flexible instances in Flex ibility(elemmjn) will

be increased. They will be re-calculated and the affected control steps of DG,,,

will be updated. Finally, other parameters in the SBU will be updated as well.

These changes caused by the damping process will also be propagated up and down

to the neighbouring SBUs through the sets of dependency arcs, (Control : prec)

and (Control : succ). This creates a shock wave scenario. A SBU which is

hit by the wave-front will update its own elements. Decisions are then made to

determine whether the changes need to be propagated onwards. The propagation

will continue until the wave reaches an SBU which has enough stack to absorb the

shock.

shock propagation (elem, DG,,)

V elem e (Control : prec) A (Control : succ)
V inst j E flexibility_ overlap (elern, elen2)

damping (inst., 6l6Tfl j, DG)

The propagation decision is based on the flexibility overlap of the two interdepen-

dent SBUs.

Flexibilitycs(SUBa) fl Flexibilitycs(SUBb) 	0

It is this dependency relationship between the two operations, { R 	opera

operb } which must be maintained.

easap(oper) < basap(operb) 	 (7.11)
ealap(opera) 	balap(operb)

If 	ea.sap(opera) > basap(operb) or ealap(oper) > balap(operb),

they are flexibility overlapped and the changes must be propagated. Otherwise, a

149

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

flexibility stack exists.

To illustrate this process, let us consider the ASAP and ALAP scheduling in

figure 7.11. Initially, their flexibilities are:

ASAP Scheduling 	 AMP Scheduling

a) Before Damping

ASAP Scheduling 	 AMP Scheduling

b) After Damping

Figure 7.11: The Propagation of Shock Wave.

Flexibilitycs (oper) = 	(0,0), (1,1), (2,2) }
Flexibilitycs (rmem) = 	{ (1, 1), (1, 2), (1, 3), 	(2, 2), 	(2, 3), 	(3,3) }
Flexibilitycs (link) = 	0, 	1. 2. 3, 	}
Flexibilitycs (oper) = 	{ (11 1), (2,2) (3, 3) }
Flexibilitycs (rmem) = 	{ (2,2), (2, 3), 4), 	(3, 3), 	(3, 4), 	(4,4) }
Flexibilitycs (link) = 	1. 2. 3, 4. 	}
Flexibiiitycs(oper2) = 	{ (2), 2), 3). (4,4) }
Flexibilitycs (rmem) = 	{ (3,3), (3,4), (3, 5), 	(4, 4), 	(4, 5), 	(5,5) }
Flexibility5(link) = 	{ 2 7 3, 4, 5, }

If the instance (0, 0) of oper is to be discarded, the elements, rmemx and link

will be updated. A shock wave will propagate from SBU. to SBU and then to
SBUZ. It will cause the removal of instance (1, 1) in Flexibilitycs (oper), which

in turn causes the removal of instance (2, 2) in Flexibilitycs (oper2). After all the

150

Cycle 0

Cycle 1

Cycle 2

Cycle 3

Cycle 4

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

related SBUs are updated, their flexibilities will be:

Flexibilitycs (oper5)
Flexibilitycs (rrnern5)
Flexibilitycs (link5)

Flexibilitycs (oper)
Flexibilitycs (rmern)
Flexibilitycs (link)

Flexibilitycs (opera)

Flexibilitycs (rmerri)
Flexibilitycs (links)

= { (1,1), (2,2) }
= { (2,2), (2, 3), (3,3) }
= {1,2,3, }

= { (2,2) (3,3) }

{ 3), (3, 4), (411 4) }
{2, 3, 4, }

= { (3, 3), (4,4) }

= { 4), (4, 5), (5,5) }
= {3, 4, 5, }

An important feature about flexibility, unlike mobility, is that the flexibility of

an element does not need to be continuous. This allows damping to be applied

precisely at the control step where the instance density is high. Using the last

example, we can discard the instance (1, 1) of oper5 without any problem. The

flexibility list of the SBUS will be updated to

Flexibilitycs (oper5) 	= { (0, 0), (2, 2) }
Flexibilitycs(rmem5) = { (1, 1), (1, 2), (1, 3), (3,3) }
Flexibilitycs(lirik5) 	= { 0, 2, 3, }

After the changes in SBU5 have been made, the flexibility instance of SBU are

still valid. Since these changes do not affect any neighboring SBUs, no shock

wave is generated. Finally, after the shock wave has died down and all the el-

ements updated, the affected density population of the distribution graphs are

recalculated.

7.8.3 Anchoring

At some stage in the damping process, the flexibility of some of the elements will

be reduced down to unity. That is

FlexibilityFu(elema) x Flexibilitysc (elern) I = 1

At this point, TSa (SCha) of elerna will be removed from the instance lists and

bound. We call this process anchoring.

anchoring (ZnSt, em,,, DG 3)

151

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

if I Flexibility(elema) I = 1

rsa(scha) = lflSt a

V CS E SCha, 	remove ZflSta e Inst(cs)
remove ZflSta E Flexibility(elema)

binding (ZflS•t a, eleTfla)

Similar to shock propagation, neighbouring SBUs in (Control : prec) and (Control

succ) will be checked to see whether they are affected.

7.9 Results

The flexibility damping strategy has been implemented with sufficient modules in

place to demonstrate the method. Several benchmark examples have also been

processed.

7.9.1 Differential Equation Example

This example was first presented in [PAuL86]. The computation consists of 6

multiplications, 2 subtractions, 2 additions and 1 comparison. The computation

is scheduled to 8 cycles with a 70ns period. For D3 Sch , the following conditions

are assumed:

Cycle length: 70 us
Number of cycles: 8
ALU: { 60+0c+0 : -: - }
Pipeline Multiplier : { 40+0c+40 : 1: 40ns }
Architectural Constraint : 1 ALU and 1 Pipeline Multiplier

Architecture Unconstrained

Architecture

Adjustable Architecture

A(GRF) A(IRF) A(ORF) A(IRF. ORF)

No. of Buses 3 3 2 2 2
No. ofReg.s 6 6 6 6 6
No. of RFs - 4 4, 4 3, 1 4, 3
Sum ofRFs I 	- 6 11 7 11

Table 7.1: D3SCh results of the Differential Equation Example.

152

1 	6 	8 	4 	6 	4 	7 	0 	4 	II 	11 	12

.

I 	
. 	III 	I

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

I 	2 	8 	4 	6 	6 	7 	6 	4 	10 	11 	16

Wets (12)

Figure 7.12: D3 Sch of the Differential Equation Example with "A(IRF)".

Wit. (12)

Figure 7.13: D3Sch of the Differential Equation Example with "A(ORF)".

COde I

COCtt

duct,

cycle

dude

cycle

d9c16

Cycle

Cycle

153

CHAPTER. 7. INTEGRATED CONCURRENT MAPPING

Subtractions, additions and comparisons are performed with the combinational

ALT] with 40 ns delay. A pipeline multiplier with two cycles delay and one cycle

latency is used to perform all the multiplications. Scheduling with different archi-

tectural schemes is performed. These are summarized and presented in Table 7.1.

The first column corresponds to the unconstrained distributed architecture with

point-to-point connections. The rest use a bus-based constrained architecture with

various storage and communication schemes. The schemes are injected to the flex-

ibility damping process through high-level architectural constraints.

In Scheme A(GRF), data values are assigned to global register files only. Scheme

A(IRF) uses input and global register files while Scheme A(ORF) uses output

and global register files only. The schemes A(IRF) and A(ORF) can be seen very

clearly in figures 7.12 and 7.13. They display the operation schedule, the data

transfer schedule and the data storage schedule. Thick lines and numbered nodes

are the operations. Thin vertical lines are data storage. They are connected by

data transfers in thin slant lines. By counting the number of data transfers in

each cycle, it is easy to see that no more than 2 buses are needed in both cases.

Global register files are necessary in all cases. They are used to store the out-

put results in Scheme A(IRF) and input constants in Scheme A(ORF). For the

damping process in D3Sch , user defined resource constraints on the number of

functional units and buses are considered first. After the design is brought within

these constraints, attention is turned to minimize the number of interconnections.

In a traditional approach, this would not be possible because after scheduling, the

time frames for the elements would have been fixed. However, for flexibility damp-

ing, as long as there is still flexibility left, we can still move the elements around.

The small number of buses in Scheme A(IRF) and Scheme A(ORF) reflects the

benefit of this approach. In Scheme A(GRF), because there is no input/output

register files. nearly all the interconnections have been anchored after the initial

constraints have been met.

While adjustable architecture does better in minimizing the number of buses, un-

constrained architecture achieves a smaller number of registers. This is because as

154

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

registers are not attached to the input or the output of functional units, massive

sharing and better utilization are possible. As mentioned before, data duplication
LM is voidable in architectures with input register files. For Scheme A(IRF), the

total number of registers in all the register files, SurnofRFs, is 11, far from the

optimal value of 6.

Figure 7.14: Target Datapaths derived from "A(ORF)" result of D3Sch

Figure 7.15: Target Datapaths from HAL.

Although the result is fairly good, resource binding has not been performed yet.

There is still flexibility available for the binding process. At this stage, some floor-

planning information can be considered. Using the initial resource constraints,

initial placement can be carried out. From the draft floorplan, the connectivity

matrix can be derived which can then be used to drive the anchoring and the

binding process. This demostrates one of the strengths of flexibility damping.

External information can be injected easily to facilitate the synthesis process.

155

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

Figure 7.14 shows the final architecture of the Scheme A(ORF). The bus-based

structure is very noticeable. It forms a linear topology. The dual register files at

the output port of the multiplier(MUL) reflect the argument discussed in section

7.6.2, i.e. for the case of ORF based architecture, sometimes the number of reg-

ister files required is greater than the number of output ports in the functional

units. Therefore, some of the output ports will have more than one register files.

The target architecture synthesized by HAL [PAuL88] is shown in figure 7.15 for

comparison. The unconstrained architecture and random interconnections is very

likely to cause problems for placement and routing.

7.9.2 5th-Order Elliptic Filter

This example is taken from the 1988 High-Level Synthesis Workshop Benchmarks

and has been used in the last chapter for resource restricted scheduling. The filter

has 43 operations and 60 edges. 8 of the operations are multiplications and the

rest are additions. For D3Sch with a pipeline multiplier, the following conditions

are assumed:

Cycle length: 70 ns
Number of cycles: 19
ALTJ: { 60+0c+0: -: - }
Pipeline Multiplier : { 40+0c+40 : 1: 40ns }
Architectural Constraint : 2 ALU and 1 Pipeline Multiplier

Architecture Unconstrained

Architecture

Adjustable Architecture

A(GRF) A(IRF) A(ORF) A(IRF, ORF)

No.ofBuses 6 6 2 4 3
No. of Reg.s 11 11 14 11 15
No. ofRFs - 8 6 5 6,3
Sum of RFs - 14 17 13 25

Table 7.2: D3Sch result of the 5th-Order Elliptic Filter.

156

CHAPTER. 7. INTEGRATED CONCURRENT MAPPING

I C 3 4 C C 7 C I IS 11 II 13 14 15 CC 17 II CI CS Cl CC Cl 54 25 ye ti CC CC 30 31 IC 33 34 Il

Figure 7.16: D3Sch of the 5th-Order Elliptic Filter with A(GRF)

I C 3 4 5 C 7 C C 15 11 IC 13 14 15 IC 17 18 II CS CI CC CI Cc 21 56 97 28 CC 35 31 32 33 34 35

W.u(35)

Figure 7.17: D3Sch of the 5th-Order Elliptic Filter with A(IRF, ORF)

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle S

Cycle 1

CCl. C

Cycle 3

cycle 4

Cycle 5

Cycle C

Cycle 7

Cycle C

Cycle

Cycle I$

Cycle II

Cycle IC

Cycle 13

Cycle 14

Cycle 11

Cycle IC

Cycle 17

Cycle II

Cycle 11

Cycle

Cycle

cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

cycle

cycle

Cycle

cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle

Cycle C

Cycle 1

Cycle C

Cycle 3

Cycle 4

CyCle 5

Cycle C

Cycle 7

Cycle C

Cycle

Cycle IC

cycle 11

CyCle 12

Cycle 13

Cycle 14

Cycle IC

Cycle It

Cycle 17

Cycle IS

CCClI IC

157

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

For D3 Sch with a normal multiplier, the following conditions are assumed:

Cycle length: 90 ns
Number of cycles: 21
ALU: { 60+0c+0 : -: - }
Multiplier : { 50+0c+50
Architectural Constraint 2 ALU and 1 Multiplier

Architecture Unconstrained

Architecture

Adjustable Architecture

A(GRF) A(IRF) A(ORF) A(IRF, ORF)

No. ofBuses 6 6 3 3 2
No. of Reg.s 11 11 12 10 12
No. ofRFs - 8 6 5 6,3
Sum of RFs - 15 16 13 27

Table 7.3: D3Sch result of the 5th-Order Elliptic Filter.

It is first synthesized with a pipeline multiplier with two cycles delay and a cycle

latency, and is then synthesized with a normal multiplier with two cycles delay.

Additions are performed by two ALUs. The resource restricted ASAP and ALAP

schedulings from the last chapter are used to define the initial flexibility along

the control steps. Figure 7.16 shows the schedule using a pipeline multiplier with

global register files. Because of the dual data transfer, from functional unit to

GRF and from GRF to functional unit, nearly twice the amount of buses are re-

quired. Figure 7.17 shows the schedule with IRFs, ORFs, and GRFs. Because of

the register files, significantly fewer buses are required. However, the early trans-

mission of values at the output port causes massive data duplication at the input

register files. There is much room for improvement especially in the scheduling of

output. transfers.

For comparison, the results are summarized in table 7.4; A(GRF), A(IRF) and

A(ORF).

These are compared with results from:

- simultaneous scheduling and allocation, OASIC [GEB091],

- delay reduction scheduling within CADDY system [R0sE91],

- zone scheduling with integer linear programming, ALPS [HWAN90],

158

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

Algorithms Cycles Pipe.s Mult.s Add.s Buses RF.s Reg.s

A(GRF) 19 1 2 6 8 14
A(IRF) 19 1 2 2 6 17
A(ORF) 19 1 2 4 5 13
OASIC 19 1 2 7 9

CADDY 19 1 2 5 10
ALPS 19 1 2 6
SPAID 19 1 2 5 5 19
FDLS 19 1 2 8 12
SAM 19 1 2 12
SAW 19 2 2 7 12

CADDY 19 2 2 5 10
A(GRF) 21 1 2 6 8 15
A(IRF) 21 1 2 3 6 16
A(ORF) 21 1 2 3 5 13

ALPS 21 1 2 4
SPAID 21 1 2 6 6 19
Schalloc 21 1 2 9 13
FDLS 21 1 2 12

Table 7.4: Results of 5th-Order Elliptic Filter.

- DSP silicon compiler, SPAID [HAR089],

- force-directed list scheduling, FDLS [PAUL89],

- simultaneous scheduling and connectivity binding, Schalloc [BERR90],

- combined scheduling, allocation and binding, SAM [cLou90].

Since slightly different target architectures are used in each case, we must be care-

ful not to compare the results directly. CADDY uses global register files with

result storage available for each functional unit. In ALPS, functional units have

both input and output latches. SPAID attaches a register file to each bus and

input latches are available. FDLS uses global registers only. Even so, provided

the same amount of cycles and resources, architecture with IRFs or ORFs, A(IRF)

and A(ORF), requires significantly less global communication buses than the oth-

ers.

It may be thought that the damping process is tedious and slow. However, the

run time for the filter example is only a few seconds on a SPARCstation 1.

159

CHAPTER 7. INTEGRATED CONCURRENT MAPPING

7.9.3 Fast Discrete Cosine Transform

This is the biggest example processed. The following conditions are assumed:

Cycle length: 70 ns
Number of cycles: 14
ALU: { 60+0c+0 : —: - }
Pipeline Multiplier : { 40+0c+40 : 1: 40ns }
Architectural Constraint : 3 ALU and 4 Pipeline Multiplier

Architecture Unconstrained
Architecture

 Adjustable Architecture
A(GRF) A(IRF) A(ORF). A(IRF. ORF)

No. of Buses 12 12 8 7 6
No. of Reg.s 15 15 - - -
No. of RFs - 8 13 9 12, 7
Sum of RFs - 19 1 	33 1 	24 1 	44

Table 7.5: D3Sch result of the Fast Discrete Cosine Transform.

I 28 45 878 91611 31415 	5I* flS291S3 	8348B$ 	 844 848476 5S515Z86I53I

I

0 Wan
—

11111111 J 111(11111(1111111111111 	111111 	liii 	11111 	11111
1 2 8 4 5 6 7 8 9 	 Z1036455505'75'8

)iods(5I)

Figure 7.18: D3Sch of the Fast Discrete Cosine Transform with A(ORF)

CHAPTER. 7. INTEGRATED CONCURRENT MAPPING

It consists of 26 multiplications/divisions and 26 additions/ subtractions. The mul-

tiplications/divisions are performed on 4 pipeline multipliers with two cycles delay

and one cycle latency. The additions/ subtractions are performed on 3 combina-

tional ALUs. Figure 7.18 shows the schedule with the architectural constraint: no

input register file. Global register files are only used when necessary. The cycle

which uses 7 buses is Cycle 8.

7.10 Conclusion

In this chapter, we have detailed the adjustable target architecture and the con-

current mapping process. With the advantage of various storage structures, the

schedules of storage and communications can be distributed evenly along the con-

trol steps. Data transfers are not forced to happen immediately before and after

the operations. The concept of concurrent mapping with concurrent scheduling,

D3 Sch , using the strategy of flexibility damping has been investigated. The result

shows that by considering operations, storage and communication simultanously, a

more global cost effective implementation can be achieved. The strategy of flexibil-

ity damping avoids the risk associated with premature early decisions. Constraints

and different optimizations can be considered gradually and systematically with-

out the loss of generality. In summary, the advantages of flexibility damping are:

it allows systematic design space exploration:

it prevents overkill, thus preserving possible good solutions;

it eliminates possible inefficient use of decision functions which are not fine

enough to pick out the best option;

it allows user interference without direct impact or over-constraining.

On the other hand, the disadvantages are:

it is slow in obtaining the first point solution;

for a large design space. efficient algorithms are needed to define the initial

flexibility design space to start with. In these cases, predictors as described

in [JAIN89] can certainly help.

161

Chapter 8

Conclusion

In the previous chapters, we have described some of the important steps of progres-

sive flexibility damping. Flexibility damping provides a foundation to facilitate

the exploraton of a large design space, and allows a stream of tasks to be per-

formed on the design space systemically. By "flexibility damping" the solution

space, tasks are prevented from over-committing to some unfulfihlable solutions.

The occurrence of overkill is avoided and as more information is introduced and

made available through the process, better decisions can be made.

Just to recapitulate, the flexibility damping process comprises:

. High-Level Transformation (HLT),

Coarse Scheduling and Allocation (CSA),

Fine Scheduling and Binding (FSB), and

Fine-gain RTL Optimization.

High-level transformation consists of language level transformations (Chapter 4:

variable renaming and minimum execution time tree generation), and internal

graph transformations (Chapter 5: simplification, local-data and global-data trans-

formations). The main objective of these transformations is to extract parallelism

from the original input description. With speculative execution, a massive amount

of concurrent operations can be identified. However, significantly more hardware

resources are required. Therefore, tradeoffs have to be made between the amount

of hardware resources and execution parallelization.

162

CHAPTER 8. CONCLUSION

Coarse scheduling and allocation is performed by the resource restricted schedul-

ing algorithm in Chapter 6. By utilizing the parallelism extracted, operations are

scheduled into minimum number of clock cycles. At the same time, in order to

utilize all the constrained resources as fully as possible, operations are allowed

to migrate to wherever resoures are available. Using this partial speculative ex-

ecution method, with the same amount of resource, better scheduling results are

achieved.

Fine scheduling and binding has been implemented in the integrated concurrent

mapping process in Chapter 7. By applying the philosophy of flexibility damping,

data operations, storage and communications are mapped onto various instances

of the target architecture concurrently. This policy ensures that all the cost fac-

tors have been taken into account so that the final layout are is minimized.

From the results presented after concurrent mapping at the end of chapter 7. It is

shown that the strategy of flexibility damping is highly successful. Compared with

the published figures on the benchmark designs from other systems, significantly

better results are achieved. Also, with the well defined adjustable target structure,

a wider range of architectures are covered.

8.1 Continuous Development of HLS

Next, we would like to take a broader view of high-level synthesis in the real design

enviroment. High-level synthesis has been under development for nearly a decade,

from the original CMU-DA project started in Carnegie Mellon University around

late seventies [PARK79] to the public release of SAW around 1989 [TH0M88]. The

initial response from industry has been good [sARM90] [FuHrt91], but the adoption

of high-level synthesis as part of the design process has been slow. High-level

synthesis is mostly used in research synthesis systems with very few industrial

applications.

The adoption of high-level synthesis has been hindered by a number of factors.

In the following sections, we detail the areas in which shortcomings need to be

163

CHAPTER 8. CONCLUSION

addressed and the directions for future developments.

8.2 Synthesis Input Language

After the standardization of VHDL as IEEE STD 1076 [IEEE87] in 1987, it has

been widely accepted as the simulation and documentation language. Following

its success in the simulation sector, enormous pressure has built up forcing syn-

thesis systems to accept VHDL as the input language.

However, VHDL is not well suited for synthesis purposes. The flexibility of allow-

ing user-defined data types and operations introduces extra difficulties into the

already complicated problem. They may turn out to be unnecessarily complex

and expensive to realize.

Also, VHDL does not support any unified approach for common hardware descrip-

tion constructs, like truth-table, finite state machine, which are commonly found

in other HDLs. Possible description styles for FSM are numerous [YEuN91A].

Although they would give the same simulation results, interpreting them for syn-

thesis would not be obvious. It would only be possible if the synthesis system is

designed with the description styles in mind and hence can "understand" the input

description. In that case, it will be highly stylised, and designers will be forced

to follow the guidelines. As these guidelines would be synthesis system specific, it

raises the doubt about the suitability of VHDL as the standard synthesis language.

VHDL is a rich language and is based on procedural semantics. Transformation of

these models into logic level specification is complex. Some guidelines for standard

practice will be very useful, especially for beginners. Writing descriptions which

are both simulation and synthesis efficient is very important. On the other hand,

to help the specification of constraints, the synthesis subcommittee of the IEEE

VASG Modeling Group is defining a "Standard Synthesis Package" for use with

synthesis.

164

CHAPTER 8. CONCLUSION

8.3 Synthesis Intermediate Format

ASIC users are demanding a universal design methodology within which they can

explore the ASIC technologies and perform design trade-offs. To make that possi-

ble, the design representation must be technology independent so that the design

can be kept technology transparent. After it has been functionally verified, it can

be targeted according to the target market cost /performance ratio.

A technology independent synthesis intermediate format, as shown in figure 8.1,

captures the functionality and the requirements of a design at the front-end. It

allows designers to utilize the most appropriate design entry method to enter

the design. After the synthesis intermediate format is in place, it serves as a

central repository on which synthesis operations can be performed. The result

of these operations are back-annotated back into the format through which con-

straint propagation and design tradeoff can be made. As synthesis goes on, the

synthesis intermediate format is gradually transformed from the behavioural level

down to the gate level.

Technology independent synthesis tools can be applied in any order, interleaved

to ensure efficient transformations and optimizations. These operations also help

retargeting and re-optimizing the design to various technologies. After the technol-

ogy independent optimization steps, different technology fitters can be applied to

map the design onto a chosen technology, such as PLD, PGA, gate-array or stan-

dard cells. Different fitters are required because different technologies could have

very different architecture and require radically different synthesis, optimization

and physical design algorithms. Technology migration is a technology switching

process. It allows designers to up-grade a design from FPGAs through gate arrays

to standard cells for mass production; or vise versa for prototyping.

For highly active research areas such as high-level synthesis, algorithms and method-

ologies are evolved rapidly. Synthesis intermediate format can facilitate an incre-

mental integration of synthesis systems. Software modules can be arranged like

building blocks. Prototype systems can be built quickly. Advanced algorithms

can be integrated progressively as they become mature.

165

CHAPTER 8. CONCLUSION

State Transition Diagram Algorithmic State Machine Process Model Graph 	System Partition Diagram
(STD) 	 (ASM) 	 (PMG) 	 (SPD)

\ 	

Design
Entity

Hardware Description
Languages

Schematic

Standard Parts

ol 	 Synthesis
Intermediate Format

Synthesis

Synthesis
Intermediate Format

Simulation 	Simulation
Languages

A IC

S >
User Programmable 	SemiCustom

Programmable Logic Device
(PLD) 	 I 	 i

Gate Array 	Standard Cell
Programmable Gate Array

(PGA)

Migration Path

Cost/Performance, Product Volume, etc

Technology
Fitting

Figure 8.1: Technology Transparent design with Synthesis Intermediate Format.

CHAPTER 8. CONCLUSION

8.4 Integration with Low-Level Synthesis

It has been observed that optimization for high-level synthesis is particularly dif-

ficult since a design is synthesized in a top-down fashion and its performance can

only be evaluated after the design has been mapped onto a given technology. As a

result, tight design constraints are particularly difficult to meet with this top-down

design approach. There are significant interactions between high-level synthesis

and low-level synthesis, such as logic and layout synthesis. We cannot merely op-

timize a design at one level, but instead, must consider the interactions between

the levels.

Although high-level synthesis has developed rapidly, the interactions between high-

level synthesis and its back-end, low-level synthesis, have not been well under-

stood [cAMP89B]. Low-Level synthesis with sophisticated optimization techniques

and the use of mega-functions, mega-cells and module generators all have differ-

ent implications on high-level decisions. If a high-level synthesis system does not

understand the performance and the requirements of the low-level synthesis tools

which are used as its backend, severe constraints will be imposed on the lower

level with little justification. Low-Level synthesis will also have no channel to

feed their results back to high-level synthesis. Consequently, high-level synthesis

cannot obtain the information it needs for making important decisions and low-

level synthesis does not receive the RTL structure on which low-level optimization

can perform well. Detailed experiments on this scenario have been documented

in [YEuN91B].

To tackle this problem, it would be ideal if low-level synthesis could be integrated

into high-level synthesis. However, the complexity of both problems has made that

impossible. To improve the situation, top-down design synthesis approach must be

coupled with information passing and constraint propagation in both directions.

"Close-loop" design iterations can help low-level synthesis to pass performance

information upwards back to high-level synthesis. Using this information, high-

level synthesis can do a better job in partitioning the specification constraints for

lower levels.

167

CHAPTER. 8. CONCLUSION

8.5 System Level Synthesis

Following the maturity of high-level synthesis, synthesis research is now pointing

towards system level synthesis. The aim of system level synthesis is to partition

and implement a system level specification into one or a number of chips. Standard

components should also be included wherever appropriate if they can help in

satisfying the performance specification. Here, to give an overall view of the

subject, we briefly introduce three research systems currently under development.

8.5.1 SpecSyn: System Level Synthesis

SpecSyn is a system level synthesis tool under development in University of Cal-

ifornia, Irvine. Taking a system level specification and a set of constraints, it

synthesizes an interconnected set of chips which satisfies the constraints. Designs

are captured by the graphic user interface, SpecCharts [vAHI91]. It allows the

designer to enter the functionality and the requirements of a system. SpecCharts

describe a system in terms of a hierarchy of state diagrams. The functionality of

the primary state is described in sequential statements. Given the specification.

estimators predict the performance parameters, such as area, execution delay, pin

count, power dissipation, etc. This information is fed into the partitioner, par-

titor. If the design is bigger than the maximum size constraint of a chip, it will

be partitioned. The arbiter constrains and defines the amount of concurrent data

access among the chips. After that, communication protocols will be defined.

These protocols are handled by interface synthesis which puts in ports, intercon-

nections and the necessary signal assignments. Finally, each partitioned chip can

be constructed individually by some high-level synthesis tools.

8.5.2 MICON: System for Computer Design

MICON from Carnegie Mellon University [BIRM89] is an assistant tool for com-

puter hardware designers. It targets at single board computers. Implementations

are assembled using a set of off-the-shelf components to meet the design speci-

fication. Its knowledge base system is able to capture previous design informa-

tion, formalize good design practices, and disseminate the accumulated design

knowledge to assist its users. The task performed by MICON is referred to as

WOW

CHAPTER. 8. CONCLUSION

configuration based on design reuse. It is ideal for rapid prototyping of computer

system. It shortens the learning time, the trial and error time and the design time.

The system consists of a set of tools. Ml, the rule-based system, transforms the

input specification into netlist. CGEN (Code Generator) is the knowledge ac-

quisition tool for Ml. FAILURE analyzes the cause of failures and allows user

interaction. ASSURE (Automated Synthesis for Reliability) analyzes the imple-

mentation produced by Ml and suggests modifications for improvement. ADEFT

(Automated Design for Testability) modifies the design to meet the testability re-

quired. Database stores all the parts and components used by the tools.

8.5.3 USC: Unified System Construction

Unified System Construction (USC) [PARK91] from University of Southern Cali-

fornia is different from the previous two systems as it targets at multiprocessor

systems. It consists of:

BAD: Behavioral Area-Delay Predictor

SOS: Synthesis of Application-Specific Multiprocessor Architectures [PRAK91]

SOS performs the automatic design of a heterogeneous multiprocessor sys-

tem. Then, it maps the subtasks onto the architecture and provides a sched-

ule for the execution of the task.

CHOP: A Constraint-Driven System-Level Partitioner [xucu91]

It assists the designer to partition the behaviour specification onto multiple

chips in order to satisfy the hard constraints which can include individual

chip areas, pin counts, system performance and system delay.

3D Scheduling [wENG91]

To consider interconnection delay/cost concurrently with the delay/cost

tradeoffs of operations. 3D Scheduling is designed to perform scheduling

and floorplanning simultaneously.

CHAPTER 8. CONCLUSION

8.6 Graphical User Interface

8.6.1 Design Entry

Honestly, designers are not really interested in writing design descriptions in

VHDL if there are other easier methods to input the design and simulate them. De-

signers should be given the choice of describing the design in any well-known high

level capture methodologies including, block diagrams, boolean equations, bubble

diagram, flow chart, and behavioural specification. Different entry methodologies

suit different design target domains and levels of sophistication. In figure 8.1,

design can be entered by means of one of the following graphical methodologies:

State Transition Diagram(STD) - bubble diagram,

Algorithmic State Machine(ASM) - flow chart,

Process Model Graph(PMG) - interface handshaking model,

System Partition Diagram(SPD) - block diagram

A graphical hierarchical representation of a system can be built up easily with

one graphical representation encapsulated within another. As each of these input

methodologies have its own hardware-oriented meanings, it makes sense to gener-

ate the system intermediate format directly from the design entry tools. It saves

the expensive steps of design compilation, semantic analysis and understanding

of the hardware description for synthesis. This is even more difficult especially

when there is no standard on synthesis language. For simulation, textual descrip-

tions can be generated automatically in one of the many hardware description
languages.

8.6.2 Design Correlation

Unlike logic synthesis, high-level synthesis is not sophisticated enough to handle

all the design steps automatically. Even if it is capable of doing so, designers are

not comfortable enough with the "hands off" the design process yet. Designers

want to interfere with the design and want some assistance from the system so

that they can understand what has been generated by the tools. From these un-

derstandings, they can then tune the design towards their requirements.

170

CHAPTER 8. CONCLUSION

regf

IE

ALU 	 1-j Regf
regf

Data Path 	Re;;

Control

Figure 8.2: Correlation between Design Levels.

171

CHAPTER 8. CONCLUSION

The CORAL [BLAC88] linker and the SEESAW graphical tool are the first to

introduce the idea of correlation between design representations at different levels.

The tool displays the input behaviour description, the synthesized control sequence

and the resultant RTL schematic. By selecting a construct in the language display,

the system will highlight the corresponding modules in the schematic and the

corresponding steps in the control sequence. It is very helpful for both designers

and beginners to understand how the design specification is implemented by the

synthesized structure.

8.7 Conclusion

The distinctive feature of an ASIC product is the design process. At the moment,

top-down design with synthesis holds the key to the success of the design process.

We have seen how logic synthesis has transformed the industrial design practice.

The continuous advancement of synthesis technology, from logic synthesis to high-

level synthsis and to system-level synthesis, will continue to be one of the most

important factors for the development of ASIC technology.

172

Chapter 9

Appendix: Input Descriptions

9.1 Differential Equation Example

procedure diffeq(
A : in integer;
Dx : in integer;
U : inout integer;
X : inout integer;
Y : inout integer)

is
variable x : integer;
variable y integer;
variable u integer;
variable a : integer;
variable dx integer;
variable du : integer;
variable ul integer;
variable xl : integer;
variable yl integer;

begin

X X;
y
a := A;
u U;
dx := Dx;
while (x < a) loop

du := u * dx;
xl : x + dx;
ul =11-5 *x * du + 3 * y * dx;
yl := y + du;
X xl;
U 	ul;
y := yl;

end loop;
X := x;
Y := y;

end diffeq;

173

CHAPTER 9. APPENDIX: INPUT DESCRIPTIONS

9.2 An Example from [PARK86]

procedure parker 1986(
ml : in integer;
in2 in integer;
in3 : in integer;
in4 : in integer;
in5 : in integer;
in6 : in integer;
out out integer)

is
variable ti integer;
variable t2 : integer;
variable t3 : integer;
variable t4 : integer;
variable t5 integer;
variable t6 integer;
variable t7 : integer;
variable ot : integer;

begin

if (in5 0 0) then
t2 := in2 + in3;

if (t2-4 0) then
Q 	ml - 4;
if (t3 0 0) then t4 	in2 + 4;

else t4 := in3 - in5;
end if;

else
Q := in4 - 5;
t5 := t3 + 5;
if (t5 	0) then t6 := ml + in2;
else

t7 	ml - in2;
t6 := ti + ml;

end if;
t4 := t6 - in4;

end if;
t6 := t4 + in4;

else
tl := in5 - in6;

if (tl 	0) then t6 	in2 + 5;
else t6 := 8 - in4;

end if;
end if;
if (t6 	0) then ot := ml - 5;

else ot 	S + in5;
end if;

out 	ot;

end parker1986;

174

CHAPTER 9. APPENDIX: INPUT DESCRIPTIONS

9.3 Fifth-Order Elliptic Filter

procedure Elliptic-Filter-Loop(
In : in integer; i2 : in integer; o2 : out integer;

i13 : in integer; o13 : out integer;
i18 : in integer; o18 : out integer;
i26 in integer; o26 : out integer;
i33 : in integer; o33 : out integer;
i38 : in integer; o38 : out integer;
i39 : in integer; o39 : out integer; Out : out integer)

is
const ccc: integer;
var x12: integer;
var x14: integer;
var x15: integer;
var x17: integer;
var x19: integer;
var x25: integer;
var x27: integer;
var x3 : integer;
var x31: integer;
var x32: integer;
var x35: integer;
var x37: integer;
var x40: integer;
var xG : integer;
var x8 : integer;

begin

x3 := i2 + In;
x12 := x3 + i13;
x32 := i33 + i39;
x25 := x12 + i26 + x32;
x19 := ccc * x25 + x12;
x8 := ccc * (x19 + x12) + x3;
o2 := ccc * (x8 + x3) + In + x8;
x27 := ccc * x25 + x32;
x31 := 139 + ccc * (x27 + x32);
o26 := x25 + x19 + x27;
X15 := xS + x19 + i18;
x17 := ccc * x15 + i18;
o18 := x17;
o13 := x17 + x15;
x35 := x31 + x27 + i38;
x37 := ccc * x35 + i38;
o38 := x37;
o33 := x35 + x37;
x40 := ccc * (x31 + i39);
o39 := x40 + x31;
Out : x40;

end Elliptic-Filter-Loop;

175

CHAPTER 9. APPENDIX: INPUT DESCRIPTIONS

9.4 MC6502 Groupi Instruction

extern procedure read(adr : in word;
dbb : out byte)

extern procedure write(adr : in word;
dbb : out byte)

extern procedure addr(adh : in word;
adi : in word;
adr : out word)

extern procedure setnz(ta : in byte)

extern procedure adjuct(tac in array[9] of bit;
opd : in byte)

procedure group 10
is

variable adr word;
variable cpc : word;
variable opd : word;
static Pc : word;
static Jr : byte;
static X : byte;
static Y : byte;
static A : byte;
static c 	bit;

begin

read(Pc, cpc);

case Ir[4:2] is
when 0 => addr(cpc+X+1, cpc+X, adr);
when 1 => adr 	cpc;
when 2 => adr 	Pc:
when 3 => addr(Pc+1, Pc, adr); Pc := Pc + 1;
when 4 => addr(cpc+1, cpc, adr); adr 	adr ± Y;
when 5 => adr := cpc + X;
when 6 => addr(Pc+1, Pc, adr ; adr 	adr + Y; Pc := Pc + 1;
when 7 => addr(Pc+1, Pc. adr ; adr 	adr + X; Pc 	Pc + 1:

end case;

Pc := Pc + 1;
read(adr, opd);

case Ir[7:5] is
when 0 => A 	A I opd; setnz(A);
when 1 => A := A & opd; setnz(A);
when 2 => A 	A xor opd; setnz(A);
when 3 => adjuct(A + c + opd, opd);
when 4 => if (Jr 0 Hh189h1) then write(adr, A); end if;
when 5 => setnz(A);
when 6 => setnz(A - opd); c := A ~ opd;
when 7 => adjuct(A + c - opd, opd):

end case;

end groupi,

176

CHAPTER 9. APPENDIX: INPUT DESCRIPTIONS

9.5 Fast Discrete Cosine Transform

procedure fdct_ld(
i_plane in array[7] of integer;
f_plane out array[7] of integer)

Is
variable b : array[7] of integer;
variable c array[7] of integer;
variable d array[7] of integer;
variable e : array[7] of integer;

begin

first pass
b[O] := 1_plane[7]+i_plane[O];

:= i_plane[6]+i_plane[1];
:= i_plane[5]+i_plane[2];
:= i_plane[4]+i_plane[3];
:= 1_plane[3]+i_plane[4];

i_plane[2]+i_plane[5];
:= i_p1ane[1]--i_plane[6];
:= i_plane[01+i_plane[7];

second pass
c[O] 	b[3]+b[O];

b[2]+b[1];
b[1]—b[2];
b[O]—b[3];
b[4J:
91*b[6]-91*b[5]: 	# 128*[cos[pi/4]*b6 - cos[pi/4]*b5]

:= 91*b[6]+91*b[5]; # 128*[cos[pi/4]*b6 + cos[pi/41*b5]
c['i] 	b[7];

scale c5 & c6
:= c[5]/128;
:= c[6]/128;

third pass
d[O] 	cEO]:
dli] := c{1];

:= c[2];
:= c[3];

c[4]+c[5];
:= c[4]—c[5];
:= c[7]—c[6];

c[7]+c[6];

fourth pass
e[O] := 91*d[O]+91*d[i]; # 128*[cos[pi/4]*bO + cos[pi/4]*bl]

: 	91*d[O]-91*d[1]; # 128*[cos[pi/4]*bO - cos[pi/4]*bl]
e[2] := 49*d[2]+118*d[3]; # 128*[sin[pi/8]*b2 + cos[pi/8]*b3]

49*d[3]-118*d[2]; # 128*[cos[pi/81*b3 - sin[pi/8]*b2]
e[1] := 25*d[4]+126*d[7]; # 128*[sin[pi/16]*b4 + cos[pi/]*b7]

106*d[5]+71*d[6]; # 128*[sin[5*pi/16]*b5 + cos[5*pi/16]*b6]

177

CHAPTER 9. APPENDIX: INPUT DESCRIPTIONS

e[3] 	106*d [6] —71*d[5]; # 128* [cos[3*pi/16]*b6 - sin[3*pi/ 16]*b5
e[7] := 25*d[7] - 126*d[4]; # 128* [cos[7*pi/16]*b7 - sin[7*pi/ 16] *b4

f_plane[O] := e[O]/128;
f_plane[1] 	e[1]/128;
f_plane[2] 	e[2]/128;
f_plane[3] 	e[3]/128;
f_plane[4] 	e[4]/128;
f_plane[5] := e[5]/128;
f_plane[6] := e[6]/128;
f_plane[7] := e[7]/128;

end fdct_ld;

178

Chapter 10

Bibliography

A good survey and summary of references on High-Level Synthesis can also be

found in:

"A Survey of High-Level Synthesis Systems" R.A. Walker and R. Camposano,

Kluwer Academic Publishers, 1991

[AH086] 	A. Aho, R. Sethi, and J. Ullman "Compilers: Principles, Tech-

niques, and Tools", Addison-Wesley Publishing Company, Reading,

Massachusetts, 1986.

[BALA89] M. Balakrishnan, P. Marwedel "Integrated Scheduling and Binding:

A Synthesis Approach for Design Space Exploration", Proc. 26th

Design Automation Conference, pp.68-74, 1989.

[BARB 81] M .R. Barbacci "Instruction Set Processor Specifications (ISPS)",

IEEE Transaction on Computers, Jan. 1981.

[BERR90] N.V. Berrey, B.M. Pangrie "SCHALLOC: An Algorithm for Simul-

tanous Scheduling & Connectivity Binding in a Datapath Synthesis

System", Proc. European Design Automation Conference, pp.78-82,

1990.

[BIRM89] The MICON Sytem for Computer Design "W.P. Birmingham, A.P.

Gupta, D.P. Siewiorek", Proc. 26th Design Automation Conference,

pp.135-140, 1989.

[BLAC88] R.L. Blackburn, D.E. Thomas, and P.M. Koenig "CORAL II: Linking

Behavior and Structure in an IC Design System", Proc. 25th Design

Automation Conference, pp.529-535, 1988.

179

CHAPTER 10. BIBLIOGRAPHY

[BRAY86] R.K. Brayton, R. Camposano, C. DeMicheli, R.H.J.M. Otten, and

J.T.J. van Eijndhoven "The Yorktown Silicon Compiler", IBM Re-

search Report, RC 12500(#56205), Yorktown Heights, Dec. 1986.

[BREW87] F.D. Brewer and D.D. Gajski "Knowledge-Based Control in Micro-

Architecture Design", Proc. 24th Design Automation Conference,

pp.203-209 1987.

[BREw90] F.D. Brewer and D.D. Gajski "Chippe: A System for Constraint

Driven Behavioral Synthesis", IEEE Transactions on Computer-Aided

Design, pp.681-694, Huly, 1990.

[CAMP87] R. Camposano and J.T.J. van Eijndhoven "Combined Synthesis of

Control Logic and Data Path", Proc. International Conference on

Computer-Aided Design, pp.327-329, 1987.

[0AMP89A] R. Camposano and W. Rosenstiel "Synthesizing Circuits From Be-

havioral Descriptions", IEEE Transactions on Computer-Aided De-

sign, Feb, 1989.

[0AMP89B] R. Camposano and L.H. Trevillyan "The Integration of Logic Syn-

thesis and High-Level Synthesis", Proc. IEEE ISCAS Conference,

pp.744-747, 1989.

[cAMP89c] R. Camposano, R.M. Tabet "Design Representation for the Syn-

thesis of Behavioral VHDL Models", Proc. 9th Computer Hardware

Description Languages and their Applications, 1989.

[cARL91] S. Carlson "Modeling Style Issues for Synthesis", Applications of

VHDL to Circuit. Design, Kluwer Academic, pp.123-161, 1991.

[cLou901 R.J. Cloutier and D.E. Thomas "The Combination of Scheduling,

Allocation, and Mapping in a Single Algorithm", Proc. 27th Design

Automation Conference, pp.71-76, 1990.

DEMA88] H. De Man, J. Rabaey, J. Vanhoof, G. Goossens, P. Six and L.Claesen

"CATHEDRAL-TI - A Computer-Aided Synthesis System for Digi-

tal Signal Processing VLSI Systems", Computer-Aided Engineering

Journal, pp.55-66, April 1988.

UO

CHAPTER 10. BIBLIOGRAPHY

[DEMA90] H. De Man, F. Catthoor, G. Goossens, J. Vanhoof, L. Van Meer-

bergen, S Note, J.A. Huisken "Architecture-Driven Synthesis Tech-

niques for VLSI Implementation of DSP Algorithms", Proceedings of

the IEEE, pp.319-335, Feb. 1990.

[DEvA89] S. Devadas, A.R. Newton "Algorithms for Hardware Allocation in

Data Path Synthesis", IEEE Transactions on Computer-Aided Design,

pp.768-781, July, 1989.

[FuHR91] T.E. Fuhrman "Industrial Extensions to Univeristy High Level Syn-

thesis Tools: Making It Work in the Real World", Proc. 28th Design

Automation Conference, pp.520-525, 1991.

[GEB091] C.H. Gebotys, M.I. Elmasry "Simultaneous Scheduling and Alloca-

tion for Cost Constrained Optimal Architectural Synthesis", Proc.

28th Design Automation Conference, pp.2-7, 1991.

[GIRc85] 	E.F. Griczvc. R.J.A.Buhr, and J.P. Knight "Applicability of Subset

of Ada as an Algorithmic Hardware Description Language for Graph-

Based Hardware Compilation", IEEE Transactions on Computer-

Aided Design. pp.134-142, April 1985.

[GRAN85] J. Cranacki, D. Knapp, A. Parker "The ADAM Advanced Design

Automation System", Proc. 22nd Design Automation Conference,

June 1985.

{GRAN901 D.M. Grant, P.B. Denver "Memory. Control and Communications

Synthesis for Scheduled Algorithm", Proc. 27th Design Automation

Conference, pp.162-167. 1990.

[HAR088] B.S. Haroun, M.I. Elmasry "SPAID: An Architectural Synthesis Tool

For DSP Custom Applications", Proc. IEEE 1988 Custom Integrated

Circuits Conference, 14.4. 1988.

[HAR089] B.S. Haroun, M.I. Elmasry "Architectural Synthesis for DSP Silicon

Compilers", IEEE Transactions on Computer-Aided Design, pp.431-

447, April. 1989.

[HEMA90] A. Hemani, A. Postula "A Neural Net Based Self Organising Schedul-

ing Algorithm", Proc. European Design Automation Conference,

pp.136-140, 1990.

1031

CHAPTER 10. BIBLIOGRAPHY

[HUAN90] C.Y. Huang, Y.S. Chen, Y.L. Lin, Y.C. Hsu "Data Path Allocation

Based on Bipartite Weighted matching", Proc. 27th Design Automa-

tion Conference, pp.499-504, 1990.

[HwAN90] C.T. Hwang, Y.C. Hsu, Y.L. Lin "Optimum and Heuristic Data Path

Scheduling Under Resource Constraints", Proc. 27th Design Automa-

tion Conference, pp.65-70, 1990.

[IEEE87] IEEE Std 1076-1987 "IEEE Standard VHDL Language Reference

Manual", IEEE 1987.

[JAIN89] 	R. Jam, K. Kucukcakar, M.J. Mlinar and A.C. Parker "Experience

with the ADAM Synthesis System", Proc. 26th Design Automation

Conference, pp.56-61, 1989.

[JAJN91] 	R. Jam, A. Mujumdar, A. Sharma, H. Wang "Empirical Evaluation of

Some High-Level Synthesis Scheduling Heuristics", Proc. 26th Design

Automation Conference, pp.686-689, 1991.

[KNAP86] D.W. Knapp and A.C. Parker "A Design Utility Manager: the ADAM

Planning Engine", Proc. 23nd Design Automation Conference, pp.48-

54, 1986.

{KNAP881 D.W. Knapp and A.C. Parker "Synthesis from Partial Structure",

Proc. TIP 10th Conference on Design Methodologies for VLSI and

Computer Architecture, 1988.

[I<owA85] T. J. Kowalski "An Artifical Intelligence Approach to VLSI Design',

Kluwer Academic Publishers, Boston, 1985.

[Kucu91] K. Kucukcakar and A.C. Parker "CHOP: A Constraint-Driven

System-Level Partitioner". Proc. 28th Design Automation Confer-

ence, pp.514-519, 1991.

[KuNG85] S.Y. Kung, H.J. Whitehouse and T. Kailath "VLSI and Modern Sig-

nal Processing", Prentice-Hall Information and System Sciences Se-

ries, 1985..

[LANN90] D. Lanneer, F. Catthoor, C. Goossens, M. Pauwels, J.Van Meerber-

gen, H.De Man "Open-ended System for High-Level Synthesis of Flex-

ible Signal Processors", Proc. European Design Automation Confer-

ence, pp.272-276, 1990.

182

CHAPTER 10. BIBLIOGRAPHY

[LEuN88] S.S. Leung, P.D. Fisher, M.A. Shanblatt "A Conceptual Framework

for ASIC Design", Proceedings of the IEEE, pp.741-755, July 1988.

[MARw86] P. Marwedel "The MIMOLA Design System: Tools for the design

of Digital Processors", Proc. 23nd Design Automation Conference,

pp.587-593, 1986.

[McFA86] M.C. McFarland "BUD: Bottom-Up Design of Digital Systems",

Proc. 23nd Design Automation Conference, pp.474-479, 1986.

[McFA90] M.C. McFarland, A.C. Parker, R. Camposano "The High-Level Syn-

thesis of Digital Systems", Proceedings of the IEEE, pp.301-319, Feb.

1990.

[PANG87A] B.M. Pangrle and D.D. Gajski "Design Tools for Intelligent Sil-

icon Compilation", IEEE Transaction on Computer-Aided Design,

pp.1098-1112 Nov. 1987.

[PANG87B] B.M. Pangrle and D.D. Gajski "Slicer: A State Synthesizer for Intel-

ligent Silicon Compilation", Proc. International Conference on Com-

puter Design, Oct. 1987.

[PANG88] B.M. Pangrle "Splicer: A Heuristic Approach to Connectivity Bind-

ing", Proc. 25th Design Automation Conference, pp.536-541, 1988.

[PAPA90] C.A. Papachristou, H. Konuk "A Linear Program Driven Scheduling

and Allocation Method Followed by an Interconnect Optimization Al-

gorithm", Proc. 27th Design Automation Conference, pp.77-83, 1990.

[PARK79] A.C. Parker, D. Thomas, D. Siewiorek, M. Barbacci, L. Hafer, G.

Leive and J. Kim "The CMU Design Automation System: An Exam-

pie of Automation Data Path Design", Proc. 16th Design Automation

Conference, pp.73-80, 1979.

[PARK86] A.C. Parker, J.T. Pizarro and M. Mlinar "MAHA: A Program for

Datapath Synthesis", Proc. 23rd Design Automation Conference,

pp.461-466, 1986.

[PARK91] A.C. Parker, K. Kucukcakar, S. Prakash, J.P. Weng "USC: Unified

Systen Construction", High-Level VLSI Synthesis, Kluwer Academic,

pp.331-354.

I3

CHAPTER 10. BIBLIOGRAPHY

[PAuL86] P.G. Paulin, J.P. Knight and E.F. Girczyc "HAL: A Multi-Paradigm

Approach to Automatic Data Synthesis", Proc. 23rd Design Automa-

tion Conference, pp.263-270, 1986.

[PAuL87] P.G. Paulin and J.P. Knight "Force-Directed Scheduling in Automatic

Data Path Synthesis", Proc. 24th Design Automation Conference,

pp.195-202, 1987.

[PAuL88] P.G. Paulin and J.P. Knight "High-Level Synthesis Benchmark Re-

sults Using a Global Scheduling Algorithm", Proc. International

Workshop on Logic and Architecture Synthesis for Silicon Compilers,

pp.211-228, 1988.

[PAUL89] P.G. Paulin and J.P. Knight "Force-Directed Scheduling for the Be-

havioral Synthesis of ASIC's", IEEE Transaction on Computer-Aided

Design, 1989.

{PENG86] Z. Peng "Synthesis of VLSI Systems with the CAMAD Design Aid",

Proc. 24th Design Automation Conference, pp.203-209, 1987.

[P0TA90] R. Potasman, J. Lis, A. Nicolau, D.D. Gajski "Percolation Based

Synthesis', Proc. 27th Design Automation Conference, pp.444-449,

1990.

[PRAK91] S. Prakash, A.C. Parker "Synthesis of Application-Specific Multi-

processor Architectures", Proc. 28th Design Automation Conference,

pp-8-13, 1991.

[RAJA85] J.V. Rajan and D.E. Thomas "Synthesis By Delayed Binding Of

Decisions". Proc. 22rd Design Automation Conference, pp.367-373,

1985.

[RosE91] W. Rosenstiel and H. Kramer "Scheduling and Assignment in

HIgh Level Synthesis", High-Level VLSI Synthesis, Kluwer Academic,

pp.355-381, 1991.

[SARM90] R.C. Sarma, M.D. Dooley, N.C. Newman and G. Hetherington "High-

Level SynthesiE: Technology Transfer to Industry", Proc. 27th Design

Automation Conference, pp.549-554, 1990.

184

CHAPTER 10. BIBLIOGRAPHY

[TH0M88] D.E. Thomas, E.M. Dirkes, R.A. Walker, J.V. Rajan, J.A. Nestor,

R.L. Blackburn "The System Architect's Workbench", Proc. 25th

Design Automation Conference, pp.337-343, 1988.

['rHoM90] D.E. Thomas, E.D. Lagnese, R.A. Walker, J.A. Nestor, J.V. Rajan,

R. L. Blackburn "Algorithmic and Register-Transfer Level Synthesis:

The System Architect's Workbench", Kluwer Academic Publishers.

1990.

[TRIc87] H. Trickey "Flamel: A High-Level Hardware Compiler", IEEE Trans-

action on Computer-Aided Design, pp.259-270, March 1987.

[TsEN86] C.J. Tseng and D.P. Siewiorik "Automated Synthesis of Dath Paths

in Digital Systems", IEEE Transactions on Computer-Aided Design,

pp.379-386, July 1986.

[vAHI91] 	F. Vahid, S. Narayan, D.D. Gajski "SpecCharts: A Language for

System Level Synthesis", Proc. Computer Hardware Description Lan-

guages and their Applications, 1991.

[wENG91] J.P. Weng and A.C. Parker "31) Scheduling: High-Level Synthe-

sis with Floorplanning", Proc. 28th Design Automation Conference,

pp.668-673, 1991.

[YEUN91A] P. Yeung, D. Rees "A Comparison of Hardware Description Lan-

guages", CSR-13-91, Dept. of Computer Science, University of Edin-

burgh.

[YEUN91B] P. Yeung. D. Rees "The Role of Logic Synthesis in High-Level Synthe-

sis. CSR-15-91. Dept. of Computer Science. University of Edinburgh.

[YE UN91CI P. Yeung. D. Rees "Resources Restricted Global Scheduling- . Proc.

IFIP International Conference, VLSI 91, 7.2.1 1991.

[YEUN92] P. Yeung. D. Rees "Resources Restricted Aggressive Scheduling",

Proc. European Design Automation Conference, 1992.

[zIMM86] G. Zimmermann "Top-down Design of Digital System", Logic Design

and Simulation. Advances in CAD for VLSI, North-Holland.

185

